60469390

CONTROL DATA
CORPORATION

OO

MSL15X MODEL INDEPENDENT TESTS MAINTENANCE SOFIWARE

O REFERENCE MANUAL

PART I TEST PROCEDURES & PART II TEST DESCRIPTIONS

FIXED COMMAND TESTS (FcCT1,2,3,5)

VIRTUAL MODE INSTRUCTION LEVEL TEST (FCI9)
0} EXCHANGE TESTS (EXCH)

TRAP TESTS (TRAP)

CDC® COMPUTER SYSTEMS:
CYBER 170 MODELS 815, 825, 835, 845, and 855

CYBER 180 MODELS 810, 830, 835, 845, and 855

©O0

60469390

‘::3 ' CONTROL DATA
/ : CORPORATION

o e s e o o e g g e e e e e s e e 1 e e e o e T o o Semmem e Ly ——

MSL15X MODEL INDEPENDENT TESTS MAINTENANCE SOFTWARE

(: REFERENCE MANUAL

PART I TEST PROCEDURES & PART II TEST DESCRIPTIONS

FIXED COMMAND TESTS (FCT1,2,3,5)
N VIRTUAL MODE INSTRUCTION LEVEL TEST (FCT9)
‘:ﬁ; EXCHANGE TESTS (EXCH)
TRAP TESTS (TRAP)

CDC® COMPUTER SYSTEMS:
CYBER 170 MODELS 815, 825, 835, 845, and 855

 CYBER 180 MODELS 810, 830, 835, 845, and 855

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects release level 137.
5-82
B Manual revised; includes ECO PD 02900. This manual reflects release
11-82 level 143. Model 815 computer system has been added. Due to
extensive changes, revision bars are not used. This edition
obsoletes previous one.
C Manual revised; includes ECO PD 02979. This manual reflects release
5-83 level 149. The following pages are affected: cover, ii through ix,
xii, 1-1-1, 1-1-2, I-1-8, I-1-11, I-1-12, I-2-2, I-2-3, I-3-2, I-3-3,
1-3-4, I-4-3, I-4-6, I-4-7, I-4-9, I-4-38, I-4-40, I-4-41, I-5-2,
1-5-3, I-5-5, 1-6-2, I-6-3, I-6-5, I1-7,2, I-7-3, II-3-9, II1-3-10,
1I1-3-11, II-6-30, comment sheet.]
D Manual revised; includes ECO PD 03063. This manual reflects release
11-83 level 156. The following pages are revised: cover, title page, ii
through vii; in part I: 1-1, 1-2, 2-1, 2-2, 2-4, 3-1, 3-2, 4-3, 4-4,
4-6, 4-7, 4-8, 4-13, 4-15, 4-28, 4-29, 5-2, 5-3, 5-9, 5-11, 6-2
through 6-12, 7-2, 7-3, 7-4, 7-7 through 7-10, 7-13; in part II:
3-2, 3-4 through 3-10, 6-5, 6-6, 6-7, 6-24, 6-25, 6-26, 6-45, 6-46,
7-5, 7-12, 7-19, 7-21, 7-30, 7-31, 7-32, comment sheet.
"B Manual revised; includes ECO PD03109. Reflects release level 161.
5-84 see List of Effective Pages for changed pages. This edition obsoletes
all previous editions.
Publication no. Revision letters I, 0, Q, S, X, and Z are not used
60469390
Address comments concerning
this manual to:
Control Data Canada
Toronto Publications
1855 Minnesota Court
© 1982, 1983, 1984 : MISSISSAUGA, Ont.,
by Control Data Corporation Canada L5N 1K?7

All Rights Reserved
Printed in the United States of America

or use Comment Sheet in
the back of this manual

60469390 E

REV
D
E

E
E

PAGE
I-6-8
I-6-9
I-6-10
I-6-11
I--6-12
I-6-13

REV
E
E
E
E
E
E

I-4-217
I-4-28
I-4-29
I-4-30
I-4-31
I-4-32

A bar by the page number indicates
PAGE

REV
A
- A
A

LIST OF EFFECTIVE PAGES
D

PAGE
1-2-9
I-2-10
I-2-11
Divider
1-3-1
1-3-2

REV

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page

number if the entire page is affected.
pagination rather than content has changed.

Title page E

PAGE
Cover
5/6

SOOI NNadNdcadadddddd <
>
ol
S - [N (7]
TV O~ Q O=NNMmMISTN O Qe NN L Ot Dt NM
ol el DA NN T O ONONHrd el = =T L O D0 0|
| I T T T R T T T T T T T T T B I o B I B B B B I o B I e T e B o)
O WO WO 5 M A S S S PSS SIS PSS - T T T T - T - T |
[S T T~ T T TR S AN T T TR S T R T T A A R A R O BB N R
Pl bt bl bt) bl bt el bt bt el bt bt bl b el bed e bl bl e D D bt bl bt b) b LD b b i
<D POV NPDOMDMEdNEIN O NN OO DM
U e 1
MIPTNONSNONPO N Q Om-NMmT O
MO NNNNNN T I ITTFANOITNVNONSNON il = T NOOITNNON
I N N L N U e |
TP T I LT T T DO OV PO OOODOOO
[N T TR A PR SR TR SN SR ST NS TR AN NN TR SR N N SR TR SR SR TR R SO B T T T T R T
bt bt pd bd e b e b b b O bl el bl bl b b bt bl b el bl bl b b O b bl b bl e el e
VVUdadddddd P PMPPOPNOMMOAONAdCdddaddd d d <D
[N
()] CrNMPTNOSNONANO~SNMT MO
NSNS TN NSNS
O A A A A A A A A A A A A A A A A
b b b b D b bt b b b b bl b bl el bt bl bt el bt bl el bl bl bl el el el ped el et
MM AN A MNP UONLE NN ERN OO0
>
| 3] et b]
] a e OCmrNMmOO
~N T TrE NNV OO rrdrd el O NN TN OO0
ala [T J TR VR N TN TR TR R TR NN T N TN N T TN RS T TN A T)
~N > PrArdmteemmrm e A BNNNNNNNN
O rt o E i~ JURR TR TR U A R SR TR TR TR TR T TR R RN S R RN N R |
Ll - N B B~ B B I - PR~ T e o e N e e el N -l e el]

60469390 E

C
C
OC
C

PAGE REV PAGE REV PAGE REV PAGE REV
1I-3-4 D I1I-6-17 A 11-7-20 A
I1I-3-5 D 11-6-18 A 1I-7-21 D
I1I-3-6 D 1I-6-19 A 1I1-7-22 A
1I-3-7 D 1I-6-20 A 11-7-23 A
II-3-8 D 11-6-21 A 11-7-24 A
11-3-9 D 1I-6-22 A 1I1-7-25 A
II1-3-10 D 1I-6-23 A T1I-7-26 A
1I1-3-11 C II-6-24 D 11-7-27 A
Divider A TI-6-25 D I11-7-28 A
II-4-1 A 1I-6-26 D 11-7-29 A
1I-4-2 A 11-6-27 A 11-7-30 D
Divider A 11-6-28 A 11-7-31 D
II-5~-1 A I11-6-29 A 11-7-32 D
TI-5-2 A 11-6-30 C Divider A
I11-5-3 E II-6-31 B A-1 A
II-5-4 E I1I-6-32 A A-2 A
II-5-5 E I1-6-33 A A-3 A
1I-5-6 E 11-6-34 A A-4 A
II-5-7 E 1I-6-35 A A-5 A
1I-5-8 E I11-6-36 A Divider B
II-5-9 E II-6-37 A B-1 A
I1I-5-10 E I1I-6--38 A B-2 A
II-5-11 E I11-6-39 A B-3 A
I1I-5-12 E II-6-40 A Divider E
I1-5-13 E II-6-41 A c-1 E
II-5-14 E II-6-42 A c-2 E
II-5-15 E I1I-6-43 A c-3 E
II-5-16 E 1I-6-44 A C-4 E
IX-5-17 E 1I-6--45 D Cc-5 E
II-5-18 E II-6-46 D C-6 E
II-5-19 E Divider A c-7 E
11-5-20 E I1I-7-1 A c-8 E
II-5-21 E 11-7-2 A c-9 E
Divider A 1I1-7-3 A Cc-10 E
II-6-1 E II-7-4 A c-11 E
1I-6-2 E II-7-5 D Cc-12 E
II-6-3 A II-7-6 A C-13 E
II-6-4 A 1I-7-7 A C-14 o
II-6-5 D II-7-8 A C-15 E
I1I-6-6 D 11-7-9 A C-16 E
IXI-6-7 D I1I-7-10 A c-17 E
II-6-8 A 1I-7-11 E Comment
I1I1-6-9 A 11-7-12 D Sheet - E
I1I-6-10 A II-7-13 A

1I-6-11 A II-7-14 A

I11-6-12 A I1-7-15 A

I11-6-13 A 1I-7-16 A

I1I-6-14 A 11-7-17 A

I1I-6-15 A 1I-7-18 A

II-6-16 A II-7-19 D

4 60469390 E

O

PREFACE

e s e e 2 o D o S e dn S i e e e S St S S Swae s T SR A S A Ten I O SN D 2N SIS S

This manual describes the tests provided on the Maintenance Software Library
(MSL15X) for use on the Control Data® CYBER 170 Models 815, 825, 835, 845,
and 855 CYBER 180 Models 810, 830, 835, 845, and 855 Computer Systems.

The manual is organized into two parts. Part I defines test procedures and
part II describes program organization and content of each test. Within each
part, the text of the manual is divided into the following sections:

1. Memory Tests ' CMEM
2. Random Command Tests 1 RCT1
3. Random Command Tests 2 RCT2
4, Fixed Command Tests FCT1,2,3,5
5. Virtual Mode Instruction Level Test FCT9
6. Exchange Test EXCH
7. Trap Test : TRAP

RELATED PUBLICATIONS

Control Data Publication Publication Number

MSL 15X Off-line Maintenance Software Library ‘ 60456530
Reference Manual

MSL 151 Models 810, 815, 825, and 830 Maintenance 60469400
Software Reference Manual

MSL 152 Models 835 Maintenance Software 60469410
Reference Manual

MSL 153 Models 845/855 Maintenance Software 60459140
Reference Manual

CYBER 170 Model 815/825 Hardware Reference Manual 60469350

CYBER 170/180 Model 810/830
Hardware Reference Manual '60469420

CYBER 170/180 Model 835/845/855
Hardware Reference Manual 60469290

DISCLAIMER

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
undefined parameters.

60469390 E 5

i H { N | ! {

A -4 N i R / S fiw\t Q

60469390 E

®

CONTENTS

command Buffers for Models 810, 815, 825, and 830
Clock Margins
Dual CP Systems
PART I - MODEL INDEPENDENT TEST PROCEDURES

SECTION 1 - MODEL INDEPENDENT CENTRAL MEMORY TESTS - CMEM

1 Introduction
2 Requirements
2.1 Hardware
2.2 Software
2.3 Accessories
2.4 Characteristics
3 Operational Procedure
3.1 Restrictions and User Cautions
3.2 Loading Procedure
3.3 Parameters and Control Words
3.4 Section Index
4 Operator Communication
4.1 Displays
4.2 Operator Entries
4.3 Normal Messages
4.4 Error Messages
4.5 Applications
SECTION 2 - RANDOM COMMAND TESTS 1 - RCT1
1 Introduction
2 Requirements
2.1 Hardware
2.2 Software
2.3 Accessories
2.4 Characteristics

3 Operational Procedure

3.1 Restrictions and User Cautions
3.2 Loading Procedure

3.3 Parameters and Control Words
3.4 Section Index

60469390 E

e o e o e o S S o e i e e S S S S A b S e g 0% St TR SO I A e S W

s o e i s e e v
mmmsmmasmnER®=

1
'

!

Rl
e e e e
VWNNN

*

-

NNNNN
S WN =

Wwwww
&S W N -

LR
S WN -

N

.

.

NNNNN
& WN

Wwwww
. LI 3

S WN

.

LR N P A
N WN

Operator Communication
Displays
Operator Entries
Normal Messages
Error Messages

SECTION 3 — RANDOM COMMAND TEST 2 - RCT2
Introduction

Requirements
Hardware
Software
Accessories
Characteristics

Operational Procedure
Restrictions and User Cautions
Loading Procedure
Parameters and Control Words
Section Index

Operator Communication
Displays
Operator Entries
Normal Messages
Error Messages

SECTION 4 — FIXED OPERAND COMMAND TESTS - FCT1-3,5

Introduction

Requirements
Hardware
Software
Accessories
Characteristics

Operational Procedure
Restrictions and User Cautions
Loading Procedures
Parameters and Control Words
Test and Section Index

Operator Communication
Displays
Operator Entries
Normal Messages
Error Messages
Applications

|
1

! |
1

[}

!

e, T -
Wwwww
SPWNNN

!

|
1

|

HHITIHH
bb!ﬁ'b&
W wWwwww

HHT‘HH
#bf#b
L Y Y]

}
b&"‘b###
&SSP WNN
NOO®®O®

60469390 E

SECTION 5 — VIRTUAL MODE INSTRUCTION LEVEL TEST - FCT9

Introduction

Requirements
Hardware
Software
Accessories
Characteristics

NNNNN

&S W -

Operational Procedure
Restrictions and User Cautions
Loading Procedure
Parameters and Control Words
Section Index

Wwwww
&S WN -

Operator Communication
Displays
FCT9 Error Messages
Operator Entries

{ !'.,5
- -
W N -

SECTION 6 - EXCHANGE TEST - EXCH

1 Introduction
2 Requirements
n, 2.1 Hardware
67 2.3 Software
" 2.3 Accessories
, 2.4 Characteristics

3 Operational Procedure
3.1 Restrictions and User Cautions
3.2 Loading Procedure
3.3 Parameters and Control Words
. 3.4 Section Index
(:w' 4 Operator Communication
4.1 Displays
4.2 Operator Entries
4.3 Normal Messages
4.4 Error Messages
4.5 Applications

('T
O; 60469390 E

|
K

!
050\0\?0\

[
11
NNNNN

o e B B B |

L I B e B e B o

PART II - MODEL INDEPENDENT TEST DESCRIPTIONS

SECTION 7 - TRAP TEST
Introduction

Requirements
Hardware
Software
Accessories
Characteristics

Operational Procedure
Restrictions and User Cautions
Loading Procedure
Parameters and Control Words
Section Index

Operator Communication
Displays
Operator Entries
Normal Messages
Error Messages
Scope Mode Control and Triggering

SECTION 1 - MODEL INDEPENDENT CENTRAL MEMORY TESTS -~ CMEM

Program Description

General
Section Descriptions

SECTION 2 - RANDOM COMMAND TEST 1 - RCT1

Program Description

General

SECTION 3 — RANDOM COMMAND TEST 2 - RCT2

Program Description

10

General
Section Descriptions

!

HHT!HH
NNTIN\I
~N W W WwW

HHI?IHHH

II-1-1
II-1-1
II-1-1

60469390 E

-

fj = \‘

N

OO0

SECTION 4 - FIXED OPERAND COMMAND TESTS - FCT1-3,5
FCT1 Test Description
FCT2 Test Description
FCT3 Test Description

FCTS Test Description

SECTION 5 - VIRTUAL MODE INSTRUCTION LEVEL TEST -~ FCT9

Program Description
General
Section Descriptions

SECTION 6 — EXCH - EXCHANGE TEST

Program Description
General
Section Descriptions

SECTION 7 -~ TRAP TEST

Program Description
General
Section Descriptions

APPENDIXES
A Glossary
B RCT1 and RCT2 Test/Usage Sets
C Exchange Sequence Diagrams
TABLES

I-4-1 FCT1-3,5 SIZES AND TIMES

60469390 E

II-4-1

I1-4-1

II-4-1

II-4-2

II-5-1
II-5-1
II-5-3

II-6-1
II-6-1
II-6-5

1I-7-1
1I-7-1
I1-7-4

a ? »
=

I-4-4

11

I

/,(

«-tk

COMMAND BUFFERS

Clock Margins

Dual CP Systems

(:ﬁ

COMMAND BUFFERS

CLOCK MARGINS

There are no more command buffers with a suffix of N or W for running narrow
and wide clock margins. Most test command buffers contain an RJ command which
executes one of three small command buffers called IOMARG, CMMARG, and

CPMARG. These buffers set the wide/narrow margin bit for the respective
subsystem using the CMSE CM command. The operator is required to select and
run one of three other small command buffers called WIDE, NARROW, and NORMAL.
Each of these initiates a PP program which modifies all three previously
mentioned command buffers changing the W, N, or blank flag characters of the
CM command.

After executing one (only) of the WIDE, NARROW, or NORMAL buffers with the CM
command the operator may run one or more test command buffers. The RJ command
in the test command buffers sets the subsystem margin bit (one only)
appropriate to the test.

After testing with wide or narrow margins the operator must execute the NORMAL
command buffer to reset the system and the IOMARG, CMMARG, and CPMARG buffers
for normal (no margins) condition.

DUAL CP SYSTEMS

Some tests for models 810, 815, 825, and 830 have more than one version and
thus more than one command buffer. The majority of these command buffers are
for instruction level tests as opposed to PP and microcode level tests. There
are four classes of command buffers for the instruction level tests. They are
identified by a suffix added to the end of the buffer name. The meaning of
the suffixes is listed below:

No Suffix: For the only CP, single CP system

Suffix A: For CPO, dual CP system

Suffix B: ' For CPl, dual CP system

Suffix C: Concurrently for CPO and CPl, dual CP system
Suffix S: Sequentially for CPO and CPl, dual CP system

Buffers for single CP systems should not be run on dual CP systems and vice
versa. Additional details are provided in the following paragraphs:

1) Command buffers without a suffix are functionally the same as those
on previos releases although in many cases the nomenclature for
individual commands has been changed to reflect the changes
introduced in CMSE for dual CP operation.

60469390 E : 1

A

2) Suffixes A and B distingush between two sets of command buffers for Wézﬁ

instruction level tests on dual CP systems. Command buffers with the ~

suffix A are used to run the named test on CPO only and command C';ﬁ

buffers with the suffix B are used to run the named test on CP1 only L

when you want only one CP to be active. The CMSE commands HK and CF

in the buffers are directed to both CPs. This ensures that the

selected CP will not be interfered with when the other CP is left

active by the execution of the previous command buffer.

3) Suffix C indicates that the test runs concurrently on both CPs of a
dual CP system.

4) Suffix S indicates that the test runs sequentially on dual CP
systems. These buffers are for tests that operate under the control
of the instruction test controller (ITC). The ITC runs each section
of the test first in CPO and then in CP1. At any given time only one g
CP is active. Commands, listed on the test's parameter stop display,
are provided to select or deselect either of the CPs if you want to
test only one.

Current command buffer names are listed below.

60469390 E 5 S

ole

Command Buffer Names

$$QLT10
$$PMT10
$$EXT10
$$PMU10
$$CHD10
$$CMAL0
$$MRAL0
$$MRT10
$$DST10
$$TPM1O
$$CRAL0
$$MUX10

- $$FIILO0

3CMT10
$$cMI10
$$FDS10
$$FIsS10
$$CMEML
$$CMEM1A
$$CMEMIB
$$FCT11
$$FCT11S
$$FCT21
$$FCT21A
$$FCT21B
$$FCT31
$$FT3GO1
$$FT3G11
$$FT3G21
$$FT3G31
$$FT3FP1
$$FT3BD1
$$FT3S811
$$FT3521
$$FCT31A
$$FT3GO1A
$$FT3G11A
$$FT3G21A
$$FT3G31A
$$FT3FP1A
$$FT3IBD1A
$$FT3S11A
$$FT3s21A
$$FCT31B
$$FT3GO1B

60469390 E

$$FT3G118
$$FT3G218B
$$FT3G318
$$FT3FP1B
$$FT3BD1B
$$FT3511B
$$FT35218B
$$FCTS51
$$FCTS1S
$$FCTI1
$$FCTI1S
$$EXCHL
$$EXCH1S
$$TRAPL
$$TRAP1S
$$EXC1
$$EXC1A
$$EXCIC
$$RCTI11
$$RCT11A
$$RCT11B
$$RCT21
$$RCT21A
$$RCT21B
$$RCT111C
$$RCT221C
$$RCT211C
$$RCT121C
scr7ocp
$$10MARG
$$CMMARG
$$CPMARG
$$NORMAL
$$NARROW
$$WIDE
$$BUILD
$$CLEARL
$$aBU
$$DEMOTC1
$$DPALL
$$SNAP
$$SNAPA
$$SNAPB
$$O0FALO
$SEME

PART 1

MODEL INDEPENDENT TEST PROCEDURES

MEMORY TESTS (CMEM)

RANDOM COMMAND TESTS (RCT1)

RANDOM COMMAND TESTS (RCT2)

FIXED OPERAND COMMAND TESTS (FCT1-3,5)
VIRTUAL MODE INSTRUCTION LEVEL TESTS (FCT9)
EXCHANGE TESTS (EXCH)

TRAP TESTS (TRAP)

SECTION I-1

MODEL INDEPENDENT CENTRAL MEMORY TESTS — CMEM

i 5
i J
P

MODEL INDEPENDENT CENTRAL MEMORY TESTS - CMEM : 1

e e e S P e i Y A S Bt S i D S A RS S S S MR AP o e Sars S ST e S i S Sems S e B T S S e S i e e R (S S S e e Cum e e e s e o e I es b L joem R Y R M O N IS RO ER IR ID LSS
N N T SRR NSRRI RERNERNSRS=RE st s e -

1 INTRODUCTION

CMEM is a CPU program that tests central memory to detect errors. The test
runs with CMSE and interacts with the user via the system display device and
keyboard. All necessary communication to control the test is via English
language directives.

2 REQUIREMENTS

2.1 HARDWARE

This test is intended for Models 810, 815, 830, 835, 845, 850, and 855
Computer Systems.

In addition to CMSE requirements, CMEM requires the following minimum hardware
to execute:

central processor

magnetic tape or mass storage library device
display/keyboard device

megabyte of CM

R -

2.2 SOFIWARE

This test runs under control of the common maintenance software executive
(CMSE). Interfaces are handled by CMSE and the virtual level executive (TLEX).

2.3 ACCESSORIES

None required.

2.4 CHARACTERISTICS

1. Program name CMEM

2. Size (source) 3758 lines .
3. Size (memory required for CMEM executable code) _500,000 bytes .
4. Code type CPU Cade

5. Run time (default) 36 _sec (4MB)
6. Run time (quick look) N/A

7. Run time (all sections) _36 _sec (4MB)
8. Level of isolation Detect Only

9. Off-line test ; Yes R
10. Off-line system CMSE (MSL 15X)
11. Assembly language META .
12. Source code maintenance UPDATE
60469390 E I-1-1

3 OPERATIONAL PROCEDURE N

. ems———

3.1 RESTRICTIONS AND USER CAUTIONS ngx

None.

3.2 LOADING PROCEDURE

The program CMEM is assembled using the virtual machine assembler. The binary
output is linked to the binary of TLEX to form the complete executable module.

Load the microcode before executing the test.

Command buffer CMEMx (1 for model 810/815/825/830, 2 for 835, 3 for 845/850/
855/860) exists on the MSL 15X tape to facilitate loading and execution of
this test.

The test executes upon completion of the load. You can change parameters via
the CMEM command set or the CMSE commands EC and EB. Parameter addresses are
displayed in word format during test initialization or at any time by typing

LIST.

Refer to the MSL 15X Reference Manual for descriptions of CMSE commands.

The CMSE commands plus any CMEM program commands may be saved and reexecuted
via the CMSE command buffer capability. N

- 3.2.1 Running Procedures

During normal execution of pass 1, the test displays the parameter words and
their real memory word addresses. PARAM3 contains the available memory size
in megabytes (1-10y¢). For example, 1 equals 1, A equals 10, 10 equals 16
megabytes. The default is obtained from the memory Options Installed register
(OI-Register 12).

Use the EC command to enter available memory in megabytes. It is displayed : ' Nl
with the parameter word display.

NOTE
The operator does not have to supply any parameters to
CMEM. The test will automatically calculate the addresses
available and test them. However, if the operator does

want to select a different testing area, use the ADDR
command.

Press space bar twice to start execution. The default is to run all sections.

On a test restart, the test uses addresses from the previous pass unless you

change test addresses using the ADDR command. Type LIST at any time for a ,4P\\
parameter display. Type ADDR,pl,p2 to change testing addresses. L

AT

60469390 E \ I-1-2 NS

NOTE

(:Wﬂ Once section execution has begun, you can enter the ADDR
‘ command at any time, but actual changes to testing addresses
will be on section entry only (i.e., beginning, repeat,

upon entering scope loop).

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameters

Tag

(!'.x\. PARAHO

00

60469390 E

Word/Byte
Address
Hexadecimal

F009/78048

Bits

Description

0-40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

Not used.

Telex monitor default run
Telex bypass all options

Telex test mode 1 (BASIC)

Telex test mode 2 (PIT and SIT)
Batch mode

On-line control

Off-line control

Operator étop

Initial stop only for parameters
Bypass all messages.

Quick look flag.

Scope mode.

Repeat condition.

Repeat subsection.

Repeat section.

Repeat test (set by default).
Log error in dayfile.

Stop on error (set by default).

200051

(DR)

(sSHM)

(RB)
(RS)
(RT)
(LE)

(SE)

Default

I-1-3

PARAM1

PARAMZ

PARAM3

PARAM4

INBUFF

COMPFLAG

PATTERN

FWA

LWA

TFPVA

TLPVA

LAST

TRAPMASK

HALTMASK

60469390 E

FOOA/78050

FO0OB/ 78058

F00C/78060

FOOD/78068

E116/70B30

E152/70A90

E160/70B00

E158/70AC0O

E159/70AC8

- E15C/70AEQ

E15D/70AE8

E157/70ABS8

E168/70B40

E169/70B48

gﬁa

60 Stop on condition.

61 Stop at end of subsection. (SB) //:b
N,
62 Stop at end of section. (ss)
63 Stop at end of test (setby default). (ST)
0-63 Repeat counter. Test auto- 0000
matically repeats the number of
times contained in this count.
Overrides repeat test bit
(bit S7 in PARAMO).
0-63 Section select bits for sections OOFF
63-0. Note that only sections
1-11 exist. Section select bits
are numbered from right to left.
0-63 Memory size available. 0004
0-63 ﬁben set to nonzero (and stop on 0000

error set) and single bit error

occurs, test displays a message

stating either CORRECTED MEMORY

ERROR or CORREGCTED PROCESSOR

ERROR depending on the error.

If PARAM4 is left equal to zero, e

test does not display the message. !
Input buffer

Data compare flag. Zero equals no compare, nonzero

equals compare data.

Testing pattern -

First word address to test (RMA)
Last word address to test (RMA).
PVA of FWA

PVA of LWA -

Last possible test address (determined by size of
memory available — PARAM3)

Mask for CMEM trap handler

Mask for VLEX error héndler

I-1-4 ®

3.3.2 Control Words

Tag
cwo
cw3
cvi4
WS
W6

cw?

Word/Byte
Address

Hexadecimal

F000/78000

F001/78008

F002/78010

F003/78018

F004/78020

F005/78028

3.4 SECTION INDEX

Section
Number

i

2

10

11

Tag
Name

SECT1
SECT2

SECT3
SECT4
SECTS
SECT6
SECT?

SECT8

SECT9
SECTA

SECTB

60469390 E

Description

Program name/type/monitor jdentification
Dynamic error counter

Pass counter

Current section executing

Current subsection

Current condition

Brief Description

Test selected area of memory with an all zeros
pattern.
Test selected area of memory with an all ones pattern.

Test selected area of memory with a 5 pattetn
(example: 0101-01017).

Test selected area of memory with an A pattern
(example: 1010-10107).

Test selected area of memory with a DF pattern
r(example: 1101 1111-1101 11115).

Test selected area of memory with a marching pattern.

Write and read address patterns where memory word
address contains the address as data (example:
address 3FDByg = 00003FDBOOOO3FDBi¢) .

Write and read address patterns where memory address
contains the complement of the address as data
(example: address 3FDByg = FFFFCO24FFFFC0244¢) .

Test selected area of memory with a 5-byte pattern
(DFDFDFDFDF) .

Test selected area of memory in 16-word blocks
(SMULT ,LMULT) .

Test selected area of memory using random generated
pattern.

I-1-5

A
4 OPERATOR COMMUNICATION ‘ ‘ \t})

Ve
4,1 DISPLAYS - \%W}

Unless otherwise specified, displayed values are in decimal.

4,1,1 Running Display

Normal test execution produces the following message:

, Line

' TEST CMEM i1

i #ST SS SB SC *SE LE *RT RS RB RC SM QL DR DE i 2

i CMEM (OP) PCxxx Sxxxx SBxxxx Cxxxx i 3

| FWA = xxxxxxxx LWA = XXXXXXXX i 4

! i 5]

i i 6 ™
H 4

H i 8

where:

Line 2 An asterisk indicates PARAMO bits 50-63 that are active (i.e., ¥*SE
means stop on error selected).

Available options are activated or deactivated by the following . L
test commands. \
Option Set/Clear Option Set/Clear
ST SST/CST RS SRS/CRS
SS SSS/CSS RB SRB/CRB
SB SSB/CSB DR SDR/CDR
SE SSE/CSE SM SSM
RT SRT/CRT LE SLE/CLE B
Line 3 CMEM Test name
(oP) Operation
RU Running
SB Stop at end of subsection
SS Stop at end of section
SE Stop on error
PCxxxx Pass count
Sxxxx Section
SBxxxx Subsection
Cxxxx Condition (not implemented) '
Line 4 FWA First word address of testing area (hexadecimal)
LWA Last word address of testing area (hexadecimal)

60469390 A I-1-6 L

h
C/

00

4.1.2 Set Parameters Display

The test command LIST produces the following message:

| | Lin

| CMEM SET PARAMS PA = XXXXXX | 3

| | 4

| ADDR = xxxxxx PARAMO = XXXXXX | 5

| ADDR = xxxxxx PARAMl = XXXXXX | 6

| ADDR = xxxxxx PARAMZ = XXXXXX | ?

| ADDR = xxxxxx PARAM3 = XXXXXX | 8

| ADDR = xxxxxx PARAM4 = XXXXXX | 9

| | 10

l MEMORY AVAILABLE FOR TESTING | 11

| XXXXXXKX — YYYYYYYY | 12

|__ ENTER ADDR, FWA, LWA TO CHANGE TESTING AREA | 13
where:
PA Real memory word address of parameter area (hexadecimal).
ADDR Each parameter word value and its real memory word address in

hexadecimal.

Memory available for testing depends on size of memory available.

Selection of testing addresses outside of displayed addresses will result in

an error message being displayed.
FWA available, YYYYYYYY equals LWA available.
hexadecimal.

4.1.3

XXXXXXXX equals

HELP Display

The test command HELP produces the following display:

Both FWA and LWA are

| ADDR,P1,P2 SET WORD ADDRESS LIMITS OF MEMORY TESTING

| AREA. P1=FWA, P2=LWA Pl AND P2 ARE

| HEXADECIMAL ONLY.

:(SPACE) START/CONTINUE EXECUTION OF TEST

{R RESTART TEST FROM BEGINNING

{S STOP EXECUTION OF TEST

{D DROP TEST

{HELP DISPLAY CURRENT TEST DIRECTIVES

}DATAON ENABLE DATA COMPARE PROCESS

}DATAOFF DISABLE DATA COMPARE PROCESS

ISSH SET SCOPE MODE

} DISPLAY PARAHETER INFORMATION
60469390 E

. A — —— ——— —— — — — —— —— — — —— — — P G—— —— ——

I-1-7

\\\

£
Nt

4,1.4 Error Message Display

)

When CMEM detects a dats error, the following standard error message (lines 3 /
and 4) is displayed. Depending upon the type of error (double bit or single
bit) additional error information and messages are displayed in lines 6, 7,
and 10, See paragraph titled, Error Messages for definitions of these

messages.

-

¢

| CMEM SE PCxxxx Sxxxx SBxxxx Cxxxx |
|__EC1 = xxxx EC2 = xxxx TE = xxxx |

where:

SE Stopped on error

PCxxxx Pass count

Sxxxx Failing section number

SBxxxx Failing subsection number

Cxxxx Failing condition number (not implemented)
EC1 Not implemented

EC2 Not implemented

TE Total error count

4.2 OPERATOR ENTRIES

CMEM uses the standard CMSE commands as described in the MSL 15X Reference
Manual. For convenience, CMEM also provides the following parameter and run
directives.

4.2.1 Parasmeter Directives N

The following parameter directives enable program section selection and
control. These directives may be dynamically entered via the console keyboard
with the test running and in control of the keyboard and display. These
directives may also be built into a command buffer.

Directive Function

LIST Displays the current test statistics. See 4.1 Displays for
definition of the LIST display.

HELP Displays all currently available directives and a short
function description.

o
J/

L

e/

A
{“\

60469390 C I-1-8

DATAON

DATAOFF

ADDR, pl,p2

(space)

SSM

Enables software data checking of data written versus the
data that was read. Does not apply to sections 6 through
11.

Disables data checking. Does not apply to sections 6
through 11.

Sets word address limits of the memory testing area.
Parameter pl is the first word address.

Parameter p2 is the last word address.

These parameters are hexadecimal only.

The directive applies to all sections.

Restarts test from the beginning at any point during
execution.

Drops CMEM at any point during execution.

Continues a stopped section, subsection or condition at
point that it stopped.

Stops a test section that is currently running. The
(space) directive continues test from where stopped.

Causes a continuous looping condition on the section being
executed; used mainly for scoping purposes.

4.2.2 Run Directives

The following directives are under control of CMEM, not CMSE.

Directive
SST/CST
sss/css
SSB/CsB
SSE/CSE
SﬁE/CLB
SRT/CRT
SRS/CRS
SRB/CRB
SDR/CDR

SsSM

60469390 E

Function

Set/clear stop at end of test.
Set/clear stop at end of section.
Set/clear stop at end of subsection.
Set/clear stop on error.

Set/clear log errors.

Set/clear repeat test.

Set/clear repeat section.

Set/clear repeat subsection.
Set/clear bypass all messages.

Set scope mode.

I-1-9

4,3 NORMAL MESSAGES

Other than the running display, the set parameters display and the HELP
display, described previously, CMEM does not display any test messages for
normal operation.

4,4 ERROR MESSAGES

Depending upon the type of error detected, data or command entry
error, CMEM displays an error message and data on lines 6, 7, and 10 of the
error display or on line 15 of any current display.

4,4,1 Data Error Messages

CMEM detects data errors and displays error messages under two separate
conditions: double-bit or single-bit.

Double-Bit Errors:

When CMEM detects a double-bit error, it displays the standard error display
on lines 3 and U4, informational data on lines 6 and 7, and an error message on
line 10, The following figure shows the format of a double-bit error message.

Line

" CMEM SE PCxxxx Sxxxx SBxxxx Cxxxx H 3

! EC1 = xxxx EC2 = xxxx TE = XXXX H 4 -

H H 5

H ADRS EXP RCV i 6

H XXXXXXXX XXXAXXXAXXXXXXXX DOUBLE BIT ERROR: | T

H i 8

H H 9

H Error Message H 10
where:
ADRS Address of word in error (hexadecimal) T
EXP Expected result (hexadecimal) ﬁ
RCV DOUBLE-BIT ERROR. This message indicates that a double-bit

error occurred. If a double-bit error occurs when the CPU is
reading memory, CMEM cannot retrieve and display the data.

Error Message Depending on the type of double-bit error, one of the following
messages appears on line 10,

60469390 A I-1-10 <

%)

O

MESSAGE

READ-UNCORRECTED ERROR

WRITE-UNCORRECTED ERROR

REJECT-UNCORRECTED ERROR

PROCESSOR-UNCORRECTED ERROR
CM TAG PARITY ERROR

CM RESPONSE CODE PARITY ERR

Detected double-bit error in memory on a read
function.

Detected double-bit error in memory on a write
function.

Detected double-bit error in memory on a reject
function.

Detected double-bit error in processor.

Detected parity error in tag.

Detected parity error in response code.

when the test is halted for an error, you can display the bad data by entering
the CMSE command AH,adrs with adrs equal to the ADRS displayed in the error
message. CMSE uses the PP to read memory and displays the bad data.

Single-Bit Errors:

When CMEM detects a single bit error and PARAM4 is nonzero, CMEM displays the
standard error message on lines 3 and 4 and one of the following messages on

line 10.
MESSAGE
CORRECTED PROCESSOR ERROR

CORRECTED MEMORY ERROR
AT ADDRESS XXXXXXXX

EXPLANATION
Detected single-bit error in processor.

Detected single-bit error in
memory at address XXXXXXXX (hexadecimal).

4.4.2 Command Entry Error Messages

One of the following messages is displayed on line 18 of the current display
when a command is entered improperly.

MESSAGE

INVALID COMMAND

PAGE UNAVAILABLE FOR
RMA XXXXXXXX CHANGE
TESTING ADDRESS LIMITS
FWA TOO SMALL

FWA TOO LARGE

LWA TOO SMALL

LWA TOO LARGE

60469390 E

EXPLANATION
The operator entered an invalid command.
Initialization error. The page
associated with RMA cannot be

assigned.

FWA not within accepted range.

FWA not within accepted range.

LWA not within accepted range.

WA not within accepted range.

I-1-11

INVALID HEXADECIMAL
CHARACTER Address in command is incorrect.

INVALID MEMORY SIZE Memory size specified is incorrect.

4.5 APPLICATIONS
4.5.1 Loop-On-Error Condition

On any stop condition, loop the current condition (failure) with the following
commands via the keyboard console:

Command Result
SRB Sets repeat subsection.
(space) Enters loop of subsection with failure condition.

Loop the current condition (no failure):
If stopped at end of section:

SRS Sets repeat sectionmn.
(space) Enters loop of section (runs all subsections in section).

If stopped at end of subsection:

SRB Sets repeat subsection.
(space) Enters loop of that subsection.

4.5,2 Scope Mode

Use the SSM command to set scope mode on the section being run. The loop will
continue until you clear scope mode bit in parameter word 0; you must use a
CMSE command since the test does not monitor the keyboard while in scope

mode. To clear scope mode, issue the following command:

EC,base,adrs,data

Where:

base H for hexadecimal mode
0 for octal

adrs RMA to be entered
data Right justified data
1-16 hexadecimal characters
NOTE

Scope mode does not apply to section 11.

60469390 E I-1-12

00

4.5.3 Additional Running Procedures

The following are minimum commands needed to enable test execution:

Command

Space bar

Space bar

60469390 E

Result

Start test initialization. Memory size is
automatically calculated..

Starts test execution.

Default is to run all sections.

I-1-13

(o
Ny’

N
N

,"A\

SECTION I-2

RANDOM COMMAND TEST 1 - RCT1

™ :
(ii/ RANDOM COMMAND TEST 1 - RCT1 2

1 INTRODUCTION

RCT1 is a set of model independent random command tests which test general and
floating point virtual instructions. RCT1 uses random instruction sequences
and random operands to isolate to a single failing instruction within a
failing random sequence of instructions.

RCT1 resides on the Maintenance Software Library and is loaded by CMSE. The
load module includes the object code of the virtual level executive VLEX,
which is required to establish the CPU execution and environment and to
facilitate communication with CMSE.

The test interfaces with the user via the system display device and keyboard.

(fm\ ‘ All necessary communication to control the test is via CMSE commands and
. English language test directives.

2 REQUIREMENTS

2.1 HARDWARE

‘:jﬁ This test is intended for Models 810, 815, 825, 830, 835, 845, and 855
’ Computer Systems.

In addition to hardware required for CMSE, RCTl requires the following to
execute:

1 CpPU
1 megabyte of central memory

»

2.2 SOFIWARE

This test runs under control of the common maintenance software executive
(CMSE). Interfaces are handled by CMSE and the virtual level executive (VLEX).

2.3 ACCESSORIES

None required.

W

(:D 60469390 E I-2-1

2.4 CHARACTERISTICS

1. Program Name RCT1

2. Size (source) 4,509 lines
3. Size (memory required) 114,688 bytes
4. Code type CPU

5. Run time (default) *

6. Run time (quick look) N/A

7. Run time (all sections) o

8. Level of isolation detect only
9. Off-line test yes
10. Off-line system CMSE (MSL 15X)
11. Assembly language META
12. Source code maintenance UPDATE

3 OPERATIONAL PROCEDURE

3.1 RESTRICTIONS AND USER CAUTIONS

RCT1 is highly dependent on the correct execution of its instruction usage
set. Therefore, in a troubleshooting environment FCT2 must run successfully
before running RCT1.

3.2 LOADING PROCEDURE

RCT1 is assembled using the virtual machine assembler. The binary output is
linked to the assembled binary of VLEX to form the complete executable
module. It can then be written to disk using TDX.

Load the microcode before executing the test.

Command buffer RCT1x (where x is 1 for model 810/815/825/830, 2 for 835, 3 for
845/855) exists on the MSL 15X tape to facilitate loading and execution of
this test. Before using this command buffer you may have to modify it for
your system. Display the command buffer using the CMSE command buffer display
commands or print the contents of the command buffer using procedures provided
in the Command Buffer Maintenance section of the MSL 15X Reference Manual.
Then modify the command buffer as directed by comments embedded in the command
buffer. When you are satisfied that the command buffer is set up properly,
enter a GO,RCT1lx command to execute it, where x is the model dependent number
from above.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

The test executes upon completion of the RCT1 load phase. Parameter changes
can be made via the RCT1 command set or the CMSE commands, EC and EB. The
parameter area address will be displayed in word format during test
initialization.

*Runs until halted by the operator.

60469390 D I-2-2

-
(iJ; 3.3 PARAMETERS AND CONTROL WORDS

(:;J 3.3.1 Parameters

Parameter bits can be altered by CMSE EC or EB commands or by RCT1 commands.

Refer to the MSL 15X Reference Manual for descriptions of CMSE commands.
RCT1 commands are described in detail under Operator Entries.

The following parameters are defined for RCT1.

alters a parameter is indicated in parentheses.

Parameter Word Zero

Bit(s) Meaning
63 Stop at end of test pass (SST/CST).Set by default.
(j“\ 60-62 Not used.
4 59 Stop on error (SSE/CSE). Set by default.
58 Not used.
57 Repeat present instruction/operand set (SRT/CRT). Cleared by
default.
52-56 Not used.
51 Bypass all messages (CMSE EC command). Cleared by default.
50 Display only error messages (CMSE EC command). Cleared by
default.
49 Not used.
‘:7? 48 Operator stop requested (informational only).
e 47 End of test pass (informational only).
44-46 Not used. '
43 An error has occurred (informational only).
42 A-Register error (informational only).
41, X-Register error (informational only).
40 Memory buffer error (informational only).
0-39 Not used.
w, The CM word address of parameter word zero is displayed in the RCT1 header
(:1 display. The yyy portion of PA=000yyy gives the CM word address.

As there are no test sections in RCT1l, there is no need for section select
parameter words one and two.

Parameter Word Three (DS,x)

Bit (60-62) - Display select

‘:»;
™,
iy 60469390 C

0 = Null display

1

RCT1 header/parameter display (selected by default)

2 = A register result display

1-2-3

The CMSE or RCT1 command which

3 = X register result display : N

4 = Memory buffer result display (first half) r;ﬁ)
5

5 = Memory buffer result display (second half)

6 = Initial A and X registers

7 = Instruction list

8 = Initial input memory buffer
9 = Initial output memory buffer

Skip Pass Parameter (P,x)

Skips forward to the specified pass count prior to test execution. Default 7
value is zero. 7N

Instruction Select Parameter (NORM/SEL/OMIT)

Allows a single instruction or a subset of instructions to be tested or
deleted from the test. The default mode (NORM) is to test all instructions.
Select mode (SEL) tests only those instructions listed in the optional test
list. Omit mode (OMIT) tests all instructions except those listed in the
optional test list. Default selection is NORM.

Optional Instruction List (ADD,x,y,.../DEL,x,y,...)
Before adding or deleting select either SEL or OMIT, above. '

A user-selected list of opcodes used in building the random instruction list
when not running in default mode. Default is no entries.

Test Length Parameter (L,X)

Selects the number of words of random instructions to be tested. Values may
range from 1 to 1Fy¢. Default value is seven.

Trim Mode Parameter (TRM/NTRM)

Trim mode (TRM) isolates to a single failing instruction when an error is
detected. Deselecting trim mode (NTRM) will leave a failing random
instruction loop unaltered when an error is detected. Default selection is
TRM.

Mask Parameter (MSK/NMSK)

Mask select mode (MSK) sets the floating point condition bits (overflow,
underflow, loss of significance, indefinite) in the user condition mask. No
mask mode (NMSK) clears the floating point condition bits. RCT1 correctly

simulates the results with either condition selected. Default selection is
NMSK. Tﬂ\
{1 ;

N
60469390 D ' 1-2-4 NS

ol

Loop Parameter (LOOP)

Loop mode (LOOP) causes the test to continuously machine execute the present
instruction/operand set with no communication with the operator. To regain
control, the parameter must be cleared with an EC command. Default is loop
mode off.

3.3.2 Other Locations of Interest

The following areas of RCT1 contain various items of interest when an error
has been detected. The first location of each area is provided in the form of
assembly tag, real memory byte address, and real memory word address. All
address values are hexadecimal.

Real Memory Address

Tag Byte Word Notes
V_IAR 17208 2E41 DS,6 (DS,x bring up display)
V_IXR 17288 2E51 DS, 6

B SRC 16E08 2DC1 Ds,8

B DST 17008 2E01 ps,9

V_MAR 17408 2E81 Ds,2

V_MXR 17488 2E91 DS, 3

B _MCH 16F08 2DE1 DS,4 and DS,5

V_SAR 17308 2E61 Ds,?2

V_SXR 17388 2ET1 DS,3

B SIM 17108 2E21 DS,4 and DS,5

V_SIL 17588 2E61 Instructions that were simulated.
I_LIST 169D0 2D3A DS,7

P _IL 16B00 2D60 ~ Optional test list of instructions.
P_LOERR 16080 2C10 Scope loop select parameter.

3.4 SECTION INDEX

RCT1 has no selectable test sections.

60469390 B | I-2-5

4 OQPERATOR COMMUNICATION

J/‘// y
4,1 DISPLAYS “%;}

Nine RCT1 displays are defined. A header display presents the test name, pass
count, parameter word address, comment field, and current parameter word
settings. Four displays present the actual and simulated results for the A
registers, X registers, and memory buffer, plus an exclusive OR comparison of
each, Four displays present the initial content of the A and X registers,
input memory buffer, output memory buffer, and the instruction list being
executed. An additional NULL display is defined which, when selected, will
not present a display, resulting in faster test execution.

All values in displays are shown in hexadecimal notation.

Header/Parameter Display

When RCT1 begins execution, or when a DS,1 command is entered, RCT1 presents a
header/parameter display with the following format:

IRCT1(op) PC=xxxxxx PA=000yyy (comment field)i
'EC1=0000 EC2=0000 TE=xxxx RN=0000

]

]

IPARAMO = 0000 0000 pppp PPPP g

IPARAM1 = 0000 0000 0000 0000 !

IPARAM2 = 0000 0000 0000 0000 !
IPARAM3 = 0000 0000 0000 00dd ! .
!PARAMY = 0000 0000 0000 0000 |)
'PARAM5 = 0000 0000 0000 0000 ' -

Where:

(op) Operation

RU Running message. RCT1 is executing random instructions/operands.

SP Parameter stop, operator stop, or end of test stop.

SE Error stop.

RT Repeating set of instructions/operands.

SM Scope loop mode is selected. Entry of a space will put RCT1 into
a scope loop executing the present machine set of instructions and
operands.

PC Pass count.
PA Parameter word 0 real memory word address.

Comment Field 32-character test message

EC1 Not implemented.

EC2 Not implemented.

TE Error count.

RN Not implemented.

pppp(PARAMO) Bits 40-63 of parameter word O.

dd (PARAM3) Display select bits defined for parameter word 3.

All other PARAMs are not used. , ; {(N\
E]
\’Qh 4
A

60469390 A 1-2-6 o

OO

Register/Memory Buffer Displays

Four displays are available for presenting error information.
and simulated results of a test pass can be displayed.

Thus the actual
The displays present

the A-registers, X-registers, R/W buffer (first half), and R/W buffer (second

half).

at the left of each line.

i EXPECTED ACTUAL DIFFERENCE i
'REGIDO XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGID1 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
JREGID2 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGID3 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX]|
IREGID4 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGID5 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX]
IREGID6 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
IREGID7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGID8 xXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
IREGID9 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDA XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDB XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDC XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDE XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX|
IREGIDF XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX]|

Where:

REGID Register A for display 2

Register X for display 3
Memory O for display 4
Memory 1 for display 5

4,2 OPERATOR ENTRIES

4,2.1

Commands

The following RCT1 commands are provided:

Command

ADD,X ,¥yeoe

DEL,X,¥,ee.

60469390 A

Function

Add opcodes x,¥,... to instruection list.
accepted.

The formats of displays are similar except for the register identifier
All values are in hexadecimal.

Opcodes O00-FF are

Delete opcodes X,y,... from instruction list. Opcodes 00-FF
are accepted.

An asterisk (¥*) will delete all opcodes.

Sl(ip forward to pass x.

Set execution list length to x words.

are accepted.

Values from O-FFFFFF are accepted.

Values from 1'1F16

I-2-7T

DS,x

MSK
NMSK
TRM
NTRM
NORM
OMIT
SEL

R

S
(space)

LOOP

SST/CST

SRT/CRT
SSE/CSE

Select Display x. Display selections are 0-9.

null display

header/parameter display
A-register display

X-register display

first half of result memory buffer
second half of result memory buffer
initial A and X registers
instruction list

initial input memory buffer

initial output memory buffer

Vo~NTouUl W -—= 0o

Select floating point bits in user condition mask.
Deselect floating point bits in user condition mask.
Trim execution list to failing instruction.

Deselect execution list trimming.

Test all instructions,

Omit instruction liét opcodes from test list,

Test only instruction list opcodes.

Restart with initial start (DK, 1A2) parameters.,
Stop test execution.

Continue test execution.

Continuously machine execute present instruction/operand set
(scope loop).

Set/clear stop at end of test parameter bit.
Set/clear repeat test parameter bit.

Set/clear stop on error parameter bit.

Each command is checked for proper syntax and parameters are compared to
limits prior to command execution. Refer to Error Messages for messages which
will result from improper entry of these commands.

60469390 A

\

I1-2-8

!

00

}‘i s ¥ ; 4

4,2.2 Running Procedures

Load and Run RCT1
Type in the CMSE commands listed for the loading procedure or make a CMSE

command buffer of the commands and call the command buffer with a GO, xxxx;
where xxxx is the name of the command buffer.

Change Test Parameters

Test parameters can be changed prior to starting RCT1 execution by using the
CMSE EC and/or EB commands, or at any time RCT1 is running or has stopped
using the RCT1 commands or the CMSE EC and/or EB commands.

When the stop-at-end-of-test-parameter bit is set, RCT1 stops before the first
pass to allow parameter changes. Entry of a space will resume RCT1

execution. Type in CST to clear the stop-at-end-of-test-parameter bit and

allow nonstop execution.

Refer to Parameter Words for a list of RCT1 parameters. Refer to Operator
Entries for RCT1 keyboard commands required to change the parameters.

The parameter settings at the time RCT1 is initially started (DK, 1A2) are
saved and will be reinstated whenever RCT1 is restarted by typing an R command.
Stop on Error

Type in SSE to set the stop-on-error parameter bit. RCT will then stop
whenever an error is detected.

Type in CSE to clear the stop-on-error parameter bit. RCT1 will not stop when
errors are detected, but will increment the error count if errors are detected.

Type in a space to resume RCT1 execution whenever it is stopped.

Loop on Failing Set of Instructions/Operands
After RCT1 has stopped on an error, entry of an SRT command will set the
repeat test parameter bit. Entry of a space will cause RCT1 to execute the

set of instructions/operands for the failing pass both with simulator
execution and machine execution.

Type in CRT to clear the repeat test parameter bit.
Note that during repeat test operation, the pass count will be incremented

each pass even though the instructions and operands are not changed. The
error count wWill also be incremented whenever an error is detected.

Scope Loop on a Failing Set of Instructions/Operands

60469390 A ' I-2-9

After RCT1 has stopped on an error, type in an SRT command to set the repeat
test parameter bit and then type in LOOP to set the scope loop parameter.
Press the space key and RCT1 will continually execute the failing set of
instructions/ operands.,

RCT1 does not communicate with the operator during scope loop mode.

For scope triggering, a scope loop sync instruction is executed just prior to
each machine execution of the instructions/ operands.

To remove RCT1 from scope loop mode and reinstate communication with the
operator, clear CM word location 2C10 with the CMSE instruction EC,2C10,0.
Stop Test After Executing One Set of Random Instructions/ Operands

Type in the SST command to set the stop-at-end-of-test-parameter

bit. RCT1 will stop after one pass of executing one set of random
instructions/operands. Type a space to cause RCT1 to execute the next pass

and stop.

Type CST to clear the stop-at-end-of-test-parameter bit.

Display Parameter or Error Information

Type in DS,x to direct RCT1 to display one of numerous information messages.
Refer to Displays and to Operator Entries, paragraphs 4,1 and 4,2, for display
formats and for descriptions of the x parameter.

Additional useful information can be obtained by displaying CM contents via
the CMSE AB and AH commands. Refer to Parameter Words, paragraph 3.3.1 for
the real memory addresses of locations of interest.

Stop Test While It Is Executing

Type in an S to stop RCT!1 execution of random instructions/operands.

Type in a space to resume execution.

4.3 NORMAL MESSAGES

None provided.

60469390 A I-2-10

)
\Ml _—

v&)

oo
\
I
Y
. ..

oo
./

C
C

4.4 ERROR MESSAGES

RCT1 will display the following messages in the comment field of the header/
parameter display when an RCT1 command is entered incorrectly. Messages will

be cleared by entering a valid command.

Message Explanation

INVALID ENTRY RCT1 does not recognize the command entered.

INST LIST FULL

H
i
H
i instruction buffer.
k .
]
CANNOT TEST xx H
]
1

hexadecimal value xx.

i
i
]
i
i
The instructions added using the ADD command exceed the|
{
!
RCT1 cannot simulate the instruction identified by the |

1

E

60469390 A

I-2-11

J

ran
J

N
.

SECTION I-3

RANDOM COMMAND TEST 2 - RCT2

C

RANDOM COMMAND TEST 2 - RCT2 3

EE T 3T L3 F P T g g g R SN SN SS NN ESRNNERISURENRENSERESRIRE =

1 INTRODUCTION

RCT2 is a set of model independent random command tests which test BDP virtual
instructions. RCT2 uses random instruction sequences and random operands to
isolate to a single failing instruction within a failing random sequence of
instructions.

RCTZ2 resides on the Maintenance Software Library and is loaded by CMSE. The
load module includes the object code of the virtual level executive VLEX,
which is required to establish the CPU execution and environment and to
facilitate communication with CMSK.

The test interfaces with the user via the system display device and keyboard.

All necessary communication to control the test is via CMSE commands and
English language test directives.

2 REQUIREMENTS

2.1 HARDWARE

This test is intended for Models 810, 815, 825, 830, 835, 845, and 855
Computer Systems.

In addition to hardware required for CMSE, RCT2 requires the following to
execute:

1 CPU ;
1 megabyte of central memory

2.2 SOFTWARE
This test runs under control of the common maintenance software executive

(CMSE). Interfaces are handled by CMSE and the virtual level executive (VLEX).

2.3 ACCESSORIES

None required.

60469390 E I-3-1

2.4 CHARACTERISTICS

1. Program name RCT2

2. Size (source) 6,007 lines
3. Size (memory required) 122,880 bytes
4. Code type , CPU

S. Run time (default) *

6. Run time (quick look) N/A

7. Run time (all sectioms) x

8. Level of isolation detect only
9. Off-line test yes
10. Off-line system CMSE (MSL 15X)
11. Assembly language CPAS180
12. Source code maintenance UPDATE

3 OPERATIONAL PROCEDURE

3.1 RESTRICTIONS AND USER CAUTIONS

RCT2 is highly dependent on the correct execution of its instruction usage
set. Therefore, in a troubleshooting environment FCT2 and RCT1 must run
successfully before running RCT2.

3.2 LOADING PROCEDURE

RCT2 is assembled using the virtual machine assembler. The binary output is
linked to the assembled binary of VLEX to form the complete executable
module. It can then be written to disk using TDX.

Load the microcode before executing the test.

Command buffer RCT2x (where x is 1 for model 810/815/825/830, 2 for 835, 3 for
845/855) exists on the MSL 15X tape to facilitate loading and execution of
this test. Before using this command buffer you may have to modify it for
your system. Display the command buffer using the CMSE command buffer display
commands or print the contents of the command buffer using procedures provided
in the Command Buffer Maintenance section of the MSL 15X Reference Manual.
Then modify the command buffer as directed by comments embedded in the command
buffer. When you are satisfied that the command buffer is set up properly,
enter a GO,RCT2x command to execute it, where x is the model dependent number
from above.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

The test executes upon completion of the RCT2 load phase. Parameter changes
can be made via the RCT2 command set or the CMSE commands, EC and EB. The
parameter area address will be displayed in word format during test
initialization.

*Runs until halted by the operator.

60469390 D I-3-2

)
\M“ y

CM‘
o

ole

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameters

Parameter bits can be altered by CMSE EC or EB commands or by RCT2 commands.
Refer to the MSL 15X Reference Manual for descriptions of CMSE commands. The
RCT2 commands are described in detail under Operator Entries.

The following paeremeters are defined for RCT2. The CMSE or RCT2 command which
alters a parameter is indicated in parentheses. v ~

Parameter Word Zero

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

Bits 52-54

Bit

Bits 47-50
Bits 0-46

63
62
61
60
59
58
57
56
55

51

Stop at end of test pass (SST/CST). Set by default.

Not used.

Stop at end of subsection (SSB/CSB). Cleared by default.
Not used.

Stop on error (SSE/CSE). Set by default.

Not used.

Repeat test (SRT/CRT). Cleared by default.

Repeat section (SRS/CRS). Cleared by default.

Repeat subsection present instruction/operand (SRB/CRB)
Cleared by default.

Not used.

Bypass all messages (CHSE EC command). Cleared by default.
Not used.

Not used.

Parameter Word Onme

Bits 0-63

Repeat counter. Default value is zero; The test will
automatically repeat by the number of times contained in this
count. The test will repeat until this count equals zero and

then unconditionally exit to the end if the repeat bit is not
set.

Parameter Word Two

Bits 60-63

Bits 0-59

60469390 C

Section select bits. Default value is 0007; all sectionms
selected. Only section 0-2 exist and are numbered from right to
left for consistency with the IOU section select bits.

Not used. : :

1I-3-3

Parameter Word Three

Bits 32-63 Subsection select bits. Default is 073F7F; all subsections

selected.

Subsection select bits are numbered from right to left in the
following format:

DDCCBBAA

AA
BB
cC

section 0, subsections O through 6 select bits.
section 1, subsections 0 through 5 select bits.
section 2, subsections O through 2 select bits.

If any section is deselected (section select bit in parameter word two
equals 0) the subsection select bits for that section have no meaning.

3.3.2 oOther Locations of Interest

Description

Address
Tag (Hex Word)
I_MLSTO 2C00
V_SDFO 2C45
V_MDFO 2C13
P_LOERR 3A44
V_PASS 2EOE
HALTMASK 2E1B

3.4 SECTION INDEX

Section Tag

Number Name
0 SECO
1 SEC1
V4 SEC3

Machine execution list

Simulator destination field buffer
Machine destination field buffer
Flag for scope loop of subsections
Test pass count

Mask for test halt conditions

Brief Description
Test BDP numeric instructioms
Test BDP byte instructions

Test BDP immediate data instructioms

NOTE

Due to test restructuring, section 2 has been tagged SEC3 and S3.

60469390 C

I-3-4

‘/{,

£
~

[

=
o

i
(n:\‘
e

4 OPERATOR C

OMMUNICATION

4.1 DISPLAYS

All values shown in displays are in hexadecimal.

4.1.1 Running Display

During test e

xecution, RCT2 presents the following display.

{” RCT2
1
]

EC1=0000 EC2=0000 TE=xxxX

(op) PCxxxxxxxx Sxxxx SBxxxx

—

where:

(op)

PCxxxxxxxx
Sxxxx
SBxxxx

EC1

EC2

TE

4,1,2 Set Pa

Operation

RU Running section/subsection

RB Test is repeating a subsection/test is in
subsection

Current pass

Section executing

Subsection executing

Not implemented

Not implemented

Total errors

rameters Display

a scope loop on

When the CPU begins execution of RCT2, the following parameter display is

presented.
i (date) RANDOM COMMAND TEST 2 H
! RCT2 SET PARAMS PA = XXXXXXXX i
] 1
]]
I ADDR XXXXXXXX PWO = xxxaaaaa i
i ADDR XXXXXXXX PW1 = XXXXXXXX H
i ADDR XXXXXXXX PW2 = xxxxxxxb H
i ADDR XXXXXXXX PWd3 = cceccecece H

where:

(date) Last revision date of RCT2.

60469390 A

I-3-5

I
PA RMA word address of control parameter word area. g :ﬁ

PWO Parameter word 0. aaaaa are test control bits. See e
parameter/control words. 'S

PW2 Parameter word 2. b bits are selection select bits.

PW3 Parameter word 3. cecccecee bits are subsection select bits.

4.1.3 Error Message Display

When RCT2 detects an error, the following standard error message is
displayed. Depending upon the type of error, an additional error message is
displayed below the standard message. See Error Messages for definitions of
these messages.

RCT2 SE PCxxxxxxxx Sxxxx SBxxxx

P
N

EC1=0000 EC2=0000 TE=xxxx

where:

SE Stopped on error

PCXXXXXXXX Pass count

SXXXX Failing section number -

SBxxxx Failing subsection number : o

EC1 Not implemented

EC2 Not implemented

TE Total error count

4,2 OPERATOR ENTRIES %“;

4,2.1 Commands

The following RCT2 commands are providéd:

Command Function

P,x Skip pass count. Allows test to skip forward a specified

count prior to test execution., Parameter x equals the
specified pass count.

R Restart test with initial parameter settings.

S Stop test execution. @{\\
% 7
S

60469390 A I-3-6

C

(space) Start/continue test execution.

LOOP Set scope loop; causes test to continuously execute
instructions/operands in subsection. Test does not
communicate with operator. To regain control, clear CM word
location 3A444¢ with EC command, EC,3A4Y4,0,

SST/CST Set/clear stop at end of test parameter bit.
SRT/CRT Set/clear repeat test parameter bit.

SSE/CSE Set/clear stop on error parameter bit.

SRS/CRS Set/clear repeat section parameter bit.

SRB/CRB Set/clear repeat subsection parameter bit.

SSB/CSB Set/clear stop at end of subsection parameter bit.

Each command is checked for proper format. The test will display the message
INVALID ENTRY on line 10 of the display screen if an improper format is
entered. The message is cleared by any subsequent valid command.

4.,2.2 Running Procedures

Load and Run RCTZ2

Type the CMSE commands listed to load or make a CMSE command buffer of the
commands and call it GO,xxxx; where xxxx is the name of the command buffer.

Change Test Parameters

Test parameters can be changed prior to starting RCT2 execution by using the
CMSE EC and/or EB commands, or at any time RCT2 is running or has stopped
using the RCT2 commands or the CMSE EC and/or EB commands.

When the stop-at-end-of-test-parameter bit is set, RCT2 stops before the first
pass to allow parameter changes. Press space to resume RCT2, Type CST to
clear the stop-at-end-of-test-parameter bit and allow nonstop execution.

Refer to Parameter Words for a list of RCT2 parameters., Refer to Operator
Entries for RCT2 keyboard commands required to change the parameters. The
parameter settings at the time RCT2 is initially started (DK, 1A2 in command
buffer) are saved and reinstated whenever RCT2 is restarted by typing an R
command .,

NOTE

The repeat test parameter bit is set by default. The test
continuously generates random instructions/operands. If
bit is cleared (type in CRT), it runs one complete pass; it
can be dropped via a call to VLEX.

60469390 A I-3-7

Stop on Error

Type in SSE to set the stop on error parameter bit. RCT will then stop
whenever an error is detected and wait for an input.

Entry of a space resumes RCT2 execution until another error is detected.

Type in CSE to clear the stop on error parameter bit. RCT2 will not stop when
. errors are detected, but will increment the error count if errors are detected.

Loop on Error

After RCT2 has stopped on an error, to loop on a failure, type SRB and a
space. The test will reexecute the failing set of instruction/operands. The
running message will indicate a repeat subsection loop (RB).

Type in CRB to stop the loop and continue to the next selected subsection.

Scope Loop

After RCT2 has stopped on an error, to scope the failure, type in SRB and
LOOP. This causes the test to reexecute the failing subsection and begin

scope loop. During scope loop, the test does not refresh the display or
monitor the keyboard.

To remove RCT2 from scope loop mode and reinstate communication with the
operator, clear CM word location 3AlUld ¢ with the CMSE instruction EC, 3A44,0.

Stop Test

The test can be stopped at any time during execution by typing in S. The test
will stop and wait for input. Entering a space will continue the test.

4,3 NORMAL MESSAGES

None provided.

4,4 ERROR MESSAGES

When RCT2 receives an improperly formatted command or when it detects an
error, it displays one of the following messages.

iand the subsection designated by y. Parameter mm
iidentifies the instruction type. Enter a space to
icontinue the test. .

i Message] Explanation |
i INVALID ENTRY IRCT2 does not recognize the command entered. Entry ofi
i | a valid command clears the message.

] 1

1]

i SxSy ERROR (mmm) IRCT2 detected an error in the section designated by x

1

|

]

i

60469390 A 1-3-8

‘T' SECTION I-4

FIXED OPERAND COMMAND TESTS - FCT1-3,5

00

FIXED OPERAND COMMAND TESTS - FCT1-3,5 4

- - Y S o o . T - S =0 e T S SR W S S e m D S S S W e S A AR T T S e e SR B SN S S N S W S SN SR S S M N e e T TR ae Am W e TR S w4 MM S TS S = W o e e
P e oo e g e e e g g R R e

1 INTRODUCTION

This part of the manual describes the Fixed Instruction Command Tests,
FCT1,2,3,5. The tests detect failures within the processor at the instruction
level .

FCT1 is a IOU based test which briefly tests every instruction to ensure that
it will not hang up any of the following CPU based tests. Some testing of the
usage set instructions (for FCT3) has been included in FCT1 rather than in
FCT2.

FCT2 is a CPU-based test which uses the inverted pyramid form of testing to
check the usage set for FCT3 (and for other instruction level tests such as
the random command test RCT1). The list of instructions in the usage set
exactly matches the list of instructions tested in FCT2. See FCT2 Section
Descriptions, later in this document.

FCT3 is a CPU based, fixed operand test. Most of the testing that is done by
the FCT, is done in FCT3. The implementation of this test is based on the
concept of a usage set (a small group of machine instructions in which the
bulk of the test's object code is implemented). These instructions test the
entire instruction set.

FCT5 is an IOU based test for those instructions and portions of instructions
which cannot be tested by a CPU-based test.

The fixed operands command tests consist of nearly 400 test sections, divided
into ten tests (FCT1, FCT2, FCT5, and seven tests that comprise FCT3). FCT is
divided this way to allow for flexibility in test sequencing, variations in
testing technique, and differences in maintenance requirements.

Within each test there is one section for each instruction that is tested.
Note that any one test does not necessarily test all instructions, and that
any one test does not always contain a complete test for a given instruction.
The testing of each instruction has been partitioned in a manner best suited
to that individual instruction.

The test sections are broken down into subsections, each of which tests a
given feature of that instruction.

Within the subsection each data pattern used (to test a feature), is assigned
to a different condition., In FCT2 and FCT3, where the test uses the elements
of a data pattern table as test operands, the index into the table is
displayed as the loop index., When more than one data pattern table is used
simul taneously by a given condition, all active loop indexes are displayed
(one per table, up to three). Sometimes, when the required test data is a
simple count, the loop index itself is used as the test data.

60469390 A IY-1

To further explain the relationship between a condition and the loop indexes, ‘i
the following example is given, In FCT3 there is a section to test an ADD

instruction. A subsection is used to check carry propagation. A condition is A
assigned to the case where Xk contains a propagating one's pattern and Xj iy)7
contains a sliding one's pattern. Two loop indexes are displayed, one giving |
the index into each pattern table. To assist the test user, the index value
generally indicates the bit number being tested. (In the ADD instruction
example, if loop 1 equals 16, bits 0 through 16 of the propagating pattern are
set. If loop 2 equals 56, bit 56 of the sliding 1 pattern is set.) The user
can determine how the loop indexes are being used by either stepping through
the test a condition at a time, or by referring to the listings. It must be

noted that the user can always fully understand the error messages without
understanding how the loops are being used.

i
o

60469390 A I-U4-2

#~
.

00

2 REQUIREMENTS

This section contains the hardware and software requirements for execution and
continuation.
2.1 HARDWARE

This test is intended for Models 810, 815, 825, 830, 835, 845, and 855
computer systems.

Hardware Required to Run Test

In addition to requirements to run CMSE, FCTs require the following:

1 CPU
1 megabyte of central memory
1 PP

2.2 SOFIWARE

This product executes under the control of, and using the facilities of, the
Common Maintenance Software Executive (CMSE), for MSL15X. FCT3 also
incorporates the virtual level executive (VLEX), and FCT1l and 5 require the
instruction level test controller (ITC). Portions of the Diagnostic Executive
(DEX) are compiled with, and are a part of the ITC object code.

2.3 ACCESSORIES

Microfiche of listings and test case descriptions.

2.4 CHARACTERISTICS

1. Program name FCT1-3, 5 _
2. Size (source) (see table 4-1) 250,000

3. Size (memory required) (see table 4-1) 1MB }
4, Code type PP, CP code -
5. Run time (default) (see table 4-1) .
6. Run time (quick look) (see table 4-1) -
7. Run time (all sections) (see table 4-1) 5
8. Level of isolation detect only

9. Off-line test yes

10. Off-line system CMSE (MSL15X) R
11. Resident during execution PP, CP

12. Assembly language PP_Compass, META .
13. Source code maintenance . ASCII-MODIFY, UPDATE
14. Uses maintenance channel yes

60469390 E I-4-3

TABLE 4-1. FCT1-3,5 SIZES AND TIMES
| | | | Approximate Run Time
| | size | Size | (in seconds)
| TOTALS | (Source) | Memory Required | for Model
| | | | 810/815/825/830 | 835/845/855
| | | | |
| | | | |
| FCT1 -cp | 42,000 | 1MB | 120 | 114
-T00	5,000	4096	
FcT2 -cp	17,000	1MB	23
			300
FCT3 -cP	166,000	1MB	(quick
			look)
FCTS -cp	13,000	1MB	32
-0} 5,000	4096		
60469390 E 1-4-4

— I ——— — —— — — — —— —— — —— — — —— — — — — — ——— —

TN

O
C

3 OPERATIONAL PROCEDURE

FCT tests may be run in one of the following sequences:

FCT1 FCT1 FCT1
FCT2 FCT5 | FCT2
FCT3 FCT2 FCT5
FCTS FCT3 FCT3

The order is specified to minimize the amount of hardware that is used before
it is tested. Running the tests out of order may cause. error messages which
describe the problem incorrectly.

3.1 RESTRICTIONS AND USER CAUTIONS

PSM and PTL Masks

FCT3 is coded with the values for the page size mask (PSM) and for the page
table length (PTL) specified at assembly time. These values are used
throughout the test and cannot be altered during linking, loading or
execution, thereby limiting testing of the TPAGE, LPAGE and PURGE instructions
to cases using the given values for these masks.

Real/Virtual Memory Addressing Modes

FCT is a virtual level test. However, it is possible to run some sections in
real memory addressing mode as well as in the normal virtual mode.

FCT2 and FCT3 can only run in virtual mode. FCT1 and FCT5 can run most
Sections in both modes. The sections of FCT which require virtual addressing
mode are listed in the table below. All sections or subsections which are not
listed can run both addressing modes.

Test Section Subsection Opcode Ref No. Miemonic

FCT1 48 7 ol 037 BRXEQ

FCT1 58 all 2E O47 BRREL

FCT1 110 1,2,4 BO 116 CALLREL

FCT1 111 2,4 B5 115 CALLSEG

FCT1 112 all o4 117 RETURN

FCT1 113 19 OE 130 CPYSX

FCT1 114 all 16 126 TPAGE

FCT1 115 all 17 127 LPAGE

FCT2 all —_— —_— — :

FCT3 all | — — ——

FCT5 1 all F 048 BRDIR

FCT5 . 2 all 05 138 PURGE (map)

FCTS 3 all 05 138 PURGE (cache)

FCTsS 8 2,3,4 OE 130 CPYSX
60469390 A I-4-5

3.2 LOADING PROCEDURES

The first instructions given in the sections below for the loading of the FCTs
are general in nature and do not reflect the differences in loading that will
be required for different models. ’

Command buffers exist on the MSL 15X tape to facilitate loading and execution
of each test. (Refer to the table with each test for the names of command
buffers provided.) Before using a command buffer you may have to modify it
for your system. Display the command buffer using the CMSE command buffer
display commands or print the contents of the command buffer using procedures
provided in the Command Buffer Maintenance section of the MSL 15X Reference
Manual. Then modify the command buffer as directed by comments embedded in
the command buffer. When you are satisfied that the command buffer is set up
properly, enter a GO,xxxx command (where xxxx is the command buffer name) to
execute it.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

See sections 3.2 and 3.3 for information on DEC settings.

In general, the command buffers attempt to run the tests when the state of the
system is unknown (thus, a great deal of initialization), and assumes that no
other tests are running (otherwise, the initialization might interfere with
them) .

3.2.1 Loading of FCTl

The version level is represented by a modification date for each section.
This date is formed in ASCII characters after the subsection table which
starts at 800y¢ word address. It is followed by the assembly date and the
copyright message. The product resides as a series of overlays on the
Maintenance Software Library (MSL).

- Model Dependent Command Buffer Names

Test 810/815/ 845/
Name 825/830 835 855
FCT1 FCT1l ' FCT12 ~ FCT13

Please refer to MSL15X for a description of how to set up and use command
buffers. The version of ITC used by FCT1l is loaded from the file FCTITC.

60469390 E I-4-6

==,
S

S

A

©0

3.2.2 Loading of FCT2

The version number for FCT2 may be found with the copyright message, after the
parameter area. It is represented in ASCII characters.

The product resides as a single file on the Maintenance Software Library (MSL).

Model Dependent Command Buffer Names

Test 810/815/ ‘ 845/
Name 825/830 835 855
FCT2 FCT21 FCT22 FCT23

Command buffers provided on the MSL for FCT2 execute a DK command which causes
test execution to commence without a parameter stop. If parameter changes are
required, a modified command buffer without the DK command should be used.
This will allow the parameter display to appear on the screen. Parameters may
then be modified before the DK command is issued directly from the keyboard.

3.2.3 Loading Of FCT3

The product resides as a seven files on the Maintenance Software Library
(MSL). These seven files are: FT3GIOB, FT3GIlB, FT3GI2B, FT3GI3B, FTI3FPB,
FT3BDPB, and FI3SYSB. The version number for FCT3 may be found with the
copyright message, after the control/parameter area which is at 1400,¢ word
address. It is represented with ASCII characters.

The sections in FCT3 are numbered in one sequence as if the test was one large
test and not seven parts. The sections in each part are listed in the
following table. The section enable bits must be set to enable only those
sections which exist in the part of FCT3 which is being run.

The file name for each part is different, and is given in the table below.

There are other optional differences related to parameter settings. The test
should be run with the processor in different states to ensure complete
testing. For example, FCT3 should be run in both job and monitor modes, with
and without cache, etc. Refer to MSL 15X Reference Manual for the modes of
the processor; and to FCT3 Parameter Words for bits which must be set to
correspond to the state of the machine. The command buffers suggested for
FCT3 do only a part of this, as listed in the following table. '

Since it is important to run the system instructions in both job and monitor
modes, two command buffers are suggested to run FT3SYSB. The command sequence
given in this document causes the test to be run in job mode, and testing of
the external port is turned on. To modify the command sequence for monitor
mode, add: MC,A80,A40,34 and set the monitor mode bit in parameter word 0.

60469390 E : o I-4-7

The differences in the command buffers provided for running FCI3 are ¢etai1ed‘

in the following table. The tests have alpha-numeric names of six
characters. The sixth is a model dependent number (shown by an asterisk
below) with the following meaning: Model 810/815/825/830 = 1, Model 835 = 2,
Model 845/855 = 3

Command Binary Sections Mode Instructions Tested
Buffer File Enabled

FT3GO* FT3GIOB 0- 16 Job Part of General Instr.
FT3G1x* FT3GI1B 17- 30 Job . Part of General Instr.
FT3G2* FT3GI2B 31- 55 Job Part of General Instr.
FT3G3* FT3GI3B 56- 75 Job Part of General Instr.
FT3FPX* FT3FPB 128-143 Job Floating Point Instr.
FT3BD* FT3BDPB 160-177 Job BDP Instructions
FT3S1* FT3SYSB 192-207 Job System Instructions
FT382* FT3SYSB 192-207 Mon. System Instructions

3.2.4 Loading Of FCT5

The version level is represented by a modification date for each section.
This date is formed in ASCII characters after the subsection table which
starts at 800y word address. It is followed by the assembly date and the
copyright message. The product resides as a series of overlays on the
Maintenance Software Library (MSL).

Model Dependent Command Buffer Names

Test 810/815/ 845/
Name 825/830 835 855
FCTS FCTS1 FCT52 FCT53

Execution of these commands causes default parameters to be used by the
Instruction Test Controller (ITC). The version of ITC used by FCT5 is loaded
from the file FCTITC. The program is set for FCT5 by storing the ASCII
representation of F5 into PP word 57g.

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameters

FCT1 and FCTS Parameter Words

Parameter words control the execution of the test. These words are located at
PP locations 122g to 144g (directly following the control words).

60469390 D ‘ I-4-8

N
wJ’
-
L

®

o ke

Parameter words can be set or cleared manually through the CMSE commands such
as SSC or CSC.
for other commands that affect the parameter settings.

Word
Address

In Octal Tag

122

123

124
125

126

PARAMO

PARAM1

PARAM2
PARAM3

PARAM4

48-63

48-61
48-63

Position
Octal/Hex

- 0001/0001

000270002
000470004
001070008
002070010
004070020
010070040
020070080
0400/0100
1000/0200
200070400
400070800
10000/1000
2000072000
4000074000

10000078000

0001/0001
000270002
000470004
0020/0010
004070020
010070040

0001/0001
0002/0002

Refer to the MSL 15X Reference Manual.

X

Also see section 4.2.1

* Meaning

Stop at end of test

Stop at end of section
Stop at end of subsection
Stop at end of condition
Stop on error

Log errors in dayfile
Repeat test

Repeat section

Repeat subsection

Repeat condition

Scope mode

Quick look (not used)
Bypass all messages
Display only error messages
Not used

Accept CMSE parameter words(must be set)
Reserved

Reserved

Bypass parameter stop
Reserved

Reserved

Reserved

Repeat test count

Test CPU O

Test CPU 1

Reserved

Reserved

* An asterisk in this column indicates that default is nonzero.

60469390 E

I-4-9

60469390 C

Page I-4-10 is blank to compensate for deleted material.

I-4-10

“vk/ Ny

i,

alle

Word
Address Position
In Octal Tag Bit Octal/Hex * Meaning
127 PARAMS 48-63 * Sections 15-00 select *x*
130 PARAM6 48-63 % Sections 31-16 select *x*
131 PARAM7 48--63 %X Sections 47-32 select *x
132 PARAM8 48-63 * Sections 63-48 select **
133 PARAMY 48-63 * Sections 79-64 select *=*
134 PARAM10O 48-63 * Sections 95-80 select *x
135 PARAM11l 48-63 % Sections 111-96 select *x
136 PARAM12 48-63 % Sections 127-112 select **
137 PARAM13 48-63 X Sections 143-128 select **
140 PARAM14 48-63 Reserved
141 PARAM1S 48-63 Reserved
142 PARAM16 48-63 % Delay count for processor hung (default
value is 20g)
143 PARAM1? 62 0002/0002 X Enable PFS register operation
144 PARAM18 Reserved

FCT2 Parameter Words

Parameter words for FCT2 are located in central memory and can be set or
cleared manually through the CMSE commands, such as EB or EC. See paragraph
3.2.2 for additional information concerning parameter changes. The default
value of all parameter words is zero unless otherwise specified. Section 00
cannot be repeated after advancing beyond that section. This is because it is
checking the initial load of the exchange package. Section 00 is omitted when
repeat test is selected.

Word
Address Position
In Hex Tag Bit In Hex X Meaning
608 PARAM 0 00-53 Unused, reserved, or unimplemented
~ 54 200 Repeat condition
55 - 100 Repeat subsection
56 80 Repeat section
57 40 * Repeat test
58 20 Log errors
59 10 * Stop on error :
60 -8 Stop at end of condition
61 4 Stop at end of subsection
62 2 Stop at end of section
63 1 % Stop at end of test
609 PARAM 1 00--63 Repeat count (test will repeat if
pass count is less than repeat count)
60A PARAM 2 00-63 * Section select for sections 63-00.

All sections set by default

* An asterisk in this column indicates that default is nonzero.
*%x All sections set by default.

60469390 E o 1I-4-11

FCT3 Parameter Words

Parameter words control the execution of the test.

Parameter words can be set/cleared manually with the CMSE commands EB or EC.
NOTE

Unless otherwise specified below, all
parameter values are defaulted to 0.

Some parameter bits must be set to correspond to the state that the machine is
running in, or else false error reports will be produced. These are external
port connected, cache buffer enabled, map segment file enabled, and map page
file enabled. One parameter bit (test started in monitor mode) must
correspond to the mode that the test was started in, or else false errors may
result.

All parameters except quick look omit number, repeat count, stop at end of
loop level, and repeat loop level are controlled by the setting/clearing of
one bit, . The latter two require that the loop level desired (1, 2, or 3) be
entered numerically into the reserved space. For example, entering
0003020000000000¢ ¢ into PARAMO would specify a stop at the completion of

loop level 2, and to repeat loop level 3. The omit number may be in the range
00-FF,¢, with progressively more test cases skipped as the number

increases. The repeat count is used as a 64-bit signed integer.

Word
Address Position
In Hex Tag Bit In Hex * Meaning
1409 PARAM 0 00-07 FF00000000000000 * Quick look omit number
(default 20,4)
08-15 FF000000000000 Repeat loop level
16-23 FF0000000000 Stop at end of loop level
24 8000000000 Omit all result checking,
25 4000000000 * Stop for operator request
26 2000000000 Exchange instruction use
, allowed
27 1000000000 External port connected
28-31 Unused
32-39 Reserved
40 800000 Map page buffer enabled
41 400000 Map segment buffer enabled
42 200000 Cache buffer enabled
43 100000 Test started in monitor mode
44-47 ' Unimplemented
48-49 Reserved

* An asterisk in this column indicates that default is nonzero.

60469390 E 1-4-12

J

/ u h
\““‘ci ?

'

C

ole

1404 PARAM 1
1408B PARAM 2
140C PARAM 3
140D PARAM 4
140E PARAM 5
140F PARAM 6

50
51
52
53
54
55
56
57
58
59
60
61
62
63
00--63

00-63
00-63
00-63
00-63
00-58
59
60
61
62

63

2000

800
400
200
100
80
40
20

b
NSO

Display only error messages
Unimplemented

Quick look mode

Scope mode

Repeat condition

Repeat subsection

Repeat section

Repeat test

Log errors

Stop on error

Stop at end of condition
Stop at end of subsection
Stop at end of section

Stop at end of test

Repeat test count (test will
repeat if pass count is less
than repeat test count)
Section select 063-000
(default FFFFFFFFFFFFFFFF,g)
Section select 127-064
(default 0000000000000FFF¢)
Section select 191-128
(default O3FFFFOOOOOOFFFFq¢)
Section select 255-192
(default 000000000000FFFFq¢)
Unused

Reserved, must be set to zero
Executing on Model 845/855,
must be set

Executing on Model 835, must

~ be set

Executing on Model 810/815/
825/830, must be set
Reserved, must be set to zero

The values for the parameter words 1 though 4 must be altered to account for

the separate binaries used to implement FCT3.

The table below gives the values for these parameter words that may be set in

. the command buffers used to load and execute the different binaries. The

significance of the command buffer names used below is explained in section

* An asterisk in this column indicates that default is nonzero.

60469390 D

I-4-13

A
RECOMMENDED COMMAND . ‘ki}@

BUFFER NAME PARAM2 PARAM3 PARAM4 PARAMS

FT3GOX 1FFFF 0 0 0

FT3G1* 7FFE0000 0 0 0

FT3G2% OFFFFFF80000000 0 0 0

FT3G3* FF00000000000000 OFFF 0 0

FT3FP* 0 0 OFFFF 0

FT3BD* 0 0 3BFFF00000000 0 i

FT3S1% 0 0 0 OFFFF

FT382% 0 0 0 OFFFF

3.3.2 Control Words

FCT1 and FCTS Control Words

Control words are intended to identify a program and supply information to a
higher system or operator. They do not normally affect test execution. The

control words for FCT1l and FCT5 are located at PP locations 102g to 121g
and are as follows:

Tag Meaning

CWO Program name (first 2 characters) L
CWl Program name (last 2 characters) o
Ccw2 Program type o

cw3 Monitor ID word

CWa Error code number 1

CWS Error code number 2 (not implemented) 1

CWé Pass counter

Ccw? Current section counter

Ccws Current subsection counter

CW9 Current condition counter

CW1l0 Current error counter -
CWll Current CPU 1

FCT2 Control Words
Control words are intended to identify a program and supply information to a

higher system or operator. They do not normally affect test execution.
Control words are located beginning at central memory 600,¢ word address.

%* An asterisk in this column indicates that default is nonzero.

60469390 E ‘ I-4-14 W

00

They are:

Word
Address
In Hex Tag

600 cw o
601 cw 1
602 Cw 2
603 cw 3
604 CW 4
605 CW 5
606 CW 6
607 Cw 7

FCT3 Control Words

Bit

Position
In Hex

00-63
00-15

16-31
32-47
48-63
00-31
32-63
00-63
00-63
00-63

00-63
00-63

FFFF000000000000

FFFF00000000

FFFF0000

| %

*

Meaning

Test name FCT2 (in ASCII code)
2K009¢4, models 810, 815, 825,
830, 835, 845, and 855 are
supported.

CCF8,¢, indicates
configurations and options
that the test may execute with.
FFFFg, indicates that FCT2
may execute with all memory
size increments.

0000,¢, reserved bits.

Error code 1, which is not
implemented.

EBrror code 2, which is not
implemented.

Error count.

Pass count.

Section number.

Subsection number.

Condition number.

Control words are intended to identify a program and supply information to a

higher system or operator.

They do not normally affect test execution.

Control words are located beginning at 1400y¢ word address. They are:

Word
Address
In Hex

3

1400
1401

22

o
e
or

|

32-47

48-63

Position
In Hex

FFFF000000000000

FFFF00000000

FFFF0000

| %

Meaning

Test name FCT3 (in ASCII code)
2A004¢, models 810, 815, 825,
830, 835, 845, and 855 are
supported.

CCF84¢, indicates
configurations and options
that the test may execute with.
FFFF1¢, indicates that FCT3
may execute with all memory
size increments.

000044, reserved bits.

* An asterisk in this column indicates that default is nonzero.

60469390 D

I-4-15

1402 CW 2 00-31 Error code 1, which is not
implemented.
32-63 Error code 2, which is not
implemented.
1403 CW 3 00-63 Error count,
1404 CW 4 00-63 Pass count.
1405 W 5 00-63 Section number.
1406 CW 6 00-63 Subsection number.
1407 W7 00-63 Condition number.,
1408 CW 8 00-15 FFFF000000000000 Loop 1 count.
‘ 16-31 FFFF00000000 Loop 2 count,
3247 FFFF 0000 Loop 3 count.
48-55 Unused.
56-63 FF Currently active loop level.

3.3.3 Data Patterns

In the descriptions of the testing that is done by each test section (see Test
Sections) there are references to the data patterns which are being used.
These patterns are too large to be included in this document but are listed
below for reference. In some cases the name of the table will fully define
the contents of the table. The data patterns can be seen in the listings for
each test. Each section can contain its own specialized data tables, but in
FCT2 and FCT3, commonly used data has been grouped together. For FCT2 see the
listing for section zero, S00. For FCT3 see the listing titled FCT3 PAT,
Defined Data Patterns.

The intent behind the other names and terms found in the section descriptions,
whose meanings are not self evident, can be obtained from the listing for the
given section.

Test Pattern Contents

FCT2 PROPO Propagating zeros, right to left
ZERCS Word of zeros
PROP 1 Propagating ones, right to left
ONES Word with all bits set

PRMPAT Primary pattern. See listing
SLIDEO Sliding zero, right to left
SLIDE1 Sliding one, right to left
STDNOT Complement of STDPAT

STDPAT Standard pattern. See listing

COUNT ‘Count from 0 to 40

PAT 24 Patterns for section 24

V36Z Pattern for section 36

V36F Pattern for section 36

V36A Patterns for sections 36 and 37
V368 Patterns for sections 36 and 37
V37X Patterns for section 37

ISOMP1 Patterns for sections 46 and 47
ISOMP2 Patterns for sections 46 and U7

DATA3C Patterns for section U7

60469390 A : I-4-16

I
“

00

FCT3

STDPAT
STDPT_TF
COMSTD
BRDATA
BITMASK
PRMPAT
COUNT
PROGAT 1A
PROGAT 1

Standard pattern. See listing
"TFTF...TF' pattern in STDPAT
Complement of STDPAT

Data patterns for branch testing
Masking patterns

Primary pattern. See listing
Count pattern from 0 to 40
Propagating ones, left to right
Propagating ones, left to right

LBIT_SET
PROGATO
RBIT_SET
ASTDPAT
SLIDEO
SLIDE1
PACKDEC I
UNPKDECT

Word with bits 0 to 31 set

Propagating zeros, left to right

Word with bits 32 to 63 set

STDPAT modified for A register use

Sliding zero, left to right

Sliding one, left to right

Packed decimal count, 00 to 99 then 00 to 09
Unpacked decimal count, 00 to 99 then 00 to 08

3.4 TEST AND SECTION INDEX

3.4.1 FCT1 Test Sections

Sect Tag Instruction Ref Remar ks
Mnemonic O Code

0 F100 HALT 00 121
1 F13D ENTP 3D 057
2 F13E ENTN 3E 058
3 F11F ENTO,ENTZ,ENTS 1F 061
y F139 ENTX 39 164
5 F13F ENTL 3F 060
6 F187 ENIC 87 165
7 F18D ENTE 8 059
8 F1B3 ENTA B3 168
9 F11E MARK 1E 145
10 F126 MULX 26 024
11 Fi1B2 MULXQ B2 168
12 F122 MULR 22 032
13 F18C MULRQ 8c 033
14 F127 DIVX 27 025
15 F123 DIVR 23 034
16 F109 CPYAA 09 051
17 F10D CPYXX 4)) 049
18 F10B CPYAX 0B 050
19 . F10A CPYXA 0A 052
20 F10C CPYRR - oC 053
21 F118 IORX 18 065
22 F119 XORX 19 066
23 F11A ANDX 1A 067
24 F11B NOTX 1B 068
25 F11C INHX 1C 069
26 F124 ADDX 24 022
27 F120 ADDR 20 027
60469390 A

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

28 F110 INCX 10 166
29 F188 ADDXQ 8B 143
30 F128 INCR 28 029
31 F125 SUBX 25 023
32 F121 SUBR 21 030
33 F111 DECX 11 167
34 F129 DECR 29 031
35 F12D CMPX 2D 035
36 F12C CMPR 2 036
37 F18A ADDRQ 8A 028
38 F1A8 SHFC A8 062
39 F18 ADDAQ 8E o054
40 F18 ADDPXQ 8F 055
41 F12A ADDAX 2A 056
42 F1AT7 ADDAD AT 161
43 F1A9 SHFX A9 063
44 F1AA SHFR AA o64
45 F1AC ISOM AC 070
46 F1AD ISOB AD 071
47 F1AE INSB AE 072
48 F194 BRXEQ 9y - 037
49 F19% BRXNE % 038
50 F196 BRXGT 96 039
51 F197 BRXGE 97 040
52 F190 BRREQ 90 041
53 F191 BRRNE 91 o42
54 F192 BRRGT 92 043
55 F193 BRRGE 93 ouy
56 F19C BRINC 9C 045
57 F19D BRSEG 9D ou6
58 F12E BRREL 2E ou7
59 F188 LBIT 88 014
60 F1a2 LXI A2 005
61 F18 LX 8 006
62 F1DO LBYTS,S Do-7 001
63 F1A0 LAI A0 016
64 F184 LA 84 017
65 F180 LMULT 80 020
66 F186 LBYTP,J 86 013
67 F1A4 LBYT,XO Ay 009
68 F183 SX 83 008
69 F1A1 SAI A1 018
70 F1A3 SXI A3 007
71 F181 SMULT 81 021
72 F189 SBIT - 89 015
73 F185 SA & 019
74 F1D8 SBYTS,S D8-F 003
75 F1A5 SBYT,X0 A5 011
76 F13A CNIF 3A 097
77 F13B CNFI 3B 098
78 F130 ADDF 30 099
79 F131 SUBF 31 100
60469390 A

W

ol

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

80 F134 ADDD 34 105
81 F135 SUBD 35 106
82 F132 MULF 32 103
83 F136 MULD 36 107
84 F133 DIVF 33 104
8 F137 DIW 37 108
86 F13C CMPF 3C 114
87 F198 BRFEQ 98 109
88 F199 BRFNE 99 110
89 F19A BFFGT 9A 111
90 F19B BRFGE 9B 112
91 F19E BROVR, UND, INF 9E 113
92 FI1Fy CALDF . Fy 096
93 F176 MOVB 76 089
9y F 1EB TRANS EB 088
95 F177 CMPB 7 084
96 F1EQ CMPC E9 085
97 F1ED EDIT ED 091
98 F1F3 SCNB F3 086
99 F1IF9 MOVI F9 154
100 F1FA CMPI FA 155
101 FI1FB ADDI FB 156
102 F170 ADDN 70 074
103 F171 SUBN T 075
104 F172 MULN T2 076
1056 F173 DIVN 73 077
106 FI1EY4 SCLN E4 078
107 F1ES SCLR E5 079
108 F175 MOVWN 75 092
109 F174 CMPN TH 083
110 F1BO CALLREL BO 116
111 F1B5 CALLSEG B5 115
112 F104 RETURN o4 17
113 F10E CPYSX OE 130
114 F116 TPAGE 16 126
115 F117 LPAGE 17 127
116 F10F CPYXS oF 131
117 F12F BRDIR X ous8
118 F102 EXCHANGE 02 120
119 F106 POP 06 118
120 F108 CPYTX 08 132
121 F114 LBSET 14 124
122 F1B1 KEYPOINT B1 136
123 F19F BRCR OF 134
124 F1B4 CMP XA BY 125
125 F103 INTRUPT 03 122
126 F105 PURGE 05 138
127 F1CO EXECUTE Co-7 139
128 FI1BE RESERVED BE 170
129 F1BF RESERVED BF 171
130 F1UI UNIMPLEM. ¥ —_—
131 F101 SYNC 01 194
60469390 A I-4-19

3.4.,2 FCT2 Test Sections

Sect Tag Instruction Ref Remar ks
Mnemonic O Code

0 S00 BRXEQ 9y 037 Partially tests BRXEQ instruction;
tests that X registers contain all
zeros. Cannot be rerun once X
registers equal zero; tested
further in section 11.

1 S01 ENTE 8 059 Tests ENTE instruction and
partially tests ability of X
registers to hold patterns.

2 S02 ENTS F 061 Tests ENTS instruction and
partially tests ability of X
registers to hold patterns.

3 503 CPYRR oc 053

y So4 CPYXX 0] 049

5 S05 ENTL ¥F 060

6 S06 ENTP 3D 67

T S07 ENTN 3E 058

8 S08 SHFC A8 062 Tests SHFC instruction and
partially tests ability of X

: registers to hold patterns.

9 S09 SHFX A9 063 Tests SHFX instruction and
partially tests ability of X
registers to hold patterns.

10 S10 SHFR AA 064

11 S11 BRXEQ ol 037 Further tests the BRXEQ in-
struction begun in section 0.

12 S12 BRXNE 95 038 ’

13 S13 BRXGT 9% 039

14 S14 BRXGE 97 040

15 815 BRREQ 90 041

16 S16 BRRNE 91 042

17 S17 BRRGT 92 o043

18 S18 BRRGE 93 044

19 S19 BRREL 2E 047

20 3820 BRINC 9C 045

21 S21 CPYAX, XA 0B,0A 050,052 Tests CPYAX and CPYXA
instructions. Partially tests
ability of A registers to hold

, patterns.

22 S22 CPYAA 09 051 Tests CPYAA instruction and
partially tests ability of A
registers to hold patterns.

23 = 3823 ADD XQ 8B 143

2§ sS2y LXt A2 005

25 825 LX 82 006

26 326 SXI A3 007

27 . S27 SX 83 008

28 528 IORX 18 065

29 S29 ANDX 1A 067

30 3830 NOTX 1B 068

31 S31 XORX 19 066

60469390 A I-4-20

3

C

O

C

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

32 832 INHX 1Cc 069

33 833 ADDX 24 022

34 S3u SUBX 25 023

35 S35 ADDAQ 8E (42

36 336 LAI A0 016

37 S37 SAI A1 018

38 338 ADDPXQ g 055

39 839 BRDIR F ous

40 Sy0 LBYTS,S DO-D7 001

Y| s SBYTS, S D8-DF 003

42 sSy2 ADDR 20 027

43 S43 INCR 28 029

4y Syy SUBR 21 030

45 S¥5 DECR 29 031

46 Su46 ISM AC 070

47 S47 ISOB AD 071

48 S48 ENTX 39 164

49 Sy9 ENTC 87 165

50 350 INCX 10 166

51 S51 DECX 11 167

52 Sb2 ENTA B3 169

53 S53 CALLSEG B5 115

54 S54 CALLREL BO 116

55 S55 RETURN 04 117

56 S56 CPYSX OE 130

57 S57 CPYXS oF 131

58 S58 BRCR oF 134 Tests BRCR instruction. Only
alteration of UCR bits and testing
of status of UCR bits is checked.
Use of this instruction in FCT
usage set requires following values
of k(4 LE KLE 7) or (C LE k LE F).,

3.4.3 FCT3 Test Sections

Sect Tag Instruction Ref Remarks

Mnemon ic Op Code

0 REF001 LBYTS DO-D7 001 Load bytes to Xk from (Aj)
displaced by D and indexed by (Xi)
right, length per S.

1 REF003 SBYTS D8-DF 003 Store bytes from Xk at (Aj)

: ' displaced by D and indexed by (Xi)

right, length per S,

2 REF005 LXI A2 005 Load Xk from (Aj) displaced by 8*D
and indexed by 8¥(Xi) right.

3 REF006 LX 82 006 Load Xk from (Aj) displaced by 8¥Q.

y REF 007 SXI A3 007 Store Xk at (Aj) displaced by 8%*D
and indexed by 8¥(Xi) right.

5 REF008 SX 83 008 Store Xk at (Aj) displaced by 8*Q.

60469390 A I-4-21

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

6 REF009 LBYT Ay 009 Load bytes to Xk from (Aj)
displaced by D and indexed by (Xl)
right, length per XO.

7 REFO11 SBYT A5 011 Store bytes from Xk at (Aj)
displaced by D and indexed by (Xi)
right, length per XO.

8 REF013 LBYTP 86 013 Load bytes to Xk from (P) dlsplaced
by Q, length per j.

9 REFO14 LBIT 88 014 Load bit to Xk from (Aj) dlsplaced
by Q and bit-indexed by (X0) right.

10 REF 015 SBIT 89 015 Store bit from Xk from (Aj))
displaced by Q and bit-indexed by

, (X0) right.

11 REF016 LAI AOQ 016 Load Ak from (Aj) dlsplaced by D
and indexed by (Xi) right.

12 REFO017 1A 8u 017 Load Ak from (Aj) displaced by Q.

13 REF018 SAI A1 018 Store Ak at (Aj) displaced by D and
indexed by (Xi) right.

14 REFO19 A 85 019 Store Ak at (Aj) displaced by Q.

15 REF020 LMULT 80 020 Load multiple registers from (Aj)
displaced by 8%Q, selectively per
(Xk) right.

16 REFO021 SMULT 81 021 Store multiple registers to (Aj)
displaced by 8%Q, selectively per
(Xk) right.

17 REF022 ADDX 24 022 Integer sum, (Xk) replaced by (Xk)
plus (XJj) .

18 REF023 SUBX 25 023 Integer difference, (Xk) replaced

' by (Xk) minus (XJj).

19 REF024 MULX 26 024 Integer product, (Xk) replaced by
(Xk) times (Xj).

20 REF025 DIVX 27 025 Integer quotient, (Xk) replaced by
(Xk) divided by (Xj).

21 REF027 ADDR 20 027 Integer sum, (Xk) right replaced by
(Xk) right plus (Xj) right.

22 REF28 ADDRQ 8A 028 Integer sum, (XK) right replaced by
(Xj) right plus Q.

23 REF029 INCR 28 029 Integer sum, (Xk) right replaced by

’ (Xk) right plus j.

24 REF030 SUBR 21 030 Integer difference, (Xk) right
replaced by (Xk) right minus (Xj)
right.

25 REFO031 DECR 29 031 Integer difference, (Xk) right

, replaced by (Xk) right minus j.

26 REF032 ~ MULR 22 032 Integer product, (Xk) right
replaced by (Xk) right times (Xj)
right.

27 REF033 MULRQ 8C 033 Integer product, (Xk) right
replaced by (Xj) right times Q.

28 REFO34 DIVR 23 034 Integer quotient, (Xk) right
replaced by (Xk) right divided by
(Xj) right.

60469390 A I-4-22

00

Ref

Sect Tag Instruction Remar ks
Mnemonic Op Code

29 REF035 CMPX 2D 035 Integer compare, (Xj) to (Xk),
result to X1 right.

30 REF036 OMPR P 036 Integer compare, (Xj) right to (Xk)
right, result to X1 right.

31 REF037 BRXEQ 94 037 Branch to (P) displaced by 2%¥Q if
(Xj) equal to (Xk).

32 REF038 BRXNE 95 038 Branch to (P) displaced by 2%¥Q if
(Xj) not equal to (Xk).

33 REF039 BRXGT 96 039 Branch to (P) displaced by 2%¥Q if
(Xj) greater than (Xk).

34 REFO40 BRXGE 97 040 Branch to (P) displaced by 2%¥Q if
(Xj) greater than or equal to (Xk).

35 REFO41 BRREQ 90 o4 Branch to (P) displaced by 2%¥Q if
(Xj) right equal to (Xk) right.

36 REFO42 BRRNE 91 042 Branch to (P) displaced by 2%Q if
(Xj) right not equal to (Xk) right.

37 REFO43 BRRGT 92 043 Branch to (P) displaced by 2%¥Q if
(Xj) right greater than (Xk) right.

38 REFO44 BRRGE 93 oul Branch to (P) displaced by 2%Q if
(Xj) right greater than or equal to
(Xk) right.

39 REFO45 BRINC aC 0us Branch to (P) displaced by 2%Q and
increment (Xk) if (Xj) greater than
(Xk) .

40 REFO46 BRSEG 9D 046 Branch to (P) displaced by 2¥Q if
SEG(Aj) not equal to SEG(Ak); else
compare BN(Aj) to BN(Ak), result to
X1 right.

41 REFO47 BRREL 2 o047 Branch to (P) indexed by 2% (Xk)
right.

42 REFO48 BRDIR x 048 Branch to (Aj) indexed by 2% (Xk)
right.

43 REF049 CPYXX (1)) 049 Copy to Xk from Xj.

uy REF 050 CPYAX 0B 050 Copy to Xk from Aj.

45 REF051 CPYAA 09 051 Copy to Ak from Aj.

46 REF052 CPYXA 0A B2 Copy to Ak from Xj.

47 REF053 CPYRR oC 053 Copy Xk right from Xj right.

48 REFO54 ADDAQ 8E 054 Address (Ak) replaced by (Aj) plus
Q.

49 REF055 ADDPXQ 8 055 Address (Ak) replaced by (P) plus
2%(Xj) right plus 2%Q,

50 REF056 ADDAX 2A 056 Address (Ak) replaced by (AKk) plus
(X3) right.

51 . REFO057 ENTP 3D 057 Enter ¥k with plus j.

52 REF058 ENIN ~3E 058 Enter Xk with minus j.

53 REF059 ENTE & 059 Enter Xk with sign extended Q.

54 REF 060 ENTL JF 060 Enter X0 with logical jk.

55 REF061 ENTO,ENTZ,ENTS F 061

56 REF 062 SHFC A8 062 Shift (Xj) to Xk circular,
direction and count per (Xi) right
plus D.

60469390 A I-4-23

Sect Tag Instruction Ref Remar ks
Mnemonic Op Code
57 REF063 SHFX A9 063 Shift (Xj) to Xk, direction and
count per (Xi) right plus D.
58 REFO64 SHFR AA 064 Shift (Xj) right to Xk right,
direction and count per (Xi) right
plus D.
59 REF065 IORX 18 065 Logical sum, (Xk) replaced by (Xk)
OR (XJ).
60 REF066 XORX 19 066 Logical difference, (Xk) replaced
. by (Xk) XOR (XJj).
61 REF06T ANDX 1A 067 Logical product, (Xk) replaced by
(Xk) AND (XJ).
62 REF068 NOTX 1B 068 Logical complement, (Xk) replaced
by NOT (XJj).
63 REF069 INHX 1C 069 Logical inhibit, (Xk) replaced by
(Xk) AND NOT (XJ).
64 REFQTO IS AC 070 Isolate bit mask into Xk per (Xi)
right plus D.
65 REFOT1 IS0B AD 071 Isolate into Xk from (Xi) right
plus D. :
66 REFOQT72 INSB AE 072 Insert into Xk from Xj per (Xi)
right plus D.
67 REF143 ADDXQ 8B 143 Integer sum, (Xk) replaced by (XJ)
plus Q.
68 REF145 MARK 1E 145 Set Xk per j and (X1) right.
69 REF 161 ADDAD A7 161 Address (Ak) replaced by (Ai) plus
D per j.
70 REF164 ENTX 39 164 Enter X1 with logical jk.
71 REF165 ENIC 87 165 Enter X1 with sign extended jkq.
72 REF166 INCX 10 166 Integer sum, (Xk) replaced by (Xk)
plus j.
73 REF167 DECX 11 167 Integer difference, (Xk) replaced
by (Xk) minus j.
74 REF168 MULXQ B2 168 Integer product, (Xk) replaced by
(Xj) times Q.
75 REF169 ENTA B3 169 Enter X0 with sign extended jkq.
76-127 Reserved Sections
128 REF 097 CNIF 3A 097 Floating point convert from
integer, floating point (Xk) formed
from integer (XJj).
129 REF098 CNFI 3B 098 Floating point convert to integer,
integer (Xk) formed from floating
, point (Xj). C
130 REF099 ADLF 30 099 Floating point sum, (Xk) replaced
v by (Xk) plus (XJ).
131 REF100 SUBF 31 100 Floating point difference, (Xk)
replaced by (Xk) minus (Xj).
132 REF103 MULF 32 103 Floating point product, (Xk)
- replaced by (Xk) times (XJj).
133 REF104 DIW 33 104 Floating point quotient, (Xk)
replaced by (Xk) divided by (XJj).
60469390 A I-4-24

;("‘ “\\VI fk/qx\

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

134 REF105 ADDD 34 105 Floating point DP sum, (Xk, Xk+1l)
replaced by (Xk, Xk+1) plus (Xj,
Xj+l).

135 REF106 SUBD 35 106 Floating point DP difference (Xk,
Xk+1) replaced by (Xk, Xk+l) minus
(X3, Xj+1).

136 REF107 MULD 36 107 Floating point DP product, (Xk,
Xk+l) replaced by (xk Xk+l) times
(Xj, Xj+1).

137 REF108 DIVD 37 108 Floating point DP quotxent, (Xk,
Xk+1l) replaced by (Xk, Xk+l)
divided by (Xj, Xj+1).

138 REF109 BRFEQ 98 109 Branch to (P) displaced by 2*Q if
floating point (Xj) equal to (Xk).

139 REF110 BRFNE 99 110 Branch to (P) displaced by 2%Q if

‘ZWN floating point (Xj) not equal to

J (Xk) .

140 REF111l BRFGT 9A 111 Branch to (P) replaced by 2%Q if
floating point (Xj) greater than
(Xk).

141 REF112 BRFGE 9B 112 Branch to (P) displaced by 2*Q I1f

~ floating point (Xj) greater than or
equal to (Xk).

142 REF113 BROVR,UND,INF 9E 113 | Branch to (P) displaced by 2*%Q if
floating point exception per j

(} contained in Xk
143 REFl1l4 CMPF 3c 114 "Compare floating point (Xj) to
(Xk), result to X1 right.
144-159 Reserved Sections
160 REF074 ADDN 70 074 Decimal sum, D(Ak) replaced by
D(Ak) plus D(Aj).
161 REF075 SUBN 71 075 Decimal difference, D(Ak) replaced
by D(Ak) minus D(Aj).
162 REF076 MULN 72 076 Decimal product, D(Ak) replaced by
C D(Ak) times D(Aj).
j 163 REF077 DIVN 73 077 Decimal quoitent, D(Ak) replaced by
D(Ak) divided by D(Aj).
164 REF078 SCLN E4 078 Decimal scale, D(Ak) replaced by
D(Aj) scaled per (Xi) right plus D.
165 REF079 SCLR ES 079 Decimal scale rounded, D(Ak)
replaced by rounded D(Aj) scaled
, ‘ per (Xi) right plus D.
166 REF083 CMPN 74 083 Decimal compare, D(Aj) to D(Ak),
result to X1 right.
167 REF084 CMPB 77 084 Byte compare, D(Aj) to D{(Ak),
: result to X1 right, index to X0
right.
168 REFO085 CMPC E9 085 .Byte compare collated, D(Aj) to
D(Ak), both translated per (Ai)
plus D, result to X1 rlght. index
0 to X0 right.
(}V 60469390 E 1-4-25 .

Sect Tag Instruction Ref Remarks
Mnemonic Op Code

169 REF086 SCNB F3 086 Byte scan while nonmember, D(Ak)
for presence bit in (Ai)+D, index
to X0 right, character to X1 right.

170 REF088 TRANB EB 088 Byte translate, D(Ak) replaced by

‘ ' D(Aj), translated per (Ai) plus D.

171 REF089 MOVB 76 089 Move bytes, D(AK) replaced by D(Aj).

172 REF091 EDIT ED 091 Edit, D(Ak) replaced by D(Aj)
edited per M((Ai)+D).

173 REF092 MOVN 75 092 Numeric move, D(Ak) replaced by
D(Aj) after formatting.

174 REF096 CALDF F4 096 Calculate subscript and add D(Aj),
checked and modified per (Ai) plus
D, result added to Xk right.

175 REF154 MOVl F9 154 Move immediate data, (Xi) right
plus D to D(Ak).

176 REF155 CMP1 FA 155 Compare immediate data, (Xi) right
plus D compared to D(Ak), result to
(X1) right.

177 REF156 ADDI FB 156 Add immediate data, (Xi) right plus
D to D(Ak).

178-191 Reserved Sections

192 REF115 CALLSEG BS 115 Call per (Aj) displaced by 8*Q,
arguments per (Ak).

193 REF116 CALLREL BO 116 Call to (P) displaced by 8%Q,
binding section pointer per (Aj),
arguments per (Ak).

194 REF117 RETURN 04 117 Return. .

195 REF118 POP - 06 118 Pop.

196 REF120 EXCHANGE 02 120 Exchange.

197 REF122 INTRUPT 03 122 Interrupt processor per (Xk).

198 REF124 LBSET 14 124 Load bit to Xk right from (Aj) bit
indexed by (X0) right and set bit
in central memory.

199 REF125 CMPXA B4 125 Compare (Xk) at (Xj); if not equal,
load Xk from (Aj); if equal store
(X0) at (Aj); however, if (Aj)
locked, branch to P plus 2*Q.

200 REF126 TPAGE 16 126 Test page (Aj) and set Xk right.
Requires that, for segment
containing page table, contiguous
PVAs be contiguous (RMAs) also.

201 REF127 LPAGE 17 127 Load page table index per (Xj) to
Xk right and set X1 right.

Requires that, for segment
containing page table, contiguous
: PVAs be contiguous RMAs also.

202 REF130 CPYSX OE 130 Copy to Xk per (Xj).

203 REF131 CPYXS OF 131 Copy from Xk per (Xj).

204 REF132 CPYTX 08 132 Copy free running counter to Xk at
(Xj) right.

205 REF134 BRCR 9F 134 Branch to (P) displaced by 2*Q and
alter condition register per jk.

60469390 E I-4-26

~. 1/1

N
\{ /

N

~ /

A
@

ofe'

Sect Tag Instruction Ref Remarks
Mnemonic Op Code
206 REF136 KEYPOINT Bl 136 Keypoint, class j, code equal to
(Xk) right plus Q.
207 REF138 PURGE 05 138 Purge buffer k of entry per (Xj)
(model dependent).
3.4.4 FCI5 Test Sections
Sect Tag Instruction Ref Remarks
Mnemonic Op Code
208-255 Reserved Sections
0 FS500 EXCHANGE 02 120
1 F501 BRDIR 2F 048
2 F502 PURGE (MAP) 05 138
3 F503 PURGE (CACHE) 05 138
4 F504 CALLREL BO 116
5 F505 CALLSEG BS 115
6 F506 RETURN 04 117
7 F507 POP 06 118
8 F508 CPYSX OE 130
9 FS509 CPYXS OF 131
10 PS10 LBSET 14 124
11 FS511 CMPXA B4 125
12 F512 KEYPOINT Bl 136
13 F513 EXECUTE CO0-7 139
60469390 E I-4-27

4 OPERATOR COMMUNICATION

Communication with FCT is via any console that can be driven by CMSE. All
communication between the operator and FCT through CMSE.

4.1 DISPLAYS

4.1.1 FCTl1l and FCTS Displays

Initial Display

The initial display presented by FCT1 or FCTS is shown below.

The format of

the FCTS display is identical to that of the FCT1 display with FCT1 changed to

FCTS5, and the file name, Flxx changed to F5xx.

The test name is at the

beginning of the line, and the date on the display gives the assembly date of

ITC program. Refer to Operator Entries for a detailed description of the

keyboard commands.

ABS/ABB
ECPX/DCPX
EPFS/DPFS
EP,4,142 ,XXXX
F1XX YY ZZz -
S/R/D/SPACE

. — —— — ——— — —— — — ——— —— —— — —

FCT1 PARAMS PA=122B 80/12/11.REV 2.4

KEYBOARD COMMANDS

ABORT SECT/SUBSEC

EN/DISABL CPU X=0+1

EN/DISABLE PFS UTRAPS - P1,P2,P3 ONLY
SET CP HANG COUNT

TEST SUB-SET OF OP CODES
STOP/RESTRT/DROP/CONTINU

CONTROL DATA PROPRIETARY PRODUCT
COPYR. CONTROL DATA 1980

Running Display

The running display presented by FCT1 (and FCTS) is as follows.

i

| FCTL op PCKXXX CPX SKXXX SBXKKXX CKXXKX F1XX yy/mm/dd

where:

_operation (op) "RU

sC
SB
ss
ST
SE
SM
HT

60469390 E

Running message

End of condition

End of subsection

End of section

End of test

Stopped on error
Executing scope loop
Test halted by operator

. e— — — — — —— —— — — — — ——

—— a—

I-4-28

(Tt> RC Repeat condition
i RB Repeat subsection

(:%5 RS Repeat section
r PCxxxx Pags count
CPx Current CPU
Sxxxx Current section number
SBxxxx Current subsection number
CxXxXxx Current condition number
Flxx or F5xx File name of the current section being
executed; xx is the command op code
yy/mm/dd Date of last modification of current
gection

PARAM3 controls testing for dual CP systems. Either one or both of the CPs
may be tested. When two CPs are tested, execution occurs alternately, not
concurrently. CPO is tested first for any given section and, when testing is
complete, the section is repeated for CPl.

C NOTE
re

If the repeat section paramater is set, the section is
repeated for the currently executing CP. If the section
stop bit is set the test stops at the end of section for
each processor.

Data Comparison Error Display

' ' NOTE

There may be minor variations in the spacing (by byte or
parcel) for some of the displays represented here.

The data comparison error display issued by FCT1l is shown below. The format
of the FCT5 display is identical to that of the FCT1 display with FCTl changed
to FCTS, and the file name, Flxx changed to F5xx. Except for the S register
and the address index, all addresses displayed are byte addresses.

FCT1 SE PC0000 CPO S0000 SBO0O0OO C0001 F100 80/10/30
EC1=0000 TE=0001 ' :

OP CODE 00 REF 0121

P REG 00 00 BO 00 00 00 40 30

S REG - 00 00 04 31 04 31 04 31

MON PACK 004100 PROCESS 0000 BOOO 0000 4030
JOB PACK 000000 PROCESS 0000 0000 0000 0000
COMPARE NO 0005

MASK FFFF FFFF FFFF FFFF

XPCTID 0000 0000 0000 0000

RECVD 0000 0000 0000 1000

ADRS OF XPCTD 0044E8
ADRS OF RECVD 000088
ADRS INDEX - 000000

. — A — —— —— —— . G —— A ——— — — —
——— — — — — — ——— Y — ——— —— ——— — — —— —

@a

60469390 E I-4--29

where:

ECl

TE

RN=KXXX

~ OP CODE - REF
P REG

S REG

MON PACK
PROCESS

COMPARE NO.

MASK

XPCTD
RECVD

ADRS OF XPCTD

ADRS OF RCVD

ADRS INDEX

60469390 E

Error code 1. ECl equals 1C20y¢ when the MAC channel was
unable to transfer data after a function was sent by the
driver program. No other ECl values have been implemented.
For other errors ECl will remain set to 0000.

Total errors since start of test to date.

(Not used).

Current instruction op code and reference number.

Contents of P register.

Contents of S register.

Byte address of monitor exchange package.

Contents of first word in monitor package (P).

Indicates the comparison, starting with 1, within the current

condition that caused the error. The comparison number is

used to correlate the display with the listing, by indicating
which compare directive within the condition has reported the

error.

Mask used to indicate which bits of the received word are
being tested.

Expected data.

Received data.

Byte address pointing to the word containing the expected
data or the word containing the beginning of the expected
data.

The 64 bits of an expected data may begin on any parcel

boundary. For immediate data, address is the byte address of
the word where immediate data started. When expected data is

not immediate data, this is the byte address of the word

containing the (first) 64 bits of expected data.

Byte address pointing to the word containing the received
data.

When nonzero, indicates a block comparison occurred. The
index is not used when referencing immediate data. When the
expected data is not immediate data, the index is a word
offset from the expected and received addresses that points
to the data that was used in the failing comparison. When
multiple errors are detected, only data for the first
detected error is displayed. :

I-4-30

3
J

RS
~

An error directory for FCT1 and FCT5 is available to give more descriptive
information about what is occurring, or not occurring as the case may be. The
error directory is found in the listings. Each condition describes its own
errors.

System Register Error Display

When the test detects an error while checking any register via the Maintenance
Access Control (MAC) Channel then a display similar to that shown below will
occur.

FCT1 SE PC0000 CPO S0000 SBO0OO CO001 F100 80/10/30
EC1=0000 TE=0001

OP CODE 00 REF 0121

B! |
| |
| |
| 8|
| |
| P REG 00 00 BO 00 00 00 40 30 1
| s REG 00 00 04 31 04 31 04 31 1
| MON PACK 004100 PROCESS 0000 BOOO 0000 4030 |
| JOB PACK 000000 PROCESS 0000 0000 0000 0000 |
| COMPARE NO 0005 1
| MASK FF FF FF FF FF FF FF FF |
{ XpCcTD 00 00 00 00 00 00 00 00 |
-] RECVD 00 00 00 00 00 00 00 00 |
| REG FUNC 0240 l
| _REG_ADRS 0048 |

Lines 0 through 11 are as defined for the data comparison error display.

REG FUNC Contains the connect code, op code and type code as
S transmitted to the MAC channel to read the register
contents.

REG ADRS : Address of the register within the processor.
Processor Hung Error Display |
When the CP does not halt after testing an instruction, the following message

appears. Note that a similar display may appear when the required system
microcode has not been loaded.

FCT1 SE PC0000 CPO S0008 SB0001 CO001 F1OE 80/10/30
EC1=0000 TE=0001
0

P CODE OE REF 0130

P REG 00 00 BO 00 00 00 40 34

S REG 00 00 04 31 04 31 04 31

MON PACK 004100 PROCESS 0000 B0OOO 0000 4030
JOB PACK 004280 PROCESS 0000 BOOO 0000 4068

s s el i webies G duivio ek b - d—

CP_HUNG

60469390 E - - ‘ . 1-4-31

where:

ECl Error code 1

TE Total errors

OP CODE -~ REF Current instruction op code and reference number
CP HUNG Processor hung indication

Program Error Display

When the PP driver program detects an error while interpreting control
commands, the following display is presented. The error could be caused by
bad data being loaded from disk to central memory or by an overwrite of the
control tables in central memory as a result of a CP error.

FCTL SE PC0O000 CPO S0008 SBO0OO1l CO001 F1O0E 80110/30
EC1=0000 TE=0001 :

OP CODE OE REF 0130

— — — — —— — —— — ———

P REG 00 00 BO 00 00 00 40 34
S REG 00 00 04 31 04 31 04 31
MON PACK 004100 PROCESS 0000 BOOO 0000 4030
JOB PACK 004280 PROCESS 0000 B0OOO 0000 4068
PROGRAM ERR.
where
ECl Error code 1
TE Total errors
OP CODE - REF Current instruction op code and reference number

PROGRAM ERR. Program error indication

2 = o

4.1.2 FCTZ Display
Initial Display

This display will appear after the CN command, when FCT2 is loaded as
described in this document. The display will change to the FCT2 Running
display after the processor has been deadstarted and the test has begun
execution. If the display does not change then the processor is not
functioning correctly and FCT1 should be run. This display may also remain
unchanged if the correct microcode has not been loaded. ‘ o

60469390 E I1-4-32

C"k
Y
%

©0

The initial display presented by FCT2 is as follows:

{ FIXED OPERAND COMMAND TEST 2
| VERIFIES USAGE SET FOR FCT3, AND RCT1

BIT 54
55
BIT 56
57
58
59
BIT 60
61
62
63

- mon SRA G M e SR e Ra hae SR e S e S

PARAMETER WORD O IS AT WORD ADDRESS 608

REPEAT CONDITION

REPEAT SUBSECTION

REPEAT SECTION

REPEAT TEST

LOG ERRORS

STOP ON ERROR

STOP AT END OF CONDITION
STOP AT END OF SUBSECTION
STOP AT END OF SECTION
STOP AT END OF TEST

PARAMETER WORD 2 (60A) CONTAINS SECTION ENABLE BITS

Running Display

The running display presented by FCT2 is as follows:

FIXED OPERAND COMMAND TEST 2
VERIFIES USAGE SET FOR FCT3, AND RCT1

Sxx mmmmm OP = xx REF = xxx
SUB-SECT xx CONDITON xx IDX= xx IDX= xx
where:
Sxx Current section number
SUB-SECT xx Subsection number -
CONDITON Cond ition number
mmmmm - Instruction mnemonic
OoP Op code
REF Reference number
~ IDX Loop index values
60469390 A-

—— - - e W e wmon

I-4-33

{

Error Display Yhe,_,

The standard error display format used by FCT2 is as follows: Az

W

FIXED OPERAND COMMAND TEST 2
VERIFIES USAGE SET FOR FCT3, AND RCT1

s10 SHFR OP = AA REF = 064
SUB-SECT 00 CONDITON 02

STOP. SHFR ZERO IS NOT A CPYRR

where:
Line O and 1: FCT2 header /”xj
‘\ L
Line 2: Not used
Line 3: :
s1o0 ' Test section number (10 decimal in example)
SHFR Mnemonic
AA Operation code
064 Reference number
Line 4: Not used ‘3
J
Line S:
00 Subsection number
02 Condition number
Line 6: Not used
Line 7: This line contains a one-line error message appropriate
to the problem detected. Refer to the FCT2 program AT
listing for a detailed description of the failing section .
to determine which registers are being compared and for '
the origin of their contents.
FCT2 issues the message, STOPPED, for end of test, end of section, end of
subsection, and end of condition. The type of stop can be determined by
observing the section, subsection, and condition numbers. -Zero, one, two, or
three of these numbers are displayed for the end of test, section, subsection,
and condition respectively. An error stop is indicated when the error message
line appears with the normal running display.
4.1.3 FCT3 Displays
Initial Display
. /{#/\\\
The initial display presented by FCT3 is as follows: §
A

60469390 E 1-4-34 ‘k J}

C

OO0

FCT3 ** PCO0000 S**x §g*kx (XX
ECl= EC2= TE= 0 ‘

—— i e a—

The initial display is an uninitialized template of the standard running

display.
process done by the FCT3 Common Routines.

The display may flash on the screen during the initialization
If this display ever remains on the

screen, the Common Routines have not completed the initialization and the CPU

has hung up.

This is usually caused by a failure of an instruction in the

usage set, and indicates that either FCT1 or FCT2 should be run to verlfy the
execution of all usage set instructions.

If FCT3 makes no display at all, then the usage set instructions may not be

functioning.

been loaded into the processor.

Running Display

The running display presented by FCT3 is as follows:

This also may be the result if the correct microcode has not

FCT3 op PCxxxxx Sxxx 8Sxx Cxx LPl= xxx ' LP2= xxx
ECl= BC2= TE= XXXXX

LP3= xxx

_

ADDD OP = 34 FP JK REF = 105
FP DP SUM, (XK, XK+1) = (XK, XK+1) + (XJ, XJ+1)
SECTION REVISED 80/05/31, ASSEMBLED 80/06/10.
where:
Line 0:
Operation
(op) RU Running message
S0 Stopped for operator action
SL Stopped at end of loop
sC Stopped at end of condition
SB Stopped at end of subsection
ss Stopped at end of section
ST Stopped at end of test
SE Stopped on error
PCXXXXX Pass count is xxxxx
Sxxx Current section number is xxx
SSxx Current subsection number is xx
Cxx Current condition number is xx
LPl= xxx Loop 1 index value is xxx (shown when used)
LP2= xxx Loop 2 index value is xxx (shown when used)
LP3= xxx Loop 3 index value is xxx (shown when used)
60469390 E

I-4-35

Line 1: Q J
EC1 Error code 1 (not used) ' ' -
EC2 Brror code 2 (not used) e
TE=XXXXX Total number of errors found since start of test is xxxxx kkdw
Line 2: Used by COMMON routines to describe operator action requests

or parameter errors.

Line 3: Not used (blank)
Line 4&: Description of instruction under test including:
Mnemonic

Operation code
Instruction type and format
Reference number

Line S: Description of instruction function

Line 6: Date line; the last code revision for section; assembly date SN
for section \K J

Line 7: Not used

Lines 8 Usually blank; content depends on section being

through 19: run and parameter settings (See FCT3 Error Messages).
Standard Error Display

The first eight lines (lines O to 7) of the FCI3 error display are always in .
the form described for the FCT3 running display. o S

The last 12 lines (lines 8 to 19) are test-defined and vary in format from
condition to condition. Two kinds of information are displayed on these
lines. The first lines describe the initial conditions used for the test and
are only displayed when the display only error messages parameter is cleared
(zero). The remaining lines describe actual errors that have been detected
when the no result checking parameter is cleared (zero). Some lines at the
bottom of the display may be unused.

Every effort has been made to include in the test defined display all of the
information needed to understand the nature of the failure. This has resulted
in the use of execution time generated error messages which are too numerous

to list.

If additional information is required to understand an error, refer to the
test case descriptions for the failing subsection. ,

Abbreviated test case descriptions are included later in this document. Full
descriptions are in the section listings near the front of the listing and are
also available as a separate document. Descriptions are sequenced by
reference number. 7Two examples of these test defined messages are given below.

60469390 E : ' I-4-36 '

(:x A sample FCT3 error display is shown below.

FCT3 SE PCO0000 S123 SS00 CO0 LP1= 000 LP2= 016 LP3= 063
EC1=5 EC2=5 TE= 00001

ADDD OP = 34 FP JK REF = 105
FP DP SWM, (XK, XK+1) = (XK, XK+1) + (XJ, XJ+1)
SECTION REVISED 80/05/31, ASSEMBLED 80/06/10.

—— e e i S o=
- - ewi S ey e

XJ 4000800000000000 0000000000000000
XK INITIAL 4000000000000001 0000000000000000
XK EXPECTED 4000800000000001 4000000000000000
XK RECEIVED 4000800000000000 4000000000000000
DATA ERROR

- S e SHe e e S e
- - T > W amen - -

™
()/‘ Note that the indexes for LOOP 2 and LOOP 3 have been used to indicate the bit
numbers which are being tested in the Xj and Xk data patterns.

In this example, lines 8 through 12 give the initial conditions for the test
and lines 11 and 12 give the error description.

A sample BDP error display sample is shown below:

FCT3 SE PCOO000 S170 SS02 C00 LP1= 054 LP2= 000

i

i

EC1= EC2= TE= 00001 i

]

| i

TRANB OP = EB BDP JKID(2) REF = 088 i
BYTE TRANSLATE, (D(AK)) = (D(AJ)), PER (AI) + D

SECTION REVISED 80/05/31, ASSEMBLED 80/06/10.

—— e

INSTRUCTION = EBA9BOOO 83000000 84000000 ADDRESS = BOOF000258A2
AJ = BOOBOOOOTFB8 AK = BOOBOOOOOF38 AI = BOOB000OOC20

X0 = 0000000000000036 X1 = 0000000000000000

SOURCE BOOBOOOOTFB8 = 000102030405060708090A0BOCODOEOF 101112, ...
TABLE BOOB00000C20 = 000102030405060708090A0BOCODOEOF101112. ...
INITIAL BOOBOOOOOA10 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.. ..
EXPECTED DEST 000B18 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. ...
RECEIVED DEST O000F38 = OOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. ...
FAILING BYTE LIST = 8000000000000000 0000000000000000

(ONE BIT PER BYTE) 0000000000000000 0000000000000000

DATA ERROR |

A 4
- T e e W S - S G SeEe G tmee bma e e e e
e - - — - e

- - -

Note that the indexes for LOOP 1 and LOOP2 indicate only the test case that
has failed, In this example, lines 8 through 14 give the initial conditions -
for the test and lines 15 through 18 give the error description as follows:

ole

60469390 A I4-37

Line 8:

Line 9:

Line 10:

Line 11:

Line 12:
Line 13:

Line 14:

Line 15:

Lines 16
and 17:

Line 18:

This line gives the test instruction and descriptors, and the
virtual address of the test instruction. This information is
required for the BDP instructions because instruction
modification is used to alter the descriptors and the Q or D
instruction fields.

This line gives the contents of the address registers used for
Aj, Ak, and Ai. The register numbers used are shown on line 8.

This line gives the contents of the (1éngth) registers X0 and X1.

This line gives the virtual address of the source field and the
data in memory. Only the first 19 bytes of memory are
displayed. The ... at the end of the line indicates that the
actual source data may extend off the screen. (Look at the
instruction itself to determine the exact length used.) The
remaining data can be seen by using CMSE commands to display
memory at the given address, but the tests have been set up so
that this is rarely necessary.

This line gives the virtual address of the trahslation tabie and

the data in memory. The ... indicates continuation.

This line gives the virtual address and contents of the field
used to initialize the destination field before the test.

This line gives the virtusl address and contents of the field
used to hold the precslculated expected results. The upper bits
of the PVA are not shown but will be the same as those d1sp1ayed
on line 13. .

This line gives the virtual address and (final) contents of the
field used as the destination for the test instruction. The
upper bits of the PVA are not shown but will be the same as
those displayed on line 13.

These lines indicate which bytes of the received results do not
match the expected results. The nth bit will be set if the nth
byte did not match. This compressed error indication is
required because of the possibility of lengthy expected and
received fields. All 256 bytes of expected and received data

are alwave checkad. oven if the ingtruction leneth ig {supposed
vvvvv ye checkeq, even 1I The 1ngiruction lengt upposeqd

to be) shorter. The bits make it easy to spot failure
patterns. 80808080... would indicate a failure in the leftmost
byte of each word. The data on line 17 is a continuation of
line 16. :

Error indication.

4,2 OPERATOR ENTRIES

FCT tests use standard CMSE commands as described in the MSL 15X Reference

Manual.

60469390 C

I-4-38

AN

O

4.2.1 FCI1l and FCTS Commands

The following commands are provided by the PP driver program and DEX for FCT1

and FCTS5.

Exc

ept for the space bar command, all commands are terminated by a

carriage return.

COMMAND
(space)

s

ABS

ABB

ECP0O/DCPO
ECP1/DCP1
EPFS/DPFS

Flxx/
FS5XX xx

FUNCTION
Continues test execution from point at which it stopped.

Stops test execution at next condition boundary (or at any other
time when the test gives control to DEX). This stop does not

alter the contents of the (op) field of the display. The
display continues to show the previous op.

Restarts test from first selected section.

Stops test execution and idles the test driver PP. The test

cannot be restarted.

Aborts section and skips to the next section (normally the next
op code) of the test. The CE enters this command at an error
stop which causes a skip to the next section.

Aborts subsection and skips to next subsection of the test.
Entered at an error stop.

Enables or disables test execution for CPO or CPl on dual CP
systems. These commands are ineffective on single CP systems.
Enables or disables the PFS micro-traps. (Comparable to setting
or clearing a bit in PARAM 17.)

Selects one or more test sections for execution. xx is the op
code of the command to be tested. Thus F502 selects op code 02
of FCTS and F1DO selects op code DO of FCTl. The command entry
is the file name and the appropriate section. These commands
are entered from the keyboard or command buffer when the test
stops for parameter entry. They cannot be entered after test
execution commences. When used in a command buffer, they should
immediately follow the RU command that gives execution control
to ITC. Entry of the command F123 85 00 DO OE would select five
different sections of FCT1. More than one command entry can be
used to build up a large series of sections to be run. Test
sections are run in the sequence selected.

Some sections that have special characters, rather than simple opcodes, are
listed below: ,

F1lUl
F1CO
F1DO
F1D8
F5PC
F5PM

60469390

for
for
for
for
for
for

all unimplemented opcodes.

opcodes CO through C7 (SjkiD format).
opcodes DO through D7 (SjkiD format).
opcodes D8 through DF (SjkiD format).
purge cache (part of 05 opcode).
purge map (part of 05 opcode).

I-4-39

4,2,2 FCT2 Commands

When FCT2 is stopped, entry of RUN followed by a carriage return will continue
the test. To alter parameters, use the EC and EB CMSE commands described in
the MSL 15X Reference Manual.

4.,2.3 FCT3 Commands
When FCT3 is stopped, entry of RUN followed by e carriage return will continue

the test. To alter parameters, use the EC and EB CMSE commands described in
the MSL 15X Reference Manual.

4.3 NORMAL MESSAGES

Other than the initial and running displays described prev1ously, FCT tests do
not display any test messages for normal operation.

4.4 ERROR MESSAGES

4.4,1 FCT1l and FCTS5 Error Messages

Information regarding error messages displayed by FCT1 and FCT5 is provided in
error directories preceding each test listing. These error directories are
orgenized by section numbers. Each error condition is described.

4.4,2 FCT2 Error Messages

Information regarding error messages displayed by FCT2 is provided in the
listing of FCT2 in each section description.

4,4,3 FCT3 Error Messages

lInformation regarding data error messages displayed by FCT3 is provided in
test case descriptions preceding the listings for each test section.

s

These descriptions are also presented in a separate listing where they are
orgenized by reference number.

Common Routine Error Messages

In addition to the test error messages, the error messages issued by FCT3

common routines always display the following messages on line 2 of the display:

60469390 C I-4-40

~
1’\

ele

MESSAGE EXPLANATION
SECTION NUMBER OUT OF Invalid parameter entry
VALID RANGE
A NONEXISTENT SECTION Invalid parameter entry
IS ENABLED
SUB-SECTION NUMBER OUT Invalid parameter entry
OF VALID RANGE
THIS SUB-SECTION IS NOT Invalid parameter entry
LINKED

Note that line 2 of the display is also used for subsection omitted messages
and for VLEX error messages. Refer to the MSL 15X Reference Manual.

Subsection Omitted Messages

The subsection omitted messages issued by an FCT3 test section appear on line
2 of the display. A number of sections are run only for specific settings of
the parameter bits. For example, some subsections run only in monitor mode
and others run only in job mode. Thus, there are always some subsections
omitted when FCT3 is run. Parameter requirements are described as part of the
test case descriptions.

The following subsection omitted messages may be displayed:

OMITTED Ssss SSbb DUE TO MONITOR MODE PARAMETER
OMITTED Ssss SSbb PER MTR.MODE PARAMETER

OMITTED Ssss SSbb PER CACHE PARAMETER

OMITTED Ssss SSbb PER MTR.MODE/EXCHANGE PARAMETERS
OMITTED Ssss SSbb PER MODEL PARAMETER

OMITTED Ssss SSbb PER MTR.MODE/EXCH/MODEL PARAMETERS
OMITTED Ssss SSbb DUE TO PORT 1 PARAMETER.

where:
858 section number
bb . subsection that was omitted

The message lists the parameter bits examined by the subsection. This line is
rewritten each time a subsection is omitted, so only the most recent message
will appear.

Note that line 2 is also used for common routine:error messages and for VLEX
error messages. Refer to the MSL 15X Reference Manual.

60469390 C , 1-4-41

4,5 APPLICATIONS

SCOPE MODE CONTROL of FCT1 and FCT5

Use MSE command SSM to set scope mode while the test is at a stop. When
execution is restarted with a space bar, ITC sets the repeat condition bit to
force the looping of the current condition., If a number of errors have
occurred during the condition, more than one space bar entry may be required
to reach end of condition and enter loop. Intry to the loop is confirmed by
observing activity of MAC channel flag on the display, and the appearance of
M code appears on the running display line. ‘

The test may be pulled out of the scope loop with the MSE command UP,x where
X is the PP in which ITC resides., ITC stops at end of condition regardless of
state of Stop at End of Condition bit. It also stops on an error when Stop on
Error bit is set. Reenter the scope loop by pressing space bar. The CSM
command to clear scope mode must be entered to allow continuation to the next
condition or end of subsection.

Some conditions execute an exchange instruction altering the P register in the
exchange package. These conditions cannot enter the normal scope loop. They
appear to work correctly, but do not loop the test code. &n effective loop is
‘created by repeating condition with display off. Conditions that exhibit this
behaviour are:

FCT1, Section 118, all conditions except
Subsection 0, condition 0,1

FCT5, Section 0, all conditions except
Subsection 0, each condition,
Subsection 1, condition 0,1,
Subsection 2, condition 0,1,3,5,7.

Some conditions initialize central memory locations that are destroyed by the
test code., If put into scope mode, they will report errors on exiting the
scope loop. These conditions may be looped by repeating the condition:

FCT5, Section 8, subsection 21, condition 21,
Section 9, subsection 2, condition 1,
Section 10, subsection 1, conditions 65-128.

Trn a1l aAannditinne
1 @asa CUNLG LVvaVIO

instruction level code sequence, the operat
which is used as a scope trigger.

£ +ha faact rihan +ha OMND
I wiIiC Wwouv wmuisH vi

o w
i [~ 2 |

on i

O

3 A U i ‘

i tiated with a deadstart
Some conditions in FCT1 and FCT5 have no deadstart. If scope mode is entered
within one of these conditions it behaves as though the repeat condition and

stop at end of condition bits are set. When the scope mode bit is cleared,
the test is controlled by the explicit setting of the parameter bits.

60469390 A - I-4-42

-

SECTION I-5

VIRTUAL MODE INSTRUCTION LEVEL TEST - FCT9

- N

ol

~

VIRTUAL MODE INSTRUCTION LEVEL TEST - FCT9 5

e e S WP " =P mE r S VR T TP P T W TR WD R WS P M NP P T D WS R G SN A ES GS N W D AR D D D G e e S LS . S G SR TP Sm am Sm AR AR ED M TR A S W e Y - o A o T e e
T e wn e T am n Tm Eh S SR T D R T A TR m R S S G e e S R YD = an e R P e T T P e T T R T e e E m e e am an e em o e D e v e e am e e e e - = e e

1 INTRODUCTION

FCT9 is a PP-based instruction level test of redefined features of the A170
system. The features tested are:

1) The positive operation of the redefined A170 instructions (CRXj, CWXj,
RXj, WXj, REC, and WEC). Instructions with ECS capability are tested in
UEM (ECS mode) only.

2) The end case exit conditions of the redefined A170 instructions.

3) Error exits in a system environment, where a system environment consists
of an A170 processor, the Environment Interface and a page table.

4) The Environment Interface's processing of the RT (017g) and CMU
instructions.

Included in the above testing is the interruptability of the block copy and
the CMU instructions.

The test uses the PP controller, EXCHITC, which has facilities to generate PP
interrupts (exchanges) and scope loops.

60469390 A I-5-1

2 REQUIREMENTS

2.1 HARDWARE

Equipment for which test is intended:

Models 810, 815, 825, 830, 835, 845, and 855 Computer Systems.

The test requires a central processor, the product set microcode, 131K word of
central memory, IOU hardware required by CMSE, and IOU hardware required by
the EXCHITC controller. EXCHITC requires one PP as the master, one channel
for master to slaves communication, and requests four other PPs and their
channel as slaves.

2.2 SOFIWARE

The test controller, EXCHITC, uses the facilities of the Diagnostic Executive,
and the Common Maintenance Software Executive.

FCT9 uses the Environment Interface to interface to the processor and also as
part of the Al170 system being tested.

2.3 ACCESSORIES

None required.

2.4 CHARACTERISTICS

1. Test name FCT9
2. Test/diagnostic/utility/system Test
3. Size (source) PP code 6000 lines
CP code 10000 lines

4, Size (memory required for execution)

PP code 4096 PP words

CP code 131000 CM words minimum
5. Virtual code/microcode/PP code/other Virtual & PP code
6. Run Time _ Approx. 30 sec
7. Level of isolation detection
8. On-line/off-line/both off-line
9. Off-line system MSL15X
10. Resident during execution Yes ‘
11. Language CP: CYBER

VM Assembler

PP: Compass

12. Source code maintenance CP: MODIFY (ASCII) i

PP: UPDATE

13. Uses maintenance channel - __Yes

60469390 E - I-5-2

S
3

¢
W

N

ole

3 OPERATIONAL PROCEDURE

3.1 RESTRICTIONS AND USER CAUTIONS

The Environment Interface is used as an interface between the processor and
the test. It is modified in order to create the appropriate environment for
each condition of the test. Therefore, any change in the format or function
of the EI can affect the results of the test.

FCT9 is model independent. The test controller EXCHITC runs on Models 810,
815, 825, 830, 835, 845, and 855 Computer Systems.

3.2 LOADING PROCEDURE

The object code of EXCHITC and its associated overlays plus the FCT9 object
code must reside on the Maintenance Software Library (MSL) device. The file
names on the MSL for these binaries are EXCHITC, EXCHPl, EXCHP2, EXCHP3,
EXCHP4, EXCHOV, EXCHSLV, EI, and FCT9.

Load product set microcode.

Command buffer FCT91, FCT92, or FCT93 (1 for model 810/815/825/830, 2 for 835,
3 for 845/855) exists on the MSL 15X tape to facilitate loading and execution
of this test. Before using this command buffer you may have to modify it for

_ your system. Display the command buffer using the CMSE command buffer display

commands or print the contents of the command buffer using procedures provided
in the Command Buffer Maintenance section of the MSL 15X Reference Manual.
Then modify the command buffer as directed by comments embedded in the command
buffer. When you are satisfied that the command buffer is set up properly,
enter a GO,FCT9x command to execute it, where x is the model dependent number
from above.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

The command buffer performs the following steps:

e Initialize system (ie. master clear, clear errors. and initialize
registers of individual units).

¢ Load Environment Interface.
e Load FCT9.

. @ Deadstart PP, load EXCHITC to PP, assign display to PP, and set PP
running.

Some of the parameters provided by EXCHITC do not apply to FCT9 and are
indicated as not used.

60469390 E I-5-3

The following paragraphs describe the loading of EXCHITC, its messages,
parameters, and operator entries.

3.2.1 Loading Processor Dependent Overlays

After the command buffer initiates the execution of EXCHITC, it accesses the
element ID register of the subsystem on each radial interface to determine the
type of IOU, processor, and memory which are a part of the system. Based on
this information, the appropriate connect and type codes are set up for later
use. Determination of the type of central processor allows EXCHITC to adapt
to different machines. An overlay specific to the processor type (EXCHP1,
EXCHP2, EXCHP3, EXCHP4) is loaded into the EXCHITC PP to account for most of
the differences. In the few cases where differences cannot be conveniently
handled by the overlays, code modification is employed. The initializing code
modifies constants and command operands in the permanent code of EXCHITC.

3.2.2 Loading of Slave PPs

The loading of slave PPs commences after the initial parameter stop. The
sequence for doing this is described below. The number of the PP which will
be selected as the the first possible slave PP is defined by PARAM1l; default
is PPO. If EXCHITC is already residing in PP number 4, the slaves would
normally be loaded into PPs 5,6,7, and 1llg.

Parameters 11, 12, 13, and 14 are the PPs to be used as slaves. The search
for available PPs proceeds sequentially from PPO. If PARAM1l is nonzero, the
search commences from that nonzero value. Only PPs for which the
corresponding channel number is available will be selected. PPs and channels
used by CMSE will be skipped automatically.

If desired a specific set of four slaves may be selected by entering the PP
numbers in parameter words 11 thru 14. A nonzero value in PARAM12 is
recognized by EXCHITC as a signal to use the four parameter values as the
required PPs.

NOTE

In this mode, EXCHITC does not check to
determine if the PPs are actually available
and provides no warning if they are not.

Parameter word 15 is used to control the selection of the channel used by
EXCHITC to communicate with the four slaves. This parameter is defaulted to O
and, as such, either channel 12 or 13 will be selected depending upon which of
these is not in use by CMSE to communicate with the MSL device. If neither of
these is available, the number of some other suitable channel must be entered
in the parameter word.

60469390 E I-5-4

BN

, N
N/ \‘%:?’

C

®

The sequence employed by EXCHITC for setting up the channels and loading the
slave PPs is as follows:

8) Select and request use of the channel which is to be used for EXCHITC to
slave PP communication.

b) If PARAM 12 is zero, skip to step c); otherwise, assign PPs as slaves
according to parameters 11 thru 14 and then skip to step f).

c) Starting with the PP defined (by PARAM 11) to be the first slave PP, scan
to determine if that PP is: PP O the CMSE I/0 driver PP; the EXCHITC PP;
the CMSE monitor PP; the CMSE display PP; the same number as the CMSE MSL
device channel; the same number as the CMSE PP communication channel; or,
if the PP number is the same as the display channel number 10g. If none
of these is true, assign the PP to be the first (or next) slave PP.

d) 1If four slave PPs have not been assigned and if all PPs in the system have
not been scanned, skip to the next higher PP and return to step c).

e) If no PPs were assigned, display the message TOO FEW PPS and exit to the
CMSE idler. The operator should check the entries for parameters 11
through 14.

f) 1If only one, two, or three slave PPs are assigned, the test continues with
only the assigned number of PPs.

g) Sequentially load each of the assigned slave PPs with its object code
(EXCHSLV), initiate its program execution and check that it responds by
clearing a central memory flag.

h) Check the response of all slave PPs by commanding them to execute dunmy
operations which will require their simutaneous access of central memory
and their assigned channel. If any slave PP hangs up, display the message
ABORTED - CHAN OR CM ERR and exit to the CMSE idler.

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameters

Parameter words control the execution of the test. Some of these words are
defined in the Maintenance Software Library Reference Manual (MSL15X). These
words are located at PP locations 122g to 1443 (directly following the
control words).

Parameter words can be set/cleared manually through CMSE commands. Individual
bits of parameter word O can be set/cleared with a set of CMSE command which
references the bits by mnemonics. For example, CSM clears scope mode while
SRC sets repeat condition. For more information on CMSE commands see the
Maintenance Software Library Reference Manual (MSL15X).

60469390 C I-5-5

The use of PARAM7 through PARAM18 are peculiar to FCT9.
see the paragraphs referenced below:

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM

7

8

9
10
11
12
13
14
15
16
17

- Not Used

— Not Used

— Not Used

— Not Used ’

— First Slave PP - 3.2.2

~ Second Slave PP - 3.2.2

— Third Slave PP - 3.2.2

— Fourth Slave PP - 3.2.2

— EXCHITC to Slave Comm. Channel - 3.2.2
- Processor hang count

— Enable/Disable PFS micro-traps

For further details,

PARAM 18 ~ Not Used

Parameters are as follows:

Octal Octal/Hex
Address Parameter Bit '
122 PARAMO 000170001
0002/0002
000470004
0010/0008
0020/0010
004070020
0100/0040
0200/0080
0400/0100
100070200
200070400
4000/0800
1000071000
20000/2000
4000074000
100000/8000
123 PARAM1 000170001
000270002
000470004
002070010
004070020
0100/0040
124 PARAM2 ‘
125 PARAM3 000170001
v 0002/0002
126 PARAM4
127 PARAMS
130 PARAMG6
131 PARAM?7
132 PARAMS
133 PARAMY
134 PARAM10
60469390 E

Meaning

Stop at end of test (ST)
Stop at end of section (S8)
Stop at end of subsection (SB
Stop at end of condition (SC)
Stop on error (SE)

Log errors in dayfile (LE)
Repeat test (RT)

Repeat section (RS)

Repeat subsection (RB)
Repeat condition (RC)

Scope mode (SM)

Quick look (QL),not used
Bypass all messages (DR)
Display only err messages (DE)
Reserved :
Accept CMSE param commands
Reserved

Reserved

Bypass parameter stop
Reserved

Reserved

Reserved

Repeat test count

Test CPU O

Test CPU 1

Reserved

Sections 00-12 select

Not used

Not used

Not used

Not used

Not used

I-5-6

™
& s

i K
¥ ;
A S

135 PARAM11 First slave PP

136 PARAM12 Second slave PP

137 PARAM13 Third slave PP

140 PARAM14 Fourth slave PP

141 PARAM15 EXCHITC to slave comm. channel
147 PARAM16 Delay count for processor hung
143 PARAM17 000270002 Enable PFS register operation
144 PARAM18 Not used

Parameter defaults in octal are as follows:

PARAMO = 100121 - The most significant bit must be set
PARAM1 = 000000 The parameter stop is not by-passed
- PARAM2 = 000010 The repeat test count will have effect only if the
repeat test bit is clear
PARAM3 = 000003 Test both CPUO and CPUl if available
PARAMS = 017777 All sections selected (007777 if model 810/815/825/830)
PARAM11= 000000 Select slaves sequentially starting with first available

PARAM12= 000000
PARAM13= 000000
PARAM14= 000000

PARAM15= 000000 Use either channel 12 or 13 for for controller to slave
communication

PARAM16= 000777 Hang count of 511

PARAM17= 000007 Enable PFS register operation

Section 12 checks the emulation of CYBER 170 compare move commands by the
error interface (EI). Some processors implement these commands via microcode
and therefore section 12 is not selected.

3.3.2 CONTROL WORDS
Control words are intended to identify a program and supply information to a.

higher system or operator. They do not normally affect test execution. The
control words are located at PP locations 102g to 121g and are as follows:

CWo Program name (first 2 characters)
cwl Program name (last 2 characters)
Ccw2 Program type

cw3 Monitor ID word

CwW4 Error code #1

CWS Error code #2 (not used

CcwWé Pass counter . :

cwW? Current section counter

cw8 Current subsection counter

Ccw9 Current condition counter

CW10 Current error counter

60469390 E ' I-5-7

3.4 SECTION INDEX

" Due to the structure of FCT9 all

Section
Number

1

2

10

11

12

60469390 A

the sections are implemented in program FCT9.

Brief
Description

Test positive operation
Test positive operation

Test positive operation
(ECS mode).

Test positive operation
mode) .

Test positive operation
instruction in UEM (ECS

Test positive operation
instruction in UEM (ECS

of CRXj(660) instruction.
of CWXj(670) instruction.

of the RXj(014) instruction in UEM

of WXj{(015) instruction in UEM (ECS

of the REC (block read ECS,011)
mode) .

of the WEC (block read ECS,012)
mode) .

Test error exits of CRXj and CWKXj instructions.

Test error exits of RXj

and WXj instructions.

Test error exits and half exits for block copy instructions

in UEM (ECS mode).

Test illegal instruction, address out of range, 1ndefinite,
and infinite error exits.

Test operation of RT (017g) imstruction.

Test simulation of the CMU instruction by the Environment

Interface (EI).

I-5-8

C

00

4 OPERATOR COMMUNICATION

4.1 DISPLAYS

4.1.1 Initial Display

The FCT9 initial display is shown below. When the display appears, the test

stops to allow the operator to enter any parameter changes that may be

required. The address of the first parameter word is given in the display.

The entry EP,4,142,XXXX is a parameter entry which can be made into the

EXCHITC PP memory. If the command buffer is altered such that EXCHITC is not

loaded into PP 4 then this entry must be altered accordingly.

FCT9 PARAMS PA=122B 80/11/30.REV 2.4

KEYBOARD COMMANDS

ABS/ABB ABORT SECT/SUBSEC

ECPX/DCPX EN/DISABL CPU X=0+1

EPFS/DPFS EN/DISABL PFS UTRAPS - P1,P2,P3 ONLY
EP,4,142 ,XXXX SET CP HANG COUNT

S/R/D/SPACE STOP/RESTRT/DROP/CONTINU

CONTROL DATA PROPRIETORY PRODUCT
COPYR. CONTROL DATA 1980

4.1.2 Running Display

The normal running display for FCT9 is shown below. 1In addition, a date

R D R A SR S G SIS SN G AN SIS S Cu—

indicating when the test was last modified will be appended to the extreme

right of all the displays.

| FCT9 (op) PCxxxx CPx Sxxxx SBxxxx Cxxxx

OPERATION (op) RU Running Message
RC Repeating Condition
RB . Repeating Subsection
RS Repeating Section
sC End of Condition
SB End of Subsection
ss End of Section
ST End of Test
SE Stopped on Error
SM Executing in scope mode
HT Test halted by operator

60469390 E

I-5-9

PC Pass Count

cp Current CPU

s Current Section Number

SB Current Subsection Number
(o] Current Condition Number

Normally the RB and RS codes are not seen when a subsection or section is
being repeated. Instead, a dynamic display of the current subsection and
section is provided by the RU code. The display is updated at every
subsection boundary.

PARAM3 controls testing for dual CP systems. Either one or both of the CPs

may be tested. If two CPs are tested, CPO is tested first for any given
section and, when testing is complete, the section is repeated for CPl. .

NOTE
If the repeat section paramater is set, the
section is repeated for the currently executing

CP. If the section stop bit is set the test
stops at the end of section for each processor.

4.2 FCT9 ERROR MESSAGES

4.2.1 Data Comparison Error Hességq

A standard FCT9 error message for a data comparison error is shown below.

FCT9 SE PCO000 CPO S0008 SB0002 C0021 YY/MM/DD
EC1=0000 TE=0001

ACTIVE SLAVES PP 05 06 07

P REG 00 00 BO 00 00 00 40 34

S REG 00 00 04 31 04 31 04 31

MON PACK 004100 PROCESS 0000 B0O0O 0000 4030
JOB PACK 004280 PROCESS 0000 B0O0O 0000 4068
COMPARE NO 0003

MASK FFFF FFFF FFFF FFFF

XPCID 0000 0000 G000 0000

RECVD 0000 0000 0000 1000

ADRS OF KPCTD 0044E8
ADRS OF RECVD 000088
ADRS INDEX 0000

The first line is similiar to that for & running display; the second line
provides an error code and the total errors as follows:

EC1 Error Code 1
TE : Total Errors since test first start

60469390 E I-5-10

C O

N

~an

®

The ECl error code is set with a value of 1C20,¢ when the MAC channel is
found unable to transfer data after a function was sent by EXCHITC.

If the address index is nonzero, a block comparison occured and the index is a
word offset from the expected and received addresses pointing to the data in
error within the block. In the event of multiple errors in a block
comparison, only the data for the first detected error is displayed.

The addresses of the monitor and job exchange packages are provided along with
the value of the P register word contained in the packages. It is not
possible to provide equivalent information pertaining to the CYBER 170
exchange packs.

Aside from the S register and the address index, all displayed addresses are
byte addresses. There are minor variations in the spacing (by byte or parcel)
for some of the data which is displayed. These variations are a result of
differences between the various model processors.

4.2.2 Processor Hung Error Message

when a central processor operation is initiated and does not subsequently
halt, a display similiar to the following may appear.

FCT9 SE PC0000 CPO S0008 SB0O000 C0001 YY/MM/DD
EC1=0000 TE=0001

ACTIVE SLAVES PP 05 06

P REG 00 00 BO 00 00 00 40 34
MON PACK 004100 PROCESS 0000 B0O0O 0000 4030
JOB PACK 004280 PROCESS 0000 B0OOO 0000 4068

PROCS HUNG CP PP 06

A . W — — S — — — ——— —— ——

|
|
|
|
|
I
| s REG 00 00 04 31 04 31 04 31
|
|
|
|
|

The last line indicates the central processor and slave PP 6 are hung up.
Typically, if the CP hangs in the sequence of commands it is executing, any PP
which has sent an exchange request may also hang up because it will fail to
receive an exchange accept from the CP.

when a processor hangs up, the S and P registers are read immediately for the
purpose of displaying their values. EXCHITC will subsequently send a special
deadstart command to the processor which forces exchange accepts to be sent to
the PP system. This action will release all slave PPs that may have hung and
will allow EXCHITC to regain control of them. If on such an occasion the
operator observes the value of S or P via the CMSE AR display, they may not
correspond.

60469390 E 1-5-11

4.2.3 Program Error Message gkﬂﬂ

An error display similiar to that shown above may occur except the last line

reads PROGRAM ERR. This indicates EXCHITC detected an error in the process of RKJ}
interpreting the control commands which it reads from central memory. The

error could be caused by bad data loaded from disc to central memory, or by an

over-write of the control tables in central memory as a result of a CP error.

4.2.4 System Register Error Display

In the event an error is detected while checking either a processor hardware
register or a processor soft register (dedicated register file register
accessed by microcode) a display similiar to that shown below occurs.

P REG

S REG

MON PACK
JOB PACK
COMPARE NO
MASK
XPCTID
RECVD

REG ADRS

—— . —— —— —— A G G G T — —— — — —

FCT9 SE PC0000 S0000 SB0000 C0003 YY/MM/DD
EC1=0000 TE=0001

ACTIVE SLAVES

PP 00
00 00 BO 00 00 00 40 30
00 00 04 31 04 31 04 31
004100 PROCESS 0000 B00O 0000 4030
000000 PROCESS 0000 0000 0000 0000
0005
FFFF FFFF FFFF FFFF
0000 0000 0000 0000
0000 0000 0000 1000
0048

. G G G A G GINNL GEEED G G AN G G G GE——

The register address is the address of the register within the central
processor or central memory subsystem.

4.2.5 Miscellaneous Error Messages

The following single line error messages may also occur. 1In all cases,

EXCHITC exits to the CMSE idler since recovery is not possible.

Message Meaning
ABORT — MAC ERR An error occured during initialization when
ITC was reading the EID registers on each
radial interface.
ABORT -~ ELEMENT ID ERR During initialization while reading EID
registers, too few responses were received.
Apparently a system element was not
connected.
A
60469390 E I-5-12 %>;j

O

Message

ABORT - TOO FEW PP S

CPX NOT Al170 CAPABLE

ABORT -~ CHAN OR CM ERR

ABORT - SLAVE PP HUNG

4.3 OPERATOR ENTRIES

Meaning

During the loading of the slave PPs, EXCHITC
was unable to find any slave PPs available
for use. The entry for PARAM 11 should be
checked. See also section 3.2.2,

Prior to executing the first condition of
the test, the C170 bit of the VMCL register
and the SOLO C170 bit of the options
installed register are checked to ensure
that they are set. This error is more
likely to occur in dual CP systems where the
second CP may not have Al70 capability. 1If
this is so, deselect the parameter bit for
the second CP.

After the slave PPs are loaded, EXCHITC
checks to determine if it can communicate
with them. The error may be a result of a
channel problem or a PP to CM interface
problem possibly caused by 4 slaves
accessing CM simultaneously. See also
section 3.2.2. '

During normal execution of the test, an
exchange accept problem may arise which
causes a slave PP to hang up on a 26XX
command. When this occurs, EXCHITC
initiates a sequence which should force the
CP to send exchange accepts to the IOU
system. If this operation fails to release
the slave or slaves from the 26XX command
this message should appear.

Aside from the operator entered commands which are provided by CMSE, EXCHITC
provides additional commands as follows:

Action Command

SPACE BAR Continue Execution

s Stop
R Restart
60469390 E

Description

Entered after any stop to cause execution
of the test to continue.

Entered while the test is executing to
cause a halt at the next condition boundary.

Restarts the test from the first selecte
section. '

I-5-13

Action

ABB

ECPO/DCPO
ECP1/DCP1

EPFS/DPFS

60469390 E

Command

Drop

Abort Section

Abort Subsection

Enable/Disable
PFS micro-traps

Description

Halts test

execution and requests CMSE to

deadstart all slave PPs and the EXCHITC
PP. The test cannot subsequently be

restarted.

Entered by
when it is
gsection of

Entered by
when it is
subsection
ignored if
subsection

Enables or

or CPl on dual CP systems.

the operator after an error stop
desired to skip to the next
the test.

the operator after an error stop
desired to skip to the next

of the test. This command is
the test is already at an end of
stop.

disables test execution for CPO
These commands

are ineffective on single CP systems.

These commands provide a more convenient
method of enabling or disabling the PFS
micro-traps as opposed to setting or
clearing a bit in PARAM word 17.

I-5-14

£

g

SECTION I-6

EXCH ~ EXCHANGE TEST

C

EXCH - EXCHANGE TEST ; 6

1 INTRODUCTION

This Exchange test (EXCH) includes, and operates in conjunction with, an
Instruction Test controller (EXCHITC) which provides various interface and
test facilities including the control of slave PPs which are used to initiate
CYBER 170 type exchanges.

The CYBER 170 PP exchange commands EXN, MXKN, and MAN are tested while the
processor is operating in the executive state and CYBER 170 job and monitor
states. The test checks the operation of the exchange and trap interrupts
which result from these PP exchanges and also checks that the processor can
subsequently be moved into the CYBER 170 mode to provide the proper exchange
accept response to the PP system. A number of sections of the test employ
multiple PPs performing EXN, MXN, or MAN commands. These sections check that
all exchanges are responded to and that an interrupted process can be resumed
and properly completed. In some sections, other activities such as starting
and stopping the processor (test section 9) or System Interval Timer (SIT) and
Process Interval Timer (PIT) interrupts (test section 11) or external
interrupts (test section 10) are caused to occur while the PP exchange
activity is also present. Sections 12 through 15 check CYBER 170 error exit
conditions.

Appendix C contains a set of diagrams that illustrate the sequence of
exchanges that occur in the test sections.

ENGINEERING CHANGE ORDERS

In some cases provision can be made in EXCH to alter the tests performed on
the basis of ECOs that may or may not have been incorporated on the processor
being tested. Where this is possible, the setting of a specific bit in the
ECO FLAGS word (see paragraph 3.3.3) will cause the test to assume that the
related ECO has been incorporated. If the bit is reset or if an old version
of the test is employed the test operates in the normal way. The bits will be
assigned from least significant (bit 63) to most significant (bit 48). Flag
bits are assigned as follows:

'Bit 63 The change related to this bit affects Section 15, Subsections

1,2,3,4,5, and 7. Comparison number 2 in several conditions of these
subsections will fail if the flag bit is not set/reset in concert with
the hardware change. The expected status of the CYBER 170 infinite
and indefinite error exits bit are altered as a result of the change.

60469390 E I-6-1

2 REQUIREMENTS

2.1

HARDWARE

Equipment for which test is intended:

Models 810, 815, 825, 830, 835, 845, and 855 Computer Systems.

In addition to requirements for CMSE, EXCH requires the following:

1 CPU
5 PPs (4 of the channels must have the
5 PP channels same number as 4 of the PPs)

In sections 2 and 16, up to 16 megabytes of memory may be selected in order to

A minimum of one megabyte of CM

check memory addressing by the PP exchange command.

With 5-PP systems the test bypasses some sections which require multiple slave
EXCH may run all sections with 10 or more PPs.

PPs.

2.2

SOFTWARE

This product uses the facilities of the Common Maintenance Software Executive
(CMSE); additionally, portions of the Diagnostic Executive (DEX) are compiled
with, and are a part of the EXCHITC object code. v

2.3

None

2.4

60469

ACCESSORIES

required.

CHARACTERISTICS

Test name
Test/diagnostic/utility/system
Size (source) PP code

CP code
Size (memory required for execution)
PP code
Central memory
Virtual code/microcode/PP code/other
Run time .
Level of isolation
On-line/off-line/both
Off-line system
Resident during execution
Language

Source code maintenance

Uses maintenance channel

390 E

EXCH
Test
6000 lines
7000 lines

4096 PP words .
1 million bytes minimum
Virtual and PP code
1 minute
detection
off-line
MSL 15X
Yes
CP:CYBER VM Assembler
PP: COMPASS
CP: MODIFY (ASCII)
PP:UPDATE
Yes

I-6-2

00

'3 OPERATIONAL PROCEDURE

3.1 RESTRICTIONS AND USER CAUTIONS

With S PP systems the test bypasses some sections which require multiple slave
PPs. EXCH may run all sections with 10 or more PPs.

3.2 LOADING PROCEDURE

The object code of EXCHITC and its associated overlays plus the EXCH object
code must reside on the Maintenance Software Library (MSL) device. The file
names on the MSL for these binaries are EXCHITC, EXCHP1, EXCHP2, EXCHP3,
EXCHP4, EXCHSLV, and EXCH.

Command buffers do not load the microcode. The standard product set microcode
must be loaded prior to executing the command buffer.

Command buffer EXCHx (where x is 1 for model 810/815/825/830, 2 for 835, 3 for
845/855) exists on the MSL 15X tape to facilitate loading and execution of
this test. Before using this command buffer you may have to modify it for
your system. Display the command buffer using the CMSE command buffer display
commands or print the contents of the command buffer using procedures provided
in the Command Buffer Maintenance section of the MSL 15X Reference Manual.
Then modify the command buffer as directed by comments embedded in the command
buffer. When you are satisfied that the command buffer is set up properly,
enter a GO,EXCHx command to execute it, where x is the model dependent number
from above.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

Execution of the command buffer causes default parameters to be used by
EXCHITC. 1If desired, commands to alter the default parameters may be included
in the command buffer immediately prior to the RU command. Inclusion of an SP
command after the RU command will automatically provide the space bar command,
which is required to cause execution to proceed after the default parameter
entry stop.

3.2.1 Loading Processor Dependent Overlays

After the command buffer initiates the execution of EXCHITC, it accesses the
element ID register of the subsystem on each radial interface to determine the
type of IOU, processor, and memory which are a part of the system. Based on
this information, the appropriate connect and type codes are set up for later
use. Determination of the type of central processor allows EXCHITC to adapt
to different machines. An overlay specific to the processor type (EXCHP1,
EXCHP2, EXCHP3, EXCHP4) is loaded into the EXCHITC PP to account for most of
the differences. 1In the few cases where differences cannot be conveniently
handled by the overlays, code modification is employed. The initializing code
modifies constants and command operands in the permanent code of EXCHITIC.

When all changes are complete, EXCHITC makes the initial parameter stop and
display.

60469390 E : I-6-3

3.2.2 Loading of Slave PPs

The loading of slave PPs commences after the initial parameter stop. The
sequence for loading is described below. The number of the PP which will
selected as the the first possible slave PP is defined by PARAM 11; defau
PP number 0. If EXCHITC is already residing in PP number 4 then the slav
would normally be PPs 5,6,7, and 11g. This assumes CMSE is using channel
or PPs O through 3.

NOTE

After execution of EXCH is complete, the operator
should execute a D (drop) command to make all PPs
available to CMSE. If the EXCH command buffer is
executed a second time (without the drop command
and assuming auto PP assignment is in effect), a
much different and unexpected set of PPs will be
caused to execute the test.

be
1t is
es

s

Parameters 11, 12, 13, and 14 select the PPs to be used as slaves. The search
for available PPs proceeds sequentially from PP 0. If PARAM 11 is nonzero,

the search commences from that nonzero value. Only PPs for which the

corresponding channel number is available will be selected. PPs and channels

used by CMSE will be skipped automatically.

If desired, a specific set of four slaves may be selected by entering the
numbers in parameter words 11 through 14. A nonzero value in PARAM 12 is
recognized by EXCHITC as a signal to use the four parameter values as the
required PPs. : -

NOTE
In this mode, EXCHITC does not check to determine
if the PPs are actually available. It provides no

warning if they are not.

Parameter word 15 is used to control the selection of the channel used by
EXCHITC to communicate with the four slaves. Parameter default is O and,

PP

such, either channel 12 or 13 will be selected, depending upon which of these

is not in use by CMSE to communicate with the MSL device. If neither of
is available, the number of some other suitable channel must be entered i
parameter word. The sequence employed by EXCHITC for setting up the chan
and loading the slave PPs is as follows:

these
n the
nels

a) Select and request use of the channel which is to be used for EXCHITC

to slave PP communication.

b) If PARAM12 is zero, skip to step c); otherwise, assign PPs as sl
according to parameters 11 through 14 and then skip to step f).

60469390 D

aves

I-6-4

ol

ey

ole

c)

d)

e)

£)

2)

h)

3.2.3

Starting with the PP defined (by PARAM1l) to be the first slave PP,
scan to determine if that PP is: PP 0, the CMSE I/0 driver PP; the
EXCHITC PP; the CMSE monitor PP; the CMSE display PP; the same number
as the CMSE MSL device channel; the same number as the CMSE PP
communication channel; or if the PP number is the same as the display
channel number 10g. If none of these is true then assign the PP to
be the first (or next) slave PP.

If four slave PPs have not been assigned and if all PPs in the system
have not been scanned, skip to the next higher PP and return to step
c).

If no PPs were assigned, display the message TOO FEW PP'S and exit to
the CMSE idler. The operator should check the entries for parameters
11 through 14.

If only one, two, or three slave PPs are assigned, then modify the
section select parameter words so that only sections which employ one
slave PP will be executed.

In sequence, load each of the assigned slave PPs with its object code
(EXCHSLV), initiate its program execution and check that it responds
by clearing a central memory flag.

Check the response of all slave PPs by commanding them to execute
dummy operations which will require their simultaneous access of
central memory and their assigned channel. If any slave PP hangs up,
display the message ABORTED — CHAN OR CM ERR and exit to the CMSE
idler. :

Load Map

The above sections describe the loading of the PP portions of the test. The
CP portion of EXCH is loaded via command buffer into central memory as a
single record at byte address 4000,¢. The following table provides
information as to the byte address of the various blocks of data and code.
The segment and page tables are generated by the test after it commences

execution.

Hex

Address

0000 ' Register file dump and deadstart flag
1000 ‘Segment table : :

2000 Page table

4000 Section address table

4100 Control flags and data

4400 CYBER 170 Process data and code

4A00 CYBER 170 Exchange packages

4F00 Executive state Instruction level code
5600 Executive state Exchange packages and stacks
6200 Control command tables

Refer to section 3.3.3 for the location of various control flags and data.

60469390 D I1-6-5

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameters

e

Parameter words control the execution of the test. These words are defined in
the MSL15X Off-Line Maintenance Software Library Reference Manual listed in
the preface. They are located at PP locations 122g to 1l44g (directly

following the control words).

Parameter words can be set/cleared manually through CMSE commands. Individual
bits of parameter word O can be set/cleared with a set of CMSE commands which

references the bits by mnemonics.
SRC sets repeat condition.

For example, CSM clears scope mode while

The use of PARAM7 through PARAM18 are peculiar to EXCHITC and EXCH. For
further details, refer to section II-6, this manual.

Parameters are as follows:

Octal
Address Parameter Bit
122 PARAMO 00015/0001, ¢
00028/000216
00045/0004, ¢
00105/0008, ¢
00205/00104 ¢
00405700204 ¢
01005/00404 ¢
0200470080, ¢
04005/01004 ¢
10004/02004 ¢
2000g/04004 ¢
40005/0800, ¢
100005/1000, ¢
200005720004 ¢
40000g/4000, ¢
100000g/80004 ¢
123 PARAM] 00015700014 ¢4
00028/000216
00045700044 ¢
00205/00104 ¢
0040570020 ¢
01005/00404 ¢
124 PARAM?2
125 PARAM3 0001g/00014 ¢
. 00025700024 ¢
126 PARAM4
127 PARAMS
130 PARAM6
131 PARAM?7
132 PARAMS
133 PARAM9
134 PARAM10
135 PARAM11
60469390 E

Meaning

Stop at end of test (ST)

Stop at end of section (S8)
Stop at end of subsection (SB)
Stop at end of condition (SC)
Stop on error (SE)

Log effort in dayfile (LE) P
Repeat test (RT) :
Repeat section (RS)

Repeat subsection (RB)

Repeat condition (RC)

Scope mode (SM)

Quick look (QL), not used
Bypass all messages (DR)

Display only error messages (DE)
Reserved

Accept CMSE Param commands \
Reserved “
Reserved N
Bypass parameter stop

Reserved

Reserved

Reserved

Repeat test count

Test CPU O :

Test CPU 1 '
Reserved

Sections 15-00 SELECT

Sections 31-16 SELECT

Exchange address, byte, 16 MSBs

Exchange address, byte, 16 LSBs

Exchange address increment, byte

Number of exchanges

First slave PP

o~
K

I-6-6

00

136
137
140
141

142
143
144

PARAM12
PARAM13

PARAM1S

PARAM15

PARAM16
PARAM17
PARAM18

00025/0002 ¢

Parameter defaults are as follows:

Octal

Address

122
123
124

125
127
130
131
132
133
134

135

136
137
140
141

142
143
144

Setting

PARAMO
PARAM1
PARAM?2

PARAM3
PARAMS
PARAM6
PARAM?
PARAMS
PARAM9
PARAM10

onononowou

PARAM11=

PARAM12=
PARAM13=
PARAM14=
PARAM15=

PARAM16=
PARAM17=
PARAM18=

100121g
000000g
000000g

0000035
1777774
177711
0000014
000000
000200g
017000

000000g

000000g
000000g
000000g
000000g

000777g
000002
0000015

3.3.2 Control Words

Second slave PP

Third slave PP

Fourth slave PP

EXCHITC to slave communication
channel

Delay count for processor hung
Enable PFS register operation
Memory segment select, one
Bit/megabyte

Meaning

The most significant bit must be set.
The parameter stop is not bypassed.
The repeat test count will have effect
only if the repeat test bit is clear.
Test both CPUO and CPUl if available.
All sections selected.

First exchange at 10000,¢.

Address increment of 16 CM words.
Number of exchanges go up to but not
over 100000,¢.

Select slaves sequentially starting
with first available PP.

Use either channel 12g or 13g for
controller to slave communication.
Hang count of 511.

Enable PFS register operation.
Test only first megabyte of CM.

Control words are intended to identify a program and supply information to a

higher system or operator.

They do not normally affect test execution. The

control words are located at PP locations 102g to 121g and are as follows:

Octal

Address Word
102 CwWo
103 CWl
104 CW2
105 cw3
106 CWa
107 CW5

60469390 E

Meaning

Program name (first 2 characters)
Program name (last 2 characters)
Program type :
Monitor ID word

Error code number 1

Error code number 2 (not used)

I-6-7

110 Ccwé Pass counter M/:D

111 cw? Current section counter ‘¢
112 Ccws ' Current subsection counter)
113 CcwW9 Current condition counter //"%
114 CW10 . Current error counter - 4

3.3.3 Central Memory Control Flags and Data

The central memory is used as a means of communication between EXCHITC, the
central processor, and the slave PPs. Certain flags and data may be of
interest to the operator when a failure occurs. These are itemized below by
their central memory byte address:

00004 ¢ DEADSTART FLAG - A hand-shake flag used in all sections by
EXCHITC and the CP (see section II-6). Note that when a
register file dump occurs, this flag will be overwritten.

4108, ¢ SLAVE CHANNELS - Each of the four parcels shows the channel
number (and PP number) used by EXCHITC to communicate with the
four slave PPs.

411044 EXCHANGE COMMANDS -anch of the four parcels contains a special
command to be executed by each slave PP. Most often a 26XX
command.

411846 SLAVE DELAYS AND EXCHANGE COUNTS -~ A word of data set up by
EXCHITC and used by the slaves to control the number of
exchanges to be performed and the delay to be executed prior to L
each exchange. The word is divided into four parcels, O through '
3 which are referenced by slaves 0 through 3, respectively. The
upper eight bits of a parcel define the delay and the lower
eight bits the exchange count. Used in sections 1 through 11.

412044 SLAVE FUNCTION CONTROL - This word contains data passed by
EXCHITC to the slave PPs to provide functional control.

412846 ’ SLAVE PPO EXCHANGE ADDRESS - The current exchange address set up
by EXCHITC and used by slave PFPO. o

413044 SLAVE PPl EXCHANGE ADDRESS - Same as for slave PPO.
41384 ¢ SLAVE PP2 EXCHANGE ADDRESS -~ Same as for slave PPO.
414044 SLAVE PP3 EXCHANGE ADDRESS - Same as for slave PPO.

414844 EXCHANGE SEGMENT ADDRESS - The upper four bits of an address
. which will determine which one megabyte segment of memory will
be checked in sections 2 and 16.

415044 SLAVE PP0O RESPONSE DATA - A word written into central memory by
the slave PP upon completion of a test condition. The four
parcels serve the following purpose:

e Parcel 0 - Slave exchange count; indicates the number of ,{*\
exchanges for which an exchange accept was not received. &

60469390 E 1-6-8 i

OO

4158, ¢
4160,¢
4168,¢

41704

4178, ¢

4180,

418844
422016
42304¢

423846
44004 ¢

44084 ¢

60469390 E

Should be decremented to zero upon completion of a condition;
gsee section II-6. Checked in test sections 7 through 11.

e Parcel 1 - BO miss count, indicates the number of times an
exchange request did not result in a CYBER 170 exchange
package swap; see section II-6. Checked only in section 7.

e Parcel 2 - The PP op code of the command executed by the
slave. Usually a 26XX. May be a 2400 for an inactive
slave. May also be a 63XX (CwWM), 1063XX (CWwML), or a 102601
(INPN) for sections 8 or 10.

e Paccel 3 - Not applicable.

SLAVE PPl RESPONSE DATA - Same as for 4150,¢
SLAVE PP2 RESPONSE DATA — Same as for 415044
SLAVE PP3 RESPONSE DATA - Same as for 4150y¢

SYSTEM INTERVAL TIMER (SIT) INTERRUPT COUNT - Writtem to central
memory and decremented to zero by the CP during a condition of
gection 11. Nonzero value indicates that all SIT interrupts
were not performed. Comparison checked by EXCHITC.

SIT INTERVAL VALUE AND COUNT - Written to central memory by
EXCHITC for use by the CP in section 11 only. Parcels 0 and 1
are the interval and parcel 3 is the interrupt count.

PROCESS INTERVAL TIMER (PIT) INTERRUPT COUNT - Written to
central memory and decremented to zero by the CP during a
condition of section 11. Nonzero value indicates that not all
PIT interrupts were performed. Comparison checked by EXCHITC.

PIT INTERVAL VALUE AND COUNT - Written to central memory by
EXCHITC for use by the CP in section 11 only. Parcels 0 and 1
are the interval and parcel 3 is the interrupt count.

ECO FLAGS - The least significant 16 bits of this word may be
used to select or control test options related to the
incorporation of ECOs. See paragraph 1 for additional details.

170 MODE INTERRUPT COUNT - Count of the number of external
interrupts received in a single condition of section 10 while
the CP was executing in the 170 state job mode.

VIRTUAL MODE INTERRUPT COUNT -~ Same as 4238;4 above except for
the virtual monitor mode.

REFERENCE ADDRESS - In the CYBER 170 mode the error exit
location and condition bits are stored in RA by the processor.

SAVED REFERENCE ADDRESS - The test's CYBER 170 monitor mode

process saves the contents of RA (from a previous CYBER 170 job
mode error exit) at this location.

I-6-9

44104 ¢

44184

44204 ¢

EXCHANGE TO A FLAG - In some test sections a CYBER 170 exchange
to A results in execution of code which causes a value of
AAAAjg to be stored in this location. The flag is checked to
see that the particular condition sequenced properly.

EXCHANGE TO MA FLAG — A CYBER 170 exchange to monitor address
causes a value of DEADy¢ to be stored in this location (like

exchange to A flag).

SEQUENCE COMPLETE FLAG - A hand-shake control flag used only in
sections 9 and 11 by EXCHITC and the CP. See section II-6.

3.4 SECTION INDEX

Section

0

10
11
12
13
14
15

16

18

60469390 D

Tag
SECTO
SECT1
SECT2
SECT3
SECT4
SECTS
SECT6
SECT7
SECT8
SECT9
SECT10
SECT11
SECT12
SECT13
SECT14
SECT15

SECT16

Brief Description

Test initialization

CEJ/MEJ commands

Exchange addressing

26xx execution in CYBER 170 job and monitor mode
26xx sets MCRS in executive state job mode

26xx execution in executive state job mode

26xx execution in executive state monitor mode
Multiple 2600 exchanges and BO checking

26xx exchanges and block writes in CYBER 170 mode
2600 exchanges and CP stop/start in CYBER 170 mode
2600 exchanges and external interrupts

2600 exchanges and SIT/PIT interrupts

Error exit, illegal instructions

Error exit, address out of range

Error exit, floating point infinite

EBrror exit, floating point, indefinite

Exchange addressing, selectable addresses

State switch with X0 sign bit

I-6-10

35\\ fééﬁ

S

./

C 4 OPERATOR COMMUNICATION

\j 4.1 DISPLAYS

4.1.1 Imitial Display

The initial display presented by EXCH is as shown below.

may be required.

first line of the display.

The address of the first parameter word is given in the
The revision level of EXCHITC is also specified.
The entry, EP,4,142,xxxx is a parameter entry which can be made into the

EXCHITC PP memory.

The display is made
and the test stops to allow the operator to enter any parameter changes that

If the command buffer is altered such that EXCHITC is not
loaded into PP 4 then this entry must be altered accordingly.

ABS/ABB
ECPX/DCPX
EPFS/DPFS

i G W W — — — S G — — — — e—

EP,4,142 ,XXXX
S/R/D/SPACE

EXCH PARAMS PA=122B 80/11/30 REV 2.4

-KEYBOARD COMMANDS

ABORT SECT/SUBSEC
EN/DISABL CPU X=0+1

EN/DISABL PFS UTRAPS - P1,P2,P3 ONLY

SET CP HANG COUNT
STOP/RESTRT/DROP/CONTINU

CONTROL DATA PROPRIETARY PRODUCT
COPYR. CONTROL DATA 1980

——— —— —— — — — —————— — — a——

4.1.2 Running Display

The normal running display for EXCH is shown below.

‘ .
| BXCH (op) PCxxxx CPx Sxxxx SBxxxx Cxxxx

yy/mm/dd

OPERATION (op):

C
0 60469390 E

RU

RC

RB

RS

SC

SB

Running Message
Repeating Condition
Repéating Subsection
Repeating Section
End of Condition
End of Subsection

End of Section

I-6-11

ST End of Test
SE Stopped on Error
SM Executing in scope mode

HT Test halted by operator

PCxxxX Pass Count is xxxx

CPx Current CPU

Sxxxx Current Section Nuﬁber is xxxx

SBXXXX Current Subsection Number is'xxxi

Cxxxx Current Condition Number is xxxx

yy/mm/dd Year, month, and day of revision of the EXCH test

Normally the RB and RS codes would not be seen when a subsection or section is
being repeated. This is due to a running message (RU) being issued at every
subsection boundary which erases the previous message and provides a dynamic
display of the current subsection and section.

Also note that there is no operation code for an operator stop. If an S
(stop) command (see paragraph 4.2) is entered while the test is running, the
test will stop and the HT code will be displayed.

PARAM3 controls testing for dual CP systems. Either one or both of the CPs
may be tested. When two CPs are tested, execution occurs alternately, not
concurrently. CPO is tested first for any given section and, when testing is
complete, the section is repeated for CPl.

NOTE

If the repeat section paramater is set, the
section is repeated for the currently executing
CP. If the section stop bit is set the test
stops at the end of section for each processor.

4.1.3 Error Message Display

When EXCH detects an error, the following standard error message is
displayed. Depending on the type of error, additional error messages are
displayed beneath this display. See Error Messages, section 4.4, for
definitions of these messages.

EXCH SE PCxxxx CPx Sxxxx SBxxxx Cxxxx
ECl = xxxx TE = xxxx

60469390 E I-6-12

A
'

¢

(fm> Where:

SE Stopped on error

(:TM _ PCxxxx Pass count

” CPx Failing CPU

SXXXX Failing section number
SBxxxx Failing subsection number
Cxxxx Failing condition number
ECl Error Code 1
TE Total error count

4.2 OPERATOR ENTRIES

In addition to the operator entered commands which are provided by CMSE,
EXCHITC provides additional commands as follows:

Action Command " Description
‘:; SPACE BAR - Continue execution Entered after any stop to cause execution
: of the test to continue.
s Stop . Entered while the test is executing to
cause a halt at the next condition boundary.
R Restart Restarts the test from the first selected
section. :
‘:jﬁ D Drop Halts test execution and requests CMSE to
' deadstart all slave PPs and the EXCHITC
PP. The test cannot subsequently be
restarted.
ABS Abort section Entered by the operator after an error stop

when it is desired to skip to the next
section of the test.

>, ABR Abort subsection Entered by the operator after an error stop
‘:T when it is desired to skip to the next
subsection of the test. This command is
ignored if the test is already at an end of
subsection stop.

ECP0/DCPO Enables or disables test execution for CPO
ECP1/DCP1l or CPl on dual CP systems. These commands
are ineffective on single CP systems.
EP?S/DPFS Enable/disable These commands provide a more
PFS microtraps convenient method of enabling

" or disabling the PFS micro- traps as
opposed to setting or clearing a bit in
PARAM word 17.

60469390 E I-6-13

ON

N
-

4.3 NORMAL MESSAGES

Other than the running display and initial display, described previously, EXCH
does not display any test messages for normal operation.

;é; ’ \'\
¥%5J

4.4 ERROR MESSAGES

Depending on the type of error detected, EXCH displays one of the following
error messages.

4.4.1 Data Comparison Error Message

An example of a standard data comparison error message is shown below.

EXCH SE PCO0000 CP0 S0008 SBOOOZ 00021 yy/mm/dd
EC1=0000 TE=0001

ACTIVE SLAVES PP 05 06 07

P REG " 00 00 BO 00 00 00 40 34

S REG 00 00 04 31 04 31 04 31

MON PACK 004100 PROCESS 0000 BOOO 0000 4030

JOB PACK 004280 PROCESS 0000 BOOO 0000 4068

COMPARE NO 0003

MASK FFFF FFFF FFFF FFFF -
XPCTD = 0000 0000 0000 0000

RECVD ; 0000 0000 0000 1000

ADRS OF XPCTD 0044ES8
ADRS OF RECVD 000088
ADRS INDEX 0000

————— ——— — — —— — — —— — —— —— —— — ——— —

The first line is similar to that for a running display; the second line
provides an error code and the total errors as follows:

ECl Error Code 1) w7
TE - Total Errors since test first started

The EC1l error code is set with a value of 1C2°16 when the MAC channel is
found unable to transfer data after a function was sent by EXCHITC. .

The compare number indicates which comparison within the the current condition
caused the error. Numbering of comparisons commences with number 1. Given
this number and the condition and section, a descr1pt1on of the failure may be
found in section II-6 of this manual. o

If the address index is nonzero, then a block comparison occurred and the
index is a word offset from the expected and received addresses pointing to
the data in error within the block. 1In the event of multiple errors in a
block comparison, only the data for the first detected error is displayed.

60469390 E I1-6-14 L

oD

The addresses of the executive state monitor and job exchange packages are
provided along with the value of the P register word contained in the
packages. It is not possible to provide equivalent information pertaining to
the CYBER 170 exchange packages.

Except for the S register and the address index, all displayed addresses are
byte addresses.

4.4.2 Processor Hung Error Message

In the event that an operation of the central processor is initiated and does
not subsequently halt, a display similar to the following appears. :

EXCH 'SE PCO000 PCO S0008 SBO00OO C0001 yy/mm/dd
EC1=0000 TE=0001

ACTIVE SLAVES PP 05 06

P REG 00 00 BO 00 00 00 40 34
S REG : 00 00 04 31 04 31 04 31
MON PACK 004100 PROCESS 0000 BOOO 0000 4030
JOB PACK 004280 PROCESS 0000 BOOO 0000 4068

— i — — — —— a— —— — V— i

PROCS HUNG CP PP 06

In this example, the last line indicates that the central processor and slave
PP 6 are hung up. Typically, if the CP hangs in the sequence of commands
which it is executing, then any PP which has sent an exchange request may also
hang up because it will fail to receive an exchange accept from the CP.

NOTE

When a processor hangs up, the S and P registers are read
immediately for the purpose of displaying their values.
EXCHITC then sends a special deadstart command to the
processor to force exchange accepts to be sent to the PP
system to release any slave PPs that may have hung and to
allow EXCHITC to regain control of them. If, on such an
occasion, the operator observes the value of S or P via the
CMSE AR display, one or both may not correspond.

4.4.3 Program Error Message

A display similar to that shown above, except that the last line reads PROGRAM
ERR indicates that EXCHITC detected an error in the process of interpreting
the control commands which it reads from central memory. The error could be
caused by bad data loaded from disc to central memory or by an overwrite of
the control tables in central memory as a result of a central processor error.

60469390 E I-6-15

4.4.4 System Register Error Display

If an error is detected while checking either a processor hardware register or
a processor soft register (dedicated register file register accessed by
microcode) then a display similar to that shown below will occur.

EXCH SE PC0000 PCO S0000 SB0O000 C0003 yy/mm/dd
EC1=0000 TE=0001 '

ACTIVE SLAVES - PP 00

P REG 00 00 BO 00 00 00 40 30

S REG 00 00 04 31 04 31 04 31

MON PACK 004100 PROCESS 0000 BOOO 0000 4030
JOB PACK 000000 PROCESS 0000 0000 0000 0000
COMPARE NO 0005

MASK FFFF FFFF FFFF FFFF

XPCTD 0000 0000 0000 0000

RECVD 0000 0000 0000 1000

REG ADRS 0048

. q— L . — —— — —— — — —— — —— — a—
. —— — — — —— —— ——— — — —— — —— a——

The register address is the address of the register within the central
processor or central memory subsystem.

4.4.5 Miscellaneous Error Messages

The following error messages may also occur. In all cases, EXCHITC exits to
the CMSE idler since recovery is not possible.

e ABORT - MAC ERR - An error occurred during initialization when ITC was
reading the EID registers on each radial interface.

e ABORT — ELEMENT ID ERR - During initialization while reading EID
registers, too few responses were received. Apparently a system
element was not connected.

e ABORT - TOO FEW PP S - During the loading of the slave PPs , EXCHITC
was unable to find any slave PPs available for use. The entry for
PARAM 11 should be checked. See section 3.2.2. :

e ABORT — CHAN OR CM ERR - After the slave PPs are loaded, EXCHITC checks
to determine if it can communicate with them. The error may indicate a
channel problem or a PP to CM interface problem caused by four slaves
accessing CM simultaneously. See section 3.2.2.

e ABORT - SLAVE PP HUNG - During normal execution of the test, an
exchange accept problem may arise causing a slave PP to hang up on a
26XX command. When this occurs, EXCHITC initiates a sequence which
should force the CP to send exchange accepts to the IOU system. If
this operation fails to release the slave or slaves from the 26XX
command this message should appear.

60469390 E I-6-16

>
A
o 7
TN

‘T“> e CPX NOT A170 CAPABLE - Prior to executing the first condition of the
- test, the C170 bit of the VMCL register and the SOLO C170 bit of the
‘i&* options installed register are checked to ensure that they are set.
e This error is more likely to occur in dual CP systems where the second
CP may not have A170 capability. If this is so, deselect the parameter
bit for the second CP.

4.5 APPLICATIONS

4.5.1 SCOPE MODE CONTROL AND TRIGGERING

The CMSE command, SSM is used to set the scope mode. The command is entered
when the test is at a stop. When execution is restarted with a space bar,
EXCHITC forces the repeat of the current condition and the entr—- to the scope

~ loop. If a number of errors have occurred during the conditior :hen more

‘ii* than one space bar entry may be required to reach the end of the condition and
» enter the loop. Entry to the loop may be confirmed by observing activity of

the MAC channel flag on the display. The SM code will also appear on the
running display line.

The test may be pulled out of the scope loop with the CMSE command UP,x where
x is the PP in which EXCHITC resides.

In all sections of the test, a scope may be triggered using the pulse
generated by the deadstart function which performs the half-exchange-in of the
monitor process.

®

In most sections of the test, a scope may be triggered using the deadstart
which performs the half-exchange-in of the monitor process. 1In all sections
of the test, the scope may also be triggered from the test point for the model
independent refresh resync command (executive state mode op code 0l44).
This command occurs in the CP code sequence for each section, immediately
prior to the point where any failures are likely to occur (usually just before
the executive state EXCHANGE which switches the processor to executive state
™, job mode). 1In section 9, the refresh resync command is the only trigger that
‘::' should be used (see section II-6 for further details).

The processor hang count (PARAM16) is defaulted to a value of 500g. This
value has been used to provide for the case where the processor is running
without cache and map enabled. In cases where the cache and map are in use
and where a scope loop is required, this value can be changed to 140g in

order to obtain a loop with a higher repetition rate. If the scope is
observed to have a long period where no activity is occurring then values even
lower than 140g could be employed.

C
G 60469390 E 1-6-17

O

r}
«.

)

SECTION I-7

TRAP TEST

TRAP TEST 7

P T PP T T T I I T Pt i
R I I Ittt -ttt e R e e e b

1 INTRODUCTION

This trap interrupt test (TRAP) includes and operates in conjunction with an
Instruction Test controller (FCTITC) which provides various interface and test
facilities, '

The test executes MCR and UCR bit tests in which individual bits of these

registers are set: -

1) during the load of an exchange pack from memory,
2) via the MAC or,
3) bya branch on condition régist.er command .

The purpose is to ensure that the appropriate response (trap, exchange, halt,
stack) occurs for each bit prior to commencing with individual function type
tests. These tests are conducted with traps enabled and disabled and with the
processor operating in job mode and monitor mode.

Subsequent sections of the test execute command sequences to generate the
functions which would activate the MCR and UCR bits in normal operation. One
test section is devoted to a function test of this type for each bit of the
MCR and UCR register. These tests are also performed with traps enabled and
disabled in the monitor and job modes. The TRAP test does not execute a test
case for every particular case that can cause an interrupt. A reasonable
subset is checked. ‘

60469390 A I-7-1

rs
2 REQUIREMENTS ﬂ@

2.1 HARDWARE ~ f L

Equipment for which test is intended: Models 810, 815, 825, 830, 835, 845,
and 855 Computer Systems. :

In addition to requirements for CMSE, TRAP requires the following to execute:

1 CPU
1 PP and the MAC channel (17g)
21,000, ¢ bytes- of central memory (TRAP occupies less than the first

14,000,¢ bytes. The first 21,000,¢ bytes are used
during execution).
2.2 SOFTWARE
This product uses the facilities of the Common Maintenance Software Executive -

(CMSE). Additionally, portions of the Diagnostic Executive (DEX) are compiled
with, and are a part of the FCTITC object code.

2.3 ACCESSORIES

None required.

2.4 CHARACTERISTICS

Test name TRAP

1.
2. Test/diagnostic/utility/system Test
3 Size (source) PP code 6000 lines
CP code 11000 lines
4, Size (memory required for execution)
PP code 4096 PP words
Central memory 1 million
bytes minimum N
5. Virtual code/microcode/PP code/other Virtual and
_ PP _code
6. Run time 1 minute .
7. Level of isolation detection
8. On-line/off-line/both off-line
9. Off-line system MSL 15X .
10. Resident during execution Yes
11. Language CP: CYBER .
VM Assembler
PP: COMPASS
12. Source code maintenance CP: MODIFY (ASCII)
PP: UPDATE
13. Uses maintenance channel , Yes
A
AN

60469390 E 1-7-2 ﬁ, i}

C

ole

3 OPERATIONAL PROCEDURE

3.1 RESTRICTIONS AND USER CAUTIONS

None.

3.2 LOADING PROCEDURE

The object code of FCTITC and its associated overlays plus the TRAP object
code must reside on the Maintenance Software Library (MSL) device. The file
names on the MSL for these binaries are FCTITC, FCTOP1, FCTOP2, FCTOP3,
FCTOP4, FCTOTI, and TRAP.

Command buffers do not load the microcode. The standard product set microcode
must be loaded prior to executing this command buffer.

Command buffer TRAPx (where x is 1 for model 810/815/825/830, 2 for 835, 3 for
845/855) exists on the MSL 15X tape to facilitate loading and execution of
this test. Before using this command buffer you may have to modify it for
your system. Display the command buffer using the CMSE command buffer display
commands or print the contents of the command buffer using procedures provided
in the Command Buffer Maintenance section of the MSL 15X Reference Manual.
Then modify the command buffer as directed by comments embedded in the command
buffer. When you are satisfied that the command buffer is set up properly,
enter a GO,TRAPx command to execute it, where x is the model dependent number
from above.

Modified command buffers can be saved on a back-up tape for future use. Refer
to the Utilities section of the MSL 15X Reference Manual for procedures.

Default parameters are automatically set when this command buffer is
executed. Default parameters may be reset by entering commands immediately
prior to the RU command. Inclusion of a SP command after the RU command will
automatically provide the space bar which is required to cause execution to
proceed after the parameter entry stop.

3.3 PARAMETERS AND CONTROL WORDS

3.3.1 Parameter Words

Parameter words control the execution of the test. They are defined in the
MSL15X Off-Line Maintenance Software Library Reference Manual. These words
are located at PP locations 122g to l44g directly following the control
words.

Parameter words are set/cleared manually through CMSE commands. Individual
bits of parameter word O can be set/cleared with a set of CMSE commands which
reference the bits by mnemonics. For example, CSM clears scope mode while SRC
sets repeat condition.

60469390 D I-7-3

Further details concerning the specified parameters are provided as follows:
PARAM 16 — Processor hang count - section II-7

PARAM 17 - Enable/Disable PFS microtraps — paragraph 4.2 (this section)
PARAM 18 — CM port select - section II-7

The use of PARAM18 is peculiar to TRAP.

Parameters are as follows:

Octal Octal/Hex
Parameter Address Bit : Meaning
PARAMO 122 000170001 Stop end test (ST)
122 000270002 Stop end section (S8)
122 000470004 Stop end subsection (SB)
122 0010/0008 Stop end condition (SC)
122 0020/0010 . Stop on error (SE)
122 0040/0020 Log errors (LE)
122 0100/0040 Repeat test (RT)
122 020070080 Repeat section (RS)
122 040070100 Repeat subsection (RB)
122 100070200 Repeat condition (RC)
122 2000/0400 Scope mode (SM)
122 400070800 Quick look (QL),Not used
122 1000071000 Bypass all msgs (DR)
122 20000/2000 Display only err msgs (DE)
122 4000074000 reserved
122 100000/8000 Accept CMSE param cmds
PARAM1 123 000170001 reserved
123 000270002 reserved
123 000470004 Bypass param stop
123 ¢020/0010 reserved
123 004070020 reserved
123 010070040 reserved
PARAM?2 124 Repeat test count
PARAM3 125 0001/0001 Test CPU 0O
0002/0002 Test CPU 1
PARAM4 126 reserved
PARAMS 127 Sections 15-00 Select
PARAM6 130 Sections 31-16 Select
PARAM7 131 Sections 47-3Z Select
PARAMS 132 reserved
PARAM9 133 reserved
PARAM10 134 ‘ reserved
PARAM11 135 : reserved
PARAM12 136 reserved
PARAM13 137 reserved
PARAM14 140 reserved
PARAM1S 141 reserved
PARAM16 142 : Delay count for processor hung
PARAM17 143 000270002 Enable PFS operation
PARAM18 144 CM port select (by bit position)

60469390 E I-7-4

ole

Parameter defaults are as follows:

Octal

Address Setting (Octal)
122 PARAMO = 100121
123 PARAM1 = 000000
124 PARAM2 = 000010
125 PARAM3 = 000003
127 PARAMS = 177757
130 PARAMG6 = 1777177
131 PARAM? = 1727777
132 PARAM8 = 177777
133 PARAM9 = 177777
135 PARAM11= 177777
136 PARAM12= 1777717
137 PARAM13= 1771777
140 PARAM14= 000000
141 PARAM1S5= 000000
142 PARAM16= 000020
143 PARAM17= 000002
144 PARAM18= 000001

3.3.2 Control Words

Meaning

Test control (most significant bit
must be set)

Parameter stop is not bypassed
Repeat test count will have affect
only if repeat test bit is clear
Test both CPUO and CPUl if
available

All sections (except 4) selected

reserved

reserved

reserved

reserved

reserved

reserved

reserved

Hang count of 16

Enable PFS register operation
Use CM port O

Control words are intended to identify a program and supply information to a
higher system or operator. They do not normelly affect test execution. The
control words are located at PP locations 102g to 121g and are as follows:

CwWo Program name (first 2 characters)
CWl Program name (last 2 characters)
CwW2 Program type

cw3 Monitor ID word

Cua Error code #1

CcW5S Ecrror code #2 (not used)

CW6 Pass counter

cw7 Current section counter

cws Current subsection counter

cwW9 Current condition counter

CW10 Current error counter

3.3.3 Central Memory Flags, Pointers, and Exchange Packages

Most flags, pointers, and exchange packages of interest to an operator in
event of a failure are itemized below by their central memory byte address:

60469390 E

I-7-5

Item

DEADSTART
FLAG

REFERENCE
ADDRESS

C7XPXMA

CALLSTAK
TRAPSTAK
CBP
CALCBP
JXOV

MX0

JX2

JK3

60469390 E

CM Byte

Hex Address

0000

4700

4880

5800

5908

5B20

5B38

SDEO

5F80

6120

6460

6600

6940

Description

A hand shake flag used in all sections by

FCTITC and the CP. See paragraph 4.2. Note
that when a register file dump occurs, this flag
will be overwritten.

In the CYBER 170 mode the error exit
location and condition bits are stored in RA by
the processor.

A CYBER 170 exchange package used only in the
event of an error which would cause an
unexpected CYBER 170 exchange to MA (monitor
address).

A 33-word stack referenced whenever a CALLSEG
command is executed.

A 33-word stack referenced whenever a trap
interrupt occurs.

The code base pointer for trap interrupt
operations.

The code base pointer referenced when a CALLSEG
command is executed.

An executive state job exchange package used in
job mode MCR/UCR bit tests (sect 0,1, and 34).

An executive state monitor exchange package used
to initiate job mode operation during job mode
MCR/UCR bit tests (sect 0,1, and 34).

An executive state monitor exchange package used

in monitor mode MCR/UCR bit tests (sect 0,1, and
34).

The primary executive state job exchange
package. - Never used in sections 0,1, and 34;
nor in those conditions of the remaining
sections where the function test is performed in
executive state monitor mode or CYBER 170 mode.

The primary executive state monitor exchange
package used in all sections except 0,1, and 34,

An executive state job exchange package used in
any condition which performs a test in CYBER 170
mode. This package establishes a CYBER 170
environment with the CYBER 170 monitor flag set
when the executive state monitor to job exchange
is executed.

I-7-6

AN
”kjw

Y
AW

C

‘M‘x‘

ole

3.4 SECTION INDEX

Section
Number

00
01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40

60469390 D

Teg
Name

Brief Description

MCR BIT TESTS
UCR BIT TESTS
MCR/UCR FUNCTION TESTS

MCR 00 — DETECTED UNCORRECTABLE ERROR
MCR 01 - NOT USED

MCR 02 — SHORT WARNING

MCR 03 — INSTRUCTION SPEC. ERROR
MCR 04 — ADDRESS SPEC. ERROR

MCR 05 — EXCHANGE REQUEST

MCR 06 — ACCESS VIOLATION

MCR 07 - ENVIRONMENT SPEC. ERROR
MCR 08 — EXTERNAL INTERRUPT

MCR 09 — PAGE TABLE SEARCH

MCR 10 - SYSTEM CALL

MCR 11 - SYSTEM INTERVAL TIMER

MCR 12 — INVALID SEGMENT/RING=0

MCR 13 — OUTWARD CALL/INWARD RETURN
MCR 14 — SOFT ERROR LOG

MCR 15 — TRAP EXCEPTION

UCR 00 - PRIVILEDGED INSTRUC. FAULT
UCR 01 - UNIMPLEMENTED INSTRUCTION
UCR 02 - FREE FLAG

UCR 03 - PROCESS INTERVAL TIMER
UCR 04 — INTER RING POP

UCR 05 - CRITICAL FRAME FLAG

UCR 06 — KEYPOINT

UCR 07 - DIVIDE FAULT

UCR 08 — DEBUG

UCR 09 - ARITHMETIC OVERFLOW

UCR 10 — EXPONENT OVERFLOW

UCR 11 - EXPONENT UNDERFLOW

UCR 12 — FP LOSS OF SIGNIFICANCE
UCR 13 - FP INDEFINITE

UCR 14 — ARITHMETIC LOSS OF SIGNIFICANCE
UCR 15 — INVALID BDP DATA

MULTIPLE INTERRUPT/PRIORITY CHECKS
MCR BIT LEFT IN MEMORY

RESERVED

810/815/825/830 PROCESSOR MODEL DEPENDENT
TESTS

835 PROCESSOR MODEL DEPENDENT TESTS
RESERVED

RESERVED

I-7-7

4 OPERATOR COMMUNICATION

o

Communication with TRAP is via any console that can be driven by CMSE. All
communication between the operator and TRAP goes via CMSE and FCTITC. TRAP
communicates with FCTITC through tables in central memory. A command buffer
initiates the loading into central memory of a single binary file for the
complete test. FCTITC fetches a segment of the file from central memory for
each condition of the test. The data in the segment is interpreted as a
sequence of special commands, and is used by the PP to control the condition.
FCTITC performs all comparisons and generates the display data.

4.1 DISPLAYS

4.1.1 Trep Initial Display

The TRAP initial display is shown below. The test stops and issues the
display to allow the operator to enter parameter changes. The address of the
first parameter word is given in the first line of the display. The date of
assembly and the revision level of FCTITC are also specified. The entry
EP,4,142,xxxx is a parameter entry which can be made into the FCTITC PP

memory. If the command buffer is altered such that FCTITC is not loaded into

PP 4 then this entry must be altered accordingly.

In the line beginning EPFS/DPFS, P1,P2,P3 only means model
810/815/825/830/835, and 845/855 processors respectively.

TRAP PARAMS PA=122B 81/10/30 REV 2.4

KEYBOARD COMMANDS

ABS/ABB ABORT SECT/SUBSEC

ECPX/DCPX EN/DISABL CPU X=0+1

EPFS/DPFS EN/DISABL PFS UTRAPS - P1,P2,P3 ONLY
EP,4,142 ,XXXX SET CP HANG COUNT

TIXX YY ZZ TEST SUBSET OF OP CODES/SECTIONS
S/R/D/SPACE STOP/RESTRT/DROP/CONTINU

CONTROL DATA PROPRIETARY PRODUCT
COPYR. CONTROL DATA 1980

D — —— —— G_— — — — — — — — —— — a—

60469390 E

I-7-8

e lle

4.1.2 Running Display

The normal running display for TRAP is shown below.

| TRAP (op) PCxxxx CPx Sxxxx SBxxxx Cxxxx TIxx yy/mm/dd |

OPERATION (op) RU Running Message
RC Repeating Condition
RB Repeating Subsection
RS Repeating Section
sc End of Condition
SB End of Subsection
ss End of Section
ST End of Test
SE Stopped on Error

sM Executing in scope mode
HT Test halted by operator
PCxxxx Pass Count is xxxx
CPx Current CPU
SXxxx Current Section Number is xxxx
SBxxxx Current Subsection Number is xxxx
CxXxxXx Current Condition Number is xxxx
TIxx Current Section Number is xx
yy/mm/dd Year, Month and Day of revision of the TRAP test

The RB and RS codes are not normally seen when a subsection or section is
being repeated. Instead, a running message (RU) is issued at every subsection
boundary that erases the previous message and provides a dynamic display of
the current subsection and section. There is no operation code for an
operator stop. If an S (stop) command (see paragraph 4.2, Operator Entries)
is entered while the test is running, the test stops but the RU code remains.

In other tests such as FCT1, the TIxx entry would be Flxx and would indicate
the MSL file name or the op code being tested. In the TRAP test all sections
of the test reside in CM simultaneously; each section does not pertain to a
specific op code.

PARAM3 controls testing for dual CP systems. Either one or both of the CPs
may be tested. When two CPs are tested, execution occurs alternately, not
concurrently. CPO is tested first for any given section and, when testing is
complete, the section is repeated for CPl.

NOTE
If the repeat section paramater is set, the
section is repeated for the currently executing

CP. If the section stop bit is set the test
stops at the end of section for each processor.

60469390 E 1-7-9

4.1.3 Error Message Display

When EXCH detects an error, the following standard error message is displayed.
Depending on the type of error, additional error messages are displayed
beneath this display. See Error Messages for definitions of these messages.

| TRAP SE PCxxxx Sxxxx SBxxxx Cxxxx yy/mm/dd |
| BC1 = xxxx TE = XXXX
| |
Where:

SE Stopped on error

PCxxxx Pass count

Sxxxx Failing section number

SBxxxx Failing subsection number

Cxxxx Failing condition number

EC1 Error code 1

TE Total error count

4.2 OPERATOR ENTRIES

EXCHITC provides the following commands in addition to those provided by CMSE:

Action Command Description

SPACE BAR Continue Execution Continues test execution following a stop.

s - Stop Stops test at the next condition boundary.

R Restart Restarts test from first selected section.

D Drop Halts test execution and requests CMSE to
deadstart FCTITC PP. Test cannot be
restarted.

ABS Abort Section Skips to next section after an error stop.

ABB Abort Subsection Skips to the next subsection of the test
: after an error stop; ignored if test is
at end of subsection stop.

ECP0O/DCPO Enable or disable test execution for CPO
ECP1/DCP1 or CPl on dual CP systems. These commands
. ' are ineffective on single CP systems.
EPFS/DPFS Enable/Disable Provide a more convenient method of
PFS microtraps enabling or disabling PFS microtraps than

setting or clearing a bit in PARAM word
17. Value entered into DEC by
initializing command buffer is kept in
FCTITC PP memory. During subsequent
execution of test, FCTITC modifies this

60469390 E | | I-7-10

U
J

)

N

RO

RN

L W

C
-

00

Action Command Description

Note that when the test is running, the
current section number corresponds to the
sequence in which the section numbers
were entered. For the example above the
displayed section numbers would be 00
through 04, Note however that on the
first line of the running display the xx
in the TIxx entry will give the normal

section number.

This command can be entered fram the
keyboard or a command buffer after FCTITC

stops for parameter entries.

It cannot

be entered after test execution
commences. In a command buffer it should
immed iately follow the RU command that
gives execution control to FCTITC.

4,3 NORMAL MESSAGES

None.

4,4 ERROR MESSAGES

Depending on the type of error detected, TRAP displays one of the following

error messages.

4.4,1 Data Comparison Error Message

An example of a standard error message issued by FCTITC for a data comparison

error is shown below.

TRAP SE PC0000 S0008 SB0002 C0021 TIO8 81/10/30
EC1=0000 EC2=0000 TE=0001 RN=XXXX

P REG 00 00 BO 00 00 00 40 34

S REG 00 00 O4 31 O4 31 04 31

MON PACK 004100 PROCESS 0000 B0OO 0000 4030
JOB PACK 004280 PROCESS 0000 BO0OO 0000 4068
COMPARE NO 0003

MASK FFFF FFFF FFFF FFFF

XPCTD 0000 0000 0000 0000

RECVD 0000 0000 0000 1000

ADRS OF XPCTD OOM44ES
ADRS OF RECVD 000088
ADRS INDEX 0000

60469390 A -

—— e S m. R avae S e W G T mi TSAE e S e S

I-7-11

TRAP SE PCO000 CPO 80008 8SB0002 C0021 TIO8 81/10/30
EC1=0000 TE=0001

|
|
|
|
| P REG 00 00 BO 00 00 00 40 34
| S REG 00 00 04 31 04 31 04 31
| MON PACK 004100 PROCESS 0000 BOOO 0000 4030
| JOB PACK 004280 PROCESS 0000 BOOO 0000 4068
| COMPARE NO 0003
| MAsSK FFFF FFFF FFFF FFFF
| XPCTD 0000 0000 0000 0000
| RECVD 0000 0000 0000 1000
| ADRS OF XPCTD 0044ES8
| ADRS OF RECVD 000088
| ADRS INDEX 0000
|
where:
LINE O
TRAP header See Running Display, paragraph 4.1.2
LINE 1
EC1 Error Code 1 (see text).
" TE Total Errors since start of test.
LINE 2
Not used (blank)
LINE 3
Not used (blank)
LINE 4
P REG Contents of P register.
LINE 5 v
S REG Contents of S register.
LINE 6
MON PACK Byte address of Monitor Exchange Package
PROCESS Contents of first word in package (P).
LINE 7
~JOB PACK Byte address of Job Exchange Package.
PROCESS Contents of first word in package (P).
LINE 8
COMPARE NO Compare Number (see following text).
LINE 9
MASK Mask used to indicate which bits of the
received data word are being tested.
60469390 E

I-7-12

O

LINE 10
XPCTD Expected data.
LINE 11
RECVD Received data.
LINE 12
ADRS OF XPCTD Byte address of the expected result
data area (see following text).
LINE 13
ADRS OF RECVD Byte address of the received result
data area (see following text).
LINE 14 ;
ADRS INDEX Address index for block compares

(see following text).

Aside from the S register and the address index, all displayed addresses are
byte addresses. There are minor variations in the spacing (by byte or parcel)
for some of the data which is displayed. These variations are a result of the
differences between the processors.

The ECl error code is set with a value of 1C20,¢ when the MAC channel is
found unable to transfer data after a function was sent by FCTITC. No other
EC1 values have been implemented. For other errors ECl will remain set to
000044 -

The compare number indicates which comparison within the current condition
caused the error. Numbering of comparisons commences with number 1. The
comparison number correlates the display with the listing by indicating which
compare directive within the condition has reported the error.

The address of the expected data is a byte address pointing to the word
containing or the word beginning the expected data.

If the expected data is immediate data, the 64-bits of expected data may begin
on any parcel boundary. The address of the expected data is shown as the byte
address of the word where the data started. The address index is not used
when referencing immediate data.

If the expected data is not immediate data, the expected address is the byte
address of the word containing the first 64-bits of expected data. The
address index is a word offset from the address of the expected data and
points to the data that was used in the failing comparison.

The address of the received data is a byte address pointing to the word
containing the received data. The address index is a word offset from the
address of the received data and points to the data in error.

If the address index is nonzero, a block comparison occurred. If multiple
errors occur in a block comparison, only the data for the first detected error
is displayed. The address index may be used for both the expected and
received data at the same time under the conditions described above. For more
details see section II-7 regarding Control Command Tables.

60469390 E I-7-13

4.4.2 Processor Hung Error Message

If an operation of the central processor is initiated and does not
subsequently halt, a display similar to the following may occur.

TRAP SE PC0000 S0008 CPO SB0O00OO CO001 TIO8 81/10/30
EC1=0000 TE=0001

P REG 00 00 BO 00 00 00 40 34
S REG 00 00 04 31 04 31 04 31
MON PACK 004100 PROCESS 0000 BOOO 0000 4030
JOB PACK 004280 PROCESS 0000 BOOO 0000 4068
CP HUNG
LINES 0-7

See description in Data Comparison Error Message (above).

LINE 8
Not used (blank)

LINE 9
CP HUNG Processor hung indication.

When the processor halts or hangs up, the S and P registers are read
immediately for the purpose of displaying their values. FCTITC then sends a
deadstart function to dump the processor register file to central memory .
This may affect the S and P registers. If you display the S and P registers
using the CMSE AR display a difference in values may be noted.

4.4.3 Program Error Message

The program error message is similar to the processor hung display above
except the last line reads PROGRAM ERR. This indicates that FCTITC detected
an error while interpreting control commands from central memory. The error
could be caused by bad data loaded from disc to central memory or by an
overwrite of the control tables in central memory due to a CP error.

60469390 E I-7-14

C

4.4.4 System Register Error Display

If an error is detected while checking either a processor hardware register or
a processor soft register (dedicated register file register accessed by
microcode), a display similar to that shown below occurs.

TRAP SE PC0O000 S0000 CPO SBO0O0O C0003 TIO8 81/10/30
EC1=0000 TE=0001

| |
| |
| |
| |
| |
| P REG 00 00 BO 00 00 00 40 30 |
| s REG 00 00 04 31 04 31 04 31 |
| MON PACK 004100 PROCESS 0000 B0O0OO 0000 4030 |
| JOB PACK 000000 PROCESS 0000 0000 0000 0000 |
| COMPARE NO 0005 |
| MASK FFFF FFFF FFFF FFFF |
| XPCTD 0000 0000 0000 0000 |
| RECVD 0000 0000 0000 1000 |
| REG ADRS 0048 |
| |
LINES 0-11

See description in Data Comparison Error Message.

LINE 12
REG ADRS Register address

4.4.5 Miscellaneous Error Messages

The following single line error messages may also occur. 1In all cases, FCTITC
exits to the CMSE idler since recovery is not possible.

ABORT - MAC ERR An error occurred during initialization when
FCTITC was reading the EID registers on each
radial interface.

ABORT - ELEMENT ID ERR During initialization while reading EID
: : registers, an incorrect or too few responses were
received. - Apparently a required system element
was not connected.

4.5 SCOPE MODE CONTROL AND TRIGGERING

A scope loop can be used in any test where CP instruction level execution is
initiated by FCTITC. This is true for all conditions except for those in
subsection 0 of each section. See section II-7 for further information
concerning the scoping of any condition in any subsection O of TRAP.

60469390 E : I-7-15

The MSE command SSM sets the scope mode when the test is at a stop. When
execution is restarted with a space bar, FCTITC forces the repeat of the
current condition and it enters the scope loop. If a number of errors have
occurred during the condition, more than one space bar entry may be required
to reach the end of the condition and enter the loop.

Activity of the MAC channel flag on display and appearance of the SM code on
the running display line indicates the loop is running. Type UP,x (MSE
command; x is the PP in which FCTITC resides) to exit the scope loop. When
the test exits the loop, it stops on an error if an error is present and the
stop on error bit is set (default). If no error is present, it stops at the
end of the current condition. This occurs upon exit from the scope loop even

though the end of condition stop may not be set. If the same scope loop is to

be reentered, press the space bar until this occurs; otherwise, clear the
scope mode bit (CSM) and press the space bar to continue. A scope may be

triggered using the pulse generated by the deadstart function which perfonns
the hal f-exchange-in of the monitor process,

60469390 A

I-7-16

e RN
k\%\?/l

a,,?}:f

PART 1I

TEST DESCRIPTIONS

MEMORY TESTS (CMEM)

RANDOM COMMAND TESTS (RCT1)

RANDOM COMMAND TESTS (RCT2)

FIXED OPERAND COMMAND TESTS (FCT1-3,5)
VIRTUAL MODE INSTRUCTION LEVEL TESTS (FCI9)
EXCHANGE TESTS (EXCH)

TRAP TESTS (TRAP)

oo

SECTION II-1

MODEL INDEPENDENT CENTRAL MEMORY TESTS - CMEM

E\/} _/j

C

MODEL INDEPENDENT CENTRAL MEMORY TESTS - CMEM 1

PROGRAM DESCRIPTION

GENERAL

CMEM is organized into eleven sections. Sections 1-5 test central memory with
five unique data patterns. Section 6 uses a marching pattern., Section 7 uses
an addressing pattern where the word address of the word being accessed is
used as the data word. Section 8 is the complement of section 7 word
addresses.

Data compare operations can be switched on or off for sections 1-5. Section 9
tests memory using a 5-byte data pattern. Section 10 tests memory in 16-word
blocks. Section 11 tests memory with a randomly-generated data pattern.

SECTION DESCRIPTIONS

Section 1 (SECT1)

Test memory with zero data pattern. Memory is written from FWA to LWA with
zero data pattern, then one word at a time is read and compared with word
written.

Pattern is 00 - 001¢6.

Subsection 0 writes memory with pattern.

Subsection 1 reads and compares data.

The memory test area may be restricted by using the ADDR,p1,p2 command.
Parameter pl1 is FWA and p2 is LWA. Compare may be switched off.

Section 2 (SECT2)

Test memory with ones data pattern. Memory is written from FWA to LWA with
ones data pattern, then one word at a time is read and compared with word
written.

Pattern is FF - FFq¢,

Subsection 0 - writes memory with ones pattern.
Subsection 1 reads and compares data.

The memory test area may be restricted by using the ADDR,p1,p2 command.
Parameter p1 is FWA and p2 is LWA. Compare may be switched off,

60469390 A : II-1-1

Section 3 (SECT3)

Test memory using a 5 pattern from FWA to LWA., Memory is written from FWA to
LWA with data pattern, then one word at a time is read and compared with word
written.

Example: 01010101-01010101,
55555555555555551

Subsection 0 writes memory with pattern.
Subsection 1 reads and compares data.

The memory test area may be restricted by using the ADDR,p1,p2 command.
Parameter p1 is FWA and p2 is LWA. Compare may be switched off.

Section 4 (SECT4)

Test memory using an A data pattern. Memory is written from FWA to LWA with
data pattern, then one word at a time is read and compared with word written.

Example: 01010101-01010101,
AAAAAAAAAAAAAAAA 44

Subsection 0 writes memory with pattern.
Subsection 1 reads and compares data.

The memory test area may be restricted by using the ADDR,p1,p2 command.
Parameter p1 is FWA and p2 is LWA. Compare may be switched off.

Section 5 (SECT5)

Test memory using a DF pattern. Memory is written from FWA to LWA with data
pattern, then one word at a time is read and compared with word written.

Example: 11011111-110111115
DF DF DF DF DF DF DF DF 1¢,

Subsection 0 writes memory with pattern.
Subsection 1 reads and compares data.

The memory test area may be restricted by using the ADDR,p1,p2 command.
Parameter pl1 is FWA and p2 is LWA. Compare may be switched off.

Section 6 (SECT 6)

Test memory using a marching pattern. Starting at FWA, zeros are written
throughout memory testing area to LWA. Then, starting at FWA, word 0 is read
and checked for zero (00-00). After compare, ones are written into word O,
Next, word 1 is read and checked for zero. After compare, ones are written

into word 1. Process is repeated for each word through LWA. Then starting at

FWA each word is compared with ones pattern (FF-FFqg).

60469390 A : II-1-2

FER Y
N

S

O

The memory test area may be restricted by using the ADDR, p1, p2 command. p1
is FWA and p2 is LWA. Note that data compare cannot be switched off for this
section except for scope loop operation.

Section 7 (SECTT)

Test memory with word address pattern. The address of the word being accessed
is used as the data word.

Example: address 3FDB1g equals 00003FDB-00003FDB 16

Address is in both the upper four bytes and lower four bytes of data word.
The memory testing area may be restricted by using the ADDR,p1,p2 command

where p1 is FWA and p2 is LWA., Note that

data compare cannot be switched off for this section except for scope loop
operation, :

Section 8 (SECTS8)

Test memory with the complement of the address of the word being
accessed as the data word.

Example: address 3FDBqg equals FFFFCO24-FFFFC02416

The complemented address is in both the upper four bytes and lower four bytes
of the data word. The memory testing area may be restricted by using the
ADDR,p1,p2 command. p1 is FWA and p2 is LWA. Note that data compare cannot
be switched off for this section except for scope loop operation.

Section 9 (SECT9)

Test memory using the load and store bytes. Memory is written from FWA to LWA
five bytes at a time. Then memory is read from FWA to LWA five bytes at a
time and compared to bytes written.

Subsection O writes memory in five byte increments.

Subsection 1 reads memory in five-byte increments and compares.

Section 10 (SECTA)

Test memory using multiple register instructions (LMULT, SMULT).

Memory is written from FWA to LWA in increments of 16-word blocks. Then
memory is read in 16-word blocks and compared to blocks written.

Pattern is DF DF DF DF DF DFF OOF ¢4,

Subsection 0 writes memory with SMULT instruction.

Subsection 1 reads memory with LMULT instruction and compares.

60469390 A II-1-3

The memory test area may be restricted by using the ADDR,p1,p2 command. p1l is

FWA and p2 is LWA. Note that data compare cannot be switched off for this
section,

Section 11 (SECTB)

Test memory using a random data pattern. Memory is written from FWA to LWA
with generated random data pattern. Pattern is then regenerated, memory is
read and compared to regenerated pattern.

Subsection 0 writes memory one word at a time.

Subsection 2 reads memory one word at a time and compares.

Note that scope loop does not apply to this section,

60469390 A ' II-1-4

N

~

N

SR®

SECTION II-2

RANDOM COMMAND TEST 1

RANDOM COMMAND TEST 1 2

PROGRAM DESCRIPTION

RCT1 generates a random set of instructions and operands each pass. The
randam set of instructions are then executed two different ways. The
instructions are simulated using a basic set of instructions and the results
of the simulation saved. The instructions are then executed by the machine
hardware and the results of the machine execution are saved. The simul ator
and machine results are then campared and any difference is flagged as an
error.,

GENERAL

The basic operation performed by RCT1 each pass is as follows:
1) Display required messages.

2) Process any keyboard operator requests.

3) Generate random instructions, random A and X register values and random
data in memory buffers,

y) Simulate the random set of instructions using the A and X register values
and memory buffer data. Save A and X register contents after simulation,
as well as the final contents of the memory buffer data.

5) Execute the random set of instructions using the actual machine
hardware. Machine execution will use the same A and X register values
and randam data in the memory buffer. After machine execution, save A
and X register contents and final memory buffer data.

6) Canpare simulator and machine A and X register results and memory buffer
final results. Any differences will result in an error being recorded
and reported.

®) If trim parameter is selected and a miscompare occurs, RCT1 will reduce
the failing set of instructions to the minimum number of instructions
needed to cause the failure, usually one. Reduction technique is to
attempt to replace each instruction, one at a time, with a pad
instruction of 1AFF 4¢ and still have the error occur.

60469390 A ' II-2-1

AT

A

-

SECTION II-3

RANDOM COMMAND TEST 2

®

C

RANDOM COMMAND TEST 2 3

-
= - = o~ = " = B = " = T = S MmN R MmN EmE N R E S EEEE S S S ESEEEESSEETESSTSEZSSS2SSSRSSSZ2SS
ey It T Tttt bttt e et it e R e i

PROGRAM DESCRIPTION

GENERAL

The test is divided into sections with each section testing a subgroup of BDP
instructions. Each section is divided into subsections with each subsection
testing an individual BDP instruction type.

The general method of testing is to pack the instruction being tested into a
machine execution list beginning at location

I_MLSTO. This list contains from 1 to 10 copies of the instruction depending
on the instruction type. If the instruction alters an X register (i.e.,
compare) , additional instructions are packed into the list to save
intermediate results. In addition, randomly formed descriptors, which
reference operands that have also been randamly formed, are packed into the
list.

Once established, the machine execution list is simulated by the subsection
and its subroutines. The results of the simulation are stored in the

simul ator destination field buffer beginning at location V_SDF0. The machine
instruction list is then executed with the results being stored in the machine
destination field buffer beginning at location V_MDFO. The result format is
determined by the instruction being tested. The machine results are then
compared with the simulator results.

SECTION DESCRIPTIONS

Section 0 (SECO)

This section (SECO) tests the BDP numeric instructions. The section is
divided into subsection, each of which tests an individual BDP numeric
instruction type. The section does the following.

® Generates five random BDP decimal operands (types 0 through 6, 12, 13)
and stores them in 40-byte fields, V OPA to V OPE. The operands are
various section O subsections.

® Generates descriptor table entries for the five operands generated and
stores them in the T_DES descriptor table as follows:

Word 0 = type/length for operand A, field V_OPA
Word 1 = type/length for operand B, field V_OPB
Word 2 = type/length for operand C, field V OPC
Word 3 = type/length for operand D, field V_OPD
Word 4 = type/length for operand E, field V_OPE

60469390 A II-3~- 1

Uses ten 40-byte fields, V_MDFO to V_MDF9 for BDP numeric destination
operands and five 40-byte fields, V_OPA to V_OPE for source fields.
Initializes the destination fields with operands selected from the
operands V_OPA to V_OPE and copies the descriptors for these operands
into the machine instruction list with addressing offsets added to
reference their memory locations. The results of executing the machine
list are as follows:

Source Destination

Operand Operand Results
V_OPB V_OPA V_MDFO
V_OPC V_OPA V_MDF1
V_OPC V_OPB V_MDF2
V_OPD V_OPB V_MDF3
V_OPD V_OPC V_MDF4
V_OPE V_OPC V_MDFS
V_OPA V_OPD V_MDF6
V_OPE V_OPD V_MDF7
V_OPA V_OPE V_MDF8
V_OPB V_OPE V_MDF9

The length of the result operand is defined by the destination operand
descriptor.

Halts on error and displays an error message. In addition, for
subsections 0 through 4, and 6, bits 232 through 241 of the X2

register (gob process) indicate which machine destination fields are in
error. (232 equals field O, 233 equals field 1, etc.)

Subsection 0 (S0S0)

This subsection (S0S0) tests the BDP numeric sum (70) instruction.

[J

Sets up machine destination operand fields, V_MDFO to V_MDF9, by moving
operands (A through E) into the appropriate destination field described
by the descriptors in the machine instruction list.

Simulates the BDP numeric sum result and saves the simulated results in
40-byte fields V_SDFO to V_SDF9.

Executes a fixed sequence of BDP numeric sum instructions to add source
operand fields to destination operand fields.

Compares simulated results, V_SDFO to V_SDF9, with machine results,
V_MDFO to V_MDF9. If results compare, branches to next subsection;
else halts and displays:

S0SO ERROR (BDP NUMERIC SUM)

60469390 D I1-3-2

A
A—

PN
¢

O

Subsection 1 (S0S1)

This subsection (S0S1) tests the BDP numeric difference (71) instruction. The
section is similar to S0SO except that BDP numeric differences are simulated
and executed, The following error message is displayed on error:

S0S1 ERROR (BDP NUMERIC DIFFERENCE)
Subsection 2 (S0S2)

This subsection (S0S2) tests the BDP numeric product (72) instruction. The
section is similar to S0SO except that BDP numeric products are simulated and
executed. The following error message is displayed on error:

S0S2 ERROR (BDP NUMERIC PRODUCT)
Subsection 3 (S0S3)

This subsection (S0S3) is designed to test the BDP numeric quotient (73)
instruction. The section is similar to S0SO except that BDP numeric quotients
are simulated and executed. The following error message is displayed on error:

S0S3 ERROR (BDP NUWMERIC QUOTIENT)
Subsection 4 (S0S4)

This subsection (S0S4) tests the BDP numeric scale (EY4) and scale rounded (ES5)
instructions.

® Generates ten random shift count values. The shift count values are
stored in V_SCT (shift count table) in consecutive U-byte fields.
Shift count values are copied from V_SCT to the D field of the
appropriate instruction in the machine instruction list.

® Simulates the scale/scale-rounded result and saves the simulated
results in V_SDFO to V_SDF9.

® Executes a fixed sequence of BDP numeric scale/scale- round
instructions to scale source operand fields to destination operand
fields as follows:

Scale operand B (V_OPB) to type A (V_MDFO)
Scale operand C (V_("OPC) to type A (V_MDF1)
Scale operand C (V OPC) to type B (V MDF2)
Scale operand D (V_OPD) to type B (V_MDF3)
Scale operand D (V OPD) to type C (V_MDF4)
Scale round operand E (V_OPE) to type C (V_MDF5)
Scale round operand A (V_OPA) to type D (V_MDF6)
Scale round operand E (V_OPE) to type D (V_MDFT7)
Scale round operand A (V (_OPA) to type E (V_MDF8)
Scale round operand B (V (_OPB) to type E (V_MDF9)

60469390 A II-3-3

Compares simulated results, V_SDF0 to V_SDF9, with machine results,
V_MDFO to V_MDF9. If results compare, branches to next subsection;
else halts and displays:

S0S4 ERROR (BDP NUMERIC SCALE/SCALE ROUNDED)

Subsection S5 (S0SS5)

This subsection (S0S5) tests the BDP numeric compare (74) instruction.

Sets up machine destination operand fields, V_MDFO to V_MDF9, by
moving operands (A through E) into the appropriate destination fields
described by the descriptors in the machine instruction list.

Simulates the BDP numeric compare result and saves each simulated
result (lower X1 value) in one of ten four byte fields, V_SCDRO to
V_SCDRY.

Executes a fixed sequence of BDP numeric compare (74) instructions to
compare source operand fields to destination operand fields as
follows. After each instruction execution, the result (X1 lower) is
saved in consecutive four byte fields, V_MCDRO to V_MCDR9).

B (V_OPB) to A (V_MDFO), result to V_MCDRO
C (V_OPC) to A (V_MDFl), result to V_MCDR1
C (V_OPC) to B (V_MDF2), result to V_MCDR2
D (V_OPD) to B (V_MDF3), result to V_MCDR3
D (V_OPD) to C (V_MDF4), result to V_MCDR4
E (V_OPE) to C (V_MDFS), result to V_MCDRS
A (V_OPA) to D (V_MDF6), result to V_MCDRé
E (V_OPE) to D (V_MDF7), result to V_MCDR7
A (V_OPA) to E (V_MDF8), result to V_MCDR8
B (V_OPB) to E (V_MDF9), result to V_MCDR9

Compares simulated results, V_SCDRO to V_SCDR9, with machine results,
V_MCDRO to V_MCDR9. If results compare branches to next subsection;
else halts and displays:

S0S5 ERROR (BDP NUMERIC COMPARE)

Subsection 6 (S0S6)

This subsection (S0S6) tests the BDP numeric move (75) instruction.

60469390 D

Generates five random BDP (type 7 through 11, 14, 15) operands. The
operands generated (F through J) are based on existing (A through E)
operands and are stored in 40-byte fields, V_OPF to V_OPJ. Descriptor
word entries for the (F through J) operands are stored in words 5
through 9 of the T_DES descritpor table.

Generates ten random descriptor types O through 15 and stores them in
words 10 through 19 of table T_DES. They are also packed into the
destination descriptor fields of the machine instruction list.

1I-3-4

\\
L /
A

iy,
"
(:i/ e Simulates the BDP numeric move instructions and saves the simulated
results in fields V_SDF0O to V_SDF9.

g
4}
(::V e Executes a fixed sequence of BDP numeric move instructions to move
source operand fields to destination operand fields.

operand A (V_OPA) to V_MDFO
operand B (V_OPB) to V_MDFl
operand C (V_OPC) to V_MDF2
operand D (V_OPD) to V_MDF3
operand E (V_OPE) to V_MDF4
operand F (V_OPF) to V_MDF5
operand G (V_OPG) to V_MDF6
operand H (V_OPH) to V_MDF7
operand I (V_OPI) to V_MDF8
operand J (V_OPJ) to V_MDF9

) e Compares simulated results, V_SDFO to V_SDF9, with machine results,
(if\ V_MDFO to V_MDF9. If results compare, branches to next section; else
,/ halts and displays:

S0S6 ERROR (BDP NUMERIC MOVE)

Section 1 (SEC1)

This section (SEC1) tests the BDP byte instructions. The section is divided
into subsections with each subsection designed to test an individual BDP byte
‘ ‘; instruction type. The section does the following.
e Fills a 256-byte field V_BUFA with random data from V_RNB.
e Executes selected subsections and returns to main RUN routine.
Subsection 0 (S180)
This subsection (S1S0) tests the BDP byte compare (77) instruction.

‘:1‘ e Generates two random lengths (0 through 256) called L1 and L2. L2 is
greater than or equal to Ll.

e Generates descriptor words for V_BUFA, V_BUFB, and V_BUFC fields and
packs them into the machine instruction list.

e Initializes V_BUFB by moving bytes from V_BUFA per length L1 and
filling with a random fill byte to length L2.

e Initializes V_BUFC by moving bytes from V_BUFA per length L1 ‘and
filling with ASCII 20 codes to length L2.

¢ Simulates the BDP byte compare result (S0, S1 lower value). Packs the

results into words (X0 equals upper, X1 equals lower) and saves them in
V_SDFO to V_SDFO0+5.

C
0) 60469390 D ' 1I-3-5

Executes a fixed sequence of BDP byte compare instructions to compare
the following fields and saves the packed results (X0, X1 lower values)
in V_MDFO to V_MDFO0s5.

V_BUFA, L1 and V_BUFB, L1 to V_MDFO

V_BUFC, L2 and V_BUFA, L1 to V_MDFO+1
V_BUFA, L1 and V_BUFC, L2 to V_MDF0+2
V_BUFA, L2 and V_BUFB, L2 to V_MDFO043
V_BUFA, L2 and V_BUFB, L1 to V_MDFO+4
V_BUFC, L1 and V_BUFA, L2 to V_MDFO0+5

Compares simulated results, V_SDFO to V_SDF0+5 with machine results,
V_MDFO to V_MDFO0+5. If results compare, branches to next subsection;
else halts and displays:

S1S0 ERROR (BDP BYTE COMPARE)

Subsection 1 (S181)

This subroutine (S1S1) tests the BDP byte compare collated (E9) instruction.

60469390 D

Generates two random lengths (0 through 256) called L1 and L2. L2 is
greater than or equal to Ll.

Generates descriptor words for V_BUFA and V_BUFB fields and packs them
into the machine instruction list.

Initializes V_BUFC as translation table by filling with random lengths
of random bytes.

Simulates the BDP byte compare collated result (X0, X1 lower values)
for the following combinations using V_BUFC as a translation table.
The results are packed into words (X0 equals upper, X1 equals lower)
and saved in V_SDFO to V_SDFO0+2.

V_BUFA, L2 and V_BUFB, L2 to V_SDFO
V_BUFA, L2 and V_BUFB, L1 to V_SDFO+1
V_BUFB, L1 and V_BUFA, L2 to V_SDF0+2

Executes a fixed sequence of BDP byte compare collated instructions to
compare the following fields and saves packed results (X0, X1 lower

values) in V_MDFO to V_MDFO+2. V_BUFC is used as the translation table.

V_BUFA, L2 and V_BUFB, L2 to V_MDFO
V_BUFA, L2 and V_BUFB, L1 to V_MDFO+1
V_BUFB, L1 and V_BUFA, L2 to V_MDF0+2

Compares simulated results, V_SDFO to V_SDF0+2, with machine results,
V_MDFO to V_MDF0+2. 1If results compare, branches to next subsection,
else halts and displays:

S1S1 ERROR (BDP BYTE COMPARE COLLATED)

II-3-6

w‘// >’\

Y

P

Subsection 2 (S182)

This subsection (S1S2) tests the BDP byte scan (EA) instruction.

Cenerates a destination descriptor word for V_BUFA, with a random
length (0 through 256 bytes), and packs it into the machine instruction
list.

Generates three source descriptor words and packs them into the machine
instruction list. The source operands are stored in buffers with the
following data (instruction assumes 32-byte length).

V_BUFD (fixed 32 bytes, zeros)
V_BUFE (fixed 32 bytes, ones)
V_BUFB (random bytes)

Moves 32 bytes of random data to V_BUFB.

Simulates the BDP byte scan result (X0, X1 lower values) using V_BUFA
as the destination field. Packs the results into words (X0 equals
upper, X1 equals lower) and saves them in V_SDFO to V_SDFO0+2.

Executes a fixed sequence of BDP byte scan instructions for the
following source fields using V_BUFA as the destination field. Saves
packed results in V_MDFO to V_MDFO0+2.

V_BUFD result to V_MDFO
V_BUFE result to V_MDFO+1
V_BUFB result to V_MDF0+2

Compares simulated results, V_SDFO to V_SDF0+2, with machine results,
V_MDFO to V_MDFO+2. If results compare, branches to next subsection,
else halts and displays:

S1S2 ERROR (BDP BYTE SCAN)

Subsection 3 (S183)

This subsection (S183) tests the BDP byte translate (EB) instruction.

L

Generates two random lengths (0 through 256 byte values) for the source
and destination fields. Descriptor words for the fields are packed
into the machine instruction list referencing V_BUFB as the source
operand and V_BUFC as the destination operand.

Generates random data for source field V_BUFB.

Simulates BDP byte translate instruction to translate source field
V_BUFB using V_BUFA as the translation table. The simulated result
(destination field) is stored in field V_SBUF.

Executes a BDP byte translate instruction to translate source field
V_BUFB to destination field V_BUFC. V_BUFA is used as the translation
table.

60469390 D I1-3-7

Compares simulated result V_SBUF with machine result V_BUFC. If 4 P
results compare, branches to next subsection, else halts and displays: ’

b
S1S3 ERROR (BDP BYTE TRANSLATE) N

Subsection 4 (S184)

This subsection (S1S4) tests the BDP byte move (EC) instruction.

Generates two random lengths (0 through 256 byte values) for the source
and destination fields. Descriptor words for the fields are packed
into the machine instruction list referencing V_BUFA as the source
field and V_BUFB as the destination field.

Clears V_BUFB and V_SBUF.

Simulates BDP byte move result using V_BUFA as the source field and
V_SBUF as the destination field.

Executes a BDP byte move instruction using V_BUFA as the source field ./
and V_BUFB as the destination field.

Compares simulated result V_SBUF with machine result V_BUFB. 1If
results compare, branches to next subsection, else halts and displays:

S1S4 ERROR (BDP BYTE MOVE)

Subsection 5 (S185)

This subsection (S185) tests the BDP byte edit (ED) instruction. N

60469390 D . 1I-3-8 .

Generates a random BDP operand (type O through 9, 12, 13) for source
field V_BUFB.

Packs descriptor words into the machine instruction list referencing
V_BUFB as the source field and V_BUFC as the destination field.

Clears destination field V_BUFC and simulated destination field V_SBUF.

Simulated BDP byte edit result using V_BUFB as the source field and
V_BUFA as the edit mask. The simulated result (destination field) is
stored in field V_SBUF. Subroutine EDIT may modify the random mask
data in V_BUFA as it simulates.

Executes a BDP byte edit instruction to edit source field V_BUFB to
destination field V_BUFC using V_BUFA as the edit mask.

Compares simulated destination field V_SBUF with machine destination
field V_BUFC. If results compare, branches to next section; else halts
and displays:

S1S5 ERROR (BDP BYTE EDIT)

Section 2 (SEC3)

This section (SEC3) tests the BDP immediate data instructions. The section is
divided into subsections, each of which tests an individual BDP immediate data
instruction type. The section does the following:

Generates five random BDP operands (types O through 6, 10 through 15)
and stores the operands in 40-byte fields, V_OPA to V_OPE.

Generates descriptor table entries for the five operands and stores
them in the T_DES descriptor table as follows:

Word 0 = type/length for operand A, field V_OPA
Word 1 = type/length for operand B, field V_OPB
Word 2 = type/length for operand C, field V_OPC
Word 3 = type/length for operand D, field V_OPD
Word 4 = type/length for operand E, field V_OPE

Executes selected subsections and returns to main RUN routine.

NOTE

Due to test restructuring, section 2 has been tagged SEC 3 and S3.

Subsection 0 (S3S0)

This subsection (S3S0) tests the BDP immediate data move (F9) instruction.

Generates ten BDP immediate data move instructions using random legal
values for the j, k, and D fields. The instructions are packed into
the machine instruction list.

Generates ten random operand descriptor words referencing destination
fields, V_MDFO to V_MDF9, and packs them into the machine instruction
list.

e Simulates the BDP immediate data move results for the ten instructions
generated. The results (destination fields) are saved in 40-byte
fields V_SDFO to V_SDF9.

e Executes the BDP immediate data move instruction list.

e Compares simulated results, V_SDFO to V_SDF9, with machine results,
V_MDFO to V_MDF9. If results compare, branches to next subsection,
else halts and displays:
$380 ERROR (BDP IMMEDIATE DATA MOVE)
on error, bits 237 to 241 of the X2 register (job grocess) indicate
which machine destination fields are in error. (232 equals field O,
233 equals field 1, etc.) g

60469390 D 1I-3-9

Subsection 1 (8381)

This subsection (S3S1) tests the BDP immediate data compare (FA) instruction.

Generates five BDP immediate data compare (numeric) instructions and
stores simulated compare results (X1 lower values) in four byte fields,
V_SCDRO to V_SCDR4. Each instruction generated is followed by a store
byte (DB) instruction which saves the machine compare result (lower X1)
values in four byte fields, V_MCDRO to V_MCDR4. The instructions
generated are packed into the machine execution list. The five compare
instructions will compare operand fields V_OPA to V_OPE with random
legal values generated for the D fields.

Generates two BDP immediate data compare (ASCII) instructions and
stores simulated compare results (X1 lower values) in four byte fields,
V_SCDR5 and V_SCDR6. Each of the instructions is followed by a store
byte (DB) instruction which saves the machine compare result (lower X1)
values in four byte fields, V_MCDRS and V_MCDR6. The instructions
generated are added to the machine instruction list. The two instruc-
tions generated will compare operand fields, V_OPF, V_OPG, with random
legal values generated for the instruction D fields. Subroutine GCIA
also generates operand fields V_OPF, V_OPG, and their associated
descriptor words which are packed into the machine instruction list.

Executes the BDP immediate data compare instruction list.

Compares simulated results, V_SCDRO to V_SCDR6, with machine results,
V_MCDRO to V_MCDR6. If results compare, branches to next subsection;
else halts and displays:

8351 ERROR (BDP IMMEDIATE DATA COMPARE)

Subsection 2 (S382)

This subsection (8382) tests the BDP immediate data add (FB) instruction.

¢ Compares simulated results, V_SDFO to V_SDF9, with machine results,
V_MDFO to V_MDF9. If results compare, branches to next subsection,
else halts and displays:
60469390 D 1I-3-10

Sets up descriptor words for the instruction destination fields and
packs them into the machine instruction list. Initializes fields V_MDFO
to V_MDF9 by moving operands V_OPA to V_OPE into the appropriate
destination field.

Generates ten BDP immediate data add instructions and simulates
results. The instructions are generated using random legal values for
the D field and are packed into the machine instruction list. The
destination operand fields referenced are V_MDF0O to V_MDF9. The
simulated results are saved in fields V_SDFO to V_SDF9.

Executes the BDP immediate data add instruction list.

£
o

(-

(mym
o

C

$3S2 ERROR (BDP IMMEDIATE DATA ADD)

On error, bits 232 o 2%1 of the X2 register (job
which machine destination fields are in error. (2
233 equals field 1, etc.)

60469390 C

§2°

cess) indicate
equals field O,

 II-3-11

SECTION II-4

FIXED OPERAND COMMAND TESTS - FCT1-3,5

ol

FIXED OPERAND COMMAND TESTS - FCT1-3,5 4

S e Y P S TP TS S 3 4
R T T E Tttt b e e g

FCT1 TEST

This test is an inverted pyramid style of test. Each instruction test lists
the instruction which should be checked before this test is run. The test is

set up to automatically run each instruction test in the correct sequence for

meaningful testing.

FCT1 does some preliminary testing of the usage set for FCT2 and makes sure
that no op code will hang the machine. The test does not generate error
messages other than expected and received results.

A sumary of section activity appears with FCT1 Test and Index, section I-4.
For description of section and subsection makeup, refer to the listings.

FCT2 TEST

This test is an inverted pyramid style of test, with minimal operator control,
and minimal ability to generate error messages. FCT2 tests the usage set for
FCT3 and RCT1. FCT2 is a decision-point test. If it runs correctly, then
further meaningful testing can be done at the instruction level. If it
reports errors, or if it will not run at all, then there is little point in
running any CPU-based test. Further diagnosis should be done using FCT1,
FCT5, or the microcode tests.

If it becomes necessary to find out exactly what is causing FCT2 to fail,
these steps can be followed :

) Determine the failing section, subsection and condition from the
display.

® Find this condition in the listings.

) Find the instruction which does the error check. Usually directly in
front of call to the procedure named FAILURE.

) Determine fram the listing which registers are being used in the
error check.

° btain (from the actual hardware) the contents of these two registers.

A summary of section activity appears with FCT2 Test and Section Index. For
description of section and subsection contents, refer to the listings.

FCT3 TEST
This is a usage set style of test, with full operator control and detailed
error messages. The instructions used for housekeeping purposes are limited

to those checked by FCT2 (the usage set). FCT3 tests all CPU-testable
instructions using simple data patterns with emphasis on end cases.

60469390 A IT-4-1

A summary of section activity appears with FCT3 Test and Section Index,
section II-4, For description of section and subsection makeup, refer to the

listings. .,
"“«“,)‘!
FCTS5 TEST

This test requires that FCT1 has been completed successfully. FCT5 tests each
instruction that cannot be tested meaningfully fram the CPU,

The test does not generate error messages other than expected and received
results.

A summary of section activity appears with FCT5 Test and Section Index. For
description of section and subsection makeup, refer to the listings.

60469390 A II-4-2 <

~

C

SECTION II-5

VIRTUAL MODE INSTRUCTION LEVEL TEST - FCT9

FCT9 - VIRTUAL MODE INSTRUCTION LEVEL TEST 5

—---—------——_---————--——----_—-—-—-—-----_——--———-----——--------——_——------———
--—-——-—--_——-—---------—_—---------—-———-—--—-----——_-----_..——_----——--——-.---—

PROGRAM DESCRIPTION

GENERAL

This section describes the operation of the test and the testing done within
each section. This section will be of particular interest if the test detects
an error, '

The test is divided into basic units known as conditions. Within a conditionm,
there is a control table containing commands for the PP controller to set up
the environment for the test, and CPU code which essentially define the
operation being tested. :

Controller Operation

The controller commands in each condition will set up data in central memory
and processor registers, start CPU execution, and when the CPU halts, compare
the results in central memory.

The data in central memory is used to control the operation of the slave PPs,
to set up the various exchange packages, and to set up input data for the test
instructions. Processor registers are loaded with the locations of exchange
packages, and page table parameters.

To start CPU execution, the controller first triggers the slave PPs to read
their control information and prepares them for their operation. The CPU is
then deadstarted. This deadstart generates a triggering signal for the scope
loop and starts the CPU running. The CPU, during its execution sequence,
clears the 'deadstart flag' to trigger the slave PPs to begin their operation,
and then executes the test instruction. The PP controller monitors the slave
PPs and the CPU, waiting for them to finish their operation. The period of
this wait is set by the hang count parameter (parameter 16). If any of the
processors do not finish by the end of this period, a processors hung error
message will be displayed, and all the processors are forced to finish. The
results are then compared.

In scope mode, the above process is repeated indefinitely except that the
results are not compared until the scope loop is exited. The scope loop is
exited by entering the CMSE command, UP,x, where x is the number of the PP in
which EXCHITC resides. :

CPU Operation

The operation of the CPU can be divide into two categories depending on
whether the Environment Interface is used or not.

60469390 A II-5-1

Enviromment Interface (EI)

The EI is an executive state monitor program which implements some of the
functions of the system.

The EI contains an executive state monitor and an executive state job exchange
package. By virtue of the virtual machine identifier, the executive state job
exchange package is interpreted by the machine as an A170 job package in
executive state format. Therefore, an exchange to this executive state job
package establishes the A170 state. Besides initializing the A170 state, the
EI handles all executive state interrupt conditions and all A170 monitor mode
error exits. Also, the EI implements the simulation of the MU instructions.

Whenever the above mentioned functions are tested, the EI is included as part
of the A170 system being tested by setting the Monitor Process State Pointer
(MPS) and the Job Process State Pointer (JPS) to point to the EI's executive
state monitor and job exchange packages; otherwise the MPS and JPS point to a
different set of executive state monitor and job exchange packages and
processes, which exclude the EI code. Excluding the EI shortens the amount of
CP code executed and allows a much tighter scope loop.

Testing Without EI

If the EI is not used, the executive state monitor code consists of the
following steps:

1) clearing the deadstart flag, which tells EXCHITC to trigger the slaves;
2) an exchange to the A170 job where the CPU is halted;

3) on a redeadstart, the code branches back to the beginning of the executive
state monitor caode.

This looping allows the CPU code to be executed repeatedly when the CP is
deadstarted repeatedly in scope mode. The A170 state should never return to
the executive state monitor because it would start an infinite loop. (Looping
indefinitely will never occur in practice because EXCHITC will break in after
a certain period). To avoid returning to the executive state monitor, the 170
job runs with traps enabled and all monitor mask bits cleared, therefore all
executive state interrupt conditions will either stack, trap, or halt., Te
trap routine will halt the CPU. 1If there should be an A170 error exit from
the A170 job, the A170 monitor will alter the P-register in the A170 error
exchange package to point at a halt routine and exchange to it, halting the
CPU. The exchange back to the error package restores the A170 monitor package
to MA, and allows the error results to be dumped to the dump area.

Once the executive state monitor has exchanged to the A170 job, the A170 job
will execute the test instruction sequence which will eventually end in a page
fault instruction, The page fault will cause a real halt of the processor .

Therefore, in all cases, the processor will be halted in job mode and the
result exchange package will be dumped to the dumped area by EXCHITC. The
fact that the executive state job exchange package is always dumped to the
dump area and never updates the job exchange package in central memory, allows
the test instruction sequence to be executed repeatedly with no
reinitialization, when in scope mode.

60469390 A . II-5-2

N

,\E;A.J'/l

the test instruction sequence to be executed repeatedly with no reinitializa-
tion, when in scope mode.

Testing With EIL

When the EI is used, it is altered slightly to conform to the testing format
of FCT9 and EXCHITC. The modifications to EI are kept to a minimum to
maintain the integrity of the EI program and to minimize the impact to the
test of any future changes to EI.

The EIs executive state job exchange package is set up with data so that an
exchange from executive state monitor mode will immediately start the
execution of the A170 test instruction sequence. The A170 test instruction
sequence must clear the deadstart flag to trigger the slave PPs before
executing the test instruction. The test instruction will generally cause an
exchange from A170 state to executive state monitor. If not, a following
instruction will. 1In all cases, other than testing of CMU instruction, the
exchange to EI will end in a loop in EI used to simulate a CP halt. This loop
is changed to a branch to additional code. This additional code will reset
the executive state monitor and job exchange packages' P-registers to their
initial value at the beginning of the condition, and then halt the processor.
Resetting the P-registers allow the test instruction sequence to be scoped.
Note that scoping requires that the processor is operational enough that this
code is reached and executed correctly.

SECTION DESCRIPTIONS
SECTION 0

Section O has a single subsection of four conditions used for initialization.
They perform functions as follows:

Condition Description
(1] Load and check the PTA, PSM, and PTL register and set up a

segment table containing two descriptors. This table is
used with subsections of the test which perform tests
without the EI.

1 Sets up registers and pointers for the trap mechanism.
This is also associated with tests performed without the EI.

2 This condition is concerned with initiating EI which, with
some assisstance, initializes itself. A temporay page
table is created and a temporary monitor package in the EI
code is modified to point to its segment table. The
simulated halt command in EI is modified to return control
to FCT9 where an actual HALT command will be executed. An
EI initialization function request is set up and the CP is
deadstarted to excute the EI initialization code.

60469390 E II-5-3

The test (EXCHITC) control PP waits until EI generates a
response to the function request indicating completion of

initialization.

Subsequently, the control PP issues an

invalid function request which causes EI to branch to the
At this point EI has set up page and
segment tables, stack frames, permanent monitor, and job

actual HALT command.

exchange pachages, etc.

operation.

and is ready for normal

To complete initialization the control PP modifies the page
table created by EI with a few additional entries required

The test may select operation with or without EI
by setting the MPS and JPS registers to point respectively

to EIs or the test's monitor and job exchange packages.

for FCT9.

SECTIONS 1 and 2

Sections 1 and 2 test the positive operation of the CRXj (660) and CWXj (670)
The testing within these two sections is similar.
The subsections and conditions within these two sections are described below.
Subsection 0 sets up processor registers and common data.

instructions respectively.

Subsection

1

60469390 E

Description

Tests the CRXj/CWXj instruction with different vélues in the J

and K fields.

Conditions 0 to 6 use values of 1 to 7 in the K field using
registers X1 through X7 to address central memory.

Condition

N WN=-O

CRX0/CWX0
CRXO0/CWX0
CRX0/CWX0
CRX0/CWXO0
CRX0/CWX0
CRX0/CWX0
CRXO0/CWX0

X1
X2
X3
X4
XS
X6
X7

Conditions 7 to 13 use values of 1 to 7 in the J field loading
registers X1 through X7.

Condition

7
8
9
10
11
12
13

CRX1/CwWX1
CRX2/CWKX2
CRKX3/CWX3
CRX4/CWX4
CRX5/CWXS
CRX6/CWX6
CRKX7/CwWX7

X0
X0
X0
X0
X0
X0
X0

1I-5-4

'

e

-

m“‘:"\
‘;,/ Subsection

C

PR,
o

0 60469390 E

Description

Tests the addressing of central memory by the CRXj/CWXj
instructions. A pattern of ten different addresses are used to
test the instruction.

Condition
0 (Xk)= 17,777
1 (Xk)= 20,000
2 (Xk)= 37,777
3 (Xk)= 40,000
4 (Xk)= 17,717
5 (Xk)= 100,000
6 (Xk)= 177,777
7 (Xk)= 200,000
8 (Xk)= 375,777
9 (Xk)=7,777,776

The pattern was chosen to test a wide range of addresses,
especially end cases. The last address, 7,777,776, is
translated via the page table to 375,776.

Note that the reference address (RAc) is equal to zero. If
there should be an error exit, the content of RA will be
overwritten with the dumped register file. To avoid this, set
scope mode and the contents of RAc can be displayed until the
scope loop is exited, at which time the register file is dumped.

Tests the transmission of data patterns by the CRXj/CWKj]
instruction. The patterns used are:

Condition
0 data = octal 25252525252525252525
1 data = octal 52525252525252525252
2 data = octal 70707070707070707070
3 data = octal 07070707070707070707

At the end of each condition, the following comparisons are
made:

1) Compare the dumped P register to the address of the
instruction halting the processor.

2) Check that the dumped MCR is clear except for the page fault
bit (this interrupt condition is used to halt the processor
in A170 mode, see Testing Without EI, above).

3) Compare the dumped Xk register or the central memory
location written to the expected data.

II-5-5

/‘A/A ;
SECTION 3-4 MH;D

Sections 3 and 4 test the positive operation of the RXj (014) and WXj (015) ‘ 4 %
instructions in UEM (ECS mode). Section 3 tests the RXj instruction, and I
section 4 tests the WXj instruction. The subsections and conditions within

these two sections are described below. Subsection 0 sets up processor

registers and common data.

Subsection Description
1 Tests the RXj/WKj instruction with different values in the J and
K fields.

Condition O to 6 uses values of 1 to 7 in the K field,
therefore, using registers X1 through X7 to address central

memory .
A\m
Condition s
0 RX0/WX0 X1
1 RX0/WX0 X2
2 RX0/WXO X3
3 RX0/WX0 X4 -
4 RX0/WX0 X5
) RX0/WXO0 X6
6 RXO0/WXO0 X7 .

Conditions 7 to 13 uses values of 1 to 7 in the J field,
therefore, loading registers X1 through X7.

Condition
7 RX1/WK1 X0
8 RX2/WX2 X0 B
9 RX3/WK3 X0
10 RX4/VWX4 XO
11 RX5/WKS X0
12 RX6/WX6 XO
13 RX7/WK7 X0
2 Tests the addressing of central memory by the RXj/WXj

instruction. A pattern of ten different addresses are used to
test the instruction.

60469390 E | II-5-6 | 7

Subsection Description
Condition
0 (Xk)= 17,7717
1 (Xk)= 20,000
2 (Xk)= 37,717
3 (Xk)= 40,000
4 (Xk)= 17,717
S (Xk)= 100,000
6 (Xk)= 177,727
7 (Xk)= 200,000
8 (Xk)= 375,777
9 (Xk)=7,777,677

The pattern was chosen to test a wide range of addresses,
especially end cases. The last address, 7,777,677, is
translated via the page table to 375,677.

Note that the reference address (RAc) is equal to zero. If
there should be an error exit, the content of RA will be
overwritten with the dumped register file. To avoid this, set
scope mode and the contents of RAc can be displayed until the
scope loop is exited, at which time the register file is dumped.

3 Tests the transmission of data patterns by the RXj/WXj
instruction. The patterns used are:
Condition
V] data = octal 25252525252525252525
1 data = octal 52525252525252525252
2 data = octal 70707070707070707070
3 data = octal 07070707070707070707

At the end of each condition, the following comparisons are
made:

1) Compare the dumped P register to the address of the
instruction halting the processor.

2) Check that the dumped MCR is clear except for the page fault
bit (this interrupt condition is used to halt the processor
in A170 mode, see Testing Without EI, above).

3) Compare the dumped Xk register or the central memory
location written to the expected data.
SECTION 5
This section tests the positive operation of the REC (block read ECS, 011)

instruction in UEM (ECS mode). Subsection 0 sets up processor registers and
common data.

60469390 E ’ 11-5-7

/(i
Subsection - Description ~ “Q;B

1 Tests the REC instruction with different values in the J field /’7@
(ie. Bl through B? are used). '
Condition

0 REC Bl+k
1 REC B2+k
2 REC B3+k
3 REC B4k
4 REC BS5+k
S REC B6+k
6 REC B7+k

2 Tests the addressing of central memory and unified extended
memory (ECS mode) by the REC instruction. A pattern of ten N
addresses is used. Each of the addresses is used in combination o

with the other addresses including itself. Therefore, each
address in the pattern is used to read UEM to every address in
the pattern, now as addresses in CM.

Condition
0-9 REC (Bl)+k words from (adrsl-adrsl0) to adrsl
10-19 REC (Bl)+k words from (adrsl-adrsl0) to adrs? =
20-29 REC (Bl)+k words from (adrsl-adrsl0) to adrs3 o
30-39 REC (Bl)+k words from (adrsl-adrsl0) to adrsé d
40-49 REC (Bl)+k words from (adrsl-adrsl0) to adrsS
$0-59 REC (Bl)+k words from (adrsl-adrsl0) to adrsé
60--69 REC (Bl)+k words from (adrsl-adrsl0) to adrs7
70-79 REC (Bl)+k words from (adrsl-adrsl0) to adrs8
80-89 REC (Bl)+k words from (adrsl-adrsl0) to adrs9
90-99 REC (Bl)+k words from (adrsl-adrsl0) to adrslO
The reference addresses, RAc and RAe, are both equal to zero. SN
Therefore, adrsl through adrsl0 are equal to the addresses given S

in the description of Section 4, Subsection 2.

3 Tests the transmission of data patterns by the REC instruction.
The patterns used are:

Condition

0 data = octal 25252525252525252525

1 data = octal 52525252525252525252

2 data = octal 70707070707070707070

3 data = octal 07070707070707070707
A
NS
q

60469390 E TI-5-8 | %

(jf} Subsection

o ""‘wv“l‘: 4
Y
5
C
6
™
‘ 60469390 E

Description

Tests the summation of the B-register with the k-field by the
REC instruction. The various combinations used are:

Condition
(Bi) k (Bj)+k
0 2 -1 1
1 0 1 *this condition
1 0 1 1 tested in previous
2 -1 2 1 subsection

Tests the ability of the REC instruction to copy blocks of
varying sizes. Since transfers are divided into blocks with
boundaries of (0 mod 8) the transfer sizes and addresses were
chosen so as to require a maximum number of blocks for a minimum
transfer size. The block sizes in octal are:

Condition

12

22

42

102
202
1,002
2,002
4,002
10,002
20,002

VRO WNSWNM-O

Tests the interruptible of the REC instruction. It checks that
transfers greater than two blocks can be interrupted, and that
the interruption occurs at an ECS record boundary, but not the
last one. It also checks that transfer sizes of two ECS records
in length cannot be interrupted (ie. cannot interrupt between
the last two records).

Transfer Sizes

Condition Expected Result

0 256 words Transfer is interrupted at
.32 ECS records an ECS record boundary
minimum of 4 blocks

1 58 words Transfer is interrupted at
9 ECS records an ECS record boundary, but
minimum of 2 blocks not the last one.

2 15 words Transfer is not interrupted

2 ECS records

II-5-9

Subsection

8-14

60469390 E

Description

3 2 words
2 ECS records

Transfer is not interrupted

For each condition, the test checks that all the data is
transferred correctly, and whether the transfer is interrupted.

Tests that the REC instruction can be restarted after a page
table search without find. The test checks that the page fault
does not interrupt the transfer at other than UEM ECS record
boundaries or between the last two records.

Condition Transfer Sizes
0 271 words
1 15 words
2 ECS records
2 271 words
3 15 words

2 ECS records

Expected Result

Transfer is interrupted by
invalid page in UEM.

Transfer never starts
because second and last UEM
ECS record not in page
table.

Transfer never starts
because the number of words
in CM are not enough to
complete first UEM ECS
record.

- Transfer never starts

because the words needed to
form the second and last
UEM ECS record are not in
CM.

For each condition, the test checks that the transfer is
completed correctly when restarted and the appropriate page

validated.

Subsections 8-14 are identical to subsections 1-7 with the
exception that the Block Copy Flag is set. Therefore, X0 upper
instead of A0 is used for the block transfer to CM. At the end
of each condition, the following comparisons are made:

1) Compare the dumped P-register to the address of the
instruction halting the processor.

bit.

2) Check that the dumped MCR is clear except for the page fault

3) Check that the source and destination data locations are

correct.

C

C
C

4) For subsection four, check that the location next to the
destination data locations is not changed.

SECTION 6

This section tests the positive operation of the WEC (block write ECS, 012)
instruction in UEM (ECS mode). Subsection O sets up processor registers and
common data.

Subsection Description
1 Tests the WEC instruction with different values in the J field
(ie. Bl through B7 are used).
Condition
0 WEC Bl+k
1 WEC B2+k
2 WEC B34k
3 WEC B4k
4 WEC BS+k
5 WEC B6+k
6 WEC B7+k
2 Tests the addressing of central memory and unified extended

memory (ECS mode) by the WEC instruction. A pattern of ten
addresses is used. Each of the addresses is used in combination
with the other addresses including itself. Therefore, each
address in the pattern is used to write UEM from every address
in the pattern, now as addresses 'in CM.

Condition
0-9 WEC (Bl)+k words from (adrsl-adrsl0) to adrsl
10-19 WEC (Bl)+k words from (adrsl-adrslO) to adrs2
20-29 WEC (Bl)+k words from (adrsl-adrsl0) to adrs3
30-39 WEC (Bl)+k words from (adrsl-adrsl0) to adrs4
40-49 WEC (Bl)+k words from (adrsl-adrsl0) to adrs5
50-59 WEC (Bl)+k words from (adrsl-adrsl0) to adrsé
60-69 WEC (Bl)+k words from (adrsl-adrsl0) to adrs?
70-79 WEC (Bl)+k words from (adrsl-adrsl0) to adrs8
80-89 WEC (Bl)+k words from (adrsl-adrslO) to adrs9
90-99 © WEC (Bl)+k words from (adrsl-adrsl0) to adrslO

The reference addresses, RAc and RAe, are both equal to zero.
Therefore, adrsl through adrsl0 are equal to the addresses given
in the description of Section 4, Subsection 2.

K] Tests the transmission of data patterns by the WEC instructionm.
The patterns used are:

60469390 E TI-5-11 '

Subsection

60469390 E

Description

Condition
0 data = octal 25252525252525252525
1 data = octal 52525252525252525252
2 data = octal 70707070707070707070
3 data = octal 07070707070707070707

Tests the summation of the B-register with the k-field by the
WEC instruction. The various combinations used are:

Condition
(Bj) k (Bj)+k
0 2 -1 1
1 0 1 *this condition
1 0 1 1 tested in previous
2 -1 2 1 subsection

Tests the ability of the WEC instruction to copy blocks of
varying sizes. Since transfers are divided into blocks with
boundaries of (0 mod 8) the transfer sizes and addresses were
chosen so as to require a maximum number of blocks for a minimum
transfer size. The block sizes in octal are:

Condition

12

22

42

102
202
1,002
2,002
4,002
10,002
20,002

OVONOWVNEWN-O

Tests the interruptible of the WEC instruction. It checks that
transfers greater than two blocks can be interrupted, and that
the interruption occurs at an ECS record boundary, but not the
last one. It also checks that transfer sizes of two ECS
records in length cannot be interrupted (ie. cannot interrupt
between the last two records).

 Condition Transfer Sizes Expected Result
0 256 words Transfer is interrupted at
32 ECS records an ECS record boundary

minimum of 4 blocks

II-5-12

5\\
(if/ Subsection Description

(fn? 1 58 words Transfer is interrupted at
Y 9 ECS records an ECS record boundary, but
minimum of 2 blocks not the last one.

2 15 words Transfer is not interrupted
2 ECS records

3 2 words Transfer is not interrupted
2 ECS records

For each condition, the test checks that all the data is
transferred correctly, and whether the transfer is interrupted.

7 Tests that the WEC instruction can be restarted after a page
table search without find. The test checks that the page fault
(f“, does not interrupt the transfer at other than UEM ECS record
o boundaries or between the last two records.
Condition Transfer Sizes Expected Result
0 271 words Transfer is interrupted by
invalid page in UEM.
N 1 15 words Transfer never starts
‘:T” ‘ 2 ECS records because second and last UEM
ECS record not in page
table.
2 271 words Transfer never starts

because the number of words
in CM are not enough to
complete first UEM ECS

record.
‘:if 3 15 words Transfer never starts
2 ECS records becauséeé the words needed to-

form the second and last
UEM ECS record are not in
CM.

For each condition, the test checks that the transfer is
completed correctly when restarted and the appropriate page
validated.

8-14 Subsections 8-14 are identical to subsections 1-7 with the
exception that the Block Copy Flag is set. Therefore, X0 upper
instead of A0 is used for the block transfer from CM. At the
end of each condition, the following comparisons are made:

0»

"
G 60469390 E 1I-5-13

Subsection Description

1) Compare the dumped P-register to the address of the
instruction halting the processor.

2) Check that the dumped MCR is clear except for the page fault
bit.

3) Check that the source and destination data locations are
- correct.

4) For subsection four, check that the location next to the
destination data locations is not changed.

SECTION 7

This section tests the error exits of the CRXj and CWXj instructions.
Subsection 0 sets up processor registers and common data.

1 Tests the address out of range exit on a CM read/write in 170
job mode. The error exit is handled by the 170 monitor,
therefore, the EI is not used. The following table indicate the
values set up in the various variables that affect the execution
of the instruction.

Condition Instr (Xk)<FLc AOR EM Result
0 CRKj no set AOR Exit to MA
1 CRXj no clear Pass
2 CWXj no set AOR Exit to MA
3 CWXj no clear Pass
2 Tests the address out of range exit on a CM read/write in 170

monitor mode. The error exit is handled by the executive state
monitor, therefore, the EI is used. The following table
indicate the values set up in the various variables that affect
the execution of the instruction.

Condition Instr (Xk)<FLc AOR EM Result
0 CRXJ no set AOR Exit to EI
1 CRXj no clear Pass
2 CWXj no set AOR Exit to EI
3 CWXj no clear Pass

At the end of each condition, the following comparisons are
made: ‘

1) Compare the dumped P register to the address of the
instruction halting the processor.

60469390 E , II-5-14

C

Subsection

SECTION 8

Description

2) Check that the dumped MCR is clear except for the page fault
bit or instruction specificetion error bit depending on what
is used to halt the processor.

3) Check that the destination register or memory location is
correct.

4) cCheck that the contents of RAC is correct.

5) 1If the EI is used, check that the job's P-register saved by
EI is correct.

This section tests the error exits of the RXj and WKj instructions.
Subsection 0 sets up processor registers and common data.

60469390 E

Tests the address out of range exit on a UEM (ECS mode)
read/write in 170 job mode. The error exit is handled by the
170 monitor, therefore, the EI is not used. The following table
indicate the values set up in the various variables that affect
the execution of the instruction.

UEM ECS ESM AOR Expected
Condition Instr Set Pres Set (Xk)<FLe EM Result
0 RXj yes no no no set AOR
1 RXj yes no no no clear PASS
2 wWKj yes no no no set AOR
3 wKj yes no no no clear PASS

The expected results given in the table above are: AOR for
address out of range error exit, and PASS for when the
instruction is executed as a no-op.

Tests the address out of range exit on a UEM (ECS mode)
read/write in 170 monitor mode. The error exit is handled by
the executive state monitor, therefore, the EI is used. The
following table indicate the values set up in the various
variables that affect the execution of the instruction.

UEM ECS ESM : AOR Expected
Condition Instr Set Pres Set (Xk)<FLe EM Result
0 RXj yes no no no set AOR
1 RX] yes no no no clear PASS
2 WKj yes no no no set AOR
3 wXj yes no no no clear PASS
II-5-15

P
Subsection Description \g”;

At the end of ‘each condition, the following comparisons are K/;D
made: W W

1) Compare the dumped P register to the address of the
instruction halting the processor.

2) Check that the dumped MCR is clear except for the page fault
bit or instruction specification error bit depending on what
is used to halt the processor.

3) Check that the destination register or memory location is
correct.

4) Check that the contents of RAc is correct.

5) If the EI is used, check that the job's P-register saved by
EI is correct. AT

SECTION 9

This section tests the error exits and half exits for the block copy
instructions in UEM (ECS mode). Full exits, where execution continues
normally, are tested in section 5 and 6.

1-4 Tests the error exits and half exits of the REC and WEC
instruction in 170 job and monitor mode. Subsection 1 tests the
REC instruction in 170 job mode, and subsection 2 tests the WEC
instruction in 170 job mode. These error exits are handled by
the 170 monitor, therefore, the EI is not used. Subsection 3
tests the REC instruction in 170 monitor mode, and subsection 4
tests the WEC instruction in 170 monitor mode. These error
exits are handled by the executive state monitor, therefore, EI

- is used. The following table indicate the values set up in the
various variables that affect the execution of the block copy
instructions. For each condition, the variables are chosen such
that there are a number of possible errors and exits. However,
due to the order in which these variables are tested, there is
only one correct exit and result. The underlined value
indicates the particular variable test which causes the expected
exit.

For example, in condition 01, the expected result is an address
out of range error exit due to AO+Bj+k being greater than FLec.
However, the variables are set up such that the instruction may
pass due to a zero word data transfer if the variables are
tested out of order.

<
60469390 E 11-s-16 |«

C

Instr UEM ESM ECS ECS AO+Bj+k XO+Bj+k AOR X0 Bit Expected
Condition Parcel 0 SET SET Pres Auth <=FLc Bj+k _ <=FLe EM 21, 22 Result
0 no yes no no no no zero no set clear ILL
1 yes yes no no no no zero yes set clear AOR
2 yes yes no no no no zero yes clear clear PASS
3 yes yes no no no yes neg yes set clear AOR
4 yes yes no no no yes neg yes clear clear PASS
5 yes yes no no no yes zero no set clear AOR
6 yes yes no no no yes zero no set clear AOR
7 yes yes no no no yes zero no clear clear PASS
8 yes yes no no no yes zer yes set set PASS
9 yes yes no no no yes pos yes set set HALF

The expected results given in the table above are: ILL for

illegal instruction error exit, AOR for address out of range

error exit, PASS for when the instruction is executed as a

no-op, and HALF for half exit.

Subsection Description
5-8 Tests the REC and WEC instruction in 170 job and monitor mode
with the Block Copy Flag set. With the exception of the Block

Copy Flag, and the usage of XO upper instead of A0 to address

CM, these four subsections are identical to subsections 1-4.

At the end of each condition, the following comparisons are

made:

1) Compare the dumped P register to the address of the
instruction halting the processor.

2) Check that the dumped MCR is clear except for the page fault
bit or instruction specification error bit depending on what
is used to halt the processor.

3) Check that the destination register or memory location is
correct.

4) Check that the contents of RAc is correct.

5) If the EI is used, check that the job's P-register saved by
EI is correct.

SECTION 10

This section tests the illegal instruction, address out of range, indefinite,
and infinite error exits. The processing of these exits by the hardware has
been tested by the executive state exchange test. Therefore, only particular
conditions that require processing by the EI are tested here. Those
conditions are the various error exits in 170 monitor mode and the particular
exit mode selected. Subsection O sets up processor registers and common data.

60469390 E ' II-5-17

Subsection Description

1 Tests the PS (00) instruction in parcel 0 to 3.
Condition
0 PS in parcel O
1 PS in parcel 1
2 PS in parcel 2
3 PS in parcel 3

2 This subsection uses the SXi Xj+K instruction in parcel 3 to
test for illegal instruction.

3 This subsection tests address out of range error exits.
Condition
0 RNI AOR
1 Branch AOR
2 AOR on a read CM
3 AOR on a write CM
4 Tests the infinite condition error exit.
Condition
0 FXi Xj+Xk Xj is infinite
1 FXi Xj-Xk Xj is infinite
2 FXi Xj*Xk Xj is infinite
3 FXi Xj/Xk Xj is infinite
5 Tests the indefinite condition error exit.
Condition
0 FXi Xj+Xk Xj is indefinite
1 FXi Xj-Xk Xj is indefinite
2 FXi Xj*Xk Xj is indefinite
3 FXi Xj/Xk Xj is indefinite

These error conditions cause an exchange to executive state
mode, where the Environment Interface will set up the exit
condition and P in location RAc, and halt the processor.
The following comparisons are then made:

1) Compare the dumped P-register to the address of the halt
instruction in EI.

60469390 E II-5-18 |

Subsection Description

2) Compare the job's P register saved by EI to address of error
instruction.

3) Compare the contents of RAc to the expected exit condition
and P-register value.

4) Check that the dumped MCR is clear except for the
instruction specification error bit due to the halt
instruction.

SECTION 11
This section tests the operation of the RT (017g) instruction. The test is

done with and without the EI. Subsection O sets up processor registers and
initializes common data.

1 Tests for a Privileged Instruction Fault interrupt when a RT
instruction is encountered.

Condition OPERATION TESTED TRAPS EXP RESULT
0 017 in A170 Job Mode Traps Enabled Trap
1 017 in A170 Monitor Mode Traps Enabled Trap
2 017 in Al170 Job Mode Traps Disabled Exchange
3 017 in A1l70 Monitor Mode Traps Disabled - Exchange

2 Tests the operation of the EI on an RT instruction. For an RT
instruction in A170 job mode, the EI simulates an exchange jump
to MA, and for an RT instruction in A170 Monitor Mode, the EI
simulates a halt.

Condition

0 017 in A170 job mode causes an exchange jump to MA.
1 017 in Al170 monitor mode causes a halt.

For each condition, the test checks that the expected result
occurs.
SECTION 12
This section tests the simulation of the CMU instruction by the EI. The
positive operation of the CMU instructions are tested by the diagnostic, CT8.

Only the interruptible and the error exits of the CMU instructions are tested
here. Subsection 0 sets up processor registers and common data.

60469390 E II-5-19

Subsection Description /”tD
\
1-4 Tests the interruptible of the 464, 465, 466, and 467 N
instructions respectively. Each subsection tests that the CMU 7
instruction is simulated correctly with and without PP Nk“}
interruptions. A PP exchange interrupts the CMU simulation at a
certain point, where a second job checks that the CMU simulation
has started but not finished. After the processor has returned
to and finished the CMU simulation, the processor halts and the
results are compared.
Condition Job/Monitor Mode PP Interrupt Interrupt Taken
0 JOB NONE NO
1 MONITOR NONE NO
2 MONITOR MAN NO
3 JOB MXN YES
4 MONITOR EXN YES
N
5-8 Checks the error exits of the 464, 465, 466, and 467
instructions respectively. The error exits tested are described
in the table below. Conditions 20-23 applies only to Subsection
5 and 7, where the move descriptor for the Indirect Move
instruction and the collate table for the Compare Collate
instruction is out of range.
Instr. K1+L K2+L Bj+K>=FLc AOR Expected)
Condition Parcel 0 C1>9 C2>9 >=FLc¢ >=FLc AO+7>=FLc Len=0 Mode EM Result A
0 no yes yes yes yes no yes job clear ILL
1 no yes yes yes yes no yes mon clear ILL
2 yes yes no no no no no job set AOR
3 yes yes no no no no no job clear PASS
4 yes yes no no no no no mon set AOR
5 yes yes no no no no no mon clear PASS
6 yes no yes no no no no job set AOR
7 yes no yes no no no no job clear PASS
8 yes no yes no no no no mon set AOR
9 yes no yes no no no no mon clear PASS
10 yes no no yes no no no job set AOR
11 yes no no yes no no no job clear PASS
12 yes no no yes no no no mon set AOR
13 yes no no yes no no no mon clear PASS
14 yes no no . no yes no no job set AOR
15 yes no no no yes no no job clear PASS
16 yes no no no yes no no mon set AOR
17 yes no no no yes no no mon clear PASS
18 yes no no no no no yes job clear PASS
19 yes no no no no no yes mon clear PASS
20 yes no no no no yes no job set AOR
21 yes no no no no yes no job clear PASS
22 yes no no no no yes no mon set AOR a4
23 yes no no no no yes no mon clear PASS \
N
60469390 E -s-20 | -

-

C
C

60469390 E

At

1)

2)

3)

4)
5)

6)

the end of each condition, the following comparisons are made:

If data is moved, check that the destination locations are
correct.

Compare the dumped P register to the address of the
instruction halting the processor.

Check that the dumped MCR is clear except for the page fault
bit. ‘

Check that the Job's P-register is correct.
Check that the Job's X0 register is correct.

Check that the contents of RAc is correct.

II-5-21

Ny
"

“

SECTION II-6

EXCH — EXCHANGE TEST

N

ole

EXCH - EXCHANGE TEST 6

o e o A S S D 1 A PO s oo s T e i s o S (S (D S S T S v e s S fms e S e Sy N U S ST IR IS NS

PROGRAM DESCRIPTION

GENERAL

This section describes the mechanism by which EXCHITC maintains control over
EXCH. The test is assembled on the executive state virtual machine assembler
and, during execution, resides in CM. EXCHITC is assembled on the 16-bit
Compass assembler and resides in a PP.

All the information required by EXCHITC to control EXCH is contained within
the object code of EXCH and is read from CM by EXCHITC. This information
contains a series of control commands that cause the PP to execute memory
writes and compares and other types of operations which affect the CP. The
source code of EXCH contains a set of procedures which provides a convenient
method of generating the control commands.

EXCHITC contains a number of subroutines, one for each different control
command, which perform the task required by a command according to its
specific address and data operands.

Structure

The data contained within the object code of EXCH is composed primarily of the
following:

CP Executable Code

This is the virtual machine code executed by the CP. It consists of both
executive state and CYBER 170 commands. Generally the code sequences are
short and are followed by a HALT or PS (CYBER 170 program stop) command.
EXCHITC causes CP execution to commence at the first command of the test
sequence. When the HALT command is detected by EXCHITC, it causes the
contents of the machine registers to be dumped to CM. EXCHITC will sub-
sequently perform all comparison checks required by EXCH using the data dumped
to CM or other data in CM.

Exchange Packages

Appendix C contains a set of diagrams that illustrate the sequence of
exchanges that occur in the test sections.

A single executive state monitor exchange package is used for all sections of
the test. Three different executive state job exchange packages and eight
CYBER 170 exchange packages are shared between various sections. In most
cases, the executive state monitor process will generate a working copy of a
job exchange package by copying from an original. 1In the first subsection of

60469390 E II-6-1

a section, control commands executed by EXCHITC initialize the original package
with values specific to the section. Control commands are provided so EXCHITC

may set up the MPS exchange package pointer register. Executive state monitor

process sets up the JPS pointer register using a CPYXS command.

Section and Subsection Address Tables

These tables are compiled into EXCH for use by EXCHITC. The tables consist of
a series of addresses, one for each section/ subsection of EXCH. Each table
entry is an executive state word containing a right justified real memory byte
address pointing to a section/subsection of the test. The table entries are
ordered according to the section/subsection. The last entry in the table is a
word of all ones which indicates the end of the section/test. The section
table must reside in CM commencing at byte address 4000,¢. The entries in

the section table point to the subsection address table for the section while
the subsection address table entries point to the control command tables for
the subsection.

Control Command Tables

Control command tables constitute the bulk of the object code of EXCH. They
contain the control commands which are interpreted and acted upon by EXCHITC.
The tables are divided into subsections commencing at the CM addresses pointed
to by the entries of the previously described subsection address table. The
subsections are in turn divided into segments; a single segment consists of
the control commands for a single condition of the test. The first segment
(condition) of a subsection commences at the beginning of a subsection control
table. The first 16-bit word of every segment contains the segment length.
This length is a nonzero count of the number of executive state words in the
segment, including the segment length word itself.

Each segment commences on a executive state word boundary. There should
normally be only O, 1, 2, or 3 unused 16-bit words between segments. EXCHITC
uses the segment length to determine the end of a condition and the CM address
of the segment for the next condition. The segments (conditions) of EXCH are
not individually addressable (as is the case for the sections) and therefore
they must be executed sequentially.

Execution Sequence

To execute a single condition of EXCH, EXCHITC references the section and
subsection address tables to obtain a pointer to the first condition of a
section. EXCHITC then transfers the complete control table for a condition
from CM into its own PP memory. Only when this condition is complete will the
segment for the next condition be obtained. The segment is not transferred
repeatedly for repeat condition or scope mode operation.

EXCHITC saves the segment length for future use and then proceeds to interpret
each of the control commands in the current segment. After each control
command is executed a check is performed using the segment length to determine
if all the commands in the segment have been executed.

60469390 E 11-6-2

™
)

 ‘:j>

Setting Up The Test Condition

In a typical condition of EXCH, control commands are used to write data in
various locations in memory. For example, to enter a data pattern in an X
register of an exchange package, or to zero out a memory cell in which the
function to be tested will subsequently enter data. One or several WRITE_CM
commands may be executed in order to set up the required test conditions.

A number of WRITE_CM commands are used to define the operation to be performed
by each individual slave PP. One of these selects the command for each slave:
EXN, MXN, MAN, INPN, CWM, CWML, or PSN. From 1 to 4 WRITE_CM command
specifies the exchange address; in most cases, the same address is used for
all four slaves. Finally a single WRITE_CM specifies both the number of times
the selected command is to be executed and also a delay count. The delay
count causes a small variable delay prior to the execution of the selected
command. A different delay may be specified for each slave.

Exchange Segquence

The exchange sequence usually consists of two EXCHITC commands, XENTRY and
XEXIT. XENTRY's initial task is to trigger the slaves to read the previously
defined control data and prepare them for the required operation.
Subsequently, XENTRY sets a deadstart flag, reloads the MPS, JPS, PSM, PTL,
PTA, and SIT with their previously defined data, and deadstarts the CP. The
CP then enters an executive state monitor process which usually includes some
form of initialization affecting the job process. When this initialization is
complete, the CP clears the deadstart flag. EXCHITC senses this and then
allows sufficient time for the CP to switch to executive state job mode after
which it triggers the slaves to commence their exchange commands.

Normally, EXCHITC then executes the XEXIT command to scan all the slave PPs
and the CP to determine if they have completed their operation. If each slave
channel is active, it has completed its operation and is ready. The status
summary of the CP is checked to determine if it is halted. EXCHITC repeats
the scan loop approximately 300 times (determined by PARAM 16 - Processor Hang
Count) before declaring that one or more of the the processors is hung. If
all processors are ready, EXCHITC exits the XEXIT command and data checking
commences. Otherwise, EXCHITC repeatedly deadstarts the CP at a special
microcode address which forces an exchange accept to be sent to the PP

system. The deadstart is executed once for each active PP (one or more of
which could be hung). '

During the XEXIT sequence the S and P registers of the CP are read for later
display. These registers are read before the force exchange-accept deadstart
(if any) and the deadstart which causes the register file dump.

Data Checking

One or more compare (COMP or COMP_IMM) control commands will be employed to
check results. Comparisons of data in exchange packages or varaious memory
locations may be performed. Frequently, the exchange count read back to
central memory from the slave PPs will also be checked. An error display will
occur for each comparison error.,

60469390 A II-6-3

Repeat Condition and Scope Loops

If the operator calls for a condition to be repeated, all the control commands
within the segment (writes, exchange, and compares) are repeated. If a scope
loop is set up by the operator, only the exchange entry/exit sequence is
repeated on each pass of the scope loop. This is necessary to provide a high
repetition rate scope display. Critical data is automatically refreshed on -
each loop. During a scope loop where a processor is hung, EXCHITC will cause
the exchange operation to be repeated whenever the processor hang count
becomes zero. The counter is initialized by loading it from PARAM16. If
desired, PARAM16 can be altered.

Slave PP Control

EXCHITC employs the slave PPs principally for the purpose of executing 26XX PP
exchange commands., A separate PP must be employed for this purpose because
the PP which executes the 26XX command cannot free itself from a hung
condition if the CP fails to respond with an exchange accept. As well as
executing the 2600(EXN), 2610(MXN), and 2620 (MAN) type exchange commands,
section 10 of the test requires that a slave execute a 102601 (INPN) command
which sends an external interrupt to the CP via its central memory port.
Section 8 uses the CWM and CWML commands to write data to CM while other PPs
are executing exchanges. For any condition where a slave is not required to
be active, it executes its normal loop of commands. However, a 2400 (PSN)
command is substituted for the 2600 type.

Slave Triggering Via PP Channels

The slaves are controlled via PP channels and by central memory. The channels
are used as interlocking control flags to trigger an operation at the request

of EXCHITC. A communication channel selected under the control of PARAM 15 is
used by EXCHITC to trigger all slaves simultaneously. Each slave uses its own
channel to signal a response to EXCHITC.

All five channels are normally active. When EXCHITC wishes to trigger an
operation, it checks that all slave PP channels are active; it then
disconnects its communication channel and checks that all slaves have
responded by disconnecting their channel. When this response is received,
EXCHITC reactivates its communication channel.

When EXCHITC's communication channel is again active, the slaves immediately
proceed with their specified task. When this is complete, they activate their
channel to complete the cycle and wait for EXCHITC to trigger another
operation by disconnecting its communication channel.

If either the CP or a slave PP hangs up (slave PP channel inactive), EXCHITC
outputs a word on the communication channel (sets the channel full) and then
forces the CP to send exchange accepts. This allows the slave (or slaves) to
exit the 26XX command. When the communication channel is full, the slaves
immediately return to their idle routine and bypass decrementation of their
exchange count. EXCHITC retrieves the decremented exchange count from the
slaves on each condition of the test. The count should normally be
decremented to zero from some preset nonzero value.

60469390 A ‘ II-6-4

ole

Communication Via Central Memory

During each condition of a test, EXCHITC triggers the slave PPs causing them
to read control data from central memory. EXCHITC will have set up this data
prior to triggering the slaves. The data defines the type of operation to be
performed, the exchange address, etc. After the slaves have read the data and
prepared themselves to execute the condition, they wait to receive another
trigger from EXCHITC. Simultaneously, EXCHITC is deadstarting the CP. When
its initialization is complete and time has been allowed for a possible
exchange to executive state job mode, EXCHITC triggers the slaves to proceed
with their exchange sequence.

Assuming that an exchange command is accepted by a slave, it will decrement
its exchange count and, if specified by the previously received control data,
it will check that the exchange caused BO in the CYBER 170 exchange package to
be zeroed out. The slave will then wait for the next trigger action in which
EXCHITC will request the slave to copy its exchange count and BO check data
into central memory where it can be checked.

With the exception of checking BO in the CYBER 170 exchange package in
sections 7 and 9, the slave PPs do not communicate with CM for the purpose of
reading or writing control information while the CP is active (executing
instruction level code). Similarly the EXCHITC PP obtains its comtrol
information prior to deadstarting the processor and only accesses CM to sense
the status of the deadstart flag when processor execution commences and in
sections 9 and 11 to access a sequence complete flag. This organization
minimizes the possibility that conflicts which arise during the actual test
sequence will cause a loss of control.

Synchronized Versus Free-Running Control

In some sections of the test, the slaves are each required to execute more
than one 26XX exchange command for each condition. The synchronized mode
allows a slave to execute only a single 26XX command per trigger operation.
EXCHITC checks that each slave completes the operation and is waiting to be
triggered before the next trigger is transmitted.

In free-running mode, the slaves execute their allotment of exchange commands
at their own speed having received only a single trigger from EXCHITC. TIn
many conditions of the test, the slaves are programmed to execute a small
delay between exchanges. This delay can vary for each slave. The free-run
mode is used in the later conditions of test sections 7, 8, and 1l.

SECTION DESCRIPTIONS

The following portions of this document provide a description of each of the
sections of the test. There are 19 sections altogether. Excepting section O,
each section of the test contains two or more subsections. The first
(subsection 0), always performs initialization peculiar to the section, and in
most cases, it performs no comparison checks.

60469390 D II-6-5

Section 0 of EXCH is used solely for the purpose of performing initialization
related to virtual addressing. Section 1 checks the operation of the CYBER
170 PS (program stop) and the CEJ/MEJ commands. Sections 2 through 6, and 16
employ only a single slave PP. Sections 2 and 16 check the ability of the
26XX commands to properly address central memory. Sections 3 through 6 are
related to checking the CP's response when any one of three different 26XX
commands are received when the processor is in either the 60-bit or 64-bit job
or monitor modes.

Sections 7 through 11 use multiple slave PPs. Their purpose is to detect
failures which result from either simultaneous exchanges or the sensitivity of
the system to the asynchronous nature of PP exchanges or other events.

Sections 12 through 15 are employed to check CYBER 170 error exits resulting
from illegal commands, address out of range, floating point infinite, and
floating point indefinite errors. Section 18 checks the state switching
mechanism using the CYBER 170 X0 register sign bit. PP exchanges are not used
in sections 12 through 15 and 18.

The data for each section includes the purpose and overall operation of the
section and a discussion of the differences between the subsections and
conditions of the section. Each condition of a subsection may make one or
more comparisons. In most cases, the corresponding comparisons in all
conditions of a subsection are checking the same function or data item. A
comparison number, CMP.XX, and a brief description is given for each
comparison that is made. The number corresponds to the COMPARE NO. on the
test error display. Numbering of comparisons commences with number 1 in each
new condition.

CYBER 170 Program Stop Sequence

The CYBER 170 instruction level command sequences in this test usually execute
a PS (program stop) command upon completion. This, however, does not stop the
processor. Instead , the processor returns to the executive state monitor
mode where it will execute a executive state halt command to halt instruction
execution. A CYBER 170 process will not always return directly to the
executive state monitor; the action taken is dependent upon the state of the
CYBER 170 monitor flag when the PS command is executed.

If the monitor flag is set (monitor mode), the executive state exchange
interrupt to executive state monitor mode will occur directly with the CYBER
170 environment left in the executive state job package in memory.

If the CYBER 170 monitor flag is clear (job mode), the processor will first
perform a CYBER 170 exchange to MA using the CYBER 170 exchange package
referenced by the MA register. This exchange will cause the processor to
revert to the CYBER 170 monitor mode with the flag set. 1In this latter case,
the new CYBER 170 process will also execute a PS command. Since the flag is
now set, the sequence will continue as for the former case: the executive
state exchange interrupt will occur and the processor will halt in the
executive state monitor mode.

60469390 D 1I-6-6

=

AN
N

e

/

In both cases, the action taken is a result of executing the PS command which
is an illegal CYBER 170 command. The action which has been described is a
CYBER 170 error exit sequence. A part of this error exit sequence includes
storing the CYBER 170 P register in RA. It should be noted that for the
second case described above, the storage of P into RA will occur twice. Both
CYBER 170 processes use the same RA. The CYBER 170 process which is executed
as a result of the second PS command saves the previous entry in RA for
possible later examination.

CYBER 170 X Register Shift Sequence

Sections 8 through 11 of the test require that the processor be prepared to
accept PP 2600 exchanges and other interrupts. Rather than simply placing the
processor in an idle loop , it executes a CYBER 170 process which can be
checked for proper operation at the completion of a condition. Registers X1
through X7 start with a true bit in the most significant bit position (X0
starts with a false bit). A program loop is executed 59 times which shifts
each register right one place during each loop. The registers fill with ones
(X0 fills with zeroes).

Within the loop there are six jump commands which occur on various parcel
boundaries. There are also two CYBER 170 CP exchange jumps (CEJ/MEJ, op code
013g) in the loop. When one of these commands is executed, the current

CYBER 170 process swaps to the identical CYBER 170 code sequence. Thus, there
are two identical CYBER 170 processes running; the CEJ/MEJ commands cause a
continual swap back and forth allowing each the opportunity to shift its X
registers.

On each excursion of the loop, both processes increment and test their B2
register. When the current process has completed 59 loops it exits the loop
and checks the B2 value from the other process. If that process is not
complete, it gives control to the other process via another CEJ/MEJ exchange
jump. TIf the other process was complete, then the current process executes a
PS command (program stop, see above) or sets a flag to notify EXCHITC.

Note that, in sections 8 through 11, whenever a CEJ or an MEJ command is
executed, it always causes a swap to the same CYBER 170 exchange package.
Additionally, whenever a slave PP executes a 26KX exchange command its A
register or MA also points to the same CYBER 170 exchange package.

Upon completion of the condition, the test checks the X registers in both
processes to ensure they are all ones. Since control is returned to the
executive state monitor process, one set of X registers should be seen in the
executive state job exchange package while the other set is in the CYBER 170
exchange pack. The CYBER 170 process seen in the executive state job package
would be the last of the two CYBER 170 processes to execute and the CYBER 170
monitor flag should be set.

Section 0 - Test Initialization (SECT 0)

This section performs initialization of the processor virtual environment for

all subsequent sections of the test. This initialization includes the loading
and checking of the PSM, PTL, and PTA registers and the writing into CM of the
page and segment tables at their appropriate locations.

60469390 D 1I-6-7

The page table maps virtual addresses one to one into the real memory address

space for a complete 16 megabyte memory. The page size is 64K bytes. The
page table is located at 200096 (byte address) and is 8K (20001¢) bytes
long.)

If a comparison error occurs, check to ensure that the microcode has been

loaded. If it has been loaded, other tests should be performed to check for

proper operation of the PSM, PTL, and PTA before proceeding further with this
test.

CMP.01 Checks that the PSM register was loaded properly (see U.H4.4)
CMP.02 Checks that the PTL register was loaded properly (see 4.4.4)

CMP.03 Checks that the PTA register was loaded properly (see U4.4.Y4)

Section 1 CEJ/MEJ Commands (SECT 1)

This section checks the program swap mechanism employed by the CEJ/MEJ
commands and also used during an error exit caused a PS command. The 26XX PP
exchange commands are not used.

Subsection 0 is employed for initialization. Subsection 1 has four conditions
which are defined as follows:

Cond 0 -~ Execute Program Stop in CYBER 170 monitor mode
Cond 1 - Execute Program Stop in CYBER 170 job mode
Cond 2 - Execute CEJ command in CYBER 170 monitor mode
Cond 3 - Execute MEJ command in CYBER 170 job mode

After the initial deadstart, the executive state monitor process sets up two
CYBER 170 exchange packages: the "exchange to A" package and the "exchange to
MA" package. The processor then executes a executive state exchange to job
mode. The job package has a WMID equal to one, and therefore the processor
will be in CYBER 170 mode. '

Condition 0: CYBER 170 monitor flag is set (MF is equal to one), and the
processor is pointed to a command sequence which enters AAAAqg into the
"exchange to A" flag in CM and then executes a PS command. This illegal
command should immediately cause an error exit resulting in a executive state

exchange back to executive state monitor mode where the processor will stop on
a HALT command.

In condition 1, the processor initially enters CYBER 170 job (MF equal to 0)
mode instead of monitor mode; it sets the value AAAA4¢ as for condition 0,

but. the error exit due to the PS command executed in job mode causes an
exchange to MA and the setting of CYBER 170 monitor flag. This exchange to MA
points to a sequence which sets the exchange to MA flag to DEAD1g and then
executes another PS command. This causes another error exit via an exchange
to executive state monitor mode.

In conditions 2 and 3, the process executes a CEJ/MEJ after entering the CYBER

170 mode. If MF is equal to 1 (condition 2) the commmand is interpreted as a
CEJ command where K points to the exchange to A package. If MF is equal to O

60469390 A : ’ II1-6-8

N
il ‘»
R

Y
R 4

C

00

(condition 3) it is interpreted as an MEJ where the current MA points to the
exchange to MA package.

In either case, an exchange swap occurs and the CYBER 170 monitor flag changes
state. For condition 3, the resulting process sets up the exchange to MA
flag, executes the PS command, and, because MF is now set, the error exit
causes the executive state exchange to executive state monitor mode.

For condition 2, the CEJ command first swaps the exchange to A package and
sets MF equal to 0. The new process sets up the exchange to A flag, sets MF
equal to 0, and then executes the PS command. With MF equal to 0, the PS
causes an exchange to MA. This exchange to MA points to a sequence which sets

the exchange to MA flag to DEADqg and then executes another PS command.
This causes another error exit via an exchange to executive state monitor mode.

CMP.01 The P value in the exchange to A package is checked. A swap of this
package, which only occurs condition 2, alters the value.

CMP.02 The P value in the exchange to MA package is checked. It is swapped
in conditions 1, 2, and 3. In conditions 1 and 2 the execution of a
PS command clears P to 0 before the swap out occurs.

CMP.03 The value of P entered into RA is checked. It shows the location of
the last PS command to be executed before the processor returns to the
executive state monitor mode. ~

CMP.04 The P value in the executive state job package is checked. It should
point to the same address as for comparison 3 above.

CMP.05 The P value in the register file dump is checked. It should point to
the executive state HALT command where the processor stops after
return to the executive state monitor mode.

CMP.06 The CYBER 170 monitor flag in the executive state job package is
checked. It should always be set after the exit from CYBER 170 mode.

CMP.07 The exit mode halt flag in the executive state job package is checked;
it should also be set on completion of all 4 conditions.

CMP.08 The exchange to A flag should be AAAA4g for conditions 0, 1 and, 2.

CMP.09 The exchange to MA flag should be DEADyg for conditions 1, 2 and, 3.

Section 2 - Exchange Addressing (SECT 2)

This section checks the operation of a PP 2600 command and its addressing of
CM by referencing the command to exchange packages located in many different
locations in CM. Each condition of the test uses a different CM address for
the location of the exchange package. These exchange or test addresses are
essentially patterns of sliding ones or sliding zeroes. Address bits 23
through 219 are tested. The highest address is less than 1 megabyte and the
lowest is greater than 64K bytes. The test is repeated for each selected one
megabyte segment of memory commencing at the lowest selected segment. The
individual bits of PARAM 18 determine which of 16 one megabyte segments will
be tested. This parameter is defaulted to test the first megabyte only.

60469390 A II-6-9

Specifications for executive state indicate that the exchange address passed

to the CP by the PP may be limited to 18 bits., Some processors may therefore

fail to pass this test if PARAM18 is set for the 3rd megabyte or higher.

After the initial deadstart, the executive state monitor process sets up the
P, RA, FL, and MA of 2 CYBER 170 exchange packages. One package is the
"exchange to A" package which is set up at the test address pointed to by the
2600 command. The second package is the "exchange to MA" package.

After the the CYBER 170 packages are set up, the processor performs a
executive state EXCHANGE command. The executive state job process which is
then loaded has a WMID equal to one and therefore the processor should now
also be in the CYBER 170 mode. Additionally, the CYBER 170 monitor flag is
clear, and MA points to the "exchange to MA"™ package. The processor enters a
countdown loop to wait for the PP to execute the 2600 command. If a swap does
not occur a PS (program stop) command will be executed when the countdown is
complete.

The P values set up in both of the CYBER 170 packages each point to a
different CYBER 170 command sequence. Regardless of which package is selected
for the swap, a unique flag is set up in memory and then a program stop occurs
at a unique address.

Subsection 0 is for initialization only. The successive conditions of
subsection 1 perform the following checks for each test address.

CMP.01 Checks the P value in the exchange package at the test address. Since
the 2600 command causes a package swap, this P should point to the
countdown loop where the processor was awaiting the arrival of the
2600.

CMP.02 Checks that the exchange to A flag contains AAAA4g as a result of
the execution of the process swapped in by the PP 2600 command.

CMP.03 Checks that the exchange to MA flag contains DEAD¢g 33 a result of
executing a program stop in CYBER 170 job mode and then swapping to a
CYBER 170 monitor process.

CMP.O4 Checks that the P in the RF dump is at the HALT command in the
executive state monitor process. A program stop (PS) in CYBER 170
monitor mode causes a executive state exchange to executive state
monitor.

CMP.05 Checks that the CYBER 170 monitor flag in the executive state job
package is set, thereby confirming the swap to monitor mode caused by
the program stop in the CYBER 170 job mode.

CMP.06 This is a block comparison that checks the CYBER 170 A, B, and X
registers in the CYBER 170 package at the test address. The values
which are there are as a result of the swap-out caused by the 2600
command. These values were loaded into the processor registers when

it initially entered the CYBER 170 mode after the executive state
EXCHANGE command.

60469390 A II-6-10

>
N

a ™

Ui

m,)

Section 3 - 26XX Execution In CYBER 170 Job And Monitor Mode (SECT 3)

This section checks the operation of the 2600(EXN), 2610 (MXN), and 2620 (MAN)
commands while the processor is in the CYBER 170 mode with the CYBER 170
monitor flag clear and set. There are 6 conditions in subsection 1; these are
defined by the following table: :

COND 0 - 2600, CYBER 170 Job mode, Swap Per A, MF No Change
COND 1 2610, CYBER 170 Job mode, Swap Per A, MF Is Set
COND 2 - 2620, CYBER 170 Job mode, Swap Per MA, MF Is Set
COND 3 2600, CYBER 170 Mon mode, Swap Per A, MF No Change
COND 4 - 2610, CYBER 170 Mon mode, No Swap, MF No Change
COND 5 2620, CYBER 170 Mon mode, No Swap, MF No Change

Each condition of this section is set up and operates in a manner similar to
that of section 2, except that the CM address for the "exchange to A package"
is within the test's address space rather than being determined by a sliding
pattern.

After the initial deadstart, the executive state monitor process sets up the
P, RA, FL, and MA of 2 CYBER 170 exchange packages. One package is the
nexchange to A" package which is pointed to by the PPs A register during the
26XX command. The second package is the "exchange to MA" package.

After the CYBER 170 packages are set up, the processor performs a executive
state EXCHANGE command. The executive state job process which is then loaded
has a WID equal to 1 and therefore the processor should now also be in the
CYBER 170 mode. The CYBER 170 monitor flag will already be set or clear
according to the current condition and MA points to the "exchange to MA"
package. The processor enters a countdown loop to wait for the PP to execute
the 26XX command. If a swap does not occur a PS (program stop) command will
be executed when the countdown is complete.

In conditions O and 1 a swap of the "exchange to A" package should occur. Ir,
in condition 2, the processor correctly interprets the 2620 command and
executes an exchange to MA, the address on the cache invalidation bus (from
the PPs A register) is ignored and the current contents of MA (which point to
the "exchange to MA package") are used instead. In condition 3 the 2600
command should again cause a swap with the "exchange to A package". For
conditions 4 and 5 (the 2610 and 2620 respectively), no swap should occur and
the CP should complete the countdown and execute the PS command .

For those conditions where the 26XX command causes a swap (conditions 0
through 3), the processor will then execute code which will set up a flag in
memory for later checking (see comparisons 8 and 9 below). In all cases, a PS
command will be executed which will cause the processor to return to the
executive state monitor mode and HALT.

CMP.01 The P value in the CYBER 170 "exchange to A" package is checked. If
: the package was swapped, the P will point to the count-down loop where
the processor awaited the execution of the 26XX command. If the swap
does not occur, the original value (pointing to the "exchange to A"
process) should still be there. The "exchange to A" swap should
always occur for the 2600 command and also for the 2610 when the
response is from the CYBER 170 job mode (conditions 0, 1, and 3).

60469390 A : I1-6-11

CMP. 02

CMP. 03

CMP.O4

CMP. 05

CMP. 06

CMP.0O7

CMP. 08

CMP.09

This compare is similar to CMP.03 above, except that the CYBER 170
"exchange to MA" package is checked. The swap should only occur to
this package for the 2620 command when the response is from the CYBER
170 job mode (condition 2). 1In this case the P value should point to
the countdown loop. For conditions 1, 3, 4, and 5 it should point to
the "exchange to MA" process. For condition 0 it should be 0. The

first program stop which causes the exchange to MA, clears P before
the swap occurs,

Checks the value entered in RA as a result of the last error exit. It
should point to a PS command at one of 3 different locations,
dependent upon the current condition.

Checks the P value in the executive state job exchange package. They
should be identical to the addresses entered in RA.

Checks the value of P in the RF dump. It should be at the HALT in the

executive state monitor process to which the processor returns after
the CYBER 170 process is complete.

Checks the CYBER 170 monitor flag in the executive state job package. .
It would be set at the time of last PS command which causes the
exchange to executive state monitor.

Checks that the CYBER 170 exit mode halt flag in the executive state
Jjob package is set.

The status of the exchange to A flag is checked. It should be
AAAA 46 for conditions 0, 1, and 3 only.

The status of the exchange to MA flag is checked. It should be
DEAD16 for conditions 0 and 2 only.

Section 4 - 26XX Sets MCR 5 In Executive State Job Mode (SECT 4)

This section checks the operation of the 2600(EXN), 2610 (MXN), and 2620 (MAN)
commands while the processor is in the executive state job mode with VMID
equal to 0. There are 3 conditions in the section, one for each of the
commands (sequenced as above). The section operates with the MCR mask clear
and the traps disabled. The purpose is to ensure that each one of the 26XX
commands will cause the exchange request bit of the MCR register to set.

After the initial deadstart, the executive state monitor process does a
executive state EXCHANGE to a executive state job process (VMID equal to 0).
In this process, the CP continuously tests the status of the exchange request
bit in the MCR using a BRCR command. When the 26XX command occurs the CP
executes halt command. :

CMP.01 Checks the value of P in the RF dump. It should point to the halt
command which is executed after the exchange request MCR bit is set.

CMP.02 Checks the exchange request bit in the MCR register field of the RF
dump. The bit should be set.

60469390 A ‘ II-6-12

£ AN

C
e

Section 5 - 26XX Execution In Executive State Job Mode (SECT 5)

This section checks the capability of the system to respond to an exchange
interrupt resulting from a 26XX command executed while the processor is in the
executive state Job mode. The section consists of six conditions; the first
three switch to the CYBER 170 job mode to allow an exchange accept response to
the slave PP. The last three switch to the CYBER 170 monitor mode. The
conditions are as follows:

COND 0 - 2600, Response in CYBER 170 Job, Swap Per A, MF No Change
COND 1 2610, Response in CYBER 170 Job, Swap Per A, MF Is Set
COND 2 - 2620, Response in CYBER 170 Job, Swap Per MA, MF Is Set
COND 3 2600, Response in CYBER 170 Mon, Swap Per A, MF No Change
COND 4 - 2610, Response in CYBER 170 Mon, No Swap, MF No Change
COND 5 - 2620, Response in CYBER 170 Mon, No Swap, MF No Change

The sequence of events for all conditions is very similar and is described in
the following steps: ,

a) After the initial deadstart, the executive state monitor process performs
some initialization and then switches to the executive state job mode via
an EXCHANGE.

b) In the executive state job mode, the WMID is 0, the exchange request MCR
mask bit is set and the traps are disabled. The P points to executive
state BRXEQ command which performs an unconditional jump to itself. The
processor is now prepared to receive the exchange interrupt.

c) When the 26XX command is executed by the slave PP, the processor
interrupts back to the executive state monitor mode where the P value in 2
CYBER 170 exchange packages are set up. These are an "exchange to A" and
an "exchange to MA" package. Additionally, a CPYXS command is executed
which sets the JPS pointer for a new executive state job process exchange
package.

d) Subsequent execution of a executive state EXCHANGE now loads this new
executive state job process which has a WID of 1 and thus the mode is
simul taneously also CYBER 170. This process also loads the CYBER 170
monitor flag which will be set (for job or monitor mode) according to the
list of conditions above. The P of this process points to a string of NO
(no operation) commands followed by a PS (program stop).

e) Once in the CYBER 170 mode, the processor should (for condition 0 through
3) immediately respond to the 26XX command by performing the exchange swap
and sending an exchange accept to the PP, Conditions 4 and 5 should fall
through the NO commands and execute the PS,

f) Whether or not a swap occurs and which of the 2 CYBER 170 packages are
selected for the swap is dependent upon whether the process is now in the
CYBER 170 monitor or job mode and which of the 26XX commands is executed.
Whether the CYBER 170 monitor flag changes state is dependent upon both of
these factors.

g) For conditions 4 and 5 the program stop referred to in step e) above will

cause an immediate executive state exchange to executive state monitor
mode.

60469390 A ' : II-6-13

h)

i)

J)

k)

CMP, 01 The P value in the executive state monitor package is checked. The P

CMP.02 The P value in the executive state job package is checked. It should

For conditions 0 through 3, either the CYBER 170 "exchange to A", or the
"exchange to MA" package is selected and will determine which of 2 short

CYBER 170 programs are executed. In both cases, a unique flag is set up

in CM (ARAA 46 in the exchange to A flag or DEAD1g in the exchange to
MA flag) and a program stop (CYBER 170 PS command) occurs at a unique
address,

For conditions 1 through 3 the PS command will now cause a return to
executive state monitor mode.)

For condition 0, the swap caused by the 2600 command is an exchange to A
and leaves the CYBER 170 monitor flag clear. The program stop in the
resulting exchange to A process causes a second swap (an exchange to MA)
which sets the CYBER 170 monitor flag. Finally a second program stop
occurs causing the return to executive state monitor mode. Note that in

this case, both the exchange to A and exchange to MA flags will be set up.

For all conditions, the return to executive state monitor mode results in
the execution of a HALT command. The HALT causes a register file dump.

If -scope mode operation is selected, the process is deadstarted again and .

the loop is repeated starting at step a) above.

should point to the command following the second EXCHANGE which was
executed by the executive state monitor process (see step d) above)

point to the BRXEQ command where the executive state job process
awaits the arrival of the 26XX command (see step b) above).

CMP.03 The P value in the CYBER 170 "exchange to A" package is checked. If

the package was swapped, the P will point to the NO command where the
CYBER 170 process commences (see steps d) and e) above). If the swap

does not occur, the original value (pointing to the "exchange to A"
process) should still be there. The swap would occur for the 2600

command and also for the 2610 when the response is from the CYBER 170

Jjob mode (conditions 0, 1, and 3).

CMP. 04 This compare is similar to CMP.03 above except that the CYBER 170

CMP.05 This comparison checks the P value in the register file dump. In all

"exchange to MA" package is checked. The swap should only occur to

this package for the 2620 command when the response is from the CYBER
170 job mode (condition 2). 1In this case the P value should point to

the NO command (see steps d) and e) above). For conditions 1, 3, 4,

and 5 it should point to the "exchange to MA" process. For condition

0 it should be 0. The first program stop which causes the exchange
to MA (see step j) above) clears P before the swap occurs.

cases (conditions O through 5), it should point to the HALT in the
executive state monitor process.

CMP.06 The status of the exchange to A flag is checked. It should be

AAAA 46 for conditions 0, 1, and 3 only.

CMP.07 = The status of the exchange to MA flag is checked. It should be

60469390 A

DEAD16 for conditions 0 and 2 only.

II1-6-14

)\A

5

N

o

-

e

C

ol

Section 6 - 26XX Execution In Executive State Monitor Mode (SECT 6)

This section is similar in many details to section 5; it checks the capability
of the system to respond to an exchange interrupt resulting from a 26XX
command executed while the processor is in the executive state monitor mode.
The section consists of 6 conditions; the first 3 switch to the CYBER 170 job
mode to allow an exchange accept response to the slave PP. The last 3 switch
to the CYBER 170 monitor mode. The conditions are as follows:

COND 0 - 2600, Response in CYBER 170 Job, Swap Per A, MF No Change
COND 1 - 2610, Response in CYBER 170 Job, Swap Per A, MF Is Set
COND 2 - 2620, Response in CYBER 170 Job, Swap Per MA, MF Is Set
COND 3 - 2600, Response in CYBER 170 Mon, Swap Per A, MF No Change
COND 4 - 2610, Response in CYBER 170 Mon, No Swap, MF No Change
COND 5 - 2620, Response in CYBER 170 Mon, No Swap, MF No Change

The sequence of events for all conditions is very similar, and is described in
the following steps:

a) After the initial deadstart, the executive state monitor process
initializes its own AO through A4 registers in preparation for a trap
interrupt. The P values of the CYBER 170 "exchange to A" and "exchange to
MA" packages are initialized and traps are enabled. The process clears
the deadstart flag in CM (to signal EXCHITC that initialization is
complete) and then executes a executive state BRXEQ command which performs
an unconditional jump to itself. The processor is now prepared to receive
the trap interrupt.

b) When the 26XX command is executed by the slave PP, a trap interrupt occurs
and the current process registers are copied into a stack frame save
area. A code base pointer is picked up which points to a new process
(still executive state monitor mode). One of the effects of this trap is
to update the value in register AO which is the Dynamic Space Pointer.
The new process will save the contents of AO for a later comparison.

¢) The new process will also perform a CPYXS to set the JPS pointer for the
executive state job process and subsequently will switch to this mode by
executing a executive state EXCHANGE command.

d) The new executive state job process has a VMID of 1 and therefore the
machine is also in the CYBER 170 mode. The CYBER 170 monitor flag is
loaded and will be set (for job or monitor mode) according to the list of
conditions above. The P of this process points to a string of NO (no
operation) commands followed by a PS (program stop).

e) Once in the CYBER 170 mode, the processor should (for conditions 0 through
3) immediately respond to the 26XX command by performing the exchange swap
and sending an exchange accept to the PP, Conditions 4 and 5 should fall
through the NO commands and execute the PS.

f) Whether or not a swap occurs, and which of the 2 CYBER 170 packages are
selected for the swap, is dependent respectively upon whether the process
is now in the CYBER 170 monitor or job mode and which of the 26XX commands
is executed. Whether the CYBER 170 monitor flag changes state is
dependent upon both of these factors.

60469390 A : I1-6-15

8)

h)

i)

J)

k)

CMP, 01 The P value in the executive state monitor package is checked. The P
should point to the command following the EXCHANGE which was executed

For conditions 4 and 5 the program stop referred to in step e) above will
cause an immediate executive state exchange to executive state monitor
mode.

For conditions O through 3, either the CYBER 170 "exchange to A", or the
"exchange to MA" package is selected and will determine which of 2 short
CYBER 170 programs are executed. In both cases, a unique flag is set up
in CM (AAAA46 in the exchange to A flag or DEAD{g in the exchange to

MA flag) and a program stop (CYBER 170 PS command) occurs at a unique
address.,

For conditions 1 through 3 the PS command will now cause a return to
executive state monitor mode.

. For condition 0, the swap caused by the 2600 command is an exchange to A

and leaves the CYBER 170 monitor flag clear. The program stop in the
resulting exchange to A process causes a second swap (an exchange to MA)
which sets the CYBER 170 monitor flag. Finally a second program stop
occurs causing the return to executive state monitor mode. Note that in

this case, both the exchange to A and exchange to MA flags will be set up.

For all conditions, the return to executive state monitor mode results in
the execution of a HALT command. The HALT causes a register file dump.
If scope mode operation is selected, the process is deadstarted again and
the loop is repeated starting at step a) above.

by the executive state monitor process (see step c¢) above).

CMP.02 The P value in the CYBER 170 "exchange to A" package is checked., If

the package was swapped, the P will point to the NO command where the
CYBER 170 process commences (see steps d) and e) above). If the swap

does not occur, the original value (pointing to the "exchange to A"

process) should still be there. The swap should always occur for the

2600 command and also for the 2610 when the response is from the
CYBER 170 job mode (conditions 0, 1, and 3).

CMP.03 This compare is similar to CMP.02 above except that the CYBER 170

exchange to MA package is checked. The swap should only occur to

this package for the 2620 command when the response is from the CYBER
170 job mode (condition 2). In this case the P value should point to

the NO command (see steps d) and e) above). For conditions 1, 3, 4,

and 5 it should point to the "exchange to MA" process. For condition

0 it should be 0. The first program stop which causes the exchange
to MA (see step j) above) clears P before the swap occurs.

CMP.0O4 The status of the exchange to A flag is checked. It should be

AAAA 16 for conditions 0, 1, and 3 only.

CMP.05 The status of the exchange to MA flag is checked. It should be

60469390 A

DEAD16 for conditions 0 and 2 only.

I1-6-16 .

{&@}

P
\

SN

C
W%

ole

CMP.06 The value for P pushed onto the stack frame as a result of the trap
is checked. It should point to the BRXEQ command where the executive
state monitor process awaited the arrival of the trap interrupt.

Note that the trap occurs for all conditions of this section,
regardless of the type of 26XX command and whether CYBER 170 job or
monitor mode is selected for the response.

CMP.07 The exchange request bit in the MCR register pushed onto the stack
frame is checked to ensure that it is set.

CMP,08 This comparison checks that the Top of Stack pointer for the ring of
: - execution of the monitor exchange package is properly advanced in
response to the trap interrupt.

CMP.09 The Dynamic Space Pointer (DSP) in AO0 of the monitor exchange package
is checked to ensure that it was advanced to the next stack frame.
Note that the contents of AO were saved in X5 after the trap (step b)
above) .

CMP. 10 This is a block comparison to check that the proper values were set
up in registers A1 through Al4 of the monitor exchange package when
the trap interrupt occurred. These registers are for the Current
Stack Frame Pointer, the Previous Save Area Pointer, the Binding
Section Pointer, and the Argument Pointer.

Section 7 - Multiple 2600 Exchanges and BO Checking (SECT 7)

In this section, from one to four slave PPs perform 2600 exchange commands and
check the processor's response by ensuring that BO of the CYBER 170 exchange
package is zeroed out as a result of the package swap (register BO in a CYBER
170 enviromment is always zero). Each of the 4 slave PPs causes the swap of a
package reserved for that PP alone. While the slave PPs are performing their

" operation, the CP is continually executing a CEJ/MEJ command which specifys

the use of another (5th) CYBER 170 package reserved for CP use only.

The CYBER 170 code executed by the CP consists of a CEJ/MEJ followed by two no
operation commands (NO - OP code 46000g) which are in turn followed by an

unconditional jump (JP - op code 02g) back to the CEJ/MEJ, There are five
identical code sequences like this; the P value in each of the 5 CYBER 170
exchange packages points to one of these code sequences.

In every case, the value which is loaded into MA when a package swap occurs
points to the fifth CYBER 170 exchange package reserved for the CP. Note that
whenever a CEJ/MEJ command is executed, the CYBER 170 monitor flag (MF)
changes state. If the flag is clear (job mode) a CEJ/MEJ uses MA to select
the next exchange package to be used. If MF is set (monitor mode), the
operand of the CEJ/MEJ determines the package to be used. In all of the 5
code sequences, this operand points to the package reserved for the CP.

To summarize, every CEJ/MEJ command will cause a swap using only the package
in central memory reserved for the CP. On the other hand every slave PPs A
register will select its own specific package when a 2600 command is
executed. This provides the basis for verifying the occurance of every
exchange swap for which a PP sends a request and receives an exchange accept

60469390 A I1-6-17

from the CP. If for some reason, any given slave PPs exchange request is . !KJy
missed or the exchange request address is misinterpreted, the check of BO by

each slave will detect the failure. -

There are 98 conditions in the section; the first 49 operate in the
synchronized mode while the last 49 are identical except that the PPs operate
in the free-run mode (see section 5.1.3.3) Both sets of 49 conditions are
controlled by 2 tables, each occupying 49 words (one for each condition) of
central memory. The first table determines how many of the 4 PPs will be
active and executing 2600 (EXN) commands. The various conditions proceed from
having 1 slave active to 2, 3, and 4. The second table determines how many
2600 commands will be executed by each slave and also the length of the delay
prior to execution of each command. For any given condition, the number of
2600 commands executed by each slave is identical; however the delays are
variable for each slave.

It should be observed that as a result of variations in timing and thus the
sequencing of the CEJ/MEJ and 2600 commands, the packages will move around in

CM in an apparent random manner. The CYBER 170 BY register in each package is ‘/ h
used to uniquely identify each package as follows: N
Exchange package for slave PP 0 - BY4 = 707016

Exchange package for slave PP 1 - B4 = T1714¢

Exchange package for slave PP 2 - BU4 = 72721

Exchange package for slave PP 3 - BY = 737316

Exchange package for CP (CEJ/MEJ) - BlU = 77774¢

Initial register contents - B4 = 88884¢

The package with B4 equal to 888816 is loaded into the CP registers when o
the processor first enters the CYBER 170 mode after the EXCHANGE from T

executive state monitor to job mode. There are, of course, only 5 physical
CYBER 170 packages in CM for this section (the first 5 listed above). In some
cases it may be possible to determine the sequence of events leading to a
failure by examining the location of the packages after the failure. The
value of B4 in each of the packages is restored on each new condition and on
repeat condition. The sequence of events for all conditions is as follows:

a) After the initial deadstart, the executive state monitor process sets up
the 5 CYBER 170 exchange packages. The P, RA, FL, and BU of the package
are restored. The CP clears a flag in CM to signal EXCHITC that

initialization is complete and then it executes a executive state EXCHANGE
command .

b) The EXCHANGE switches the processor to the executive state Jjob mode with a

WID of 1. The processor will then begin to execute the CEJ/MEJ exchange
sequence. :

c) After the EXCHANGE to job, EXCHITC will trigger the slave PP or PPs to
commence execution of their 2600 commands. Note that the processor does

not exit the executive state job process to perform the swap in response
~to a PP exchange request.

d) Each slave commanded to execute 2600 commands will perform the following
sequence: A
‘\u‘- !

60469390 A I1-6-18 k

O

1. Executes the delay defined for itself in the control table entry for
the current condition.

2. Loads into its A register the address of its specific CYBER 170
exchange package.

3. Performs a CRDL command to read the first word of the exchange
package which contains P, A0, and BO.

4, Modifies the BO portion of the word and writes it back into the
package in CM. The BO portion is modified to contain the address of
the exchange package itself.

5. Executes a keypoint command and then immediately afterward the 2600
command.

6. After the exchange accept is received, the exchange count is
decremented and then the first word of the exchange package is again
read from memory.

7. The BO portion of the word is examined. Only if the value is zero is
the incrementing of a "BO miss count" skipped.

8. Each active slave PP returns to step 1 and repeats the sequence until
the required number of 2600 commands have been executed.

d) EXCHITC deadstarts the CP after sufficient time has been allowed for all
slaves to execute their required number of 2600 commands. This causes a
CP halt and a register file dump.

CMP. 01 Upon completion of each condition, each slave writes two values into
central memory. First, a value which indicates the number of
exchanges for which it did not receive an exchange accept and second,
the "BO miss count", The two values are written into the first and
second parcels respectively of one central memory word. Both values
should be zero. The 4 slaves write into sequential memory words;
this is a block compare which checks all 4 words at once.

Section 8 - 26XX Exchanges and Block Writes In CYBER 170 Mode (SECT 8)

In this section the processor is placed in the CYBER 170 mode executing the "X
register shift sequence"™ while from 1 to 4 slave PPs are commanded to execute
PP 26XX exchanges or 60-and-64 bit block writes. The purpose is to determine
if these asynchronously occurring PP operations will conflict with the
successful completion of the shift sequence.

SUBSECTION 0 - This subsection is used only to perform initialization for the
section.

SUBSECTION 1 - There are 23 conditions in this subsection; they all operate in
the synchronized mode. The 23 conditions are controlled by two tables, each
occupying 23 words (one for each condition) of central memory. The first
table determines how many of the 4 PPs will be active and executing 2600 (EXN)
commands, The various conditions proceed from having 1 slave active to having
2 and 4 salves active. The second table determines how many 2600 commands

60469390 A II-6-19

will be executed by each slave and also the length of the delay prior to
execution of each 2600 command. For any given condition, the number of 2600
commands executed by each slave is identical; however, the delays are variable
for each slave. In most conditions, each slave performs only one 2600
command; in later conditions they perform 2 or more.

SUBSECTION 2 - This subsection is identical to subsection 1 except that the
PPs operate in the free-run mode.

SUBSECTION 3 - This subsection operates in the free-run mode and is similar to
subsection 2 except that one or more of the slave PPs will execute 2610 or
2620 exchange commands. These commands operate as pass commands if executed
while the processor is in CYBER 170 mode. Since the CYBER 170 process
contains CEJ/MEJ commands which switch the processor back and forth between
Job and monitor mode, the 2610s and 2620s will randomly pass or execute,
depending upon the PP/CP timing. In this section all 26XX commands will
always address the same CYBER 170 package.

SUBSECTION 4 - This subsection operates in the free-run mode and is similar to
subsection 2 with the following differences. Two of the four slave PPs are
assigned to perform 60- or executive state block writes to central memory
while the remaining 2 perform 2600 exchanges. Each of the slaves performing
the write operations are assigned their own block (3040 words) of CM. The
timing is such that these PPs will be writing CM throughout the time that the
CP is performing its X register shift sequence.

The data written by each of the two PPs consists of eight identical blocks
(380 words each) of sequentially numbered words imprinted with the
identification of the PP involved. This arrangement allows the detection of
any shuffled or missing words. EXCHITC compares the first set of four blocks
with the second set of 4 in separate comparison checks for each PP, It is

unlikely that a conflict will generate an identical error in both sets of one
PPs data.

The executive state job exchange package is defined with a VMID of 1 for CYBER
170 mode, all MCR mask bits are zeroes and traps are disabled. The processor
should never return to the executive state monitor mode to service a PP
exchange request since the response occurs immediately from the job mode. The
sequence of events for all conditions is as follows:

a) After the initial deadstart, the executive state monitor process performs
a complete setup of this section's CYBER 170 exchange package. It clears
the deadstart flag in CM to signal EXCHITC that initialization is complete
and then it executes a executive state EXCHANGE command.

b) The EXCHANGE switches the processor to the executive state job mode with a
VMID of 1. The processor will then begin to execute the CYBER 170 X
register shift sequence (see section 5.2).

¢) After EXCHANGE to job, EXCHITC will trigger the slave PP or PPs to
commence execution of their commands. These will occur during the shift
sequence. Since the CEJ/MEJ commands in the shift sequence cause a swap
between two identical CYBER 170 processes, and, since the PP exchanges
point to the same CYBER 170 package as the CEJ/MEJs, the processes should

not be affected except to the extent that the swapping will occur more
often, '

60469390 A IT-6-20

£
/'A“ "

N A

n ‘3
o N

oke

d) When the shift sequence for both CYBER 170 processes is complete, the
processor will execute a CYBER 170 PS command., This will result in a
return to the executive state monitor mode as described in section 5.2
above. If the scope mode is selected, EXCHITC will deadstart the CP and
loop back to step a) above; otherwise, comparisons will commence as
defined below.

CMP.01 Upon completion of each condition, each slave writes into central
memory a value which indicates the number of exchanges for which it
did not receive an exchange accept from the CP., The value should be
zero and is written into the first 16-bit parcel of a CM word. The 4
slaves write into sequential memory words; this is a block compare
which checks all 4 words at once.

CMP,02 This compare checks the P value in the RF dump. It should point to
the HALT command in the executive state monitor process which is
executed upon completion of the shift sequence.

CMP.03 A block compare is used to check that the CYBER 170 X registers (X0
through X7) in the executive state job package contain all ones.

CMP.04 A block compare is used to check that the CYBER 170 X registers (X0
through X7) in the CYBER 170 Exchange package in central memory
contain all ones.

CMP.05 This comparison only occurs for subsection 4, The block of data
written by the first slave PP performing a block write operation is
checked., The first half of the block is compared with the second half.

CMP.06 Same as for compare 06 above except for the second slave PP performing
a write opertion. '

Section 9 - 2600 Exchanges and CP Stop/Start In CYBER 170 Mode (SECT 9)

This section is very similar to section 8 with the addition that while a CYBER
170 process is being executed along with 2600 exchanges from the slave PPs,
the EXCHITC PP is also continuously stopping and starting instruction
execution. The purpose of the test is to check that a process can be stopped
and saved; that various registers can be read and written, and that the
process can then be reloaded and restarted without disturbing the successful
completion of the process.

Subsection 0 has 1 condition only and this is employed to perform
initialization. During any condition of subsection 1, the processor is
normally in CYBER 170 mode executing the X register shift sequence (see
section 5.2). The executive state job and monitor processes both operate with
the UCR and MCR mask registers cleared and with the traps disabled. When a
2600 exchange occurs, the CYBER 170 exchange package swap occurs directly
during the executive state job mode.

There are 14 conditions in subsection 1, all of which operate with the PPs in
the free-run mode (see section 5.1.3). The 14 conditions are controlled by 2
tables, each occupying 14 words (one for each condition) of central memory.

The first table determines how many of the 4 PPs will be active and executing

60469390 A II-6-21

2600 (EXN) commands. The various conditions proceed from having no slave
active to having 1, 2, 3, and 4 active.

The second table determines how many 2600 commands will be executed by each
slave and also the length of the delay prior to execution of each command.

For any given condition, the number of 2600 commands executed by each slave is
identical; however, the delays are variable for each slave.

There are approximately 100 stop/start operations during the execution of a
single condition. Deadstart operations occur during each of these
stop/starts, If a scope trigger is required, it should be taken from the test
point for the model independent refresh resync command. This trigger will
occur only once during a condition or a scope loop. The sequence of events
for all conditions in subsection 1 is as follows:

a) After the initial deadstart, the executive state monitor process sets up a
CYBER 170 exchange package and an executive state job exchange package.
This is done by 2 copy sequences. A sequence complete flag in central
memory is cleared at this time. At the end of the condition sequence,
this flag will be set by the CP and tested by EXCHITC, The CP also clears
the deadstart flag in CM to signal EXCHITC that initialization is
complete; it executes the refresh resync command and then a executive
state EXCHANGE command.

b) The EXCHANGE switches the processor -to the executive state job mode with a
VMID of 1 AND THE C170 MF=0, The processor will then begin to execute the
CYBER 170 X register shift sequence (see paragraph titled, CYBER 170 X
Register Shift Sequence, above).

c¢) After the EXCHANGE to job, EXCHITC will trigger the slave PP or PPs to
commence execution of their 2600 commands. These will occur during the
shift sequence. Since the CEJ/MEJ commands in the shift sequence cause a
swap between two identical CYBER 170 processes, and since the PPs point to
the same CYBER 170 package as the CEJ/MEJs, the processes should not be
affected except to the extent that the swapping will occur more often.

d) EXCHANGE OUT - While the X register shift sequence and PP exchange
activity are occuring, the EXCHITC PP will commence an exchange out
sequence which is described in the following steps:

1. A stop function is sent to the CP on the MAC channel.

2. EXCHITC checks the halt bit in the CP status summary register; if it
is set, it continues to step 3. If it is not set, a check for the
halt condition will continue for roughly 2 milliseconds before the
exchange out/exchange in sequence is abandoned.

3. EXCHITC sets the preserve exchange bit in the DEC register. This
ensures that a PP exchange request which occurs during the stopped
condition will be maintained in the the MCR register until the
processor returns to the running state. A subsequent exchange request
by another PP is effectively held in the IOU until an accept is sent
in response to the first request in the MCR.

4, EXCHITC initiates a deadstart to cause a half exchange out which
writes the process registers to a executive state exchange package in

60469390 A II-6-22

)

(!\
A
_‘ﬁ‘//

C
C

central memory. EXCHITC tests the executive state monitor flag in the status
summary to select the proper deadstart address. Since the process is stopped
in the job mode, the address selected should always be to exchange out to the
job package.

5. EXCHITC initiates another deadstart which starts microcode execution
and allows EXCHITC to read into PP memory the contents of the
following processor registers: SIT,PSM,PTL,PTA,MPS,JPS.

" e) RELOAD - EXCHITC now commences a reload operation which consists of the

following operations:

1. A deadstart is initiated which causes microcode initialization
including setting default values into various egisters including some
or all of those just saved in PP memory.

2. A clear errors function is issued to the CP,

3. A reload sequence is initiated in which the register contents saved in
PP memory in step d)5 above are now written back into the same
registers.

£) EXCHANGE IN - The EXCHITC PP completes the stop/start sequence by
executing the exchange in sequence which is as follows:

1. A master clear function and then a clear errors function are sent to
the CP.

2. The processor's S (CMA) register is loaded with the appropriate
address to allow instruction execution to commence. This is per formed
by a write operation on the MAC channel.

3. The preserve exchange bit in the DEC register is cleared.

4, The BO word in the CYBER 170 exchange package in CM is set to a
nonzero value.

5. The start function is issued to the processor. This causes a half
exchange in sequence which loads processor registers from the
executive state monitor package in CM. The monitor process
immediately executes a executive state EXCHANGE and picks up the job
process. The process (CYBER 170 X register shift sequence) should be
in exactly the same state as it was when the stop function was issued
in step d)1 above, and it should continue execution.

6. EXCHITC checks to see if the CYBER 170 process running in the CP has
now set the sequence complete flag in CM indicating that all X
registers have finished sequencing. If it is set, EXCHITC exits to
step g) below.

7. If the sequence is not complete, EXCHITC checks to determine if BO in
the CYBER 170 package in CM has been cleared. This would indicate
that a CYBER 170 exchange package swap has occurred and that the
process has successfully continued operation subsequent to the start
function (step f)5 above). If this is the case, the sequence returns

60469390 A I1-6-23

to step d) above and the commencement of another stop/start operation. If
BO does not clear, step £)6 above and this step are repeated several times
before EXCHITC exits to step g). A failure of the process to restart
properly will be detected by errors during comparison checks.

g) The CYBER 170 process, having set the sequence complete flag, waits for
EXCHITC to respond by clearing the flag. The processor will detect the
clearing of the flag and will immediately execute a CYBER 170 PS command.
This will result in a return to the executive state monitor mode and a
HALT as described in paragraph titled, CYBER 170 Program Stop Sequence,
above. If the scope mode is selected, EXCHITC will deadstart the CP and
loop back to step a) above; otherwise, comparisons will commence as
defined below.

CMP.01 Upon completion of each condition, each slave writes into central
memory a value which indicates the number of exchanges for which it
did not receive an exchange accept from the CP. The value should be
zero and is written into the first 16 bit parcel of a CM word. The 4
slaves write into sequential memory words. This is a block compare
which checks all 4 words at once.

CMP.02 This compare checks the P value in the RF dump. It should point to a
HALT command in the executive state process (step g) above).

CMP.03 A block compare is used to check that the CYBER 170 X registers (X2
through X7) in the executive state job exchange package contain all
ones.

CMP.04 A block compare is used to check that the CYBER 170 X registers (X2

through X7) in the CYBER 170 Exchange package in central memory
contain all ones.

Section 10 - 2600 Exchanges and External Interrupts (SECT 10)

This section is similar to section 8 exceptthat a single slave PP is assigned
to execute an INPN command (op code 102601) instead of a 2600 command. The
102601 command causes an external interrupt (MCR bit 8) to be sent to the
processor via CM port 1, to which the processor is connected.

During any condition of this test, the processor is usually in CYBER 170 mode
executing the X register shift sequence. The executive state job and monitor
processes both operate with the mask bit for the external interrupt set and
with the traps enabled. Normally when a 102601 is executed, the processor
will perform an exchange interrupt back to the executive state monitor
process. This process increments a count of the number of external interrupts
received in the 170 mode and returns to the 170 process by executing a
executive state EXCHANGE.

If another external interrupt arrives while the processor is in the executive
state monitor process servicing the previous external interrupt, a trap will
occur. The resulting trap process increments another counter for the external
interrupts received in the executive state monitor mode and then RETURNs to
the interrupted executive state monitor process. For either interrupt case,
the CP and the slave PP which is sending the external interrupts perform a

60469390 D I1-6-24

ole

handshake to ensure that the interrupts occur one at a time and that a
response is received.

Subsection O has only 1 condition; it performs initialization. Subsection 1
has 15 conditions and operates in the free-run mode. Both sets of 15
conditions are controlled by two tables, each occupying 15 words (one for each
condition) of central memory. The first table determines how many of the four
PPs will be active and executing; either the 102601 (INPN) or the 2600 (EXN)
commands. The various conditions proceed from having 1 slave active to 2, 3,
and 4. The second table determines how many 2600 commands will be executed by
each of three slaves and also the delay between the execution of each 2600
command. Only one slave is assigned to execute the 102601 interrupt command
and the number (approximately 100) of these depends upon the speed of
interaction between the slave and the CP. This slave executes a small random
delay before executing each 102601 command. The sequence of events for all
conditions is as follows:

a) After the initial deadstart, the executive state monitor process sets up a
CYBER 170 exchange pack and executive state job exchange pack. This is
done by two copy sequences. The CP clears the deadstart flag in CM to
signal EXCHITC that initialization is complete. The CP then clears an
interrupt disable flag and sets an interrupt request flag; this triggers
the first external interrupt from the selected slave PP. Immediately
thereafter the CP executes a executive state EXCHANGE command.

b) The EXCHANGE switches the processor to the executive state job mode with a
VMID of 1. The processor will then begin to execute the CYBER 170 X
register shift sequence.

¢) After the EXCHANGE to job, EXCHITC will trigger the slave PP or PPs to
commence execution of their 102601 or 2600 commands. These will occur
during the shift sequence. Since the CEJ/MEJ commands in the shift
sequence cause a swap between 2 identical CYBER 170 processes, and since
the PPs point to the same CYBER 170 package as the CEJ/MEJs, the processes
should not be affected except to the extent that the swapping will occur
more often. Note that the processor does not exit the executive state job
process to perform the swap in response to a PP exchange request.

d) If an external interrupt occurs, the processor exchange interrupts to the
executive state monitor process. The external interrupt bit in the MCR of
the executive state job package is cleared and the 170 mode external
interrupt count in CM is incremented. The CP waits for the slave PP to
clear the interrupt request flag and then checks the interrupts disabled
flag. If the disable is not set, the CP requests another interrupt before
a executive state EXCHANGE is executed to return to the 170 state X
register shift operation.

e) This step only occurs if a trap interrupt occurs as a result of an
external interrupt arriving during step d) above. The executive state
monitor process is stacked and the processor is pointed to a trap routine
where the MCR bits from the stack are checked for an external interrupt.
The executive state mode external interrupt count in CM is incremented by
one and then, as described in step d) above, another interrupt request may
be issued before a RETURN is made to the point of interruption in step d)
above.

60469390 D II-6-25

f) Wwhen the shift sequence for both CYBER 170 processes is complete, the
processor will set the interrupt disable flag and check the interrupt
request flag. If a request is outstanding it will wait until the request
is cleared before it executes a 170 state PS command. This will result in
a return to the executive state monitor mode as described in paragraph
titled, CYBER 170 Program Stop Sequence under Section Descriptions,
above. If scope mode is selected, EXCHITC will deadstart the CP and loop
back to step a) above; otherwise, comparisons begin as defined below.

CMP.01 Upon completion of each condition, each slave writes into central
memory a value which indicates the number of exchanges for which it
did not receive an exchange accept from the CP. The value should be
zero and is written into the first 16-bit parcel of a CM word. The
four slaves write into sequential memory words; this is a block
compare which checks "all four words at once.

CMP.02 Checks the P value in the RF dump. It should point to the HALT
command in the executive state monitor process to which control is
returned as a result of the program stop sequence. See paragraph
titled, CYBER 170 Program Stop Sequence, under Section Descriptions,
above.

CMP.03 A block compare is used to check that the CYBER 170 X registers (X1
through X7) in the executive state job package contain all ones.

CMP.04 A block compare is used to check that the CYBER 170 X registers (X1

through X7) in the 170 Exchange pack in central memory contain all
ones.

Section 11 - 2600 Exchanges and SIT/PIT Interrupts (SECT 11)

This section is similar to section 8 with the addition that The executive
state CP code contains routines that will cause SIT (system interval timer)
and PIT (process interval timer) exchange and trap interrupts to occur at
relatively high rates. Also included is code to handle these interrupts and
to check that a specified number of them occur. The purpose is to verify the
operation of the SIT and PIT trap mechanism and to ensure that failures due to
conflicts among SIT and PIT interrupts and PP and CP exchanges do not occur.

During any condition of this test, the processor is normally in CYBER 170 mode
executing the X register shift sequence. The executive state job and monitor
process both operate with the mask bits for the PIT (UCR mask) and SIT (MCR
mask) set and with traps enabled. When either of these interrupts occur, the
processor exchanges or traps to a routine where the PIT or SIT will be
restored with a value which will cause another interrupt of the same type
after a short interval. 1In the case of a SIT interrupt or a PIT interrupt
from the job process, an interrupt count is decremented; when the count
reaches zero, the SIT or PIT will be restored with a high value which inhibits
further interrupts of the corresponding type.

PIT interrupts from the monitor process are not counted at all. If the timing
were such that only PIT interrupts from the monitor process were left to
occur, they would not occur since the machine is normally executing in the
executive state job state.

60469390 D II-6-26

The MCR mask bit for the exchange requests is turned off in both the monitor
and job exchange packages. The processor responds to a PP exchange with a
CYBER 170 package swap immediately from the executive state job mode.

Subsection O is used for initialization. There are 100 conditions in each of
subsections 1 and 2. Subsection 1 operates in the synchronized mode while
subsection 2 is identical except that the PPs operate in the free-run mode.
Both sets of 100 conditions are controlled by U4 tables, each occupying 10
words of central memory. Each set of 100 conditions is controlled by 2

loops. Whenever the least significant digit of the condition number changes,
new entries are selected from 2 of the tables. One entry controls the PIT .
interrupts and the other the SIT interrupts. Each entry specifys the interval
between interrupts and the number of interrupts. When no interrupt is
specified, the interval is set for maximum.

Whenever the tens digit of the condition number changes, new entries are
selected from the 2 other tables. One of these selects the number of slaves
executing 2600 commands (from O to 4). The remaining table determines the
number of 2600 commands executed per slave and the delay prior to the excution
of each of the 2600 commands. For any given condition, the number of 2600
commands executed by each slave is identical; however the delays are variable
for each slave.

The tables are set up such that no 2600 commands are executed during the first
ten (0 to 9) conditions. Additionally, condition O has only a single SIT
interrupt, condition 1, a single PIT interrupt, and condition 2 a single one
of each. The sequence of events for all conditions is as follows:

a) After the initial deadstart, the executive state monitor process picks up
the table entries which control the SIT and PIT interrupts. EXCHITC will
have selected the appropriate entries for the current condition and placed
them in central memory for the processor. The CP masks the SIT and PIT
interrupt counts and saves them in central memory. The SIT interval value
is retained in the monitor process while the PIT interval value is written
into the executive state job package in CM. It is written into an X
register to be used to restore the PIT after a job trap and it is also
written into the PIT of the job package to force the first PIT job trap to
occur after the job process commences. The monitor process also sets up
the CYBER 170 exchange package and the executive state job exchange
package. This is done by two copy sequences. The CP clears the deadstart
flag in CM to signal EXCHITC that initialization is complete; it then
executes two CPYXS commands to load the SIT and PIT with the interval
values. Finally, the CP executes a executive state EXCHANGE command.

b) The EXCHANGE switches the processor to the executive state job mode with a
VMID of 1. The processor will then begin to execute the CYBER 170 X
register shift sequence.

¢) After the EXCHANGE to job, EXCHITC will trigger the slave PP or PPs to
commence execution of their 2600 commands. These will occur during the
shift sequence. Since the CEJ/MEJ commands in the shift sequence cause a
swap between two identical CYBER 170 processes, and since the PPs point to
the same CYBER 170 package as the CEJ/MEJs, the processes should not be
affected except to the extent that the swapping will occur more often.

60469390 A I1-6-27

d) JOB TRAP - If or when a job trap interrupt occurs, a job trap routine
per forms the following operations:

)
1. The MCR bits from the job trap stack frame are checked for a PIT S 4
interrupt.

2. The job process PIT interrupt count in central memory is decremented
by one.

3. If the resulting count is zero, a CPYXS command sets the PIT to
maximum value (to inhibit further job interrupts) and then skips to
step d)5. '

4, 1If the count was nonzero a CPYXS command sets the PIT to the test
interval to generate a subsequent job process PIT interrupt.

5. A RETURN command switches the processor back to the CYBER 170 X
register shift sequence.

e) EXCHANGE INTERRUPT - When an exchange interrupt occurs, the processor
returns to the executive state monitor mode where the following steps
ocecur:

1. The MCR bits in the executive state job exchange package are checked
for a SIT interrupt.

2. The SIT interrupt count in central memory is decremented by one.
3. The SIT bit in the MCR of the job package is cleared.

4, If the SIT interrupt count is now zero, a CPYXS command sets the SIT
to maximum value (to inhibit further SIT interrupts) and then the
process skips to step e)6,

5. A CPYXS command sets the SIT to the test interval to cause a
subsequent SIT interrupt.

6. The processor performs an EXCHANGE to return to the job mode and the
CYBER 170 shift sequence. :

f) MONITOR TRAP - This step would not normally occur and should only occur if
a SIT or PIT trap interrupt occurs while the processor is in the monitor
mode servicing a SIT exchange interrupt as described in step e) above. A
monitor process trap routine would perform the following operations:

1. The MCR bits from the monitor trap stack frame are checked. If all
bits are false skip to step f)5.

2. If the SIT bit is set, the SIT interrupt count in central memory is
decremented by one. '

3. If the resulting SIT interrupt count is zero, the SIT is set to

maximum value with a CPYXS to inhibit further SIT interrupts and the
process skips to step f)6. AN

60469390 A 11-6-28 NS

J

"

0D

4, T.. SIT is set up with the SIT interval value to cause a subsequent
SIT interrupt. Skip to step £)6.

5. The UCR bits from the monitor stack frame are checked. If a PIT
interrupt has occurred the PIT is restored with the PIT interval value
"to permit a possible subsequent interrupt.

6. The processor executes a RETURN command to switch back to the monitor
process described in step e) above.

g) When the shift sequence for both CYBER 170 processes is complete, the
processor will execute a CYBER 170 PS command. The PS command will cause
the processor to return to the executive state monitor mode as described
in section 5.2 above. If the scope mode is selected, EXCHITC will
deadstart the CP and loop back to step a) above; otherwise, comparisons
will commence as defined below.

CMP.01 Upon completion of each condition, each slave writes into central
memory a value which indicates the number of exchanges for which it
did not receive an exchange accept from the CP. The value should be
zero and is written into the first 16-bit parcel of a CM word. The
four slaves write into sequential memory words; this is a block
compare which checks all 4 words at once.

CMP.02 This compare checks the P value in the RF dump. It should point to
the HALT command in the executive state monitor process to which the
processor returns after completion of the X register shift sequence.

CMP.03 This compare checks the SIT interrupt count in central memory; it
should have been decremented to zero.

CMP.0Y4 This compare checks the job process PIT interrupt count in central
memory; it should have been decremented to zero.

CMP.05 A block compare is used to check that the CYBER 170 X registers (X2
through X7) in the executive state job package contain all ones.

CMP.06 A block compare is used to check that the CYBER 170 X registers (X2

through X7) in the CYBER 170 Exchange package in central memory
contain all ones.

Section 12 - Error Exit, Illegal Instructions (SECT 12)

This section tests illegal CYBER 170 instruction error exits. Subsection 0 is
used primarily for initialization,.

Subsections 1 and 2 perform checks in the CYBER 170 job and monitor modes
respectively. There is no error exit select bit for illegal instructions,
The set of conditions listed in the following table are tested in both
subsection 1 and 2.

60469390 A . II-6-29

In this table short forms and symbols having the following meanings are

employed:

parcl

-~

UEM_EN

ESM_MOD

Cond No.

00
0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

60469390 C

Refers to one of the four parcels in a CYBER 170 60 bit word

Used to denote logical AND

Used to denote logical NOT

Refers to the flag in bit 23 of word 4 of the executive state

exchange package which enables unified extended memory operation.

Refers to the flag in bit 24 of word 4 of the executive state
exchange package which specifies extended semiconductor memory

mode.

Refers to the flag in bit 4 of word 2 of the executive state
exchange package which authorizes ECS operation.

Command

PS
RJ
Jp
ZR
NZ
PL
NG
IR
OR
DF
ID
EQ
NE
GE
LT
SAS
SAS
SAS
SBS
SBS
SBS
SX5
SX5
SX5

AO+K
BO+K
X0+K
AO+K
BO+K
X0+K
AO+K
BO+K
X0+K

CEJ/MEJ
CEJ/MEJ

CEJ/MEJ

REC

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

parcl O

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

Violation

command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
command

-~

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

UEM_EN

parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcl
parcel 1
parcel 2
parcel 3

WWWWWWWWwWwWwWwwwWwWwWwwWwwwwwwwww

ESM_MOD'

-II-6-30

P

;kfy

I
N

C

28 REC parcl 1 ~ UEM_EN " ESM_MOD'
29 REC parcl 2 ~ UEM EN ~ ESM MOD'
30 WEC parcl 1 ~ UEM_EN "~ ESM_MOD'
31 WEC parcl 2 "~ UEM EN ~ ESM MOD'
32 WEC ' parcl 3 © UEM_EN " ESM MOD'

After the initial deadstart in any condition of subsection 1 or 2, the
processor enters the executive state monitor mode where it sets up a executive
state job exchange package and a CYBER 170 exchange to MA package. The CYBER
170 exchange package will be swapped on any occasion when an error exit occurs
in the CYBER 170 job mode. The processor subsequently performs a executive
state exchange to executive state job mode which is defined by the executive
state job package VMID to be CYBER 170 mode. The CYBER 170 monitor flag will
also be set or clear as specified for the particular subsection.

Once in the CYBER 170 mode, the processor will initialize its registers and
central memory as required to provide the proper conditions for any one of the
illegal commands. Prior to the deadstart, ITCEXCH will have selected a word
of data containing the illegal command for the current condition. It will
write this word into the sequence of commands executed by the CYBER 170
process. ‘

If the processor fails to detect the illegal command set up by ITCEXCH and
continues execution it should sequence its way to a subsequent PS command
which will cause an illegal command error exit sequence.

Normally, when the illegal condition is detected, the processor records the
current value of the P register in RA and proceeds to execute the error exit
sequence. This sequence will differ in detail depending upon the subsection
(job or monitor mode) and the current condition. The descriptive data
provided for each comparison check provides additional detail.

CMP.01 The P value in the CYBER 170 exchange to MA package is checked. For
subsection 1 (CYBER 170 job mode), the error exit which occurs sets
the P to zero after which this package is swapped. The P in this

* package will therefore be 0. For subsection 2 (CYBER 170 monitor
mode), the error exit immediately causes a return to executive state
monitor mode and a swap of this package does not occur. The value in
P should point to the CYBER 170 exchange to MA process to which it was
jnitialized by the executive state monitor process.

CMP.02 The P value and error exit condition bits at the time of the error
exit are saved in RA by the CP and are checked by this comparison.
Any illegal CYBER 170 command should always cause an error exit.
There is neither an exit select bit nor an exit condition bit for
illegal commands. In this comparison, no exit condition bits should
be set at all. For subsection 1 (CYBER 170 job mode) this comparison
is performed on a memory cell in which RA was previously saved for
later checking. ’

60469390 B I1I-6-31

CMP.03

CMP, 04

CMP. 05

CMP, 06

CMP. 07

CMP. 08

CMP. 09

CMP, 10

CMP. 11

The P value in the executive state job exchange package is checked._
For subsection 1 (CYBER 170 job mode), it should point to the PS
command in the process which is entered after CYBER 170 exchange to MA
package is swapped. Since the return to executive state monitor
occurs directly after an exit in CYBER 170 monitor mode, the value for
subsection 2 will point directly to the illegal command which caused
the error. The illegal commands occur on various parcel boundaries as
specified by the tables above. This comparison checks the P value
accordingly.

The value of P in the register file dump is checked. The processor
should always return to the executive state monitor process via a
executive state exchange operation after the error exit caused by the
infinite error or the PS command. The P should point to HALT which is
executed after reentry to the executive state process.

This comparison checks that the CYBER 170 A register (and B register
for job mode) addressed by the illegal command as the destination
register is not altered. This pertains to A5 in conditions 15, 16,
and 17 and B5 in conditions 18, 19, and 20 for job mode). For monitor
mode (subsection 2), comparison 11 below, checks the B registers,

This is similar to comparison 5 above except that X5 is checked for
conditions 21, 22, and 23.

This comparison checks to ensure that the REC, WEC, RX, and WX
commands (see table of conditions above) did not execute and thereby
alter central memory. Only that portion of central memory indicated
by their appropriate operands is checked.

The CYBER 170 monitor flag in the executive state job exchange package
is checked. It should always be set.

The exit mode halt flag in the executive state job exchange package is
checked. It should always be set.

‘The value in the exchange to MA flag is checked. In subsection 1, the

error exit causes a swap to a CYBER 170 process that sets this flag to

DEADyg, 1In subsection 2 the exit is directly to executive state
mode and this flag will remain all zeroes.

This comparison occurs only in subsection 2 (CYBER 170 monitor mode)
and checks that the destination B register (B5 in conditions 18, 19,
and 20) are not altered. The extra comparison is required because the
destination registers are found in the executive state exchange
package in monitor mode subsections and in the CYBER 170 exchange to
MA package in job mode subsections.

60469390 A : I11-6-32

AN

P

)

3.\.
N

J

C

Section 13 - Error Exit, Address Out Of Range (SECT 13)

This section performs address out of range (AOR) error exit checks.

Subsection 0 is used for initialization only. Subsections 1 through 4 perform
the AOR checks for read and write commands with the CYBER 170 monitor flag and
AOR exit select bit (248) set as follows:

Subsection 1 Read/write AOR, CYBER 170 job mode, exit selected
Subsection 2 - Read/write AOR, CYBER 170 job mode, exit not selected
Subsection 3 - Read/write AOR, CYBER 170 monitor mode, exit selected
Subsection 4 - Read/write AOR, CYBER 170 monitor mode, exit not selected

Subsections 5 through 8 perform AOR error exit checks on branch and RNI
operations with CYBER 170 monitor flag and the AOR exit select bit (248) set
as follows:

Subsection 5 - Branch/RNI to AOR, CYBER 170 job mode, exit selected
Subsection 6 Branch/RNI to AOR, CYBER 170 job mode, exit not selected
Subsection 7 ~ Branch/RNI to AOR, CYBER 170 monitor mode, exit selected
Subsection 8 - Branch/RNI to AOR, CYBER 170 monitor mode, exit not selected

In the following tables, the operand OUTRANG refers to the address which is
the first word beyond the field length, while the operand INRANG is the
adjacent address which is at the end of the field length.

The following set of conditions is repeated in subsections 1 through 4:

Cond No. Command

00 SA5 A5+K where A5=INRANG, K=1

01 SA5 B5+K where B5 zINRANG, K=1

02 SAS5 X54K where X5=INRANG, K=1

03 SA5 X54B1 where X5 =INRANG, B1=1

o4 SA5 A5+B1 where A5=INRANG, B1=1

05 SA5 A4-BA where Al4=0, B4= -QUTRANG
06 SA5 B5+B1 where B5=INRANG, B1=1

o7 SA5 B6-B1 where B6 =OUTRANG+1, B1=1
08 SA6 A5+ where A5=INRANG, K=1

09 SA6 B5+4K where B5=INRANG, K=1

10 SA6 X54K where X5=INRANG, K=1

1" SA6 X54B1 where X5 =INRANG, B1=1

12 SA6 AS5+B1 where A5=INRANG, B1=1

13 SA6 A4-BY where A4=0, Bd4= -QUTRANG
14 SA6 B5+B1 where BS5=INRANG, B1=1

15 SA6 B6-B1 where B6=0UTRANG+1, B1=1
60469390 A : II-6-33

The following set of conditions is repeated in subsections 5 through 8:

Cond No. Command

00 JP BO,OUTRANG

01 ZR XO,OUTRANG

02 NZ X5,0UTRANG

03 PL X5,0UTRANG

o4 MI XU4,0UTRANG

05 EQ B1,B1,0UTRANG
06 NE BO,B1,0UTRANG
07 GE B1,B0,0UTRANG
08 LT BO,B1,0UTRANG
09 JP BO,INRANG (RNI to OUTRANG)
10 RJ OUTRANG

After the initial deadstart in any condition of subsection 1 through 8, the
processor enters the executive state monitor mode where it sets up a executive
state job exchange package and a CYBER 170 exchange to MA package. - The CYBER
170 exchange package will be swapped on any occasion when an error exit occurs
in the CYBER 170 job mode. The processor subsequently performs a executive
state exchange to executive state job mode which is defined by the executive
state job package VMID to be CYBER 170 mode. The CYBER 170 monitor flag will
also be set or clear as specified for the particular subsection.

Once in the CYBER 170 mode the processor will initialize its registers as
required to provide the proper conditions for any one of the AOR commands.
Prior to the deadstart, ITCEXCH will have selected a word of data containing
the AOR command for the current condition. It will write this word into the
sequence of commands executed by the CYBER 170 process.

If the processor fails to detect the AOR error set up by ITCEXCH and continues
execution it should sequence its way to a subsequent PS command which will
cause an illegal command error exit sequence.

Normally, when the AOR error condition is detected, the processor records the
current value of the P register and the exit condition bits in RA and proceeds
to execute the error exit sequence. This sequence will differ in detail
depending upon the subsection (job or monitor mode) and the current

condition. The descriptive data provided for each comparison check provides
additional detail.

CMP, 01 The P value in the CYBER 170 exchange to MA package is checked. For
subsections 1, 2, 5, and 6 (CYBER 170 job mode), the error exit which
occurs sets the P to zero after which this package is swapped. The P
in this package will therefore be 0. For subsections 3, 4, 7, and 8
(CYBER 170 monitor mode), the error exit immediately causes a return
to executive state monitor mode and a swap of this package does not
occur. The value in P should point to the CYBER 170 exchange to MA

process to which it was initialized by the executive state monitor
process,

60469390 A I11-6-34

A
.

oke

CMP. 02

CMP. 03

CMP. 04

CMP.05

CMP.06

CMP, 07

CMP.08

CMP. 09

The P value and error exit condition bits at the time of the error
exit are saved in RA by the CP and are checked by this comparison.
When the exit select bit is set (subsections 1, 3, 5, and 7), the
exit condition bit (248) should be set and the P value should point
to the command which caused the AOR error. When the exit is not
selected (subsections 2 and U4 for read/write AOR), an error exit
should occur as a result of a PS command which follows shortly after
the command which normally causes the AOR error. The PS command is
an illegal command and although it causes an exit, there is no
associated exit condition bit. For branch or RNI operations an exit
should always occur, even if the AOR select bit is clear (subsections
6 and 8). In addition, the value recorded in RA should point to the
branched to command, or to the command accessed via the RNI
operation. For subsections 1, 2, 5, and 6 (CYBER 170 job mode) these
values are in a memory cell in which RA was previously saved for
later checking. v

The value of P in the register file dump is checked. The processor
should always return to the executive state monitor process via a
executive state exchange operation after the error exit caused by the
AOR error or the PS command. The P should point to HALT which is
executed after reentry to the executive state process.

The CYBER 170 monitor flag in the executiVe state job exchange
package is checked. It should always be set.

The exit mode halt flag in the executive state job exchange package
is checked. It should always be set.

The value in the exchange to MA flag is checked. In subsections 1,
2, 5, and 6, the error exit causes a swap to a CYBER 170 process that

sets this flag to DEAD1g, In subsections 3, 4, 7, and 8 the exit
is directly to executive state mode and this flag will remain all

zeroes.,

This comparison only occurs in subsections 1 through 4, It checks to

" ensure the the A register referenced by the read/write AOR command is

set to the out of range address.

This comparison also occurs only for subsections 1 through 4. It

checks to ensure that the destination X register (for read AOR, or
the addressed memory cell (for write AOR) have not been altered by
the AOR command.

The P value in the executive state job exchange package is checked.
For subsections 1 and 2 (CYBER 170 job mode), it should point to the
PS command in the process which is entered after CYBER 170 exchange
to MA package is swapped. Since the return to executive state
monitor occurs directly after an exit in CYBER 170 monitor mode, the
value for subsection 3 will point directly to the command which
caused the read/write AOR error, and, for subsection 4 with no exit
selected, it will point to the following PS command. This check is
not performed in subsections 5 through 8.

60469390 A I1-6-35

Section 14 - Error Exit, Floating-point Infinite (SECT 14)

This section checks infinite error exit conditions (exit select bit 249) on
all of the floating point add, subtract, multiply, and divide commands.

Subsection 0 is used for initialization only. Subsections 1 through 7 perform/
the checks with the CYBER 170 monitor flag and the exit select bit set up for
the combinations described in the following tables:

Subsections 1 to 4 - Infinite error, CYBER 170 job mode, exit selected

Subsection 1 conditions

Command : Xj + Xk to Xi Op Code 30 32 34
ADD 30, 32, 34 W +INF +INF Cond No. 00 06 12
ADD 30, 32, 34 W -INF -INF Cond No. 01 07 13
ADD 30, 32, 34 +INF W +INF Cond No. 02 08 14
ADD 30, 32, 34 +INF +INF +INF Cond No. 03 09 15
ADD 30, 32, 34 -INF W -INF Cond No. 04 10 16
ADD 30, 32, 34 -INF -INF -INF Cond No. 05 11 17

Subsection 2 conditions

Command : Xj - Xk to Xi Op Code 31 33 35
SuB 31, 33, 35 W +INF ~INF Cond No. 00 06 12
suB 31, 33, 35 W -INF +INF Cond No, 01 07 13
SUB 31, 33, 35 +INF W +INF Cond No, 02 08 14
SuB 31, 33, 35 +INF =INF +INF Cond No, 03 09 15
SuB 31, 33, 35 =INF W -INF Cond No. 04 10 16
sSuB 31, 33, 35 -INF +INF -INF Cond No. 05 11 17

Subsection 3 conditions

Command : Xj * Xk to Xi Op Code 40 41 42
MPY 40, 41, 42 +N +INF +INF Cond No. 00 12 24
MPY 40, 41, 42 +N =INF =INF Cond No. 01 13 25
MPY 40, 41, 42 -N +INF -INF Cond No, 02 14 26
MPY 40, 41, 42 ~N -INF +INF Cond No. 03 15 32
MPY 40, 41, 42 +INF +N +INF Cond No, O4 16 28
MPY 40, 41, 42 +INF -N -INF Cond No., 05 17 29
MPY 40, 41, 42 +INF +INF +INF Cond No. 06 18 30
MPY 40, 41, 42 +INF -INF -INF Cond No. 07 19 31
MPY 40, 41, 42 ~INF +N -INF Cond No. 08 20 32
MPY 40, 41, 42 -INF -N +INF Cond No. 09 21 33
MPY 40, 41, 42 -INF ~ +INF =INF Cond No. 10 22 34
MPY 40, 41, 42 -INF -INF +INF Cond No. 11 23 35

60469390 A II1-6-36

O

O

Subsection 4 conditions

Command : Xj / Xk to Xi Op Code 44 45
DVD ul, 45 +INF +N +INF Cond No. 00 08
DVD 44, U5 +INF N -INF Cond No. 01 09
DVD 44, 45 +INF +0 +INF Cond No. 02 10
DVD 44, 45 +INF -0 -INF Cond No. 03 11
DVD 44, 45 -INF N -INF Cond No. 04 12
DVD 44, 45 =INF -N +INF Cond No. 05 13
DVD 44, 45 -INF 40 -INF Cond No. 06 14
DVD u4, 45 -LNF -0

+INF Cond No. 07 15

Subsection 5 - Infinite error, CYBER 170 job mode, exit not selected;
conditions same as for subsection 2

Subsection 6 - Infinite error, CYBER 170 monitor mode, exit selected;
conditions same as for subsection 3

Subsection 7 - Infinite error, CYBER 170 monitor mode, exit not selected;
conditions same as for subsection 4

After the initial deadstart in any condition of subsection 1 through 7, the
processor enters the executive state monitor mode where it sets up a executive
state job exchange package and a CYBER 170 exchange to MA package. The CYBER
170 exchange package will be swapped on any occasion when an error exit occurs
in the CYBER 170 job mode. The processor subsequently performs a executive
state exchange to executive state job mode which is defined by the executive
state job package VMID to be CYBER 170 mode. The CYBER 170 monitor flag will
also be set or clear as specified for the particular subsection.

Prior to the deadstart, ITCEXCH will have selected a word of data containing
the floating~point command for the current condition. It will write this word
into the sequence of commands executed by the CYBER 170 process. ITCEXCH also
sets up (in the executive state job exchange package) the operands which will
cause the infinite error when operated upon by the floating-point command ,

If the processor fails to detect the infinite error set up by ITCEXCH and
continues execution it should sequence its way to a subsequent PS command
which will cause an illegal command error exit sequence.

Normally, when the infinite error is detected, the processor records the

current value of the P register and the exit condition bits in RA and proceeds

to execute the error exit sequence. This sequence will differ in detail
depending upon the subsection (job or monitor mode) and the current

condition. The descriptive data provided for each comparison check provides
additional detail.

60469390 A IT1-6-37

CMP, 01

CMP, 02

CMP. 03

CMP.OU

CMP. 05

CMP, 06

CMP, 07

CMP, 08

The P value in the CYBER 170 exchange to MA package is checked. For
subsections 1 through 5 (CYBER 170 job mode), the error exit which
occurs sets the P to zero after which this package is swapped. The P
in this package will therefore be 0. For subsections 6 and 7 (CYBER
170 monitor mode), the error exit immediately causes a return to
executive state monitor mode and a swap of this package does not

~ oceur. The value in P should point to the CYBER 170 exchange to MA

process to which it was initialized by the executive state monitor
process.

The P value and error exit condition -bits at the time of the error
exit are saved in RA by the CP and are checked by this comparison.
When the exit select bit is set (subsections 1 through 4, and 6),the
exit condition bit (249) should be set and the P value should point

to the command which caused the infinite error. When the exit is not
selected (subsections 5 and 7), an error exit should occur as a result
of a PS command which follows shortly after the command that normally
causes the infinite error. The PS command is an illegal command, and
although it causes an exit there is no associated exit condition bit.
For subsections 1 through 5 (CYBER 170 job mode) these values are in a
memory cell in which RA was previously saved for later checking (see
section 5.2 for further details).

The P value in the executive state job exchange package is checked.
For subsections 1 through 5 (CYBER 170 job mode), it should point to
the PS command in the process which is entered after CYBER 170
exchange to MA package is swapped. Since the return to executive
state monitor occurs directly after an exit in CYBER 170 monitor mode,
the value for subsection 6 will point directly to the command which
caused the infinite error. For subsection 7 with no exit selected, it
will point to the following PS command.

The value of P in the register file dump is checked. The processor
should always return to the executive state monitor process via a
executive state exchange operation after the error exit caused by the
infinite error or the PS command. The P should point to HALT which is
executed after reentry to the executive state process.

The value in the CYBER 170 destination register Xi (X2) is checked for
the result from the floating point operation. The result should
always be either the standard plus or minus infinite operand. Refer
to the table of conditions above for the appropriate subsection. For
subsections 1 through 5 (CYBER 170 job mode) this result is found in
the CYBER 170 exchange to MA package. For subsections 6 and 7 where
the exit is directly to executive state monitor mode the result should
be found in the executive state job exchange package.

The CYBER 170 monitor flag in the executive state job exchange package
is checked. It should always be set.

The exit mode halt flag in the executive state job exchange package is
checked. It should always be set.

The value in the exchange to MA flag is checked. In subsections 1
through 5, the error exit causes a swap to a CYBER 170 process that

sets this flag to DEAD1g, In subsection 6 and 7 the exit is to
executive state mode and this flag will remain all zeroes.

60469390 A ' II-6-38

oD

Section 15 - Error Exit, Floating-point Indefinite (SECT 15)

This section checks indefinite error exit conditions on all of the floating
point add, subtract, multiply and divide commands.
generated are refered to as indefinite errors since in each test case the

destination register should be set up with the standard positive indefinite

result (+IND).

The errors which are

An indefinite or infinite error exit will only occur if at
least one of the input operands is either infinite or indefinite.

Specifically, in this section, cases are tested where combinations of 1or 2

of the input operands may be + or - indefinite or + or - infinite,

Either one

or both of the error exit bits should be set, depending upon the input, but in
all cases the destination register should be +IND.
infinite error exit bit should be set if there is an input operand of the
corresponding type.

Sub-section 0 is used for initialization only.

Subsections 1 to 5 - Indefinite error, CYBER 170 job mode exit selected

Subsection 1

conditions

Commands:

ADD, 30, 32, 34
ADD, 30,32, 34
ADD, 30, 32, 34
ADD, 30, 32, 34
ADD, 30, 32, 34
ADD, 30, 32, 34
ADD, 30, 32, 34
ADD, 30,32, 34
ADD, 30, 32, 34
ADD, 30,32,34
ADD, 30,32, 34
ADD, 30,32, 34
ADD, 30, 32, 34
ADD, 30,32, 34
ADD, 30,32, 34

ADD, 30, 32, 34

ADD, 30,32, 34
ADD, 30,32, 34
ADD, 30,32, 34
ADD, 30,32, 34

60469390 A

SuB, 31,33,35
SuB, 31, 33,35
SuB, 31, 33,35
SUB, 31, 33,35
SUB, 31,33,35
suB, 31,33,35
SUB, 31,33,35
suB, 31,33,35
SuB, 31,33,35
SuB, 31,33,35
SUB, 31,33,35
SuB, 31, 33,35
SuB, 31,33,35
SuB, 31,33,35
SUB, 31,33,35
suB, 31,33,35
SuB, 31,33,35
SuB, 31,33,35
SuB, 31,33,35
suB, 31,33,35

XJ +y=

W

+INF
-INF
+IND
-IND
W

+INF
~-INF
+IND
~IND
+IND
-IND
+IND
-IND
+IND
~INF
+IND
~IND
+IND
-IND

Either the indefinite or

Sub-sections 1 through 8
perform the checks with the Cyber 170 monitor flag and the exit select bit set
up for the combinations described in the following tables:

Xk to Xi
+IND +IND
+IND +IND
+IND +IND
+IND +IND
+IND +IND
-IND +IND
-IND +IND
-IND +IND
-IND +IND
-IND +IND
W +IND
W +IND
+INF . +IND
+INF +IND
~INF +IND
-INF +IND
+IND +IND

. +IND +IND

-IND +IND

-IND +IND

Cond Nos.

00
06
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

to
to
to
to
to
to
to
to

to

to
to
to
to
to
to
to

to 101

102 to 107
108 to 113
114 to 119

05
1
17
23
29
35
41
u7
53
59
65
71
77
83
89
95

I1-6-39

Subsection 2 conditions

Command :

ADD 30
ADD 30
ADD 32
ADD 32
ADD 34
ADD 34
SUB 31
SUB 31
SUB 33
SUB 33
SUB 35
SUB 35

Subsection 3 conditions

Commands:

MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41,42
MPY, 40, 41,42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41, 42
MPY, 40, 41, 42
MPY, 40, 41, 42
MPY, 40,41,42
MPY, 40, 41,42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42
MPY, 40, 41,42
MPY, 40, 41, 42

60469390 A

DVD, 44,45
DVD, 44, 45
DVD, 44,45
DVD, 4, 45
DVD, 44,45
DVD, 44, 45
DVD, 44,45
DVD, 44, 45
DVD, 44, 45
DVD, 44, 45
DVD, 44,45
DVD, 4, 45
DVD, 44,45
DVD, 44, 45
DVD, 44,45
DVD, 44, 45
DVD, 44,145
DVD, 44, 45
DVD, Uk, 45
DVD, 44, 15
DVD, 4k, 45
DVD, U4, 45
DVD, 41, 45
DVD, 44, 45
DVD, 4, 45
DVD, 44, 15
DVD, 44,45
DVD, 44, 45

Xj +,-

+INF
=INF
+INF
=INF
+INF
-INF
+INF
-INF
+INF
~-INF
+INF
~INF

Xj *,/

+IND
-IND
+IND
-IND

. +IND

-IND
+IND
-IND
+IND
-IND
+IND
-IND
+IND

~IND

Xk to Xi
-IND +IND
+IND +IND
-IND +IND
+IND +IND
-IND +IND
+IND +IND
+IND +IND
-IND +IND
+IND +IND
-IND +IND
+IND +IND
-IND +IND

Xk to Xi
+IND +IND
+IND +IND
+IND +IND
+IND +IND
+IND +IND
+IND +IND
+IND +IND
+IND +IND
-IND +IND
-IND +IND
-IND +IND
-IND +IND
-IND +IND
-IND +IND
~IND +IND
-IND +IND
+N +IND
+N +IND
-N +IND
-N +IND
+0 +IND

- +0 +IND
-0 +IND
-0 +IND
+INF +IND
+INF +IND
~INF +IND
-INF +IND

J

Cond No. ;
"

-, =S PO OOV EWN 2O

N]

Cond Nos. L

00 to 04

05 to 09

10 to 14

15 to 19

20 to 24

25 to 29

30 to 34 L
35 to 39 ’
40 to 44 .

45 to 49

50 to 54

55 to 59

60 to 64

65 to 69

70 to T4

75 to 79

80 to 84 S
8 to 89 s
90 to 94

9% to 99

100 to 104

105 to 109

110 to 114

115 to 119

120 to 124

125 to 129

130 to 134

135 to 139

II1-6-40

oD

Subsection 4 conditions

Commands: Xj * Xk to Xi Cond Nos.
MPY 40,41,42 +0 +INF +IND 00 to 02
MPY 40, 41,42 +0 -INF +IND 03 to 05
MPY 40,41,42 -0 +INF +IND 06 to 08
MPY 40,41,42 0 -INF +IND 09 to 11
MPY 40,41,42 +INF +0 +IND 12 to 14
MPY 40,41,42 +INF -0 +IND 15 to 17
MPY 40,41,42 =INF +0 +IND 18 to 20
MPY 40,41,42 -INF 0

+IND 21 to 23

Subsection 5

Commands: Xj/ Xk to Xi Cond Nos.
DVD 44,45 +INF +INF +IND 00 to 01
DVD U4 45 +INF ~INF +IND 02 to 03
DVD 44,45 ' ~-INF +INF +IND 04 to 05
DVD 44,45 -INF -INF +IND 06 to 07

Subsection 6 - Indefinite error, CYBER 170 job mode, exit not selected;
conditions same as for subsection 3

Subsection 7 - Indefinite error, CYBER 170 monitor mode, exit selected;
conditions same as for subsection 3

Subsection 8 - Indefinite error, CYBER 170 monitor mode, exit not selected;
conditions same as for subsection 1

After the initial deadstart in any condition of subsections 1 through 8, the
processor enters the executive state monitor mode where it sets up a executive
state job exchange package and a CYBER 170 exchange to MA package. The CYBER
170 exchange package will be swapped on any occasion when an error exit occurs
in the CYBER 170 job mode. The processor subsequently performs a executive
state exchange to executive state job mode which is defined by the executive
state job package WMID to be CYBER 170 mode. The CYBER 170 monitor flag will
also be set or clear as specified for the particular subsection.

Prior to the deadstart, ITCEXCH will have selected a word of data containing
the floating-point command for the current condition. It will write this word
into the sequence of commands executed by the CYBER 170 process. ITCEXCH also
sets up (in the executive state job exchange package) the operands which will
cause the indefinite error when operated upon by the floating-point command.

If the processor fails to detect the indefinite error set up by ITCEXCH and
continues execution it should sequence its way to a subsequent PS command
which will cause an illegal command error exit sequence.

Normally, when the infinite error is detected, the processor records the
current value of the P register in. RA and proceeds to execute the error exit
sequence. This sequence will differ in detail depending upon the subsection
(job or monitor mode) and the current condition. The descriptive data
provided for each comparison check provides additional detail. The reader
should also refer to the description of the program stop sequence.

60469390 A II1-6-41

CMP, 01

CMP, 02

CMP, 03

CMP. O4

CMP. 05

CMP, 06

CMP. 07

CMP, 08

The P value in the CYBER 170 exchange to MA package is checked. For
subsections 1 through 6 (CYBER 170 job mode), the error exit which
occurs sets the P to zero after which this package is swapped. The P
in this package will therefore be 0. For subsections 7 and 8 (CYBER
170 monitor mode), the error exit immediately causes a return to
executive state monitor mode and a swap of this package does not
occur. The value in P should point to the CYBER 170 exchange to MA
process to which it was initialized by the executive state monitor
process. ' '

The P value and error exit condition bits at the time of the error
exit are saved in RA by the CP and are checked by this comparison.
When the exit select bit is set (subsections 1 through 5, and 7),the
exit condition bit (250) should be set and the P value should point

to the command which caused the indefinite error. When the exit is
not selected (subsections 6 and 8), an error exit should occur as a
result of a PS command which follows shortly after the command which
normally causes the indefinite error. The PS command is an illegal
command and although it causes an exit there is no associated exit
condition bit. For subsections 1 through 6 (CYBER 170 job mode) these
values are in a memory cell in which RA was previously saved for later
checking.

The P value in the executive state job exchange package is checked.
For subsections 1 through 6 (CYBER 170 job mode), it should point to
the PS command in the process which is entered after CYBER 170
exchange to MA package is swapped. Since the return to executive
state monitor occurs directly after an exit in CYBER 170 monitor mode,
the value for subsection 7 will point directly to the command which
caused the infinite error and for subsection 8 with no exit selected,
it will point to the following PS command.

The value of P in the register file dump is checked. The processor
should always return to the executive state monitor process via a
executive state exchange operation after the error exit caused by the
infinite error or the PS command. The P should point to HALT which is
executed after reentry to the executive state process.

The value in the CYBER 170 destination register Xi (X2) is checked for
the result from the floating point operation. The result should
always be the standard plus indefinite operand. For subsections 1
through 6 (CYBER 170 job mode) this result is found in the CYBER 170
exchange to MA package. For subsections 7 and 8, where the exit is
directly to executive state monitor mode, the result should be found
in the executive state job exchange package. '

The CYBER 170 monitor flag in the executive state job exchange package
is checked. It should always be set.

The exit mode halt flag in the executive state job exchange package is
checked. It should always be set.

The value in the exchange to MA flag is checked. In subsections 1
through 6, the error exit causes a swap to a CYBER 170 process that

sets this flag to DEADyg, 1In subsection 7 and 8 the exit is to
executive state mode ‘and this flag will remain all zeroes.

60469390 A ‘ II-6-42

~
.

J

p
'S

}amz

C
- /

ole

Section 16 - Exchange Addressing, Selectable Addresses (SECT 16)

The operation of this section of the test is very similar to section 2 except
that the CM addresses pointed to by the 2600 command are controlled by
selectable parameters instead of a fixed table of addresses. This permits the
exchange to be checked at any address in memory above that area in which the
test resides.

The parameters which control this operation are PARAMS 7 through 10 and 18.
Refer to section I-6, paragraph 3.3.1. The exchange address (starting
address), the address increment, and the number of exchanges are determined by
the first 4 parameters. The set of exchanges which are selected by these
parameters will be repeated within each one megabyte segment of memory.

The starting address (PARAM 7 and 8) must be greater than 1000016 if the
first megabyte (bit 20 in PARAM 18) is enabled. EXCH resides below

1000016, The starting address, the increment (PARAM 9) and the number of
exchanges (PARAM 10) should be such that all exchanges will commence at
addresses within a one megabyte segment. The condition count will advance by
one after each exchange.

A CYBER 170 exchange involves the swap of 16 words to and from memory. It
should be noted that although the first word of an exchange might be within a
given one megabyte segment, one or more of the remaining 15 words may be in a
nonexistent portion of memory for systems having less than 16 megabytes.

The parameters mentioned above are defaulted to test only the first megabyte
of memory from 1000016 to 10000016 (byte address) while incrementing the
exchange address by 16 words after each exchange.

Specifications for executive state indicate that the exchange address passed
to the CP by the PP may be limited to 18 bits. Some processors may therefore
fail to pass this test if PARAM18 is set for the third megabyte or higher.

Refer to the section description for test section 2 for other information.

Section 17 - 0S Bounds Register Test (SECT 17)

This section tests the OS bounds register of the IOU by use of PP 2610 (MAN)
exchange requests. The exchange address is set up so that on even conditions
the exchange address is at the first word address immediately below the out of
bounds region. On the following odd condition, the address is set for the
next word and should cause the out of bounds condition.

On the even condition the test checks to ensure that the Cyber 170 exchange
package swap occurs in the normal manner. On the odd conditions the exchange
should be inhibited and the test checks to ensure that the exchange package at
the specified address remains unchanged.

Each pair of conditions sets up the same address in the bounds register but
alters the exchange address and the location of the exchange package by one
word. A series of pairs of conditions sets up the bounds register addresses
so that they occur in a sliding ones pattern. A subseqent series uses a
sliding zeros pattern. The addresses cover the range from byte address

60469390 A IT-6-43

100004 up to 16 megabytes using 28 pairs or 56 conditions. Specific
conditions may be skipped if PARAM18 indicates that certain one-megabyte

segments of memory are not to be tested, Refer to section 3.3.1 for
additional data on the use of PARAM18. Note that in some conditions, the
first word of the Cyber 170 exchange package may reside in one particular one-
megabyte segment of memory while the remainder of the package may reside in
the following one-megabyte segment. These particular conditions will be
skipped unless the bits of PARAM18 enable the testing of both segements.

Specifications for executive state indicate that the exchange address passed
to the CP by the PP may be limited to 18 bits. Some processors may therefore
fail to pass this test if PARAM18 is set for the third megabyte or higher.

In all conditions of this section, bit 60 of the IOU DEC register is set to
enable OS bounds detection. The enable error stop bit (bit 63) which causes
the PP to be idled in the event of an error is not set. Under these
conditions, the bounds error will cause the PP making the exchange request to
either hang waiting for an exchange accept (model 825 type PPs) or simply exit
the 2600 command (model 835 and 855 type PP's). In even numbered conditions,
PP operation should continue normally; in odd numbered conditions the control
PP will automatically prompt the CP to issue an exchange accept when a PP
hangs (no hang message occurs). This will allow recovery of an model 825 type
PP.

The reader may refer to the description of test section 2 for additional
details since sections 2 and 17 are similiar in many respects.

SUBSECTION 1 - COMPARISON CHECKS, EVEN NUMBERED CONDITIONS

CMP,01 Checks that the P in the RF dump is at the HALT command in the
executive state monitor process. A program stop (PS) in 170 monitor
mode causes a executive state exchange to executive state monitor.

CMP,02 Checks the P value in the exchange pack at the test address. Since
the 2600 command causes a package swap, this P should point to the
count-down loop where the processor was awaiting the arrival of the
2600. This is a block comparison which also checks the Cyber 170 A, B
and X registers in the 170 pack at the test address. The values which
are there are as a result of the swap-out caused by the 2600 command.
These values were loaded into the processor registers when it
initially entered the 170 mode after the executive state EXCHANGE
command,

SUBSECTION 1 - COMPARISON CHECKS, ODD NUMBERED CONDITIONS
CMP.01 The Cyber 170 exchange package at the test address in CM is checked to
ensure that it has not been accessed. This package is set up with P,

RAC, FLC and MA,'all other registers in the package should be zeroed
out.)

60469390 A ' ‘ II-6-44

ole

SUBSECTION 2 -

This subsection is similiar to the previous except that a 2600 (EXN) command
is employed; the hardware should react in the same manner. In order to speed
exection, all even numbered conditions are skipped (ie: not executed).

SUBSECTION 3 -

This subsection uses the 2620 (MAN) command and skips all even number
conditions. Both the exchange address used by the PP and the address in the
MA register of the CP are the same out of bounds addresses. Since the CP
should use MA instead of the PP exchange address and since the OS bounds
register has no effect upon a CP address the swap of the 170 exchange package
should occur in the normal way. The comparison checks performed in this
subsection are therefore the same as those specified for the even numbered
conditions of subsection 1.

Section 18 — State Switch With X0 Sign Bit (SECT 18)

Subsection 0 is used for initialization only. Subsection 1 has two conditions
which test a state switching mechanism which employs the CYBER 170 X0 register
sign bit. In both conditions the X0 sign bit is set and a CEJ/MEJ {op code
013g) command is executed. In condition O where the CP is operating in the
170 monitor mode, the state switch to executive state monitor mode should
occur. In conditon 1 (170 job mode), no switch should occur. However, a 170
exchange package swap is the normal result of executing the 013 command and
the processor should commence execution in 170 monitor mode.

In condition O, although a 170 package swap occurs, the processor should not
start execution of the new 170 process. Instead, the 170 job environment is
immediately exchanged out to the executive state job package in memory and the
processor initiates the executive state monitor process. This executive state
type exchange is the direct result of the X0 sign bit being set while an 013 .
command is executed in 170 monitor mode.

CMP.01 This compare checks P in the 170 exchange to A pack. 1In condition O
it should point to the command following the 013 command.

CMP.02 This compare checks the P in the exchange to MA pack. In condition 1
where the processor is in 170 job mode the swap initiated by the 013
is directed to this package and the P should point to the command
following the 013 command.

CMP.03 This compare checks RA. 1In condition O, no error exit occurs and RA
should remain 0. 1In condition 1, a 170 PS command is executed in the
170 process swapped in by the 013 command and RA should point to this
command .

CMP.04 The P contained in the executive state job package is checked. 1In
condition 0, the 013 swapped in the 170.job process which was then
immediately exchanged out to the executive state job package. The P
should therefore point to the start of the 170 job process.

60469390 D 1I-6-45

CMP. 05

CMP.06

CMP.07

60469390

The P in register file dump is checked. 1In both conditions, the

processor finally halts at the same location in the executive state
monitor process.

This compare checks the 170 monitor flag in the executive state jab

exchange package in memory. It should be clear for condition 0 and
set for condition 1.

The system call bit (MCR bit 10) in the executive state job exchange
package should be set as a result of the state switch in condition 0.
This is a specific function of the state switch function. The bit
should be clear in condition 1.

D _ 1I-6-46

\M_y

:/W\
W

.

R

~ ™

SECTION II-7

TRAP TEST

N N4

o)

TRAP TEST 7

---——-—---——-----——------_--_----—-————-----———-——------_-_——--—----—_-——---—-—
.------_-_--—_---——_-—-_-‘_-—_—--—---——...-——-------—-——-------—--——_—-—_--—_———--

PROGRAM DESCRIPTION

GENERAL

This paragraph describes the FCTITC mechanism which controls TRAP. The test
is normally assembled by the processor and resides in central memory during
execution. FCTITC is assembled on the 16-bit Compass assembler and resides in
a PP.

All information required by FCTITC to control TRAP is contained within the
object code of TRAP and is read from central memory by FCTITC. This
information is primarily a series of control commands which are interpreted by
the PP to cause memory writes and compares and various other types of
operations which affect the central processor. The TRAP source code contains
a set of procedures which provides a convenient method of generating the
control commands.

FCTITC contains a number of subroutines, one for each different control
command, which perform the task required by a command according to it's
specific address and data operands.

Structure

The data contained within the object code of TRAP is composed primarily of the
following:

Central Processor Executable Code

This is the virtual machine code executed by the central processor. It
consists of both executive state and Cyber 170 commands. Generally the code
sequences are short and are followed by a HALT or PS (Cyber 170 program stop)
command. FCTITC causes central processor execution to commence at the first
command with machine registers containing predetermined data. When FCTITC
detects the HALT command, it causes the contents of the machine registers to
be dumped to central memory, FCTITC then performs all comparison checks
required by TRAP using the data dumped to central memory along with data
already in central memory.:

Exchange Packages
A number of job and monitor exchange packages are used in the TRAP test. They
are set up at assembly time to suit requirements of specific sections of the

test. Each subsection of the test has control commands executed by FCTITC
modify the original package with values specific to the subsection,

60469390 A : II-7-1

When an error occurs, the location of the job and monitor packages are
displayed. In those conditions where the test sequence operates in executive
state monitor mode, the Ba field of P in the job package is zeroed out. If
the job process is entered in error, the processor should halt immediately.

Control commands are provided so that FCTITC can set up the MPS exchange
package pointer register. The executive state monitor process usually sets up
the JPS pointer register using a CPYXS command.

Section and Subsection Address Tables

These tables are compiled into TRAP for use by FCTITC. They consist of a
series of addresses, one for each section/subsection of TRAP. Each table
entry is a 64-bit word containing a right justified real memory byte address
pointing to a section/subsection of the test. The table entries are ordered
according to the section/subsection number. The last entry in the table is a
word of FFF—-F 16 which indicates the end of the section/test. The section
table must reside in central memory commencing at hex byte address U4000. The
entries in the section table point to the subsection address table for the
section while the subsection address table entries point to the control
command tables for the subsection.

Control Command Tables

Control command tables constitute the bulk of the object code of TRAP. They
contain control commands which are interpreted and acted upon by FCTITC. The
tables are divided into subsections commencing at the central memory addresses
pointed to by the entries of the previously described subsection address
table. The subsections are in turn divided into segments called conditions,
where a single segment consists of the control cammands for a single condition
of the test.

The first segment (condition) of a subsection commences at the beginning of a
subsection control table. The first 16-bit word of every segment contains the
segment length, This length is a nonzero count of the number of 64-bit words
in the segment, including the segment length word itself.

Each segment commences on a 64-bit word boundary. There should normally only
be 0, 1, 2, or 3 unused 16-bit words between segments. FCTITC uses the
segment length to determine the end of a condition and the central memory
address of the segment for the next condition. The segments (conditions) of
TRAP are not individually addressable (as is the case for the sections) and
therefore they must be executed sequentially.

Execution Sequence

To execute a single condition of TRAP, FCTITC references the section and
subsection address tables to obtain a pointer to the first condition of a
section., FCTITC then transfers the complete control table for a condition
fram central memory into its own PP memory. Only when this condition is
complete will the segment for the next condition be obtained. The segment is
not transferred repeatedly for repeat condition or scope mode operation.

60469390 A v II-7-2

C

FCTITC saves the segment length and then interprets each of the control
commands in the current segment. The segment length is used to determine if
all canmands in the segment have been executed.

In a typical condition of a test, control commands are used to write data in
various locations in memory. For example, to enter a data pattern in an X
register of an exchange package or to zero out a memory cell in which the
command to be tested will subsequently enter data. One or several write
commands may be executed in order to set up the required test conditions.

Subsequently an INITIATE control command will be used to deadstart the CP and
cause the execution of the test sequence. Prior to the deadstart, the control
PP sets a deadstart flag at CM location 0 and loads the MPS, JPS, PSM, PTL,
PTA, and SIT with their previously defined data. After the deadstart, the CP
will usually enter the monitor process and execute initializing code. When
this is complete, the CP clears the deadstart flag which advises the PP that
the CP is about to execute the test sequence. The PP then continuously scans
the status summary halt flag waiting for the CP to complete the sequence.
When the halt flag sets or when the PP determines that the CP is hung up, the
processor S and P registers are read for later display and a deadstart is
transmitted which will cause the CP register file to be dumped to central.
memory. This completes the functions performed by the INITIATE control
command . :

The INITIATE command will be followed by one or more COMPARE control commands
which will check the results. Camparisons of data in exchange packages or
various memory locations may be performed. #n error display will occur for
each comparison error. (Note that one block comparison can cause only one
error display.)

If the operator calls for a condition to be repeated, all of the control
commands within the segment (writes, initiate, and compares) are repeated. If
a scope loop is set up by the operator, only the INITIATE control command 1is
repeated on each pass of the scope loop. This is necessary in order to
provide a high repetition rate scope display. The test itself is designed in
such a manner that critical data is automatically refreshed on each loop. In
some cases this occurs as a result of loading an exchange package via the
deadstart operation and subsequently dumping the registers rather than
exchanging back to the previously loaded package location.

During each execution of the INITIATE command, FCTITC initializes a counter
and subsequently decrements the count while it is simultaneously testing to
determine if the processor has halted. If the counter reaches zero an error
display occurs indicating that the processor is hung. Some processor hardware
conditions (example: MAP turned off) may cause a hang condition to appear
since the processor is taking longer to execute the instruction sequence. In
this case, PARAM16 may be increased to eliminate this problem. During a scope
loop where a processor is hung, the counter will cause the INITIATE operation
to be repeated whenever the count becomes zero. The counter is initialized by
loading it from PARAM16. Setting it to an excessively high count may increase
execution time and cause a less intense scope loop trace.

60469390 A II-7-3

SECTION DESCRIPTIONS
This portion of the manual provides a description of each section of the test.

Test sections are organized as follows:

Section Type of Test

00 and 01 MCR and UCR bit tests.

02 through 17 MCR function tests

18 through 33 UCR function tests

34 and 35 Multiple interrupt tests

37 through 39 Model dependent processor tests
36 Reserved for future use .

Section descriptions give purpose and operation and may inelude comments on
the differences between subsections and conditionms.

NOTE

The first subsection of every section is
used exclusively for initialization. A
description of this subsection (subsection
0) is given below (Section Initialization)
and is not repeated for each section.

Each condition of a subsection makes one or more comparisons. In most cases,
the corresponding comparisons in all conditions of a subsection are checking
the same function or data item. A comparison number, CMP.XX, and a brief
description is given for most comparisons. The number corresponds to the
COMPARE NO. on the test error display. Numbering of comparisons commences
with number 1 in each new condition.

Section Initialization

The first entry in every section's subsection address table points to the same
subsection code, This code is therefore repeated as each subsection
commences. The tasks performed include initialization related to the first
execution of the test as well as cleaning up conditions related to the
execution of the previous subsection, Examples of the latter include clearing
the processor test mode (PTM) and the CM bounds registers, setting the SIT and
PIT registers for maximum count and clearlng SECDED errors which have been set
up in any memory cells.

60469390 A ' : II-7-4

AN
AN

)

00

This subsection also performs initialization of the processor virtual
environment. This initialization includes the loading andchecking of the PSM,
PTL, and PTA registers and the writing into CM of the page and segment tables
at their appropriate locations.

The page table maps virtual addresses one to one into the real memory address
space for 292K bytes of memory. The page size is 64K bytes. The page table
is located at 2000,¢ (byte address) and is 8K (2000,¢) bytes long. Only a
few entries are actually made in the page table.

Some system registers are loaded with required values as well as being checked
after loading. 1In these cases, the loading and checking of a specific
register is confined to its own condition. If a comparison error occurs,
check to ensure that the microcode has been loaded. If it has been loaded,
then other tests should be performed to check for proper operation of the
register. The error display will provide the register address. A scope loop
can be set up by repeating the condition with the display disabled
(SRC,CSE,SDR). A scope loop cannot be achieved using the SSM command as in
other conditions of the test.

SECT 00 — MCR Bit Tests

This section performs various tests by setting MCR bits and checking the
processor's response. In most cases, the bits are already set in the MCR
register when the monitor or job exchange package is initially loaded. The
required mask bits in the MMR are also set in this manner. Tests are
performed with traps enabled and disabled, in job and monitor modes, and with
the mask bits set and clear.

Subsections 1,4,5, and 9 test all 16 MCR bits (1 bit per condition). 1In the
remaining subsections, tests for MCR bit 10 (system call) and MCR bit 15 (trap
exception) are omitted. Within all subsections, the condition number
corresponds to MCR bits 00 through 15. The bits are tested in sequence with
an extra condition counter increment and a skip of the test for those cases
where a bit is not tested. Note that for model 845 and 855 processors only,
the testing of MCR bit 00 is not performed in any subsection of section 0.

Comparisons performed in this subsection will include either four or five of
those described below. Comparisons are performed in the order specified.

CMP. 01 The P in the register file dump is checked to ensure that the
processor halted at the expected location.

CMP.02 The status of the MCR bits are checked in the job exchange pack
(if the test is expecting an exchange interrupt) or on the stack
(if the test is expecting a trap interrupt).

CMP.03 This comparison checks to determine whether or not the process

(job or monitor) completed execution. Usually the CP sets up a
flag in a register to provide this indication.

60469390 D 1I-7-5

CMP. O4

CMP. 05

The following

Sub sec Mode

00_0

00_1 Job
00_2 Job
00_3 Job
OO_ll Job
00_5 Mon
00_6 Mon
00_7 Mon
00_8 Mon
00_9 Mon
SUBOO 1
SUB0O_2
SUB00_3
SUBOO_4
60469390 A

i“s:‘ ?j ki’ /

-
The expected value of P is checked in the job exchange pack (for \
job mode tests) or on the stack (for monitor mode tests). ' '
The status of the MCR register in the processor after a trap “vx&m
interrupt is checked. After the trap the processor should
execute a HALT command in the trap routine. As a result, the
control PP causes a register file dump. It is the MCR bits from
this dump which are checked.
table summarizes characteristics of the individual subsections.
Traps Mask Bits MCR Bit Set By Action
Initialization
Enabled All set Exchange ' Exchange
Enabled All set MAC Exchange
Disabled A1l but 1 set Exchange Halt or stack
Di sabled Same bit set Exchange Exchange
Enabled Same bit set Exchange Trap
Enabled Same bit set BRCR cmd . Trap
habled All but 1 set Exch,all bits Trap
Enaabled All but 1 set Exchange Halt or Stack
Di sabled Same bit set Exchange Exchange
Job mode, traps enabled. MCR bit set from the exchange pack.
All mask bits set.
The processor should exchange to the monitor mode immediately
without executing any part of the job process.
Job mode, traps enabled. MCR bit set via MAC channel. All mask
bits set.
The processor enters and waits in the job process until the MCR
bit is set by the MAC after which it should immediately exchange
to the monitor moade. o
Job mode, traps disabled. MCR bit set from the exchange pack.
All mask bits except the corresponding bit are set.
No interrupt should occur in this test. Bits which are defined
to cause a halt for the specified condition should cause a halt
immediately upon entry to the job mode. Bits which stack should
execute the job process to completion,
Job mode, traps disabled. MCR bit set from the exchange pack.
Correspond ing mask bit set,.
In this test an exchange to the monitor mode should occur
immediately upon entry to the job process. No job process
commands should be executed.
A
AN

II-7-6 N

C

oNe

SUB0O_5

SUB0O_6

SUB0O_T

SUB00_8

'SUB00_9

Monitor mode, traps enabled. MCR bit set from the exchange
pack. Corresponding mask bit set.

In this test a trap should occur immediately upon entry to the
monitor mode without the execution of any commands in the
process pointed to by the P of the monitor pack.

Monitor mode, traps enabled. MCR bit set by BRCR command.
Correspond ing mask bit set.

In this subsection, the processor enters the monitor mode and
subsequently executes a BRCR command. This sets the MCR bit and
thereby causes the trap to occur. The resulting p on the stack
should point to the branch address of the BRCR command.

Monitor mode, traps enabled. All MCR bits set from exchange
pack. Only the mask bit for the bit being tested is clear. MCR
bits 0,10 and 15 are not tested in this subsection.

In this test the MCR bits laid down in the stack (as a result of
a trap) are checked. Since all MCR bits and all but one mask
bit are set initially, then all but aone of the MCR bits should
be clear on the stack when a trap occurs.

Monitor mode, traps enabled. MCR bit set from the exchange
pack. All mask bits except the corresponding mask bit set.

Bits which are defined to halt for the specified condition
should halt immediately upon entry to the monitor mode, For MCR
bits which stack, a subsequent CPYXS command sets all mask bits
and a trap interrupt should occur. The P value pushed onto the
stack should point to the command following the CPYXS command.

Monitor mode, traps disabled. MCR bit set from the exchange
pack. Corresponding mask bit set.

Bits which are defined to halt for the specified condition
should halt immediately upon entry to the monitor mode. For MCR
bits which stack, a subsequent CPYXS command enables traps and a
trap interrupt should occur. The P value pushed onto the stack
should point to the command following the CPYXS command.

SECT 01 - UCR Bit Tests

This section performs various tests by setting UCR bits and checking the
processor's response. In most cases, the bits are already set in the UCR
register when the monitor or job exchange package is initially loaded. The
required mask bits in the UMR are also set in this manner. Tests are

per formed with traps enabled and disabled, in the job and monitor mode and
with the mask bits set and clear.

60469390 A

II-7-7

Each of the 16 UCR bits are tested, one bit per condition, with the condition
number in each subsection corresponding to the UCR bit number (bits 00 through
15) . PR

Comparisons per formed in this subsection will include either four or five of
those described below. The comparisons are performed in the order specified.

MP. 01 The P in the register file dump is checked to ensure that the
processor halted at the expected location.

CMP, 02 The status of the UCR bits entered on the stack by the trap
interrupt are checked.

CMP. 03 This comparison checks to determine whether or not the process
(job or monitor) completed execution. Usually the CP sets up a
flag in a register to provide this indication,

CMP.OY The value of P entered on the stack by the trap interrupt is N
Checked. ‘__
CMP. 05 The status of the UCR register in the processor after a trap

interrupt is checked. After the trap, the processor should
execute a HALT command in the trap routine. As a result, the
control PP causes a register file dump. It is the UCR bits from
this dump which are checked.

The following table summarizes characteristics of the individual subsectiomns.

Sub sec Mode Traps Mask Bits UCR Bit Set By Action

01_0 Initialization
01_1 Job Enabled All but 1 set Exchange Stack

01_2 Job Enabled Same bit set Exchange Trap

01_3 Job Enabled Same bit set Exch,all bits Trap

01_4 Job Enabled All clear Exchange Trap

01 5 Jab Disabled Same bit set Exchange Exch. or stack
01_6 Mon Enabled Same bit set Exchange Trap

01_7 Mon Enabled All set MAC Trap

01_8 Mon Enabled Sane bit set BRCR cmd Trap

01_9 Mon Disabled Same bit set Exchange Halt or stack
SUBO1_1 Job mode, traps enabled. UCR bit set from the exchange pack.

All mask bits except the corresponding bit are set.

Since UCR bits 00 through 06, are permanently set, these
particular bits should trap immediately after the exchange to
the job mode and before any job process command is executed.
Other bits should stack and therefore should execute the job
process to completion.

P
60469390 A ‘ ‘ I1-7-8 o

i 5
&\E,‘/ o

SUBO1_2

SUBO1_3

SUBO1_U

SUBO1_5

SUBOT_6

SUBO1_T

60469390 A

Job mode, traps enabled. UCR bit set from the exchange pack.
Correspond ing mask bit set,

In this subsection a trap should occur for all bits immediately
after the exchange to the job mode and before any job process
command is executed.

Job mode, traps enabled. All UCR bits are set from the exchange
pack. Only the mask bit for the bit being tested is set.

In this test the bits in the UCR register are checked after the
trap operation has occurred. All bits should be set except the
bit corresponding to the mask bit which was set.

Job mode, traps enabled. UCR bit set from the exchange pack.
All mask bits clear.

UCR bits 00 through 06 for which the mask bits are permanently
set, should trap immediately upon entry to the job mode. Bits
which are defined to stack for the specified conditions should
subsequently execute a CPYXS command which sets all mask bits.
Wnhen this occurs the processor should trap. The P value entered
on the stack should point to the command following the CPYXS
command .

Job mode, traps disabled. UCR bit set from the exchange pack.
Correspond ing mask bit set.

For bits which are defined to exchange for the specified
condition, an exchange interrupt should occur immediately upon
entry to the job mode without any command in the job process
being executed. For UCR bits which stack, a subsequent CPYXS
command enables traps with the result that a trap should then
occur. The P value entered on the stack should point to the
command following the CPYXS command.

Monitor mode, traps enabled. UCR bit set from the exchange
pack. Corresponding mask bit set.

In this subsection a trap should occur immediately upon entry to
the monitor mode and without execution of any command in the
monitor process.

Monitor mode, traps enabled. UCR bit set via the MAC channel.
All mask bits set.

In this test the processor enters the monitor mode and waits for
a trap to occur as a result of the UCR bit being set by the

MAC. The P value entered on the stack should point to the
command where the processor was waiting for the trap to accur.

IT1-7-9.

SUB01_8 Monitor mode, traps enabled. UCR bit set by a BRCR command. .
Corresponding mask bit set. ' S
N
In this subsection, the processor enters the monitor mode and L Jp
‘I,“_w.

subsequently executes a BRCR command. This sets the UCR bit and
thereby causes the trap to accur. The resulting p on the stack
should point to the branch address of the BRCR command.

SUBO1_9 Monitor mode, traps disabled., UCR bit set from the exchange
pack. Corresponding mask bit set.

Bits which are defined to halt for the specified condition
should halt immediately upon entry to the monitor made.

For UCR bits which stack, a subsequent CPYXS command enables
traps and a trap interrupt should occur. The P value pushed
onto the stack should point to the command following the CPYXS
command .

MCR/UCR FUNCTION TESTS ' o

Most UCR/MCR function tests have four conditions in each subsection.
Exceptions are noted., In all four conditions the mask bit which corresponds
to the MCR/UCR bit being tested will be set. The four conditions are:

Condition Function
0 Job Mode, Traps Enabled -
1 Job Mode, Traps Disabled “
2 Monitor Mode, Traps Enabled
3 Monitor Mode, Traps Disabled

After initial deadstart in each condition, the CP monitor process will per form
various initialization tasks. When this is complete, the CP sets up the trap
enable and trap enable delay flip-flops using data entered in a monitor
process X register by the PP prior to the deadstart. A bit in the same
register allows the CP to determine if the test sequence is to be executed in
the monitor or job mode. The actual test sequence is the same for either of
these cases. A separate test sequence employed for each MCR/UCR bit consists
of approximately 10 to 20 commands.

If the sequence is to be executed in the monitor mode, the CP will branch
directly to the sequence. If job. mode is required, the JPS register and the
Jjob package will already have been set up and the CP will perform an EXCHANGE
to branch to the test routine. '

J

60469390 A : II-7-10

AN

‘g

0D

Depending the condition being executed and any hardware fault that may be
present, the processor may trap or exchange out of the test sequence as a
result of the interrupt. A common routine is used for all MCR/UCR bits when a
trap or exchange occurs. If the normal response of the CP is to halt as a
result of the interrupt condition, the CP will halt in the test sequence. In
cases where the response to the interrupt condition is stack, the test
sequence contains code which will subsequently enable traps. The fact that
the CP does in fact stack can be readily determined by checking the value of P
on the stack frame when the trap occurs. The trap interrupt and exchange
routines all execute a HALT command advising the control PP that the sequence
is complete.

Some conditions in sections 2, 4, 16, 18, and 19 operate in the CYBER 170
mode. Sections 2, 4, and 16 check that hardware errors related to the
specific MCR bits are handled correctly in CYBER 170 mode. Section 18 checks
the operation of the CYBER 170 command referred to as RT (op code 17g).
Section 19 checks that the unimplemented CYBER 170 compare/move commands are
correctly recognized as illegal. The test sequences for these commands
operate in executive state job mode with the VMID=1 and the CYBER 170 monitor
flag set. When the appropriate interrupt occurs, the CP should execute an
exchange interrupt back to executive state monitor mode.

If these conditions operate correctly, no CYBER 170 exchange should occur and
no exchange package should be required. However, in the CYBER 170 process,
the MA register is set up for the unexpected case. If a CYBER 170 swap does
occur, the new process will execute a program stop command (PS, CYBER 170 op
code 00g).This should return the processor to executive state monitor mode
(also via an exchange interrupt).

Note that all conditions which execute in CYBER 170 mode will be skipped
automatically if the processor being tested does not have 170 capability.

One or more of the following types of comparison checks are performed. Except
where noted otherwise, the checks performed in any given condition are similar
for all conditions within the subsection.

(a) In all cases the untranslatable pointer (UTP) is checked to ensure it is
set to correct value.

(b) A check is performed to ensure the test sequence has been executed
correctly. This usually consists of checking value of P in:

1) the register filg dump,

2) the job or monitor exchange pack or

3) the stack frame.
This establishes that PVA in P at the time of the interrupt is according to
specifications. In some subsections, flags set or cleared by the processor

are also checked to ensure that the test sequenced correctly.

(c) The register file dump or Job exchange package is checked to ensure that
MCR or UCR bits have been set correctly (whichever applies).

60469390 E II-7-11

(d) Checks specific to individual subsections are performed to ensure that
commands which generate interrupts either do, or do not complete execution
according to specification.

The MCR and UCR function tests perform, in order, the comparisons specified

below. One or more comparisons concerned with checking execution as mentioned

in (d) above may be performed in addition to those listed.

MCR FUNCTION TEST COMPARISONS — SECTION 2 to 17
CMP.01 Checks the untranslatable pointer.

CMP.02 Checks P in register file dump (where processor halts).

CMP.03 Checks value of P on stack. Any entry indicates a trap
occurred.

CMP.04 Checks P in job exchange package.

CMP.05 Checks status of MCR bits after interrupt.

UCR FUNCTION TEST COMPARISONS - SECTIONS 18 to 33
CMP.01 Checks untranslatable pointer.
CMP.02 Checks P in register file dump (where processor halted).

CMP.03 Checks value of P on stack or in job pack depending upon whether
trap or exchange interrupt is expected.

CMP.04 Checks status of UCR bits; may also be found either on stack or
in job exchange pack.

SECT 02 - MCR 00 - Detected Uncorrectable Error

This section employs a model independent method of generating the
uncorrectable error interrupt. The interrupt is caused by the processor
writing to a central memory cell which has been defined as out of bounds by
the CM bounds register.

One or more of sections 36 and following may also be concerned with
uncorrectable errors. These sections are for model dependent tests for
individual central processors.

60469390 D II-7-12

’f ™
N

—

ez

SUB02_1

Before initiating program execution by the CP, the control PP sets up the CM
bounds register so that memory beyond a certain address is out of range. This
oceurs in the first condition (condition 0). 1In each of the four subsequent
conditions, the CP first writes a word of data at the location immediately
below the boundary; subsequently it attempts to write data at the next higher
location. The second write operation should generate the interrupt. The four
conditions executed are: job and monitor mode with traps enabled and

disabled. 1In all cases, a check is performed to ensure that the in bounds
write executes and that the out of bounds write does not execute.

SUB02_2

This subsection is similar to the previous. Condition 0 sets up the bounds
register, Conditions 1 and 2 operate in the job mode with traps enabled and
disabled respectively and with executive state operation set up via the VMID.
The uncorrectable error interrupt should cause an executive state exchange to
monitor mode. The Cyber 170 monitor flag will be set; if the interrupt fails
to occur, the CP will finally execute a Cyber 170 program stop command. This
should cause P to be written to RA and a Cyber 170 error exit sequence. This
sequence will also result in an executive state exchange to monitor mode.

SECT 03 - MCR 01 -~ Not Used

This section is reserved for possible future use in the event that an error or
warning function is assigned to MCR bit 01.

SECT O4 - MCR 02 - Short Warning

This section runs only if the operator sets the section select bit for section
4, The default value for this bit is zero.

Execution of the test requires you to physically initiate the generation of
the signal which causes the short warning interrupt. The signal must be
artificially created without actually removing power from the machine.
Reference to documentation concerning the Configuration Environment Module
(CEM) may be helpful in this respect.

SUBO4_1

This subsection has only one condition which operates in executive state
monitor mode with traps enabled. When the subsection commences execution, the
operator is forced to step through a series of single line messages as
follows:

SHORT WARNING INTRUPT TEST - SPACE FOR NXT MSG
DO NOT POWER DOWN MACHINE - SPACE AGAIN

FIRST TEST IS IN 64 BIT MODE - SPACE

YOU MUST INDUCE WARNING SIGNAL - SPACE

ABS COMMAND TO SKIP SECTION - ELSE SPACE

SPACE THEN INDUCE SIGNAL

WAITING FOR INTERRUPT

60469390 A . ‘ II-7-13

If a short warning interrupt does not occur, the processor will continue in ¥
the waiting state and it will be necessary for the operator to dead-start the ‘

control PP and restart the test using the command buffer. If the required I
trap interrupt does occur, the processor will enter a trap routine and halt. "

Errors, if any, will then be displayed. If the test is successful it should

proceed to the next subsection.

SUBOY_2

This subsection is similar to the previous except that it operates in Cyber
170 mode (within executive state job mode). Note that the warning signal must
have reset automatically to the normal level after the previous operation or
it must be reset manually before proceeding with this second test. The
following series of messages should occur:

LAST TEST IS IN CYBER 170 MODE - SPACE

ABS COMMAND TO SKIP SECTION -~ ELSE SPACE

SPACE THEN INDUCE SIGNAL

WAITING FOR INTERRUPT oo

Traps are enabled and an exchange from Cyber 170 mode to executive state
monitor mode should occur when the warning signal is induced a second time,

SECT 05 - MCR 03 - Instruction Specification Error

SUB05_1

This subsection generates a length type instruction specification error using

the ISOM (op code AC1g) command. The bit position designator is set to 63
and the length designator to 1 in order to cause the error.

SUBOS_2

This subsection generates a length type instruction specification error using

the ADDN (op code 701¢) BDP command. The F field of one of the data
descriptors is set to 1 and the corresponding X register is set for a length
of 39. An error occurs for type T (unpacked decimal) since the length should
not exceed 38.

SUBO5_3

This subsection generates a type instruction specification error using the

ADDN (op code T046) BDP command. The T field of one of the deseriptors is
set to 9 (alphanumeric) which is an illegal type for BDP arithmetic commands.

SUB05_U

This subsection generatés a monitor mode type instruction specification error

using the BRCR (op code 9F 16) command. The command attempts to set MCR bit
15 while operating in the job mode with traps enabled (condition 0) and traps
dvisabled (condition 1), There are only 2 conditions in the subsection.

60469390 A | : : II-T-14

AN
/

N

-
(‘ \
e

O

SUB05_5

This subsection generates a call instruction type instruction specification
error using the CALLSEG (op code B516) command., The At field of the stack
frame save area descriptor referenced by the command is set to a 1 to cause
the error. This specifies the stacking of only the first two A registers.
The At field should be at least 2 in order to stack 3 or more A registers.

SECT 06 - MCR O4 - Address Specification Error

SUB06_1

This subsection employs an SX (op code 831¢) command to generate an address
specification error. The Bn field of the A register referenced by the command
will contain an address which is not 0 modulo 8.

SUB06_2

This subsection employs a BRDIR (op code ZF 14) command to generate an

address specification error interrupt. The A register referenced by the
command will contain the correct PVA; however, the X register will contain a 1
thereby specifying a branch to a memory address which is not 0 modulo 2.

SUB06_3
This subsection utilizes a CALLSEG (op code B51g) command to generate an

address specification error. The code base pointer referenced by the command
contains a negative Bn field.

SECT 07 - MCR 05 - Exchange Request

The exchange request function is not tested by the TRAP test. This section is
automatically skipped. , ;

SECT 08 - MCR 06 - Access Violation

SUB08_1

A read access violation is generated in this subsection by use of an LX (op

code 8216) command. The A register of this command references a segment
whose segment descriptor RP field defines the segment as nonreadable.

SUB08_2
A write access violation is generated in this subsection by use of an SX (op

code 8316) command. The A register of this command references a segment
whose segment descriptor WP field defines the segment as nonwritable.

60469390 A II-7-15

SUB08_3

This subsection generates an access violation using the BRDIR (op code & 16)
command. The A register of this command references a segment whose segment
descriptor XP field defines the segment as nonexecutable.

SUBO&_A
This subsection uses a CALLSEG (op code B516) command to generate an access
violation., In this particular case, the ring number in the command's Aj

register is greater than the ring number (CBP R3 field) in the code base
pointer referenced by the command.

SECT 09 - MCR 07 - Environment Specification Error

SUB09_1

This subsection generates environment specification errors by setting up all
unsupported combinations of the VMID field in the executive state exchange
package. The unsupported combinations are 2 through 1513, Checks are
performed in both the job and monitor mode. The interrupt occurs immediately
before the first command in the new process commences execution., There are 17
conditions in the subsection.

SUB09_2

This subsection generates an environment specification error by using a

CALLSEG (op code B51¢) command which references a code base pointer having a
VWMID field set to one of the unsupported virtual machine IDs.

SUB09_3

This subsection is similar to the previous except that the VMID in error is
contained in a stack frame which is loaded during execution of a RETURN (op

code 0416) command.

SUB09_4

This subsection generates an environment specification error by using the
CALLSEG and RETURN commands., After execution of the CALLSEG command, the
called procedure alters the contents of the A0 register in the stack frame.
The subsequent RETURN command should generate the error., The RETURN's initial
A2 (previous save area pointer) should equal the final A0 thereby verifying
that the stack is being returned to the same state as prior to the CALLSEG.

SECT 10 - MCR 08 - External Interrupt

SUB10_1

This subsection checks the external interrupt function by use of the INTRUPT

(op code 0316) command which transmits interrupts to a processor via a
central memory port. The interrupt is received by the CP connected to the
specified port.

60469390 A II-7-16

C

The subsection executes 4 conditions (4 through 7) where the interrupt is
directed to the port to which the CP is connected. These conditions check the
job and monitor modes with the traps enabled and disabled. Four other
conditions (0 through 3) check the cases where no port is specified by the
INTRUPT command or where the specified port is not the port to which the CP
being tested is connected.

Normally the test will assume that the CP is connected to CM port O. Another

port may be specified by setting PARAM18 to the required value (1,2,4 or 84¢
for ports 0 to 3 respectively).

SECT 11 - MCR 09 - Page Table Search

In this section single word reads and writes are attempted on the first word
in page 2 (byte address 2000016 of central memory. The PP sets up a string
of 32 or 33 page table entries at the corresponding hash address in the page
table., These entries are such that the processor should search through 32
entries. In the first 2 subsections, the page table search interrupt should
be generated, since none of the first 32 entries are satisfactory. In the
last 2 subsections page table entry number 32 is good and no interrupt should
occur. The first two subsections each have four conditions which try the
combinations of job and monitor mode and traps enabled and disabled. The last
two subsections use only one condition each and operate in the job mode with
traps enabled.

SUB11_1

This subsection uses an LX (op code 8214) command to generate a page fault,
This command initially references a page descriptor where the V/C bits are
marked valid/continue and the segment/page ID is not equal to the ASID/PN.
The following 31 descriptors are all marked invalid/continue and the
segment/page ID is equal to the ASID/PN, Descriptor number 33 is marked
valid/stop and the segement/page ID is equal to the ASID/PN. The search of
this string of descriptors should result in a page table search interrupt
because the only good descriptor is immediately beyond the linear search
range.

SUB11_2

This subsection uses an SX command to generate the interrupt. The first
descriptor is the same as the set of 31 in the previous subsection and the
following 31 are the same as the first of the previous section. Again in this
case, the seach should fail because the only good descriptor is beyond the
linear search range.

SUB11_3

This subsection is identical to subsection 11_1 except one of the block of 31

" identical descriptors is omitted. The processor should now find the good

descriptor on the search of the last entry of the 32 and no interrupt should
occur, Comparison checks are performed .,

60469390 A : : : : II-7-17

SUB11_4

This subsection is similar on 11_2 with one of the block of 31 identical
omitted. It should react in the same manner as subsection 11_3.

SECT 12 - MCR 10 - System Call

A function test is not provided for this MCR bit because its set or reset
status does not cause any hardware action. Tests performed in section 00

(subsections 1,4,5 and 9) and section 34 (subsection 1 and 2) involve checks
on this bit.)

SECT 13 - MCR 11 - System Interval Timer

SUB13_1

In this subsection, the CP monitor process sets the SIT register to a
relatively low value. Subsequently the CP enters a waiting loop while the SIT
counter decrements and finally causes an interrupt. Four conditions are
executed, two in the monitor mode and two in the job mode, For the job mode
conditions, the processor sets up the SIT prior to the exchange to the job
mode where it waits for the interrupt.

SECT 14 - MCR 12 - Invalid Segment/Ring=0

SUB14_1

This subsection generates an invalid segment interrupt by employing an SX (op

code 8316) command to access a segment whose segment descriptor is invalid
(VL field=0). The invalid descriptor is loaded into the segment table by the
PP prior to execution of the SX command.

SUB14_2

This subsection generates an invalid segment interrupt by employing an SX
command which references an A register whose segment number field is greater
than the length of the segment table minus one.

SUB14_3

This subsection will generate a ring=0 interrupt using the RETURN (op code
0O446) command. A CALLSEG command is used to set up a stack frame. The
called procedure will contain code which will zero out the ring number field
of one of the A registers in the stack. The interrupt should occur upon
execution of the return command.

SUB14_4

This subsection will generate a ring=0 interrupt using the LA (op code 844¢)
command., The four high order bits (ring #) of the 6 byte address loaded from

central memory in to register Ak will all be zeroes which should cause the
interrupt.

60469390 A II-7-18

)
)
N

C

ole

SECT 15 — MCR 13 -~ Outward Call/Inward Return
SUB15_1

This subsection will generate an interrupt using a CALLSEG (op code B53¢)
command making an outward call. Specfically, the ring number of the initial P
of the CALLSEG command is less than the Rl field of the segment descriptor of
the called procedure. The test makes a call to a procedure in another segment
whose segment descriptor Rl is larger than the P ring number normally used
through out the test.

SUB15_2

This subsection will generate an interrupt using a RETURN (op code 044¢)
command making an inward return. This is defined as the case where the final
P ring number which results from execution of the command being less than the
ring number in A2 before execution of the command. The test first calls a
procedure (via a CALLSEG command) which establishes a stack frame. The
procedure then modifies the ring number of the P in the stack frame so that it
is lower than the ring number normally found in A2. The interrupt occurs
during the subsequent execution of the RETURN command.

SECT 16 - MCR 14 - Soft Error Log

This section employs a method of generating a soft error log interrupt which
is the same for all processors.

SUB16_1

Before initiating program execution, the control PP sets up a soft
(correctable) error in a specific memory cell as follows: the CM environment
control register is set for the write check bits mode, a single memory write
copies data into the 8 error check code (ECC) bits as well as the memory word,
the environment control register is then returned to the normal mode. The
bits written into the ECC are such that a single bit error will be detected
whenever that specific cell is read by the central processor code sequence.
The subsection operates in the executive state mode. Four conditions are
executed, job and monitor mode with traps enabled and disabled.

SUB16_2

This subsection is somewhat similar to the previous. It has two conditions
(job mode with traps enabled and disabled) and operates in CYBER 170 mode with
VMID=1. The soft error interrupt should cause an executive state exchange to
monitor mode. The CYBER 170 monitor flag will be set; if the interrupt fails
to occur, the CP will finally execute a CYBER 170 program stop command. This
should cause P to be written to RA and a CYBER 170 error exit sequence which
will also result in an executive state exchange to monitor mode.

60469390 D ' II-7-19

SECT 17 - MCR 15 - Trap Exception | “

SUB17_1 \h,w

In this subsection, the KEYPOINT (op code B116) command is emp]_oyed to
generate a trap exception condition., Two conditions are used to perform the
test with traps enabled in the job and monitor modes. When the KEYPOINT trap
occurs, the code base pointer which is accessed (to obtain the vector to the
trap procedure) will have an invalid VMID field. This will generate an
environment specification error and thereby also the trap exception condition.

The trap exception should inhibit the trap operation, In condition 0 (job
mode), the exception condition should cause an exchange back to monitor mode.
In condition 1 (monitor mode), an immediate halt of the processor should
occur. The control PP checks that UCR 06 (keypoint) and MCR 07 (environment
specification error) are set.

SECT 18 - UCR 00 - Priviledged Instruction Fault

SUB18_1

This subsection generates a privileged instruction fault using the INTRUPT (op

code 0316) command. Segment 3 is set up as a local privileged segment and a

command sequence including the INTRUPT command is executed. After CP

operation commences, the CP branches to the INTRUPT command via a BRDIR (op

code 2F 16) command which references an A register pointing to segment 3.

The fault should be generated because the INTRUPT command requires global ;
privilege and it is executed from a local privileged segment. o

SUB18_2

This subsection generates a privileged instruction fault using the LPAGE
(opcode 1716) command. It's operation is similar to the previous subsection
except that segment 3 will be defined as a nonprivileged executable segment.
The fault should occur because the LPAGE command must be executed from a local
or globally priviledged segment.

SUB18_3 “«

This section generates a priviledged instruction fault using the Cyber 170
command RT. This command is executed In the Cyber 170 mode with traps enabled
(conditions 0 through 3) and traps disabled (conditions 4 through 7). In the
first 4 cases a trap interrupt occurs; in the second set of 4 an exchange
interrupt occurs., Each set of the successive 4 conditions executes the
command from parcels 0,1,2 and 3 of the 60-bit CP word. The RT command should
always cause an interrupt; it is a normal method of entering executive state
mode from a Cyber 170 process.

. /
-

‘\\ / 4 ;

60469390 A ' II-7-20

SECT 19 — UCR 01 - Unimplemented Instruction

SUB19_1

In this subsection, each unimplemented op code is tested to ensure that an
interrupt occurs. For each condition, the control PP selects an illegal op
code from a table and copies it into the CP's instruction sequence; the PP
then initiates instruction execution by the CP. The table of unimplemented op
codes is sequenced 4 times to check the 4 combinations of job/monitor mode
with traps enabled/disabled.

The table of op codes includes every illegal op code for all processor types.
The fourth parcel of each table entry defines the processors for which the
associated op code is not illegal. Bits O (least significant or rightmost
bit) through n of each entry are tested for processor types for each model.
If the bit is set, then the test of the corresponding op code is skipped.

SUB19_2

This subsection checks that the CYBER 170 compare/move op codes 464g through
467g will generate an unimplemented instruction interrupt. The tests are
performed in the executive state job mode with traps enabled (conditions O
through 15) and disabled (conditions 16 through 31). Each set of 16
conditions checks the 4 different op codes in each of the 4 parcels of a 60
bit CP word. The executive state job process will have a VMID=1 and MF=1
thereby providing a CYBER 170 monitor process environment.

SECT 20 - UCR 02 — Free Flag

The free flag bit of the UCR is not activated by functional logic as is the
case for most other MCR/UCR bits. Instead, it is employed by a monitor
process as a signal to a job process. The bit (if required) would be set in
the job exchange package in memory prior to an exchange to job mode. Since
all UCR bits are tested in exactly this manner in section 1, a function test
is not provided for the free flag.

SECT 21 - UCR 03 - Process Interval Timer

SUB21_1

In this subsection, the processor loads the PIT counter with a relatively
small value by using the CPYXS (op code OF1¢g) command. The processor then
enters a loop and waits for the timer to count down to zero and cause the
interrupt. '

60469390 D II-7-21

SECT 22 - UCR 04 - Inter-Ring POP

SUB22_1

In this subsection, the POP (op code 069¢) command is used to generate the
inter ring pop interrupt. A CALLSEG command makes a call to a procedure which
operates in the current ring (ring Bqg), When this procedure is entered,

the ring number of the then current A2 register is modified from Bqg ¢o

A16. Subsequently the POP command is executed and should generate the
interrupt as a result of the rings of the initial P and A2 registers not being
equal.,

SECT 23 —~ UCR 05 - Critical Frame Flag

SUB23_1

The critical frame flag is a single bit process register that is stored in and
retrieved from a stack frame by the CALL and RETURN commands. The flag is
normally set in the current process by the software using the CPYXS command.
Regardless of the means by which the CFF is set, a trap interrupt is generated
if a RETURN or POP command is executed when the flag is set in the
currentprocess.

In this subsection a CALLSEG command calls a procedure in which a CPYXS
command sets the CFF. This procedure subsequently attempts to execute a
RETURN (op code O44¢) command which should generate the required interrupt.
SUB23_2

This subsection is identical to SUB23_1 except that rather than attempting the
execution of a RETURN command, a POP (op code 061¢) command is employed.

SECT 24 - UCR 06 - Keypoint

SUB24_1

This section checks the capability of KEYPOINT (op code Blyg) to generate a
trap interrupt. The performance monitoring facility is not employed.

Upon entry to the process, the keypoint enable flag (KEF) is loaded to the set
condition as a result of an entry made in the exchange package by the control
PP. The CP sets the keypoint mask register (KMR) via a CPYXS command to
"specify a specific class. Subsequently, the KEYPOINT command is executed with
its j operand specifying the same keypoint class; this should result in the
generation of the interrupt. The control PP checks that UCR bit 06 is set
and that the correct keypoint class and code numbers are set up by the
processor. '

60469390 A v II-T7-22

SECT 25 -~ UCR 07 - Divide Fault

SUB25_1

In this subsection, the divide fault interrupt is generated by the use of the
integer quotient command DIVX (op code 27q¢), Register Xk is loaded with a
test pattern which is a positive nonzero value. Register Xk is loaded with
zeroes and the DIVX command is executed causing the interrupt. Register Xj
should subsequently contain the original nonzero value.

SUB25_2

This subsection checks the divide fault interrupt using the BDP decimal
quotient command DIVN (op code 7316), The k and j descriptor field lengths
are nonzero values and the operands themselves are both type 4 (unpacked
decimal unsigned). The k operand is a test pattern and the j operand is all
zeroes. After execution of the DIVN command, the destination field (k
operand) should not be altered regardless of whether the traps are enabled or
disabled.

SUB25_3

A divide fault interrupt is generated in this subsection using the floating
point quotient command DIVF (op code 331g). The Xk operand has a floating
point value of plus 10019 and the Xj operand is a nonstandard value of zero
(all zeroes). The CP instruction sequence will load the operands and then
execute the DIVF command to generate the divide fault condition. The
destination register should never be altered when this condition occurs.

SECT 26 - UCR 08 - Debug

SUB26_1

Since the debug feature is only active when traps are enabled and the mask
register bit for UCR 08 is set, this subsection has only two conditions. One
for a debug trap in executive state job mode (condition 0) and the other for
monitor mode (condition 1).

The debug interrupt is generated by a data write operation sensed by the debug
hardware when an SX (op code 8316) command is executed. Prior to execution,
the PP test controller will set up the debug list pointer in the executive
state exchange packages (job and monitor). The PP also sets up the debug list
which contains two double word entries which each bracket 2 central memory
words. The second entry has the debug code bit set for end of list. Both
entries will otherwise only have the data write code bit set.

When CP execution commences, the proper mode (job or monitor) will be
selected. - The CP will then clear the debug index register, set the debug mask
to detect reads or writes and enable traps. These three operations are
performed by the use of CPYXS commands. Immediately thereafter, the processor
will execute an LX and then an SX command to transfer data from one memory
address to another. Both memory addresses are within the bracketed area. The
LX command should not interrupt since the debug code bits are set for data
write., The SX command should interrupt. The PP will subsequently check the
debug index and also ensure that the SX has not altered memory.

60469390 A : ITI-7-23

SECT 27 - UCR 09 - Arithmetic Overflow

SUB27_1

In this subsection, the arithmetic overflow interrupt is generated by use of
the ADDX (op code 2446) integer add command. The operands used are both the
same; a large positive number with a single bit set at bit 1 (262), The CP
loads the operands from memory and immediately executes the the ADDX command
which should cause the interrupt. For conditions 0 and 2 where the mask bit
is set and the traps are enabled, instruction execution should be inhibit The
destination register is checked to ensure that it contains the original
operand. For conditions 1 and 3 with the traps not enabled, the destination
register should receive the overflow result.

SUB27_2

In this subsection, the arithmetic overflow interrupt is generated by use of
the ADDN (op code 7016) BDP numeric add command. Both operands are of equal
length and are type 4 (unpacked decimal unsigned). One operand is a string 9s
and the other is a string of 1s. The ADDN command should generate an overflow
result of 0Os in the destination field for conditions 1 and 3 where traps are.
not enabled. 1In conditions 0 and 2 traps are enabled and the destination
field should not be altered.

SECT 28 — UCR 10 - Exponent Overflow

SUB28_1

In this subsection, the floating point sum command ADDF (op code 304¢) is
employed to generate an exponent overflow interrupt. Both operands
(UFFF8000—-016 are the same and have a normalized coefficient and the
maximum possible positive exponent. The overflow result (50008000~——016
transferred to the destination register is the same regardless of whether
traps are enabled or disabled so long as the user mask bit is set. This is
the case for all conditions. The trap interrupt will occur in conditions O
and 2 where traps are enabled.

SECT 29 - UCR 11 - Exponent Underflow

SUB29_1

In this subsection, the floating poiht difference command SUBF (op code
3116) is employed to generate an exponent underflow interrupt. The
exponents of both operands are the same and have the smallest possible
positive values. When the operand for Xj (30004000---01¢ jis subtracted from
Xk (3000800"“016, the coefficient diminishes and is subsequently normalized
with the result that the exponent underflows. The underflow result
(2FFF8000—-016 transferred to the destination register is the same
regardless of whether traps are enabled or disabled so long as the user mask
bit is set. This is the case for all conditions, The trap interrupt will
~oceur in conditions 0 and 2 where traps are enabled.

60469390 A - II-T-24

L

£

o’ o

O

SECT 30 - UCR 12 - FP Loss of Significance

SUB30_1

In this subsection, the floating point difference command SUBF (op code

-~ 3116) is employed to generate an FP loss of significance interrupt. Both

operands (30008000—-01¢ are the same and have a normalized coefficient and
the smallest possible positive exponent. The loss of significance result
(30000000“'016 transferred to the destination register is the same
regardless of whether traps are enabled or disabled so long as the user mask
bit is set. This is the case for all conditions., The trap interrupt will
occur in conditions 0 and 2 where traps are enabled.

SECT 31 - UCR 13 - FP Indefinite

SUB31_1

In this subsection, the int sum command ADDF (op code 3014) is employed to
FP indefinite interrupt. Operand Xj is +0 1g) and operand Xk is

(70000—-0012316). The result of the addition transferred to Xk with traps
enabled 0 and 2) should be the value in Xk. For traps onditions 1 and 3), the

nonstandard FP number +IND 46) should be placed in Xk. The trap interrupt
occur in conditions 0 and 2 where traps are enabled.

SECT 32 - UCR 14 - Arithmetic Loss of Significance

SuB32_1

In this subsection, the convert to integer command CNFI (op code 3B4g) is
employed to generate an arithmetic loss of significance interrupt. The
floating point number to be converted (operand Xk) is a very large positive
number (UFFF8000---016), The nonzero digit of the coefficient is well
beyond the range of the most significant digit in the integer form. Thus,
when traps are not enabled, the result transferred to Xk should consist
entirely of zeroes., With traps enabled, the loss of significance condition
inhibits instruction execution. The original operand in Xk (0123-—-CDEF 14)
should be left unaltered and a trap interrupt should occur.

SUB32_2

The SCILN (op code Elqg) BDP decimal scale command is used in this subsection
to generate an arithmetic loss of significance interrupt. The command
descriptors define both operands as unpacked decimal unsigned (type 4) with a
length of 8 digits. The source operand is a string of nonzero digits (1
through 8). The D field of the SCLN command specifies a shift of one place
left and when executed should cause the interrupt condition since the
destination operand would be truncated on the left. If traps are enabled
(conditions 0 and 2), a trap interrupt should occur and the destination field
is checked to ensure that it is unaltered. With traps disabled (conditions 1
and 3), the destination field should receive the truncated operand.

60469390 A II-7-25

SN

SECT 33 - UCR 15 - Invalid BDP Data

SUB33_1

£

This subsection uses the BDP numeric sum command ADDN (op code 704g) to
generate an invalid BDP data interrupt. Both operands are unpacked decimal
unsigned (type 4) and are 8 digits long. The trap interrupt should occur for
conditions 0 and 2 and the destination field should be unaltered. For
conditions 1 and 3 where traps are not enabled, the result in the destination
field is not checked since the result is not defined.

SECT 34 - Multiple Interrupt/Priority Checks

In this section, the processor's response to multiple interrupts is checked.
In all cases, multiple bits are simultaneouly loaded into the MCR/UCR
registers. This is accomplished by setting up the corresponding bits in the
job or monitor exchange package in memory prior to initiating instruction
execution.

SUB34_1

This subsection checks the priority of an exchange interrupt over a trap
interrupt. The test is performed in the job mode with traps enabled and all
mask bits set. In this mode all MCR bits should cause an exchange interrupt
and all UCR bits would normally cause a trap interrupt. In all conditions,
all UCR bits will be set. In any one condition, only a single MCR bit will be
set. In 14 of the 16 conditions, an exchange interrupt should occur rather
than a trap. After the exchange occurs, the P of the job pack in memory
should point to the first command in the job process. Conditions 10 and 15 h
(MCR bits 10 and 15) should trap (as a result of the UCR bits) because these

MCR bits do not cause any hardware action,

CMP, 01 Checks P in the register file dump.

CMP.02 Checks P in the job exchange package.

CMP. 03 Checks the status of the MCR bits in the job exchangeipackage.
CMP.OU Checks the status of the MCR bits on the stack.

CMP, 05 Checks the status of the UCR bits on the stack.

CMP.06 Checks that execution of the job process did not occur,

CMP. 07 Checks P on the stack. Any entry indicates that a trap occurred.

<
60469390 A : * II-7-26 7

C

OR®.

SUB34_2

This subsection checks the priority of an exchange interrupt over a stack
condition. The test is performed in the job mode with traps disabled and all
mask bits set. In this mode, all MCR bits and 4 of the UCR bits should cause
an exchange interrupt. The subsection has 20 conditions. 1In all conditions
the other 12 UCR bits will be set. In any one condition, only a single one of
the MCR/UCR bits which should cause an exchange will be set. The exchange
interrupt should occur immediately after the initial exchange to job mode and
without execution of any commands in the job process. Conditions 10 and 15
(MCR bits 10 and 15) exchange to the monitor mode as a result of an
instruction specification error on a HALT command rather than as a result of
MCR bits 10 or 15 being set.

CMP. 01 Checks P in the register file dump.

CMP, 02 Checks P in the job exchange package.

CMP.03 Checks the status of the MCR bits in the job exchange backage.
CMP, O4 Checks the status of the UCR bits in the job exchange package.
CMP.05 Checks whether or not job execution occurred.

CMP. 06 Checks that no trap occurred.

SUB34_3

This subsection checks the priority of a halt condition over a stack
condition. The test is performed in the monitor mode with traps disabled and
all mask bits set. In this mode various MCR/UCR bits should either halt or
stack. The subsection has 13 conditions. In all conditions, all bits which
stack will be initially set. 1In any one condition only a single bit which
halts will be set. In every condition, the processor should halt immediately
upon initiation of instruction execution by the deadstart and before any
instruction is actually executed. The P in the register file should remain
pointing at the first command in the monitor process.

CMP. 01 Checks P in the register file dump.

CMP. 02 Checks a flag (in register Xe in the register file dump) to
ensure that no monitor process execution occurred.

CMP, 03 Checks P in the stack to ensure that no trap occurred (there
should be no entry).

60469390 A : - II-7-27

SECT 35 - MCR Bit Left in Memory

When performing a normal executive state exchange from monitor to job mode
(with traps enabled in monitor mode), the hardware must not return the monitor
package to central memory with an MCR bit set for which the corresponding mask
bit is also set. Either the trap should occur, or the same MCR bit should be
set up in the job process before the EXCHANGE completes execution. This
section attempts to provide situations where this type of fault might occur.
The test sets up asynchronous type interrupts so that they will occur shortly
before or during the exchange from monitor to job mode.

SUB35_1

In this subsection, the system interval timer (SIT) interrupt (MCR 11) is
employed for the test. A CPYXS (op code 0F16) command is used to load the
timer with a relatively small count just prior to the execution of the
EXCHANGE command. On each successive condition of the 50 conditions of the
test, the count which is loaded will be incremented by one. The count which
is used for the first 10 to 20 conditions will be such that the SIT interrupt
will occur before the EXCHANGE to job. Perhaps 5 to 10 subsequent conditions
will cause the timer to reach zero during the execution of the EXCHANGE while
on the remaining 10 to 20 conditions, the timer will complete after entry to
the job process.

The CP will check to determine if the MCR bit has been set in the monitor pack
in memory and it will save the result for a PP comparison. Checks are

performed to ensure that the SIT interrupt is received either before or after
the exchange.

- CMP. 01 Checks P in the job exchange package.
CMP.02 Checks that no MCR bits were left in memory.

CMP.03 . Checks that the SIT interrupt was received.

SUB35_2

This subsection is similar to the previous. However, instead of using a SIT
interrupt, an external interrupt (MCR 08) is employed. The external interrupt
is generated by using the INTRUPT (op code 0316) command. The time of
receipt of the interrupt via the central memory port is dependent upon the
turn around time and any current memory activity. On each successive
condition of the 16 conditons of the test, the INTRUPT command is moved closer
to the EXCHANGE command until on the last condition it will immediately
precede the EXCHANGE. 1In a few cases where the the two commands are close
together, the actual interrupt will be received while the EXCHANGE is
executing. Similiarly to the previous subsection, the CP code contains job
process and monitor trap routines for processing the 1nterrupt and checking if
the MCR bit has been stored in memory.

60469390 A , ~ - II-7-28

J
J

\;4;L . 7,'}
N

7

e

Normally the test will assume that the CP is connected to CM port 0. Another
port may be specified by setting PARAM18 to the required value (0,1,2 or 3 for
ports O to 3 respectively).

CMP. 01 Checks P in the job exchange package.
CMP,02 Checks that no MCR bits were left in memory.

CMP, 03 Checks that the external interrupt was received.

SUB35_3

This subsection is similar to subsection 35_1. Rather than using a SIT
interrupt, a soft error (MCR 14) generated by CM is employed. initially, a
soft (single bit) error is set up in a specific memory cell by writing bad
data during a write check bits operation (see also section 16). Subsequently,
any read of the same cell using an LXI (op code A21g) command will generate
the soft error interrupt.

The LXI command is executed shortly before the EXCHANGE command. The error
response from memory could arrive after execution of the EXCHANGE command has
commenced and may possibly generate the situation where the MCR bit is stored
in memory. Successive conditions (176 total) of the subsection move the LXI
command closer to the EXCHANGE command until the later condition where it
immediately precedes the EXCHANGE.

Since the cache (on some machines) loads data from adjacent memory addresses,
additional timing variations are obtained by having the LXI command load data
from addresses preceding the address which is actually in error. The
previously described set of conditions are repeated with the Xi index of the
LXI command modified to access the words 1, 2 and 3 words previous to the
error.

CMP. 01 Checks P in the job exchange package.
CMP.02 Checks that no MCR bits were left in memory.

CMP. 03 Checks that the soft error interrupt was received.

SUB35_4

This subsection is similar to subsection 35_3 except that an uncorrectable
error interrupt (MCR 00) is employed. A memory cell addressed by an SXI (op
code A316) command is set out of bounds to generate the interrupt. The CM
bounds register is set up so that the test address is at the first out of
bounds location. Note that the bounds register must be set up for a specific
memory port. Normally the test will assume that the CP is connected to CM
port 0. Another port may be specified by setting PARAM18 to the required
value (0,1,2 or 3 for ports 0 to 3 respectively). Condition number 1 has a
single comparison only which checks for the proper set up of the bounds
register. The comparisons in conditions 2 through 177 are similar to those of
conditions 1 through 176 in subsection 35_3 and are as follows:

60469390 A : II-7-29

CMP.01 Checks P in the job exchange package.
CMP .02 Checks that no MCR bits were left in memory.

CMP.03 Checks that the uncorrectable interrupt was received.

SECT 36 — RESERVED

This section is reserved for use at a later date.

SECT 37 - Model 810/815/825/830 Processor Model Dependent Tests

This section performs interrupt tests utilizing hardware peculiar to these
processors. The tests are related to the uncorrected error interrupt (MCR 00)
and the soft error log (MCR 14). Subsections 1 and 2 are automatically
skipped if the test is not executing on one of these processors.

The processors contain hardware which can inject an error in a specific
circuit at a specific time. The hardware is controlled by two instruction
level commands which are available when the processor is operating in
executive state job mode with the DEC register test mode bit set. One command
(op code C914) loads the processor test mode register and determines where
the fault will be injected. This command also loads a delay counter which is
decremented on each clock (50 nanoseconds). The fault is injected for one
clock period when the count reaches zero. The second command (opcode CAj¢)
clears the PTM and the counter for normal operations. A command which
transmits data via a selected circuit is inserted in the instruction sequence
following the op code C91¢ command. The counter is loaded with a count
which will become zero at the critical time.

[

'NOTE

There is an uncertainty of one clock period regarding
the injection of the error. To overcome this problem,
the CP may repeat the test sequence using a modified
delay (plus or minus one count) to ensure that an
interrupt occurs. The processor will stop at a HALT
command if this action fails to cause the interrupt.

The comparisons for subsections 37_1 and 37_2 are similar and are as follows:

CMP.01 Checks P in register file dump.

CMP.02 Checks P on stack; should be no entry indicating a trap did not
occur.

CMP.03 Checks P in job exchange package.

60469390 D : II-7-30

e

L

A0
U

olle

CMP.04 Checks P in monitor exchange package.

CMP.05 Checks that correct MCR bit was set (bits 0 and 14 for
subsections 37_1 and 37_2 respectively).

CMP.06 Checks that all commands in test sequence were executed.

CMP.07 Checks that uncorrected error bit (subsection 37_1) or corrected
error bit (subsection 37_2) was set in CP status summary
register.

SUB37_1

This subsection tests the uncorrected error interrupt. The instruction retry
bit in the DEC register (bit 30) is set by the test. Some other bits of DEC
are set by the test and include the test mode bit (bit 33), the PFS enable bit
(bit 24) and the PFS trap bit (bit 06). The four conditions of the subsection
operate in the job mode with traps enabled and force parity errors in 4
different data paths. The uncorrected error bit (bit 61) in the status
summary register is checked.

SUB37_2

This subsection tests the soft error log interrupt. The test checks that the
corrected error bit (bit 62) in the CP status summary register is set.

SECT 38 -~ Model 835 Processor deel Dependent Tests

This section performs interrupt tests utilizing hardware peculiar to this
processor. The tests are related to the uncorrected error interrupt (MCR
00). Subsection 1 is automatically skipped if the test is not executing on
this processor.

SUB38_1

In this subsection, an uncorrected error from the CP is generated by use of
the processor test mode register (PTM). 1In this processor, the PTM register
has a parity check network. Prior to initiating CP instruction execution, the
control PP first sets the most significant bit in the PTM and then on a second
operation, the PTM is written with a string of zeroes. The PTM will then
contain a word with bad parity.

The test sequence executed by the processor generates the interrupt condition
simply by executing a CPYSX command (op code 0E;g) which copies the contents
of the the PTM register to an X register. The interrupt should occur
immediately with PVA in P pointing to the CPYXS command.

60469390 D - II-7-31

This subsection has four conditions which operate in the job and monitor mode
with traps enabled and disabled. Comparisons for a11 conditions are as

follows:
CMP.01
CMP.02
CHP.03
CMP.04

CMP.05

SECT 39 - _

Checks
Checks
Checks
Checks

Checks

for no entry in untranslatable pointer

P in regi§ter file dump (where processor halts).
P on stack.

P in job exchange package.

status of MCR bits after interrupt.

This section is reserved.

SECT 40 -

This section is reserved.

60469390 D

II-7-32

i\‘az

N

AN

N’

- 7

APPENDIX A

GLOSSARY

o

A

©D

A register
ADU
ASCII
ASID
BASICTC
BC

BCO
BCR

BDP

BN

BR

BS
BMUX
CBP
CEJ/MEJ
CEL

CEM

CF

CFF

CFR

CH

CHD

CM

CMA
CMA1
CMCEL
CMU
CMSE
condition

CPU
cs
CSF
CTI/IPL
DAP
DC
DCI
bCD
DDLT
DDP
DEC
DEX
DI
DLP
DM
DMR
DPPD
DSC
DSP

60469390 A

GLOSSARY

--—_—-_----—..————-----——-——--—————----——-------—-_-_—_——-—
—_-—--—-—-----.-_-—------———_---—---—--_-—-—_.—----_—--..-——-

Address register

Assembly/disassembly unit

American standard code for information interchange
Active segment identifier

Basic test control code

Base constant

Branch on condition

Branch on condition register

Business data processing

Byte number

Bounds Register

Binding section

Branch multiplexer

Code base pointer

Central exchange jump/monitor exchange jump
Corrected error log

Configuration environment monitor

Critical frame

Critical frame flag

Conflict register

Channel

Channel test

Central memory

Central memory access

Central memory access test

Cache memory corrected error log

Central memory access

Common maintenance software executive

A test within a subsection that uses a particular set
of operands to test the common hardware element.
Central processing unit

Control store

Current stack frame pointer

Common test initial/initial program load
Design action paper

Debug code

Data control information

Data carrier detector

Diagnostic decision logic table
Distributive data path

Model-dependent environment control (see EC)
Diagnostic executive (interface)

Debug index

Debug list pointer

Debug mask

Debug mask register

Double PP driver

Display controller

Dynamic space pointer

A-1

DSR
DTR
EBCDIC
EC
ECC
EC1
EC2
ECL
ECM
ECS
EDS1
EIA
EID
EM
EPS
ES
EXT1
FCN
FIFO
FL
FLC
FLE
FP
FSR
FTN
FUD1
FWA
GE
GK
GL
GT
IC
II
ILH
IMUX
I1/0
IoCcP
I0U
JEP
JPS
KC
KCN
KEF
KM
LDS
LED
LK
LPID
LRN
LRU
LSI
LT
LwA

60469390 A

Data set ready \(}@
Data terminal ready : : o
Extended binary-coded decimal interchange code ~ Ty
Environment control \M“ﬂ
Error-correction code -
Error code 1

Error code 2

Emitter-coupled logic

Extended central memory

Extended core storage

Extended deadstart sequence

Electronic Industries Association

Element identifier

Exit mode

External procedure flag

End suppression toggle (BDP edit instruction)
Execution unit test

Function

First-in, first-out

Field length

Central memory field length register
Extended core storage field length register
Floating-point

Fault Status Register in IOU

FORTRAN '

FIS1 utility program

First word address

Greater than or equal

Global key

Global lock N
Greater than

Integrated circuit

Illegal instruction

Instruction look-ahead

Instruction multiplexer

Input/output

Input/output unit control program ‘

Input/output unit TN
Job mode exchange package .
Job process state pointer

‘Keypoint code

Keypoint class number
Keypoint enable flag
Keypoint mask

Long deadstart sequence
Light-emitting diode
Local key

Last processor identification
Largest ring number
Least recently used
Large-scale integration
Less than

Last word address

O

MA
MAC
MALADY

MAS
MBE
MC
MCH
MCI
MCR
MCU
MDF
MDW
MEC
MEP
MF
MHR
MID
MM
MMR
MOP
MOS
MPPD
MPS
MR
MRA1
MRT1
MSL
NE
network

NOS
NS
OCF
oI
ON
OP
0s
P register
pak
PE
PFA
PFS
PID
PIT
PMF
PMT1
PMU1
PN
PO
PP
PPM
PPS
PPU

60469390 A

Monitor address

Maintenance access control

Microcode assembler for the CYBER 170 Model 825
processor

Micrand address select

Multiple bit error

Master clear

Maintenance channel

Maintenance channel interface
Monitor condition register
Maintenance control unit
Model-dependent flags
Model-dependent word

CM environment control register
Monitor mode exchange package
Monitor flag

Micrand holding register

Maintenance identifier

Monitor mask

Monitor mask register

Micro-operator (BDP edit instruction)
Metal-oxide semiconductor

Main PP test driver

Monitor process state pointer
Maintenance register

Maintenance register access test
Maintenance register test
Maintenance software library

Not equal

A hardware element wholly contained on a pack and
sharing no common circuits with any other network.

. Network Operating System

Negative sign toggle
On-condition flag

Options installed
Occurrence number

Operation code

Operating system

Program address register

A replaceable hardware module
Parity error

Page frame address
Processor fault status
Processor identifier
Process interval timer
Performance monitoring flag
PP memory test 1

PP memory test 2

Page number

Page offset

Peripheral processor
Peripheral processor memory
Peripheral processor subsystem
Peripheral processor unit

A-3

PSA
PSF
PSM
PTA
PTE
PTL
PTM
PVA
PW
QLT1
RA
RA/FL
RAC
RAE
RAM
RAM
RCL
RCT
RMA
RMS
RN
RNI
ROM
RP
RSB
RTS
SBE
SCT
SDE
SDT
SECDED
SEG
SFSA
SET
SIT
SM
SPID
SPPD
SPT
SRT
SS
STA
STL
subsection

SV
SvVA
SWL
TE
test

TED

TEF
TOS

60469390 A

Previous save area

Previous stack frame

Page size mask

Page table address

Page table entry

Page table length

Processor test mode

Process virtual address

Partial write

Quick look test

Reference address

Reference address/field length

Central memory reference address register
Extended core storage reference address register
Random-access memory '
Reliability, availablity, maintainability
Read and Clear Lock

Random command test

Real memory address

Rotating mass storage

Ring number

Read next instruction

Read only memory

Read permission (segment descriptor field)
Read Syndrome Bits

Request to send

Single bit error

Special characters table (BDP edit instruction)
Segment descriptor table entries

Segment descriptor table

Single error correction, double error detection
Process segment number

Stack frame save area

Subsection error table

System interval timer

The symbol (BDP edit instruction)

Segment page identifier

Single PP driver

System page table

Subscript range table

Status summary

Segment table address

Segment table length

A series of tests that check out a specific hardware

element.

Specification value

System virtual address

Software writer's language

Trap enable

A general term which can refer to conditions,
subsections, sections or units.

Trap-enable delay

Trap-enable flip-flop

Top of stack

A-Y4

-

/

w

P

O

TP
M
UART
UCEL1
UCEL2
UCR
UEL1...UELn
UEL2
UM
unit
UTP
UVMID
vC
VL
VLEX
VMCL
VMID
WAR
WCB
WDR

- WP
XP
ZF

60469390 A

Trap pointer

Two port multiplexer

Universal asynchronous receiver-transmitter
Uncorrected error log 1

Uncorrected error log 2

User condition register

Uncorrected error log l...n

Uncorrected error Log 2

User mask

An arbitrary functional area within the processor.
Untranslatable pointer

Untranslatable virtual machine identifier
Search control code (page descriptor field)
Segment validation (segment descriptor field)
Virtual level executive

Virtual machine capability list

Virtual machine identifier

Word assembly register

Write Check Bits

Word disassembly register

Write access control (segment descriptor field)
Execute access control (segment descriptor field)
Zero field toggle (BDP edit instruction)

A5

_~»

LA

A~

o

APPENDIX B

RCT1 AND RCT2 TEST/USAGE SETS

O

Op Code Ref, No.

00
01
02
03
oy
05
06
o7
08
09
0A
0B
oc
0D
OE
OF
10-13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
F

60469390 A

121
162
120
122
M7
138
118
133
132
051
052
053
ou9
130
130
131

124

126
127
065
066
067
068
069

145
061
027
030
032
034
022
023
024
025
029
031
056

036
035
ou7
048

RCT1 AND RCT2 TEST/USAGE SETS

Short Name

Program error

Wait

Exchange

Interrupt processor

Return

Purge

Pop

Copy to central memory maintenance register
Copy from central memory maintenance register
Copy to Ak from Aj

Copy to Ak from Xj

Copy to Xk from Aj

Copy to Xk from Xj, halfword
Copy to Xk from Xj

Copy from state register
Copy to state register
Unimplemented

Test and set, bit
Unimplemented

Test page

Load page table index
Logical sum

Logical difference

Logical product

Logical complement

Logical inhibit
Unimplemented

Convert mark to boolean
Enter Xk left, sign per J
Add integer, halfword
Subtract integer, halfword
Multiply integer, halfword
Divide integer, halfword
Add integer

Subtract integer

Multiply integer

‘Divide integer

Increase halfword by Jj

Decrease halfword by j

Add address, halfword

Unimplemented

Compare integer, halfword

Compare integer

Unconditional branch, intra-segment
Unconditional branch, inter-segment

Usage

Test

1/2

1/2
172
1/2

172
172
1/2
172

1/2
1/2
1/2

172
172

172
172

1/2

-— e) e)

PN Y

.t e e e e emd) e e e e el

-

Op Code Ref, No.

Short Name Usage

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40-6F
70
71
72
73
T4
75
76
77
T8-TF
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8
8E
8F
90
91
92
93
94
95
96
97
98
99
9A

60469390 A

099
100
103
104
105
106
107
108

164
097
098
114
057
058
060

o074
075
076
o077
083
092
089
084

020
021
006
008
017
019
013
165
014
015
028
143
033
059
054
055
041
042
ou3
oul
037
038
039
040
109
110
111

ATest

Add floating point

Subtract floating point

Multiply floating point

Divide floating point

Add floating point, double precision

Subtract floating point, double precision
Multiply floating point, double precision

Divide floating point, double precision
Umimplemented

Enter X1 with logical jk

Convert integer to floating point

Convert floating point to integer

Compare floating point

Enter Xk with plus j 1/2
Enter Xk with minus j 2
Enter X0 with logical jk

Unimplemented

Decimal sum

Decimal difference

Decimal product

Decimal quotient

Decimal compare

Numeric move

Move bytes

Byte compare

Unimplemented

Load multiple

Store multiple

Load X word, displaced 1/2
Store X word, displaced 172
Load A bytes, displaced

Store A bytes, displaced

Load X bytes, displaced relative

Enter X1 with sign extended, jkQ

Load X, bit ‘ 2
Store X, bit

Add integer, halfword plus Q 2
Add integer, word plus Q 2
Mulitply integer, halfword plus Q

Enter Xk with Q 1/2
Add address, A plus Q 2
Add address, X plus P plus Q

Branch =, halfword integer 172
Branch #, halfword integer 172
Branch >, halfword integer 172
Branch halfword integer 1/2
Branch integer 1/2
Branch integer 172
Branch integer 1/2
Branch integer 1/2
Branch floating point

Branch #, floating point

Branch >, floating point

-

niv v w njv
-

-t e) b 3 o) -l))) e

NCELSIVE VR VI CR AV)

PR N N S N N N N U S o e e T Tl Y

Y-

(f7> Op Code Ref. No. Short Name Usage Test

‘:?ﬁ 9B 112 Branch >, floating point 1
A 9C 045 Branch and increment <, integer 1
9D 046 Branch #, segment, else compare BN
9E 13 Branch =, floating point exception 1
9F 134 Branch/alter, condition register
AO 016 Load A bytes, indexed/ displaced 1
A1 018 Store A bytes, indexed/displaced 1
A2 005 Load X words, indexed/displaced 1/2 1
A3 007 Store X words, indexed/displaced 1/2 1
A4 009 Load X bytes, indexed/displaced 2 1
A5 011 Store X bytes, indexed/displaced 2 1
A6 15 Call, displaced
AT 161 Copy A with displacement, module 1
A8 062 Shift word, circular 1 1
A9 063 Shift word, end-off 172 1
AA 064 Shift halfword, end-off. 1/2 1
(:ia AB Unimplemented
- AC 070 Isolate bit mask ' 172 1
AD 071 Isolate bit string ' : 1
AE 072 Insert bit string 1
AF Unimplemented
BO 116 Call, displaced relative
B1 136 Keypoint
B2-B3 Unimplemented
B4 125 Compare and swap
B5-BF Unimplemented
(}‘ Co-C7 139 Execute algorithm 0-7
o C8-CF Unimplemented :
DO-D7 001 Load X bytes, indexed/displaced, 1-8 1/2 1
D8-DF 003 Store X bytes, indexed/displaced, 1-8 1/2 1
EO-E3 Unimplemented : ;
EY 078 Decimal scale 2
E5 079 Decimal scale rounded 2
E6-E8 Unimplemented
, E9 085 Byte compare collated 2
o EA Unimplemented ,
‘::j - EB 088 Byte translate 2
EC Unimplemented .
ED 091 Edit 2
EE-F2 Unimplemented
F3 086 Byte scan while non-member - 2
F4 096 Calculate subscript 2
F5-F8 Unimplemented : :
F9 154 Move immediate data 2
FA 155 Compare immediate data 2
FB 156 Add immediate data -2
FC-FF Unimplemented

o
0? 60469390 A | | ~ B-3

- J)
\ﬂ'\, y

'
O

O 4

C

APPENDIX C

EXCHANGE SEQUENCE DIAGRAMS

NS

AN

/

O
C

EXCHANGE SEQUENCE DIAGRAMS 4 C

The following pages provide diagrams illustrating the sequence of exchanges in
the various sections of the test. No diagram is provided for section 4. Some
diagrams serve more than one section.

In each diagram, the exchange packages are on the left. The blocks on the
right briefly describe the function of an associated process. The connecting
lines indicate the movement of a process' registers from an exchange package

 in memory into the central processor's registers or vice versa. Each line

bears a number showing the sequence step and note indicating the event which
triggers the action. Dashed lines indicate a pointing action.

Each exchange package shows the assembly listing name of the package and its
location (hex byte address) in central memory. A package name (label) which
begins with C8 refers to a CYBER 180 package; C7 refers to a CYBER 170 package.

Some sequence steps or a series of steps may be repeated many times during the
execution of a given condition. The diagrams only provide an overall view;
reference should be made to the descriptions with each test section in part
II-6 of this manual for additional details.

60469390 E : ‘ : : Cc-1

RF DUMP--0000

4. HALT

180 MONITOR

)

MPS ——— >

C8MXP-S5F60

3.2 ERROR EXIT

VMID=0

1. DEAD START

EXECUTE HALT CMND

180 MONITOR

2.1 180 EXCHANGE

INITIALIZE 170 AND
180 JOB PACKS AND

r JPS, EXCHANGE
JPS =~ = — = > CBJUXPA-SSEL
€ 2.2 180 EXCHANGE 170 PROCESS
VMID=1
MF=1 3.1 ERR EXIT, MF=1 X*AAAA' 3 XAFLAG
€~ — -} MASC7XPXMA EXECUTE PS CMND.
i
I
!
:e — — =C7XPXA-4A00
| MA=CTXPXMA
1
1
]
v
o > C7XPMA-4A80
L — — - MAZC7XPXMA
co027s
c0275
SECT 1, COND 6 — PS COMMAND, 170 MON
60469390 E c-2

S
T
AV
-
(\. v
,,7
2N

RF DUMP-0000

S. HALT

180 MONITOR

MPS — — — — —~>» CBMXP~-5F60

VMID=0

4.2 ERR EXIT

EXECUTE HALT
COMMAND

180 MONITOR

1. DEAD START

2.1 180 EXCHANGE

JPS — — — —=> C8UXPA-58E0

2.2 180 EXCHANGE

INITIALIZE 170
AND 180 JOB
PACKS AND JPS,
EXCHANGE

170 PROCESS

4.1 ERR EXIT, MF=1

VMID=1
MF=0

(€= == MASCTXPXMA

i

]

i

! C7XPXA-4A00

I

K= — - MAzCTXPXMA

]

1

i

|

¢ > C7XPXMA-4A80

it |
|
'
1

3.1 ERR EXIT, MF=0

X AAAAY —>XMAFLAG
EXECUTE PS CMND.

170 PROCESS

- - = MA=CTXPXMA .
3.2 ERR EXIT, MF={ X A T2 AhnpLAG
co276
SECT 1,COND 1 — PS COMMAND, 170 JOB
60469390 E c-3

RF DUMP-0000 180 MONITOR
k 6. HALT
EXECUTE HALT
COMMAND
180 MONITOR
MPS = = = — —~> CBMXP-SF60 5.2 ERR EXIT
- . INITIALIZE 170
VMID=0 1. DEAD START AND 180 JOB
2.1 180 EXCHANGE EﬁgstQ:D JPs.
JPS = = — =~ =3 CBUXPA-S8ED 170 PROCESS
— 2.2 EXCHANGE
xgig" EXECUTE 170
b CEJ BO,K
l‘— == MA=C7XPXMA 5.1 ERR EXIT' MF=1 WITH K=C7XPXA
1
1
! - - P
| C7XPXA-4A00 3.1 CEJ, MF=t 170 PROCESS
' .
K= ==~ MA=C7XPXMA 3.2 CEJ, MF=0 X AAAA® —> XAFLAG
! EXECUTE PS CMND
1
I
I
[===> C7XPXMA-4AS0
1 170 PROCESS
<= =] ma=CTXPXA 2L BRI e X*DEAD® —3 XMAFLAG
4.2 ERR EXIT, MF=1 EXECUTE PS CMND
c0277

SECT 1, COND 2 -~ CEJ COMMAND,

170 MON

60469390

C-4

ole

RF DUMP-0000 Lt 180 MONITOR
k EXECUTE HALT
COMMAND
MPS — — — — ~> CBMXP-5F60 1eq roniToR
4.2 ERR EXIT
INITIALIZE 170
VHID=0 T. DEAD START AND 180 JOB
PACKS AND JPS,
2.1 180 EXCHANGE EXCHANGE
JPS — — — — =3 CBUXPA-58ED 1706 PROCESS
— 2.2 180 EXCHANGE
:Eiﬁ” EXECUTE 170
| e . . MEJ COMMAND
:‘ MA=C7XPXM 4.1 ERR EXIT, MF=f
]
f
: CTXPXA-4A00
i
K=~ = MAZC7XPXMA
1
1
i
i
f===> C7XPXMA-4A80
i 170 PROCESS
N) 3.1 MEJ, MF=0
% MA=C7XPXMA - X*DEAD* —> XMAFLAG
3.2 MEJ, MF=zt EXECUTE PS CMND
co278
co278

SECT 1, COND 3 - MEJ COMMAND, 170 JOB

60469390 E C-5

RF DUMP-0000 180 MONITOR
g 6. HALT
EXECUTE HALT
COMMAND
MPS — — — — —> CBMXP-SF60 P 180 MONITOR
VMID=0 T. DEAD START INITIALIZE 170
2.1 180 EXCHANGE Egg"iuag" JPS,

D
!

— —> C8UXPA-S8ED

VMID=1
MF=0
MA=C7XPXMA

2.2 EXCHANGE

170 PROCESS

COUNT-DOWN WHILE

§.1 ERR EXIT, MF=1

WAITING FOR
PP 2600 EXCHANGE

! > TEST ADRS

MA=C7XPXMA

3.1 PP 2600 EXCH,

MF=0

170 PROCESS

X AAAAY —> XAFLAG
EXECUTE PS CMND

3.2 PP 2600 EXCH,

MF=0

= == <> C7XPXMA-4A80

-1——-——4.———-————-.
1

0
1

MA=C7XPXMA

k

4.1 ERR EXIT, MF=0

170 PROCESS

X*DEAD* —> XMAFLAG

4.2 ERR EXIT, MF=1

EXECUTE PS CMND

co0279

co279

SECT 2 AND 16, EXCHANGE ADDRESSING
SECT 3, COND 0 - 2600, 170 JOB

60469390 E

N

N

\

C

olie

RF DUMP-0000

180 MONITOR

EXECUTE HALT
COMMAND

180 MONITOR

INITIALIZE 170
AND 180 JOB
PACKS AND JPS,
EXCHANGE

170 PROCESS

5. HALT
MPS —— =~ =) _
conxp-srel 4.2 ERR EXIT
VHID=0 T DEAD START
2.1 180 EXCHANGE
JPS == = — > CBUXPA-SBED
VMID=1 2.2 EXCHANGE
© MF=0
— == MA=C7XPXMA
4.1 ERR EXIT
fm———— PP A-REG

L > c7xPxA-4A00

o ———— R — e ——

COUNT-DOWN WHILE
WAITING FOR PP
2620 EXCHANGE.

— — == MA=C7XPXMA
170 PROCESS
——=> C7XPXMA-4AB0
3.1 PP 2620 EXCH, MF=0 X DEAD® —> XMAFLAG
EXECUTE PS CMND
=== MA=C7XPXMA 3.2 PP 2620 EXCH, MF=1
£0280
?
c0280
SECT 3, COND 2 - 2620, 170 JOB
60469390 E c-17

180 MONITOR

EXECUTE HALT
COMMAND

180 MONITOR

INITIALIZE 170
AND 180 JOB
PACKS AND JPS,
EXCHANGE

170 PROCESS

RF DUMP-0000
F S. HALT
MPS — - -~~~ -
> Cemxp-Sreo 4.2 ERR EXIT
VMID=0 1. DEAD START
" 2.1 180 EXCHANGE

JP§ —~——-—— > C8UXPA-58E0

VMID=1 2.2 EXCHANGE
MF=0

€—=—~- MA=C7XPXMA r 4.1 ERR EXIT

1
L > Cc7xPXA-4A00

I
1
I
I
I F———— PP A-REG
1
1
1
1

3.1 PP 2610 EXCH, MF=0

COUNT-DOWN WHILE
WAITING FOR PP
2610 EXCHANGE

170 PROCESS

3.2 PP 2610 EXCH,MF=1

k ----- MA=C7XPXMA

1

1

i

1

:— = = = =3 C7XPXMA~4A80
1

€~ -~~~ 4 MA=C7XPXMA

NOTE ¢

FOR COND #3, A PP 2600 COMMAND IS EXECUTED.

THE CYBER 170 MF=1 BEFORE
AND AFTER THE SWAP OF C7XPXA.

X AAAA® —> XAFLAG
EXECUTE PS CMND

coz281

co281

SECT 3, COND 1, 2610, 170 JOB
SECT 3, COND 3 - 2600, 170 MON

60469390 E

1
b
;

O
C

RF DUMP-0000

4. HALT

180 MONITOR

&

MPS — — ~ —» C8MXP-5F60

3.2 ERROR EXIT

EXECUTE HALT CMND

180 MONITOR

VMID=0

1. DEAD START

2.1 180 EXCHANGE

JPS — — — — > CBJUXPA-5S8EQ
T |

2.2 180 EXCHANGE

INITIALIZE 170 AND
180 JOB PACKS AND
JPS, EXCHANGE

170 PROCESS

VMID=1

3.1 ERR EXIT, MF=1

MA=C7XPXMA

1
1
!
| r———-— PP A-REG
I !
' = — > C7XPXA—4A00
!
K

&=~ = T MASC7XPXMA

COUNT~-DOWN WHILE
WAITING FOR PP
EXCHANGE. 2610
AND 2620 ARE
IGNORED.
COUNT-DOWN EXITS
TO PS CMND.

— — — > C7XPXMA-4A80
|
K- - = MA=C7XPXMA NOTE:
THE 2610 AND 2620 ACT AS PASS COMMANDS
WHILE THE PROCESSOR IS IN CYBER 170
MONITOR MODE (MF=11)
c0282
cozs2
SECT 3, COND 4 - 2610, 170 MON
SECT 3, COND 5 - 2620, 170 MON
60469390 E

MPS — — — => CBMXP-5F60

180 MONITOR
VMID=0 {. DEADSTART
k 2.1 180 EXCHANGE INITIALIZE, POINT
3.2 EXCH REG EXCH INT JPS TO C8JXPSO,
[4.1 180 EXCHANGE EXCHANGE TO 180 MODE
I~ 7.2 ERR EXIT
SET UP 170 AND 180
JOB PACKS, POINT
JPS TO C8UXPB
EXCHANGE TO 170 MODE
RF DUMP-0000
EXECUTE HALT
8. HALT COMMAND
JPS(1} . .5 C8JXP50-5DCO 180 JOB
VMID=0 2.2 180 EXCHANGE T Fom PP
¥g§§ MASK=1 3.1 EXCH RED EXCH INT 26XX EXCHANGE
COMMAND
JPS(2) — S>CB8JUXPB-5C20 170 PROCESS
VMID=1 4.2 180 EXCHANGE ATTEMPTS TO EXECUTE
MF=0 7.1 ERR EXIT 4 NOP COMMANDS AND PS
=== MA=C7XPXMA COMMAND BUT 170
! SWAP OCCURS
: IMMEDIATELY
! .
1
: f=—==—="= PP A-REG
Lo
! 1
] - -
, > C7XPXA-4A00 5.1 PP EXCH, MF=0 170 PROCESS
e | MA= 5.2 PP 2600 EXCH MF=0
5 MA=C7XPXMA X AAAA® —> XAFLAG
I EXECUTE PS CMND
1
N - == > CTXPXMA-4A8D
ol 170 PROCESS
‘ | 6.1 ERR EXIT MF=i
L e e | MAZ IF 6.2 ERR EXIT MF=0 X'‘DEAD® —3>XMA FLAG
MA=C7XPXMA EXECUTE PS CMND
NOTE:

SEE DIAGRAMS FOR SECTION 3 ALSO.SWAPPING OF
CYBER {70 PAKS IN CONDITIONS 0 THRU 5 IS
SIMILAR IN SECTIONS 3,5 AND 6.

co0283

SECT 5 26XX, 180 JOB

60469390 E

c-10

—

J

L‘uk

“%,A.Jf

I~ > MSTAK-5620 180 MONITOR

1
']e 2. EXCH REQ TRAP INT INITIALIZE 170 AND
: 180 JOB PACKS,
\ ENABLE TRAPS,
1 WAIT FOR 26XX CMND.
MPS— — L — > c8MXP-5F60
: B {. DEAD START
~—=- AG(DSP)=MSTAK ———-> 180 MONITOR TRAP
VMID=0 1
Matrst 3. TRAP ENTRY MCBP K
TEonCRP — ===~ 32 TIBI EXCAANGE """ > - POINT JPS TO CB8JXPB
MGRS MASK=1 EXCHANGE TO 170 MODE
7.2 ERR EXIT =
EXECUTE HALT COMMAND
RF DUMP-0000
8. HALT 170 PROCESS
ATTEMPTS TO EXECUTE
4 NOP CMNDS AND PS
JPS = — = — > C8JXPB-5C20 COMMAND BUT 170
4.1 180 EXCHANGE imgpgﬁggg
VMID=1 .
MF=0
€= — = - MAZC7XPXMA 7.1 ERR EXIT
! 170 PROCESS
i
: X>AAAAY —DXAFLAG
| r=—=—<=PP A-REG EXECUTE PS CMND.
1 H
1 —=> C7XPXA-4A00
1 170 PROCESS
' 5.1 PP 2600 EXCH,MF=0 DEAD® —> XA FLAG
— -t = '6“"‘_1r1rpp—Egﬁ]"gytg—npgﬁ—————————m
< HASCTXPXMA : EXECUTE PS CMD
1
1
i
H
1
b — — > C7TXPXMA-4A80
1
{ .
! 6.2 ERR EXIT MF=0
l-€- — - MA=C7XPXMA €.1 ERR EXIT MF=1
NOTE:
SEE DIAGRAMS FOR SECTION 3 ALSO. SWAPPING OF :
CYBER 170 PACKS IN CONDITIONS 0 THROUGH 5 IS cozs4

SIMILAR IN SECTIONS 3,5 AND 6.

SECT & 26XX, 180 MON

60469390 E ' : c-11

MPS ——m e —m——m P

C8MXP-5F60

DEAD START

180 MONITOR

VMID=0

POINT JPS TOCBJUXPB,

2.1 180 EXCHANGE SET UP ALL 170 PACKS
AND 180 JOB PACK
EXCHANGE JOB PACK.
UPS - - - = =» CBUXPB-5C20 170 PROCESS
VMID=1 LOOP CONTINUOUSLY
MF=0 2.2 180 EXCHANGE ON CEJ/MEJ CMND
BO,K (CEJ) AND MA
{MEJ) BOTH POINT TO
C7XPCP7.
o’
== => C7XPCP7-4B80
1 - 3.1 CEJ/MEJ
(€ = — = 4 MA=C7XPCP7 CEJ/MEJ CMND SWAPS
. B4=X\7777" 3.2 CEJ/MEJ PACKAGE AND
. CHANGES MF.
]
1 -
SLAVE PP0 — | — — —> C7XPPP70-4C00
A-REG " 4.1 2600 SLV PPO ALL PP 2600 CMNDS
[€ — = — -] MA=C7XPCP7 . SWAP THEIR
l B4=17070° CORRESPONDING
' 4.2 2600 SLV PPO PACKAGE, MF IS
| NOT CHANGED.
]
ix.a\ég PPI === > c7xPPP71-4C80
k_ — = — A MA=CTXPCPT7 5.1 2600 SLV PP1
=4 .
: B4=X 7171 5.2 2600 SLV PP1
A
[|
SLAVE PP2 — L — — — 5 C7XPPP72-4D00
A-REG |
l¢ - - - 4 MA=C7XPCP7 6.1 2600 SLV PP2
! B4=X7272°
: 6.2 2600 SLV PP2
1
1
SLAVE PP3 = - — — —» C7XPPP73-4D80
A-REG i
le¢ - - - JMA=C7XPCP7 7.1 2600 SLV PP3
0) Y
B4=Xx7373 7.2 2600 SLV PP3
RF DUMP-0000
8. RF DUMP EXCH ITC INITIATES

NOTE

STEPS 3 THRU 7 MAY
IN ANY ORDER.

OCCUR RANDOMLY

RF DUMP AFTER
. TIMED INTERVAL.

co285

SECT 7 MULTIPLE 2600 AND BO CHECKS

60469390 E

c-12

N

I

N
A

OO0

MPS = —— > CBMXP-5F60

VMID=¢

{. DEAD START

180 MONITOR
POINT JPS TO C8JXPB

2.1 180 EXCHANGE

SET UP170 AND 180

6.2 ERR EXIT

JOB PACKS.
EXCHANGE TO JOB

RF DUMP-0000

7. HALT

EXECUTE HALT COMMAND.

JPS — - -~ —» CBUXPB-5C20

- | vMID=1
MF=0
=== 7| MA=C7XPWRK

-

2.2 180 EXCHANGE

170 PROCESS

EXECUTE 59 PASSES
OF LOOP.SHIFT EACH
X REG ONCE PER LOOP

6.2 ERR EXIT,MF=1

EXECUTE 2 CEJ/MEJ
CMNDS PER LOOP

— — > C7XPWRK-4E80

= === MA=C7XPWRK

CEJ/MEJ

I

SWAP TO ALTERNATE 170
PROCESS ON EACH

CEJ/MEJ CMND AND

CEJ/MEJ

PP 26XX EXCH

CHANGE MF.

"+

SWAP TO ALTERNATE 170
PROCESS ON EACH

PP 286XX EXCH,

CHANGE MF FOR 2610

J AND 2620 ’

LR AN
N|=IN| -

PP 26XX EXCH

EXECUTE PS CMND AFTER
59 PASSES.IF MF=0 THEN

5.1 ERR EXIT,MF=0

ERR EXIT SWAPS 170

5.2 ERR EXIT, MF=1

EXCHANGE PACK

-——..—_.——-..A_.> l.(._._.._..—......_.._

PP A-REG (26XX EXCH)

NOTE ¢

SEQUENCE STEPS 3. AND 4. MAY
OCCUR RANDOMLY IN ANY ORDER.

IF MF=1 AFTER 59
PASSES THEN EXIT VIA
180 EXCHANGE INTERRUPT

. 0286

SECT 8 26XX BLOCK READ AND WRITE

60469390 E

C-13

’

MPS —=——-—-—=—> CBMXP-SF60

VMID=0

{. DEAD START

180 MONITOR

2.1 180 EXCHANGE

4, HALF EXCH IN (START)

5.1 180 EXCH

9.2 ERR EXIT

PSS === > C8UXPB-SC20

VMID=t
MF=0
— = = = MA=C7XPWRK

RF DUMP 10. HALT

2.2 180 EXCHANGE

POINT JPS TO C8UXPB
SET UP 170 AND 180
JOB PACKS.

EXCHANGE TO JOB MODE

EXCHANGE TO JOB MODE

EXECUTE HALT CMND

170 PROCESS

3. HALF EXCH OUT (STOP)

5.2 180 EXCHANGE

9.1 ERR EXIT, MF=i

—=—==> C7XPWRK-4E80

""""" MA=C7XPWRK

6.1 CEJ/MEJ CMD

6.2 CEJ/MEJ CMD

7.1 PP 2600 EXCH

7.2 PP 2600 EXCH

8.1 ERR EXIT, MF=0

8.2 ERR EXIT, MF={

"'"""'"""""'""""“""'""-_"—-"x"""">1 €—-———=

PP A-REG (2600 EXCH)

NOTE:

SEQUENCE STEPS 3,5,6 AND 7 MAY OCCUR

RANDOMLY IN ANY ORDER.

SECT 9

EXECUTE 59 PASSES
OF LOOP.SHIFT EACH
X REG ONCE PER LOOP.
EXECUTE 3. CEJ/MEJ
CMNDS PER LOOP.

PROCESS SUSPENDED
BY STOP FUNCTION.
PROCESS RE-INITIATED

BY START FUNCTION

SWAP TO ALTERNATE
PROCESS ON EACH
CEJ/MEJ CMND AND
CHANGE MF.

SWAP TO ALTERNATE
170 PROCESS ON EACH
PP 2600 EXCH NO.

CHANGE IN MF

SET SEGQUENCE COMPLETE
FLAG AFTER 59 PASSES
OF BOTH PROCESSES.
EXECUTE PS CMND

AFTER COMPLETION
ACKNOWLEDGED BY
CONTROLLER.

IF MF=0 ERR EXIT SWAPS
170 EXCHANGE PAK.

IF MF=1 ON COMPLETION
OR AFTER SWAP DUE

TO ERR EXIT ON PS$

CMND, THEN EXIT VIA

180 EXCHANGE INTERRUPT.

co287

2600 AND CP STOP / START

60469390 E

C-14

N/

AN
N/

kS
(j MSTAK-5620 > MCBP ——>180 MONITOR TRAP
--> =

!
9.1 MON TRAP INT
: k— 5 reToRN : SERVICE TRAP
) : . INTERRUPT FOR
| } SIT OR PIT (SECT 11)
MPS - - — >CBMXP-SF60 1 R oy | ToNIAL INTERRUPT
1 i
9.2 TRAP ENTRY
I TP=MCBP Y B gy g i
L — { AO(DSP)=MSTAK 1. DEAD STAR 180 MONITOR
yHIb=0 2.7 180 EXCHANGE INITIALIZE AND
T CHANGE TO JO
:,i;KQNgE$IT 5.2 EXCH INTERRUPT ; EXCHAN B
§. T T80 EXCHANGE SERVICE SIT INTERRUPT
11.2 ERR EXIT | AND EXCH TO JOB
r
SUSPEND PROCESS IF

RF DUMP-0000 i TRAP INTERRUPT

12. HALT EXECUTE HALT

COMMAND
C \ ~ => JSTAK-5500 m—————— > 180 JOB TRAP
J ! SERVICE TRAP
1 3.1 JOB TRAP INTERRUPT 1
: ST T INTERRUPT FOR PIT
: | 170 PROCESS
ups—f-—-)ceaxps-sczn : EXECUTE 59 PASSES
OF X REG SHIFT
! TP=JCBP -+ - 3.2 TRAP ENTRY _ s > JCBP — | SEQUENCE
L~ AO(DSP)=JSTAK | 2.2 180 EXCHANGE i
v = .
Tgi? 1 | 5.1 EXCH INTERRUPT SUSPEND PROCESS
€.2 T80 EXCHARGE FOR TRAP INTERRUPT
ﬁi;,(g“ge#“ 11.1 ERR EXIT ' : _
‘ = = - MA=C7XPWRK SUSPEND PROCESS
} 1 FOR EXCHANGE
1 LINTERRUPT
1 E
! SWAP TO ALTERNATE
: PROCESS ON CEJ/MEJ
X——>c7xpwm<—4|~:so _CMD'CHG HE.
7.1 CEJ/MEJ]
1 : SWAP ON PP 2600
1 7.2 CEJ/MEJ EXCHANGE . NO
1 CHANGE IN MF.
-] MAsCTXPURK 8.1 PP2600 EXCH i
: 8.2 PP2600 EXCH EXECUTE PS CMD
' AFTER BOTH 170
. . PROCESSES HAVE
: DONE 59 PASSES.
»' 1
1
!
1
PP. A-REG (2600 EXCH)
NOTE:
FOR SECTION 10,O0NLY EXTERNAL INTERRUPTS OCCUR ;
AND NO JOB TRAP ROUTINE IS PROVIDED. - coz8s

SECT 10 AND 11 SIT, PIT,
AND EXTERNAL INTERRUPT

@D 60469390 E = : c-15-

RF DUMP-0000 180 MONITOR
5. HALT
ke EXECUTE HALT
COMMAND
180 MONITOR
MPS = - — — —> COMXP-5F60
: 4.2 ERR EXIT (PS CMND) INITIALIZE 170
VMID=0 1. DEAD START AND 180 JOB
PACKS AND JPS,
2.1 180 EXCHANGE EXCHANGE
JPS — — — — —> CBJUXPB-5C20 170 PROCESS
2.2 180 EXCHANGE
e tEne s
- CAUSING
lﬁ""‘" MA=CT7XPXMA 4.1 ERR EXIT (PS CMND) CONDITION.
1
i
! C7XPXA-4A00
1
=== MA=C7XPXMA
1
i
i
i
[===> C7XPXMA-4A80
| L 170 PROCESS
i _ 3.1 ERR EXIT, MF=0
k MAZCTXPXMA X*DEAD® —> XMAFLAG
3.2 ERR EXIT., MF=1 EXECUTE PS CMND
co0289
co289
SECT 12 TO 15 - ERROR EXIT, 1708 JOB
60469390 E C-16

“:jj

T

RF DUMP-0000

4. HALT

180 MONITOR

MPS — —— —>

C8MXP-5F60

3.2 ERROR EXIT

EXECUTE HALT CMND

180 MONITOR

VMID=0

1. DEAD START

2.1 180 EXCHANGE

JPS§ = — — — >C8JXPB-5C20

2.2 180 EXCHANGE

INITIALIZE 170 AND
180 JOB PACKS AND
JPS, EXCHANGE

170 PROCESS

VMID=1
MF=1 3.1 ERR EXIT, MF=i B EASING ExROR -
€~ = -| MASC7XPXMA CONDITION
1
!
1
I = = ~CTXPXA-4A0D
i MA=C7XPXMA
]
i
]
N
N CTXPXNA-4AS0
L — — - MASC7XPXMA
c0290
c0298
SECT 12 TO 15 -~ ERROR EXIT, 170 MON
60469390 E ' ‘ Cc-17

J

-
AN

U

P

.y
' s

ole

COMMENT SHEET

MANUAL TITLE: MSL15X Model Independent Tests Maintenance Software
Reference Manual

PUBLICATION NO.: 60469390 ~ REVISION: E

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE/PROV. : POSTAL CODE

This form is not an order blank.

Control Data Corporation welcomes your evaluation of this manual. Please indicaté
any errors, suggested additions or deletions, or general comments below (please
include page number references).

This comment sheet becomes a self-mailer when the binding edge is
cut off and it is folded along the dashed lines on the reverse side.

‘old

CONTROL DATA CANADA

Toronto Publications (210)

1855 Minnesota Court

MISSISSAUGA, Ontario, CANADA

LSN 1K7

‘old

fold
—
Place correct ° =
postage here.
fold
A N
AN

o0

©0

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

1026 &

>

<

CONTROL DATA CORPORATION

e

g1

GO,

LITHO IN U.S.A.

AN '\3\

AN

