INTERNAL MAINTENANCE SPECIFICATICNS

6000 series FORTRAN EXTENDED

VERSION 4.0

@D COPYRIGHT CONTROL DATA CORP. 1971

Contained herein are Software Products
copyrighted by Control Data Corporation.

A reproduction of the copyright notice must
appear on all complete or partial copies,

ction

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

6000 FORTRAN EXTENDED 4.0

TABLE OF CONTENTS

Introduction
FTNTEXT

FTN

LSTPRO

OUTPTK

PS1CTL

STMTP

ENDPRO
SCANNER
CONVERT

DATA

ERPRC and FORMAT
LISTIO (PRINT)
ARITH

ASFPRO

CALL

GOTO

DOPROC
DPCLOSE
DECPRO

PH1CTL

(#)}

18
25
36
40
49
54
65
90
9y

109

129

153

190

197

204

214

226

242

257

6000 FORTRAN EXTENDED 4.0

Code Generation Technique
CLCSEZ2

FAX (FTNXAS)

REFMAP

POST

APLISTE

PRE

READRL

DOPRE

SQZVARD
MACROE
BUILDDT
PASS15
MACRS
BLDSEQ
GET
CONNECT
SYMFND
SYMDEF

DOOPT

ii

268
273
276
316
321
327
333
340
346
379
389
811
417
426
429
433
438
441
44y
447
449
451
453

455

55.
56.
57.
58.
59.
60.
61.
62.
63.
64
65.
66 .
67.
68.

69.

6000 FORTRAN EXTENDED 4.0

FNDLOOP

FNDINVR

SETRIT
TESTBIT

PUTMS

GETMS

UPDOWN

REALR

CHECK

PASS14 (DBGPHCT)
PUT

PUTUPDT

BUGACT

GETOUT

TURNON

RUGSOUT

BRUGCON

TURNOFF

DEBUGER

BUGPRO

PUTIN

iii

457
459
467

469

&=
£

477
478
479
481
483
484
487
490
502
510
513
515

541

5u6

6000 FORTRAN EXTENDED 4.0

70. SETARR

71. BUGCLO

APPENDICES

R-list Language Description
FORTRAN Extended I/0 Calling Sequences

Subroutine Linkage and Formal Referencing

iv

548
552

556
568

572

6000 FORTRAN EXTENDED 4.0

IMS Introduction

FORTRAN Extended 1is a two pass compiler; the input is FORTRAN
source card images and the output is an assembly language
progranm. Assembly 1is by PFTNXAS, a one pass assembler which
recognizes a subset of the COMPASS language, (this assembler is
embedded in Pass 2 of the compiler.)

PASS 1 is divided into two phases: the FTN control card, the
header card, and declarative statements are processed in Phase 1,
executable statements in Phase 2.

During Phase 1, the header card 1is processed; the COMMON,
DIMENSION and EQUIVALENCE information is held in linked lists in
working storage. These lists are processed at the end of Phase 1
and COMPASS instructions are issued for storage allocation.

Phase 2 converts the executable statements to an intermediate
language, R-list, and when the END card is seen storage is issued
for usage defined variables and program constants.

Thus Pass 1:

1) Converts all source statements to an intermediate
language, E-list.

2) Forms the symbol table.

3) Issues COMPASS instructions - for program
identification, variable initialization and storage
allocation, program constants, traceback and formal
parameter initialization.

4) Produce the R-1list intermediate file for executable
statements.

Pass 1 Task Summaries

TN 1is the main controlling routine. It loads the overlays,
cracks the FTN control card, contains the I/0 buffer area and the
general purpose I/0 routines.

SCANNER transforms all source statements into the intermediate
language, E-1list, and determines statement type. Basic syntax
errors are diagnosed.

6000 FORTRAN EXTENDED 4.0

QUTPTK provides FORTRAN formatted I/0 facilities for portions of
the compiler coded in FORTRAN.

LSTPRO 1locates in or enters into the symbol table a given
symbolic name or label. '

CONVERT converts the display code representation of a constant to
its internal binary form. Illegal constants such as those
contairing too many digits, non-octal digits in an octal constant
Oor constants out of range are diagnosed here.

ERPRO saves diagnostic information accumulated during Pass 1 for
processing in Pass 2.

FLY contains a transition diagram state table used in parsing
format statements.

DATA processes DATA statements and produces appropriate COMPASS
code for data initialization.

DOPROC examines DO statements, DO-implied 1lists, statement
numbers, statement number references and integer variakle
definitions and references. Determines the characteristics of
DO's and index functions, diagnoses nesting and the use of
statement numbers and generates R-list defining the beginning and

end of each DO loop and DO-implied list.

STMTP is the miscellaneous statement processor. Statements
processed are STOP, PAUSE, NAMELIST, ENTRY.

CALL processes all FORTRAN CALL statements.

ARITH processes replacement statements and translates into R-list
the arithmetic, logical, relational, or masking expressions that
legally appear in any statement.

ZNDPRO generates R-1list for exit code, issues storage for
variables and arrays, processes EXTERNAL names, and sends
CCNLIST, the program constants, to the assembly code file.

£SICTL is the primary controlling routine for all pass one,
phase two processing. Each of the statement processors is called
from and returns to PS1CTL.

PRINT processes all I/0 statements.

S0T0 processes all GOTO type statements and the ASSIGN statement.

6000 FORTRAN EXTENDED 4.0

ASFPRO processes all statement function definitions by saving the
text, and processes all statement function references by
expanding the E-list and inserting the text.

DPCIOSE collapses tha 1linked 1lists of declaratives generated
during Phase 1 into static tables. Diagnostics which -can only be
produced when all declaratives are known are issued.

DECPRO processes declarative statements. Declarative information
is held in linked lists until Phase 2. Header statements cause
COMPASS instructions for program initialization to be issued.

PHICTL handles routine header cards and serves as a controlling
routine for all phase one processing.

Pass 2 may be divided by function into two principal areas,
namely, the pre-processing of R-list and the actual code
generation. The former phase basically entails accumulating R-
list for optimization, usually one sequence, and pvrovides for the
expansion of all R-list macros. The various optimizing routines
are then called for code generation. Control, in turn, reverts
back to the first area and continues to fluctuate between the two
functions until all R-list on the file has been decoded. The
variable dimension and formal parameter code is sent to the
COMPASS file. If the C option was selected, Pass 1 is loaded and
receives control if more FORTRAN programs are present; otherwise
COMPASS is loadad to assemble the contents of the assembly code
(COMPS) file. If the C option was not selected, the generated
code is assembled by FTNXAS and the binary sent to the binary
file.

PRE is the main controlling routine. It calls other Pass 2
routines and alsc defines a sequence. It puts out inactive label
names to COMPASS, passes control.to PROSEQ for optimization, and
detects the end of R-list. :

READRL obtains R-list file input for Pass 2. It also receives as
input macro expansions from MACROE. When called, it returns
either a single entry plus descriptor or an entire macro
reference.

DOPRE examines DO begin and DO end macro references, standard
index function macro references and all R-list instructions
generated within the innermost 1loop of a DO nest provided the
loop is well behaved. R-list instructions are generated to count
DO-loops, reference standard index functions and to materialize
the control variable when necessary.

6000 FORTRAN EXTENDED 4, U

MACROE expands macro references into normal R-list form.

The following routines combine to perform the code optimization
functions:

PROSEQ calls the optimizing routines and also handles the cutting
down of a sequence should +tree complexity or working storage
limitaticns become a problem.

SQUEEZE marks redundant instructions for elimination.
PURGE physically eliminates the instructions marked by SQUEEZE.

BUILDDT forms a dependency tree from the squeezed sequence., The
tree reflects precedence relationships within the sequence.

OPT is the code selector. Having considered timing aspects and
register usages, it calls POST with the particular instruction to
be issued.

POST transforms the R-1list instruction into a COMPASS card image,
and eventually issues the code for the sequence to the COMPASS
file.

FTNXAS is the compiler's specialized one pass assembler.
REFMAP produces the cross reference map.
The following routines are involved in closing Pass 2.

SQZVARD eliminates redundant store operations from the VARDIM
initialization sequence and transforms corresponding storage
allocation to the COMPASS file. '

APLISTE converts APLIST entries to COMPASS card image then puts
them in the COMPASS file.

CLOSEZ performs the close out processing for Pass 2. Both
ITNXAS and the reference map processor, REFMAP, are called from
CLOSE2. A SUB macro reference is generated for any formal
pvarameter not referenced in the program.

JAMMER restructures the tree in case PROSEQ reduces the sequence
to a single statement and still cannot issue it. If necessary,
JAMMER can subdivide a statement issuing intermediate stores in
order to issue the statement.

6000 FORTRAN EXTENDED 4,0

Record Manager Usage

FORTRAN Extended Version #.0 includes the 6000 Record Manager for
input/output during compilation. Usage of the Record Manager
facility will be a user option, selectable at installation time.
Selection is accomplished by setting a single flag, CP=RM,
contained in the common deck OPTIONS (called during FTNTEXT
updating) . When the Record Manager is employed, field 1length
requirements will increase by approximately 50008 words for any
compiler mode,

The general installation approach has been to convert the actual
I/0 interface suboutines, located primarily in FTN and LSTPRO, to
use conventional Record Manager macro calls. 1In this way, FTN
I/0 macros have been disturbed as little as possible, although
some changes have proven mandatory. Certain buffer allocations
have been revised; new File Information Tables have been added to
conform to Record Manager requirments.

1.0

2.0

3.1.2

6000 FORTRAN EXTENDED 4,0

FTNTEXT

General

FTNTEXT is a text file used in assembling FTN Version
4.0. It contains macros for performing commonly occuring
tasks and symbol definitions used in accessing bits and
fields. It is always used as a systems text for
assembling the comiler.

Generating FTNTEXT

The systems text file may be created by assembling the
text of FINTEXT and EDITLIBing the resulting binary file,
or by using the assembled binary as a local text file.

LLOVER OVLmn

This macro produces a call to the routine in FTN used to
load compiler overlays. The parameter consists of the
characters OVL followed by two digits specifying the
overlay level. The name OVLmn must also be defined as
entry point in FTN and contain the name of the overlay.
Control is transferred directly to the entry point of the
overlay after loading. Thus, to load and enter pass 2 of
the compiler it is sufficient to write

LOVER OVL12

where the entry point OVL12 contains CLOSE2% in 7L
format.

SYSRED request

All PP calls should be made using this macro. The
formatted request is the only parameter.

File names and unit numbers

3.1.4

W
-
wn

3.1.6

6000 FORTRAN EXTENDED 4.0

Each file used by the compiler has a number associated
with it. For unit n, the file name and FET address are
in location RA+n+1 in the following format:

42771, file, 18/FET address

All wunits should be addressed symbolically for cross
reference purposes. The symbolic name is derived by
prefixing the file name, with the characters U.. Thus,
the input file should be referenced as U.INPUT.

In addition to the unit numbers, the first word address
of a file FET is an entry point with the name F.file
(except OUTPUT).

REWIND file, table

REWIND will reset either a file or a table to beginning
of information. In the case of a file, the buffer is
flushed with an end-of-file write and the file is then
rewound. When the second optional parameter is present,
the file will be rewound if it has spilled to disk.
Otherwise, the status will be set to end of record read
and control will be returned.

Examples:
Rewind LGO file
REWIND L.GO
Rewind COMPS as a table
REWIND COMPS ,TABLE

OPEN £file, ccde

i

OPEN causes an open call to be issued on the file
specified by the first parameter. The second parameter
selects the type of open to perform. Register defaults
are X1 for the file address and X2 for the code.
Example:

OPEN INPUT, 100B
CLOSE file, code

CLOSE performs a close call on the specified file. See
the OPEN call for details.

3.1.7

6000 FORTRAN EXTENDED 4,0

DO.IO file, code, return

DO.I0 is wused to initiate an 170 operation on a file.
The cod2 should be specified symbolically and may be one
of the following:

READ buffer read

WRITE buffer write

READS read skip

EOCOR end of record write
EOF end of file write
BKSP backspace PRU

REW rewind

CLUNL close unload

If the code is preceded by a minus sign, control is not
returned until the operation completes.

If a return is selected, control is transferred to it.
Otherwise, flow resumes at the next statement.

Examples:
a) Initiate a read on the input file
DO.I0 INPUT, READ
b) Endfile the LGO file and wait for completion
DO. I0 LGO, -EOF

c) Close unload the OPT file and transfer control
to the label STOP

Do.I0 OPT, -CLUNL, STOP
READL fiie, FWA, wordcount
READ wordcount number of words from the designated file

to the address specified by FWA.
Default registers are:

B6 = unit number
B7 = FWA
B1 = word count

On return, B1 contains word count minus the number of
words read.

3.1.10

3'2
3.2.1

6000 FORTRAN EXTENDED 4.0

LISTL FWA, wordcount

LISTL places a line image on the OUTPUT file. The line
starts at FWA and is wordcount number of words 1long.
Default registers are:

B7 = FWA ,
B1 = wordcount
WRITE file, FWA, wordcount

WRITE places information in working storage on the
selected file. The second parameter specifies the
starting location of the information in working storage
and the third parameter gives the number of words to
transfer. Default registers are:

B6 = unit number
B7 = FWA
B1 = word count

Upon return, if B6 is equal to the unit number, a call to
CIO was made because the buffer threshhold size was
exceeded.

Compiler Functions
name ENTRY. data

The ENTRY. macro creates an entry point designated by
name which contains the item specified by data.

Examples

a0

Define the entry word of a subroutine which is to be
entered by external calls.

SUB ENTRY.

Define an entry point OVL12 containing the name of
the pass 2 overlay.

OVL12 ENTRY. 7LCLOSE2$

3.2.3

6000 FORTRAN EXTENDED 4,0

MOVE wordcount, FWA, destination

This macro should be used to move a block of data. Word
count number of words are transferred, starting at FWA,
to the destination. The move routine ensures that the
operation is non overlapping. Therefore, MOVE may be
used to move tables up or down in memory. Default
registers are:

X1 = wordcount
X2 = FWA
X3 = destination

Example:

Move a table up ten words from its present location
(specified in X2). The table length is specified in

B4,
MOVE B4,, X1+10
SYMBOL nameloc, return

SYMBOL causes a symbol table search for the name
specified. Nameloc is the address of a word containing
the symbol in B8R format. If the symbol is not found,
control is returned to the word following the SYMBOL call
and the symbol has been entered in the table. If the
search finds the symbol, control is transferred to the
location two words after the SYMBOL call. 1If return is
specified, control is transferred to return for not found
and return +1 for found. Defaults assume the name to be
in X1.

Examples:
Enter TEMPAO. into the symbol table
SYMBOL =8RTEMPAOQ.

Determine if the symbol in X1 is in the table

SYMBOL
EQ NO
EQ YES

-10-

3.2.7

6000 FORTRAN EXTENDED 4.0

LABEL nameloc, return

LABEL performs the same function as SYMBOL except that
the object of search is a label rather than a symbol.
For details, see the description of SYMBOL.

ADEXTS nameloc

ADEXTS places an external symbol into the symbol table.

Nameloc is the a2ddress ¢of a2 word co ztalniﬂg +the name in

meloC Tile aQar a WoIrd Con

8R format.
ADDREF ordinal, type

ADDREF adds a reference to the refmap file (should only
be called if RSELECT is non-zero indicating R=1 or 3).
Type reflects the type of the reference. Possible
character string wvalues are

REF reference
DEF definition
FREF reference as a file name

If type is omitted, REF is assumed.

Ordinal is either a memory location or register
containing the symbol table ordinal to be entered as a
reference.

Examples:

Add a reference to the variable upon return from
SYMBOL (ordinal is in B1)

ATDREFF B1, REF

Enter a definition for the symbol whose ordinal is
in TEMP

ALCDREF TEMP, DEF
X BIT Y

This macro produces a set symbol named X with the value
of 2**xY for Y less than 22.

-11-

3.2.9

6000 FORTRAN EXTENDED 4.0

RMHPR ‘macnum, length
RMHDR creates a header word for an R-list macro. Macnum
is the macro number and length in the word count for the
rest of the macro excluding the header word.
Example:

Define the header word for a load macro

LOAD RMHDR 1078, 3
OUTUSE name
OUTUSE issues a USE name line to the COMPS file. It is
used in switching from one 1local relocation base to
another. If the name indicated is the current block no
line is issued,
Example:

Switch to the CODE. block

OUTUSE CODE.
Table Manager Macros
ADDWD tnam, word
Adds a word to end of a managed table. The table is
specified by tnam and the second parameter is the word to
be added. It may be either a register expression or a
memory location.

ALLOC tnam, nwds

Allocate nwds to the table specified by tnam. The number
of words may be either positive or negative.

ALLAE tnam

Allocate almost all available core to table tnam.

TABLES A,B,C,D,E,F,G,H,I,J

Defines externals of O0.A and L.A for up to 10 table

names. O.A is the external word containing the table
origin and L.A holds the length.

-12-~

3‘5.2

6000 FORTRAN EXTENDED 4.0

DEBUG mode macros
CFO context
CFO is used to compare options selected on the debug
cards with actual usages. Any conflicts in wuse are
diagnosed. Context is the character string VAR if the
symbol occurred as a variable or array and EXT if it
occurred as a subroutine or function reference.
DBGERR message
Issue an error message in debug processing.
Example:

DBGERR BAD OPTION ON DEBUG CARD
CALLF name, RESET
CALLF 1links from a COMPASS routine to a FORTRAN routine
with no parameters. If RESET is present, B5 is set to 1
upon return from the FORTRAN routine.
Example:

Call the debug processing routine BUGPRO

CALLF BUGPRO
Test mode macros for compiler checkout

If this macro 1is called in a COMPASS routine, all
subsequent macros in this section will become defined.

SNAP fwa, lwa,len,11,ul,inc,name,no regs,no head
The SNAP macro can be used to dump a printout of the

registers or core to the output file and continue program
execution without destroying any registers.

-13-

3.5.4

6000 FORTRAN EXTENDED 4.0

The arguments are

fwa - first word address of the area to
be dumped
lwa - last word address of the area to be
dumped ‘
len - number of words to dump starting from fwa
11 - begin snapping on the 11 time through
this snap
ul - snap until ul times through this snap
inc - snap every inc time through this snap
name - up to ten display code characters

identifying the snap

non-zero indicates no register snap
desired

no head - suppress identification line

no regs

If an argument is preceded by a minus sign, it is assumed
to be a word containing the value of the argument.

REGS name

Snap the registers on the first thousand times past this
snap. Identification is given by name.

FCOPY file, prefix, index

FCOPY rewinds and copies a record of the specified file
to the file SYMTAB. The character string given by prefix
and the value of index are appended to the start of the
record.

TABDMP prefix, index, fwa, lwa

TABDMP writes the table bounded by fwa and lwa to the
SYMTAB file. The character string prefix and the value
of index are appended to the beginning of the record.
ELIST name

Snap the E-list during pass 1 identifying the output with
the specified name. '

SNAPT tbl, name
Snap the table tbl and identify the snap with name. The

table origin and length must be in locations named 0.tbl
and L.tbl.

-1i4-

3.5.8

V3]
.
u
.
O

3.6

3.6.1

3.6.3

6000 FORTRAN EXTENDED 4.0

ONSPY FWA, 1lwa, name, binw

Initiates the PP program SPY to perform P register
sampling. Fwa and lwa give the bounds of the area to
watch. Name can be up to eight characters to be
displayed while spying. Binw specifies the width of the
bins used in the register sampling. Legal values are
10B, 20B,40B, 100B. Default size is 40B.

OFFSPY

This call to SPY turns off P register sampling.

Utility Macros

Integer Multiply and Divide

These two opdefs are provided for coding convenience.
The divide opdef will destroy the contents of B7. Both
opdefs destroy the contents of the operand registers.
Left Shift Opdef

This redefinition of the constant left shift instruction
ensures that negative shift counts are treated as right
circular shifts. Whenever possible, bit positions should
have a name assigned to them so that they are included in

the cross reference listing and the bit position can be
relocated easily if necessary.

Examples:

Test the bit named P.BIT for an on condition.
Assume that the word containing the bit is in X2.

LX2 59-P.BIT
NG X2 ,0N

shift the bit named P.ONE to the position where the
bit named P.TWO is currently.

LX2 P.TWO-P.ONE
length MICCNT character string

The MICCNT macro returns a value of the length of the
character string passed as a parameter. The character

-15-

4.0

6000 FORTRAN EXTENDED 4.0

string should not contain the equivalence sign (0-6-8
punch) or be longer than one hundred characters.

name . DECMIC value, digits

Form a micro called name, which is the decimal
representation of the value parameter. If the parameter
digits are present, then the micro will have at least
that many characters. Otherwise, leading zeros will be
suppressed.

name OCTMIC *+ wvalue, digits

OCTMIC performs the same function as DECMIC except that
an octal representation is generated.

Symbol Definitions

Whenever possible bits and fields should be accessed
symbolically. To facilitate this, FTNTEXT contains
definitions for commonly used fields and their sizes.
The format of the symbols is X.name where X is a one or
two character prefix and name is the name associated with
the symbol. Commonly used prefixes are:

P - the position of the base of a bit field in
a word

0 - table origins

L - the length of the bit field or table

S - table sizes

v - the values of bits where P.name is less
than 17

C - CIO codes

T - values the type field in the symbol table
may assume

EL - values of E-list codes

F - file names or first word address symbol

Examples:

Test word B of a symbol table entry to see if it is
a DO generated label. Assume word B is in X2.

LX2 59-P.GEN move the bit to the sign
NG X2,DOGEN if DO generated

-16-

6000 FORTRAN EXTENDED 4.0

Extract the type field from word B of the symbol

table.
MX0 60-L.TYP
AX2 P.TYP move to bottom of word
BX6 -X0%X2 extract the field
Test the referenced as statement number and
referenced as format number bits. Word B is in X2.

LX2 59-P.RSN

NG X2 ,YESRSN if RSN bit is on
LX2 P.RSN~-P,.RFN

NG X2 ,YESRFN if RFN bit is on

-17-

1.0

2,0

6000 FORTRAN EXTENDED 4.0

General Information
FITN is the 0,0 overlay of the FORTRAN Extended compiler.
The primary functions of this routine are system

interface and 1I/0 processing, control card cracking and
compiler initialization.

Entry points

FTN

This entry is from the operating system loader. It is
the entry to the code which will crack the control card
and perform compiler initialization.

LOVER

This entry issues a call to the loader to load a compiler
overlay. Control is transferred to the overlay loaded.

LDPH1

Reload the 1,0 overlay. Used upon return from COMPASS.
LDCOM

Load the COMPASS assembler. This is used for intermixed
COMPASS programs as well as when the C option is
selected.

FTNEND

This entry terminates compilation. The output and binary
buffers are flushed, scratch files evicted and CPU time
calculated. If the G option was selected, we call the

loader to execute the binary. Otherwise, END is placed
into RA+1.

-18-

2.8

2.9

2.10

2.11

6000 FORTRAN EXTENDED 4.0

CIO1l.

This routine makes a call to CIO. Parameters are
X1 FET address
B6 Return address
X2 170 function code

If X2 is less than zero, then the call is made with auto
recaill. :

REWIND

This entry will rewind the file whose unit number is in
B6. Before rewinding, an end of file is written to flush
the buffer.

SETFET

This routine will initialize a compiler FET. Calling
parameters are:

X1 FET address

X2 FWA of buffer

X3 size of buffer
WRWDS

WRWDS performs all file writing done in the compiler on
buffered files. Calling parameters are:

B1 word count

BS file number

B7 WA of area to receive data
On exit, B1 = word count - words read
REWINDT
This routine rewinds a tabled file. If the file has
spilled to disk, REWIND is called. Otherwise, the file
is set to end of record status.

B6 = file number

MVWDS

A general purpose move routine.

6000 FORTRAN EXTENDED 4.0

It can be used to move

data from point A to point B when there is no chance of

overlap.

To shuttle tables up or down, the routine

called MOVE in LSTPRO should be used.

Flag entry points

A number of locations in PTN are flag cells used in the

parts of the compiler.

below.

SAVLINE

F. name

FL
BERRORF
MACFLAG

0. GCON
L.GCON

GL.IND
LASTREC
GL.DRL
GL.DVL

DFLAG

DIRECT

ZFLAG

QFLAG

CBNFLG

These entry points are detailed

Address of an area that can hold 20 line
images. When L=0 is selected, this is used in
listing only lines in error. This area should
be used only if L=0 since it occurs in the

middle of the ordinary output buffer.

First word of the FET for each of the compiler
files. Name may be INPUT, LGO, COoMPS, RLIST,
RMAP, OPT, and DEBUG.

Available field length.

Batch error flag.

UFLAG or'ed with OLIST.

Origin of the global constant table (DEBUG mode) .
Length of the global constant table.

Length of DEBUG random file index.

Last record cell for DEBUG mode.

Length of the global debug routine list.
Length of the global debug variable list.

Non-zero and holds the name of the debug file
when D is selected.

Direct usage flag for LCM mode.

Non-zero if zero word load desired for external
calls without parameter lists.

Non~-zero if quick mode compilation is selected.

Call by name non-zero if T is

specified.

flag is set

-20-

PLIMIT

OPTLVL

ROPFLAG
NOLSFILG
NASAFLG
R=FLAG
RSELECT
OLIST

SUPIDFL

UFLAG
CAFLAG
F.LFN
COMPMSG
LIBRARY
OVLmn
L. TITLE
O.TITLE
TITLE1
CCOPT
DATE
PAGE

STITLE

LMAX

necel -

6000 FORTRAN EXTENDED 4.0

Compiler default print limit value.

The value is zero, one or two depending on
= n.

Non-zero if rounded arithmetic is selected.
Non-zero if a listing is to be produced.

Non-zero if ANSI diagnostics are selected.
Reference map level. Values are 0,1,2,3.
Non-zero if R greater than or equal to 2.
Non-zero if O was specified.

if N was selected

diagnostics).

Non-zero
informative

(supp

Non-zero if E was selected.

Non-zero if C was selected.
Word B bits for file names.

Entry for COMPILING XXXXX message.

Library name for compiler overlays.
Overlay names for compiler overlay.

Length of primary title line.

Start of title 1line.

Second word of title line.

Start of control card option area of title
Date in title line, DATE+1 contains time.
Page number.

Subtitle area (for REFMAP).

Lines per page.

-21-

OPT

ress

line.

4.0

5.0

' 6000 FORTRAN EXTENDED 4.0

LCNT Lines remaining on this page.

Meéséges and Diagnostics

COMPILING XXXXXXX

Appears on the B display during compilation.
nnn.nn CP‘SECONDS COMPILATION TIME

Appears in the dayfile at end of compilation if the CTIME
option is active.

‘CANT LOAD XXXXXXX

Issued if a compiler overlay cannot be loaded.
* POINTS TO FTN CONTROL CARD ERROR

Issued when a control card error is detected. The *
approximately locates the field in error.

FTN NEEDS nnK TO EXECUTE, JOB ABORTED

Insufficient field length for the compiler.

DEBUG MODE IMPLIES OPT = 0

Issued if D and an OPT 1level other than zero are
selected.

Environment

FTN 4.0 is set up for the standard interface to COMPASS.
This includes the locations of the INPUT, OUTPUT and
binary FETs. The 0,0 overlay will fit entirely below .
3000B since this is the origin of the first COMPASS
overlay.

Processing

Control Card Cracking and Processing

Upon entry from the system loader, the FTN control card
is burst in 1R format into a working storage buffer.

-22~-

6000 FORTRAN EXTENDED 4,0

Bursting continues until a legal terminator is found, and
may involve processing continuation control cards,
Blanks are squeezed out of the control card image and not
placed in the working storage buffer, but a blank count
is provided in packed exponent form for each character
indicating the number of blanks preceding that character.
Blanks may be freely embedded in the contrecl card
statement, and are ignored during option processing.

Option recognition is based on the first character of the
option. A first-character jump table leads to the actual
parameter processing. For simple one letter options, the
appropriate compiler flag is set. For more complicated
options, 1like LXRON, option recognition takes place
within the first-character code for that option set.
Checks are performed to ensure correct syntactic form and
option separation. The routine AFN is called to pack up
the filename following the equal sign for options of form
option=1fn. Once an option has been selected and
processed, an error Jjump is placed into the jump table
for that option, thereby causing a control card error to
occur if that option were again specified.

Compiler Initialization
Buffer Allocation

First, we allocate buffer space tc each of the files that
will be active. If insufficient core is available, the
compilation is aborted. Scratch file buffer sizes are
allocated as follows:

(MIN.FL = 40K)
201B word buffers for MIN.FI<fl1<MIN.FL+3K
Standard buffers for MIN.,FL+3K<Sf1<MIN.FL+6K

50 pvercent of excess core to buffers for MIN.FL+6R<f1<

MIN. FL+14K
75 percent of excess core to buffers for MIN.FL+14K<
MIN.FL+26K

25 percent of excess core to buffers for FL2MIN.FL+26K

This algorithm was chosen because:

1. Space needed to compile is MIN.FL+3*number of
symbol s,

2. Since most programs will have 1less than 1000B
symbols, they will compile in MIN.FL+6X.

-23-

5.2.2

6000 FORTRAN EXTENDED 4.0

3. For MIN.FL+6K to MIN.FL+26K, we are given most of
the space to the buffers so that 1long subprograms
will not overflow to disk.

4. For greater than MIN.FL+26K, most of the space is
allocated to the working storage area assuming a
very large program.

5. In general, of the available buffer space, the long
reference map file will get 1/16th (if selected) and
the size of R-list to COMPS will be a three to one
ratio.

I/0 Setup and Final Control Card Processing

Next, we open all the compiler files that will be used.
Call TIME to get the time and date for the header 1line.
Then scan the flags set durlng control card cracking to
set up the options selected in the page header line. It
is at this point that conflicting control card parameters
are diagnosed (OPT = 1 or 2 and D). Next, we set up all
interface cells used in communicating with COMPASS.
Finally, we issue a read on the input file and proceed to
load the 1,0 overlay.

-24-

1.0

6000 FORTRAN EXTENDED 4.0

LSTPRO

General

LSTPRO contains the routines which fetch from or enter
into the symbol table a given symbol or label.

LSTPRO calls one external routine, ERPRO.

As an instrument for storing data, the symbol table is
active during Pass 1 only. The two word symbol table is
saved for the FTNXAS assembler during Pass 2, The
assembler uses only the finding feature of LSTPRO. The
rest of Pass 2 processing accesses the table directly via
the ordinals.

Throuwghout Pass 1, symbol table entries are two words in
length. Any necessary information which does not fit in
the two word entry will be kept in auxiliary tables
elsewhere in memory. The symbol table will begin below
the buffers for R-1list and COMPS and expand (as new
entries are made) into lower addressed consecutive
locations, while the auxiliary tables are built from the
first available location in low core and expanded into
higher addressed locations. These auxiliary tables
contain the DIMENSION information as well as the
information required to process COMMON and EQUIVALENCE
statements.

Usage
Entry Point Names: SYMBOL, LABEL

SYMBOL searches for a given 7-character symbol in the
symbol table. If the symbol is already in the table, the
entry is loaded and SYMBOL returns to the caller. If the
SYMBOL is not presently in the table, it is entered in
the table, loaded, and SYMBOL returns to the caller.

LABEL searches for a given 6-character statement label in

the symbol table in exactly the same manner as SYMBOL
searches for symbols.

-25~

2.2

6000 FORTRAN EXTENDED 4.0

Calling Sequedce and Returns

Entry is made to SYMBOL or LABEL via a direct jump (not a
return jump) with the following register requirements:

X1: The symbol (or 1label) left justified in bits 0-47
with blank fill. The contents of bits 48-59 are
insignificant.

B7: The address to which control is to be returned if
the symbol was not already in the table.

B7+1:The address +to which control is to be returned if
the symbol was already in the table.

Control is returned to the caller with:

B1 = ordinal of word A of the symbol.

B2 = double the ordinal of word A of the entry.
B5 = 1

X1 = word A of the entry.

X2 = word B of the entry.

Al = starting address of the symbol tabie.

Al = address of word A of the entry.

A2 = address of word B of the entry.

In addition for the first occurrence of a name

X6 = natural type in the type field
X7 =0

For DEBUG mode and first usage of a variable of type T.DBG

X6 = saved natural type
X7 = DEBUG field bits (non-zero)
Diagnostics

One fatal to compilation condition may be detected:
"SYMBOL TABLE OVERFLOW" (a maximum of 8192 words is used
for the symbol table).

No fatal to execution errors are detected.

No information diagnostics are issued.

NO non-ANSI errors are detected.

-26-

5.2

N
.
&=

6000 FORTRAN EXTENDED 4.0

Environment

When LSTPRO is entered, it is expected to search for a
given symbol or label, enter the symbol or label if it is
not presently in the table, and return the entry to the
caller. Hence, no conditions are expected to be set up
by any other processors (with the exception of the common
cells noted in section 7.0 of this document) .

During Pass 2, and certain phases of I/0 processing, the
storing feature of LSTPRO is disabled.

Structure
SYMBOL

SYMBOL hashes the 7-character symbol (to be searched for)
into a 7-bit pointer. This value is added to the base
address of a table (SLIST) to load a word which contains
an ordinal of a symbol table entry which is the head of
this particular list. Routine SLCOMM is then entered.

LABEL

LABEL hashes the 6-character statement label (to be
searched for) into a 5-bit pointer. This value is added
to the base address of a table (LLIST) to locad a word
which contains an ordinal of a symbol table entry which
is the head of this particular list. A jump is then
taken to SLCOMM.

SLCOMM

SLCOMM transfers the symbol (or label) to the specific
register (X0). Then, if this particular list is empty,
the symbol is entered in the symbol table, its ordinal is
set as the head of the list and the not-found exit is
taken. If the list is not empty, SLCOMM sets the head of
the list ordinal in B4# and jumps to TOP.

TOP
TOP is the main search loop of SYMBOL. After loading the
symbol located at the head of the 1list, the 1loop is

entered to compare the symbol searched for with each
symbol already in the list. The comparison is an integer

-27-

" 6000 FORTRAN EXTENDED 4.0

subtraction. The list is searched until a match is found
or the end of list is found (Px=0).

ENTER

Control transfers to ENTER when it is determined (at TOP)
that the current symbol is a new symbol and consequently
must be entered in the table. The new symbol is appended
to the end of the symbol chain.

RETRN

RETRN is the not-found exit. B5 is set to 1, B2 is set
to twice the ordinal of the current symbol (B1+B1), the
first word of the entry is loaded into X1, and a jump is
taken to the address specified in the B7 register.

FOUND

FOUND is the found exit. Its function is exactly the
same as RETRN except that the Jjump is taken to the
address specified in B7+1.

NTYPE

This routine determines the natural type of a variable
according to the implicit type table. On entry, the name
is in X1. When it has been typed, X0 holds the type
(right adjusted) and X6 contains the type in the type
field.

LDRPH1

A transfer to this entry point will reload pass one of
the compiler after resetting FETS and clearing batch
control cells.. SYMORD {number of symbols), NAALN (next
available APLIST number), NDOTEMP {number of DO
temporaries), PASS2R (starting value of pass 2 R number),
and P2NOGO (GO/NOGO flag for DEBUG mode) are reset. The
symbol entering facility that was deactivated for FTNXAS
is restored. Finally, we load pass one of the compiler
(1,4 overlay if DEBUG mode, 1,1 overlay normally)

LIST
LIST places a line on the output file, decreases the line

count, and forces a new page if necessary. On entry, B1
= word count and B7 = FWA of line.

-28-

5.12

5.13

5.14

5.15

5.16

6000 FORTRAN EXTENDED 4.0

OPENF/CLOSEF

These entries can be used to open and close files. X1
holds the FET address and X2 the open/close code. The
call is made with auto recall, after waiting for file
activity to cease.

MOVE -

This routine will move the number of words specified by
X1 from a starting address in X2 to a destination given
by X3.

CONDEC

CONDEC converts the binary integer (less than 2 ** 17) in
X1 to display code. On exit, X6 contains (in 10H form)

the integer, right adjusted, and B2 holds six times the
number of digits converted.

OUTUSE

On entry, X6 holds the address of a block name. A USE
name is issued to COMPS and blocks are switched.

RSSW

RSSW 1is called to set switches so that SYMBOL and LABEL
do not add an entry to the symbol table if the name |is
not found.

KSSwW

KSSW is called to restore the switches set by RSSW to
their original state.

-29-

NAME:

6000 FORTRAN EXTENDED 4.0

Formats

Symbol Table Formats _

VFD U42/NAME, 1/FP, 1/DEF, 1/FUN,1/COM, 1/DIM, 1/EQU, 12/P+
WORD A

(BITS 59-18) The name of the symbol or label, 7 (6 if a
label) or less display code characters left Jjustified

- with blank fill.

(BIT 17) set if the symbol is a formal parameter.
(BIT 16) Set when the symbol becomes defined.

(BIT 15) sSet if the symbol has been used as a function
(external, ASF, or inline).

(BIT 14) sSet if the symbol is in common.
(BIT 13) set if the symbol is a dimensioned variable.

(BIT 12) sSet 1if +the symbol is a non-base member of an
equivalence class.

(BITS 0-11) The ordinal of the symbol table entry, in

this list, which is the next greater entry than this
entry, or if none exists, P+ = 0.

-30-

6000 FORTRAN EXTENDED 4.0

VFD U4/TYP,1/ASF,1/EXT,1/0,12/0IMP,1/VAR,1/0,2/RL,
18/RA,7/RB,10/0,2/1LVL

WORD B FOR VARIABLES AND ARRAYS

TYP: (BITS 59-56) Contains the type of the symbol.
0 - logical 1 - integer
2 - real 3 - double
4 - complex ‘ 5 - ECS
6 - label 7 - RETURNS parameter
10 - NAMELIST name 11 - unused
12 - entry point 13 - LFN
14 - CGS 15 - unused
16 - unused 17 - unused debug variable
ASF: (BIT 55) Set for arithmetic statement functions.
EXT: (BIT 54) External symbol if set.
DIMP: (BITS 52 - 41) The ordinal of the dimension or
equivalence information.
VAR: (BIT 40) Set if a symbol is referenced as a variable.
RL: (BITS 38-37) Holds type of relocation.
0 - absolute 1 - local or program
2 - common 3 - external
RA: (BITS 36-19) The relative address of the symbol.
RB: (BITS 18-12) The relocation base that the symbol is in.
LVL: (BITS 1-Q) The 1level number of the symbol when it is a
variable, indicating the SCM/ICM residency of the
variable.

-31-

AC:
SF:
IF:

'NOT:

DTO:

FARG:
BEF:
INF:

NRET:

NORF: .

6000 FORTRAN EXTENDED 4,0

VFD u/TYP,1/ASF,1/EXT,1/O,12/DIMP,1/VAR,1/O,2/RL,
2/0,1/AC,1/SF,1/IF,1/NOT,12/DTO,7/RB,10/0,2/LVL

WORD B FOR DEBUG MODE

Selects array bounds checking or CALL tracing.
Selects stores checking or function tracing.

0 for arrays and stores; 1 for calls and functions.
Indicates if debugging is selected for this symbol.

Ordinal into the debug table.

VFD H/TYP,1/ASF,1/EXT,2/0,6/FARG,1/BEF,1/INF,1/0,
1/NRET,1/NORF,1/VAR,1/0,2/RL,18/RA,7/R8,12/0

WORD B FOR FUNCTIONS AND SUBPROGRAMS

Number of arguments.

Set for basic external functions.

Set for intrinsic functions.

Set for functions that\do not return.

Set for functions which do not have side effects.

-32-

TYP:

GEN:

RSN

DSN:

DFN:

RFN:

6000 FORTRAN EXTENDED 4.0

vFD 4/7TYP,1/GEN,1/RZ,1/RSN,1/DSN, 1/DFN,1/RFN, 1/RAS,
1/DLT, 12/DLN, 12/TRO, 12/L,12/0

WORD B FOR PROGRAM LABELS

Type of the label (will always be 6).

Zero for program labels; set for compiler generated
labels.

Set if label is referenced prior to current DO nest.

Sset if +the symbol 1is referenced as a statement number
(i.e. active label).

Set if the symbol is defined as a statement number.
Set if the symbol is defined as a format number.
Set if the symbol is referenced as a format number.

Sset 1if the label is referenced in context as a statement
number.

Set if the label is used as a DO loop terminator.
Line number the label is defined on.
Label table ordinal (Trace option in debug mode).

Ordinal of the loop that the label is referenced in.

-33-

6000 FORTRAN EXTENDED 4.0

VFD U4/TYP,1/GEN,1/E, 1/X,1/1,1/M,1/V,1/3,1/R,
12/0,12/TLLN, 12/0,12/0

WORD B FOR DO GENERATED LABELS

TYP: Type of the label (will always be 6).

GEN: Always set for DO generated labels.
E: Set if loop may be entered at a point other than the top.
X: Set if the loop may be exited at a point other than the

terminating statement of the DO.

Ii: Set if the loop contains another loop.
M: Set if loop control variable must be materialized.
Vs Set if control variable is equal to incremental variable

(DO 10 K=1,N,K).
J: Set if the loop contains an external reference.

R: Set if all integer variables are considered to be
redefined within the loop.

TLLN: The line number associated with the top of the loop.

-34-

6000 FORTRAN EXTENDED 4.0

When LSTPRO is entered, it is assumed that SYM1 (RA+12B)
and SYMEND have been initialized. Thereafter, LSTPRO
updates SYMEND each time a new symbol or label is entered
in the symbol table.

In order to find a given symbol in the symbol table (or
to determine that the symbol is not yet in the table)
with the least number of comparisons, the symbol table is
actually broken down into a number of short lists. Each
symbol in a 1list is linked to the other symbols in the
list. Each symbol contains a pointer (P+) to the next
symbol in this 1list.

Although each 1list is 1linked only within itself, this
does not mean that the elements of one particular 1list
must be stored consecutively in memory. As each new
symbol is encountered, it is simply stored in the next
available 1location, and pointers are set up to reflect
its location in the table.

Each one of the short lists must have a starting point,
or head of the list. Further, we must have a way of
determining what 1list a particular symbol belongs to.
This is done by commutatively forming (by the use of
shifts and the exclusive OR (logical difference
operation) a 7-bit value or a 5-bit value for symbols or
labels respectively. This value is an index into one of
two local tables (SLIST for symbols, LLIST for 1labels)
which contain symbol table ordinals which point to the
head of that list. Initially, the SLIST and LLIST tables
of list heads are set to zero. If a given cell is loaded
that is zero, then we know this is the first symbol in
this 1list and therefore no searching must be done. The
symbol is merely entered, set as the head of this 1list,
and a return is made to the caller.

- 35—

1.0

6000 FORTRAN EXTENDED 4,0

OUTPTK

General Information

OUTPTK is a combined KODER-OUTPTC facility for use by
portions of the compiler coded in FORTRAN. The format

-processing offered is a subset of that available in

KODER.

Entry Points

OUTCI.

This entry corresponds to the initial call entry of the
FORTRAN object time coded output routine. X1 holds the
unit number and A1 points to the I/0 parameter list.
OUTPUT

The file number of the output file.

Messages And Diagnostics

If an illegal format specification is used, OUTPTK will
cause the compiler to mode out by jumping to -1.
Environment

External Routines

All output lines are written using LIST if the file is
the output file or WRWDS if some other file is specified.

-36-

6000 FORTRAN EXTENDED 4.0

Processing
General

On entry at OUTCI., the file number and format location
are saved. Initial pointers to the format are
established and an entry is made in the parenthesis level
stack for the zero level parenthesis.

For subsequent intermediate entries at OUTCR., a certain
amount of initialization is performed to setup the format
word, the output word, format shift and the number of
bits filled in the output word.

At NEXTDESC, we extract the next format character, for a
digit DECIMAL is called to compute the repeat count.
Then if the format descriptor requires a field width
value (Aw, Iw, etc.), we call DECIMAL once more. Then,
we transfer to the appropriate processing section via a
jump vector. After a specification is processed, control
returns to NEXTDESC.

R Format

The R format data item is shifted to an A format data
item and A format processing is used.

A Fomat

If the number of characters to be output will fit into
the space remaining in the current output word, then the
space 1is cleared and the data inserted. Otherwise, the
data is split between the current word and the next word.
I Format

The constant is converted to display code and positioned
to the top of the word, then A format processing is wused

to insert it. For widths larger than ten, spaces will be
filled.

~37-

5.10

6000 FORTRAN EXTENDED 4.0

A Format

For A specification greater than twenty characters wide,
the excess is space filled and the width treated as
twenty characters. For widths greater than ten, the
upper and lower parts of the data word are converted in
parallel and added to the line wvia RFORM and AFORM.

Widths less than or equal to ten characters are converted
in a separate loop. Leading zero digits will be replaced
by the character replicated ten times in OFORMCON. Thus,
to obtain octal output with 1leading =zero suppression,
this constant should be changed to blanks.

H Format

The Hollerith string is issued via AFORM in groups with a
maximum size of ten characters.

Delimited Hollerith String

The initial delimiter (asterisk or quote) is obtained.
Then characters are accumulated and issued via AFORM (in
groups of ten) until a matching delimiter is found.

Left Parenthesis

The current restart information (beginning group address
and repeat count) is saved in the parenthesis 1level
stack. Then the new repeat counter is established.

Right Parenthesis

First, we decrement the group repeat count. If it is not
exhausted, we reset to the group start and exit to
NEXTDESC. If this is the =zero 1level, a new line is
forced and the format is restarted at the 1last left
parenthesis encountered. For a non~-zero level, we remove
a member from the parenthesis level stack and reset to
it.

T Format
For a tab exceeding the present maximum line length, we
space fill to the tab position. In the case of a

backward tab, the pointers are simply reset to the proper
word and bit position.

~38-

5.11

5.12

5.13

6000 FORTRAN EXTENDED 4.0

X Format

The proper number of spaces are filled by SPACE.

Slash Processing

The 1line pointers are reset to the maximum length so far
reached. Then the line is padded out until a zero byte
line terminator can be appended. Then, the line is
written to the unit specified in the initial call.
Finally, the registers are reset to start a new line.
SPACE

This routine will append a specified number of blanks to
the line under construction.

-39~

1.0

6000 FORTRAN EXTENDED 4.0

PSI1CTLS

General Information

PS1CTL$ is the interface routine between SCANNER and the
statement processors for all non-specification
statements. The Pass1 table manager routines and the
routine to collect references when R=2 or R=3 is
selected, are located in PSICTLS.

Entry Points
PH2CTL

This is the entry to phase two statement processing.
Control is passed to PH2CTL by DPCLOSE.

IPH2

This routine sets up phase two for executable statement
processing. Space is allocated for the ARLIST buffer
used by ARITH and the base address of the buffer is
substituted into all references to it within ARITH. If
debug mode is selected, we set up the pointer block used
in the FORTRAN part of Pass 1,4 and call BUGPRO. Then
the FORTRAN copies of the pointers are copied back to the
appropriate COMPASS versions and BUGACT is called to turn
on options if packet information is present.

PH2RETN

All statement processors return here upon completion of
processing.

LDPSZ

Terminate pass one processing and load pass two of the
compiler. If in debug mode, call BUGSOUT to scan the
AREA list for errors. The R-list file is rewound and the
reference map file dumped if R=2 or 3. If there were
fatal errors, we will load the 1,3 overlay. Otherwise,
the 1,2 (OPT=0 and 1) or the 1,5 (OPT=2) overlay will be
loaded.

-40-

6000 FORTRAN EXTENDED 4.0

ADDREF

ADDREF is called by the statement processors, when the R
option is selected, to add a reference for a symbol. The
references are collected into 1lines and the lines are
dumped to the REFMAP table for processing at the end of
pass two when all symbols have been assigned addresses.
Each line consists of a number of fifteen bit parcels
terminated by one or more zero parcels to fill out the
last word. The first parcel holds the 1line number (in
binary). Succeeding parcels have the form

170, 2/REF, DEF code, 12/SYMTAR ordinal
The low order parcel of the last word contains the number
of parcels in the last word in the format 3/parcel count,
12/0.
ALLOC
Adjust table size for table n.
On entry:

AQ = table number

X5 < 0 then the 1length of the table {L.TBL) and

size of the table (S.TBL) will be made
equal to -X5.

X5 2 0 then the size of the table will be
adjusted such that S.TBL is greater than
or equal to X5+ the length of the table.

On exit:
AQ = table number
X7 = non-zero if the space was allocated.

-41-

2. 11

6000 FORTRAN EXTENDED 4.0

ADDWD
Adds a word to the end of a managed table.

On entry:

A0 = table number

X1 = word to be added

BS = 1
On exit:

X6 = word that was added

X7 = new length or zero if no space available
ALLAE

Allocates almost all available core +to table n. On
entry, A0 contains the table number.

INITBL

This entry initializes tables for a phase. On entry, X6
holds the address to be used as the low core address of
scratch storage. It is called from PH1CTL, the start of
DPCLOSE and the end of DPCLOSE.

PTU

This routine is called to pack tables to high core before
loading pass two. On entry, X1 holds (right adjusted) in
successive 6 bit fields the table number plus one of
tables to be saved in high core.

CFMTN

Set non-zero when it is necessary to check for a deleted
jump to the next label and the next label is a format.

LSFLG

Set non-zero if the last statement was an unconditional
transfer of control.

-42-

2.13

2.14

6000 FORTRAN EXTENDED 4.0

DOFLAG
DO loop nesting depth value.
CTBLOVL

Issues thevdiagnostic COMPILER TABLE OVERFLOW.

Diagnostic Messages
CONFLICTING USE OF IABEL Fatal to execution

OUT OF SEQUENCE DECLARATIVE STATEMENT Fatal to execution

NO PATH TO THIS STATEMENT Informative
COMPILER TABLE OVERFLOW Fatal toc compilation
NO EXECUTABLES IN BLOCK DATA Fatal to execution

HEADER CARD NOT FIRST STATEMENT Fatal to execution

Environment

LOWCORE CELLS

12B SYM1 FWA of symbol table

13B SYMEND ILWA of symbol table

17B DIMI 30/Length, 30/FWA of dim table

21B LTYPE Type of logical IF

23B CLABEL Label of current statement

248B TYPE Statement type code

328 SELIST FWA of ®-LIST

34B LELIST E-LIST pointer for true side of IF
37B DUKE Binary line count

518 ATYPE Arithmetic statement type

52B NGLN Next generated label

56B PROGRAM 12/200n,48/70 where n=0 for program

n=1 for subroutine
n=2 for function
54B NRLN Next available number for RI
COMMON BLOCKS

V4 Blank common used by debug processing

-43-

5.0

5.2

6000 FORTRAN EXTENDED 4.0

/DOLVL/ DO nesting depth level

/STSORD/ Number of statement temporaries generated
for a single statement

/MACBUF/ Temporary scratch area

/BUMBLEB/ Cells pertinent to debug processing

/BIGBUGS/ Flags for major debug specification types

/NONFTNX/ SCANNER to FORTRAN communication cells

Processing

PH2CTL

Entry to Pass 1, Phase 2
ae. Set next generated statement label to 1.

b. Set next available R number to 2. (0,1 reserved for
B0, A0 respectively)

IPH2

Initialize Phase 2 for Executable Statement Processing

a. If the system programmer package option is selected,
set the length of the instrinsic function table to

include these extra functions.

b. Set FSTEX to DUKRE, first executable satement for
DEBUG.

C. If processing block data, executables are illegal;
issue diagnostic and continue through main loop.

d. If less than 400 words of working storage are
available issue Fatal to Compilation error.

e. Allocate space for ARLIST buffer and set up base so
that it's address can be substituted when referenced
in Passt.

f. If in non-DEBUG mode, return to caller. If in DERUG
mode:

-44-

5.3

6000 FORTRAN EXTENDED 4.0

1. Set up FORTRAN correspondents of COMPASS
pointers via POINTRS and set up tables via
BUGPRO.

2. Readjust COMPASS pointers to reflect changes
made by FORTRAN routines.

3. If there is packet information, activate the
options wvia BUGACT.

4. If variable dimensioned F.P.'s set up dim table
for them.

5. Return to caller.

PH2RETN

Return from statement processors

d.

If the statement was labeled, check for termination
of DO loop via DOLAB.

Form RLIST for end of statement and send to RLIST
file.

Terminate line of references for R > 0.

If not in DEBUG mode continue with main loop, 5.4.
If in DEBUG mode:

If executables have begun and there is packet
information, set up FORTRAN pointers via POINTRS and
deactivate options which had been turned on at
5.2.f.3 via BUGACT.

If there were comment cards, activate and deactivate
options via BUGACT which were supposed to be
activated or deactivated at those line numbers. The
process is repeated for the update idents for the
comment cards.

If executable statements have not begun and there is
no packet information, check DTYPE to see if the
next statement is a debug statement.

If it is, call SCANNER to put the statement into E-
list.

-45-

6000 FORTRAN EXTENDED 4.0

i. If there is any packet information, set up the
FORTRAN pointers via POINTRS and activate options
via BUGACT.

j. If SCANNER did not type the statement, call GETTYPE
to do so.

k. If it is a bad or non action (DEBUG or AREA)
statement, repeat loop starting at 5.3.e.

1. For an action statement set up FORTRAN pointers via
POINTRS, set up area and options list locations and
convert statement to table form via BUGCON.

m. For statements other than OFF call TURNON to
activate the option, and continue through loop
beginning at 5.3.e.

ne. If the next statement is not debug (5.3.g) call
SCANNER to get the statement. If the statement is a
bad FORTRAN statement and the next statement is
debug, it will be that debug statement that SCANNER
returns.

O. So check for a valid debug card, and repeat loop
5.3.e - 5-n3omc

p. If it is a program card and executables have begun,
or there is no packet information, go to 5.4.b. The
RJ SCANNER can be skipped since there already is a
statement in E-LIST ready to be processed.

g. If executables have begun and there is packet
information, set up pointers via POINTRS and
activate the options via BUGACT; go to 5.4.b.

PH2SCAN

Main loop for processing executable statements.

a.

b.

Call SCANNER to put the next statement into E-list.
If the statement is a declarative (type 2-9), issue
"out-of-sequence" diagnostic. For a header card,
(type 0-1) issue "header card not 1st) diagnostic.

For FORMAT:

-46-

6000 FORTRAN EXTENDED 4.0

1. check for the following condition and issue
diagnostic if it holds:

IF (expr) N1,N2,N3
N1 FORMAT (...)

where the IF processor deleted the jump to N1i.

2. call FORMAT to process the FORMAT statement and
return to 5.3.c.

d. For any other statement: Check for unreachable
statements.

1. If the previous statement was not an
unconditional jump or if the statement has a
label, it is not unreachable, so go to 5.4.e.

2. If +the statement does not terminate the block,
issue the "unreachable statement" diagnostic.

e. If there is a label, process it via DOLABCN.

f. Reset number of statement temporaries used to 0 and
‘update STMAX, number of ST.'s needed, to the maximum
of previous STMAX and STSORD.

g. Reset "next available R number" to 2 if necessary.

h. If executables have not begun and the current
statement is executable, initialize the compiler for
Phase 2.

i. Jump to the appropriate statement processor using
the statement type and the table VTABL. The DATA
and NAMELIST statement processors return to the
return routine at 5.3.c. For END statement and end-
of-file (END card assumed), return is to LDPS2 (5.5)
to load Pass2. All other statements return to the
start of the common return routine (5.3).

LDPS2
a. If in debug mode check for errors in the AREA list.

1. If FWA = LWA, there was no AREA list.

-7

6000 FORTRAN EXTENDED 4.0

2. Call BUGSOUT to scan the ARFA list for errors
and issue diagnostic if necessary.

Rewind RLIST file.

If reference map level 0, terminate current lint of
references.

1. Terminate the reference 1list.

2. Add dimension and common table information to
the end of reference map information.

If there were fatal errors, load (1,3) overlay to
print the errors.

If the Q option (quick mode - péss 1 compilation
only) is not selected load either (1,2) overlay for
OPT = 0,1 or the (1,5) overlay for OPT = 2.

If 0 is specified and refmap is selected, load (1,2)
overlay to process the reference map.

If Q 1is selected and input buffer is empty,

terminate compilation. Otherwise reload Phase 1 for
compilation of subsequent program units.

~48-

1.0

[\ %]
.
(&)

6000 FORTRAN EXTENDED 4.0

STMTP

General Information

STMTP is the miscellaneous statement processor.
NAMELIST, ENTRY, STOP, PAUSE are processed here. In
addition, there are three entries for forming macros to
place on the COMPS file.

Entry Points

NAMELST

Processes the NAMELIST statement using E-list produced in
SCANNER. Line images written to the COMPS file are
produced.

ENTRY

Processes the ENTRY statement. Appropriate macros are
written to the R-list and COMPS files.

STOPP
Processes the STOP statement.
PAUSEP
Processes the PAUSE statement.
SVARG

o S

Saves an argument to a COMPS file macro under
construction. On entry:

B7 = number of words in argument buffer (must be
initialized to =zeroc and maintained between
calls)

B7 = argument number

X6 = 12/2000B+conversion code, 6/0, #42/arg

-49-

2.7

6000 FORTRAN EXTENDED 4.0

Successive calls to SVARG must have ascending argument
numbers. Conversion codes are:

0 - arg is a symbol table ordinal

1 - octal conversion (arg is =-377777 to 377717)

2 ~ integer conversion (argqg is 0-9)
F1AMAC'
Form and output a one argument macro call to the COMPS
file whose argument is a name in the symbol table. On

entry:

X1

macro name

X6

symbol table ordinal
FMAC

Format and outpu

. .
saved via SVARG calls. On entry:

2
<o

t the macro whose arguments have been
i

X1

10H macro name

NARGS = number of arguments

Diagnostics And Messages

NAMELIST STATEMENT SYNTAX ERROR

BAD GROUP NAME

GROUP NAME NOT IN SLASHES

CURRENT OBJECT NOT A VARIABLE

PRESENT USE CONFLICTS WITH PREVIOUS APPEARANCE
VARIABLE DIMENSIONS NOT ALLOWED IN NAMELIST
NAMELIST STATEMENT IS NON-ANSI

ENTRY STATEMENT IN A DO LOOP

ENTRY STATEMENT IS NON-ANST

-50~-

6000 FORTRAN EXTENDED 4.0

PREVIOUS USE OF NAME IN ANOTHER CONTEXT
SYNTAX ERROR

ENTRY STATEMENT IN MAIN PROGRAM
LABELED ENTRY STATEMENT

BAD SYNTAX IN STOP OR PAUSE STATEMENT

Environment

The statement processors expect the statements in E-list
starting at the location contained in SELIST. The symbol
table will be at SYM1 and the dimension table at DIM1,
CILABEL holds the current statement label. NRIN the next
available R-list number.

Processing
NAMELST

On entry, we switch to the DATA. block. If the first E-
list item is not a slash, then bad syntax is diagnosed.
If the second item is not a name, then a bad group name
is diagnosed. The group name is entered into the symbol
table. If it is already in the table, the message "prior
usage in another context"™ will be elicited. The word B
bits for a namelist group name will be combined with the
address in the DATA. block and word B will be updated.
Then, an ADDREF call is made if R=2 or 3.

Next, F1AMAC is called to output the group name macro.
If the group name is not followed by a slash, a
diagnostic will be produced.

Next comes a loop to process the items in the list of the
namelist. A name is extracted and PNV is called to
process the namelist variable. Upon return, a check is
made for a comma. If one occurs, the previous process is
iterated. Otherwise, the group is terminated.

If the last item was a slash, we restart at group name

processing. If it was not, an end of statement a syntax
error is produced.

-51-

5.2

6000 FORTRAN EXTENDED 4.0

PNV - Process Namelist Variable

A symbol call is made. For first occurrence, the type
and VAR bits are set, If the symbol is ordinal one and
this is not a function subprogram, an error is produced.
An error is produced if the item is type ECS, a function
or an external. Next, the DEF bit is set and the DIMP
field extracted. A SVARG call is made with the variable
name. Next, we prepare the type and SVARG its value. If
the item is equivalenced arguments 3 (BASE) and 4 (BIAS)
are prepared and saved. For a formal parameter, argument
five is saved. An error message is issued at this point
if the item is variably dimensioned. Otherwise, D1,
D1*D2 and D1*D2*D3 are computed and saved as necessary.
Finally, the number of arguments is saved, a reference
collected, and the " macro formed via FMAC. Then the
routine exits.

ENTRY

If this is a main program, we issue a fatal error for an
entry statement. If it is labeled, another fatal error
is produced. A basic syntax check for a name followed by
an end of statement marker is made. The name is placed
into the symbol table and the type set to entry. The
ordinal is placed into the entry macro for R~list and in
O.CEP (ordinal of current entry point, used by RTNPROC).

If no executable statements have occurred, we make the
address of this entry the same as the main and issue an
FEQU macro to the <COMPS file. Then references are
gathered, the symtab ordinal placed in the ENTR table and
a non-ANSI error flagged before exiting.

When executable code has occurred, additional processing
is required. A check is made for formal parameters or
RETURNS. If this routine has formal parameters, we must
place FTNNOP. and NOPS. into the symbol table as well as
write proper values for them to the COMPS. file. Having
written the DATA values to COMPS, 0.SPEC is cleared to
prevent issuing them again for a subsequent ENTRY
statement. If we are within a DO loop, a diagnostic is
produced. If this is not the case, we join terminal
processing for the no executable case having written the
R-list entry macro.

STOP, PAUSE

6000 FORTRAN EXTENDED 4.0

The object routine name is placed in X1 (STOP. or PAUSE.)
and PSP (Process STOP, PAUSE) is called. For STOP
statements, the no return bit is set in word B of the
symbol table entry for STOP.

PSP

Enter the name in the symbol table setting the external
bit if the symbol is first entered. The ordinal is
placed in the R-1list buffer. If an EOS occurs next, we
use blanks for the message string. If the next item is
not a constant, an error is issued. The item after the
constant must be an end of statement. If the constant is
not integer, it 1is assumed to be a Hollerith constant.
More than five digits or a non-octal digit will also
produce errors. After validating the constant, it is
converted to H form, placed in the constant table, and
the base, bias saved. Finally, the R-1list macro is
formed and written.

SVARG

The argument number and the conversion mode plus argument
are combined and stored in ABUF.

F1AMAC

The number of arguments is set to one, the argument saved
and FMAC called.

FMAC

After initializing registers, we compute the difference
between the last argument and this argument number. That
many commas are added to the string under contruction.
Then the argument is unpacked and control passed to the
proper argument processor for conversion (symbol table
entry, octal constant, integer constant). After
conversion, the characters are appended to the string.
When NARGS arguments have been handled, we append a zero
byte and write the entire line to the COMPS file.

-53-

1.0

2.3

6000 FORTRAN EXTENDED 4.0

ENDPRO

General Information
ENDPRO is <called when the END card is encountered. All
phase two cleanup, diagnostics and terminal processing

occur here. In addition, all RETURN statements are
processed within ENDPRO.

Entry Points

END

This entry is called from PS1CTL when the END card is
encountered.

ECGS

This subroutine enters a compiler generated symbol into
the symbol table. Type is set to CGS, RL=1, and RB=CODE.
On entry, X1=8R name.

ENTRY.D

This cell holds the RL, RA and RB of ENTRY. . It is set
in PH1CTL.

0scC

This routine outputs storage for symbols in a table. On
entry:

X5 = pseudo op word
X6 = FWA of table
X7 = length

Table entries are formatted as follows:
VFD 6/3, 18/word count, 18/symtab ordinal, 18/J

Where J is ignored by OSC.

-54~

2.7

6000 FORTRAN EXTENDED 4.0

BTOCT

Converts a binary numbers to octal. On entry, X1 holds
the number. On exit, , X6 and X7 hold the display coded
octal constant.

BEFTB

Base address of the basic external function table.

L.BEFTB

Zero word at the end of the basic external function
table.

RETURN

Entry in ENDPRO to process the FORTRAN RETURN statement.

Diagnostics and Messages

END STATEMENT ACTING AS RETURN IS NON-ANSI
FUNCTION NOT DEFINED

RETURN STATEMENT IN MAIN PROGRAM

RETURNS STATEMENT MUST BE IN A SUBROUTINE

ILLEGAL NAME IN RETURNS STATEMENT

4.0

4.2

6000 FORTRAN EXTENDED 4.0

Environment

Common Blocks

MACBUF -

Externals

Used by

RETURN in constructlng the R-1list

macros for return code.

The major externals are listed below with an indication
of their use.

DOEND

SYMORD
ST.
CON.
DATA.
DATA..
0.CBT

N.FP

DFLAG
MACFLAG
RSELECT
ERPRO
ERPROI
ASAER
LWAWORK
WB. ECGS

WB. PROG

Located in DOPROC. cCalled when the END card is
found so as to detect unterminated DO nests.

Holds the
Holds the
Holds the
Holds the
Holds the

Oorigin of

number of entries in the symbol table
ordinal of ST. in the symbol table
ordinal of CON. in the symbol table
length of the DATA. block

length of the DATA.. block

the common block table

Holds the number of formal parameters for this

routine

Debug mode indicator

Indicates

Indicates

E or O options selected

R=2 or 3 selected

Routine to issue fatal errors

Routine to issue informative errors

Routine to issue ANSI errors

Holds the

last word address of working storage

Word B for compiler generated symbols

Word B for a program entry

-56~

WB. FMT

LSFLG

SAVTBL

PTU

N.TLAB

0.SCR

O0.DIM

0.S8CA

O0.FPBL

0.CON

O.DATA

LABEL.

TEMPAO.

ENTRY.

6000 FORTRAN EXTENDED 4.0

Word B for a formal parameter

Word B for a format

Set non-zero if the last statement before the
END card resulted in a transfer of control
(RETURN, GO TO, etc.,)

Address of 1list of tables to be saved in high
core before loading pass two

Routine in LSTPRO to pack tables to high core

Number of entries in the trace label table
(non-zero only in DEBUG made)

Origin of the scratch table
Origin of the dimension table
Origin of the saved common address table

origin of the formal parameter block length
table

Origin of the constant table

Origin of the wusage defined variable in DATA
statement table

Origin of the external table
Origin of the usage defined variable table

An entry of L.XXX corresponds to each 0.XXX
above and holds the table length.

Symbol table ordinal of the symbol ILABEL.
Holds the symbol table ordinal of TEMPAO.
Holds the symbol table ordinal of ENTRY.
Holds the symbol table ordinal of VALUE.

Holds the symbol table ordinal of the current
entry point

-57~

6000 FORTRAN EXTENDED 4.0

WRWDS Routine in FTN to write to a file

DO. Holds the ordinal of DO.

OT. Holds the ordinal of OT.

IT. Holds the ordinal of IT.

UCODE. Holds the shifted name of the use block CODE.
OUTUSE Routine to issue a USE name if needed

SYMBOL Find or enter a symbol in the symbol table
ADDREF Routine to collect references when R=2 or 3

CTBLOVL Control passes to this external if compiler
tables overlapped

F1AMAC Form one argument macros on COMPS

UDATA Holds the shifted name of the use block DATA.
Z.SCR Number of the scratch table

ALLOC Table manager routine to allocate memory
Processing

END

On entry, DOEND is called to clean up and diagnose any DO
loops still unterminated. Then IAC is called to insert
the addresses of common variables into their symbol table
entry. (This need be done only in debug mode for common
variables with no DIM table entry). Next PSS is called
to process special symbols. In particular, this routine
will issue the R-list macro to produce a RETURN or RJ
END. A check is made here tc ensure that the function
name has been defined at 1least once in the function
subprogram. Formal parameter block 1lengths accumulated
during namelist processing are moved to word B of the
formal parameters. ’

Now an end of R-list code is written to the R-1list file.

DCT is called to dump out the constant table. PST is
called to process the symbol table. Here, the external

~58-

6000 FORTRAN EXTENDED 4,0

and usage defined variable tables are constructed. All
DIMTAB entries are linked to the SYMTAB entry. Special
characters are appended to selected externals. Addresses
are defined and storage issued for usage defined
variables. Move DIMTAB address definition fields into
word B of the symbol table. Define the address of usage
defined wvariables which first appeared in DATA
statements.

DO., IT., and OT. are entered in the symbol table and the
use block switched to CODE. Finally all vital tables for
pass two are packed to high core and an exit is taken.
IAC - Insert Addresses into Common Variables
When the D option is selected, the addresses of common
variables without a DIM entry must be saved in a
temporary table until the end of pass one when the debug
processor is no longer active. If there are no entries
in the saved common address (SCA) table, then IAC exits
immediately. Otherwise, IAC 1loops through the SCA
placing the RA field in each affected symbol table entry.
PSS - Process Special Symbols
a. Exit immediately for a BLOCK DATA program.
b. For a main program:

(1) Place END. in the symbol table.

(2) Set the external and no return bits.

(3) Define the program name with an RA of zero in
the CODE. block.

(4) 1Issue the RJ END. macro to the R-list file.
(5) Exit Pss.
c. For a subroutine:

(1) sSet the address of the entry into word B using
ENTRY.D

(2) If the 1last statement was a RETURN, GO TO,
etc., go to e,

-59-

(3)

)

(3)

(6)

6000 FORTRAN EXTENDED 4.0

Issue a RETURN macro to R-list which w1ll
restore A0 if needed.

Collect a reference to the current entry point
if R=% or s,

Issue an informative diagnostic for no RETURN
statement.

Go to e.

d. For a function subprogram:

(1)

(2)

(3)

4)
(3)

Set the address of the entry into word B using
ENTRY.D.

Issue an error if the function name was never
defined in the roiutine.

If the Last statement was a RETURN, GO TO,
etc., go to e.

Output R-list for a RETURN statement.

Issue an informative diagnostic for no RETURN
statement.

e. Exit if there are no formal parameters.

f. Move the FP block length accumulated during NAMELIST
processing to word B (RA field) of the formal
parameters.

g. Set wup RL, RB fields in each FP's word B for pass

two.

h. Exit PsSsS.

DCT - Dump Con Table

a. Place the address relative to DATA. block in word B
for CON.

b. If there are no constants, go to e.

c. Increment the length of the DATA. block by L.CON.

d. Call ODW to output data words in the CON. table.

-60~

5.5

6000 FORTRAN EXTENDED 4.0

e. Exit DCT if no Labels are being traced.

f. Allocate space in which ﬁo construct +the label
table.

g. Increment the length of DATA. by N.TLAB and define
the address for LABEL.

. Scan the symbol table for statement numbers with
trace ordlnals and make entries in the scratch table
of the form VFD 30/NNNNN, 30/line number on which

label is defined.
i. Call ODW to dump this table.
j. Exit DCT.
ODW - Output Data Words

Outputs 1line images of the form DATA value for each word
in the table whose FWA is in X1 and whose 1length is in
X2. A3 holds the first word address of a label for the
table the label definition is moved to working storage
and the wuse block switched to DATA. A table entry is
picked up and BTOCT used to convert it to octal. The
octal 1is concatenated with a DATA pseudo up and a B’
appended. This continues until the table is exhausted or
working storage £ills up and then we dump the images to
COMPS. If working storage filled, the remainder of the
table is processed after dumping. Then exit ODW.

PST ~ Process Symbol Table

(a) Check to make sure there 1is enough core for END
processing.

(b) Initialize registers for the symbol table scan from
ST. to the end of the table.

(c) Fetch word A and B, advance to next entry.
(d) If this is the end of the table, go to k.
(e) If this entry is a label, go to c.

(f) For an external, place 2* ordinal into the temporary
external table. Go to c.

-61~-

(9
(h)
(1)
(3)
(k)

(1)
(m)

(n)

(0)-

(p)
(Q)

(r)
(s)

(t)
(u)

(v)

6000 FORTRAN EXTENDED 4.0

For types 6-15 and local functions, go to c.

If the entry is dimensional, place the symtab
address in word two of the DIM entry and go to c.

If the variable is in common, go to c.

Place the word count and 2* ordinal into the
temporary UDV table and go to c.

Define 0.UDV and L.UDV as well as O.EXIT and L.EXT.
If no externals, go to p.

Set RL=3 for all externals by stepping through the
EXT table.

If the external is a basic external function, a
period is appended to the function name.

For the O or E options, issue FEXT statements to the
COMPSs file for each external.

If no dimensional items, go to r.

Move the address information from the dimension
table to word B of the symbol table entry. 2an RL of
1 or 2 1is set depending on the common block, or
DATA.. is set and the RA is installed in the address
definition field of each symbol with a DIM entry.

If there are no usage defined variables, go to v.
Loop through the temporary UDV table incrementing
the length of the DATA. block and installing the RI,
RA, RB fields.

If O or E options not selected, go to v.

Switch to the DATA. block and call OSC to issue
storage to COMPS for usage defined variables.

If no wusage defined variables occurred in DATA
statements, exit from PST.

-62-

5.7.1

6000 FORTRAN EXTENDED 4.0

(#) Scan the table constructed by DATA installing the
RL, RA and RB fields and turning off the common bit
in word A of these entries (NOTE: The common bit
was turned on so these variables would not appear in
the regular UDV table and have storage issued for
them. The storage will have already been issued in
DATA processing.) At this point, their names will be
added to the previous UDV table.

(x) Exit PST.

RETURN

RETURN processes the FORTRAN RETURN statement. For a

main program, an informative diagnostic is produced when

a RETURN occurs. If the statement is a normal RETURN,

processing differs from that for a RETURNS type

statement.

RETURNS processing

(a) 1Issue an error if this is not a subroutine.

(b) Issue an error if the E-list item is not a name.

(c) Call SYMBOL and produce an error if the name is not
found.

(d) Issue an error if the type is not RETURNS.
(e) Generate a non-standard return R-list macro.

(f) Collect a reference (if necessary) for the RETURNS
name.

(g§) Flag a non-ANSI usage and exit from RETURN.
RETURN processing
For a function subprogram:

(a) Generate a single or double precision function
return macro on the R-list file.

(b) Collect a reference to the current entry point.

{c} Exit from RETURN.

-63-

6000 FORTRAN EXTENDED 4.0

5.7.2.2 For a subroutine:
(a) Select a return macro to restore A0 or not depending
on the presence of a parameter list (TEMPAO. # 0 if
restore needed) and generate it on the R-1list file.

(b) Collect a reference to the current entry point (if
necessary) .

(c) Exit from RETURN.

6.0 Table Formats
6.1 EXT Table

VFD 60/2%ordinal
6.2 UDV Table

VFD 670, 18/word count, 18/symbol table ordinal, 1870

-61-

1.2

1.2.1

1.2.2

1.2.3

1.2.4

6000 FORTRAN EXTENDED 4.0

SCANNER

General Information
Task Overview

SCANNER reads each source statement from the input file,
determines the statement type from the initial alphabetic
keyword (if present), transforms the statement into the
r-list intermediate language, lists the statement in the
output file and issues suitable diagnostics if errors are
found during the lexical scan.

Significant Changes from Version 3.0

The following major changes have been made to SCANNER
since the orignal release of FORTRAN Extended Version
3.0:

IMPLICIT and LEVEL statement processing logic has been
added.

SEGMENT, SEGZERO and SECTION statement processing logic
has been deleted.

Quote (6u4B) delimited Hollerith constants have been
added.

END statement formats have been relaxed. An END line may
now be continued or may follow a dollar sign (53B)
separator.

Internally, many subroutines have been recoded to reduce
compilation time and shorten field 1length reguirements.
For a typical program "mix", Version 4.0 SCANNER runs
approximately twice as fast as Version 3.0, and requires
about 1000B fewer words of central memory, excluding new
feature additions. Much of the speed improvement was
achieved by squeezing out source statement blanks as each
statement is burst to the string buffer SBUFF.

Entry Points
Executaple Code

SCANNER

-65-

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.2.3

2.2.5

6000 FORTRAN EXTENDED 4.0

This entry point is wused by all callers except for
certain special DEBUG statement processing tasks.

DBGERR

This entry point is used to print out a DEBUG error
message.

GETTYPE

This entry point is used by DEBUG routines to obtain the
type of a DEBUG statement.

Communications Cells (in alphabetical order)
CD

This cell holds the source line number (binary) of the
beginning line of the last FORMAT statement encountered.

COL

This cell holds the number of blanks between the initial
left parenthesis and the first non-blank character after
the left parenthesis in the last FORMAT statement
encountered.

DUKE1

This cell holds the source line number (binary) of the
line currently in the card input area CP.CARD.

FEFLAG

‘This cell is set non-zero externally when a fatal-to-

execution error is found.
N. EQUAT,

This cell holds the number of equals (54B) signs found in
a statement.

O.LCC

This cell contains the first word address of loader
control card information.

TYPFLAG

-66-

3.2

6000 FORTRAN EXTENDED 4.0

This cell is set less than zero when a DEBUG statement
cannot be typed; its value is otherwise zero.

WORDY

This cell contains the total number of words of loader
card information.

Diagnostics/Error Messages

Fatal to Compilation Error Messages
TABLES OVERLAP, INCREASE FL

Fatal to Execution Error Messages
UNRECOGNIZED STATEMENT

JLLEGAL IABEL FIELD IN THIS STATEMENT
STATEMENT TOO LONG

SYMBOLIC NAME HAS TOO MANY CHARACTERS
UNMATCHED PARENTHESES

TABLE OVERFLOW, INCREASE FL

ILLEGAL CHARACTER. THE REMAINDER OF THIS STATEMENT WILL
NOT BE COMPILED. ’

ILLEGAL VARIABLE NAME FIELD IN ASSIGN OR ASSIGNED GOTO
NO TERMINATING RIGHT PARENTHESIS IN LOADER DIRECTIVE

NOT ENOUGH ROOM 1IN WORKING STORAGE TO HOLD ALL OVERLAY
CONTROL CARD INFORMATION

CONSTANT TABLE CONSTORS OVERFLOWED - STATEMENT TRUNCATED.
ENLARGE TABLE OR SIMPLIFY STATEMENT

THE STATEMENT IN A LOGICAL IF MAY BE ANY EXECUTABLE
STATEMENT OTHER THAN A DC OR ANOTHER LOGICAL IF

() WAS LAST CHARACTER SFEN AFTER TROUBLE, REMAINDER OF
STATEMENT IGNORED

-67~

6000 FORTRAN EXTENDED 4.0

DEFECTIVE HOLLERITH CONSTANT. CHECK FOR CHARACTER COUNT
ERROR, MISSING # DELIMITER OR LOST CONTIN CARD

Informative Diagnostics

NO END CARD, END LINE ASSUMED

UNRECOGNIZED STATEMENT

Non-ANSI Diagnostics

7 CHARACTER SYMBOLIC NAME IS NON-ANST

LOGICAL OPERATOR OR CONSTANT USAGE IS NON-ANST

OCTAL CONSTANT OR R,L FORMS OF HOLLERITH CONSTANT IS
NON-ANSI

DOLLAR SIGN STATEMENT SEPARATOR IS NON-ANST USAGE

THE FORMAT OF THIS END LINE DOES NOT CONFORM TO ANSI
SPECIFICATIONS

Environment

Common Blocks

‘DBGBLK1, DBGBLK2 and NONFTNX - Each block contains a

series of communications cells for the DEBUG option.
Externals

The major externals are listed below, with an indication
of their use.

ASAER Entry point in ERPRO to file non-ANSI
diagnostic messages.

CAFLAG Control card option flag to specify COMPASS

assembly.
CIO1. Entry point in FTIN to issue CIO requests.
CONDEC Entry point to convert a binary value to

display code.

-68~

CP.CARD

CP.LINE

ERPRCI

FATALER

FTNEND

FWAWORK

MOVE

NOLSFLG

PAGE

PUTUPDT

SAVLINE

6000 FORTRAN EXTENDED 4.0

FWA of source line image input working storage
area.

FWA of source line outpou list working storage
area.

DEBUG mode option flag.

Tntry point in ERPRO to file fatal-to-exect

&)11\.‘-1 R R A

diagnostic messages.

Entry point if ERPRO to file informative

diagnostic messages.

Entry point in ERPRO to file fatal-to-

compilation diagnostic messages.
Entry point in FTN to end compilation task.

End of E~list area; E-1list grows down from high
to low addresses.

Number of 1lines
output listing.

remairing on current page of
g

Entry point in FTN to load and execute the

COMPASS assembler.
Entry point in LSTPRO to write a line to the
output file.

Cell containing address of last E-list entry;
decremented after each entry.

Entry point to move a block of words in central
memory.

Control card option
listing.

flag to suppress output

Current output listing page number.

Entry point to save an UPDATE identifier (from
a source line) for DEBUG.

FWA of block where a complete source statement

(20 lines max) can be saved. Block 1is used
only when normal output 1listing 1is being

-69-

6000 FORTRAN EXTENDED 4.0

suppressed, so that a statement can be 1listed
if errors are found in it.

SAVLNG Number of initial alphanumeric characters in a
source statement. Used for processing IMPLICIT
statements.

TITLE1 Word in page header line that contains the type
of program unit (PROGRAM, SUBOURTINE, FUNCTION,
BLOCK DATA) .

UFLAG Control card option flag to generate *DECK
card.
WRWDS Entry point in FTN to write one or more words

to a file.

Processing
Processing Function

SCANNER performs the initial lexical scan of each source
statement to determine the statement type and to condense
the statement into an elemantal form, termed E-list, that
can be rapidly processed by external statement processing
routines. The statement type information will be used by
the calling phase controller (PS1CTL or PH2CTIL) to
determine which statement processor to call. That
processor, in turn, will use the E-1list as input data for
R-1list generation.

To produce the E-list, SCANNER extracts the meaningful
symbols from each source statement and reformats them
into a series of one~word 1list entries plus, in some
cases, auxiliary table entries. Blanks, comments and
other irrelevant data are discarded. Each entry in E-
list represents one syntactically significant element in
the original source statement, such as a variable name, a
constant, an operator or other quantity. The original
source symbols may or may not appear explicitly in the E-
list entry. A variable name, for example, is retained in
the entry. A constant, in contrast, is not, because it
may be too 1long to fit in one word. Accordingly,
constants are stored in an auxiliary table, CONSTOR; the
E-list entry for the constant provides its length and
location. Every EB-list entry includes a type code number
that identifies the syntactic element type. This code

-70-

6000 FORTRAN EXTENDED 4.0

number is used by the statement processors to expedite
compilation. See paragrpah 6.1 of this section for
detailed E-list formats.

General Processing Flow

SCANNER processes one complete source statement in
response to each call (RJ SCANNER). This may include up
to 20 active source 1line images, rlus an essentially
unlimited number of embedded comment cards or blank cards
trailing. Upon return to the caller (and assuming no
errors were found), the statement will be typed, 1listed,
E-list produced, and the statement number saved. The
first source line of the next statement wil have been
read and partially scanned, basically to determine if it
is a continuation of the current statement, to obtain its
statement number (useful for certain code optimization)
and to see if it is a DERUG statement. Uoon initial
entry after loading, SCANNER enters a initialization mode
that will continue until the first recognizable FORTRAN
source statement is encountered and typed. In this mode,
DEBRUG external packet lines are processed; abnormal cards
are diagnosed; embedded COMPASS subprograms are either
copied to the COMPS file or assembled directly by
COMPASS, depending on control card options selected;
loader control cards are reformatted and stored at the
end of E-list. When a source line is encountered that
does not fit the above categories, SCANNER types it to
determine if it is a wvalid program unit header line, such
as PROGRAM or SUBROUTINE. If so, the program unit type
and name are extracted and stored in a skeleton title
header line that will appear at the top of each page of
the output listing. SCANNER then abandons the
initialization mode and transfers into the middle of the
normal or main mode of operation. Any remaining
information in the initial source line, such as program
file names, subroutine parameter 1lists, etc., will be
posted to E-list at this time, in the normal fashion. 1If
the initial line was not a header line, SCANNER bypasses
the header line initialization and continues directly in
the normal mode. In this case, default header values
will be stored 1later by PSI1CTL. When all non-blank
characters of the first source statement have been
processed, the first line of the next source statement
will have been read and burst to the string buffer; this
was necessary to determine if it was a continuation of
the initial statement.

-71-

6000 FORTRAN EXTENDED 4,0

At his time, SCANNER has prepared the following
information for the caller:

Register B7 and TYPE(RA+24B) will hold the primary
statement type. ATYPE (RA+51B) will hold any constant
type associated with the statement. If the statement is
a logical IF, the type of the statement following the
logical expression is found in LTYPE (RA+21) and the
starting address in LELIST (RA+34B). The starting
address of E-list for the primary statement is found in
SELIST. The last location used for E-list is found in
ELAST(RA+14B) . CLABEL (RA+23B) holds in display code the
statement label, if any, left justified and blank filled.
NLABEL (RA+60B) holds the label, if any, in thsame form
for the next statement. If no label is present , NLABEL
and CIABEL will be zero. On subsequent calls, SCANNER
processes a complete statement each time entered. Since
the first 1line of the new current statement has already
been burst to the string buffer, beginning at SBUFF, it
is not necessary to initiate an immediate read. Instead,
SCANNER performs a brief internal initialization at
SCANNER1 (and SCN2 if in DEBUG mode), a secondary
initialization at CONT, and obtains the first non-blank
character of the new statement at BOSS, via GET. STATE1
verifies that the statement begins with an alphabetic
character and, for a non-DEBUG card, calls PACK30 to pack
the initial alphanumeric string that begins the
statement. At this point, the processing activities
become quite variable, depending on the type of
statement. CK 30 packs the string as GOT025, and senses
that the next non-blank character is not a legal FORTRAN
character (01B-57B), since it is in reality the end-of-
line (EOL) sentinel. PACK30 calls PGCOM who, after
recognizing that it is an EOL sentinel, in turn calls
NEXT to obtain a new source 1line image. NEXT either
saves (list option off) or lists (list option on) the
current source line and calls READCARD for a new 1line.
READCARD obtains the line via READL and proceeds with a
series of housekeeping tasks. If the new 1line is a
comment 1line, it is listed and another line fetched. If
not a comment line, it is checked to see if it is a DEBRUG
or continuation 1line. Suitable flags are set, the
statement label is processed, and the line is burst to
the string buffer beginning at SBUFF. Then, after
updating the source listing line number, READCARD returns
to NEXT. Assume that the next line was, in reality, a
new source statement. NEXT exits to NEWS, who will wrap
up the processing of the current statement. NEWS checks

-72-

5.3.2

6000 FORTRAN EXTENDED 4.0

for a series of pack-in-progress events, and finds that
PACK30 was interrupted by the EOL sentinel. NEWS
terminates the interrupted pack and stores the packed
character string in E-list. {(NOTE: This particular
packed character string will subsequently be 1logically
erased from E-list, since it contains the statement
keyword GOTO. E-list is merely wused as a temporary

convenient storage 1location; it is not, in this case,
receiving a final entrv.) After some additional legality

T LV LIl e dedilia i Vi ye e N . Lhva Vil o by A= T T 2 4

checks, NEWS determines that the statement is untyped.
NEWS then exits *o the type determining routine
associated with the next processing state that would have
gained control if the current statement had not ended.
In this case, the next state would have been STATE2, as
declared by STATE1 Dbefore calling PACK30. NEWS then
exits to the STATE2 type determiner, D1. D1, after some
manipulation, calls SEARCH, who types the statement and
exits to ADJ. ADJ separates the keyword GOTC from the
label 25 that follows, enters the label in CONSTOR, and
makes an E-list entry indicating the label location. ADJ
exits to STATEQ, who posts an end-of-statement entry to
E-list and returns to the caller.

This is necessarily a brief description of the processing
for a simple statement. Had the statement been more
complex, additional STATE processors would have come into
play. The STATE processcrs are, in general, a series of
jump tables that indicate the suitable action to take,
based on the last non-alphanumeric character seen, plus a
series of small action routines to make various E-list
entries. Implicit in the structuring of the STATE
processors is the expected statement syntax: when a
source statement contains characters that violate that
syntax, suitable error messages are issued.

Structure

The open and closed subroutines that comprise SCANNER are
listed below in the order of appearance.

ADWORD
Called by the ELPUT macro to enter a word in E-list.

ADD1

-73-

5.3.3

5.3.4

5.3.5

5.3.10

2.3.11

6000 FORTRAN EXTENDED 4.0

Called by the STATE processors to fetch an E-list entry,
make the entry, obtain the next non-blank character of
the source line, and exit to a STATE processor.

SCANNER1

Perform common initialization chores for all entries to
SCANNER.

SCAN 2
Performs initialization for DEBUG statements .
SCAN3 thru SCAN6

Performs initialization only for the first entry to
SCANNER.

SCAN7 thru SCAN9

Read and process the first source line image. If the
first line is blank or abnormal, processing continues
until a valid line is found.

A¥PC1 thru LFC

Diagnoses and lists abnormal first card(s).

IRB

Checks for existence of a COMPASS subprogram; tests for
IDENT line.

CP0 thru CP3
Writes *DECK (program name) line to the COMPS file.
CPA, CPB

Copies 1input 1line images to the COMPS file until an END
line is found.

P
Tnitializes 1line counts; obtains (via PACK 30) the

keyword string from the first line image; initializes for
loader control card search.

-74-

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.17.1

5.3.17,2

6000 FORTRAN EXTENDED 4.0

PICOVER

Tests keyword string for loader control card; calls
PICHIT if found.

PA thru NOTT

Initiates typing of first FORTRAN source line; if
program unit header card is found, enters the unit typ

ey ARl -— - ~aaLis e N T 4 il L e e N L

and name in the skeleton title for output listings.

a
e

CONT

Performs secondary initialization tasks for all normal
entries (non-initial) to SCANNER. Updates line numbers;
clears error flags.

BOSS

common transfer point among STATE processors. Fetches
next non-blank character of source line via GET; Exits to
next STATE via register B1.

STATE1

Insures that a new statement begins with an alphabetic
character. If the statement is a DEBUG statement, calls
ISITDBG to type the statement. For non~-DEBUG statements,
calls PACK30 to pack the initial Xeyword string and
continues to STATE2. :

STATE2

STATE2 is a jump vector which transfers control to the
proper routine depending on the condition that terminated
the statement identifier packing. The characters + - %)
. cause an unrecognized statement diagnostic.

S. A slash terminates the string. SEARCH is called to
check for DATA N/, COMMON N/, or NAMELIST/. After
successful typing and adjusting, control is returned to
STATES3.

L1. A left parenthesis terminates the string. If the
string is FORMAT and the statement was labeled, control
is transferred to FORMAT to process the statement. If
not, a parenthesis count is started and control is
transferred to STATE3.

-75-

6000 FORTRAN EXTENDED 4.0

5.3.17.3 D1. The typing routine for an alphanumeric statement.
SEARCH is called to look for any form of: CONTINUE,
STOP, ECS, GOTO, PAUSE, CALL, READ, REAL, ENTRY, PRINT,
PUNCH, RETURN, COMMON, DOUBLE, REWIND, COMPLEX, ENDFILE,
INTEGER, LOGICAL, PROGRAM, TYPEECS, EXTERNAL, TYPEREAL,
BLOCRDATA, BACKSPACE, SUBROUTINE, TYPEDOUBLE,
TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL, ASSIGN, DOUBLE
PRECISION, TYPEDOUBLEPRECISION. After successful typing
and adjusting control is transferred to STATEO.

£.3.17.4 E1. An = sign terminates the string. If the string is
from 8 to 14 characters long, a check is made for a Do
statement. If so, control is passed to ADJDO. If the
string is less than 8, control is passed to STATES.

5.3.17.5 cc1. A comma terminates the string. SFARCH is called
to look for the forms of: ECS, GOTO, CALL, REAL, DATA,
READ, PRINT, PUNCH, COMMON, DOUBLE, COMPLEX, INTEGER,
LOGICAL, TYPEECS, EXTERNAL, TYPEREAL, SUBROUTINE,
TYPEDOUELE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL,
DOUBLEPRECISION, TYPEDOUBLEPRECISION. After typing and
adjusting control is returned to STATES.

5.3.18 STATE 3

STATE 3 transforms symbolic names, constants, operators,
and delimiters into E-list until the parenthesis count is
zero, then control is passed to STATES.

5.3.19 STATE 5

STATES contains a Jjump vector to pass control to the
processing routine depending on the character that
appears immediately after the parenthesis count goes to
zerc. The characters + - *) blank and . will cause an
unrecognized statement diagnostic.

3

E.Q9a19.1 P5. Is entered when an alphabetic follows when paren
count goes to 0. If the string length before the first
left paren is 2, a check is made for a logical IF. 1If
£0, control is passed to STATES. If not, SEARCH is
called to 1look for any of the forms of: GOTO, READ,
WRITE, ENCODE, DECODE. After successful typing and
adjusting, control is passed to STATES.

£.3.19.2 K3. 1Is entered when a digit follows as paren count goes
to 0. Check the string before the first left parenthesis

-76-

5.3.19.3

6000 FORTRAN EXTENDED 4.0

for IF and if so, assume an arithmetic IF, then pass
control to STATES.

SD. A slash causes SEARCE to be called to look for any
of the forms of DATA and COMMON. After typing and
adjusting, control is passed to STATES.

5.3.19.4 13. A left parenthesis causes SFARCH to look for any

P~ ——— e

proper form of READ, WRITE, ENCODE, DECODE, BUFFERIN,
BUFFEROUT and after typing and adjusting, pass control to
STATES.

'5.3.19.5 D3. The statement is terminated at parenthesis count =

5.3.19.6

0. After checking for WRITE and EQUIVALENCE, SEARCH is
called to 1look for any form of: RFAD, DATA, ECS, CAlLL,
REAL, COMMON, DOUBLE, COMPLEX, INTEGER, LOGICAL, PROGRAM,
TYPEECS, TYPEREAL, FUNCTION, DIMENSION, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, TYPEINTEGER, TYPELOGICAL, REAL
FUNCTION, : DOUBLEFUNCTION, COMPLEXFUNCTION,
INTEGERFUNCTION, LOGICALFUNCTION, DOUBLEPRECISION,
TYPEDOUBLEPRECISION, DOUBLEPRECISIONFUNCTION, and after
typing and adjusting, pass control to STATEO.

E3. The = sign here causes the type to be set
replacement and control is passed to STATES after making
the string before the first left paren into a symbolic
name entry.

.5.3.19.7 cC3. The comma causes a check made for EQUIVALENCE and

5.3.20

then SEARCH is called to look for the forms of: DATA,
GOTO, ECS, CALL, REAL, DOUBLE, COMMON, COMPLEX, INTEGER,

LOGICAL, TYPEECS, TYPEREAL, DIMENSICN, SUBROUTINE,
TYPEDOUBLE, TYPECOMPLEX, = TYPEINTEGER, TYPELOGICAL,

DOUBLEPRECISION, TYPEDOUBLEPRECISION and after typing and
adjusting, pass control to STATES.

STATE6

STATE6 determines if the statement is a replacement or a
DO. A jump vector passes control depending upon the
first character after the = sign. A / *) = $§ , cause an
unrecognized statement diagnostic to be issued.

5.3.20.1 P6. An alphabetic causes PACK to be called to pack a

symbolic name then pass control to STATE7.

5.3.20.2 N4. A digit causes DIGIT to be called to make the E-list

entry for a constant and then pass control to STATE10.

-77-

6000 FORTRAN EXTENDED 4.0

5.3.20.3 A + - (or . cause the statement to be typed replacement

5.3.21

and control passed to STATE8 after making a symbolic name
entry of the string before the = sign.

STATE7

STATE 7 has a jump vector and passes control depending
upon the character that terminated the symbolic name
after the = sign. A + - *¥ (= or . cause the statement
to be typed replacement and control passed to STATES
after making a symbolic name entry of the string before
the = sign. A) will cause an unrecognized statement
diagnostic to be issued. '

5.3.21.17 CcC4. A , will cause a check of the string before the =

5.3.22

5.3.23

sign for a DO. If the first two characters are DO a jump
is made to ADJDO to make a constant and symbolic name
entry and then pass control to STATES.

STATES

The remaining elements of the statement are transformed
into E-list and stored until the statement is terminated
either by an error occurring, or a new statement being
sensed.

STATE10

STATE10 contains a Jjump vector and passes control

depending upon the character that terminated the constant
that appeared after the first = sign.

5.3.23.1

5.3.24

5. 3. 25

5.3.26

5.3.27

5-3- 28

5.3.29

5.3.30

6000 FORTRAN EXTENDED 4.0

A+ - %/ (or . will cause the statement to be typed re-
placement and control passed to STATES.

A) will cause an unrecognized statement to be issued.

CC5.A , will cause the string on the left of the = sign
to be checked for a DO statement by calling ADJIDO.

STATEO

STATE(C inserts the end-of-statement terminator in E-list.
If the statement was a 1logical 1IF, followed by any
statement except a DO or another 1logical IF, E-list
pointers are rearranged to their correct value. STATEO
exits to the caller via the entry point SCANNER.

D$PROC

Called when a statement is terminated by a dollar sign.
Transfers NLABEL to CLABEL, and sets NLABEL to zero.
Posts an informative non-ANSI diagnostic message.

DBGERR

Writes an error message to the output listing file,
interspersed with the source line image listing. Called
by the DBGERR macro; used only to report errors in a
DEBUG statement.

DBGTLE

Enters DEBUG PACKET in the output listing title line
skeleton.

D.IDSAVE

Extracts the UPDATE identifier field from a source 1line
and copies it to the location specified by the caller.
Used for saving line identifiers for the DEBUG option.
D.IDSPEC

Special extension of D.IDSAVE (see above), required for
comment lines and all-blank lines.

ISITDBG

-79-

5.3.3

5.3.32

5.3.33

6000 FORTRAN EXTENDED 4.0

Packs, via PACK7, the initial alphanumeric string that
begins a DEBUG statement and searches a table of DEBUG
keywords, in an attempt to type the statement. Contains

- an entry point for external callers to request the same

service.
PACK7

Packs up to 7 consecutive alphanumeric characters from a
source line, adds the E-list type code for a variable
name, Dblank fills the 1low-order bits, and posts the
string to E-list. Packing is terminated when a character
outside the range 01B-44B is encountered. If the
terminating character is a legal FORTRAN character, 45B-
£7B, return is to the caller. If the character is
outside this range, PACK7 calls PGCOM to make further
checks.

PACK 30

Packs up to 30 consecutive alphanumeric characters from a
source 1line and posts the results to E-list in
successively lower (descending) 1locations. The packed
string is left-justified to bit 59 of the first word, and
is left with zero fill. No E-list type code is added,
because E-list is merely being used as an interim
repository for the packed string. The string will later
be logically removed (3responsibility of the caller,
directly or indirectly). Normally used to pack the
keyword string that begins each source statement. String
terminating conditions are the same as those for PACK7,
above.

GET

Fetches the next non-blank character from a source line.
Returns to the caller with the character in B2, provided
it is in the range 01B-57B. If outside this range, calls
PGCOM to make further legality tests.

FGCOM

“ommon routine, shared by PACK7, PACK30, GET, and ADD1 to
handle the special cases when a source line character is
outside the normal range 01B-57B. If the character is
actually an end-of-line sentinel in the string buffer,
“GCOM saves registers via SCNSAVE and calls NEXT to

“~tain the next source 1line. If the 1line is A

5.3.35

5.3.36

5.3.37

5.3.38

5.3.39

5.3.40

6000 FORTRAN EXTENDED 4.0

continuation 1line, NEXT returns to PGCOM, who in turn
returns to the caller after restoring registers via
RESTO. If the string terminating character is a quote
mark (64B), this marks the beginning of a quote-delimited
Holierith constant. PGCOM changes the character to a 55B
to save space in the STATE processing Jjump tables and
retums to the caller. If the string terminating
character is any other value, PGCOM exits to a fatal-to-
execution error routine.

LCARD

Lists a complete source statement (up to 20 lines) when
an error is discovered in the statement and the output
listing is suppressed. The saved statement is located in
a special area beginning at location SAVLINE.

POINT

when a period (57B) is encountered, POINT is called to
process the following character string as a logical,
relational or Boolean operator. If the string can be
successfullvy verified as such an operator, a suitable E-
list entry is made for the operator.

PACKC

Assembles a numeric string for CONSTOR entry. One
character is passed to PACKC per call; when ten
characters have been accumulated, PACKC enters the
accumulated string in CONSTOR.

PACKT

Completes the CONSTOR and E-list entries for a constant.
DIGIT

Determines the constant type of a numeric string, based
cn the appearance of a decimal point or the letters B, D,
E, H, L, O, or R. <Calls PACKC and PACKT to assemble the
constant and make suitable CONSTOR and E-list entries.
Calls HOLLRTH to process Hollerith constants.

ENDP

Called to perform a series of special-case tasks
associated with END line processing. ENDP is entered at

-81-

5.3.41

5.3.42

5.3.43

6000 FORTRAN EXTENDED 4.0

ENDP if an end-of-section/partition/information status is
encountered on the input file, and is entered at END3 if
the keyword END is followed by other than EOS/P/I. ENDP
verifies that a valid END line has been found. If so,
the statement is typed as a normal END line. If not, an
invented END line is forced to the source input file, so
that subsequent processing tasks can follow a semi-normal
course of action. If ENDP is entered before any wvalid
FORTRAN source statements have Dbeen 1located, and no
illegal source statements have been found, ENDP will
immediately terminate the compilation with a suitable
dayfile message.

HOLLRTH

Assenbles either a standard or a delimited Hollerith
constant string, making suitable E-list and CONSTOR
entries.

FORMAT

Beginning with the first left parenthesis that follows
the characters FORMAT, packs the remainder of the
statement, ten characters per word, and stores it in E-
list. The last word is filled with blanks.

READCARD

After calling READL to read the next source line from the
input file, READCARD checks for comment, DEBUG and
continuation 1lines. Comment 1lines are listed directly
without bursting, so speed processing. DEBUG and
continuation 1lines are flagged for later vrocessing. If
a statement label exists, it 1is 1leftjustified in a
packing register, blank filled, and stored in location
NLABEL; the previous contents of NLABEL were moved to
CLABEL. Columns 7 thru 72 of the line are burst to the
string buffer beginning at 1location SBUFF. Only non-
blank characters are actually stored. When blanks are
encountered, their count is simply accumulated until a
non-klank character or the end of line is encountered.
Then the accumulated blank count, plus a bias of 1, is
packed into the exponent field of the non-blank
character, and the result is stored in SBUFF. The end-
of-line sentinel has an arbitrary value of -1. After
bursting, the source listing line number for the line is
updated, and READCARD then returns to the caller.

-82-

5.3.44

5.3.45

5.3.46

5.3.47

6000 FORTRAN EXTENDED 4.0

LISTCARD

Lists a source line image from the input area beginning
at C.LINE+2 (formerly LINEOUT). Calls external routine
LIST to perform the actual I/0 task.

READL

PICHIT

reformats a loader control card and enters it at the end
of E-list.

CKCSTOR

Called to verify that CONSTOR storage limits have not
been exceeded.

FORMATS

E-list formaﬁ

Element E-list Format

constant VFD 12/2000B, 37+, 6/s, 11/0,
10/n, 18/Pointer

symbolic name VFD 12/2001B, u8/Name

) VFD 12720028, 48/0

’ VFD 12/2003B, 48/0

end-of-statement VFD 12/72004B, 48/0

= VFD 12/2005B, 4870

(VFD 12720068, 48/0
.OR. VFD 12/2007B, 48/2
.AND. VFD 12/2010B, 48/3
.NOT. VFD 12/2011B, 48/4
.LE. ' VFD 12/2012B, 48/5

-83-

6000 FORTRAN EXTENDED 4.0

.LT. VFD 12/2013B, 48/5
.GE. VFD 12/2014B, 48/5
.GT. VFD 12/2015B, 48/5
.NE. VFD 12/2016B, 48/5
. EQ. ' VFD 12720178, 48/5

- VFD 12/72020B, 48/6

+ VFD 12/2021B, 48/6
* VFD 12/2022B, 48/7
/ | VFD 12/2023B, 48/8
*% VFD 12/2024B, 48/10

For a constant entry, t = 0 for logical, 1 for integer, 2
for real, 3 for double precision, 5 for octal, and 6 for
Hollerith. When T = 6, s = 0 for the H form, s = 1 for
the L form and s = 2 for the R form.

'n is the number of characters in the constant string and

Pointer is the starting address of the string in CONSTOR.
For logical constants, the Pointer field will hold -1 for
TRUE and 0 for FALSE and the n field is 0 and no CONSTOR
entry is necessary.

Statement Type Codes

Fach statement has an associated type code which has the
following significance; it is the ordinal in a Jump
vector of the statement processing program. The elements
that actually appear in E-list are underlinad.

Statement
Code Number Statement and E-list Entries

0 PROGRAM s
PROGRAM s (...

BLOCK DATA

-84-

6000 FORTRAN EXTENDED 4.0

BLOCK DATA

10}

SUBROUTINE s

SUBROUTINE s_(al, a2£ es sy an)

SUBROUTINE s, RETURNS (b1, b2, ..., bn)

x

SUBROUTINE s, {al, a2, ..., an)

RETURNS (b, b, ...,bm)

t FUNCTION s {al, @22, «..p anj

IEVEL n ,(vl, V2, ...y Vn}

IMPLICIT t1(al), t2(a2}, ..., tnf{an),
where (an) is of the form (b),

(b1-b2) or any combination

{(b1-b2, b3 ...)

COMMON /x1/al/.../xn/an

DIMENSION v1, V2, «e.y, VN

EXTERNAL v1, V2, «eep, VN

EQUIVALENCE (k1) , (k2), ..., (kn)

INTEGER, TYPE INTEGER, REAL, TYPE REAL,
COMPLEX TYPE COMPLEX, DOUBLE, TYPE
DOUBLE, DOUBLE PRECISION, TYPE DOUBLE
PRECISION, LOGICAL, TYPE LOGICAL, ECS

or TYPE ECS

Vi, V2, ees,y, VN

FORMAT (...)
DATA k1/d1/' s a ey drl/dn/

or
(r1 = d1), ..., {rn = dn)

11

12

13

NAMELIST /vyv1al/.../yn/an

f (a1, a2, ..., an) = e oxr v=e

END

-85~

14

15

16

17

18

19

20

21

22

23

24

25

26

6000 FORTRAN EXTENDED 4.0

ASSIGN k TO i
GO TO k

Go TO i, (k1, k2, ..., kn)

- IF (e) ki, k2, k3

IF (e) S

not used

CALL s

CALL s (§1, 82y eeey and

CALL s, RETURNS (b1, b2, ...,bm)

CALL s (al, a2, ..., anj),
RETURNS (bl, b2, eeey

bm)

RETURN
RETURN i
CONTINUE
STOP

STOP n
PAUSE
PAUSE n

DOn i=ml, m2, m3

READ fik
READ (u) k
READ (u,f) k

READ (u,f)
WRITE (u) k

-86-

6000 FORTRAN EXTENDED 4.0

WRITE (u, f) k
27 BUFFER IN {u, k) (A, B)
28 BUFFER OUT (u, k) (A, B)
29 ENCODE (n, f, A) k
30 DECODE (n, f, A) k
31 REWIND u
32 BACRSPACE u
33 ENDFILE u
34 PRINT £, k
35 PUNCH £, k
36 ENTRY s
37 END card assumed for end-of-record

Statement types 0, 1, 3, and 8 require additional type
code information. This added information will be stored
by SEARCH in ATYPE (RA+51B}.

For statement type 0, the additional type code may assume
the following values:

0 BLOCK DATA
1 SUBROUTINE
2 PROGRAM

Tor statement types 1, 3, and 8, the additional type code
(termed the arithmetic type) may assume the following
values:

0 LOGICAL

1 INTEGER

2 REAL

3 DOUBLE PRECISION

) COMPLEX

5 ECS (illegal for the IMPLICIT statement)

-87-

6.3

6000 FORTRAN EXTENDED 4.0

Note that only the first IMPLICIT statement type is coded
in ATYPE. Additional types are stored in E-list, using
the standard entry format for a variable name (DOUEBLE
PRECISION is truncated to DOUBLE).

SEARCH Table Formats

The SEARCH program utilizes three tables. Each condition
that requires a search has two distinct tables plus a
third table common to all conditions. The conditions
that use the search are:

(1) An all alphanumeric statement.
{(2) A , after an all alphanumeric identifier.

(3) An identifier, then statement terminated a zero
parenthesis count.

(4) An identifier, parenthesis count equal zero, then a
slash.

(5) An identifier, parenthesis count equals zero, then a
left parenthesis.

(6) An identifier, then a slash.

(7) An identifier, parenthesis count equal zero, then an
alphabetic character.

(8) An identifier, then parenthesis count equal zero,
then a ,.

(9) The initial statement.

The search keys on the number of alphanumeric characters
that appear in the initial string. Table 1 thus has one
word containing the number of statement possibilities as
determined by the length of the string. 1In addition to
this Table 1 has a pointer to the Table 2 location that
contains the following information: The location (in
Table 3) of the display code representation of the
statement identifier and the location to jump to upon a
successful match. The format of Table 1 is:

VFD 12/7200nB, 48/Table 2 location

-88-

6000 FORTRAN EXTENDED 4.0

The format of Table 2 is:
VFD 30/jump address, 30/Table 3 location
The format of Table 3 is:
VFD 12/7200mB, #8/statement code
VFD 60/display code picture of identifier
m = the number of characters in picture

Thus for a given condition, the n Table 2 entries (in
sequence) are used to find the pictures to compare to the
string.

-89~

2.0

6000 FORTRAN EXTENDED 4.0
CONVERT

General Information

CONVERT converts the display code representation of a
constant to its internal binary form. The binary form is
placed in a table and the user now refers to the constant
by the I, H of the table name and the CA of the 1location
of the constant in the table CON..

Usage
CONVERT
Determines which of the three options is desired.

The constant is converted to binary form, placed in
CONLIST, if not already there and the caller informed of

v~ o e
I, U and CA to be used tc reference the constant.

Conversion and add to CONLIST.

The constant is converted to binary form and returned to
the caller. Conversion only.

The constant in the form supplied by the caller is placed
in CONLIST if not already there and the caller informed
of I, H and CA. Add to CONLIST only.

Calling Sequence and Returns.

The calling sequence is RJ CONVERT. Case 2.1.1 expects
register B1 to be 40 and the E-list entry for the
constant to be in register X1. Upon successful return,
register X1 holds H in bits 0=17, I in bits 18-29 and cCa
in bits 30-47, all other bits being 0.

Case 2.1.2 expects register B1 to be negative and the E~
list for the constant to be in register X1. Upon return,
the converted form of the constant is held in X1, and X2
if the constant is a two word element.

Case 2.1.3 expects register B1 to hold 1 or 2 the number
of words in the caller supplied constant and X1 and X2 to
hold the one or two word element, X1 the first part of
the constant and X2 the second part.

-90-

6000 FORTRAN EXTENDED 4.0

Processing Flow Description

CONVERT quickly determines the option desired. The first
call for either case 2.1.1 or 2.1.3 will cause the
symbolic name CON. to be placed in the symbol table. For
Case 2.1.1, the display code of the constant is formed by
DEC. DEC is called to convert the constant, the CONLIST
is searched for the converted form of the constant. If
the constant already appears, the I, ¥ and CA is returned
to the caller. Otherwise, the constant 1is placed in
CONLIST. For Case 2.1.2, DEC is called to convert the
constant. DISPLAY is the routine called to process all
forms of Hollerith constants. 1In case 2.1.2 the first
word of the constant is returned in X1. ¥For cases 2.1.1
and 2.1.3, the constant is put in the COMPASS file
following a USE HOL.. The constant instruction is a DIS
n, except for the last word which is a HOL nH, nR, or nL
depending on the constant type (HOL is opsyned to DATA)
depending upon the form of the Hollerith constant. The
first call to DISPLAY will cause the symbolic name HOL.
to be placed in the symbol table.

Diagnostics Produced
Fatal to Compilation

CONLIST TOO BIG. TOO MANY CONSTANTS. MORE MEMORY
REQUIRED.

Fatal to Execution

Environment

CONVERT expects CON1 (RA+26B), DO1 (RA+30B), DOLAST
(RA+31B) and ELAST (RA+14B) to be set prior to being
called. CONVERT maintains CON1 and CONLAST, the first
and last locations used by CONLIST. 100 lccations are
initially reserved for CONLIST. If more room is
required, the DO tables are moved 100 1locations, if
possible, and the pointers maintained. When 100 more
locations are not available ((ELAST) being the highest +1
address that can be used), a fatal to compilation
diagnostic is issued via FATALER.

-91-

6000 FORTRAN EXTENDED 4.0

Structure

CONVERT determines if the option is "store only" and if
so, jumps to PACK. If not, a check is made for the
constant being any form of Hollerith and if so, a jump is
made to DISPLAY. For the "convert only" option, a jump
is made to PRECON to arrange the input to DEC. For the
"convert and store" option, a jump is made to PRECON,
then PUT.

PACK determines the first call for a store and calls
SYMBOL to put the name CON. in the symbol table and
retain its ordinal for use as the H field in the I, H and
CA information.

PRECON arranges the display code of the constant as
follows: digits are packed a maximum of seven per ward
left adjusted to bit 59 and zero filled, # -. or B are
stored in bits 0-5 with zero fill, and E or D are stored
in bits 54-59 with zero fill.

L0 138 k24 -t e

caller supplied constant) into CONLIST if the constant is
not already in CONLIST. Initially 100 locations are
reserved for CONLIST and will be expanded 100 1locations
at a time moving the DO tables if necessary until the
time when 100 locations are not available (CONLIST) or
the DO tables running over ELAST when a fatal to
compilation diagnostic is issued.

PUT places the one or two word converted constant {or

DEC does the actual conversion.

DISPLAY determines the first call for a storing option
and calls SYMBOL to place the name HOL. in the symbol
table and retain the ordinal to use as H in the I, H and
CA information. For the convert only option, the first
word of the Hollerith constant is returned to the caller
in register X1. For any storing option, the constant is
placed in the COMPASS file and the user returned the I, H
and CA information. Any ten character part of the
constant 1is issued with a HOL nH or L or R n being the
number of characters. The first Hollerith constant put
in the COMPASS file will be preceded by a HOL. BSS 0B
line. A DATA instruction is put in the COMPASS file to
terminate each constant with a word of zeros. Finally a
USE DATA. is put in the COMPASS file.

-92-

Formats
I, B and

VFD
CONLIST

supplied
.FALSE.

6000 FORTRAN EXTENDED 4.0

CA word returned to the caller is:
1270,187CA,12/71,18/H
is the name of the table of converted or user

constants. .TRUE. 1is converted to -1 and
is converted as +0.

-93-

6000 FORTRAN EXTENDED 4.0

DATA

General Information

DATA resides in Phase 2 of Pass 1 and processes DATA
statements after SCANNER has transformed the statement
into E-list fommat. Output from DATA consists of DATA
statements being sent to the COMPS file along with ORG
and REPI macro calls. Examples are given later in the
sections discussing output in more detail.

Data statement syntax is described in first page of the
program listing and in the reference manual.

Overall Structure

Upon entry, RAS is called to do a quick backwards scan of
the statement to locate the beginning of the constant
item 1lists and the variable element lists. The pointers
are saved in a table, and the main loop entered. First,
a constant 1list 1is scanned, the constants converted to
binary numbers and placed in a temporary table built in
working storage. Next the corresponding variable list is
scanned and as each element or nest of 1loops is
processed, output routines are called to issue ORG macro
calls to set the FWA for data placement and to extract
items from the data table and output DATA and REPI pseudo
ops. Last of all, we check to see if the number of items
in the variable 1list match the number of items in the
constant list and if they don't, we issue an informative
diagnostic to that effect and loop to process the next
pair of 1lists. ‘

Listing Structure

Each section in the program listing is preceeded by a
sub-title. A breakdown of the sections is as follows.

Data statement syntax definition
Error message ordinals and error exits
Description of non ANSI extensions

Macro definitions

-94-

6000 FORTRAN EXTENDED 4.0

Local variable definitions, grouped by routine that
defines them

Main loop

Data item list processing
Data variable list processing
Output subroutines

PDV - data variable processing

Subroutines
RAS - Remove Alternate Syntax

Function - To build up a table of pointers to the start
of the variable and data item lists.

Method - A EOS marker is placed at the beginning at the
statement, and the statement is scanned backwards for the
start of the data item and variable lists. The pointers
are saved in working storage in the DIL table. When the
alternate syntax is encountered, the ='s sign and right
parenthesis are replaced by slashes.

ENTRY/EXIT conditions
On exit, the DIL table has been built starting at
FWAWORK, its length set in the location N.DIL and the FWA
for the data item table, O.DIT set.
The format of the DIL is:

24/0,18/FWA of var list, 18/FWA of con list.

cells set

N.DIL = number of initialization lists
0.DIT = FWA of data item table (FWAWORK)
NONANSI = initialized to 0. Set if alternate syntax

is encountered.

-95-

3.2

6000 FORTRAN EXTENDED 4.0

Error Messages
SYNTAX ERROR IN DATA STATEMENT

RAS is called once per data statement from the main loop.
It calls STD to scan to the start of the constant item
list or wvariable list.

BIT - Build data item table

BIT scans the constant list for syntactic correctness and
calls the subroutines ADIT and ADDCON to make entries in
the data item table. The format of t+he DIT is described
in the comments preceeding the routine. It also keeps
track of the number of items in the data list (N.ITEM).

Most of BIT is rather straight forward and we will only
discuss the processing of repetition 1lists and complex
constants.

REP List Processing

Recognition: a REP list is recognized when we encounter
an unsigned integer constant followed by a * or (at
paren level 0. At this point, we set the following flags
CLOSREP = =1 if +the rep 1list is not enclosed in
parentheses, i.e., 5%10, else CLOSREP = 1.

An initial entry is made in DIT where the rep count is
saved. REPFLAG = 24/0,18/N.ITEM, 18/pointer to DIT entry
for rep list start, and N.ITEM is cleared.

Wwhen the end of a rep list is encountered, which is after
processing the next constant if CLOSREP = -1 or a
parenthesis if CLOSREP =1, CRL is called to close out the
repetition list.

It performs the following functions:

Updates the DIT entry for the rep list to include the
number of items in the rep list, the index to +he next
list and sets the constant item length flag (CI1) for the
list if all the data items have the same length (word
count) . This 1last flag is used by the output routines
when they are trying to output REPI macro calls. It also
updates N.ITEM where N.ITEM = RF * RL+N.ITEM and clears
CLOSREP and REPFLAG.

-96-

6000 FORTRAN EXTENDED 4.0

CFCD

When a (is encountered, the updated paren level counter
(PL) is compared to CLOSREP to see if this left paren
started a rep list or it must be the start of a complex
constant.

If it is the start of a rep list, then we jump back to
the main loop to process the next item, else we call CFCD
to 1look ahead and check for a complex constant, and
return false, or convert the constant and return true.
In the case that CFCD returns false, either the left
parenthesis is meaningless and ignored, or an attempt to
nest 2 parentheses groups and flagged as a syntax error.

If CFCD returned true, then the parenthesis level is
decremented by 1 and ADIT is called to add the constant
to the DIT.

Entry
A5 = (SELIST)
A4 = points to start of con list, the /.

Exit
DIT built, length in L.DIT and number of items in N.ITEM.
Note fo

3 S N TN = 12 27%)
r the list 71,3(1,2) Nel IHLM = 1+3%2 =

PL REPFLAG = CLOSREP = 0.

Error messages

Syntax error in data item list

Illegal item following + or - sign

2 nested rep lists.

Illegal separator following a constant item.

CALLS - CRL, CFCD, CHRSC,CADIT and ADDCON

~97-

6000 FORTRAN EXTENDED 4.0

CHRSC - Check for Small Constant

CHRSC checks to see that the given constant is type
integer or octal, and that the converted value is between
1 and 377777B. It returns the converted value of the
constant in X6.

Error messages

Do 1limit or rep factor in a DATA statement must be an
integer or octal constant between 1 and 131K.

CALLS - CONVERT
ADDCON

ADDCON calls convert to convert the constant to binary,
exclusive ors in the value of the sign (+ or ~) and calls
ADIT to add the constant and prefix word to the DIT. 1In
the case of Hollerith constants the number of words in

+ arnA +ha ramaindoar dc caloanla+sad and nrm
the constant an& LN remalinger 15 casfdusialed and a Pi7T

entry is made for the prefix word and the E-list for the
constant. In the case that a Hollerith constant is
preceeded by a - sign, the CONSTOR's entry is
complemented.

Entry

X4 = E-list for the constant

X1 = E-1list for the constant with upper 12 bits = 0
X7 = value of the sign (+0 or =-0)

Exit

Constant added to ADIT

Registers restored by a call to macro # GETE #, point
past the constant.

CALLS CONVERT, ADIT

-98-

(o)

6000 FORTRAN EXTENDED 4,0

ADIT

ADIT is <called to add up to 3 words to the DIT. The
first word is in X6, the second in X1, and third in X2.
B1 = number of words -1 to be added. ADIT updates L.DIT
and checks for memory overflow.

Error messages

DATA TABLE MEMORY OVERFLOW, INCREASE FL

BVT

BVT scans the variable list for syntactic correctness,
accumulates information about each variable or nest of
loops in the list, and calls the output routine, MDL, to
match up the variable and data item lists.

The processing of implicit DO loops will be discussed
here.

PDV is called to process the array name and set cells
containing the dimensions, etc.

PSS is called to process th subscript list of the array
and set up the subscript table (SsT) information
containing the constant multipliers (C1's), constant
addends {C2's) and index variables. Then, we process the
100p variable and limits, matchlng up the index variable
with the wvariables appearlng in array suDscrlpt
expression and converting the 1lcop 1limits to binary.
Next, we check to see that for each subscript ¢ * 11+C221
and then reduce the loop to normal form.

The set of loops:

({(A(C11%I1+C12,C21*%I2+C22,C31*I3+C32), I=111,ull,int),
J=112,ul2,in2),
K=113,ul3,in3)

where I1, I2, I3 1is some permutation of IJK, can be
reduced to:

{((A' (M1*I1,m2%I2,m3*I3), I'=1,t1), J'=1,t2), K'=1,t3)

which we will call normal form.

-99-

6000 FORTRAN EXTENDED 4.0

The formulas for reduction to normal form are:

1. I=in_*I'41l

-i =i *J1 -i LY
1 1 1n1,J.1n2 J+112 1n2

—3 3
2. Mi_m1 Cli

3. A'=A+ Y dmj* { c2iC lj(11j—incj)}

j 0

J,Clj;é

. sdpf

+3, { dm]*(CZj-l)} *2
. -0
J’Clj

4., t:(uli+ini—lli)/ini,trip count for the loop if 11i = uli

Where sdpf is the single/double precision flag (0 or 1) and the dmj are
the dimensional multipliers for the array.

dm 1=1, dmz.-.dnn 1
The difference A'-A is the bias due to subscript calculation and
accumulated in the cell BIAS.

NS PR
,d1m3_d1m1 d1m2

One may derive 2 and 3 from 1 and the definition of LOCF

e i 1y xoSAPE
Al »1y1)=LOCF(A)+ { EJ: dmj*(-1 *2

-100-

6000 FORTRAN EXTENDED 4.0

The code from BVT9 to BVT14 performs this reduction. The
loop information for the ith loop is combined and saved
in LPINF{(I) whose format is described in the comments
preceeding BVT.

For the loop nest

(A(,1), 1 = 1,5, I = 2,6,2)
which reduces to
(A {J,i), i = 1,5) J0 = 1,3)

we would have:

LPINF (1) = 6s/1, 1871, 18/5, 18/dim1

]

LPINF (2) = 6/0, 1872, 1873, 18/dim2

The next sequence of code (BVT 15 - BVT 18) collapses the
innermost loops when the subscripts are in standard order
(IJK) .

As an example:

((a(i, 3, i=1, dim1), J=1,N) may be collapsed to

(A(i), i = 1 dim1*N) which is easier for the output
routines to process.

Finally, one calculates the sum

BIA5+§2£m(~"1 I 1%

checks it to see that it is less than MAX(dimj, EQUIV
extended of the array), then calls MDL to match up the
lists.

Entry

AS SELIST
A4 = points to start of var list

N.ITEM = number of items in data list

-101-

6000 FORTRAN EXTENDED 4.0

N.ITEM = 0 lists match
less than 0 if var list longer than con list
greater than 0 if con list longer than var list
CALLS - PDV, PSS MDL, CHKSC
PSS

PSS processes the subscript list associated with an array
element or appearing in a DO nest up to the closing
paren. PSS consists of three phases. First, the
subscripts are syntax checked and the E-list for the
constant multipliers, addends and subscript variables
saved in the subscript into block, SST. Next, the
constant multipliers and addends are converted to binary.
Finally we search for multiple appearences of a subscript
variable, and if found eliminate them by reducing the
number of variable subscripts and adjusting the constant
multipliers and addends.

Entry
Al4 points to (following the array name.
Exit

SELIST points past the closing).

B7 = N.VSUB = number of variable subscipts
N.SUBS = number of subscripts
CON1 = constant multipliers
IVAR = elist of subscript variables
CON2 = constant addends

Example A (2*%I-1,3) results in

N.VSUB 1

2

N.SUBS

-102-

6000 FORTRAN EXTENDED 4.0

CON1 (1) = 2, CON1(2) = 0, CON1(3) = 0
IVAR (1) = nyn . IVAR(2) = 0, IVAR(3) = 0
CON2(1) = -1, CON2(2) = 3, CON2(3) =0

CALLS - CHKSC
PDV

PDV is called from BVT process names occuring in data
statements which are not dummy variables occurring in DO
nests. The functions of PDV are to return to the calling
routine information of interest to it, which include:
symtab ordinal, bias due to equivalence, words of
storages/element, number of dimensions, dimensions, etc.
PDV must also define the address of usage defined
variables that occur in DATA statements and call ADDREF
to add definitions to the reference map.

The flow structure of PDV 1is straight forward but
modifiers should be careful not to destroy information
being saved in the B registers, or X1 and X2 which
contain the symtab entry.

When a usage defined variable occurs in a data statement,
we must define its address immediately, instead of
waiting until ENDPRO time, since we will issue storage
for it. Since there is no space in the symbol table
entry during pass 1 (the RA field is used by the DEBUG
processor) , we save the address we assign it and the
symbol table ordinal in a separate table which is
processed at ENDPRO time, PDV also sets the common bit
in the symbol table entry so further occurrances in DATA
statements do not cause the address to be defined again
and so ENDPRO doesn't attempt to define its address.
After ENDPRO processes the symbol table (PST) and defines
the address's of the usage defined variabels that have
not occurred in DATA statements, if processes the DATA
table and turns off the common bit and inserts the saved
address in word B of the symbol table entries.

Entry

Registers point to variable name (X1, X4, A4, A5).

-103-

Exit

Registers

6000 FORTRAN EXTENDED 4.0

restored for syntax scanning and point past

variable name.

The following locations are set:

SNAME

SDPF
N.DIMS

DIM

DIM.MUL

DVT

EEL

E-list for the variable name.

(Used for error messages to point to the last
good name processed).

0 if the name is a single precision variable or
array (1 word/element), 1 if double or complex.

0 if a simple variable, else = to the number of
dimensions.

This block holds the dimensions of the array.

This block holds the dimensional multipliers
for subscript calculations. (1,DIM1,DIM1*DIM2)
This two word block holds the symtab ordinal,
the bias due to equivalence, the number of
elements in the array, the number of words of
storage allocated to +the symbol and some
miscellaneous flags (see description preceedubg
BVT) .

0 unless the name 1is an array reference
appearing in a DO nest. 1In this case, EEL =
equivalence class length - bias of the array
relative to the equivalence class.

CALLS - SYMBOL, ADDWD, CFO, ADDREF

Error Messages

This name may not appear in a data statement.

Name may not be function, external, formal parameter or
in blank common.

Output Routines and Methods

-104-

6000 FORTRAN EXTENDED 4.0

At ovresent, all the data processor output goes to the
cOMPS file in the form of display code line images. The
information put out consists of setting the FWA for data
placement followed by the data. To achieve the first
objective, the ORG pseudo was redefined so that it would
act as a NAME BSS O statement in the case that the
variable had not yet had storage issued for it (in
DPCLOSE) and as a ORG in the case that storage had been
previously allocated.

In order to output the data in the most efficient way
{minimize the size of the binary file)}, one wishes to
make use of the REPI pseudo whenever possible. The
analysis necessary to do this in the one dimensional case
is contained in the subroutine OIC. Code necessary for
the 2 and 3 dimensional cases was not done due to lack of
time, but extra analysis could be included in MDI.

The definitions of +the ORG and REPI macros used by the
compiler can be found in FTNMAC.

Data Productions

1. single element DATA A(C) / CON /
ORG A,C-1
DATA CON

2. 1 dimensional loop (A(m*1l), 1 = 1,t) / con list /

3o con list = C1, C2,...,Ct
ORG A + m-1 where redundant "ORGS"
DATA C1 are suppressed if the

ORG A + 2*m-1 length of the data item = m

DATA C2

ORG A, t*m-1
DATA Ct

b. con list = rf * (ct1, C2,..., Crl)

-105-

6000 FORTRAN EXTENDED 4.0

where all the Ci are the same length, CIL, here
there are two cases and we look at the address
difference between consecutive elements

Note that the dmp contribution comes in since
BVT has reduced loops with constant subscripts,
like

(A(2,i), i=1,5) to the form Al (i), i=1,5)

The number of times we can use the data list in
the loop is

n = min (rf, t/rl)
where n > 1 if we are to use the REPI pseudo.

The cases are as follows:

CIL)Za"é, no replication
RL = 1 or AA = CIL

We output a ORG, followed by a DATA followed by a
REPI macro call

ORG A,BIAS m'=RL*AA
S. SET *

DATA C1,C2,...,Crl

REPI S/S.,+m', B/rl.CIL, C/n-1, I/m!'
RL>1 and. AADCIL
For this case, the data will not occupy contiguous
locations in storage. Since the REPI pseudo is not
capable of moving a non-contiguous sequence of data,
we must issue a separate ORG and REPI for each piece

of data.

The sequence that OIC expands issues to the COMPS
file is:

-106-

6000 FORTRAN EXTENDED 4.0

X SET 0

DUP RL

ORG A (m* (1+X)) m' = AA.RL
S. SET *

DATA Cx+1

REPI S/S.,BsCiL, C/n-1, I/m', D/S.+m'
Output for the case when the data list consists of
single items and replication lists intermixed simply
consists of breaking down the loop into a sequence
of loops and processing each sub loop in sequence.
Processing of an irreducible nest of loops such as

((AA (j,i) i=1,10), 3=1,5)

consists of calling OIC to process the inner loop n

times with the outer loop variables being
incremented after each call to OIC.

Output Subroutines

Here the subroutines fall into three classes:

1.

Output information to the COMPS file

oDV Outputs ORG macro call.
ORP Output REPI macro call.
ODI Output a data item to the COMPS file calls

IDW or OHC to issue the data words to the
CcoMPSs file.

IDW Output a single data word to the COMPS
file. ODV and ORP call the subroutine
FMAC format and translate the information
to display code IDW calls FMAC and BTOCT.

Maintain vointer to the data item taole.

-107-

6000 FORTRAN EXTENDED 4.0

GNI performs this function and OIC decrements the
rep count when it decides it can use the REPI pseudo
op to replicate a list.

Controllers

MDL - decides what case we are processing and calls
the output routines or OIC. '

OIC - outputs data initalization code for the
sequence of elements described by the loop.

(A (m*i), i = 1,t)

CALLS GNI, ODI, ODV ORP

-108-

1.0

1.2

6000 FORTRAN EXTENDED 4.0

ERPRO_and FORMAT

General Information

Task Description - Error Processing

Py
1~ o mamor Arrramor ~AAamed Toad s e 3o <5

The error processing during compilation is divided into
two routines: ERPRO in PASS 1, and PS2CTL in overlay
1,3. The final output resulting from detecting an error
will be the card sequence number (compiler generated) on
which -~ the error occurred, the severity (fatal to
execution, etc.), an optional symbol, a name or word to
further clarify the message, and the actual diagnostic
(up to 106 characters). ERPRO 1is located in the 1,1
overlay.

Task Description - FORMAT Scanner

The FORMAT scanner processes FORMAT statements and checks
for errors at compilation time. The scanner squeezes out
blanks and redundant commas. Before scanning the FORMAT
for wvalidity, the statement label is checked for
validity, recorded in the symbol table, and sent to the
CcoMPS file.

Usage
Entry Point Names - Error Processing

In general the calling sequence is:

SB6 error number
SB7 return
EQ entry point

Using the above calling sequence, ERPRO would expect an
E-list entry in X4, or if X4 is =zero a display code
message in X3 (bits 48=59 zero, bits 0-47 display code).

Using the following calling sequence, no message is
expected in X3 or X4.

SB6 -error number
SRB7 return
EQ entry point

-109~-

2.1.2

2.1.3

6000 FORTRAN EXTENDED 4.0

The parameter in B6 is a symbol or number which is
equated to the ordinal of the error in the errvor
directory table in overlay 1,3.

ERPRO

This entry is used for all messages which resulted from
errors which are fatal to execution.

ASAER

This entry is used for all messages which denote non-ANSI
usage.

If the X option is not selected, this entry point is
changed to a JP B7 instruction by PHI1CTL.

FATALER
This entry 1is used for all messages which resulted from
errors which are fatal to compilation. ' Co

A reference to this entry will result in making an entry
in the error table and setting the fatal to compilation
flag (FX). Control does not return to the caller. cCalls
to SCANNER are then made until an END card is
encountered, then a request tc load PASS 2 is made.

ERPROI

This entry point is used for all diagnostics which are
informative in nature.

Informative diagnostics up until 12 minus the maximum are
placed in the table and at that +time an informative
diagnostic 1is issued stating that no more informative

~diagnostics will be put in the table.

FORMAT has one entry point.

Upon entry with a legal statement label, FORMAT scanning
takes place. FORMAT is entered by both PHICTL and
PS1CTL, since formats may be among both executable and
nonexecutable statements.

Calling Sequence

-110-

2‘ 2.3

3.2

3.2.1

6000 FORTRAN EXTENDED 4.0

FORMAT is entered via a return jump and upon completion
of its tasks, exits through its entry point.

Flow of Processing
The characters which comprise a FORMAT, beginning with

the left parenthesis, are scanned sequentially until the
matching right parenthesis or an irrecoverable error

condition is encountered

bANA A A Tsia SaaS~ LR A8 4

Diagnostics

Error Processing

Numker 206 Informative DUE TO THE NUMEROUS ERRORS NOTED,
ONLY THOSE WHICH ARE FATAL TO EXECUTION WILL BE LISTED
BEYOND THIS POINT ‘

Number 110 Fatal to Compilation ERROR TABLE OVERFLOW
FORMAT

Fatal to Execution

PRECEDING CHARACTER ILLEGAL AT THIS POINT IN CHARACTER
STRING. ERROR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS PRECEDING FLOATING POINT
DESCRIPTOR. ERRCR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS PRECEDING A,I,L,0 OR R
DESCRIPTOR. ERROR SCAN FOR THIS FORMAT STOPS HERE.

ILLEGAL CHARACTER FOLLOWS TAB SETTING DESIGNATOR. ERROR
SCAN FOR THIS FORMAT STOPS HERE,

ILLEGAL - CHARACTER FOLLOWS PRECEDING SIGN CHARACTER.
ERROR SCANNING FOR THIS FORMAT STOPS HERE.

PRECEDING CHARACTER ILLEGAL, SCALE FACTOR EXPECTED.
ERROR SCANNING FOR THIS FORMAT STOPS HERE.

PRECEDING HOLLERITH COUNT IS ©EQUAL TO ZERO. ERROR
SCANNING FOR THIS FORMAT STOPS HERE.

FORMAT STATEMENT ENDS BEFORE LAST HOLLERITH COUNT IS
COMPLETE. ERROR SCAN FOR THIS FORMAT STOPS AT H.

-111-

3.2.2

3‘2'3

6000 FORTRAN EXTENDED 4.0

FORMAT STATEMENT ENDS BEFORE END OF HOLLERITH STRING.
ERROR SCANNING STOPS HERE.

PRECEDING HOLLERITH INDICATOR IS NOT PRECEDED BY A COUNT.
ERROR SCANNING STOPS HERE WITH FORMAT INCOMPLETE.

ZERO LEVEL RIGHT PARENTHES IS MISSING. SCANNING
CONTINUES.

PRECEDING FIELD WIDTH OUTSIDE LIMITS FOR RECORD SIZE.
SCANNING CONTINUES.

PRECEDING RECORD OUTSIDE OUTER LIMITS FOR RECORD SIZE.
SCARNING CONTINUES.

. TAB SETTING IS OUTSIDE OUTER LIMITS FOR RECORD LENGTH.

SCANNING CONTINUES.

Non—-ANSI

PLUS SIGN IS AN ILLEGAL CHARACTER.
PRECEDING FIELD DESCRIPTOR IS NON-ANSI.

FLOATING POINT DESCRIPTOR EXPECTED FOLLOWING SCALE FACTOR
DESIGNATOR.

TAB SETTING DESIGNATOR IS NON-ANSI.

HOLLERITH STRING DELINEATED BY SYMBOLS IS NON-ANSI.
Informative

SEPARATOR MISSING, SEPARATOR ASSUMED HERE.

X-FIELD PRECEDED BY A BLANK, 11X ASSUMED.

X~FIELD PRECEDED BY A ZERO, NO SPACING OCCURS.
PRECEDING FIELD WIDTH IS ZERO.

PRECEDING FIELD WIDTH SHOULD BE 7 OR MORE.

FLOATING POINT DESCRIPTOR EXPECTS DECIMAL POINT
SPECIFIED. OUTPUT WILL INCLUDE NO FRACTIONAL PARTS.

FLOATING POINT SPECIFICATION EXPECTS DECIMAL DIGITS TO BE
SPECIFIED. ZERO DECIMAL DIGITS ASSUMED.

-112-

3.2.4

6000 FORTRAN EXTENDED 4.0

REPEAT COUNT FOR PRECEDING FIELD DESCRIPTOR IS ZERO.

FIFLD WIDTH IS OUTSIDE INNER LIMITS. CHECX USE OF THIS
FORMAT TO ASSURE DEVICE CAN HANDLE THIS RECORD SIZE.

PRECEDING SCALE FACTCR IS CUTSIDE LIMITS OF
REPRESENTATION WITHIN THE MACHINE.

SUPERFLUOUS SCALE FACTOR ENCOUNTERED PRECEDING CURRENT
SCALE FACTOR.

RECORD SIZE OUTSIDE INNER LIMITS. CHECK USE OF THIS
FORMAT TO ASSURE DEVICE CAN HANDLE THIS RECORD STIZE.

FIELD WIDTH OF PRECEDING FLOATING POINT DESCRIPTOR SHOULD
BE 7 OR MORE THAN DECIMAL DIGITS SPECIFIED.

NUMERIC FIELD FOLLOWING TAB SETTING DESIGNATOR IS EQUAL
T0 ZERO, COLUMN ONE IS ASSUMED.

NUMERIC FIELD OMITTED 1IN PRECEDING SCALE FACTOR. ZERO
SCALE ASSUMED.

NON~-BLANK CHARACTERS FOLLOW ZERO-LEVEL RIGHT PARENTHESIS.
THESE CHARACTERS WILL BE IGNORED.

TAB SETTING MAY EXCEED RECORD SIZE DEPENDING ON USE.
Each error message will be preceded by a 48 bit message
stating the card and column number of the error

encountered. Computation and the form of this message is
described in Section 8.

Environment

Error Processing

Information provided by other processors

In location 46B and U47B, SCANNER places information
regarding the current card number. Location 46B contains
in display code the 1line number as printed on the
listing, location #7B contains in binary an offset count

which ranges from 1 to 10.

The location of the error table is an entry point name in
FTN called ERTABL.

-113-

6000 FORTRAN EXTENDED 4.0

NASAFLG (issue non-ANSI usage errors) is set by the
control card cracker.

Information generated by ERPRO.

N.FERR contains the number of errors in binary
encountered during a single compilation.

*

FORMAT

FORMAT scanner expects characters to be packed ten
characters per word in display code, where the first
character is a left parenthesis. FORMAT expects the
first word of information at the -location specified by
SELIST, and the last word of information at the location
specified by ELAST. FORMAT allows a maximum of three
levels of parentheses, an input record length of 150
characters, and an output record length of 137
characters. In general, formats must be in accordance
with ANSI FORTRAN standards, with the addition of the tab
setting and Hollerith string capabilities. Legitimate
format field descriptors are of the following form:

{((+ /7 -) (n) P) (xr) <D/Z/E / F / G> w.d
(ry A /I /L/7/70/7R w

nHh1h2...hn

(n) X

¥eae¥ O #Feuo¥

Tm

where:

1. In the above description, a slash separates
alternatives; angle brackets denote that one and
only one of the enclosed alternatives must be
chosen; parentheses denote that none or one of the
enclosed alternatives may be chosen.

2. The letters D, E, ¥ G, A, I, L, O, R, H, and X
indicate the manner of conversion or editing between
the internal and external representations and are
called the conversion codes.

3. w and n are integér constants representing the width
of the field in the external character string.

4. d 1is an integer constant representing the number of
digits in the fractional rart of the external

-114-

6000 FORTRAN EXTENDED 4.0

character string. If d is omitted, it is assumed to
be zero.

5. m is an integer constant representing the tab
setting for the external character string.

6. r is the repeat count (an optional, non-zero integer
constant) indicating the number of times to repeat
the succeeding basic field descriptor.

T (+ 7 =) (n) P is optional and represents a scale
factor to be applied to the processing of the
succeeding conversion code if a D/ E/ F / G.

8. Each hi is one of the characters capable of
representation by the processor.

9. ¥, 0% or #...%# encloses hollerith information
(excluding an asterisk), up to one record in length.

10. For all descriptors other than *...%, or #...¥ field
width must be specified; for descriptors of the form
D E / F /G w. must be greater than or equal to
da+7.

Format field separators are the slash and the comma.
Field separators are used to delimit field descriptors.
Field separators are optional in the following cases:

1. after *...*' »#..I#
2. after nHht1h2...hn
2

do

3. after nX

4, after (+ /7 =) (n) P
5. after another field separator
6. before or after a right parenthesis

In all other cases, a field separator is expected, and a
diagnostic is 1issued if the separator is missing.
Scanning of the format will continue in such a case.
Blanks and commas, where unnecessary, are squeezed out of
the format specification.

Structure

Ma jor subroutine names in ERPRO.

ERPRO

-11s-

5'1.2

5.1.3

6000 FORTRAN EXTENDED 4.0

This subroutine checks if room exists in the table and
determines type of parameter that accompanies the
message.

OPER

This subroutine decodes the E-list element.

TABO FLO

This subroutine issues diagnostic 110 and makes the calls
to SCANNER.

PK

This subroutine sets up the entries in the error table
and updates the cell (ERLOC) which contains the address
of the next available cell in the error table.

FORMAT

Format scanner has been implemented utilizing transition
diagram oriented processing. A transition diagram
describes action to be taken for each syntactic type
encountered in a string. The transition diagram consists
of circles, boxes, unbroken, and broken line segments
where:

(::) s a NODE, or state in the flow which has
been reached at some point in the string.

= a set of intermediate processing on the

(2]

string between nodes, or states, which can
be made analogous to FORTRAN subroutine.

= action in processing the string. Over a
solid line segment, character advancement
takes place; over a broken line segment,
character advancement does not take place.
The character(s), or group of characters
(i.e. digit :: = (0,1,2,3,4,5,6,7,8,9))
which direct the processing to a

.
.
|

-116-

6000 FORTRAN EXTENDED 4.0

particular state are inscribed on the line
segment.

Character advancement can also occur in intermediate
processing. '

The transition diagram which traces the flow of
processing for the format scanner follows.

-117-

FORMAT { =i

INITIALIZATION
PROCEDURES

HSTRNGR(1)

RITEPAR({1) l

XBLANK

\ ELSE
N

DIGIT FERROR
EXIT

DFCIM

:F HSTRNGR(0)
+

.
UERROR
T
H

NUMBER(0}

!
1
RANGE(0)
GO 70

3
1

)

-118-

S

6000 FORTRAN EXTENDED 4.0
: ‘a iy “

YRS

Micro definitions for the format transition diagram are
formed in the following manner:

Micro Definitions for Transition Diagram j

node micro::= branch (branch) otherb otherb
branch::= char test mask test ignore : transfer
designation

otherb::= /(char):transfer designation

transfer designation::= node name ,routine name (param)
char test::= = char expr

char 2:= A BC a0 ¥ (+ -% /7 § , . {)

expr ::= compass expression designated by more than one
character. .

mask test::= (char) {(char)

ignore::= , (char)

name::= letter (letter number $.)
letter::= ABC ... Z
number: := 0123456 78¢9
param: := compass expression
For example, at node 7:
= ,NOPACK:NODE7 - a blank is not packed, the flow is

advanced one character and sent back
t0 node 7.

-119-

5.2.4

5.2.4.1

5.2.4.2

5.2.4.3

6000 FORTRAN EXTENDED 4.0

(0123456789) :NODE1,DECIM - a digit is packed, the
flow is advanced one character, and
sent to NODE1, via a set of
intermediate processing, DECIM.

/ELSE:NODE1,IERROR(7) - any other character at this
S node inhibits character advancement,
and flow 1is sent to NODE1, via
IERROR, the informative error
processor, with a parameter of 7.

Table Formed from Definitions and Takle Processor

The micro definitions generate one word table entries,
which are acted upon by the transition diagram table
processor, TRANSIT, all of which is 1located in FLY.
TRANSIT processes the character string along the path
defined by the micro definitions of the transition
diagram, fetching and storing characters where required.

Intermediate Processing, i.e. Subroutines Used
NUMBER

Converts a string of display code numerical digits into a
binary number which is stored relative to location NUMN,
with a displacement of the input parameter (-1,-0,1); the
input parameter specifies the number to be decimal
digits, a repeat count or skip span, or a field width.
Control is returned to the address specified.

RANGE

Checks for wvalid result of NUMBER routine; range to be
checked is specified via the calling parameter. If
number is out of range, the error processor is called.
Control is returned to the address specified.

FLDCHEK

Checks range of field elements; computes total field
length and checks the range; record length is increased
by the length of the total field. Record count is saved
in a pushdown table which saves information for the 3
levels parentheses. If the record count is longer than
one record, an informative error is produced. Control is
returned to the address specified.

-120-

5.2.4.4

5.2.4.5

5.2.4.6

5.2-“'7

5.2.4.8

6000 FORTRAN EXTENDED 4.0

WIDTH

Field descriptor width handler; calls NUMBER{0),
RANGE(1), and FLDCHEK(1). Parameter (0) implies a
floating point descriptor, and if the field width is not
7 or greater, an informative error is produced.
Parameter (1) for other descriptors, and no test is made.
Control is returned to the address specified.

DECIM

Handles decimal digits portion of floating point
descriptors; calls NUMBER(-1), and if descriptor is D, E,
or G. a check is made fc~ field width greater than or
equal to 7 + decimal digits specified. If the descriptor
fails this test, an informative error is produced.
Control is returned to the address specified.

FLAGW7D

Called to turn on a flag indicating a D, E, or G type
field descriptor. The flag is wutilized by DECIM to
determine whether or not to perform a test comparing
field width with decimal digits specified. Control is
returned to the address specified.

ONECNT

Initializes temporary count storage for repeat count,
field width, and decimal digits, and turns off flag

indicating a D, E, or G specification encountered.
Control is returned to the address specified.
DELCOM

The 1last character stored in the string is fetched. 1If
the character was a comma, it 1is squeezed out of the
output string. Control 1is returned to the address
specified.

XBLANK

An X descriptor was vreceded by a blank, and an
informative error is issued to that effect. FLDCHEK is
then called to update the record length count. Control
is returned to the address specified.

5.2.4.10 XZERO

-121-

6000 FORTRAN EXTENDED 4.0

The skip count is tested for zero; if so, an informative
error is issued. If the count is non-zero, FLDCHEK is
called to update the record length count. Control is
returned to the address specified.

5.2.4.11 TSASI

DELCOM is called to squeeze out redundant commas. A non-
ANSI error is produced, and control is returned to the
address specified.

5.2.4.12 TCODE

NUMBER (0) is called to convert the tab setting pointer to
binary. If the result is zero, an informative error is
produced. Otherwise, RECCHEK (1) is called, where the
record count 1is accordingly checked and modified.
control is returned to the address specified.

5.2.4.13 SCALE

NTIMD ER /0
NUMDER (V) is <called tc conve

¥
then RANGE(-1) is called to check for validity of scale
factor. Control is returned to the address specified.

]

.
cale factor to binary;

5.2.4. 14 NULLP

An informative error 1is initiated and zero scaling is
assumed. The scale flag is turned on; if previously on,
and unused, another informative error is produced.
Control is returned to the address specified.

5.2.“‘15 HCOIJN’I‘R

The Hollerith count is fetched, each character is checked
against an end-of-statement; if an end of statement is
encountered, an error exit is taken. Otherwise, the
character is stored, the count decremented, and the loop
continued until the count is depleted to zero. FLDCHEK
is then called to add to the record count. Control is
returned to the address specified.

5.2.4.16 HSTRNGR
Each character is compared with the end of statement and
the Hollerith string indicator. While no match is made,

character advancement continues. If an end of statement
is encountered, an error exit is taken. When a matching

-122-

6000 FORTRAN EXTENDED 4.0

Hollerith indicator is encountered, the character count
is sent to FLDCHEK where it is added to the record count.
Control is returned to the address specified.

5.2.4.17 SLASH

DELCOM 1is called when the input parameter indicates, and
RECCHEK(0) is called to check for 1legal record size.
Values are checked and modified in a pushdown table which
saves record size information for each parenthesis level.
Current record count is reinitialized. Control is
returned to the address specified.

5.2.4.18 RECCHEK

Current record count 1is checked for legal record size.
If entry was from SLASH, control is then returned to the
address specified. 1If entry was from RITEPAR because of
a first level right parenthesis, control is sent to
FINISH where the format is sent to the COMPS file.
Otherwise, entry was from TCODE, and the current record
count 1is set to the tab setting. The record saving
pushdown table is modified, and control is returned to
the address specified.

5.2.4.19 LEFTPAR

The parenthesis 1level 1is incremented and checked for
validity. An invalid parenthesis level causes an error
exit to be taken. 1If the parenthesis level is valid, the
level repeat count is preserved in the pushdown table.

Control is returned to the address specified.
5.2.4.20 RITEPAR

DELCOM is called to delete redundant commas where
appropriate. Parenthesis level 1is checked for =zero
level. If so, RECCHEK(-1) is called, and control is sent
to close out procedures. Otherwise, appropriate record
size updating is performed on the pushdown table. The
parenthesis level is decremented by one, and control is
returned to the address specified.

5.2.4.21 FINISH
Control is received by scan when a zero-level right

parenthesis is encountered. A check 1is made for
extraneous characters. The last word of the format is

-123-

6000 FORTRAN EXTENDED 4.0

packed. If no fatal errors were encountered in the
process of scanning, the E-LIST string is inverted and 6
word blocks of COMPASS images are sent to the COMPS file.
Entry conditions are restored, and control is returned
via a jump to FORMAT.

5.2.4.22 TERROR, UERROR, FERROR

All are entries to the error processing routine,
derending upon the type of error incurred. The type is
preserved, along with the error number. All critical
registers are saved; then the card number and column
number in which the error occurred are computed and
merged into the 48 bit message word. Control is then
released to the appropriate error processor. On return,
the critical registers are restored, and control is
returned to the address specified by the caller.

Table Formats

Error Table Format '_:AAL
sd“3*7
"Word 1 VFD .2121§/Error Number ,4 8/Message

Word 2 VFD 30/Line Count,30/0ffset

FORMAT

Memory Pointers and Flags

DEGFLAG - Flag turned on when D, E, or G descriptor

is encountered, is used to determine when
field width adequacy tests should be made.

COLCNT - Contains count for current record length;
is checked in RECCHEK.

FLAGPON - Flag turned on when scale factor is
encountered; turned off when utilized.
Checked each time scale factor
encountered.

FE - Flag turned on when a fatal error

condition has been encountered in a
format. This flag inhibits packing the
format for the COMPs file.

-124-

7.0

LEVEL

NUMD

NUMM

NUOMW

PUS HDOWN

6000 FORTRAN EXTENDED 4.0

A counter which keeps track of the
parenthesis level, where the first 1level
is level zero.

Location which saves the decimal field of
floating pvoint descrirgtors.

Location which saves tab settings, and

repeat counters.
Location which saves the width of format
descriptors.

A table which contains four fields of
information per word, one word per
parenthesis level. The information is
used to calculate accumulated record
length when an end of record 1is
encountered. For each parenthesis level,
the following information is saved:

SL indication of presence or absence of
slash in level

GR the group repeat count

NL column count following last slash in
level

N1 column count preceding first slash in
level

The table will be structured as follows:

VFD 6/SL(0),18/GP (0),18/NL (0),18/N1 (0)
VFD 6/SL(1),18/GP(1),18/NL(1) ,18/N1(1)

VFD 6/SL (Max), 18/GP (Max) , 18/NL (Max) ,
18/N1 (Max)

Modification Facilities

Error Processing

-125-

7.2

7.2.1

7.2.3

6000 FORTRAN EXTENDED 4.0

ERRMAX is an EQU in OPTIONS, controls the size of the
error table.

FORMAT
EQU's

MAXMAX EQU 150 maximum read record length
MINMAX EQU 137 maximum written record length
PMAX EQU 615 maximum size scale factor
LEVMAX EQU 2 maximum parenthesis level
HOLLER EQU 1R* hollerith string indicator

These 1limits may be changed by simply modifying the
EQU's.

Allowable Formats

Additions and/or changes to the forms allowable for
format descriptors may be made by adding to and/or
changing the micro definitions in FLY, and/or adding to
and/or modifying the specific subroutine handler (s)
involved.

Character Manipulation

Characters are fetched and stored using two macros:
GETCH and PUTCH, from words packed ten characters per
word to words packed ten characters per word, with a one
character delay, SAVECHAR, on storage. These macros may
be modified without disturbing the rest of the logic of
the scanner.

Method Used

Format scanner is a left-to-right, character by
character, one pass scan, implemented through TRANSIT,
the main routine in FLY, which sends the format to the
part of code indicated appropriate by the transition
diagram. The approved format is packed, ten characters
per word, and sent six words per line, to the COMPS file.
The scan operates on a character recognition basis.
Recognition causes control to be sent to an appropriate
set of intermediate processing, which expects a
particular combination of characters, previously referred
to as field descriptors. Permissible descriptors are
itemized 1in Section 4. At the end of a set of

-126-

6000 FORTRAN EXTENDED 4.0

intermediate processing, control is returned to the
appropriate state in the flow of the scanner. Scanning
terminates when an end of statement is encountered, or an
illegal character or character sequence 1is encountered.
A running count is kept of the length, in characters, of
the current record described by the format. Calculation
of total record 1length involves utilization of the
information stored in the PUSHDOWN table described in
Section 6. Calculation and checking is done whenever a
slash or a zero-level right parenthesis is encountered.
When an error is encountered in the scanning process, the
error processor is called, where the card and column
number in which the error occurred is calculated. They
are computed using the following formula:

'
s

CD = 21 - CONT
COL = COLS - 8 () where CONTS AND COLS are
computed in SCANNER

FWA format -~ current address
*10 + (60 - (6 character

pointer)) /6

N

CURRENT COLUMN POINTER

WD = (COL+N-1) = RELATIVE WORD POINTER

CDNO = CD+WD = CURRENT CARD POINTER
2
COLNO = COL#N+5- (66 WD) = CURRENT COLUMN OF CURRENT
CARD POINTER

This information is packed in the lower 48 bits of the
error word in one of the following forms:

NNCDNNNN
NNCDbNNN
NNbCDbNN
NNbbCDbN

where the first field is the column number and the second
field is the card number. This information is then sent
to the standard error processing routine.

Restrictions and Other Remarks

-127-

6000 FORTRAN EXTENDED 4.0

ERPRO

None

FORMAT

Register Usage

Caution must be taken by the modifier of FORMAT scanner
with respect to register usage. The following registers

are used by TRANSIT, and must be preserved in FORMAT
scanner:

AO0=mask base X0=7T-=m————

77008
B1=1 Al=input address X1=input word
B2=shift input X2=input
character
B3=node address ' X3=subroutine
parameter
Bli4=return address
B7=shift output A7=output address X7=output word

Caution must also be taken with respect to TRANSIT
utilization of scratch registers. The following
registers are used as scratch registers by TRANSIT:

A3

AL X4
B5 X5

A6

The return mechanism in all cases is via register B4.
All intermediate processors save and restore B4 when it
is utilized before a return.

-128-

1.0

2.1.2

N
»
-
»
(V8]

2.1.4

2.1.5

2.1.6

2.1.7

6000 FORTRAN EXTENDED 4.0

LISTIO

General Information

Processes all forms of input/output statements which may
occur in a FORTRAN program. These include READ, WRITE,
PRINT, PUNCH, BACKSPACE, ENDFILE, REWIND, ENCODE, DECODE,
BUFFER IN and BUFFER OUT.

FTN 4.0 produces an aplist structured type of calling
sequence for all I/0 statements. Each aplist is composed
of a sequence of I/0 macros (IOM!'s) which define file,
format, and list item information to the actual 1I/0
object time routines. The structure of the IOM is
explained in section 6.

Entry Points

- code entry points

CNVT

Converts a binary number into a BCD string.
ENDFILE

Processes the ENDFILE statement.
REW

Processes the REWIND statement.
BKSP

Processes the BACKSPACE statement.
PUNCH

Processes the PUNCH statement.
PRINT

Processes the PRINT statement.

READ

-129-

2.1.9

2.1.10

2.1.1

2.1.12

2.1.13

2.1.14

2.1.15

2‘3 2-3

Processes
WRITE
Processes
BUFIN
Processes
BUFOUT
Processes
DEC
Processes
ENC
Processes

DOITX

6000 FORTRAﬁ EXTENDED 4,0
all form of the READ statement.
the WRITE statement forms.
the BUFFER IN statement.
the BUFFER OUT statement.
DECODE statements.

ENCODE statements.

Entry for return from DOPROC after
beginning of an implied loop.

DONEX

processing the

Entry for return from DOPROC after processing the end of

a loop.
IARC

Processes

input aplist restart call.

Non-code entry points

APLRST

Entry containing the store to I/0 aplist flag.

BLEXP

Entry containing the binary list expression flag.

HOLCON

-130-

2.2.4

2.2.5

2.2.7

6000 FORTRAN EXTENDED 4.0

Entry containing hollerith constant information for
processing hollerith constants in I/0 lists.

Entry containing the indirect indicator flag.
IO0EXP

Entry containing I/0 expression flag.

IONBRME

Entry containing header address for the I/0 macro to be
issued.

ITEMCT

Entry containing the item count for an aplist item entry
word.

PARCNT

Entry containing the parameter count for each I/0 list
processed.

TYPEFG

Entry containing the variable or expression type of the
I/70 list ijitem.

Diagnostics And Messages

CONFLICTING USE OF A NAME

BAD UNIT NUMBER

170 STMT SYNTAX ERROR

FORMAT NUMBER SYNTAX ERROR

MISSING I/O LIST OR SPURIOUS COMMA

NON ANSI I/O STATEMENT

CHARACTER COUNT ERROR IN ENCODE/DECODE STATEMENT

PARITY NUMBER MUST BE 0 OR 1

-131-

6000 FORTRAN EXTENDED 4.0

FORMAT SPECIFICATION IS NON ANSI

UNIT NUMBER NOT BETWEEN 1 AND 99

DO CONTROL VARIABLE MUST BE A SIMPLE INTEGER

DO PARAMETER MUST BE AN INTEGER CONSTANT OR VARIABLE
ARRAY REFERENCE OUTSIDE DIMENSION BOUNDS

VARIABLE FOLLOWED BY (

ARRAY REFERENCED WITH FEWER SUBSCRIPTS THAN DECLARED
TOO MANY SUBSCRIPTS IN ARRAY REFERENCE

NO MATCHING RIGHT PARENTHESIS

Environment

All statement processors expect the statement to have
been converted to E-list starting at the location
contained in SELIST. A number of externals in DOPROC are
referenced. Their functions are:

DOCALL mark an external reference

DOCALL mark an enternal reference

DODEF mark a variable as defined

LABCON convert a label to internal form

DOIT process an implied DO loop

DOGOOF compress the DO table after an I/0 list
error

DONE terminate an implied I/0 list

INTVAR check for and enter an integer variable in

the symbol table

Processing

IOSETUP

-132-

5.2

5.5

6000 FORTRAN EXTENDED 4.0

The setup routine is called prior to processing of each
type of 1I/O statement. The I/0 aplist number is
incremented, and the aplist header line issued to the
CcOMPS file. A USE DATA. is sent to the file ahead of the
aplist header to ensure that the subsequent I/0 aplist
will be relocated in the correct block.

CNVT

Converts a binary member in X2 into BCD format, leaving
the result in X7 upon exit. B1 contains an appropriate
shift count when entered.

IX¥FNL

This is a 1local version of the IXFN routine in ARITH
called to process each 1list item. Upon exit the
registers are set up as if exited from a SYMBOL call.

CFSIV

Checks for a simple integer wvariable. Issues a
diagnostic if the inputted variable is not type integer.

NAMLIST

Process NAMLIST I/O. Issues the group name to the COMPS
file. Sends I/0O macro for the call to the RLIST file.

PVARNAM

This routine is called to process variables used as file
names, parity indicator names, format names, or character
count names. It issues an appropriate IOM macro to the
COMPS file for the variable processed. On entry, B4
contains a 0/1 flag indicator determining the variable
usage, and X1, X2 contain the symbol table entry of the
name.

Processing follows these steps:

a) Check to determine if the name is a formal
parameter. If it is not, go to gagL

b) Compute the formal parameter offset, and save it in
the argument list for the IOM macro. If n a file
name or parity indicator name, to to .

-133-

6000 FORTRAN EXTENDED 4.0

c) Set the file bit for the IOM macro, and exit the
routine.

d) Determine if a M variable is being processed, and
if not, go to 4 .

e) Set the LCM bit for the IOM macro.

£) Set the variable bit for the IOM macro. Save any
constant bias associated with the wvariable in the
argument 1list for the IOM macro. Exit the routine.

q) Determine if the wvariable is equivalenced or not.
Save the symbol table ordinal and any constant bias
- in the argument list for the IOM macro.

h) If a file name Or parity indicator name is being
processed, go to i§f. If the variable is not an ICM
variable, go to A

ozt d e £ LN £ £31 :
routing ror tTine O a Iiieé name Oor pari

indicator name.

»

i) Set the file or ICM bit for the IOM macro. Exit the
case t

o
1

kl

) Set the variable bit for the IOM macro. Exit the
routine.

FMTNO - Process Format Number

If the format item is a variable, a symbol call is made.
In the not found case, the type and var bits are set in
word B and a non ANSI flag set. Then processing joins
with the found path. If the type is namelist, an exit is
taken with X0 equal to zero. IXFN is called to process
the name. Upon return the APLRST flag 1is tested to
determine if store to I/0 aplist code must be generated
and calls are made to PSTAPL and STIOM if the flag is
set. Otherwise PVARNAM 1is called to generate an IOM
macro for the format name, and the macro is issued to the
COMPS file before exiting FMTNO. A non-ANSI diagnostic
is produced for non-dimensioned variable formats.

A constant format number is processed in a different
manner. First, checks are made to ensure that:

Q. The next item is a constant.

b. Tt is an inteqger constant.

-134~

6000 FORTRAN EXTENDED 4.0

C. It has no more than five digits.

If these conditions are met, LABCON is called to'format
and enter the 1label in the symbol table. On first
occurrence, the following are done:

a. Set the type to label.

o
ot

b. Set the referenced as format number (RFN)
c. Generate an IOM for the format number.

d. Issue the IOM macro to the COMPS file.

e. Save the label ordinal in TEMP.

f. collect references if necessary.

ge. Reload B1 from TEMP to satisfy the exit condition.
h. Exit FMTNO.

For second and subsequent appearances, a check is made
for the defined as statement number (DSN), referenced as
statement number (RAS) and DO loop terminator (DLT) bits.
If any of these are set, an error message is produced.
Otherwise, processing begins with step a for the first
appearance.

UNITN - Process The Unit Number or Parity Indicator

on entry, X7= zero if unit and one if parity. On exit,
X3= zero if variable parity, or X1= binary number. If
the next E-list item is not a name or constant, an error
is issued. 1If the item after the name is not a right
parenthesis or a comma, a diagnostic is produced. For a
variable unit or parity indicator, CFSIN is called to
validate the variable type. PVARNAM is called to
generate an IOM macro for the name, and the macro is
issued to the COMPS file. Exit is made through the entry
point.

Constant unit or parity indicator must be integer or a
diagnostic will be given. CONVERT is used to produce a
binary integer from the constant value. At this point,
we will exit the routine if we are converting a parity
indicator. For a unit number greater than 99, an erroxr
is produced. Then the number is converted to display

-135-

5.10

5.11

5.12

5.14

6000 FORTRAN EXTENDED 4.0

code, an equivalence sign appended, and PLFN called to
process the name. Upon return, exit is made from UNITN.

PLFN - Process Logical File Name

Oon entry, X1 contains 8R file name. On exit, , symbol 2
in the macro holds the symbol table ordinal of LFN and R
number 2 ‘contains an R number for the load. 1Initially,
the logical file name is placed in the symbol table. Oon
the not-found exit, file name bits are set into word B of
the entry. The address of word B is saved, the ordinal
placed into symbol two of the macro, and the next R-1list
number placed in the macro. If the SYSEDIT= FILES option
was not selected, we simply collect an I/0 reference if
R=2 or 3 and exit. For the Files option in a main
program, we simply exit after reference accumulation
since the FET names will be local symbols. However,
extra processing is needed for subrcutines. Remove all
blanks and the special character from the file name and
enter this into the constant table. Generate an IOM
macro to the file name, and issue the macro to the COMPS

JoCcM

This routine issues an I/0 call macro to the RLIST file.
On entry X1 contains the name of the execution routine to
be called. The name is added to the symbol table, and
the macro is built in the MACBUF created area, then
written to the RLIST file.

ENDFILE

Set the object routine name to ENDFIL. and call PERB.
REW

Set the object routine name to REWINM. and call PERB.
BKSP

Set the object routine name to BACKSP. and call PERB.
PERB - Process ENDFILE, REWIND, BACKSPACE

First, the routine name is saved in TEMP and IOFLAG set

one for a positioning reference. The macro op code is
setup and a DOCALL is made to mark an external reference.

-136~

5.15

5.16

6000 FORTRAN EXTENDED 4.0

Tf something occurs after the unit number, an error is
produced. A fake right parenthesis is added to the E-
1ist to keep UNITN from producing a diagnostic UNITN is
called to process the unit number and IOCM to issue the
I/0 macro to the R-list file.

PUNCH

Set +the standard file name to PUNCH , call PROFL and
exit.

PRINT

Set +the standard file name to OUTPUT , call PROFL and
exit,

PROFL

Processes I/0 statements of the form keyword n, list. On
entry, X1 holds 12/IOFLAG, 48/8R name of associated file.
Initially, the value of IOFLAG is extracted and saved.
MACOP= now sets the macro opcode to that for READ, WRITE,
PRINT, PUNCH initial calls. Then, PLFN is called to
process the logical file name. A non-ANSI usage 1is
flagged and DOCALL is called to mark an external
reference. Then FMTNO is called to process the format
number. For namelist names, NAMLIST is called and then
PROFIL is exited. For standard format items, FMODE is
used to set the file usage mode formatted. If the next
F-list item is not a comma or an end of statement, an
error is issued. Should the item after the comma be an
FOS an informative error will result. Next, the name of
the I/0 routine is extracted from IOTAB using the value
in TOFLAG. IOLIST is called to process the list and then
exit is made from PROFL.

READ

1f +the first GE-list element is not a left parenthesis,
this is a read of the form READ n, 1list and PROFL is
called with a file name of INPUTC . Otherwise, PRORW is
called with an IOFLAG of 1s59. Upon return, processing
is complete and an exit is taken.

WRITE

Set an IOFLAG if zero and call PRORW. Upon return, exit
to the phase controller.

-137-

£
3]
o

5.21

6000 FORTRAN EXTENDED 4.(i

PRORW - Process READ and WRITE Statements

Save IOFLAG which is in X6 on entry and set the macro op
to an initial call. Inform DO of an external reference.
Generate an error if the next F-list item is not a left
parenthesis. Clear all mode indications (LFNA) and call
UNITN to process the unit number. TIf, upon return, the
next item is a right parenthesis, set the file mode
binary, adjust the macro opcode and set the mode flag
(X3) to 0 (binary). 1If the item after the unit number is
not a comma, an error is issueid. Otherwise, FMTNO is
called to process the format number. The item after the
format number must be a right parenthesis or an error
will be produced. If the format number field was a
namelist group name, we go to NAMLIST for further
processing. Otherwise, the mode is set to formatted and
the mode flag (X3) to 2 for coded. Finally, we extract
the name of the appropriate object routine and call
IOLIST. Upon return, exit is made from PRORW.

BUFIN
Set the IOFLAG (X7) to input (1), call PBUF and exit.
BUFOUT

Set the IOFLAG (X7) to output (0), call PBUF and then
exit.

PBUF - Process Buffer I/O Statements

Save IOFLAG and call "NOCALL to mark an external
reference. Issue an ANSI violation error and set the
macro opcode to buffer I/0. cCall UNITN to process the
unit number and set the mode to buffer. If the next item
is not a comma, issue an error. Ot herwise, call UNITN +o
process the parity indicator. In the case of a constant
parity value greater than 1 an error is diagnosed. An
IOM macro is generated for the constant, and issued to
the COMPs file. A check is made of the next E-list item.
If not a right parenthesis, an error is issued. Next a
left parenthesis must occur. IXFN is called to process
the FWA name. If a store to 1I/0 arlist is required,
PSTAPL and STIOM are called to issue the appropriate
macros to the RLIST file and an TOM macro to the COMPS
file. Otherwise PVARNAM is called to generate the IOM
macro for the name. For an input operation, the defined
hit is set. The next item mast be a comma. I¥FY ig

~138-

5.24

I25

wn

5. 25‘1

6000 FORTRAN EXTENDED 4.0

called again to get the last word address. Again either
PSTAPL, and STIOM or AVARNAM are called to complete
processing of the LWA name. If the ending address 1is
type double, an adjustment is made to the RLIST macros or
the generated IOM to increment the address by 1. Next a
right parenthesis must occur followed by an end-of-
statement marker. Load the name of the object routine
and call IOCM to produce the macro. Finally, processing
exits from PBUF.

 PSTAPL

This routine generates and issues to the RLIST file a
sequence of macro to perform a store to an 1/0 aplist.
On entry, X2 contains word B of hﬁﬁ symbol table entry of
the name being processed, (3x> is a zero/non-zero flag
indicating whether the name represents a buffer I/0 LWA,
and X6 contains the result number returned by the IXFN
call for the variable loaded.

PSTAPL builds in the MACBUF storage area a sequence of
RLIST macros which will generate an I/0 aplist entry word
and store it into the desired area in an I/0 aplist.
These macros are the logical conclusion of the sequence
begun when the IXFN call was made.

STIOM
Output to the COMPS file an IOM -1B to represent a
position in the I/0 aplist which will be the object of a
store.

DEC - Process DECODE Statement

Set the IOFLAG to input (1) and call PED; exit upon
retum.

ENC - Process ENCODE Statement

Set the IOFLAG to output (0) and call PED; exit upon
return.

" PED - Process ENCODE/DECODE

call DOCALL to mark an external reference and then issue
a non-ANSI usage error. Set the macro opcode to
ENCODE/ DECODE. Advancing over the 1left parenthesis

-139-

(guaranteed to be there because of SCANNER'S

6000 FORTRAN EXTENDED 4.0

algorithm),

the character count field is examined.

For a constant character count:

a'

b.

Verify the constant to be

Use CONVERT to get a binar

integer.

y value.

Issue an error if the character count is zero.

Issue an IOM macro to
character count.

Verify that the next item
Call FMTNO to process the

Issue an error 1if the

group name.

arsFfu +hat +
i (5 L 93

vel l na e next

a3

Call IXFN with the complem

Call PSTAPL and STIOM,
the name of the target are

Sset the defined bit if th
Verify that the next item

Load up the name of the
and call IOLIST to process

Exit upon return.

For a variable character count:

Verify the next item to be

Use IXFN to obtain the add

the coMPs file for the

is a comma.
format number.

format item is a NAMELIST

4]

ent of IOFLAG in X2.

or call PVARNAM to process
al

is is an ENCODE statement.
is a right parenthesis.

the object time processor
the list.

a comma.

XYess.

Call PVARNAM to process the character count name.

Issue the generated IOM
the coOMPs file.

-140~

for the character count to

5.28

5.28.1

6000 FORTRAN EXTENDED 4.0

e. Verify that the count is a simple integer variable.

f. Join the processing for constant count at step e.

JOLIST

Processes the I/0 1list and outputs macros to R-list to
call the execution time routines to transfer data to or
from the inputs/output devices. On entry, A1 = address of
two words containing the names of execution time routines
and SELIST pointing to the first element of the list.
Upon entry, if a binary write statement is being
processed, the word count computation code is branched
to. Otherwise the address of the macro header for a
general external function call is placed in IONAME for
later IOCM calls when issuing the macro to the RLIST

file.

At the beginning of the main loop a check is made for a
name. If a name is found, control branches to the name
item processing. if not, the item is checked to be a
left parenthesis, and control transfers to the DO
processing code if it is. When these two tests fail and
the item is not an end of statement marker, it can be
assumed that an expression or constant item is being
processed, and control transfers down the path of the
name item. Otherwise, for an EOS item, an end-of-1/70
macro (EIO) is issued to the COMPS file to terminate the
1/0 aplist, the DATA. block is incremented, and IOCM is
called to issue the I/0 call macro to the RLIST file.

NAME item

If the item following the name is an equal sign, go to
DOEND to close out the loop. Set the value of SERF (it
will be zero if the next element is a left parenthesisj.
Then call IXFN to process the address and save the R
number of the result. For an input operation, the
defined bit is set at this time and DODEF is called to
inform of the redefinition of a variable. Next, we
compute the value of the singlesdouble precision flag (0
if single, 1 if double). A series of checks are
performed to determine whether the list item processed by
the IXFN call falls 4into one of three classes: 1) an
array item requiring a store to I/O aplist, 2) an
expression, or 3) a hollerith constant. The processors
for each of these classes of list items will be explained
shortly.

-141-

5.28.2

5.28.3

5.28.4

6000 FORTRAN EXTENDED 4.0

If none of these conditions were satisfied, and the next
item was a left parenthesis, the item count flag
(ITEMCT) is set to 1, and LSTITM is called to process the
aplist item. However, if the next item was a left
parenthesis and the name is dimensioned, the DIM table
entry (word two) is examined. special processing for
non-variable dimensions will appear in an upcoming
section.

After issuing the aplist, we go back to the main loop if
the next item is a comma. For an end of statement, we go
to issue a final call. If the item is neither of these,
and it is not an IOLIST right parenthesis, an error
condition exists.

variable Dimension Array Transfers

First, a determination is made to see if any constant
dimensions are present. Consider the symbol CONF to be 1
if constant dimensions or a double/complex array occurs,
else zero. Next compute the number of variable
dimensions plus one divided by two + CONF + 1. This
yields the number of words in the body of the macro. The
macro number is computed from the base number minus one +
number of variable dimensions + 3 times CONF. Combining
these the macro header word is formed. TFor all three
dimensions variable, the IH fields are extracted from the
DIM word, and the macro constructed. For a mixture of
constant and variable dimensions, the product of the
constant portions with the word count for the item (1 or
2) is computed. In addition, symbol table words are
constructed for placement in the macro. Next, we provide
an R number for the resister store in the macro and write
the macro to the R-list file. Then setup and issue a
variable word count intermediate call macro instead of
the ordinary intermediate call macro.

Store to I/0 Aplist List Item

This code generates in the MACBUF storage area an RLIST
macro to combine the variable type information along with
the variable address obtained by IXFN. PSTAPL is called
then to generate the actual store macro, thereby
completing the code sequence initiated by the IXFN call.
Finally an IOM macro is sent to the COMPS file indicating
that the aplist item will be provided at execution time.

Expression List Ttem

-142-

5.28.5

5.28.56

5.28.7

6000 FORTRAN EXTENDED 4.0

When IXFN processes a list expression, the final result
is stored into an ST.. This code simply generates an IOM
macro for the ST. entry. An ANSI diagnotic is issued to
flag the occurrence of an expression in an I/0 list.

Hollerith Constant List Item

This routine converts the character count for the
Hollerith constant inot a word count, and issues an IOM
macro to the COMPS file defining the position of the
constant in the HOL. block.

Standard Aplist List Item

This is the analog of the ‘@VARNAM routine, but processes
only list items found in the I/0 statement. It generates
an IOM for the 1list item, and issues it to the COMPS
file. The processing is similar to that in PVARNAM, and
therefore will not be described in any detail here.

Implied DO Loop Processing

Code to process implied DO loops will attempt to collapse
statemnts of the form:

(((a(1,3,K),1=11,12,13),J3=J1,J2,33) ,K=K1,K2,K3)

If more than three levels of parentheses occur before a
name is found, the loop is non~collapsible and control
passes to code for this type cf loop. The number of
parentheses is saved in .COLLAPS. The current line number
and the E-list address of the array name are compared
with the contents of NOCAL (indicator of the 1last name
address and line number found to be non-collapsible). If
a match is found, processing goes directly to the non-
collapse code.

At the start of collapse processing, a number of cells
are cleared. The cells and functions are:

NAMDEX (3 words)-E-1list for I1,J,K
INDX (12 words) r,11,13,9,31,32,33,K,K1,X2,K3
ARNAM (1 word) array name (OR format)

If the item after the name is not a left parenthesis,
mark the loop non-collapsible and process accordingly. A

- 143~

6000 FORTRAN EXTENDED 4.0

SYMBOL call is made to enter the name in the symbol table
and an error will be produced if a first appearance
return is taken since this implies the item was never
given a dimension. For the found return, a check is
performed +to insure the array is dimensioned. Using the
type field, a single/double precision flag is computed
(SDPF = 0 for single, 1 fcr double word items). The flag
is saved in the entry point word of REW since this will
be a safe temporary during IOLIST processing. If the
array is double, the bogus CONLIST entry is changed to 2.

The number of dimensions are extracted from the DIM word
and the word saved in DIMWRD and DIMVAL, NODIMS is set
to contain the number of dimensions. Next, the
subscripts of the array are scanned. If the item is a
name, it is placed in NAMDEX. For a constant this is
omitted. If the item is not a name or a constant and it
is not a right parenthesis, the loop is non-collapsible.
The only acceptable thing for the next element is a comma
or a right parenthesis. If the number of dimensions
referenced exceeds three, an error is produced and flow
returns to the phase controller. TIf the argument comnt

TL s I 2% L S PO = B

is still proper, processing goes back to get the next
subscript and repeats the previous steps.

When the right parenthesis is encountered, a check is
made to verify that at least one subscript appeared. The
word count of one or two is installed in the first macro
constant parameter. Should the item after the
parenthesis not be a comma collapse is abandoned.
Similarly, after the comma a name must appear. The name
of the induction wvariable is placed in INDX. Next, an
equal sign must occur for collapse to continue.

The next portion of the list contains I1, I2, I3, and
processing continues:

a. Extract an item.

b. Issue an error if it is not a name or a constant.

C. Save the name or constant in INDX area.

d. Loop back to a if the next item is a comma and there

are three or less indexes so far. If the index
count reaches four, issue an error.

- 144~

6000 FORTRAN EXTENDED 4.0

e. Wwhen the right parenthesis is encountered, reduce
the parentheses level.

f. Go back to processing for the next loop control
variable until the parentheses level is satisfied.

At this point, the formal collapse processing begins.
Processing proceeds as follows:

a. If the subscript name field (I) is a constant, exit
to mark no further collapse.

b. DOVAR is called to ensure that the subscript is a
legal integer variable.

c. set the defined bit in word two of the symbol table.

d. Compare the dimension with the index. 1If they do
not match, terminate collapse processing.

e. If the increment (I3) is variable or not a constant
one, collapse is terminated.

f. VALTYP . is called to validate the do increment value
for a constant and returns the value in X1.

g. If R=2 or 3, two references are collected for the
control variable.

h. Next a check is made to see if I1 is a variable or a
constant.

For a constant:

(1) Use VALTYP to validate it.

(2) save the constant in the macro.

(3) For I1=1, full collapse is still possible. If
not, set this as the final collape 1level
(TENCOL) .

For a variable:

(1) 1Inhibit collapse for double word arrays.

(2) Mark this the last collapse level.

-145-

6000 FORTRAN EXTENDED 4.0

(3) Change the macro op to variable.
(4) TUse DOVAR to validate It.

(5) cCcall EQUIVP to place the correct base and bias
into the macro.

Load up dimension information and save the constant
dimension for this time. Shift the contents right
18 bits to set up for the next iteration.

if the dimension 1is variable, perform special
handling. :

Check I2 for wvariable or constant for I2 constant.

(1) VALTYP is used to convert and validate the
type. '

(2) For 1I1 wvariable, set macro constant three to
the constant value of I2 plus one and go try to
collapse further levels.

(3) For 1I1 constant compute (I2-I1) + 1 * previous
MACLK1 and place the result in MACLK1.

(4 For a zero or negative word count, set the
count to the value of the SDPF + 1,

(5) Clear I1 from macro parameter three.

(6) If the constant value of I2 does not match that
for the dimensionality, inhibit further
collapse and produce an informative message if
it exceeds the declared bound.

For I2 variable:

(1) Suppress collapse on double arrays only if I1
is not one.

(2) Reduce constant three in the macro (I1) by 1 if
MACOPC is still =zero (I1 not variablej. If
collapse has not been terminated bump MACOPC by
three to get a c*v macro.

(3) Now bump MACOPC by one and mark no further
collapse.

-146-

O.

This
one,

6000 FORTRAN EXTENDED 4.0

{(4) Call DOVAR to validate IZ2.
(5) Use EQUIVP to place base-bias in the macro.
{6) Collect a reference to I2 if necessary.

Try to collapse remaining levels (COLAPR8) Place the
current E-list address and statement number in
NOCAL.

Check to see if maximum collapse level has been
reached. If so, go issue macros.

If collapse inhibit is marked (TENCOL = =-1), process
this as a normal I/0 list loop.

Bump the collapse level and restart at a.

level is not collapsible (COLAPRY). If it is level
abandon all collapse. Set the flag for no further

collapse. Reduce the current level by one and go to step
1 above.

Issue macro code for the collapsed list:

A

Compute the macro number using MACOPC + base of
collapsed 1/0 macros. (Put this in MACOP).

If the macro has a multiplier of one, change it to a
macro to omit the multiply.

For LWA +1-FWA type macro the following occurs:

(1) Generate E-list for the subscripted array
reference used to denote the last word address
to be used.

(2) Use IXFN to compute the address and save it in
R number two of the macro.

(3) Replace I1 where it belongs.
Call ARYCONS to produce an array reference for the

index function that will be short listed because of
the collapse.

-147-

5.28.8

6000 FORTRAN EXTENDED 4.0

e. Produce necessary index function code using IXFN and
save the result register in the macro.

f. Call MACOUT to issue the macro code.

g. Restore the E-list pointer and return to process the
next E-list item.

Variable dimension collapse handling:
a. Force the macro to a LWA+1-FWA type.
be. For 12 a constant:
(1) Place the symbol name, right justified in TEMP.
(2) Inhibit further collapse.
(3) Go to normal I2 constant handling.
For I2 a variable:

(1) 1Inhibit collapse if this is a double word
array.

(2) If the dimension subscript is different from
I2, no further collapse is possible.

(3) Call DOVAR to validate I2.

(4) Use EQUIVP to obtain base-bias in the macro.

(5) Collect a reference if necessary.
c. Proceed to try a collapse of remaining levels.
ARYCONS
This routine modifies the array reference so that
corresponding subscripts for collapsible 1levels reflect
the initial wvalue of the item. For example, A (I)
becomes A (I1) and A(I,J) becomes A(I1,J1) provided both
the I and J levels are ccllapsible.

Non-Collapsible I/0 DO Loops

a. Scan the body of the 1/0 loop for an equal sign at
level zero and a right parenthesis at level -1.

-148-

5.31

[]
L
(a)

6000 FORTRAN EXTENDED 4.0

D. If no equal sign was found, this must be something
of the form (var, var, var) and can be processed as
simple elements.

c. For an I/0 loop, the final parenthesis is changed to
a special right parenthesis, and we g0 to DOBEGIN

- for initial loop processing.

d. DOIT returns to DCONEX and the E-list pointer is
advanced to the special right parenthesis, SELIST
updated and control passed to process the next I/0
element.

DOBEGIN

Issues an I/0 call, if necessary, before generation of
the DO-begin code by the DO processor. ARIOCM is called
to issue the restart call, ICNAME is adjusted to reflect
a change of routines being called, and finally DOIT is
called for the loop code generation.

DOEND

Issues an 1I/0 <call, if necessary, before generation of
the DO-end code by the DO processor. ARIOCM is called to
issue the restart call, and DONE is called for the loop
code generation.

ARIOCM

Issues a soft end of I/0 list macro to the COMPS file,

. . .
increments the DATA. block size, calls IOCM to issue the

I/0 call, and calls TIOSETUP to generate a new aplist
header label for subsequent processing.

IARC

issues a restart call when a list item is used as an
array item subscript later in that same 1list. Calied
from ARITH.

MACOUT - Output I/O0 Macro To R-list

This routine produces a macro with four symbols, six R
numbers and 3 constants. The parameters are obtained
from the area from MACLS1 through MACLX3 and packed up.
Then the area from MACL52 to MACLK3 is cleared and th
macro dumped to R-list.

&

-149-

6000 FORTRAN EXTENDED 4.0

6.0 Strﬁctures
6.1 Aplist Parameter Element Expansions
6.1.1 Unit name/number pointer

VFD 1/VAR,1/FP,40/b,18/FITADR
6.1.2 'Format'pdinter

VFD 1/1CM, 1/FP, 1/VAR,33/0, 24/FMT
6.1.3 Mode pointer

VFD 4270, 18/MODEWD
6.1.4 Buffer I/0 FWA

VFD 1/LCM, 1/FP,1/VAR, 3370, 24/FWA
6.1.5 Buffer I/0 LWA

VFD 1/LCM, 1/FP, 1/VAR, 33/0,24/1WA
6.1.6 String pointer (encode/decode)

VFD 1/1CM, 1/FP, 1/VAR,33/0, 24/DATSTR
6.1.7 Count pointer (encode/decode)

VFD 1/1LCM, 1/FP, 1/VAR,33/0,24 /CNT
6.1.8 List pointer

VFD 1/LCM, 1/FP, 1/IND,3/0,6/TYPE, 18/NBREL,6/0,
24/ITEM

6.1.9 Record length
VFD 42/70,18/WDCNT
6.1.10 End of aplist
VFD 60/END
where the above terms are defined as:

VAR ~ denotes the item is a variable

-150-

6000 FORTRAN EXTENDED 4.0

FD - denotes the item is a formal parameter
LCM - denotes the item is large core resident
TYPE - denotes the item type

- reserved
- logical
- integer
real

- double

- complex
- reserved

WUMFEWN o
i

6 - 6
IND - denotes indirect item reference

NBREL - denotes the number of contiguous elements in the
list item if IND=0

NBREL - denotes the SCM address of the list element count
if IND=1

END - denotes the end of an I/0 list if +0

END - denotes an intermediate interruption in an I/0 list
if -0

If the FP bit is set, the address field is interpreted as
18/BIAS,6/FPORD,

where FPORD denotes the ordinal of the formal parameter

in the parameter list for the subprogram, and BIAS is any

offset associated with that particular formal parameter

reference.

IOM Definition

The 10, macro defines the element expansions listed
above. The macro call is of the form

I0OM BASE,BIAS,TYPE,COUNT,B59,BS7,BASE2,
where
BASE - aplist item base address

BIAS - aplist item bias if BASE is present
- formal parameter ordinal if BASE is nul

-151-

6000 FORTRAN EXTENDED 4.0

TYPE =~ aplist item count
COUNT - aplist item contiguous element count if
B 57 is nul
- element count offset if B57 is present
B59 - LCM/file name bit
B57 - variablesindirect bit
BASE2 - formal parameter offset if B57 nul and a

formal parameter has been determined
- base field for item element count if B57 present

-152-

6000 FORTRAN EXTENDED 4.0

ARITH

1.0 General Information
Task Description

The function of the ARITH statement processor is te
transiate E-list for an arithmetic replacement into R-
1ist and issue appropriate macros to the R-list file. It
also translates any arithmetic, logical, relational, or
masking expressions which may legally appear in any type
of statement. ARITH calls an external routine to process
arithmetic statement functions, and then translates the
expanded statement function.

2.0 Entry Points

IDORDL contains the symbol table ordinal of an ID name

NAMFWA contains the address of word A of a symbol
table entry for a name

DBGAPL debug aplist table used by the debug processors
to format aplist information for debug calling
sequences

APLRT code block called to format and issue an aplist
instruction to the ARLIST buffer

GEFCM code block called to format and issue a general

external function macro to the ARLIST buffer

DARLIST code block called to output the ARLIST buffer
to the R-1list file

CVDB code block called to issue R-list macros to
compute the total bound of a variably
dimensioned array

STRIP code block called to remove a trailing dollar
sign from a name

FSTRIP FORTRAN entry point for the STRIP routine

6000 FORTRAN EXTENDED 4.0

IXFN code block called to process an item in an 1/0
list

ACALL code block called to process the argument list
in a subprogram CALL statement

ARITH primary entry point of the arithmetic statement
processor

INITR code block called to initialize memory cells in
ARITH

IFE code block called to process arithmetic IF
statements

IFL code block called to process 1logical 1IF
statements

OPSTACK operator stack for ARITH contains, information

at DPCLOSE time required for address
suhgtitution of the ART.TIST buffer

DA e wta L AU P —aaT

Diagnostics Produced
Fatal to compilation: none
Fatal to execution

A CONSTANT ARITHMETIC OPERATION WILL GIVE AN INDEFINITE
OR OUT-OF-RANGE RESULT.

EXPRESSION TRANSLATOR TABLE (JAMTB1) OVERFLOWED.
SIMPLIFY THE EXPRESSION. '

TYPE ECS NOT AVAILABLE IN THIS VERSION OF FTNX.
ILLEGAL USE OF THE EQUAL SIGN.

VARIABLE FOLLOWED BY LEFT PARENTHESIS.

NO MATCHING RIGHT PARENTHESIS.

NO MATCHING LEFT PARENTHESIS.

THE OPERATOR INDICATED (-, +, *. /, or **¥) MUST BE
FOLLOWED BY A CONSTANT, NAME, OR LEFT PARENTHESIS.

~154-

6000 FORTRAN EXTENDED 4.0

A NAME MAY NOT BE FOLLOWED BY A CONSTANT.
MORE THAN 63 ARGUMENTS IN ARGUMENT LIST.

A CONSTANT MAY NOT BE FOLLOWED BY AN EQUAL SIGN, NAME, OR
ANOTHER CONSTANT.

EXPRESSION TRANSLATOR TABLE {OPSTAX) OVERFLOWED.
SIMPLIFY THE EXPRESSION.

LOGICAL OPERAND USED WITH NON-LOGICAL OPERATORS.
NO MATCHING RIGHT PARENTHESIS IN SUBSCRIPT.
LOCAL ENTRY POINT REFERRED TO AS EXTERNAL FUNCTION.

INTRINSIC FUNCTION REFERENCED MAY NOT USE A FUNCTION NAME
AS AN ARGUMENT.

ARGUMENT NOT FOLLOWED BY COMMA OR RIGHT PARENTHESIS.
A FUNCTION REFERENCE REQUIRES AN ARGUMENT LIST.
ILLEGAL CALL FORMAT.

EXPRESSION TRANSIATOR TABLE (FRSTB) OVERFLOWED. SIMPLIFY
THE EXPRESSION.

THE OPERATOR INDICATED (.NOT. OR A RELATIONAL) MUST BE
FOLLOWED BY A CONSTANT, NAME, LEFT PAREN, -, Or +.

BASIC INTRINSIC FUNCTIONS WITH AN INCORRECT ARGUMENT
COUNT.

EXPRESSION TRANSTATOR TABLE (ARLIST) OV ERFLOWED, .
SIMPLIFY THE EXPRESSION.

ILLEGAL INPUT/OUTPUT ALDRESS.

RIGHT PARENTHESIS FOLLOWED BY A NAME, CONSTANT, OR LEFT
PARENTHESIS.

MORE THAN ONE RELATIONAL OPERATOR IN A RELATIONAL
EXPRESSION.

A COMMA, LEFT PAREN, =, .OR., OR .AND. MUST BE FOLLOWED
BY A NAME, CONSTANT, LEFT PAREN, -, .NOT., OR +.

-155-

6000 FORTRAN EXTENDED 4.0

AN ARRAY REFERENCE HAS TOO MANY SUBSCRIPTS.

NO MATCHING RIGHT PARENTHESIS IN ARGUMENT LIST.
ILLEGAL FORM INVOLVING THE USE OF A COMMA.

LOGICAL AND NON-LOGICAL OPERANDS MAY NOT BE MIXED.
DIVISION BY CONSTANT ZERO.

A COMPLEX BASE MAY ONLY BE RAISED TO AN INTEGER POWER.
USE OF THIS SUBROUTINE NAME IN AN EXPRESSION.

SUBROUTINE NAME REFERRED TO BY CALL IS USED ELSEWHERE AS
A NON-SUBROUTINE NAME.

TOO MANY SUBSCRIPTS IN ARRAY REFERENCE.
LEFT SIDE OF REPILACEMENT STATEMENT IS ILLEGAL.

THE TYPE OF THIS IDENTIFIER IS NOT LEGAL FOR ANY
EXPRESSION.

A CONSTANT OPERAND OF A REAL OPERATION IS OUT OF RANGE OR
INDEFINITE.

THIS COMBINATION OF OPERAND TYPES IS NOT ALLOWED IN THIS
VERSION.

DOUBLE OR COMPLEX OPERAND IN SUBSCRIPT EXPRESSION NOT
ALIOWED.

DOUBLE OR COMPLEX ARGUMENT NOT LEGAL FOR THIS INTRINSIC
FUNCTION.

.NOT. MAY NOT BE PRECEDED BY NAME, CONSTANT, OR RIGHT
PARENS.

Informative

ARRAY NAME OPERAND NOT SUBSCRIPTED. FIRST ELEMENT WILL
BE USED.

THE NUMBER OF ARGUMENTS IN THE ARGUMENT LIST OF A NON-
BASIC EXTERNAL FUNCTION IS INCONSISTENT.

-156~-

3.4

6000 FORTRAN EXTENDED 4.0

THE NUMBER OF ARGUMENTS IN A SUBROUTINE ARGUMENT LIST IS
INCONSISTENT.

A HOLLERITH CONSTANT IS AN OPERAND OF AN ARITHMETIC
OPERATOR.

Non—-ANSI
MORE THAN ONE EQUAL SIGN.

ARRAY NAME REFERENCED WITH FEWER SUBSCRIPTS THAN THE
DIMENSIONALITY OF THE ARRAY.

HOLLERITH CONSTANT APPEARS OTHER THAN IN AN ARGUMENT LIST
OF A CALI STATEMENT OR IN A DATA STATEMENT.

NON-ANSI SUBSCRIPT.
MASKING EXPRESSIONS ARE NON-ANSI.

THE TYPE COMBINATION OF THE OPERANDS OF AN EXPONENTIAL
OPERATOR IS NOT ANSI.

A REIATIONAL HAS A COMPLEX OPERAND.

THE TYPE COMBINATION OF THE OPERANDS OF A RELATIONAL OR
AN ARITHMETIC OPERATOR (OTHER THAN **) IS NOT ANSI.
Environment

Low core cells

SYM1 (12B) starting address of symbol table

DIM1 (17B) starting address of dimension
information table

TYPE (24B) type code of <current statement.
(Different statement types have
different legal syntax at the end of

expressions)

SELIST (32R) address of next E-list element

CDCNT (37B) line number of first card of current
statement

~157-

4.2

4.2.1

4.2.2

b.2.4

NGLN

NRLN

6000 FORTRAN EXTENDED 4.0

(52B) next available generated label number
(64B) - next available result number

SELIST and NRLN are also referred to
as EPOINT and NARN.

Comﬁon blocks

/NAALN/
NAALN
/STSORD/

STSORD

/CLNFO/

SUBFWA

SUBH
ARGCNT

NARGSF
SUBNAME
ARLPT

/7
DEBUG
Externals

ADDREF

next available APLIST number

next available statement temporary store number
(Reset to 1 by PH2CTL at the start of each
statement)

(Used only by ARITH and CALL)

address of the first word of the symbol table
entry for the name of the subroutine being
called

symbol table ordinal of the subroutine name
number of arguments in paratmeter list

arqument 1list flag - equals 0 if there is an
argument list

name in E-list format of subroutine being
called

ARLIST buffer pointer - number of words in
buffer for current statement '

base address for referencing debug tables

code block in PS1CTL called to note a reference
for a variable, array, or function name

-158-

ALLARR

LFUNC

ASAER

BEFTB

BKSP

BUFIN

BUFOUT

CBNFLG

CFO

CONVERT

CON.

DEC

DFLAG

DOCALL

DCDEF

6000 FORTRAN EXTENDED 4.0

cell in DBGPHCT used to indicate whether
toc be

debug
subscript references for all arrays are
checked unconditionally

debug cell in DBGPHCT used to indicate whether
function references are to be traced
unconditionally

code Dblock in ERPRC called to issue a non-ANSI

usage diagnostic

entry point in ENDPRO indicating the beginning
of the basic external function table ‘

code block in PRINT called to process a
BACKSPACE statement

code block in PRINT called to process a
BUFFERIN statement

code block in PRINT called

to process a
BUFFEROUT statement :

cell in FTN used to indicate whether the trace
option has been selected

code block 1in DBGPHCT
usage of variable names with

called to check debug
actual program

usage

code block called to place a constant in the
CON. table

cell in LSTPRO

containing the symbol table
ordinal for CON.

code block in PRINT called to process a DECODE
statement

debug cell in FTN used to indicate whether the
debug option has been selected

code block in DOPROC called to inform it that
an external reference has occurred

code block in DOPROC called when an integer

variable appears as the object of a replacement
statement

-159-

DOFLAG

DOGOOF

DOLABR

DOSYM

D.SAAST

ENC

ENDFILE

ERPRO

ERPROI

FP.

FSTEX

GOTO

IGCALL

IPH2

LABEL.

L.BEFTB

6000 FORTRAN EXTENDED 4.0

cell in PS1CTL containing a DO loop nesting
level count

code block in DOPROC called after encountering
a fatal error while processing the list of an
implied DO

code block in DOPROC called to inform it of a
reference to a statement label

code block in DOPROC called when an integer
variable appears as an operand

cell in DBGPHCT containing the base address of
the arrays and stores information table

code block in PRINT called to process an ENCODE
statement

code block in PRINT called to process an

ENDFILE statement

code block <called +to issue fatal

diagnostics

error

code block in ERPRO called to issue informative
diagnostics

cell in LSTPRO containing the
ordinal for FP.

symbol table
cell in LSTPRO used to indicate when the first
executable statement has been reached

code block called to process a GOTO statement

code block in CALL called to form an issue R-
list for a subroutine call

code block is PS1CTL called to initialize phase
2 process of pass 1

cell in LSTPRO containing the
ordinal for LABEL.

symbol table

ENDPRO containing the length of the
rernal function table

ex | A S i P

cell in
bacic e

-160-

L.CON
N.EQUAL
N.FP
OPTLVL
0.CON
0.GCON
PAUSEP
PH2RETN
PRINT
PUNCH
READ
RETURN
REW
ROPFLAG

RSELECT

STOPP

6000 FORTRAN EXTENDED 4.0

cell in LSTPRO containing the length of the
constant table

cell in SCANNER containing the equal sign count
for the current statement being processed

cell in LSTPRO containing the number of formal
parameters in an argument list
code

cell in PTN containing the 1level of

optimization selected

cell in LSTPRO containing the starting address
of the constant table

cell in LSTPRO containing the starting address
of the global constant table used in DEBUG mode

code block in STMTP called to process a PAUSE
statement
code block in PSICTL returned to after a fatal

error diagnostic has been issued

code block in PRINT called to process a PRINT
statement
code block in PRINT called to process a PUNCH
statement
code block in PRINT called to process a READ
statement

code block in ENDPRO called to process a RETURK
statement

code Dblock in PRINT called to process a REWIND
statement
cell in FTN used to indicate whether the round

option has been selected

in FTN used to indicate whether either of
reference map options has beean

cell
the 1long
selected

code block
statement

in STMTP called to process a STOP

-161-

5.1.5

5.1.6

6000 FORTRAN EXTENDED 4.0

ST. cell in LSTPRO containing the symbol table
ordinal for ST.

SYMBOL code block in LSTPRO called to make a new entry
into or search for an existing entry in the
symbol table

TRACEL debug cell in DBGPHCT used to hold the level
number for the TRACE debug statement

VALUE. cell in LSTPRO containing the symbol table
ordinal for VALUE.

WRITE code block in PRINT called to process a WRITE
statement

WRWDS code block in FTN called to perform the writing

of R-1list macros to the R-list file

Subroutines used by ARITH

External Routines

WRWDS

Used to make entries to the R-list file.

SYMBOL

SYMTAB search and entry routine.

CONVERT

Constant conversion and CONLIST entry routine.

ASFREF

Called as each statement function reference is
encountered to insert the statement function with actual
arguments replacing dummy arguments into the E-list
block.

DODEF

Ccalled +to inform DOPROC of the definition of a variable.

DOCALL

-162-

5.2.2

6000 FORTRAN EXTENDED 4.0

Called to inform DOPROC of an external function
reference.

DOSYM

Called to inform DOPROC of a reference to a variable.
Local Routines

FUNCSRT

This routine is called when a function reference (other
than a statement function) is encountersd. The reference
might occur in an argument 1list, so a block of cells
(FRLW) , used to hold information about argument lists is
entered into the OPSTAK followed by the ARGLP operator
(which will be popped by the right paren which terminates
the list) and an ARGCMA operator (which will be popped by
the comma after the first argument or the right paren if
only one argument). The FRLW block is initialized.
DOCAIL is called if it is an external function. ' If the
result of a previously referenced external function has
not been saved, an instruction is output to R-iist to
save the result.

The routine is called by the main line processor and by
the exponential operator processor.

CARGPORT

This routine is called by the main line processor and the
exponential operator processor. It is called after each
argument of a non Statement Function argument list has
been scanned (it may be an expression). Intrinsic, basic
external, and general external arguments are each
processed differently. Intrinsic arguments cause the R
name of the argument to be added to the R name table
(RNTB) , basic external arguments cause register-store
instructions to be output to ARLIST (which cause
particular X-registers to be associated with the
arguments), and general external arguments cause a store
to APLIST or assembler to APLIST instruction to be sent
to ARLIST.

ARGPIRT

This routine is called by the main line processor and the
exponential operator processor after the argument 1list

-163-

(6}
.
N
.
=

5.2.6

6000 FORTRAN EXTENDED 4.0

has been processed. 1If the function is general external,
it outputs a call by name macro to ARLIST. It then
enters ARGP8CR to output loads of functions saved during
the processing of the list, if any, to R-1list. Then
register define instructions are output to ARLIST, giving
R-names to the result register(s), X6 (and X7). Then all
of the ARLIST for this function reference is output to R-
list. The next available location in the ARLIST buffer
is adjusted. A psuedo-op giving the name of the function
result is then output to ARLIST. Finally, the FRLW block
is restored to the wvalues it contained before this
function reference. If the function was intrinsic, the
contents of RNTB would be used to set up the parameters
of the corresponding macro and the macro would be sent to
ARLIST. Finally, the FRLW block would be restored.

If the function was basic external, a call by value macro
would be sent to ARLIST and ARGP8CR would be entered, as
for general externals.

INGEN

Processes binary operations. The input is the address of
the operands, and the macro code of the operator. If
both operands are real or integer constants and the
operator is +, -, or /, then the operation is made on the
constants, the instructions which loaded the constants
are nc-oped and a macro is formed and output to ARLIST to
operate on the operands and the operand entries in ARLIST
are marked as having been used. Finally, the cells
holding the addresses of the last two available operands
(RL1 and RL2) are reset.

UINGEN

Processes binary operations, similar to INGEN.

MACOUT

Routine to make entries to ARLIST. The input is: type
of result (e.g., Double Precision), the macro descriptor
(macro number, number of Rs, 1IHs, CAs), NARN (next
available R name), and the macro parameters in a block

called PARAMS. MACOUT forms the ARLIST information word
and the macro in the next available locations in ARLIST.

2 e A b

-164-

6000 FORTRAN EXTENDED 4.0

Used to generate a macro to convert from one data mode to
another. The input is the address of the operand in
ARLIST which is to be converted, and the data type to
which it is to be converted. The +type code of the
operand and the new +type code are combined to form a
vector. The vector table is entered: the correct
convert-macro code is selected and one of two possible
branches are jumped to. A macro is then output to
ARLIST.

Formats

ARLIST entries: (ARLIST is the block that ARITH forms R-
list subexpressions in).

word 1:

VFD 1/NOP, 11/Type of result,1/C,1/GPTU,1/J,1/XMT,
7/0,1/J3,18/% words in this entry,
18/% words in preceding entry

B59 = 1 if this entry is not to be sent to R-list.
If B59 -1, the entire contents of word 1 have
been complemented.

B58-48 indicate the type of operand as follows:

2000B Logical
2001B Integer
2002B Real
2003B Double
20048 Complex
2005B Octal
2006B Hollerith
B47 = 1 if the operand is a constant.
BU6 = 1 if +this entry is temporarily unavailable as
an operand.
B45 = 1 if this entry has been used as an operand to
a subsequent operation.
B44 = 1 if a transmit instruction should follow this
entry if it is the second operand of an equal-
sign operator. (e.g., see the R-list macro

definition of the intrinsic function REAL).

-165-

6000 FORTRAN EXTENDED 4.0

B36 = 1 if this entry is a replacement "fetch".
(Used by JAMS8 only).

Word 2: Word 2 1is wunused at this time. It was
initially planned to use this word to further
optimize evaluation of logical expressions, but
it was found that the optimizations could not
be made because of a basic design peculiarity.

Word 3: The first word of the R-1list macro (or
instruction). If the entry may be used as an
operand, B15-0 of this word holds the R-name of
the operand. (If a double length operand, R+1
is the name of the second word of the operand).

OPSTAK
This is the operator stack block. Generally, there is
one word per operator. The format of that word is given
below:

VFD 12/0perator code,4/statement function type,21/0,
i/cGP,1/s,1/A,1/E,1/GP, 18/0Operator precedence

B59-48 = the operator code. The lowest operator code is
2003B. The codes used to represent source
operators are also used by ARITH although ARITH
generates some of its own operators.

B47-44 are used with code 2036B to indicate the type

of statement function referred to (0 = logical,
1 = integer, etc.).

B22 = 1 if B18 = 1 and this operator has been compared
with one in the stack with equal precedence.

B21-19 are used with codes 2006B, 20268, and 2036B.
(These are operators which represent different
types of left parens). B21-19 are used to
remember whether a subscript, argument, or
normal expression was being translated before
the left paren occured; this is indicated by
B21-19=4, 2 or 1 respectively. The information
is needed to know whether a comma is a
subscript, argqument, or complex constant comma.

R18 = 1 if the operator has been compared with one of
higher precedence.

-166-

6000 FORTRAN EXTENDED 4.0

B17 - 0 the precedence of the operator.

-167-

6000 FORTRAN EXTENDED 4.0

(end-of-statement)

(left paren preceding
function argument list

(left paren preceding
non-standard subscript)
(comma following first
subscript expression in
non-standard subscript)
(comma following second
subscript expression in
non-standard subscript)
(comma separating

(reverse-operand minus)
(reverse-operand divide)
(special multiply,
e.g., A/B/C/D A/ (B*Cx*D)
(left paren preceding
Statement-Function
argument list)
(generated left paren
entered at start of

Operators Code in Octal Precedence
) 2002 0
’ 2003 0
E.0.S. 2004 0
= 2005 0
(2006 0
.OR. 2007 2
.AND. 2010 3
<NOT. 2011 (]
.LE. 2012 5
.LT. 2013 5
«.GE. 2014 5
.GT. 2015 5
.NE. 2016 5
<EQ. 2017 5
- 2020 6
+ 2021 6
* 2022 7
/ 2023 8
%% 2024 10
(:\ 2025 0
see 2036)
(s 2026 0
+S1 2027 1
¢S2 2030 1
A 2031 1
arguments)
U- 2032 6 (unary minus)
R- 2033 6
R/ 2034 8
* 2035 9
(S.F. 2036 0
(X 2037 0
IXFN)
(SUBR 2040 0

-168-

(left parens preceding
CALT. argument 1list)

6.3

6000 FORTRAN EXTENDED 4.0

FRSTB: Function results saved table. Information
about functions which have been saved. One
word per entry.

B58 = 1 if the function was Double or Complex.

B33 - 16 = the number of the statement-temporary-storage
location in which the function result was
saved.

B15 - 0 = the R name of the function result}
XPNMT

Exponent function name table. This table gives the name
of each library function corresponding to the wvarious
combinations of operands possible for the ** operator.
Each entry is one word. The format is:

B59-56 = type of result of the operation (1 = integer,
2= real, etc.)

B-55-49 (unused) .
B-48 = 1 if the combination if non-ANSI.
B47-0 = the name of the function.

There are 16 entries for the 16 possible combinations.
Entries for illegal combinations are all zero. To make
an illegal combination legal, replace the entry with the

— i e amms & PR S A S :
necessary information as described above.
INTFTB

Intrinsic function table. Three words per entry, one
entry per intrinsic function. The format of the first
and second words is the same as the pass-1 format of
SYMTAB entries with the exception that BO of the second
word = 1 if the function contains an RNM R-list
instruction and therefore may need a transmit Dbefore a
store. The third word holds the macro descriptor word
(see MACOUT), or, if MAX or MIN type functions, special
information about the type of MAX or MIN function.

BEFTB

8.0

8.1

6000 FORTRAN EXTENDED 4.0

Basic external function table. Two words per entry, one
entry per function. The format is the same as the first
pass format of SYMTAB entries.

Modification Facilities

EQUs are used for diagnostic ordinals,; MACROX ordinals,
lower memory cell locations, block sizes, codes, etc.
Diagnostic macros are used. All explicit operations and
intrinsic function references result in R-1list macros
rather than separate R-list instructions.

Method
There are four kinds of expressions in FORTRAN Extended:

1. Arithmetic
2. Relational

k! TAarimal
-t . J—lvj-‘-vu-‘-

4. Masking

The same translator is used to translate all kinds of
expressions. Translation takes place in a single left to
right scan of the expression.

Translation is from the E-list form of <the source
statement to R-1list language. The R-list = language
specifies +the machine instructions and registers to
evaluate the expression, but the registers are assigned
as if there were an infinite number available. The
second pass assigns actual registers to the instructions.

Arith is called by:

1. Phase-2 control for processing of replacement

statements
2. Computed GO TO processor
3. IF
4, CALL

These are the only kinds of statements which may contain
expressions. If the replacement statement is actually a
statement function definition, ARITH will call ASFDEF to
save the statement function for 1later reference as a
macro. Statement functions are expanded in-line at each
point of reference.

-170-

8.2.1

8-3

6000 FORTRAN EXTENDED 4.0

Computed GO TO: ARITH translates the expression,
converts to type integer if necessary, outputs the R-
list block, and returns to the GOTO processor with the
number + 1 of the result-R in a common location.

IF: ARITH translates the expression, outputs the R-list
to the R-list block, and returns to the caller with the
name and type of the result in a common location.

CALL: CALL calls ACALL which is local to ARITH. ACALL
sets up ARITH to process the CALL statement with argument
list in much the same way as an external function
reference is processed. ARITH outputs all the R-list
needed for the arguments and returns to CALL.

Generalized flow of the translation process.

The basic translation algorithm used is similar to that
used to produce reverse Polish notation.

For example:
A% (B+C)-D

is translated to reverse Polish as follows:

E-list Operator Reverse

Step Item Stack Contents Polish String

1 . (EOS) A

2 * o ¥ A

3 (E(A

i B X AB

5 + ¥ (+ ABC

6 c SR+ ABC+

7) . X ABC+

8 - - ABC#+%*

9 D - ABC+*D
10 E.O0.S. ABC+*D-,

This algorithm has been modified so that R-1list, rather
than Polish notation, is produced. The difference is
that instead of outputting the name of a variable to a
string, an instruction to load the variable is output,
and instead of outputting an operator, an operation with
operands named is output. For example, taking the
expression used in the last example, the results are:

-171-

'8.”.1

6000 FORTRAN EXTENDED 4.0

R-list Corresponding Polish

R1=A
R2=B
R3=C
R4=R2+R3
R5=R 1*RUY4
R6=D
R7+R5-R6

1O #+ QW

Almost all of the R-list generated by ARITH is in the
form of R-list macro references. R-list macros are
described in detail in the section on the R-1list
language.

Since no provision is made for saving intermediate result
registers, all external function calls must be made
before the remainder of the expression is evaluated.
ARITH does this by forming the R-1list for the expression
in a block 1local to ARITH called ARLIST and outputtlng
each function reference including argument expression

evaluation to the R-list file as each argument list
becomes completed.

In general, function results, except for the last
function call, are saved in a block called FRSTB. After
the entire expression has been scanned, ARITH outputs
loads of the saved function results to the R-1list file
and then the remainder of the contents of ARLIST are
output to R-list.

The Exponential Operator, **

For exponential operations which are not done in-line,
the #** operator is really an external function reference.
Since it has only two arguments, it can be called by
value. So, the exponential operator is made to look like
a basic external function call and some of the function
processing routines are used. A prcblem arises in an
expression like '

A+ (B* (C+D)) **E/F
because the call to the exponential function must be

output first preceded by all of the argument evaluating
R-list to the R-1list file.

-172-

8'“.2

8.4.2.1

8.4.2.2

6000 FORTRAN EXTENDED 4.0

The solution for this case is to save a marker with every
left paren entered in the OPSTAK to point to the start of
the ARLIST for what might be the first operand of an
exponential operator.

For exponentials with integer or real base expressions,
and an integer constant power which is greater than one
and less than 7, ARITH selects an R-1list macro code and
outputs a macro to do the exponentiation in-line.

Subscripts

Standard: ARITH's subscript processor produces two kinds
of array references for standard subscripts: a subscript
psuedo-macro which 1is processed by DOPRE in the second
pass, and a simple variable load macro with a constant
addend.

Non-Standard: If the subscript processor finds that the
subscript is not in standard form, it resets the E-1list
pointer to address the start of the subscript. It then
adds a non-standard-subscript operator to the operator
stack, and returns control to the general expression
scanner (at NEXTE).

There are. three kinds of commas that ARITH must deal
with: an argument comma, a subscript comma, and a
complex-constant comma. To do this, ARITH keeps a cell
called EMODE which indicates whether it is in argument
mode, normal expression mode or subscript mode.
Initially, EMODE is set to normal expression mode. As
each left paren is met, the current mode is saved in the
left paren entry in the OPSTAK and EMODE is set to
normal, or argument, or subscript if the left paren is
normal, or follows a function name, or follows a
subscript name, respectively. As each 1left paren is
popped from the stack, EMODE is reset to what it was
before that left paren was encountered in E-list.

Argument and subscript commas are psuedo operators and
when popped from the OPSTARK they initiate the action
necessary to complete the processing of the argument or
subscript. As each subscript comma is popped, it causes
some of the index function R-list to be generated. When
the subscript operator itself is popped from the stack,
the final index function R-list is produced followed by a
macro to load the array element name.

=173~

6000 FORTRAN EXTENDED 4.0

Since a non-standard subscript expression can be any
arithmetic expression, it's possible to have subscripted
subscripts to any depth. This means that the non-
standard subscript processing must be able to operate
recursively.

So, when the subscript operator is added to the OPSTAK,
it is preceded by information about the subscript
currently being processed. This is the same way that the
function processor worked.

Relational, Logical, and Masking Expressions

Processing the four kinds of expressions with the same
translator presents no serious problems to the basic
algorithm. The relative hierarchy of the explicit
operators are:

*%
/¥
—’-‘r
relationals
" «NOT.
«AND.
.OR.

No distinction is made between the arithmetic operators
(/,*,~,and +) and the relationals. The logical operators
become masking operators if their operands are non-
logical. Since logical operands are only legal for the
logical operators, and since .AND. and .OR. must have
both operands 1logical or both non-logical, it is
impossible to have an expression that contains both
masking and logical subexpressions.

Otherwise, expression types are mixed in any way. For
examrle,

A+B.LE.C.AND.L1 (L1 is logical)

is a 1logical expression with relational and arithmetic
sube xpressions. It is translated as follows:

R-1list OPSTAK
Ri=A +

R2=B LE.
R3=R1+R2 «BAND.

-174-

8.5.3

6000 FORTRAN EXTENDED 4.0

RU4=C
R5=R3.LE.RY4
R6=L1

R7=R5. AND .R6

Dist inctions made between operand types in arithmetic and
relational expressions.

When an operator is popped out of the OPSTAK, it enters a
jump or vector table where an R-list macro code is
assigned to it, and it is sent *to the appropriate
processor. For the relational and arithmetic operators
other than **, if the operands of the operator are typed
integer, the macro code is increased by one; if they are
double precision, the code is increased by two; if
complex, by three; and if real, the code is used as is.

Before the macro code incrementation is made, the operand
types are compared. If they are not the same, an R-list
macro is output to convert the lower type operand to the
same type as the higher operand.

Optimizations
compile-time Data-type Change

When an operator is popped from the stack, 1if its
operands are of different types, and if the operand of
lower type is constant, it will be converted to the
higher type and the R-list instruction which loaded it or
set, it will be replaced by one that loads the converted
constant.

Compile-time Constant Subexpression Evaluation

Before a macro is formed for an operator, if it is an
arithmetic operator and if its operands are integer or
real constants, the R-list for the operands are no-oped,
the operation is performed on the operands, and a load or
set of the computed value is output to ARLIST. If this
load is subsequently used as an operand with another
constant operand, it will be no-oped just as the loads it
replaced were no-oped.

Division by Real or Complex Constants

-175-

8.5.4.1

8.5.4.2

6000 FORTRAN EXTENDED 4.0

If a real or complex constant is preceded by a divided
operator, R-list is output to load its inverted wvalue and
the divide is changed to a multiply operator.
Expression Transformations
Some expressions or subexpressions can be transformed to
other mathematically equivalent forms which evaluate
faster on the 6600 than they would if translated by the
‘basic algorithm.
The R-1ist produced for
A%*B*C*D
would compute the product as if it had been written
((A*B) *C) *D

and thus not take advantage of the 6600's two multiply
units. If it had been written as

(A*B) * (C*D)
the two products in parentheses would be computed
simultaneously. 1In order to achieve this effect, Arith
keeps a flip-flop for popping multiply operators by
operators of equal hierarchy. The flip-flop is flipped
for every multiply operator encounterd in E-list, so that
for

A*B¥*C*D+E
the first multiply is popped by the second, as usual, but
the second is not popped by the third. The last two will
be popped by the plus thus resulting in

(A*B) ¥ (C*D) +E
Normally

A*B*C/D

results in

((A%B) *C) /D

-176-

8.5.4.3

8.5.4.4

6000 FORTRAN EXTENDED 4.0

which gives no parallel execution. But if divide is
given a higher priority or hierarchy than multiply, then

A*B*C/D

is evaluated as

{A%*B) * (C/D)
and the divide and multiply units are working
simultaneously.

Note: It might be well to note at this time that the
rules for carrying out these transformations
are general rules and are always in effect in
the translation algorithm. The translator
never looks at a source item in E-list more
than once, except for non-standard subscripts.
(see 8.4.2.2)

-A+B or, to illustrate the preceding note,
- (A-B) +C*D

becomes
C*D- (A-B)

which reduces the number of operations from four to
three, by the following rule:

If a unary minus is about to be popped from the
stack by a plus, remove the unary minus from the
stack and replace the plus with a reverse-operand
minus operator. The macros associated with the
reverse-operand minus operator are the same as those
for a normal minus operator except that +the first
parameter 1is subtracted from the second instead of
the second from the first.

A/B/C Dbecomes A/B*C, replacing a 29 cycle divide with a
10 cycle multiply (6600), by the following rule:

If the current E-list item is a divide, and the last
operand in ARLIST is not type integer, and the last
operator in the stack is a divide or a multiply-D
operator, then change the current divide to a
multiply-D operator which has higher priority than

-1717-

6000 FORTRAN EXTENDED 4.0

the divide and specifies a multiplication.
Introducing the multiply-D operator allows more than
one sequential divide to become a multiply:

A/B/C/D/E becomes

A/ (B*C*D*E) , which happens

to become A/ ((B*D) *(D*E)) because

the flip-flop also applies to multiply-D
operators.

8.5.4.5 The following rules allow a great variety of
transformations which allow for more parallel evaluation
of expressions. Some examples of the transformations

made are:
A*B/C*D (B/C) * (A%D)
A+B/C+D (B/C) + (A+D)
A+B*C-D (B*C) + (A-D)
A* (B+C)/D (A/D) * (B+C)
A- (B*C+D)-E (A~E) - (B*C+D)

The rules are as follows:

When a right paren is encountered in E-list, set the
GP (greater priority) flag bit in the operator
following the right paren. Oor, if the current
operator pops an operator with a higher priority out
of the stack, set the GP bit in the current operator
word.

If the GP bit of the current operator is set, and it
is about to pop an operator (other than unary minus)
of equal priority, or it is a divide and the last
operator in the stack is a multiply, then don't pop
the operator from the stack, set the CGP (confirmed
GP) bit in the current operator and the GPTU bit in
the information word of the last ARLIST entry. If
the operator left in the OPSTAK is a minus, change
it to a reverse minus. Add the current operator to
the stack.

The GPTU bit makes an ARLIST entry temporarily
unavailable for use as an operand. After an
operator with its CGP bit set is popped, the last
ARLIST entry with its GPTU bit set has the bit
turned off.

-178-

8.6.1

8.6.1.1

6000 FORTRAN EXTENDED 4.0

The following example will illustrate the use of
these rules.

A*B/C*D (B/C)* (A*D)
ARLIST OPSTAK

Ri=A *

R2=B /

R3=C CGP, GP, *
GPTU R4=R2/R3

R5=D

R6=R1*R5

R7=RU*R6

Arith Table Overflow Diagnostics
There is a fatal to execution diagnostic which says:

"EXPRESSION TRANSLATOR TABLE (table-name) OVERFLOWED.
SIMPLIFY THE EXPRESSION."

There are three different tables which may become
over flowed.

OPSTAK table

The size of the stack fluctuates as the expression is
scanned. For example, it increases as 1left parentheses
and operators of higher priority occur, and decreases as
operators of lower priority occur.

Each operator entered in the stack requires one word of
space, except for left parens which require two: one to
mark the start of a possible exponential base and the
other the operator itself.

The start of each function reference requires nine words
which includes the recursive function processor
information. If the reference occurs in an intrinsic
function argument 1list, then the opstak is also wused to
save the R-names of the arguments which have been
processed so far, which have been processed so far, which
could be up to 62 words if the function is a MAX or MIN
type function.

The start of non-standard subscripts requires four words.

-179-

8.6.1.2

8.6.1.3

8.7

6000 FORTRAN EXTENDED 4.0

The OPSTAK block size may be modified by changing the EQU
named MXOSE in the common file called OPTIONS, and
reassembling ARITH.

FRSTB

This 1is the function result-saved table. A one word
entry is made for each function that has its results
saved. For example, in

A=F1(B) +F2 (C) +F3 (Fl (D) +F5 (E)) +F6 (F)

F1 and F2 are saved, and then F4 is saved but is reloaded
to add to F5 so the size of the table goes down by one,
and finally F3 is saved before calling F6.

The FRSTB block size can be modified by changing the EQU
named MXFRSTB in the Option file and reassembling Arith.

ARLIST

This 1is ARITH's R-1list block. The size increases as the
expression 1is scanned, but it decreases after each
external function reference is output to the common R-
list file. A variable 1load entry takes 6 words; an
operation takes four words if single length operands, and
8 if double length, a standard subscript psuedo-macro
takes fourteen words.

The size of ARLIST is controlled by the EQU named ARLSZ
in the Options file.

The Register Jam Problem

The second pass was designed under the assumption that
there would always be a sufficient number of X-registers
to be wused in the evaluation of expressions, with the
following type of exception:

A very long expression can be constructed in such a
way that the result registers of enough
subexpressions must be saved so that a point is
reached where enough registers to continue do not
exist.

The assumption was correct for integer and real
expressions, but it was found that it was quite easy to

-180-

8.7.2

8.7.2.1

6000 FORTRAN EXTENDED 4.0

run out of registers when evaluating Double or Complex
type expressions.

The problem has been partially solved by modifying the
expression translator to produce a different kind of
output for Double and Complex expressions; partially
solved because it is still possible to run out of
registers for Real or Integer expressions.

These modifications to ARITH make up over 20% of the
total number of source lines in ARITH, so it's important
that they be described.

The Solution in General

When the second vass finds that it does not have enough
registers to complete a sequence of statements, it
reduces the number of statements in the sequence and
begins again.

The solution is to break up a double or complex
expression into many statements, one statement per
operation. For example,

D1=D2*D3+Dl
is made to look to the second pass like

ST1 = D2%*D3

D1 = ST1+D4
where ST1 is statement-temporary one and is treated as a
double wvariable.

The Solution in Particular
Double Length Operations

When ARITH is ready to output a macro for an operation,
if the operands are double-word-length loads, it no-ops
the load instructions and outputs a macro which will locad
the operand and do the operation. It then outputs a
macro to store the results of the operation in Statement-
Temporary storage followed by an end-of-statement psuedo-
op. This macro is called a DSTR macro. The DSTR macro
is in the same format as a double load macro and will be
used as an operand to subsequent operators.

-181~

6000 FORTRAN EXTENDED 4.0

8.7.2.2 Mixed Single and Double

An expression with mixed single length and double length
operands, for example real and complex, presents a new
problem. The expression

A+B* (C1+C2) , (C1 and C2 complex)
would not result in

R1=A

R2=B

R3, 4=C1 (no-oped)

RS, 6=C2 (no-oped)

R7, 10=C1+4C2

ST1=R7, 10

EOS (end-of-statment op)
R11, 12=CMPX (R2)

Etc.

but at the point of the last line, a reference to R2 is
made which is defined in the previous statement which may
end up in another sequence and therefore be undefined in
this sequence. R1 won't be referred to until after the
multiply operation which will occur two statements away,
and so the chances that it will be undefined are even
greater.

This problem has been solved by converting all unused
single length operands to type Double Precision in an
expression that contains a double or complex operand.
The method of doing this is as follows: As each load or
operation is output to ARLIST, the type is compared with
the type of the last operand in ARLIST. If one is type
integer or real and the other is double or complex, then
a flag is set to indicate that mixed single and double
has occurred, and the contents of the ARLIST block are
scanned, inserting macros to convert operands which have
not already been used in operations to double precision.
Thereafter, the type of each entry to ARLIST is checked,
and if not double or complex, a macro is output to
convert it.

Mixed Super-and Sub-expressions
A modification to this method of dealing with the mixed

single and double problem is necessary because of real or
integer argument expressions occurring in a Double or

-182-

8.7.2.3

7.3

6000 FORTRAN EXTENDED 4.0

Complex super-expression. Also, index functions in a
double expression should not be forced to be computed in
double precision. This makes it necessary to treat
argument and subscript sub-expression as an autonomous
expression with regard to whether mixed single and double
has occurred, and with regard to how far back in the
ARLIST to go when the first double operand occurs in a
mixed single and double expression. And since
subscripted subscripts and function references in
argument expressions, etc. exist, it is necessary to keep
track of where in ARLIST each subexpression starts, and
for each subexpression whether mixed single and double
has occurred. This introduces another table which can
overflow. The name of the table is JAMTB1. The size is
controlled by the EQU named JAMTB1MX in the options file.
An entry of two words is made at the start of each
argument and non-standard subscript. The table is
reduced by two at the end of each argument and non-
standard subscript.

consider the statement
A (I*¥J)=D1+D2*D1 (D1 and D2 double)

The subscript I*J is non-standard. The R-1list produced
for the statement would normally consist of the
calculation of the index function followed by the
evaluation of the expression followed by a store of the
result into A(I*T). But since ends-of-statement
operators now follow the double plus and double multiply
operations, the subscript calculation may end up in
another sequence.

So, ARITH now moves the R-list to compute a non-standard
index function from the front of the ARLIST block to the
end before outputting the store macro.

Because of this and multiple replacement statements, it
is necessary to remember the starting point in ARLIST of
each replacement variable. The limit on the number of
replacements per statement is 75.

Subscripts and Double Length Operands
To make the implementation of this solution to the

register depletion problem more feasible, Double or
Complex operands in subscripts has been made illegal, and

-183-

9.0

9.2

6000 FORTRAN EXTENDED 4.0

all Double or Complex array subscripts are considered
non-standard.

Restrictions and Other Remarks
Basic syntax checking is done by looking at the E-list

element following the current E-list element. The
following table indicates the syntax rules:

E-list element may be followed by

CON (constant) Ysss E.O.S., OPS (2.)
ID (name) sse E.O.S., OPS, = , (
) (1.) ees E.O.S., OPS, =

v?2 =¢ (, «OR., AND. CON, ID, (, -, *+, .NOT.
s NOT., relational ops CON, ID, {(,—,+

-t X,/ K% CON, ID, (

(1) If) 1is the closing parens of an IF expression it
may be followed by an ID (if Logical IF¥) or constant
(label). If) is in I/0 list (IXFN call) it may be
followed by (or ID.

(2) OPS = .OR., .AND., relationals, -, *, /, **
The format of ARITH in COMPASS

Label field starts in column 2, operator in column 11,
and symbols or integer constants in column 21.
Instructions (other than 50-57) which have more than one
result register (e.g., Unpack) are written so that the B
register name starts one character after the end of the
operation field. Operand registers start in column 18.
This foxrmat results in all result registers, operand
registers, and symbolic references to be found in column
12-16, 18-20, and 21-72 respectively. Comments start in
column 31.

Every conditional branch instruction has a comment
stating what condition must be met in order to branch.

-184-

10.0
10.1

10.1.a

10.1.b

6000 FORTRAN EXTENDED 4.0

At NEXTE, B1 is set to the address of the next E-list
item to process. A large part of ARITH assumes that Bt1
holds this address. Therefore, B1 should be used very
carefully.

Except for B1, in general it may be assumed that any
register may be destroyed when calling a subroutine
(including B1 for external routines). Any exceptions to
this are noted in the introductory comments of the
exceptional routines.

Ccaution to modifier. ARITH is not laid with booby traps
but may appear to be so because of the complexity of the
task. Transformations, etc., cause unexpected results.
Beware of functions, non-standard subscripts, and
exponential operators.

Debug Subroutines

Function tracing

FNPP - Debug FUNCS Pre—~Processor

FNPP is called from ARGPIRT when either the function

tracing bits are set in the symbol table entry or the
trace all functions flag is set.

a) Generate call to BUGFNN macro via IGCALL with
DBGAPL VFD . u2/function name, 18/type
VFD 60/0
VFD 60/8RBUGFNN
b) Next available aplist number is updated, BUGFNN is

entered in the symbol table with type CGS, and the
function tracing flag is set.

FN - Debug FUNCS Processor

After the call to the function is issued, a call to
BUGFUN is generated to indicate return £from and value
returned by the function.

a) Save RLIST pointers.

b) Issue temporary store for function result (2 for
double word results).

-185-

10. 2

c)

qd)

e)

f)

9)

hy

6000 FORTRAN EXTENDED 4.0

Generate call to BUGFUN macro via IGCALL with
DBGAPL VFD 42/7function name, 18/type-
VFD 30/ST. ordinal for the value
returned 30/IH of ST.-
VFD 60/0 VFD 60/8RBUGFUN
Enter BUGFUN in symbol table with type CGS.

Issue load and transmit of function result and enter
in the saved function results table.

Flush debug code via DARLIST.
Restore RLIST pointers.

Turn off function tracing flag; return.

ARR - Debug ARRAYS Processor

ARR

is called from the subscript processor when either
r

the arrays tracing bits are set in the symbol table entry
or the trace all arrays flag is set.

a)
b)
<)

d)

e)

£)

9)
h)

Save RLIST pointers.
If the last macro was a load, issue transmit.
Process saved function results via ARGPS8CR.

Generate call to BUGARR macro via IGCALI with

DBGAPL VFD 42/array name 18/0
VFD 60/array bound
VFD 30/ST. ordinal of dimension
being checked 30/IH of ST.
VFD 60/0
VFD 6 0/8RBUGARR

Enter BUGARR in symbol table with type CGS.

Indicate unsaved function result and define result
(array dimension being checked) to be in X6.

Flush debug code via DARLIST.

Restore RLIST pointers.

-186~-

6000 FORTRAN EXTENDED 4.0

10.3 STRCK - Debug STORES Processor

STRCK is called from the assignment statement processor
when the stores checking bits are set in the symbol table

entry.

a) Save RLIST pointers.

b) Get and save variable name and type to build aplist.

<) If variable dimensioned, calculate element and issue
temporary store (2 for double word element).

d) From the AASI table determine the frequency count
for stores without relational operators. If =zero,
go to i) to check for stores with relationals.

e) For stores without relations, set up dummy
relational operator=9 to indicate no relational
expression.

f) Collapse DBGAPL to eliminate word used for test in
the relational expression.

g) Generate call to BUGSTO macro via IGCALL with
DBGAPL VFD 42/variable name, 15/relatiocnal

operator, 3/type

VFD 60/value stored into the variable

VFD 30/0ordinal in CON. of constant
Used with stores involved in the expression
with relationals 30/1IH of CON.
collapsed out in
step £ for stores -or-
with checking
operators or stores VFD 4270, 18/1IH of variable in-
without relationals volved in the expression

VFD 60/0

VFD 60/8RBUGSTO

h)

Enter BUGSTO in symbol table with type CGS.
Check for 1links for stores with relationals due to

interspersed specifications and links due to packet
specifications. Exit to step m) when finished.

-187-

10.4

12

3)

k)

1)

m)

n)

6000 FORTRAN EXTENDED 4.0

Get relational operator out of the options word.
RANGE and INDEF will use the collapsed aplist (step
).

If variable after relational operator go to step n).
Determine which table the constant is in. If in the
global table, enter in the CON table. Enter ordinal
in aplist, and go to step qg).

Restore RLIST pointers and return.

Get the variable ordinal and form the aplist with

symbol table ordinal instead of a constant table
ordinal, and go to step qg).

Debug TRACE Processing

a.

When the appropriate IF statement routine is
entered, the tracing flag, TRCFLG, 1is set greater
than or equal to zero if the current DO level is
less than or equal to the desired DO level of
tracing.

For an IF statement of the form

IF (expression) 11, 12, 13, or IF (expression) 11,

IFBRT is called to process each branch.

In IFBRT if the tracing flag is set, a generated
label is reserved for each branch and is stored in
order in a temporary buffer. For each branch an
aplist is set up containing the label of the branch
(30/BCD for the 1label, 30/binary for the label).
Using RTNM, the debug IF macro, a call to BUGTRU is
generated. Upon return from BUGTRU, a branch is
made to the actual label used in the IF statement.

For a logical IF statement of the form
IF (logical expression) statement
a call to BUGTRT is generated via IGCALL with

DBGAPL VFD 60/0
VFD 60/8RBUGTRT

-188~

6000 FORTRAN EXTENDED 4.0

This call is generated before the code for the true
side of the IF statement. At object time BUGTRT
will issue a message to indicate transfer to the

true side of a logical 1IF.

-189~

6000 FORTRAN EXTENDED 4.0

ASFPRO

General Information

ASFPRO consists of two independent subroutines ASFDEF and
ASFREF. ASFDEF processes all ASF definitions by saving
the text 1in a table; ASFREF processes all references to

ASF's by expanding the E-list and inserting in the ASF
definition.

Usages
ASFDEF

Function of ASFDEF

Calling ASFDEF will process the entire FE-list. The
modified E-list is moved to ASFTAB.

ASFDEF is called with a return Jump. It is only

necessary that SELIST (RA+32B) point to the E-list entry

containing the ASF name. Return is to PH2RETN either
directly or through ERPRO.

Processing flow description

1. The parameter list is checked for proper format.

2. All references (to parameters) on the right of the
equal sign are replaced with parameter ordinal
indicators. Any entries in CONSTOR are moved to the
ASFTAB area.

3. The E-list after the equal sign is moved to the
ASFTAB area.

4. The ASF text is linked to any previous ASF texts.
ASFREF

Function of ASFREF

ASFREF 1is called whenever a reference +to an ASF is
encountered by ARITH. ASFREF replaces the reference to

the ASF with the ASF text resulting in an expanded E-list
statement.

-190-

6000 FORTRAN EXTENDED 4.0

ASFREF is called by a return jump with SELIST pointing to
the ASF name within E-1list.

Processing flow description

1.

2.

The ASF name is checked to see if it has been
properly defined.

The remainder of E-list is moved to the scratch
table.

The parameters to the ASF are bracketed and checked
for correspondence in number with the definition.

The text is expanded and appended to E-list.

The part of the statement following the ASF
parameter list is E-list.

Diagnostics Produced

1.

2.

Dummy parameter in an arithmetic statement function
definition occurred twice.

Arithmetic statement function has caused a table
overflow while being processed.

Arithmetic statement function has more dummy
parameters than allowed.

Arithmetic statement function has an improperly
formed parameter list or no = following the list.

A reference to this arithmetic statement function
was not followed by an open parenthesis.

Insufficient memory was available for the evaluation
of this arithmetic statement function reference,
possibly a recursively defined ASF.

A reference to an improperly specified arithmetic
function has been encountered.

A referenqg +o this arithmetic statement function
has balanced parenthesis within the parameter list.

-191-

6000 FORTRAN EXTENDED 4.0

9. The number of parameters used in referencing this
arithmetic function does not correspond to the
number in its definition.

Environment

External Symbols

ERPRO called to issue fatal errors

RSELECT holds a non-zero value for R=2 or R=3

PH2RETN exit to the phase two controller

IDORDL holds the symbol table ordinal of the name
(ASF)

NAMFWA holds address of word A of the name (ASF)

PSYM format a symbol for an error message

FWAWORK holds the first word address of working storage

LWAWORK holds the last word address of working storage

S.SCR size of the scratch table

0.ASF origin of the ASF table

L.ASF length of the ASF table

0. SCR origin of the scratch table

L.SCR length of the scratch table

Z.SCR number of the scratch table

ALLAE routine to allocate almost all storage to a
manager table

ADDREF routine to collect a reference

MOVE routine to move an area of core or a table

ALLOC routine to allocate space to a table

Z.ASF number of the ASF table

-192-

6000 FORTRAN EXTENDED 4.0

5.0 Processing

5.1

ASFDEF

de

b.

Save the ordinal of the statement function in IDORDL
and the address of word B in WORDB.

If the next E-list element is not a name, issue an
error.

Increment the parameter count.
If the next item is a comma, go to b.

If it 1is not a a right parenthesis, issue an error
for a bad parameter.

If the next item 1is not an equal sign, issue an
error.

Save the number of parameters and first word address
of the statement function text.

Issue an error if more than M.FP parameters appear.
Extract a parameter from the list.
Decrement the number of parameters to go.

If this E-list item does not match the parameter, go
to i. If the item is an end of statement go to o.

If the item after the formal parameter is a constant
or a name, produce an error.

If the parameter matched an E-list item prior to the
equal sign, issue an error for a doubly defined
formal parameter,

Substitute the formal parameter indicator (2077---
«+«+.nB), where n is the formal parameter number.

Advance to the next formal parameter. Go to i.

Allocate space in the ASF table to hold the
statement function text.

-193-

6000 FORTRAN EXTENDED 4.0

q. Place the number of arguments in the FARG field and
the distance from O.ASF in the RA field of word B
for the statement function.

r. Move the text into the ASF table at the end.

S. Setup to scan the E-list string for constants.

t. Examine the next E-list element. If it is an EOS,
go to y.

U. If it is not a constant, go to t.

V. If it is a logical constant, go to t.

W. Compute the number of words occupied by the constant
and increment the total space needed in ASFTAB to
hold all constants.

Xe Make an entry in the temporary table constructed
over the E~1list of the form VFD 12/2000B + word
count, U48/ASFTAB ordinal of CONSTOR entry. Go to t.

V. Phase two - Move the constants from CONSTORS to the
ASF table. If no constants, go to af.

Z. Allocate space at the end of the ASF table to hold
the number of constant words needed. 1Increase L.ASF
by this size.

aa. Pick wup the temporary table entry for the constant.

ab. Pick up the E-list for the constant and install a
local pointer into the ASF table to where the
constant is located. (Note: This pointer address is
absolute.)

ac. Update L.ASF and move the constant from the CONSTORS
table to the ASF table.

ad. Decrease the number of constants to be processed.

ae. If more constants remain, go to aa.

af. Collect a reference to the statement function, if
necessary.

ASFREF

-194-

6000 FORTRAN EXTENDED 4.0

Pick up word B and extract the ASFTAB index and
number 0of arguments.

Allocate all nearby storage to the scratch table.
Extract an E-list item.

If it 1is a constant, name or an operator with a
precedence, go to c.

For a left parenthesis, increment the paren count
and go to c.

If an end of statement is found, issue an error for
unbalanced parens. For paren count = 1, go to h.

Go to ¢ 1if it is not a right paren. Otherwise,
decrement the paren count and go to c.

If no parameter intervened, diagnose a vacuous
parameter.

Make an entry in the argument substitution table of
the form 24/0, 18/FWA, 18/length. Advance parameter
ordinal.

Issue an error if storage is exceeded during scratch
table construction.

Move the actual parameter to the scratch table area
above the argument substitution table.

If the next E-list element is a comma, go to c.

If the parameter ordinal does not match the number
of declared parameters, issue an error.

Move the remainder of the statement E-list to the
scratch table and diagnosis any storage overflow.
Adjust CWAWORK.

Place a left parenthesis in the now freed up E-list
area to simulate a fully parenthesized expression.
Decrement SELIST.

Setup to scan the ASF text table.

Extract a text item. If it is a parameter, go to u.

-195-

ad.

ab.

6000 FORTRAN EXTENDED 4.0

Store the element in the E-list area being
constructed.

If it is an end of statement, go to aa.

Check for storage availability. If there is no
problem, go to g, else produce an error message.

Obtain the argument substitution word for this
parameter.

If the actual parameter is more than one word of E-
list, go to x.

Store the parameter word in the E-list area and go
to t.

Place a left parenthesis in the E-list area.
Copy the expression to the E-list area.

Place a right parenthesis in the E-list area and go
to t.

Move the remainder of the E-list after the
expression, update LELIST, LWAWORK, release the
scratch table space and diagnose an error if LWAWORK
is less than the origin of the scratch table minus
one.

Exit from ASFREF.

-196-

1.0

2.0

2.2

3.0

3.3

6000 FORTRAN EXTENDED 4.0

CALL

General Information

Task Description

The function of the CALL statement processor is to
translate E-list for a CALL statement into R-1list and
issue appropriate macros to the R-list file.

Entry Points

CALL

This is the main entry point of the CALL processor. It
is entered by a return jump instruction and exit is made
through this entry point if no fatal errors occur in the
statement being processed. Otherwise, control is
returned to PH2RETN in PS1CTL after ERPRO has issued a
fatal error diagnostic.

IGCALL

This entry point is called to form and issue the R-1list
macros for a subroutine call. It is entered by a return
jump instruction, and a return 1is always made back
through the entry point.

Diagnostics And Messages

Fatal To Compilation

None

Fatal To Execution

ILLEGAL CALL STATEMENT FORMAT

ILLEGAL RETURNS PARAMETER LIST

Informative

None

-197-

Non-ANST

6000 FORTRAN EXTENDED 4.0

RETURNS PARAMETERS IN A CALL STATEMENT

Environment

Low Cores Cells

SYM1
SELIST
DUKE

NGLN

NRLN

(12B) starting address of symbol table

(32B) address of next E-list element

(37B) line counter of source cards

(52B) next available generated label
number

(64B) next available result number

Local Cells And Symbols

CALN

JUMP

LOCA

SRLIST

TRCTS

TRCF1G

TSAPL

TS1

TYPECLL

temporary for current APLIST number
30-bit Jjump instruction
argument list table pointer

starting address of RETURNS 1list in E-list
format

temporary for TRACEL Information word
debug mode trace flag

temporary for APLIST number

buffer area for macros

debug mode call-return flag

Common blocks

/CLNFO/

SUBFWA

(used only by CALL and ARITH)
address of the first word of the symbol table

entry for the name of the subroutine being
called

-198-

SUBH
ARGCNT

NARGSF
SUBNAME
ARLPT

/NAALN/

NAALN

Externals

ACALL

ADDREF

ALLCALL

APLRT

ASAER

CONVERT

DARLIST

DBGAPL

DFLAG

6000 FORTRAN EXTENDED 4.0

symbol table ordinal of the subroutine name
number of arguments in parameter list
argument list flag-equals 0 if there is an
argument list

ormat of subroutine

name in E-list £

called

f T
being

ARLIST buffer pointer-number of words in buffer
for current statement

next available APLIST numbers

code block in ARITH called to process the
subroutine name and the argument list

code block in PS1CTL called to record a

reference for the subroutine name

debug cell in DBGPHCT used to indicate whether

subroutines references are to be traced
unconditionally

code block in ARITH called to issue an APLIST
macro to the ARLIST buffer

code block in ERPRO called to issue a non-ANSI

usage diagnostic

code block called to place a constant in the
CON. constant table
code block in ARITH called to dump the ARLIST

buffer to the R-list file

debug
symbol table information from which the
macros are formed

cells in ARITH containing parameter list
R-1list

debug cell in FTN used to indicate whether the
debug option has been selected

-199-

6000 FORTRAN EXTENDED 4.0

DOCALL code block in DOPROC called to record that an
external reference has occurred

DOLABR code block in DOPROC called to records that a
reference to a statement label has occurred

ERPRO code block called to issue fatal to execution
diagnostics
GEFCM ‘code block in ARITH called to issue a general

external function macro to the ARLIST buffer

INITR code block in ARITH called to initialize
pointers before statement and macro processing

LABEL. cell in LSTPRO containing the symbol table
ordinal for IABEL

PH2RETN code block in PS1CTL returned to after a fatal
to execution diagnostic has been issued

RSELECT cell in FTN used to indicate whether either of
the 1long reference map options has been
selected

STRIP code block in ARITH called to strip off a
trailing $ from a symbol table word

SYMBOL code block in LSTPRO called to make a new entry
into or search for an existing entry in the
symbol table

TRACEL debug cell in DBGPHCT used to hold the level
number for the TRACE debug statement

WRWDS code block in FTN called to perform the writing
of R-list macros to the R-1list file

Processing

Initial Processing

Upon entry to the CALL processor through its main entry

point, the routines INITR and TOCALL are called to

initialize pointers and flags in ARITH and to inform

DOPROC about an external reference. A syntax check is
performed on the first elements of the E-list string tor

-200-

6000 FORTRAN EXTENDED 4.0

the statement, and a fatal +to execution diagnostic is
issued and the processor exited if a name followed by a
left parenthesis, comma, or end-of-statement if not
found. If no error conditions are sensed, ACALL is
called to process the subroutine name and the parameter
list if one exists.

Intermediate and RETURNS Processing

When a successful return is made from ACALL, the debug
flag DFLAG is checked to determine whether the debug
option has been selected. If debug mode is not
specified, the trace flag TRCFLG is set non-zero and
RETURNS processing is initiated. Otherwise, if debug
tracing has been specified for this subroutine, the trace
flag is set to zero.

Further syntax analysis is performed to determine whether
a RETURNS list is present and correctly formatted. Macro
processing begins otherwise if there is no list and no
error conditions occur.

At the beginning of RETURNS processing, the routine APLRT
is called to generate an APLIST macro of minus zero. In
case debug tracing is selected for the subroutine, the
address of the E-list item for the first RETURNS label is
saved in SRLIST. This address is later needed in order
to issue debug subroutine calls for non-standard
subroutine returns.

As each label is obtained from the E-list string, a check
is formed to ensure that the item is an integer constant.
Otherwise, a fatal to execution diagnostic is issued and
processing terminated. DOLABR is called to process the
label and record its occurrence. APLRT is then called
again to issue the APLIST macro for the label. The
process 1is repeated until either an error occurs or the
RETURNS list is exhausted. If debug tracing has been
indicated, additional information is gathered and
overwritten in the E-list area for the 1label being
processed. The information consists of a label table
ordinal for the label, the symbol table ordinal for the
label, and the next available number for a generated
label. The current value of the debug trace flag TRACEL
is set to zero during this phase of processing so that a
label table entry will be created for the 1label. This
entry 1is used as part of the inputs to the debug routine
BUGCLRS.

=201~

5.3

6000 FORTRAN EXTENDED 4.0

Macro Processing

If the TRCFLG 1is zero, FARGLST is called to set up the
DBGAPL table for a debug subroutine call and to call
IGCALL to process the table. Otherwise, IGCALI is
entered directly to output a 60-bit return Jjump macro
with traceback information. TRACFLG is then tested again
to determine whether the second debug subroutine call
should be generated. DARLIST is called to dump the
contents of ARITH's macro buffer to the R-list file.
Processing 1is finished if there is no RETURNS list
present, or if no debug +tracing is specified for the
subroutine.

When subroutine tracing is selected, the saved debug
information in the overwritten E-list string is fetched
for each RETURNS labels, and debug subroutine call macros
and associated actual parameter list macros are written
directly to the R-list file. SRLIST is reset to zero and
the processor exited as soon as the terminating
parenthesis for the list has been reached.

FARGLST

This subroutine is called by the processor to form the
argument list used to generate debug subroutine calls.
The flag TYPECLL is preset before entry to either zero or
one to indicate that a subroutine call or standard
subroutine return 1is being traced. The subroutine name
and the TYPECLL value are placed in the CON. constant
table, and the returned 1IH, CA information is used to
form the first two words of the DBGAPL. The final two
words consist of a zero word followed by the address of
the debug routine name BUGCLLS$. IGCALL is called to
process the table and generate the debug subroutine call.

IGCALL

IGCALL is called from within the CALL processor and from
other pass 1 processors to form and write R-1list for a
subroutine call. Upon entry, A1 contains the address of
the parameter list which is to be processed. The IH and
CA fields are extracted from each argument word in the
list, and this information is passed to APLRT who issues
an appropriate APLIST macro. This process continues for
each word of the argument list until the zero word of the
table is sensed. 1If a subroutine is being compiled which

-202-

6000 FORTRAN EXTENDED 4.0

has no parameter list, this procedure is bypassed since
the first word of the parameter list will be zero.

The subroutine name is then entered into the symbol
table, the external bit is set for the name, and GEFCM is
called to output a general external function macro.
IGCALL exits after DOCALL is called to record that an
external reference has been made.

Table Structure

The debug APLIST table (DBGAPIL) is the only table used by
the CALL processor. The table is variable in length, and
contains information regarding debug calling sequences.

The dJdebug APLIST table is n+2 words long for a generated
calling sequence containing n parameters. The first n
words are of the format:

VFD 12/0,18/ CA of arg, 30/IH of argi.
The final two words are of the format:

VFD 6070
VFD 60/addr

where addr is the address of the E-list representation of
the subroutine name.

-203-

3.0

6000 FORTRAN EXTENDED 4,0

GOTO

General Information
Task Description

This processor translates E-list and issues appropriate
macros to the R-list file for all GOTO type statements
except unconditional GOTO's on the true side of a logical
IF statement. It also processes ASSIGN statements and
generates R-list macros for them.

Entry Points

PLAB

This entry point is called internally from the GOTO
processor to process a list of transfer labels appearing
in either computed or assigned GOTO statements. Entry
and exit is made through the entry point unless an error
condition arises during processing. In this case the
routine exits by jumping to the address specified by Aa0.

GOTO

This entry point is called to process any of the three
forms of the GOTO statement. Entry and exit are both
made through the entry point unless error conditions are
sensed.

ASSIGN

This entry point 1is called to process an ASSIGN
statement. Entry and exit are always made through the
entry point.

Diagnostics and Messages

Fatal To Compilation

None

Fatal To Execution

-204-

3.3

3.4

6000 FORTRAN EXTENDED 4.0

GO TO STATEMENT - SYNTAX ERROR
MISSING OR SYNTAX ERROR IN LIST OF TRANSFER LABELS
PRESENT USE OF THIS LABEL CONFLICTS WITH PREVIOUS USES

THIS ASSIGN STATEMENT HAS IMPROPER FORMAT, ONLY ALLOWABLE

is. {ASSIGN LABEL TO VARIABLE

VARIABLE IN ASSIGN OR ASSIGNED GO TO IS ILLEGAL
Informative

THIS STATEMENT BRANCHES TC ITSELF

Non~-ANSI

GO TO STATEMENT CONTAINS NON-ANSI USAGES

Environment

Low Core Cells

SYM1 (12B) starting address of symbol table

DIM1 (17B) starting address of dimension
table

CLABEL (23B) label field of current source
line

SELIST (32B) address of next E-list element

DUKE (37B) line counter of source cards

NGLN (52B) next available generated label
number

NLABEL (60B) label field of next source line

NRLN - (6UB) next available result number

/MACBUF/

BRSELF branch to current label flag

ASA ANSI flag

-205-

4.3

u.s

MACBUF
TEM?
/NAALN/
NAALN
/STSORD/

STSORD
Externals
ADDREF
ALLCC
ARITH
ASAER

CFO

CONVERT
DARLIST
DFLAG
DOFLAG

DOLABR

6000 FORTRAN EXTENDED 4.0

macro buffer

padding buffer
next available APLIST number

next available statement temporary store number
(Reset to 1 by PH2CTL the start of each
statement)

code block in PSICTL called to record a
reference for the index variable

code block

i
table space fo

S e

n S1CTL called to allocate more

P 1
the jump tab

called to process the index variable or
expression for a computed GOTO

code block in ERPRO called to issue a non-ANSI
usage message ‘

code block in DBGPHCT called to check debug
usage of variable names with actual program
usage

code block called to place a constant in the
CON. constant table

code block in ARITH called to dump the ARLIST
buffer to the R-1list file

cell in FTN used to indicate whether the debug
option has been selected

cell in PSICTL containing a DO-loop nesting
level counter

code block in DOPROC called to record that a
reference to a statement label has occurred

-206~

ERPRO

ERPROI

GOTOSFL

IGCALL

INITR

LABCON

LABEL.

L.LTARB

OPTLVL

O.LTAB

PH2RETN

PSYM

RSELECT

ST.

SYMBOL

6000 FORTRAN EXTENDED 4.0

code block called to issue fatal to execution
diagnostics

code block in ERPRO called to issue informative
diagnostics

debug cell in DBGPHCT used to indicates whether
assigned GOTO index checking is to be performed

code block in CALL called to form and issue R-
list for debug subroutine calls

code block in ARITH called to initialize
pointers before statement and macro processing

code block in DOPROC called to convert a label
and enter it in the symbol table

cell in LSTPRO containing the symbol table
ordinal for LABEL.

cell in LSTPRO containing the length of the
generated jump table

cell in FTN containing the selected level of
code optimization

cell in LSTPRO containing the first word
address of the label table used to generate the
jump table

code block in PSI1CTL returned to after certain
fatal to execution diagnostics have been issued

code Dblock in DOPROC called to prepare a name
for usage in a diagnostic

cell in FTN used to indicate whether either of
the 1long reference map options has been
selected

cell in LSTPRO containing the symbol table
ordinal for ST.

code block in LSTPRO called to make a new entry

into or search for an existing entry in the
symbol table

-207-

(8,]

-

6000 FORTRAN EXTENDED 4.0

TRACEL debug cell in DBGPHCT used to hold the level
number for the TRACE debug statement

WRWDS code block in FTN called to perform the writing
of R-1list macros to the R-1list file

Z.LTAB equate in LSTPRO whose value is the number
associated with the label table

Processing

Upon entry to the processor through the GOTO entry point,
the E-list is examined to determine which type of GOTO
statement is being compiled. 1If the first element is not
a constant, further checks are performed to determine if
the element is a name or not. 1In this manner, the GOTO
statement is typed as being unconditional, assigned, or
computed.

Unconditional GOTO®'s

A fatal to execution diagnostic is issued and the
processor exits if an end-of-statement does not follows
the statement 1label. Otherwise, the statement label is
compared with the 1label field of the next source
statement. If the labels do not match, processing
continues with R-list generation. If the labels match,
i.e., the unconditional GOTO branches to the next source
statement, optimization is performed unless the debug
mode of ompilation has been selected. DOLABR processes
the label, the former RSN bit status is restored in the
symbol table entry for the label, and the processor exits
without needing to issue any R-1list macros.

If no optimization can be performed, processing continues
by calling PLAB to analyze and process the 1label and
build a single word jump table. The information in this
table is then used in formatting an wunconditional jump
macro which is 1issued directly to the R-1list file. An
informative diagnostic is issued if the statement
branches to itself. Otherwise, +the processor exits
immediately.

In the case where debug flow tracing has been detected
for the statement, a debug subroutine call is generated
before the jump macro is written to the R-1list file.
This is done by calling INITR to set up pointers and the

-208-

6000 FORTRAN EXTENDED 4.0

ARLIST buffer in ARITH, building a debug argument list
table for the call in the AGOCALL buffer area, calling
IGCALL to process the table and generate the debug
subroutine call, and calling DARLIST to write the
generated macros to the R-list file. Processing then
continues with the formatting of the Jjump macro as
mentioned in the previous paragraph.

Assigned GOTO's

Processing begins by performing a syntax check to
determine the form of the statement. Fatal to excution
diagnostics are issued if an end-of-statement follows the
index variable (indicating no label list) or if a 1left
parenthesis does not precede the label list. An ANSI
message is generated if the comma does not appear between
the variable name and label list, but processing is not
terminated. If no fatal error conditions are sensed,
AGVAR is called to process the variable name and enter it
in the symbol table.

The assigned GOTO macro is formatted and built in the
MACBUF buffer from information returned by the AGVAR
call. A reference for the variable is recorded by ADDREF
if a long reference map option has been selected. PIAB
is then called to analyze and process the label list and
build a jump table for the labels. A final syntax check
is performed to ensure that only an end-of-statement
follows the right parenthesis of the label list.

= e e a2l T am e

- e PR e R a @ am e e A tle m e A lan F.

If there are no reguirements that the jump tables be
present in the generated code, the assigned GOTO macro is
written to the R-list file and the processor exited.

Further label table and macro processing is necessary if
any of the following conditions are sensed:

- debug index checking

- debug flow tracing

- OPT=2 optimization selection

The generated Jump table is used at object time by the

debug object library, and is required at compile time for
analysis by the super mode optimization pass.

=209~

6000 FORTRAN EXTENDED 4.0

Processing begins by removing redundant labels from the
label table to reduce the total required code size needed
for the generated jump tabhle. TIf the table is needed for
OPT=2 requirements, the only processing that remains is
the writing of the assigned GOTO macro, the jump table,
and a JP B0 macro to the R-list file. Otherwise, the two
debug options are checked to determine which or if both
of the options have been selected. Issuing of debug
subroutine calls follows the same procedure as explained
in 5.1. The processor exits after all remaining macros
are issued to the R-list file.

Computed GOTO

If the first E-list element seen is a left parenthesis,
PLAB is called to analyze and process the label list and
build a Jjump table for the labels. Otherwise, an error
diagnostic is issued and compilation terminated. After
label processing, a fatal to execution diagnostic is
generated if no index variable is found, or an ANSI
message 1is generated if the index is not a stand-alone
variable name. ARITH is then called to translate the
index expression and issue the resulting R-1list macros to
the R-1list file. The name of the error routine ACGOER.
is placed in +the symbol table and the external and no-
return bits are set when entered the first time.

Debug processing takes a slightly different form if flow
tracing has been indicated. The following tasks are
per formed: :

- call INITR to set up pointers and the ARLIST buffer
in ARITH

- build transmit and temp store macros in the MACBUF
area

- output the macros directly to the R-list file (these
macros will save the value of the computed GOTO
index in a statement temporary for the debug object
routine BUGGTCS$.)

- build an argument list table for the debug
subroutine call in the AGOCALL buffer area

- call TIGCALL to process the table and generate the
debug subroutine call

-210-

(8]

6000 FORTRAN EXTENDED 4.0

- call DARLIST to write the generated macros to the R-
list file

- build a load macro in the MACBUF area

- output the macro directly toc the R-list file (this
macro will load the index value from the statement
temporary so that it is defined for the GOTO macro.)

Processing continues with the formatting and generating
of the computed GOTO macro. The macro is issued directly
to the R-list file, followed immediately by the generated
label table. The processor exits after any remaining
ANSI messages are generated.

ASSIGN

Upon entry to this processor, the following processing
occurs:

- obtain the first E-list element for the statement

- issue a fatal to execution diagnostic and terminate
processing if the E-list item is not a constant

- call LABCON to convert the label and enter it in the
symbol table

- generate a fatal +to execution error if the label
referenced is defined as or used in previous context
as a format label, after calling PSYM to format the

label for ERPRO

If no error conditions are sensed, the RSN and RAS bits
are set in the symbol table for the 1label. A two-word
assign macro is generated and stored in the MACBUF area.

Further syntax analysis of the statement is performed to
ensure that a variable name appears followed by an end-
of-statement. AGVAR is called to process the variable,
and upon successful return the define bit is set for the
variable. The remainder of the assign macro is built
from returned information, and the entire macro issued to
the R-1list file. If either of the long reference map
options has been selected, ADDREF is called to generate a
reference for the variable. The processor then exits
through its entry point.

-211-

i

A

6000 FORTRAN EXTENDED 4.0

PLAB

PLAB is called internally by the GOTO processor to
process a list of transfer labels for the three forms of
the GOTO statement. Upon entry, the following conditions
hold:

- SELIST points to the first word of the label list

- A0 contains the return address in case an error is

detected

- B6 contains the error number to be used in case of a
syntax error

- B7 contains the E-list code for the list terminator

An 1initial pass 1is made through the table to determine
the number of labels and diagnose any illegal syntax or
non integer constants. ALLOC is called if no errors

.
occur to allocate encugh s he 1label +table in

working storage.

A second pass of the label list is made to build a Jjump
table which will be placed in the allocated storage just
obtained. The processing steps consist of:

- .obtain E-1list representation of the label

- call DOLABR to process the label and enter it in the
symbol table

- set the branch-to-self flag if the label matches the
label field of the GOTO statement

- generate an R-1list word consisting of an
unconditional jump operation code (2054B), the label
table ordinal for the label, and the symbol table
ordinal for the label

- store the R-list entry in the iabel table area

- kepeat the above steps until all labels have been
vrocessed, then exit PLAB through its entry point.

-212-

6000 FORTRAN EXTENDED 4.0

AGVAR is called to process the variable name for ASSIGN
and assigned GOTO statements. Immediately upon entry,
SYMBOL is called to enter the name in the symbol table.
If it is the first occurrence of the name and previous
usage has occurred in a C$ debug statement, CFO is also
called to check the setting of the debug bits. If it is
not the first occurrence of the name, checks are
performed to ensure that the name is not the name of the
program wnit, a function, or an external.

In either case, the variable bit is set for the name, and
the routine exited if the variable is not equivalenced.
Otherwise, the base-bias of the equivalenced entry is
obtained before exiting.

Tables
Oonly the 1label table is produced by the GOTO processor.
Each entry of the table is an unconditional jump R-1ist
code, and is of format

VFD 12/2000B+0OP,18/TRO,30/IH
where OP is equated to S4B to produce the unconditional
jump operation code, TRO is an ordinal into the LABEL.

table needed for debug mode processing, and IH is the
symbol table ordinal for the label.

-213-

1.0

2.0

2.1

6000 FORTRAN EXTENDED 4,0

DOPROC

General Information

The DO processor (DOPROC) examines DO statements, DO-
implied 1lists, statement numbers, statement number
references, and integer variable definitions. It
determines the characteristics of DO's and index
functions, diagnoses nesting, syntax, and the use of
statement numbers, and generates R-1list macro words
defining the beginning and end of each DO loop and DO-
implied list. The DO statement is the only statement
fully processed by DOPROC.

Entry Points

DOPROC

DOPROC is referenced by PS1CTL when a DO statement is
encountered. DOPROC examines the E-list items of the DO
for syntax. If the DO is found to be legal, it generates
a label for referencing from the bottom of the DO, sets
up the DO table (DOT) with flag and address information
concerning the control variable, limits, etc, and
generates an R-list macro for processing by the second
pass DO processor (DOPRE).

The calling sequence for DOPROC is:
RJ DOPROC

Upon entry to DOPROC, it is expected that low core
location SELIST will hold the address of the E-list for
the DoO. Upon a successful exit from DOPROC, the R-list
file will contain seven words relating to the DO and 4if
necessary, label information will be filed in SYMTAB.
O.DOTAB will hold the address of the list entry in the
DOLIST (DOL table).

DODEF
DODEF is referenced by ARITH, ASSIGN and LISTIO (on
input) whenever an integer variable appears as the object

of a replacement statement, ASSIGN statement, or input
statement. DODEF sets up an integer variable definition

-214-

6000 FORTRAN EXTENDED 4.0

item in the DOLIST (DOL table) and diagnoses illeqal
redefinition of loop limits.

The Calling Sequence for DODEF is:
RJ DODEF

where Bi1 has Dbeen prese
variable in the symbol table.
DOSYM
DOSYM is referenced by ARITH and LISTIO (output only)
when an integer variable appears as an operand. DOSYM
causes a search of the DOT table to see if the integer
variable is the control variable for any loop and if so
marks the control variable for materialization.
The calling sequence for DOSYM is as follows:

RJ DOSYM

where B1 has been preset to the ordinal variable in the
symbol table.

DOCALL
DOCALL is referenced by ARITH, CALL, AND LISTIO when a

subroutine or function reference, explicit or implicit,
is encountered. DOCALL will set a flag indicating a

transfer out of the loop.
The calling sequence for DOCALL is:
RJ DOCALL
DOIT
DOIT is referenced by LISTIO when it encounters a DO-
implied list. DOIT initializes +the 1loop as described
under DOPROC.
The calling sequence to DOIT is:
EQ DOIT

where B1 points to the E-1list entry for the = sign.

-215-

2'7

6000 FORTRAN EXTENDED 4.0

Return is to DOITX.
DONE
DONE is referenced by LISTIO after processing the list of
a DO-implied loop. DONE closes the loop as described
under DOLAB.
The calling sequence for DONE is:

EQ DONE
Return is to DONEX.
DOGOOF
DOGOOF is referenced by LISTIO after encountering a fatal
error while processing the list of a DO-implied 1loop.
This allows DOGOOF to remove the current nest of DO-
implied loops.
The calling sequence for DOGOOF is:

EQ DOGOFF
Return is to DOGOOFX
DOENT
DOENT is referenced by ENTRY. DOENT files an error
message indicating that external entry to a loop is being
attempted.
The calling sequence to DOENT is:

RJ DOENT
DOEND
DOEND 1is referenced by ENDPRO to see if all loops have
been terminated, all referenced statement numbers and
format numbers have been defined as such, and all loops
with entries also have exits.

The calling sequence to DOEND is:

RJ DOEND

-216-

2.10

2.12

6000 FORTRAN EXTENDED 4.0

DOLABCN

DOLABCN is referenced by PS1CTL before each labeled
statement is processed. The label is checked for prior
definition and, if not found, is entered into the symbol
table (SYMTAB). The loop in which the label is defined

is entered in the symbol table, and whether or not the
label is an entry point to a loop.

The calling sequence for DOLABCN is:
RJ DOLABCN

Low core location (23B) CLABEL contains the current
statement label justified with blank fill.

DOLAB
DOLAB is referenced by PS1CTL after each labeled
statement is processed. If the label terminates one or
more loops, DOIAB closes each loop i.e., it notes exits
from the loop, generates an R-list macro, and compresses
the DOT and DOL tables.
The calling sequence to DOLAB is:

RJ DOLAB

Low core location (23B) CIABEL contains the current
statement label left justified with blank fill.

DOLABR
DOLABR is referenced by IF, CALL, and GO TO processors
when reference to a statement label is encountered. If
the label 1is not yet defined, it is entered in the DOL
table, otherwise entries and exits are noted.
The calling sequence to DOLABR is:

RJ DOLABR
SELIST points to the E-list item for the label, and upon

return B1 contains ordinal of SYMTAB entry for that
label.

DOPROC will produce the following diagnostic messages:

-217-

(1)
(2)

(3)
%)

(5)

(6)
(7)

(8)
(9

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

6000 FORTRAN EXTENDED 4.0

Loops are nested more than 50 deep.

The terminal 1label of a DO must be an integer
constant between 0 and 100,000.

The terminal statement of this DO precedes it.

The control variable of a DO or DO-implied loop must
be a simple integer variable.

The syntax of DO parameters must be I=M1, M2, M3, or
I=M1, M2,

A constant DO parameter must be between 0 and 131K.

A DO parameter must be an integer constant or
variable.

This statement number had been used before.

A previous statement in this nest references this
statement number illegally.

This statement references a previous statement
number in this nest illegally.

A DO loop may not terminate on this type of
statement.

A DO 1loop which terminates here includes this
unterminated DO loop.

This statement redefines a current 1loop control
variable or parameter.

ENTRY statements may not occur within the range of a
DO statement.

This DO loop is unterminated at program end.

This 1loop is entered from outside its range but had
no exit.

This referenced statement number does not appear on
an executable statement.

This referenced format number does not appear on a
‘ s ement.

-
[\
(aa

-218-

6000 FORTRAN EXTENDED 4.0

(19) More storage required by DO statement processor.

(20) The variable upper limit and the control variable of
this DO are the same producing a non-terminating
loop.

{(21) Compiler error.

(22) The constant lower 1imit is greater than the
constant upper limit of a DO.

(23) The referenced label is greater than five
characters.

(24) Zero statement labels are illegal.
Errors 8,11,13,19,20 and 22 are informative.
Error 21 is fatal to compilation.

The remainder are fatal to execution.

Environment

DOPROC depends on information from the other processors
in varying forms and degrees. It must have the E-1list
pointer for each DO statement and DO-implied loop. It
files entries in the symbol table (SYMTAB) and stores
both temporary and permanent information regarding them.
It outputs macros and generates label items into the R-

list.
Low core cells contain values used in DOPROC. These are:

(1) SELIST (32B) contains the address of the current
entry in the E-list.

(2) DIM1 (17B) contains the address of the dimension
table.

(3) DUXE (37B) contains the binary line count.

(4) NRLN (6u4B) contains the next available R number.

{(5) SYMEND (13B) contains the address of the 1last
entry in the symbol table (SYMTAB).

-219-

5.6

6000 FORTRAN EXTENDED 4.0

(6) SYM1 (12B) contains the address of the unused
entry for ordinal zero in the symbol
table (SYMTAB).

(7) CILABEL (23B) contains the current statement label,
left justified with blank fill.

(8) TYPE (24B) contains the current statement typé
in binary right Jjustified in the
word.

(9) LTYPE (25B) contains the type of the statement on

the true side of a logical IF.

Structure
DOTOP

DOTOP processes each DO statement and DO-implied list and
generates the R-list macro words for the top of the loop.

SYNCHEK

SYNCHEK performs a syntax check on each DO STATEMENT and
DO-implied 1list.

INTVAR

INTVAR makes an integer variable assurance check and
returns a verdict of integer variable or not.

IDEF

IDEF checks for illegal definition of loop variables and
makes entries in DOLIST (DOL table).

LIMIT

LIMIT converts loop 1limits and determines if constant,
variable, or illegal.

IREF
IREF searches the DOT table to determine if the integer

variable referenced in this statement is a control
variable. If so, it sets flag M.

-220-

5.8

5.9

5.10

5.12

6000 FORTRAN EXTENDED 4.0

GENMAC
GENMAC generates the R-list macro words.
CHECK

CHECK <checks the form of the
+ + 3 Ar

4 Iy
e L

limits and constructs

.
avumhnla n-ﬂnnstan

e

S £UE AL A

LABEL and SYMBOL

LABEL and SYMBOL search SYMTAB for the given display code
entry and return I and H (R-1list description) of entry
and address.

ERPRO

ERPRO is used to produce a variety of error messages.

ETB

ETB converts E-list integer constant items into the
corresponding binary constant.

NAME
Given the ordinal of a SYMTAB entry, NAME checks the E-
field of the SYMTAB entry and if zero puts the ordinal

into B1 for use by IREF. If E=1, it puts the base and
bias from DIMLIST into B1 and B2 respectively.

Formats

The DO processor receives information from SCANNER in E-
list format and using SYMTAB data generates R-1list macros
for processing by pass two of the compiler. Interim data
is stored into two tables:

(1) DOTABLE (DOT) =~ information on current loops

(2) DOLIST (DOL) - references to undefined labels
and integer variable definitions

Each table will be discussed in turn as to content,
format, etc.

-221-

6000 FORTRAN EXTENDED 4.0

DOT Table - The DOT table is a rigid table of up to 51
entries consisting of one entry per DO statement.
However, each entry requires 3 memory words so that 153
60-bit memory words are consumed. The first entry in the
table is not wused. Flag and address quantities are
defined as follows:

P - an 18-bit index relating the DO statement to the
machine address in the DOL table where information about
the loop is stored.

CV - A three bit field containing flags b, ¢, and 4,
where B, C and D are 1lower 1limit, wupper 1limit and
increment of the DO respectively. 1If b, ¢, or 4 is set
to 1, then the corresponding limit is variable.
Otherwise, the limit is constant.

Example:

DO 10 I=1,N,2

B =1 b = constant or 0
C =N ¢ = variable or 1
D= 2 d = constant or 0

and CV - 010 in binary

Flags - seven bits of loop description broken into seven
one-bit fields.

(1) E - set to 1 if loop may be entered at a point other
than the top.

(2) X - set to 1 if loop may be exited at a point other
than the terminating statement.

(3) I - set to 1 if loop contains another loop.

(4) M - set to 1 if 1loop control variable must be
materialized (placed in memory).

(5) V - set to 1 if control variable same as incremental
limit. Example: DO 10 K = 1,N,K

(6) J - set to 1 if 1loop contains an implicit or
explicit subroutine call.

=222~

6000 FORTRAN EXTENDED 4.0

(7) R - set to 1 if all integer variables are assumed to
be redefined within a loop.

N - a 12-bit field containing the number of integer
variable definitions.

S - A 12-bit field holding the symbol table (SYMTAB)

semale man er AL manenn

ULdJ.ua.J. of the statement number referred to in the

DO statement.

IX- A 12-bit field holding the symbol table ordinal
for the control variable entry.

I - A 12-bit field holding the symbol table ordinal
of the generated label at the top of the loop.

B - An 18rbit _field that is either a binary constant
for the.d@ﬁgzrlimit of the DO or the symbol table
ordinal of a variable lower limit.

C - An 18-bit field that is either a binary constant
for the upper limit of the DO or the symbol table
ordinal of a wvariable upper 1limit.

D - An 18-bit field that is either a binary constant
for the incremental parameter of the DO or the
symbol table ordinal of a variable incremental
parameter.

Information is aligned within the three words as follows:
VvFD 12/5,18/0,12/N,18/B
VFD 12/1IX,1270,18/P,18/C
VFD 12/L,20/0,1/b,1/c W/, V/EA/X V/T,1W/M,1/V,1/3,

1/R,18/D

DOL 1list - The DOL list is a variable length table. The
list has two forms of entries:

(1) References to undefined 1labels.
(2) Integer variable definitions.

All DOL list entries are one word (60-bits) in length and
the fields are these:

-223-

6000 FORTRAN EXTENDED 4.0

() T - a one bit flag indicating a reference to an
undefined 1label (0) or an integer variable
definitions (1)

(2) NAME - a 30 bit field with contents in one of the
three forms:

a) T = 0, NAME is the ordinal of the symbol table
entry for the undefined label, right Jjustified
in the 30 bit field.

b) T = 1, E of SYMTAB = 0, then NAME is the
ordinal of the symbol table entry for the
integer variable definition right adjusted in
the upper 12 bits of the 30 bit field (to align
with the base o0f an equivalenced set of
variables). :

c) T = 1, E= 1, then name contains the base and
bias of the equivalenced variable as 12 bit and
18 bit fields respectively.

The DOL list format is:
VFD 1/7,29/0,30/NAME
or
vFD 11T7,29/0,12/BASE,18/BIAS

R-1list Macros - DOPROC will generate R-list macros at the
top and bottom of each loop, for processing by DOPRE in
pass two of the compilation. Each macro will consist of
7 words (60 bits each). The first word is a standard
macro reference with fields for OC, IN, etc. (See R-list
language description). The second word has the ordinal
of SYMTAB where the DO label definition is filed. This
field is the rightmost 30 bits and the ordinal is right
justified. Beginning with the left half of word two and
continuing through word 7 is information relating to the
three 1limiting parameters of the DO (B,C,D where the
general form is DO SN I=B,C,D) and the induction variable
I.

The parameters for words 2-7 are as follows:

-224-

(M

(2)

(3)

(6)

(7

(8)

(9

(10)

6000 FORTRAN EXTENDED 4.0

L - a 30 bit label reference of the I AND H variety
described in R_LIST description. L 1is the 1label
attached to the DO.

SB - 30 bits of symbolic (I and H) information
related to a variable B or base if wvariable is
equivalenced to another.

SC - 30 Dbits of symbolic (I and H) information
related to a variable C or base address if variable
is equivalenced to another variable. Bias appears
in CC.

SD - 30 bits of symbolic (I and H) information
related to another variable. Bias appears in CD.

SI - 30 bits of symbolic (I and H) information
related to a control variable (induction variable)
or base address if variable is equivalenced to
another variable. Bias would appear in CI.

P1 - 16 bit R number used in storing the induction
value.
CB - 18 bits of binary constant representing the

constant B or the bias if B is an equivalenced
variable.

CC - 18 Dbits of binary constant representing the
- constant C or the bias if C is an equivalenced
variable.

CD - 18 bits of binary constant representing the

constant D or the bias if D is an equivalenced
variable.

CI - 18 bits of bias if the induction variable is
equivalenced to another variable. If variable does
not appear in an equivalence statement, then CI is
zero.

-225-

1.0

2.1

2.2

2.3

6000 FORTRAN EXTENDED 4,0

. DPCLOSE

General Information

DPCLOSE is called to complete processing of the
declaratives encountered during phase one. It will:

a. Assign addresses and allocate storage for arrays,
common blocks, and equivalence classes.

b. If R=2 or 3 then format and save the information
needed to produce the common-equivalence portion of

the map.
c. Issue storage to COMPS, if necessary.
d. Initialize for phase two processing.

Entry points

DPCLOSE

Primary entry to initiate terminal phase one processing.
0.CBT

First word address of the saved common block table. This
overlays a portion of DPCLOSE starting at (DPCLOSE + 3%
maximum DO loop nesting level, presently equal to 50).
Since DPCLOSE will be immediately preceeded by DOPROC,
this is the method by which DOPROC's table is allocated.
DBLEPREC

This location is non-zero if double precision statements
appeared in the declaratives.

Message and Diagnostics

SUBSCRIPTS FOR ADJUSTABLE DIMENSIONS MUST BE OF INTEGER
TYPE

LEVEL 3 VARIABLE MUST BE IN COMMON

-226-

4.0

6000 FORTRAN EXTENDED 4.0

LEVEL EQUIVALENCE ERROR

NOT ALL ITEMS IN THE BLOCK ARE THE SAME LEVEL

CONFLICTING LEVELS IN THIS COMMON BLOCK

COMMON/ EQUIVALENCE ERROR

NUMBER OF SUBSCRIPTS IS GREATER THAN THE NUMBER OF
DIMENSIONS

ILLEGAL COMMON BLOCK EXTENSION

CONTRADICTORY EQUIVALENCE RELATIONSHIP

ARRAY NAME USED WITHOUT SUBSCRIPTS, FIRST ELEMENT ASSUMED

DIMENSIONAL RANGE EXTENDED BY EQUIVALENCING

Environment

Externals

PH2CTL Phase two controller. Directs processing of
all phase two statements.

PSYM Prepare a symbol for use in an error message.

CTBLOVL Called for storage overflow on the saved common
table.

ALLAE Allocate almost all storage to one table.

ADDWD Add a word to a managed table.

R=FLAG Reference map level number.

SCF Reduces common table back to last error free
segment.

CON. Ordinal of CON. in the symbol table.

MACFLAG Logical OR of C and E option flags.

SFF Reduces equivalence table back to last error

free segment.

=227~

INITBL

UDATA. .

DFLAG

SYMORD

LOWCORE

N. FERR

ERPROI

DATA..

N.FP

UDATA.

ERPRO

ORGTAB

PNORD

MOVE

DINPH2

ST.

6000 FORTRAN EXTENDED 4.0

Initialize tables for a phase.

Use block indicator for the DATA.. block.
DEBUG mode flag.

Number of symbols in the symbol table.

Holds the starting address of lowest address
available for scratch storage.

Number of fatal errors.

Routine to write information to a file.
Called to issue an ANSI severity error.
Current use block indicator.

Number of files on the program card.

GO/NO GO flag for debu

o
3

Routine to issue a USE name if it is necessary
to switch blocks.

Called to issue informative errors.
Holds the length of the DATA.. block.
Number of formal parameters.

Use block indicator for the DATA. block.

Called to issue fatal errors.

Base of ¢the table of common block names and
information link.

Symbol table ordinal of the program entry
point.

Routine to move a region of core.
Initializes for DEBUG mode processing.

Symbol table ordinal of ST.

-228-

5.0

6000 FORTRAN EXTENDED 4.0

N.COM Holds the number of common blocks.
WB.CON Word B format for constants.

SYMBOL Search and enter symbols routine.

VARDIM Set if variable dimensions occurred.
0osC Output storage for a block to COMPS.
F.LFN Word B entry for file names.

ALLOC Allocate space to a table.
Processing

General Processing

The main processing of DPCLOSE proceeds as follows.
First, SCF and SEF are called to obtain error free common
and equivalence tables. Initialize table space for
DPCLOSE processing by calling INITBL. Next, perform
error checking which had to be deferred until all
declaratives were found. Assign the address for all
common variables and then process the equivalence tables.
Next, we assign local addresses and save common
addresses, if necessary. At this point, storage is
issued to COMPS for arrays and common blocks. To
initialize for phase two, the common and equivalence
tables are discarded if the reference map level is not 3.
The 1local address table 1is unconditionally discarded.
The address of the DIM table is established and the FP
block length table cleared. Create the entry point table
placing the main entry and any files into the table.
Enter CON. into the symbol table. For debug mode, DINPH2
is called to prepare for phase two debug processing and
the NOGO flag is set if fatal errors were found in phase
one processing. Finally, the use block is switched to
DATA. and processing exits to phase two.

PDC - Perform Deferred Checks

Te If there are no double precision arrays, proceed to
section two.

-229-

6000 FORTRAN EXTENDED 4.0

Scan the DIM table and for each double precision
array, which is not variable dimensioned, double the
total word count in the dimension table.

If there are no LEVEL statements go to section
three.

If there were no common declarations go to section
three. Otherwise, set the first pass flag. Using
the pointers in ORGTAB to the head of each common
chain we scan down the chains examining the symbol
table entry for each member of the block. A zero
level field implies no level declared. If a non-
zero level field is found in an entry all other
entries in the block with a non-zero 1level field
must have +the same non-zero value as the first one
encountered. After a non-zero level 1is found all
subsequent members of the block with no 1level
specified are forced to the level of the declared
element and an informative diagnostic issued. If two
elements differ in declared 1level a fatal error
results. If not all members were at the same lewvel
the level of the declared member is wused as the
level of all unspecified members. To accomplish
this for unspecified members preceding a specified
member a second pass flag is set and the above loop
repeated. .

If there are no variable dimensioned arrays, go to
section four.

Scan each formal parameter to determine if it is
involved in variable dimensioning. This known since
the RL field in word B of the symbol table will have
a value of one. If a formal parameter is used for
variable dimensioning and is not integer, a
diagnostic is issued.

If there has been no equivalencing, we exit PIC.
Clear out N.COM (number of common blocks) entries in
the common/equivalence table (CET). Then, scan the
equivalence table. If we find a member in common,
set the entry in the CET to the block ordinal number
(RB). If an equivalenced item has no DIM table
entry, we create one and insert the pointer into
word B. Next, we use CET just built to determine
which common blocks are involved with equivalencing.
For any such block, we must scan it and create DIM

-230-

6000 FORTRAN EXTENDED 4.0

table entries for any members not already ﬁ%%&essing
them. Finally, we update the size of the DIM table
and clear each new entry.

ACA - Assign Common Addresses

If there was no declared common, the routine simply
exits. The body of this routine consists of a triply
nested 1loop. The outermost loop iterates through each
entry in ORGTAB. The next loop within advances through
successive block name words. Finally, the innermost loop
processes each member of a block group.

The outermost 1loop initializes a block length of zero.
Next, we advance to the first block name word. For each
member, we insert the current address, a dimensioned bit
(if dimensioned) and a word count. The RA is placed in
the DIM entry for dimensioned items. Then, the member
length is added to the block 1length that is being
accumulated. We proceed through all members and then
advance to the next block name group. When all block
name groups have been processed, we place the total block
length in the length field of the first block member name
word. In addition, bit 17 is set in the first block
member name word if the block is a LEVEL 3 block.

EQV - Process Equivalence Tables

On entry, the format of the equivalence table is

12/2000B+n, 48/2*symbol table ordinal
3/number of subs,3/0,18/sub 3,18/sub 2,18/sub 1

where n = order of the name in the group.

Prescan - During the prescan, word two is reformatted as
follows:

1/comflag,5/0,18/product of dims, 18/0,18/subscript

where:
comflag = 1 if the element is on common
SDPF = 0 for single precision, 1 for double
subscript = (I-1+D1* (J~1) +D1*D2* (R-1)) * (SDPF+ 1)

EQV exits immediately if no equivalence statements
appeared in the current routine.

-231-

6000 FORTRAN EXTENDED 4,0

a. Setup to scan the equivalence table from FWA to LWA.

b. Obtain equivalence word 1 and 2 (EW1, EW2).

c. Establish comflag bit wusing word A of the symbol
(P.COM bit).

d. Diagnose equivalence of variables in level three.

e. Diagnose more subscripts than dimensions.

f. Extract the product of the dimensions from the DIM
table for dimensional variables.

ge. Compute the subscript from the DIM word two and EW2.

h. Diagnose a subscript larger than dimensional
declaration as a range extension.

i. Replace word 2 of equivalence table with new form.

3. Iterate steps b-i for the entire table.

Scan 1 - During scan 1, one of the G-F tables is

constructed. Its form is:
1/COMFLAG, 5710, 18/H(I), 1870, 18/R (I)
6/0,18/HP (I), 18/SYMORD, 18/S (I)
where:
H(I) = distance above the root member
HP(I) = distance below the root member
R(I) = addresss of the member I - address of
root member
SYMORD = symbol table ordinal
S(I) = a link to the next entry.

a. Obtain EW1, EW2 from prescan.

b. Is this symbol table entry greater than the largest
ordinal so far encountered? If so, set new largest
ordinal. (This must be a first appearance in the
equivalence class.) Then, go to f.

c. Search the partially constructed table to determine

if this element appeared earlier in the class.

-232-

6000 FORTRAN EXTENDED 4.0

If it did not appear previously, go to f.

Compute the distance to the root member by chaining
through the links and accumulating the distance.
Then, go to h.

Construct a G-F entry for a first appearance of an
ordinal.

H(I) is the product of the dimensions, R(I) = 0,
HP(I) = 0 ORD = symbol table ordinal, S(I) =
distance from head of table.

If this is not the first name in the group, go to j.

Save the current root number distance and the
subscript of the root. Go to r.

Link this node to the root or to another node. 1If
the distances from table base of the current root
and this node are the same and the subscripts are
the same, this is a redundant equivalence. If the
subscripts differ, it is a contradictory equivalence
relation. Go to r for a redundancy.

Check to see if we need to choose a new root member.
If not, go to m.

Set the new root member distance and subscript.

If no previous address has been assigned to this
node, go to q.

If the distance to the root member of the current
root is zero, go to p.

If R (root member) does not equal R (new node) +
distance from root to the new node diagnose, a
contradictory equivalence relation. If the relation
is valid, go to q.

Set R (root member) to R (current node) + distance
to root.

Now this element is linked to the previous member R
(current node) is set to distance (root current
node) S (current node) is set to the root member
ordinal H (root member) is set to max (H (current

-233~

Se.
Scan

This

6000 FORTRAN EXTENDED 4.0

node) + distance to current node, H (root)). HP
(root) is set to max (HP (current node) - distance
to current node, HP (root)).

Advance to the next entry in the prescan table. If
not done, go to a.

Save the new length of the equivalence table.
2 - Assign a Bias to each element.

scan will link up the elements of each class and the

roots. At the end of the scan, the EQV table will be
formatted as follows:

Roots: 1/COMFLAG, 570, 18/NEXTR ¢18/1ASTE, 18/BIAS
6/0,18/SPAN, 18/0RD, 18/S

Nodes: 1/_COMFLAG,5/0,1 8/H,18/NEXTE, 18/BIAS
6/0,18/HP,18/ORD,18/S '

where:

NEXTR! = ordinal of the next root

LASTE = ordinal of the last element in the class

NEXTE = ordinal of the next element in the class

Note: The fact that the first node of a class must

immediately follow its root enables the linking
of the equivalence classes without a pointer in
the root entry.

Initialize the number of roots to zero and LASTR to
minus one.

If this is not a root member, go to e.

Increment the number of roots. Change HP to span
(HP+H) . Change R field to BIAS (R+HP) using the old
Hp field. Clear the H field. Set LASTR to this
ordinal. If this is the first time LASTR has been
set, go to h.

Link previous root to this root by setting the NEXTR
field. Go to h.

Update R field (bias) to be R (current node) + R
(link of current node).

-234-

h.

Scan

6000 FORTRAN EXTENDED 4.0

Locate the root entry for this class by following
the successor vector.

Update the previous last element pointer in the root
and link the previous node to this node.

Iterate through the table until done.

3 Build a binary equivalence class table from the
list. Check and mark common/equival ence
interaction. Locate the base member of each
class.

Allocate space for the local address table equal to
the number of equivalence classes. Allocate space
for the equivalence class table.

Fetch a root member (EW1, EW2). Construct the ECT
entry. Extract the link to the next root.

Obtain EW1, EW2 of the first member. Combine
comflag, bias and symord into an ECT entry.

If the current bias is less than the lowest bias so
far, make this the new minimum and potential base
member . If this current bias member of the
equivalence class is in a different storage 1level
than the one with the lowest bias, issue a fatal
error (LEVEL EQUIVALENCE ERROR).

If this member 1is in common, check that not more
than one member of the class is in common. If so,
we have a common/equivalence error.

Link to the next node in the class. If more members
exist, go to c.

If the root is the base, go to j.

Swap the root and base members of the class.

Store the number of members into the base entry in
the ECT. Set up the local address table entry for

the class.

If there are more classes, go to b.

=235~

Scan

6000 FORTRAN EXTENDED 4.0

4 Set bits and fieids in symbol table and
dimension table. Form the LAT entries for
local classes.

Pick up an ECT entry. If it is in common, go to k.

Set LAT entry to the ECT entry.

Update the DATA.. block with the length of the span.

Set word one of DIM entry to the form:
1/1,23/2,18/SPAN,18/RA

Establish DEF and EQV bits for word A.

Call DEI to distribute equivalence information.

If more classes exist, go to a.

Set the new size of the LAT.

If R is not three, exit from EQV,

Move the ECT into the EQC table area and exit from
EQU.

If the class in common has an error, issue the
message COMMON/EQUIVALENCE ERROR and/or LEVEL
EQUIVALENCE ERROR.

If the base 1is not in common, swap the base and
common member.

Extract word B bits from the common element for use
by DEI.

Detect and diagnose an illegal extension of a common
block.

Place the FWA and bias of class in LAT entry.
Update the 1length of the common block in the block

prefix word of the common block word. Update the
length of the class in the ECT.

-236-

5.5

6000 FORTRAN EXTENDED 4,0

q. Set bit 59 in the DIM table word 1 so DATA processor
can tell the name is equivalenced since the EQU bit
is not set in symbol table for the base member.

r. If only one member in the block, go to u.

Se Set the equivalence bit in word A for a common block
member, set word one of the DIM entry to base-bias
form.

t. If more members of the block exist, go to s.

u. If common headers remain to be processed, link to
the next header and go to s.

Ve Load up the DIM skeleton, number of members, and
DEF, COM, EQU bits for a DEI call.

w. Modify the bias of each ECT entry due to class in
common.

X Go to g.
DEI - Distribute Equivalence Information
Set the bits passed in into word A of the symbol table
entry for the current ECT entry. Update word A of the
DIM entry to the form:

6/0,18/SYMORD, 18/BIAS, 18/RA
Place the word count from the DIM table into the ECT
entry. Then iterate the process for all members of the
class.

ALA - Assign Local Addresses

a. If the E or C option is set plus code so that no
COMPS storage is issued.

b. Now allocate nearly all storage to the LAT.

C. Fetch a symbol table entry. Increment to next
entry. Go to k if end of symbol table.

d. Go to c¢ if the symbol is in common or equivalenced.

=237~

i.

6000 FORTRAN EXTENDED 4,0

If it is a LEVEL 2 or 3 symbol and not in common,
set an error flag. Go to c.

If the symbol is not dimensioned, ‘go to c.
If it is a label, go to c.

Place the address of the DATA.. value in word one of
the DIM entry. Increment the block length. '

Save the word count from the DIM entry and the
symbol table ordinal in the TIAT.

If scratch storage is exhausted, diagnose a phase
one memory overflow.

Update the 1length of the DATA.. block and set the
new ILAT length. '

Diagnose all ECS variables not in common if the
error flag is set. Exit from ALA.

SCA - Ssave Common Addresses

Exit if no common blocks.

Get the block 1length from the block prefix header
and place it in ORGTAB.

Iterate b for all common blocks.k
For R=3, modify the FWA of tables.

Now allocate almost all scratch space to the SCA
{saved common address table).

For debug mode, plug the code +to build the sca
table.

Setup to scan the common block starting with the
prefix word.

If the common block member has a DIM entry, go to j.
Place RA and RL fields from the common table into

word B of the symbol table entry. For debug mode,
they are placed in the saved common address table.

-238-

6000 FORTRAN EXTENDED 4.0

j. If more block members remain, go to h and examine
the next one.

k. Advance to the next block prefix word. If more of
the common table remain, go to g.

1. Store the new 1length of the saved common address
table and exit.

ICS - Issue Storage to COMPS

a. If E or C are not selected, exit unless LEVEL
statements have appeared.

b. If no common blocks, go to k.

C. Issue a USE/block name/ or a USELCM/blockname/ to
COMPS depending on the storage level.

de If +the block is a LEVEL 3 block extract the block
length from the base member and issue a storage
allocation to COMPS in the form nnn BSS mmmB.

e. If +the block is equivalenced, output storage in the
form of a BSS for the base member only. Go to g.

f. Output a name BSS nB for each member of the common
block.

g. If there are more common blocks, go to c.
h. Switch to the DATA.. block.

i. Exit if no local arrays (L.LAT=0).

Fe Output storage for the local arrays.

k. Exit from ISC.

Table Formats
CBT - Common Block Table.

This holds a copy of ORGTAB during phase one for use by
REFMAP.

VFD 42/block name,18/index to block prefix word.

-239-

6.3

6000 FORTRAN EXTENDED 4.0

COM - Common Table.
Maintained after DPCLOSE time only for R=3.
VFD 1/DIM,5/0,18/WC, 18/SYMORD, 18/R2A

is format for a member of a common block where:

DIM = 1 if dimensioned

WC = word count of item
SYMORD = symbol table ordinal
RA = block relative address.

Each group of member words is preceded by a block header
word of the form:

VFD 1/EQU,5/0,18/1ength,8/number of names
18/1link to next prefix word

where:
EQU = 1 if egquivalent
length = length of the common block (only in the
first header word).
number of
names = number of name words following the

header.

DIM - Dimension Table.

This table holds basically all information regarding
declaratives subsequent to phase one. All entries are
two words each.

VFD 1/EQU,5/0,18/SYMORD, 18/BIAS,18/RA
VFD 3/NSUBS,3/PABC, 18/S{BC, 18/S{8B, 18/SUBA

where:
EQU = 1 if the entry is equivalenced.
SYMORD = Symbol table ordinal of the base
member is equivalenced. Otherwise,
the original symbol ordinal.
BIAS = Offset from the base member if

equivalenced.

-240-

6.5

6000 FORTRAN EXTENDED 4.0

RA = Block relative address.
NSUBS = Number of subscripts.
PABC = 3 bit field specifying variable or

constant subscripts.

SUBC = Product of the dimensions or the
third variable subscript ordinal.

SUBB = 2nd dimension or variable subscript
ordinal.

SUBA = 1st dimension or variable subscript
ordinal.

ECT - Equivalence Class Table.
Saved for REFMAP if R=3 is selected. The format is:

Base member VFD 1/COM,5/0,18/SPAN, 18/SYMORD, 18/number
of members-1.

Other members VFD 6/0,18/word count,18/SYMORD, 1§/BIAS
LAT - Local Address Table.

Holds each local name for which storage must be issued to
COMPS. The form is:

VFD 670, 18/word count, 18/SYMORD, 18/0

SCA - saved Common Address Table.

Holds the relocation information for each name in COMTAB
which has no DIMTAB entry. This is needed only in DEBUG
mode since otherwise the information can be placed in
word B of the symbol table entry immediately. The
information from the SCA will go into word B at the end
of pass one. The format is:

VFD 6/0,18/word count, 18/symord, 18/RA

-241~

1.0

2.7

6000 FORTRAN EXTENDED 4,0

DECPRO

General Description-

DECPRO contains proceséing- for all Phase 1 declarative’
statements. Information accumulated is placed in ‘tables

containing dimension, common, and equivalence structures.

These tables are processed by DPCLOSE. :

Entry Points

DPCOM

DPCOM processes COMMON statements and enters information
into ORGTAB and the common table (COM).

SCF - Set Common Flags

Processes the EQUIVALENCE statement and adds entries to
the equivalence 1list for items mentioned in the
statement.

SEF - Set equivalence Flag

Save the length of the equivalence table in case an error
occurs.

DPTYP

DPTYP processes all FORTRAN TYPE statement. This
includes LOGICAL, INTEGER, REAL, DOUBLE, COMPLEX, ECS.
The specified type is placed in the symbol table.

DPDIM

Processes all DIMENSION statements.

DPLEV

-242-

2.8

3.0

6000 FORTRAN EXTENDED 4.0

Processes all LEVEL statements and assigns the variables

to the declared storage level.

DPIMP

s

Processes the IMPLICIT statement and sets the specified

implicit typings.

Diagnostics And Messages

FORMAL PARAMETER IN COMMON OR EQUIVALENCE STATEMENT

BAD SYNTAX IN TYPE STATEMENT

PREVIOUSLY TYPED VARIABLE, FIRST ENCOUNTERED TYPE IS

RETAINED

SUBPROGRAM NAME MAY NOT BE REFERENCED IN A DECLARATIVE

STATEMENT

COMMA MISSING BEFORE VARIABLE INDICATED
ILLEGAL SEPARATOR ENCOUNTERED

BAD SYNTAX ENCOUNTERED

ILLEGAL SEPARATOR BETWEEN VARIABLES
COMMON BLOCK NAME NOT ENCLOSED IN SLASHES

COMMON VARIABLE IS FORMAL PARAMETER
DECLARED IN COMMON OR ILLEGAL NAME

ILLEGAL BLOCK NAME

TOO MANY IABELED COMMON BLOCKS, ONLY
ALLOWED

ECS VARIABLE MAY NOT APPEAR IN EQUIV STMT

BAD SUBSCRIPT IN EQUIV STMT

ONLY ONE SYMBOLIC NAME IN EQUIVALENCE GROUP

SYNTAX ERROR IN EQUIVALENCE STATEMENT

VARIABLE HAS MORE THAN THREE SUBSCRIPTS

-243-

OR

61

PREVIOUSLY

BLOCKS ARE

4.0

4.2

6000 FORTRAN EXTENDED 4.0

VARIABLE WITH ILLEGAL SUBSCRIPTS

PREVIOUSLY DIMENSIONED VARIABLE, FIRST DIMENSTIONS WILL
BE RETAINED

A VARIABLE DIMENSION OR THE ARRAY NAME WITH A VARIABLE
DIMENSION IS NOT A FORMAL PARAMETER

RETURNS OR EXTERNAL NAMES MAY NOT APPEAR IN DECLARATIVE
STATEMENTS

INVALID LEVEL NUMBER SPECIFIED

LEVEL CONFLICTS WITH PREVIOUS DECLARATION, ORIGINAL LEVEL
RETAINED

THIS STATEMENT FORM IS OBSOLETE. USE A LEVEL 3 STATEMENT
CHARACTER BOUNDS REVERSED IN IMPLICIT STATEMENT

ILLEGAL CHARACTER BOUND IN IMPLICIT STATEMENT

ILLEGAL TYPE SPECIFIED IN IMPLICIT STATEMENT

ILLEGAL SYNTAX IN IMPLICIT STATEMENT

DECLARATIVE STATEMENT OUT OF SEQUENCE

IMPLICIT STATEMENT I’ NON-ANSI

Environment
Common Blocks

/MACBUF/ contains miscellaneous scratch cells used during
statement processing.

Externals.

ERPRO

and Fatal and informative message routine
ERPROI

ASAER Non-ANSI message routine

N,COM Number of common blocks

=244~

6000 FORTRAN EXTENDED 4.0

VARDIM Non-zero if variable dimensioning appears

CONVERT Constant conversion routine

RSELECT | Non-zero if R=2 or 3 selected

PH1SCAN Return point for phase one processing

ORGTAB Table in LSTPRO holding common block
information

IMPTYPE Natural type table

N.Fp Number of formal parameters

NRB Natural real bits {(bits 58-33
corresponding to A-Z on if natural type is
real

LEVEL Non-zero if a LEVEL statement has appeared

DBLPREC Non-zero if double precision type
statement has appeared

VALUE Ordinal of symbol holding value returned
by a function

DFLAG Non-zero if a DEBUG mode

0.COM Origin of the common table

L.CoM Length of the common table

0.EQV Origin of the equivalence table

L.EQV Length of the equivalence table

Z.EQV Number of the equivalence table

0.DIM Origin of the dimension table

L.DIM Length of the dimension table

Z.DIM Number of the dimension table

NTYPE Returns the natural type of a variable (in
LSTPRO)

-245-

5.0

6000 FORTRAN EXTENDED 4.0

PSYM Prepare a symbol for addition to an error
message

CFO Check first occurrence for debug variables

ADDWD Add a word to a managed table

ADDREF Collect a reference

SYMBOL Enter a symbol in the symbol table

Processing

CDN - Check Declared Name

On entry, B6 = error number in case the E-list item is
not a name. FPFIAG set by the processors and A4, A5
holding E-list pointers. On exit, the registers hold the
exit condition from SYMBOL except that X6=0 for previous
appearances or X6 = natural type shifted by P.TYP.

A TTTIT =

LNRT R

SAVEB1 holds the symbol table ordinal and SNAME the E-

list for the name. Processing performed is:

Ae. Produce an error if the item is not a name.

b. On first occurrence for debug variables, a CFO call
is made to validate the context (unless this is a
type statement where the check will be made later).

C. Diagnose the use of the routine name in a
declarative.

d. Diagnose use of an FP conditional on the value of
FPFLAG.

e. Diagnose use of symbol types other than the standard
ones (RETURN names, etc.).

f. Exit if processing a type statement.
g. Exit if not external, else issue on error.
DPCOM

Initially, FPFIAG 1is set so that formal parameters will
not be permitted in COMMON statements. The present
length of common tables is saved using SCF. If the first

= - w—aa

-266-

6000 FORTRAN EXTENDED 4.0

E-list item is a name, this must be a blank common
statement so a name of blanks is generated. 1If it is not
a name or a slash, an error is produced. Should the item
following the first slash be a slash, the block is set to
blank common. For a name, a check is made to guarantee
seven or fewer digits and type integer, then the constant
becomes the name. Any $ is removed at this point from
the name (such as A2%).

ORGTAB 1is now searched to determine if this is the first
appearance of the block. For first apiﬁiﬁance, a check
is made to ensure that more than ifferent common
blocks have not been declared. If this is still within
bounds, the number of common blocks (N.COM) is updated,
E.ORG set (error recovery flag), and the ORGTAB entry
established.

On a previous occurrence, a scan is made down the linked
common table until the the last occurrence of the block
is found, The RB field (common block ordinal) and var
bit are formatted for use in setting word B of symbol
table entries. Then, a =zero word is appended to the
common table. This will 1later contain the number of
elements in this COMMON statement and a link field.

Next, the 1list of items in the common statement will be
processed. Operations performed are:

a. Use CDN (CNAME) to check the name.

b. Set the type on first occurrence.

C. Check for previous appearance in a COMMON statement.
d. Save the symbol table ordinal in COM table.

e. Collect a reference if necessary.

f. Use DIMEN (DIMCHK), if needed, to process a
dimension declaration on a COMMON statement.

g. Increment GNC (number of items in this COMMON
statement).

h. Repeat a - g if the next element is a comma.

i. Install the number of items in the block header
word.

-247-

6000 FORTRAN EXTENDED 4:0

j. . If this was not the first appearance of the.block
name, set a link in the header word of the last
appearance (link wvalue is the 1location of this
header-location of the last header). ' '

k. Clear error recovery flags. ,

1. Set the common bit, and word B flags (var bit and RB
field) into each symbol table entry for this block.
Here, a check is made to diagnose the same variable
appearing twice in one block declaration.

M. If the next E-list item is a slash, restart at the
beginning of common processing.

n. Exit for an end of statement to the phase

controller.
DPEQU ,
DPEQU performs a syntax check of the EQUIVALENCE
statement and makes entries intc the eguivalence 1list.

Processing is as follows

a. Disallow formal parameters in EQUIVALENCE
statements. : :

b. Save the current equivalence table length for erfor
recovery. o

c. Validate the next item. It must be a left
parenthesis.

d. Clear the group name count.
e. Use CDN to validate the name (CNAME).

f. Set the wvar bit and the type flagging an error for
level three items.

g. Increment the group name count.

h. Add the first word to the equivalence list and a
second word of zero.

i. Collect references if needed.

-248-

6000 FORTRAN EXTENDED 4,0

If the item after the name is a left parenthesis,
the subscript must be processed.

(1) The next element must be an integer or octal
constant that is non-zero and less than 2%%17.

(2) Increment the subscript counter and issue an
error for more than three subscripts.

(3) save the subscript value in DIMTAB + subscript
number.

(4) Repeat a j1 to j3’if the next item is a comma.

{5) Produce an error if it is not a left
parenthesis.

(6) Pack the number of subscripts plus the three
subscript values into the record word of the
equivalence list entry.

Repeat step e to j if the next item is a comma.

Issue an error if the item is not a right
parenthesis.

Produce an error message if the group contained only
one name,

Exit if the next item is an end of statement.

Repeat steps b to n if the next item is a comma;
otherwise, produce an error for bad syntax.

DPTYP - Process Type Statements

Processing for all type statements is handled as follows:

a-

Set FPFLAG zero so that formal parameters are
allowed. If the statement is an ECS statement issue
an informative error suggesting the use of the LEVFEL
statement.

For double word items, the DBLEPREC flag is set.
This is interrogated in DPCLOSE.

Validate the name using CDN (CNAME macro).

-249-

d.

e,

6000 FORTRAN EXTENDED 4.0

If this is not the first occurrence of the name and
the natural type does not match the present type, an
informative message is produced indicating an
attempt to retype the variable. If the statement
type is ECS set the level field in the symbol table
entry to three and go to g.

If this is a pseudo first occurrence (i. e. the
symbol appeared in a debug context), move the
declared type to saved natural type field in word B.

For a true first occurrence, the type given in the
declaration (contained in ATYPE) is placed in the
type field.

Collect references if necessary.
If the next element is a left parenthesis:
(1) Check to make sure the name is not external..

unused dJdebug variable, call CFO to

iabl
validate the context and move the saved natural
type field to the type field.

} For an

{2
‘l‘

(3) Ccall DIMEN to process the dimension
declarations.

If the next item is a comma, repeat steps ¢ to h.

Exit to the phase controller if the next item is an
end-of-statement.

Otherwise, produce an error diagnosing a bad
separator.

DPDIM - Process DIMENSION Statement

Processing is performed as follows:

Ade

b.

Set FPFLAG so that formal parameters are permitted.
Use CDN to validate the name.
Set the natural type into word B.

Collect references if necessary.

-250-

6000 FORTRAN EXTENDED 4.0

e. Produce an error message if the next item is not a
left parenthesis.

f. Call DIMEN to process the dimension declaration.
g. Repeat steps b to f if the next item is a comma.
h, Exit to the phase controller on an end of statement.
i. Otherwise, issue a diagnostic for bad separator.
DIMEN - Process Array Declaration
On entry, the E-list pointer denotes the item after the
left parenthesis. DIMEN assumes a previous call to CDN.
On exit, the E-list pointer is set for the item after the
closing parenthesis. Processing is handled as follows:
a. Clear subscript counters and flag.
b. Extract the subscript element.
C. Bump the number of dimensions.
d. Flag more than three dimensions as an error.
e, For a constant:

(1) Verify that the constant is integer or octal.

(2) Convert it to binary using CONVERT.

(3) Diagnose < zero or 1larger than machine size
dimension declarations.

f. For a variable name:
(1) Get the symbol table ordinal.

(2) Diagnose the not found return since it must be
a formal parameter.

(3) Test to be sure it is a formal parameter,
(4) sSet the var bit and set RI=1, this plus the FP

bit uniquely denotes a variable dimension
value,

-251-

6000 FORTRAN EXTENDED 4.0

(5) sSet a variable subscript flag.

g. Position the variable subscript flag and put the
cumulative flags back in VARSUB. Save the dimension
information in DIMTAB to be packed up later.

h. If necessary, set VARDIM non-zero to mark a variable
dimension appearance for DPCLOSE.

i. Collect any references needed for REFMAP.

j. Repeat steps b to i if the next E-list item is a
comma.

k. Issue an error if the item is not a right
parenthesis.

1. Issue an error if the item was previously
dimensioned stating that the previous declaration
will be retained.

m. In case of variable dimensiconing, check to verify
that the array name is also a formal parameter.

n. Add the DIM bit and DIMP ordinal, plus VAR bit to
words A and B of the symbol table.

o. Form the second word of the DIM table entry
containing number of subscripts, variable or
constant subscript indicator (A B C), and the A, B,
and C fields.

P. Add words one and two to the DIM table and exit.

DPLEV

3. Set FPFLAG to allow formal parameters.

b. Set LEVEL to indicate occurrence of LEVEL statement.

C. Check specified level for constant value.

1. If not a simple integer constant, issue
diagnostic and return.

2. Call CONVERT to get the binary value of the
level number.

-252-

DPIMP

ade

6000 FORTRAN EXTENDED 4.0

For 1level =zero or level number greater than the
maximum level allowed, issue diagnostic and return.

For a valid level number, save the value in LVL.

If expected comma is missing, issue diagnostic and
return.

Validate variable usage using CDN (CNAME).
Set type or natural type as returned by CDN.

Compare previously declared 1level, if any, with
current level.

Issue informative diagnostic if levels differ and go
to stop M.

Store level in word B of symbol table entry.
Collect reference for REFMAP if needed.
If the next E-list element is a comma go to g.

If end of statement, return; otherwise, issue bad
separator error.

First a check is made for the following fatal
errors:

1. IMPLICIT statement after anything but a program
header card or an internal debug deck. LASTTYP
will hold the type of the last statement
processed or the 1last statement processed
before the internal debug deck.

2. Identifier picture 1length not equal to string
length before left parenthesis. SCANNERS
search routine is such that an IMPLICIT
statement may be correctly typed even though
the type specified is syntactically incorrect.
If one or both of these fatal errors occurs,
the diagnostics are issued, the non-ansi
diagnostic is issued, and control returns to
PHICTL,

-253-

6000 FORTRAN EXTENDED 4.0

Before processing begins the natural type table is
cleared so that the implicit types can be built
directly into the table.

The first type to be implicited is stored in ATYPE
when SCANNER types the statement. Subsequent types
are determined using the ELIST representation and a
table of allowable types. The type currectly being
worked with is kept in B1.

(0=logical, 1=integer, 2=real, 3=double, 4=complex)

For a given type, the individual character or range
of characters are indicated by bits set in X7. Bits
58-33 correspond to A-Z. These characters are then
put into the appropriate position in the IMPTYP
table, depending on B1, the type. X0 holds all the
bits which have been implicited so far, so that
conflicts can be ddetected before adding to the
table.

After all the types have been processed, the naturail
integer characters (I-N) and the natural real
characters (A-H, 0-Z) are added to the table if they
have not been implicited any other type (determined
from X0).

For subroutines and functions the formal parameters
must now be given a natural type based on the new
natural type table. If the function name was not
explicitly typed, it too must be typed with the new
table. For unused debug variable the natural type
is saved in the Save Natural Type field (type field
holds Unused Debug Variable type).

Informative errors are indicated in ERRORWD., For
character bounds reversed, bit 59 is set; for
previously typed character, bit 58 is set. Upon
completion this word is checked, and informative
diagnostics, if any, are issued.

In case of fatal error, other than the two checked
at the beginning, the diagnostic is issued. The
natural type table must then be restored to its
original status.

Before exit in any case, the non-Ansi diagnostic is
issued.

=254~

6000 FORTRAN EXTENDED 4.0

Tables
COMMON Table (COM)
ORGTAB
Each entry in ORGTAB reflects a common block and common
block ordinals are relative to the position of the block
in ORGTAB. The format of an ORGTAB word is:

VFD U42/7L block name, 18/4

where d is the distance of the first block header word
from 0.COM.

6.1.2 COM - Common Table

The main portion of the common table is a series of
linked blocks. Each block reflects the mention of a
block name at the TFORTRAN level followed by a list of
items. The format produced by such a group is the group
header word followed by variable words. For the header
word, the format is:

VFD 2470, 18/number of names, 18/1ink

link = the number of words to the next block header or
zero if this is the last one

number of names = number of individual variable words
to follow

Individual variable words are formatted as follows:
VFD 24/0, 18/symbol table ordinal, 1870
EQV - Equivalence Table

Each item in an equivalence list has a two word entry in
the table. The format of this entry is:

VFD 12/2000B + ord, 48/2*symbol table ordinal
VFD 3/# of subscripts, 3/0, 18/subcC, 18/subB,
18/subA
where ord is ordinal of the name in the group (1,2,...).

DIM - Dimension Table

-255-

6000 FORTRAN EXTENDED 4.0

~ Each dimension table entry contains two words per item.
The format of word one is:

VFD 6/0, 18/symbol table ordinal, 36,0
and word two:
VFD 3/#% of subscripts, 3/ABC, 18/C, 18/B, 18/A

where the ABC field has bit 2 set if dimension 1 is
variable and clear for a constant dimension, bit 1 on for
dimension 2 variable and clear for constant, bit 0 on for
dimension 3 variable and off for a constant. A contains
the dimension value for the first dimension, if it is
constant, or the symbol table ordinal of the wvariable
dimension. B is the same as A except for dimension two.
C holds the total array size for a constant array or the
symbol table ordinal of the -third dimension if it is
variable.

~256-

3.0

6000 FORTRAN EXTENDED 4.0

PHICTL

General Information

Task Description

The phase 1 controller processes the header card and
controls processing of all declarative statements.

Entry Points

PHICTL

This 1is the main entry point of PHICTL. It is entered
from the loader.

PH1SCAN
This entry point is from a declarative routine, such as
DPCOM, to look for the next statement.
Diagnostics and Messages
Fatal to Compilation
None
Fatal to Execution
ae. HEADER CARD SYNTAX ERROR
1. No *(* after prbgram name with parameters.

2. A name or constant does not follow the t=¢
after a file name.

3. Specified buffer length is not an integer.
4. ')* missing after file names or parameters.
5. No EOS after the %)t,

6. No program name on header card.

-257-

6000 FORTRAN EXTENDED 4.0

7. Formal parameter is not a variable name.

8. RETURNS, expected after a ',' after subroutine
parameter list, is missing.

b. NUMBER OF FILES EXCEEDS MAXIMUM.

C. DUPLICATE FILE NAME.

d. EQUIVALENCE ERROR, FILE IS NOT IN SYMBOL TABLE OR A

FILE IS EQUIVALENCED TO ITSELF,
e, CONFLICTING USE OF NAME IS EXTERNAL STATEMENT.
f. SYNTAX ERROR ON EXTERNAL STATEMENT.
ge. RETURNS LIST ERROR.

1. No ' (* after RETURNS.

2. RETURNS parameter not a variable name.

3. No ') * after RETURNS parameters.
Informative
a. No program card.

b. Declared buffer size exceeds maximum length.

Environment

Low core cells

SYM1 (12B) Starting address of symbol table
SYMEND (13B) Address of last word of symbol table
TYPE (24B) Type code of current statement
SELIST (32B) Address of next E-list element
ATYPE {(51B) Type of function

PROGRAM (56B) Type of program - main, subroutine,
function, block data

-258-

6000 FORTRAN EXTENDED 4.0

Common Blocks

/7

DBGBLK2

DBGBLK 1

NONFTNX

MACBUF

Externals

ADDREF

ASAER

BTOCT

CAFLAG

CFO

CODE.

COMPMSG

CONVERT

DBGEPKT

DBGINT

DBGINTX

DBGIPRT

One word block containing base address for
referencing DEBUG tables

Used by DEBUG
Used by DERUG

Buffer used by SVARG to save macro calls
and FMAC to format them

Code block in PSICTL to collect a reference for
REFMAP.

Code Dblock in ERPRO called to issue NON-ANSI
usage diagnostic

Code block in ENDPRO to convert binary to octal
Flag which is set to zero if FAX is to be used

Code block in DBGPHCT called to check DERUG
usage of variable names with actual program

usage

Cell in Légt;Ro containg length of the code
block

Cell in FTN, address of the message area

Code block called to convert a constant and/or
to place a constant in the CON. table

Code block tc process the external DEBUG packet

Code . block
statements

to process interspersed DEBUG

Alternate entry point to DBGINT to process an
interspersed DEBUG statement when it follows an
unrecognized standard FORTRAN statement

Code Block to process the internal DEBUG packet

=259~

6000 FORTRAN EXTENDED 4,0

DFLAG Non-zero if in debug mode

DPCLOSE Code block to which control is transferred when
an executable FORTRAN statement is encountered
after the header card and all declaratives have
been processed

DPCOM Code block to process the FORTRAN COMMON
statement

DPDIM Code block to process the FORTRAN DIMENSION
statement

DPEQU Code Dblock to process the FORTRAN EQUIVALENCE
statement

DPIMP Code block in DECPRO to process IMPLICIT
statement

DPLEV Code block in DECPRO to process LEVEL statement

DPTYP Code block to process the FORTRAN TYPE
statement

ECGS Code block to enter a symbol in the SYMBOL

table and set the define bit

ENTRY. Cell in LSTS% containing the symbol table
ordinal for ENTRY.

ENTRY.D Cell in ERPRO containing the base and
relocation address for entry point of program

ERPRO Code block called to issue fatal error
diagnostics

ERPROI Code block in ERPRO called to issue informative
diagnostics

FATALER Code block in ERPRO to issue fatal to
compilation errors

FMAC Code Dblock in STMTP to create macro calls to
the COMPS file

FORMAT Code block to process the FORTRAN format
statement

-260-

FP.

FTNEND

FWAWORK

F1AMAC

F.LFN

INFORM

INITBL

LASTTYP

LFER

MACFLAG

MSG=
NASAFLG

N. ERROR

N. FILES

N.FP

OLIST

OUTUSE

60600 FORTRAN EXTENDED 4.0

Cell in LSTPRO containing the
ordinal for FP.

symbol table

called if
and

an EOR is
N.ERROR is

Code block which is
encountered on the first card
zero

Cell in LSTPRO containing the first word address
of working storage

Code block in STMTP to perform macro calls to
the COMPS file with one argument

Cell in FTN whose bits gives information about
the type file

Cell in ERPRO which contains the address in
ERPRO of the routine to issue NON-~ANST
diagnostics

Code block which initializes tables for phasei
Cell to save last statement TYPE and ATYPE

Cell in LSTPRO which contains a jump to FATALER
in ERPRO

Cell zero doesn't send macros to
COMPS

in FTN, if

Code block to issue message to the dayfile

Cell in FTN, if non~zero flag on ANSI usages

Cell in LSTPRO which contains the number of
errors
Cell in LSTPRO which contains the number of

files for a main program
Cell in LSTPRO which contains the number of
formal parameters in an argument 1list

Cell in PTN, if then produce an

object listing

non-zero,

Code block in LSTPRO to output a USE name to
the COMPS file

-261-

O.LCC

PLIMIT

PNORD

RSELECT

SCANNER

START.

ST.

SUPIDFL

SVARG

SYMBOL

TEMPAO

TRACE.

TYPFLAG

UCODE.

UDATA.

UFLAG

USTART.

‘Code block to obtain the

6000 FORTRAN EXTENDED 4,0

Cell in SCANNER which contains starting address
of LCC directives

Cell in FTN to hold print 1line limit

Cell in LSTPRO which contains the ordinal of
the name used as the entry point

Cell in FTN, which indicates R=2 or 3 selected

type of the next

statement

Cell in LSTPRO containing the length of START.
block

Cell in LSTPRO containing the symbol table

ordinal for sT.

Cell in FTN, if zero, informative diagnostics

are printed

Code block in STMTP which saves the argument
used in constructing a macro to the COMPS file

Code block in LSTPRO called to make a new entry
or search for an exisiting entry in the symbol
table

Cell in LSTPRO for temporary storage of A0

Cell in LSTPRO which contains the symbol table
ordinal for TRACE.

Cell in SCANNER
statement was found

indicating if a bad DERIG

Cell in LSTPRO
shifted form

containing the name CODE. in

Cell in LSTPRO
shifted form

containing the name DATA. in
Cell in FTN, non zero if F option is selected

Cell in LSTPRO containing the name START. in
shifted form

-262-

6000 FORTRAN EXTENDED 4.0

VALUE. Cell in LSTPRO containing the symbol table

ordinal for VALUE.

WB.ESS Word B of symbol table for special SYMBOLS

WB. LFN Word B of symbol table for file names

WORDY Cel

WRWDS

1 in SCANNER containing the number of words
of LCC directives

Code block in FPTN called to perform the writing
of R-1list macros to the R-list file

XFRNAME Cell in LSTPRO containing the transfer name

Processing

DPEXT

de

b,

Get next E~list element. If it is not a name, issue
a diagnostic and return.

If it is a name, enter it in the symbol table if not
already in.

If +the symbol was referenced before, check that it
is not the routine name (ordinal 1), return,
namelist, entry point, file name or a local
variable.

If this is the first occurrence check for use as a
debug variable and enter type in the symbol table.

Set the external bit if there is no conflict in the
name usage.

Collect a reference for REFMAP if necessary.
Exit for ©FOS; repeat processing, steps a-g, for

comma; for any other ELIST element, issue diagnostic
and return.

PHISCAN - Main loop for declarative processing

a.

Set up LASTTYP for DPIMP based on the last non-debug
statement type saved in TEMPB7.

-263-

5.3

5.4

6000 FORTRAN EXTENDED 4.0

b. Terminate line of references for R=1, R=2, R=3.

c. If in debug mode and the next statement is a debug
statement, call DBGINT to process it. Return to
step d when it is sensed that the next statement in
non-debug, If not in debug mode or next statement
non~debug, go to 4.

d. Type the next statement via SCANNER. Save ATYPE in
bits 37-20 and TYPE in bits 17-0 or TEMPBE7.

e. If the statement +type returned is debug (only if
debug card after unrecognized statement) call DBGINT
to process it. DBGINT is entered through DBGINTX
because SCANNER has already processed the statement.

f. Skip over a bad debug card (TYPE=0, TYPEFLAG 0). Go
to step g for a program card (TYPE=0, TYPFLAG=0).
Reset TYPEFLIAG to 0.

g. If the statement is a header card issue a
diagnostic. If it is an executable statement go to
DPCLOSE to end Phase 1 processing. Otherwise, go to
the appropriate routine to process the statement.

PH1CTL

The routine is entered at this point from the SCOPE
loader. If control is returned from COMPASS, +the card
image is placed one character per word in a 80 word
buffer in SCANNER. Flags are set in ERPRO if non ANSI
usages are to be flagged and/or informative diagnostics
are to be produced.

If the program 1is in DEBUG mode, a call to DBGEPKT to
process the debug package and return the program card.
If not, in DEBUG mode SCANNER is called to get the first
card. - . o :

If the header card is either a program, block, data,
subroutine or function card, control is transferred to
the appropriate routine. If an EOR is encountered on the
first card and no errors have been encountered, control
is transfered to FTNEND, else a dummy program card,
'PROGRAM START. (INPUT,OUTPUT)' is inserted and control
is transfered to process the procgram card.

Program Card

~264-

5.4.2

wn

.u.3

6000 FORTRAN EXTENDED 4.0

The name is entered in the symbol table, if the
SYSEDIT=IDENT option is used then a $ will be appended to
the name entered in the symbol table. The file names are
entered in the symbol table and at the same time they are
placed in scratch table at O.LFN format of scratch table.
REGULAR ENTRY 2470, 18/ORDINAL, 18/BUFFER +FET SIZE
EQUIVALENCE ENTRY ii1,23/6,18iORD(1FNT),18/ORD(LFN2)

If the buffer size is declared, then this value will be
entered in the table instead of the default of
2000 (octal) words.

After all file names have been initially processed, the
RA field is computed and stored in the symbol table for
each file. 'FILE* or 'FEQU' macro calls are placed on
the COMPS file for each file. The TRACE macro, PENTRY
macro, and 'RJ Q8NTRY'. are placed on the COMPS file.
SUBROUTINE - DPSUB

a. Call PPN to enter subroutine name in the symbol
table.

b. Set PROGRAM to 2001BS48+ no. of arguments.

c. Call PPL to process the parameter list.

FUNCTION - DPFUN

2. Call PPN to enter function name in the symbol table.
b. Save type of function plus one in VALUE.

C. Set PROGRAM to 2002Bsu48+ no. of arguments.

d. Call PPL to process the parameter list.

BLOCK DATA - DPBDA

a. Set PROGRAM to zero.

b. Set name to BLKDAT. if no name is given.

C. Call PPN to enter the name in the symbol table with
type T.CGS.

=265~

5.5

5.6

(%]

~J

de.

b.

g.

6000 FORTRAN EXTENDED 4,0

'"PROGRTN .

Enter ST. in fhé»symbol table and save its ordinal
and, if a function, set type and variable bit in
word B of symbol table for the entry of VALUE.

If a program, add Q8NTRY. to symbol table.

Call INITBL to initialize tables for phase 1.

If formal parameters, enter FP. in the symbol table.

If anything was saved, restore statement type and
pointer, then, go to PH1S1 to process the statement.

If in DEBUG mode, call DBGIPKT to process internal
debug packet. _ '

GO to PH1SCAN,

PROCESS PROGRAM NAME - PPN

a. If next element in E-list is not a name, paSs
control to ERPRO.

b. Enter name in symbol table and set type.

Ce. Store name in IDENT+1 and COMPMSG+1.

d. If deck option is set, write * DECK card to COMPS
file.

e. Send 'COMPILING program name' to B display.

f. Write IDENT and XTEXT cards to the COMPS file.

g. If FAX 1is not being used and no object listing is
requested, write a LIST -L, -R card to COMPS.

h. Send any LCC directives to the COMPS file.

i. Set relocation base.

j. Collect reference to routine name if R>0.

k. Return to caller.

PROCESS PARAMETER LIST - PPL

-266-

6.1.2

6000 FORTRAN EXTENDED 4.0

Enter parameter in symbol table. If the name is
already in symbol table, flag name as being doubly
defined.

If number of formal parameters has exceeded maximum
number, call ERPRO.

If R=2 or 3, add parameter to references
continue a, b, and c¢ for all formal parameter

Call PRP to process return parameters if present.
Call ESF to enter special symbols.

Output traceback and entry point information to the
coMPsS file.

If formal parameters exist, output FORPAR macro to
establish the order of the F.P. blocks.

PROCESS RETURNS PARAMETER LIST - PRP

a. Check for incorrect syntax and for function
subprogram. In either case issue a diagnostic.

b. Enter returns parameter in the symbol table and set
type to RETURNS.

c. Flag duplicate parameters.

d. Collect references for reference map, if needed.

e, Repeat steps B~D for all parameters until ")
terminates the list.

Tables

Scratch table for files on program card

Initial entries

VFD 24/0,18/Program Ordinal,18/Buffer Length

Equivalence entries

VFD 6/0,1/1,17/0,18/0RD (LFN1) , 18/0RD (LFN2)

-267-

6000 FORTRAN EXTENDED 4.0

CODE _GENERATION TECHNIQUE

The method used for code selection in the FORTRAN
Extended compiler can best be explained with an example.
Consider the following FORTRAN source statements:

IF (ATAG .LT. B¥B) CALL COMET

PSI= (B+ACT (N)) #**2+4RHO*SIGMA (N)

K=N+K

OTAB (N)=XTAB (I)/RHO+PSI

4 TAB2 (2,2%K)=PSI+ATAN (RHO)

Statements within the bracket constitute a flow block or
sequence. Initially, these statements are analyzed and

converted to a register free notation called R-list which
would appear as:

RleB R11 = R6+R10 R19 = R17/R18
R2-€N R12 = N (R11) R20 «PSI
R3=ACT-1,R2 R12» PST R21 = R204R7
R4 = R14R3 R13«N R22 = N(R21)

R5 = N (RY) R14-«K R23 <N

R6 = R5%R5 R15 = R13+R14 R22» QTAB-1,R23
R7-= N R15»K

R8= SIGMA~-1,R7 R16=1I
R9 RHO R17-§XTAB-1 sR16

R10 = R8*R9 R18 <« RHO

~-268-

6000 FORTRAN EXTENDED 4.0

(N (R1) indicates the normalization of the result of a
floating add or subtract, left arrows are loads and right
arrows are stores.)

The generated R-list is then scanned and common
suboperations are eliminated resulting in the squeezed R-
list.

R1i=B R10 = R8%*R9 R17< XTAB-1,R16
R2« N R11 = R6 + R10 R19 = R17/R9
R3«ACT-1,R2 R12 = N(R11) R21 = R12 +R19
R4 = R1 + R3 R12%PSI R22 = N(R21)

R5 = N(RY) R14 K R22# QTAB-1,R2
R6 = R5*R5 R15 = R2 + R14

R8«-SIGMA-1,R2 R15#K

R9= RHO R16 =X

From the squeezed list a PERT-like network, the following
dependency tree, is formed showing the vprecedence of
operations.

~269-

6000 FORTRAN EXTENDED 4.0

-270-

6000 FORTRAN EXTENDED 4.0

The numbers within the circles at the nodes are keyed to
the squeezed R-list. The time in machine cycles required
for each operation is known. From this information, the
latest time at which each operation must begin in order
to finish executing the network in the minimum amount of
time is calculated. This is done assuming no conflicts
of any kind and parallel instruction issue as well as
execution. These times called priorities, are the
numbers shown next to each circle; in a PERT sense they
correspond to negative late start times with the network
being completed at time zero. Code 1is generated
beginning with the highest priority entry in the squeezed
R-1list noting which function wunit is used and for how
long. For all later instructions, it is required that
the preceding operations have been issued and there are
no function unit or register conflicts; for this purpose,
a picture of the status of all registers and function
units must be maintained. Using this approach, the code
shown on the next page 1is produced resulting in the
indicated overlap of operations.

-271-

6000 FORTRAN EXTENDED 4.0

Function Units Load/Store
BIBJF|ISIMI{MIDJLIIT|IIXIXIX]IX|IXIX]X
R | Instruction : L{RJA|JHI}I |2 {VIA 1121]2i3|4|5]6|7] t
161 SA1 i
21SAZ2 N
8iSA3 RHO

17 1SA4 XTAB-1+X1

11SAb B
3| SA1 ACT-1+X2

18| FX0 X4/X3
41 FX4 X5+X1
7 { SA1 SIGMA-1+X2

5INX6 B7,X4
9| FX4 X1*X3
13| SA1 K

61 FX3 X5*X5
10} FX5 X3+X4
141 1X6 X2+X1
11| NX7 B7,X5

16| SA6 K
191 FX1 X7+X0
7 { NOP
12| SA7 PSI
201 NX6 B7 X1
NOP
21| SA6 QTAB-1+X2

=272~

1.0

2.2

2.3

2.5

6000 FORTRAN EXTENDED 4.0

CLOSE2
—_—

General Information

Task Description

CLOSE2 is the end of pass 2 processor. It closes out the
COMPS file Dby issuing storage for statement, DO,
optimizing and intermediate temporaries. It also issues
code to terminate the formal rarameter substitution
lists. The processor also adjusts the variable dimension
table and pointers for the assembler, calls REFMAP to
produce the reference map, and calls FTNXAS to assemble
the COMPS file, Exit is made to FTNEND if the input file

is empty, or to LDRPH1 if there are more program units to
be compiled.

Entry Points

BTDIS

This entry point is called to convert a binary number to
display code.

CLOSE2

CLOSE2 is entered by a jump from APLIST to close out pass
2 processing.

IEM

IEM is entered by a return jump to issue the error
message to the dayfile.

INIT

INIT is entered by a jump from the overlay loader after
the pass 2 overlay has been loaded.

NFPUNT

NFPUNT is entered by a return jump to force outputting an
informative optimization diagnostic.

-273-

6000 FORTRAN EXTENDED 4,0

PUNT

PUNT is entered by a return jump to force outputting of a
fatal memory overflow diagnostic. ‘

SDATA.

SDATA. contains the saved length of the DATA. block.

Diagnostics

Fatal to Execution

If compilation cannot be continued due to insufficient
memory, the diagnostic message "PASS 2 MEMORY OVERFLOW IN
= XXXXXXX" is written to the output file, where the X's
represent the routine in which the overflow occurred.
Informative

If better code optimization could have been performed if
more memory had been provided, the diagnostic message
"MORE MEMORY WOULD HAVE RESULTED IN BETTER OPTIMIZATION"
is written to the output file.

Environment

CLOSEZ resides as the first routine of the (1,2) overlay.
Low core cells

N.LRB (7B) number of local relocation blocks

SYM1 (12B) first word address of symbol table

PROGRAM (56B) program/subroutine indicator

Common Blocks

/TABLES/

BLKCOM address of BLKCOM in ORGTAR

L. PROG program length
O0.LRB first word address of local relocation base

Structure

-274-

6000 FORTRAN EXTENDED 4.0

INIT is entered from the overlay loader after the (1,2)
overlay has been 1loaded. If no fatal errors were
detected during pass 1 processing, a jump is made to PRE
to begin processing the R-list file, Otherwise, an error
message is issued to the dayfile indicating the number of
fatal errors encountered. If the debug mode of

compilation has been selected and the NOGO option was not
turned on, processing continues with a jump to PRE., Else
pass 2 processing 1is closed out; the reference map is
issued, and control is transferred to FTNEND or LDRPH1

depending upon whether the input files were empty or not.

When CLOSE2 1is entered at the end of pass 2 processing,
storage is issued for compiler generated temporaries,
parameter substitution 1lists are terminated, the VDTAB
table is adjusted, and the COMPS file closed out. The
reference map is issued to the 1list file. If LEVEL
statements appeared in the source program the symbol
table must be searched and the RA, RL and RB fields
modified so that they point to the CM pointer word for
the LCM/ECS item instead of the LCM/ECS address. The
FTNXAS assembler is called to assemble the COMPS file if
the COMPASS assembly option has not been selected.
Program control is then transferred eiher to FTNEND or
LDRPH1 to terminal or continues the compilation process.

1.0

6000 FORTRAN EXTENDED 4.0

FORTRAN EXTENDED ASSEMBLER

General Information
Task Description

The FORTRAN Extended assembler FTNXAS replaces COMPASS as
the assembly pass of FORTRAN Extended Version 3.0. It is
a one pass assembler designed specifically to increase
compilation speed. It accepts a formatted subset of the
COMPASS assembly language and produces binary relocatable
subprograms. All information required to facilitate a
one pass assembly is gathered during the previous two
passes of the compiler.

Usage
Entry Points
FTNXAS

The assembler is entered by a return jump from CLOSE2.

Diagnostics
Fatal to Execution
ILL

The word ILL appearing to the left of the source line on
the assembly 1listing means the assembler could not
recognize the statement or encountered an ERR pseudo-op.
When this occurs, assembly is abandoned, the fatal to
execution flag is set, the source 1line is printed
regardless of the "O" option, and assembly proceeds with
the next statement. The fatal to execution flag causes
the message "FTNX ERRORS" to be written on LGO in place
of the normal relocatable subprogram. Note that since
the code produced by the first two passes is assumed to
be correct, minimum error checking is designed into the
assembler. The usual response to an error in the source
string will be this diagnostic. Abnormal termination of
the job may occur during compilation because various

-276-

6000 FORTRAN EXTENDED 4.0

unused jump vectors in the assembler are used for storage
of unrelated code.

SYMBOL ERR

This message appears to the left of the source line if
the assembler was unable to find a symbol in the two word
symbol table. This error causes the same action as
described for ILI.

STORAGE OVERFLOW

This message 1is printed on a separate line when the
assembler has expended all available working storage for
chained common and external reference information.
Assembly will proceed to count the increase in field
length required, but no relocatable binary deck will be
produced. The message "INCREASE FIELD LENGTH BY XXXXXX"
is printed after the END statement of the subprogram.
Informative

None.

Environment

The assembler may reside after CLOSE2 in the (1,2)
overlay, as a separate overlay.

Input String

The input string consists of COMPASS language card images
constructed using the following rules.

Executable Instructions

1. The label field must be blank, except the forcing
characters + (upper) and - (lower) may be used in
column 1.

2. The operation code must begin in column 3.

3. There must be only one space between the operation
and address fields.

-277~

‘6000 FORTRAN EXTENDED 4.0

is a 1list of executable instruction
and address fields that FTNXAS can

4. Following
mnemonics

recognize, followed by the binary produced.

Opcode

Address

RJ

Jp

JP

ZR

NZ

PL

NG

EQ

NE

GE

Symbol

B1,Symbol

B1

Xj,Symbol

Xj,Symbol

Xj,Symbol

Symbol

Bi,Bj,Symbol

Bi,Bj, Symbol

Bi,Bj,Symbol

Binary in Octal

0100000000

0210XXXXXX

0210000000

030 jXXXXXX

031 jXXXXXX

032 jXXXXXX

033 jXXXXXX

0400XXXXXX

041 jXXXXXX

051 XXX XXX

061 jXXXXXX

-278-

Other Action

External reloca-
tion noted;
force upper

next instruc-
tion.

Program reloca-
tion noted;
force upper
next instruc-
tion.

Program reloca-

tion noted.

Program reloca-
tion noted.

Program reloca-
tion noted.

Program reloca-
tion noted.

Program reloca-
tion noted;
force upper
next instruc-
tion

Program reloca-
tion noted.

Program reloca-
tion noted.

Program reloca-
tion noted.

6000 FORTRAN EXTENDED 4,0

Opcode Address Binary in Octal Other Action
LT Bi,Bj,Symbol 071i§XXXXXX Program reloca-
tion noted.

BXi Xj 10153

BXi Xj+xk 11ijk

BXi Xj-xk 12ijk

BXi | Xj*xXk 13ijk

BXi -Xk 14ikk

BXi -Xk+Xj 15ijk

BXi -Xk-Xj 16ijk

BXi -Xk*Xj 17ijk

LXi jkB 20ijk

LXi kB 20i0k

AXi jkB 21ijk

AXi kB 21i0k

LXi Bi,Xk 22ijk

AXi Bj,Xk 23ijk

NXi Bj,Xk 2413k

Uxi Bj,Xk 26ijk

PXi Bj,Xk 27ijk

Fxi Xj+xXk 30ijk

Fxi Xj=Xk 31ijk

DXi Xi+Xj 32ijk

DXi Xi-Xj 33ijk

IXi Xj+Xk 36ijk

=279~

- Opcode

6000 FORTRAN ‘EXTENDED 4.0

Address
CIXi Xj~Xk
FXi xjexk
DXi X*XK |
MXi jkB
MXi kB
FXi Xj/%Xk
NO
sri Aj+A.E.
Sri Bj+A.E.
sri A.E.
Sri Xj+A.E.
Sri Xj+Bk
Sri Xj
Sri Aj+Bk
Sri Aj
sri Aj-Bk
sri Bj+Bk
Sri Bj
sri ijBk‘

- Binary in Octal Other Action

3714k
401§k
4215k
43ijk
43i0k
4413k
46000-

g0ijXXXXXX

g1i JXXXXXX

g11i0XXXXXX

g2i jXXXXXX

g3ijk
g3ijo
glijk
glijo
g5ijk
g6ijk
g6ijo

g7ijk

~-280-

Relocation
noted.

Relocation
noted.

Relocation
noted.

Relocation
noted.

6000 FORTRAN EXTENDED 4.7

1) If r=A, then g=5; if r=B, then g=6; if r=X, then

2) A.E. 1is an address expression consistinc of octal
constants and/or symbcls in the same relocation base

separated by »nlus (+) or mirnie =Y cumhnla
5€ep DY pius (#; Or Lo

< G L Slbade RLVARD By aT e

Pseudo-Ops
1. Any pseudo-op may ve labeled.

2. Pseudo-ops are free field except labels, if present,
must begin in column 1.

3. Following is a list of permissible pseudo-ops, their
forms, and the results.

Label Opcode dress Action
Required BSS Octal constant a) Force upper.

b) Define the label.
¢} Increment the
origin counter
by the value cf
the octal constant.

Optional DATA Octal constant a) Convert the octal
constant to binary
and write it ou+.

b) Define the label,
if present.

Optional DIS n, character a) Define the label,
string if present.
b) Write n words with
blank £ill.

Optional EQU Anything a) Ignored.
None USE name or /name/ a) Change the origin

counter to that of
the block indicated.

6000 FORTRAN EXTENDED 4.0

Label Opcode dress Action
Optional VFD 1) n/octal a) The specified data
constant. is converted to
2) n/address ex- binary and written.
pression, Relocation is noted.
18<n<60.

3) (n*6)/(M) (C,H,
L or R). Char-
acter string,
1<n<10,0<M<10.

4) Any combination
of the above
separated by
commas.

5) The total bits
specified must
be 15, 30, or 60.

6) Any relocatable
quantity must be
in the lower 18
bits of the gen-
erated field.

END (must start a) Terminate assembly
in Cols 3-8) and return.
Symbol or blank

IDENT Anything a) Causes assembler
initialization to
take place and
assembly to begin.

LIST Anything a) Ignored.

Macro Calls

1.

Macro calls for SUB, DELAY, FILE, and ENTR must have
exactly one space between the call and the
parameters. NAME and ADDSUB are free field.

Below is a 1list of macro names the assembler will

recognize. See Section 5 of this document for the
macro prototype description and the generated code.

-282-

6000 FORTRAN EXTENDED 4.0

Macro
Label Name Parameters Comments
None ADDSUR FP
None SUB FP, CON
None DELAY FpP
None FILE LFN, NAME, NQENT
None FORPAR X FORPAR calls are
ignored by FTNXAS.

None NAME N, T, BASE, BRIAS,

FpP,D1,D2,D3
None ENTR NAME
None FMT label
None TRACE name,address,nargs
None PENTRY name,lname
None FEQU 1fn1,1fn2,no ent
None GNAME name
None ORG name, bias,f
None REPI DLEN, RC,INC, DESTIN
None HOL string
None APIL, name,bias
None ETIO value
None I0M base, bias, type,count,B59,B57,base?2,

Two Word Symbol Table

Active statement labels, entry points, and the labels
DO., ST., and OT. are defined by a block relative address
and a relocation base indicator. The 1length of the
relocation base associated with each formal parameter is
also held in this table.

-283~

4.3

4.7

u.8

6000 . FORTRAN EXTENDED 4.0

Actual Parameter, Variable Dimension and Generated Label
Tables -

Three tables contain respectively actual parameter,
variable dimension, and generated 1label definitions
relative to the CODE. relocation base,

ORGTAB

A table of one word entries which is used to pass to the
assembler the names and lengths of the common relocation
bases and the 1lengths of the local relocation bases,
START., ENTRY., VARDIM., CODE., DATA.., and HOL..

APTAB, VDTAB, GLTAB

Set in ORGTAB to the first word address of the AP, VD,
and GL tables.

Object Listing Option
SYM1, SYMEND

RA+12B and RA+13B point to the first and last entries of
the two word symbol table respectively.

U. LGO
Name used in referencing the binary file.

ILLFLAG

'Set to non-zero if a fatal to execution or compilation

error has occurred before entry to the assembler.
COMPS File Structure

Due to the specialized nature of the FTN internal
assembler, the structure of line images on the COMPASS
file must conform to certain restrictions as to the
columns the 1location, opcode and address fields are
placed in and the order of the cards. The order of the
cards on the COMPS file is expected to follow these
conventions:

-284~-

6000 FORTRAN EXTENDED 4.0

FTNMAC XTEXT - ignored
Lce XXX (YYY,m,m} - optional
USE START. -
PROGRAM
FILE and FEQU macro calls one per file name
FILES. BSS 0B
FLINK macrc calls for each file
DATA 0B
TRACE macro call

PENTRY macro call
USE CODE.

SA1 FILES.

RJ Q8NTRY.

rest of program

END XFRNAME

SUBROUTINE or FUNCTION

After the 'USE START.' card the following will appear:

TRACE macro call

PENTRY macro call

FORPAR macro calls, one for each formal
parameter

rest of program
END

FAX assumes that the above mentioned cards are precisely
in the order specified.

-285-

6000 FORTRAN EXTENDED 4.0

Major Subroutines and Logical Sections

10.

11.

12.
13.

14.

15.

16.

17.

18.

PIDENT - initializes the assembler for each program.
BUILDOT creates a 22 word ORGTAB entry.

MR.CLEAN - removes blank fill from a symbolic name.
INITL(NOBINPO) ~ moves the next source image to
ILINE from the COMPS buffer. Controls reading the
COMPS file.

START - controls analysis of the label field of each
source statement.

COL1VEC determines the contents of the label
field.

BLANK - processes a blank label field.

PFC - processes forcing characters + and - in the
label field.

PLABEL - processes a symbolic name in the label
field.

OCSCAN - controls opcode field analysis.

Opcode transfer vector decodes the contents of the
opcode field.

L3.RJ - produces a binary instruction for RJ.
L3.JP - produces a binary instruciton for JP.

L3.XJP - produces binary-instructions for zR, NZ, PL
and NG.

I19.EQ - produces a binary instruction for EQ.

L3.BJP =~ produces binary instructions for NE, GE,
and LT.

L3.BOOL - produces binary instructions for all BXi.

L3.MX, L3.SH - produces binary instructions for
shift unit instructions MXi, IxXi, and AXi.

-286-

19.

20.

21,

22.

23.

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.

39.

6000 FORTRAN EXTENDED 4.0

L3.PUN - produces binary instructions for NXi, UXi,
and PXi.

L3.ARIT - produces binary instructions for FXi, DXi,
IXi.

L3.VFD - translates the address field of VFD pseudo-
op to binary.

PDIS - processes the DIS pseudo-op.

PDATA - converts the address field of the DATA
pseudo-op to binary.

PBSS - processes the BSS pseudo-op.

PUSE ~ processes the USE instruction.
USENXT - changes relocation bases.

USESTAR - returns to the previous relocation base.
PSET - processes the SET pseudo-op.

PORG - processes the ORG macro.

PREPI - processes the REPI macro.

PADDSUB - processes aﬁ ADDSUB macro call.
PDELAY - processes a DELAY macro call.

PSUB - processes a SUB macro call.

PFILE - processes a FILE macro call.

PNAME - processes a NAME macro call.

PENTR. - processes an ENTR macro call.

EVAL - evaluates an address expression.

REF - obtains the value of a symbolic name.

CONVERT =~ converts display coded octal constants to
binary.

-287-

6000 FORTRAN EXTENDED 4.0

L0, PACKID -~ separates a symbolic name from the input
string.

41. WRSEQ - writes a sequence of words on the LGO file.

42. WRTEXT - maintains ORGC and POSC, creates and writes
TEXT tables for the lmader.

u3. FOTEXT - forces out the current text tabie.

4y, WRLIST - prints each source line, generated binary
instruction and the ORGC.

45, L4.CKL,DEF - defines statement labels.

u46. L4.CKRB - does address relocation bookkeeping.

47, ILL,SILL, STOVER - processes error conditions.

48. PEND - terminates the assembly process.

49, PFMT -~ processes a FMT macro call.

50, PTRACE - processes a TRACE macro call.

51. PENTRY - processes a PENTRY macro call.

52. PGNAME - processes GNAME macro call.

53. PHOL - processes a HOL macro call.

PIDENT

This routine initializes the assembler. It is entered

from the opcode vectors when the IDENT pseudo-op is
encountered. The following tasks are performed:

1.

Allocate on LGO buffer and setup the FET. The
buffer is allocated from MEMSTRT to MEMSTRT+L.LGO.
Allocate space for the IO Aplist table.

MEMEND, the wupper 1limit of the assembler working
storage, is set to the end of IOTAR1.

If there were compilation errors, write a prefix

table and the text "ERRORS IN FTN COMPILATION" orxr
the binary file.

-288-

10.

11.

6000 FORTRAN EXTENDED 4,0

If the object listing option "O" has been specified,
set the switches at NOBINPO and WRTSW with return
jumps to WRLIST. Set LCNT, and entry point in LIST,
to zero to cause a page eject and set LINE to LINE+4
to blanks.

Print the IDENT and USEBRLK card.

If LCC cards are present, place each on the file IGO
file with an end of record write. Skip over any
LDSET directives.

Put a 15 word prefix table with the program name and
compilation time, date and options into the ILGO
buffer. Add a LDSET USE table for the libraries
required by FTN object code.

Put the 1ID word and program name word for the PIDL
table in the LGO buffer.

Scan the COMMON portion of ORGTAB until a zero word
is encountered moving the COMMON block names and
lengths to the PIDL table and using the subroutine
BUILDOT make a 22 word CORGTAB entry for each. The
22 word CORGTAB is built upwards in memory from
MEMSTRT and is terminated by a zero word. If the
block is an ECS/LCM block the length is rounded up
and divided by eight at this point.

LORGTAB entries of 22 words each are built for the
seven local relocation bases that are always present
using the subroutine BUILDOT. The lengths of the
bases are stored in the locations START , VARDIM ,
.+« HOL which are entry points in ORGTAB. The names
of the relocation bases are taken from the assembler

table LOCNAM.

1f the current subprogram is a subroutine or
function and there are formal parameters, there must
be a 22 word LORGTAB entry setup and initialized for
each. The names and lengths come from the two word
symbol table. The formal parameters are contiguous
from ordinal two each having the FP bit set to one.
The 1length of the relocation base is placed by Pass
2 in the RA field and is changed to a program
relative address at this time while the RB are set
beginning at seven in increments of one and RL is
set to 1.

-289-

12.

13.

14.

15.

16.

17.

18.

6000 FORTRAN EX7iENDED 4.0

The LORGTAB is terminated with a zero word and the
program length which was accumulated during LORGTAB
construction 1is printed then stored in the PIDL
table. MEMSTRT is adjusted to the next location
after the terminating zero word.

Replace special symbol cell contents
(VALUE, ,ST. ,etc.) with their program relative
addresses.,

Map the entry point table constructed in pass one
into the ENTR table in the LGO buffer.

Process the EXT table constructed in pass one and
produce the loader table of externals as well as the
LINKTAB.

The next step is to print the external na~es if the
list code option was selected.

If this 1is a block data subprogram exit to INITL.
The actual parameter, variable dimension and
generated label definition tables are scanned. The
tables lie immediately below the two word symbol
table and are terminated by a zero word. Each entry
contains in the lower 18 bits definitions of the
AP,VD and GL labels relative to the CODE. relocation
base. Any or all of these tables may be empty. The
base address of CODE. is added to make the
definitions program relative. The entries
reformatted to 1look 1like word B of the two word
symbol table.

For a main program, the following processing occurs:

a. Read in and process N.FILES number of cards
(these will be FILE or FEQU cards).

b. Read and 1list the next card which must be
FILES. BSS 0B.

c. Read and process N.FILE number of FLINK cards.

d. Read the DATA -nnnB card and place the print
limit value on 1LGO.

e. Call PTRACE to process the TRACE macro.

=290~

5.2

6000 FORTRAN EXTENDED 4,0

£, Read and list the USE CODE. card.
g. Read and list the PENTRY macro call.

'h. Exit to INITL.

19. For a subprogram, the following processing occurs:

a. Process the TRACE macro via PTRACE.
b. Read and process the PENTRY macro.
c. Exit to INITL.

BUILDOT

This subroutine is used during assembler initialization
to allocate and initialize a 22 word ORGTAB entry
corresponding to each relocation base in the program.

The calling sequence is:

B2 = Origin counter (base address) for this block.
This will be zero for common blocks and the sum
of the 1lengths of previous local blocks for
program relocation base.

B3 = Relocation base code. This is the LCT ordinal
passed out to LGO and used by the loader. It
starts at three for common blocks and for local
blocks is always one.

B6 = First word address of the 22 word entry.

X1 = The relocation base name in bits 18-59 with
blank fill. Bits 0-17 must be zero.

X2 = Block length, a running sum of block lengths is
maintained in B2 to provide the current origin
counter for local blocks and the program length
at the end of ORGTAB initialization.

INITL (NOBINPO)
INITL with its alternate entry point NOBINPC is the first
routine in the main assembly loop. Its function is to

read the next source 1image into ILINE from the COMPS
file. While doing this, INITL also manages the COMPS FET

-291-

5.4

6000 FORTRAN EXTENDED 4.0

and issues read requests whenever there is room for one
PRU in the buffer. The number of words moved to ILINE is
stored in location SWC. The alternate entry NOBINPO is
used whenever the last line processed did not produce any
binary output. It is one word located at INITL-1 and
filled with NOPS unless the "O" option is specified. In
this case, it 1is plugged with a call to WRLIST durlng
initialization. INITL exits to START to begin processing
the line.

START

This routine sets the following registers for the
character pickup macros GCH and CWD:

B6 = 6

B7 = 54

A5 = ILINE

X5 = (ILINE) ,

X0 = 54 bit mask; left justified
START exits by Jjumping into COLIVEC wusing the first
character of the line as an index.

BLANK, OCSCAN, PFC, PLABEL, PNL, OPCODE VECTORS
COL1VEC: A jump vector used to determine the contents of
the label field. It partitions the first 50 display
characters into the following sets and branches to the
indicated routines for further processing.

(A By CreeesZy)se,=¢(,))branch to PIABEL

(+,-) branch to PFC

{blank) branch to BLANK

(zero Byte,0,1,2,3,4,5,6,7,8,9,+,1,(,$,=,comma)
branch to ILL

BLANK

FFLAG 'is set to NFIAG to cause a force upper if the last
instruction was an unconditional jump. BLANK exits to
OCSCAN.

PFC

~292-

5-5."

5.5.5

5. 5.6

6000 FORTRAN EXTENDED 4.0

FFLAG is set to +1 or -1 for plus or minus in column one
respectively. This indicates force upper or force lower
to WRTEXT. PFC skips to the opcode field beginning in
column three, places the first 2 characters in B2 and B3
and transfers to FLVEC-1+B2 to interpret the opcode.

PLABEL

The 1label beginning in column 1 is separated from the
line wusing the subroutine PACKID and saved in the
location ALABEL for later definition. FFLAG is set to +1
to indicate forcing upper is required and PLABEL exits to
OCSCAN. If the label is of the form [IOn make an entry
in the IO Aplist table defining the address of the IO
aplist number n.

OCSCAN

Blanks between the label field and the opcode are skipped
and the first two characters of the mnemonic are placed
in B2 and B3. OCSCAN exits by transferring to FLVEC-
1+B2.

Opcode Recognition Transfer Vectors

Opcode fields are decoded by indexed Jjumps using
succeeding characters of the mnemonic. Most instructions
can be identified by examining the first two characters
of the opcode field but for those that require further
scanning, a vector for each of the third, fourth and
fifth letters has been included along with the routine
PNL which picks the next character from the input string
and jumps back to the vectors. The vector exits that
result from an executable instruction mnemonic will set
X4 to an instruction prototype that is completed as the
address field is processed. Other jumps that result from
pseudo-ops and macro calls simply transfer to specific
routines, although in some cases the spare 30 bits in the
last vector position is used.

L3.RJ

This routine processes the RJ instruction. The address
for the symbol is fetched from the two word symbol table
using the REF subroutine and NFLAG to set +to one
indicating the next instruction is to be forced upper.

L3.JP

-293-

5.11

6000 FORTRAN EXTENDED 4.0

The JP may appear with or without a symbol in the address
field but is always indexed by B1. If there is a symbol,
the subroutine REF is used to obtain its address. NFIAG
is set to one and the routine exits to WRTEXT.

L3.XJP

This routine processes the X register conditional jumps
ZR, NZ, PL, and NG. The register number is selected from
the input string and REF is called to obtain the jump
address before exiting to WRTEXT.

L3.EQ

The EQ jump may be either conditional or unconditional.
If unconditional, no B register is specified or Bi will
be the same as Bj. In this case, REF is called to obtain
the jump address, NFIAG is set to one and exit is made to
WRTEXT. When the two B registers present are different,
i and j are selected from the input string, added to the
prototype, and REF i alled for the symbol definition

= XT.

tr
M

For boolean instructions, the 15-bit opcode is determined
by examination of the address field. This is done by
observing the first and second operators to determine the
g and h fields and setting i, j and k from the input
string. The exit is made to L4.15.

L3.MX, L3.SH

This routine processes the mask instruction and the four
shift instructions. Here, it is required +to determine
whether the shifts are nominal or constant, reset the
opcode in the former case and set the i, j and k fields
in both cases. The exit is to L4.15.

L3.PUN

The assembler must select and set the i, j and k fields
for the pack, normalize and unpack instruction. The exit
is to L#4.15.

L3.ARIT

-294~

5.14

5.15

6000 FORTRAN EXTENDED 4.0

The instruction for double and single precision floating
point operations and the 60 bit integer operations
require only the selection of a mask from ARITAB using
the operator character code as an index and or it with
the prototype in X4. This routine exits to L3.PUN to set
the i, j and k fields.

L3.SET

The increment unit instructions have the largest variety
of address fields of any class of statements that are
encountered by the assembler. This routine must
determine the second digit of the opcode and the
remainder of the 15 or 30 bit instruction. The analysis
begins by transferring into L3.JVEC wusing the first
character of the address field as an index. This will
cause a transfer to L3.S1 if the first character is an A,
B, or X to L3.S1M if the first character is a minus
sign, to L3.S7 if the first character indicates a symbol
or constant follows and to ILL otherwise. At L3.S1, a
character-by-character scan of the input string is used
to determine if the first item in the address field is a
register name or a variable. For variables, a transfer
is made to L3.S7 to evaluate the address expression,
while for registers, the h field of the ovbcode is
adjusted, Jj is selected and included in the instruction,
and the scan continues after setting X7 to remember the
sign unless the next character is a zero byte. If the
next item in the string is a register name, the opcode is
further adjusted, k 1is selected and set and control is
transferred by L4.15. Otherwise, a branch is made to
L3.57 to continue the address expression analysis. At
L3.S11M, X7 is set to indicate the preceeding minus sign
and control goes to L3.S7 where the subroutine EVAL is
called to evaluate the symbolic address field. The
routine exits to WRTEXT with a 30 bit instruction.

L3.VFD

The VFD pseudo-op routine translates data subfields one
by one, packing the information into the item being
constructed. Numeric and symbolic fields are converted
using the subroutine EVAL while character string data is
packed and formatted by the VFD routine itself. The data
fields that can be successfully assembled are limited as
follows:

-295-

5.16

5.17

6000 FORTRAN EXTENDED 4.0

1. The total of the bits that are specified in any one
appearance of a VFD must be 15, 30 or 60.

2. Relocatable fields must appear as the lower 18 bits
of the specified field.

3. Character data must be C, H, L or R specification.
PDIS

The DIS routine moves the number of words specified from
the line buffer to the current text table by calling
WRTEXT once for each word.

PDATA

The only type of DATA fields the assembler will encounter
are single octal constants. They are converted to binary
by the subroutine CONVERT and added to the current text
table by WRTEXT.

PBSS

The BSS routine first forces upper by setting FFLAG to 1
and calling WRTEXT. The argument is converted to binary
by the subroutine CONVERT and added to the ORG counter,
then FOTEXT is called to write out the current text table
and start a new one with the updated origin counter.
This routine exits to NOBINPO to print the line.

PUSE, USENXT, USESTAR

The USE processor separates the relocation base name from
the input string wusing PACKID and after determining
whether it 1is common or local and selecting the correct
portion of the 22 word ORGTAB, it calls the subroutine
USENXT to change TEXT.ADD to this relocation base entry.
USENXT makes a linear search of either the CORGTAB or the
LORGTAB until it finds the relocation base name. It then
saves TEXT.ADD in the location USEBB and resets it to the
address of the new ORGTAB entry and exchanges the
contents of NFLAG with the contents of the second word in
the table entry. USENXT is also called by some of the
pseudo macro routines. USESTAR is called to change back
to the previous block by resetting TEST.ADD from USEBB
and exchanging NFLAGS.

L3.0ORG

-296-

5.21

5.21.1

5.21.2

6000 FORTRAN EXTENDED 4.0

The ORG instruction Trequires, after evaluation of the
address field by EVAL, the relocation base to be changed
and the origin counter in the new base to be reset. The
subroutine FOTEXT is used to force out the 0ld text table
and start a new one with the correct origin counter.

PADDSUB

PADDSUB processes the address substitution macro, ADDSUB.
This macro will be called by the program being assembled
only once, in the event that it is a subprogram having
parameters. After calling USENXT to change to the
VARDIM. relocation block, its prototype at ADDSC, except
for the last word, is written on the IGO file by WRSH).
The 1last word will be 30 bits if MACHINE # 6600B, and 60
bits if MACHINE=6600B; it is written on the LGO file by
WRTEXT. The correct relocation byte is added, and
USESTAR is called to change back to the previous
relocation block. Exit is to INITL.

The prototype is set to execute at a location specified
by the LOC pseudo-op which just precedes it; its address
field should be set to the address of the first word of
the VARDIM. relocation block, which will be the same for
all subprograms.

The macro prototype is:

ADDSUB MACRO FP
USE VARDIM.
SB4 1

—SA3 FP-1

MX0 42
SB6 60
NO

B) SA3 B4+A3
SB7 X1
SA1 A1+BY

2 X3

A) UX4 X3,B2
SB3 A2
LX4 42

5 B6-B2

SA3 A3+BY
LX2 B2,X2
SX5 X4+B7
BXU4 X0*X2
SA2 X3

-297-

5.22

5.22.1

5.22.2

5.22.3

6000 FORTRAN EXTENDED 4.0

BX6 =-X0*X5
IX4 X6+X4
LX6 B5,X4
SA6 B3

NZ X3,A)

X1,B)
JP *+1
USE *
ENDM

PSUB

PSUB processes the SUB macro. This macro is called by
the program being assembled after it encounters a
reference to a formal parameter. The form of the call
is:

5UB FP,K

VFD - 3/2,9/P0SC,30/K, 18 /0RGC
Entry is made into the FP relocation block.

PACKID is <called to strip the block name FP, which is
left in position for the subsequent call to USENXT. The
position counter (POSC) and the origin counter (ORGC) are
extracted from the current block and saved in B
registers. USENXT 1is called to change to the FP block.
Returning, FFLAG is set to 1 to force upper and the
position counter is converted from FTNXAS form to COMPASS
form. Now the sublist entry will be formed, starting
with +the origin counter. B1 contains the delimiter left
by PACKID, and if non-zero, the constant is converted by
CONVERT, shifted, and ORed into the entry. Lastly, the
position counter is packed into the entry and WRTEXT is
called to write the entry on the LGO file. The correct
relocation byte is added, and USESTAR is called to change
back to the previous block. Exit is to INITL.

The macro prototype is:
SUB MACRO FP,CON

.POS SET 59-%
.ORG SET *-$/59

~298-

5.23

5.23.1

5‘ 23. 2

5.23.3

A00C FORTRAN EXTENDEL: 4.0

USE FP

VFD 3/2,.37.P05,30/C0N,187.0RG
USE =*

ENDM

PDELAY

PDELAY processes the DELAY macro. This macro is called
by the program being assembled if it is necessary to call
SUB twice in the same word for the same formal parameter.
The form of the call is:

DEIAY FP
and the form of the resulting entry is:

VFD 3/2,9/30,48/ST.

where ST. 1is the address of the start of the sublist
table. Entry is made into the FP block.

PACKID is called to strip the block name FP, and USENXT
is called to change to the FP block. SYMBOL is then
called to obtain the address of ST., which is shifted,
marked off, and packed with the 30 field into X4. WRTEXT
is called to write the entry on the LGO file. The
correct relocation byte is added, and USESTAR is called
to change back to the previous block. Exit is to INITL.

The macro prototype is:
DELAY MACRO FP
USE FP
VFD 3/2,9/730.30/0,18/ST.
USE =
ENDM
PFILE
PFILE processes the FILE macro. This macro is called
when a main program being assembled wishes to set up a
FIT/FET and buffer for a file. It uses two prototypes,
which are formatted as follows:
1) FIT prototype:

VFD 6070

-299-

5.24.2

5.24.3

5.25

5.25.1

6000 FORTRAN EXTENDED 4.0

VFD 42/0,18/FET vointer
V¥D 30/0,272,28/7)

VFD 6070
VFD 6070
VFD 42/0,18/buffer address
VFD 6070
2) REPI prototype:

VFD 6/43B,18/72,36/1
VFD U42/0,18/FWA of zero's
VFD 18/23B,42/0

CONVERT is called to convert the buffer length to binary.
The origin counter is obtained, placed into the FIRST,
IN, and OUT fields of the FET prototype at FILFC, and the
buffer length + origin counter is placed into tne LIMIT
field. Since the zero word which is the sixth word of
the FET must be repeated 13B times, its address is placed
into the second word of the REPI prototype. The new
origin counter is saved in PFILEC, and WRSEQ is called to
write the prototype on the LGO file. FOTEXT is then
called to force out the current text table so that the
REPI table can duplicate the zero word. Then the origin
counter is reset to the value saved in PFILEC, and WRWDS2
is called to write the REPI table on the LGO file. Exit
is to INITL.

The macro prototype is:

FILE MACRO LN, NAMFE
ENTRY NAME > .
NAME -» ., BSSZ 1B
IN$ SET NAME - .
LG$ SET LN+1
VFD 16/1,26/12/18/7IN%+17
VFD 60/IN$+17/60/IN$+e17
VFD 60/IN$+17+GL$
BSSZ 1u4B
BSS IG$
ENDM

PNAME
PNAME processes the NAME macro. This macro is called by
the program being assembled when a NAMELIST string is to

be defined. Processing takes place in two phases: 1)
stripping, partially processing, and saving the actual

~300-

5.25.2

6000 FORTRAN EXTENDED 4,0

parameters, and 2) forming the required binary output and
writing it onto the LGO file. The format of the call is:

NAME N,T,BASE,BIAS,FP,NDIM,D1,D2,D3

where N and T are always present, and the rest of the
string may be entirely missing. In addition, BASE and
BIAS may be concurrently missing, and the following
combinations of the D fields may be missing: D1, D2, D3;
D2, D3; D3. If NDIM is missing then D1, D2, D3 will not
be present.

Phase 1 begins by setting the locations from NNAME to
Z3N, which will contain information derived from Phase 1
processing of the actual parameters, to zero. REP is
called to obtain the NAMELIST name (N), which is saved in
NNAME, and its address, which 1is stored in VNAME.
CONVERT is called, which converts the NAMELIST type (T),
and this is stored in TNAME. At this point, a test is
made to see if the next character is a zero byte. If it
is, then there are no more parameters and transfer is
made to phase 2 at PNAME4. Otherwise, a check is made to
see if the BASE field is present, and, if it is, then the
base is stripped by REF and stored in BASN and the bias
is stripped by CONVERT and stored in BIASN. The CONVERT
strips the FP field, if present, and it is stored in FPN.
If the NDIM field is not present we go to phase 2 at
PNAMEX. At this point, CONVERT is called to strip D1,
D2, and D3 until one is found missing or all three are
stripped, and they are saved in 21N, Z2N, and Z3N,

‘respectively. If all three fields are missing, ZZN is

left at its initial value of zero, otherwise, it is set
to one. Phase 2 at PNAME4 begins by getting the NAMELIST
name from NNAME, changing the trailing blanks to =zero
characters, and calling WRTEXT to write onto the IGO file
a word in the following format:

VFD 42/NAME, 12/NDIM,6/T-T*8/8

If the BASE and BIAS fields were present, they are added
together to form the address for the next word ;
otherwise, the NAMELIST address from VNAME is used. This
address and the NAMELIST type from TNAME are written on
the 1GO file in the following format

VFD 30/D1,1/7T/8,1/1,28/FP if FP is present

-301-

5.25.3

5.26
5.26.1

5000 FORTRAY TULENDEDL o,

l’)r

VFD 30/D?,1/T/8,29/BASF+?1AS if P? is null and
_ base in nonnull
or

VFD 30/D1,1/T/8,29/N if base is nnull.

If NDIM is greater than 1 a third word is generated. The
form is

VFD 30/D3,30/D2.
Exit is to INITL.

The macro prototype is:

NAME MACRO N,T,BASE,BIAS,FP,NDIM,D1,D2,D3
LOCAL Z
Z MICRO 1,.,5V%
vFD B2/0L#2#,12/N0IM,6/T-T/8%8
IFC NE,7/FP//,2
VFD 30/D1,1/T/8,1/1,28/FP
ELSE 5
VFD 30/D1
IFC NE, /BASE//, 2
VFD 1/T/8,29/BASE+BIAS
ELSE 1
VFD 1/7/8,29/N
IFGT NDIM, 1,1
VFD 30/D3,30/D2
ENDM

PENTR

PENTR processes the ENTR. macro. This macro will be

called by the subprogram being assembled when an entry
point other than the main entry point is to be provided.
Although there are two types of ENTR. macro expansions
possible, depending upon whether a subprogram has formal
parameters or not, the expansion throughout a particular
subprogram will be consistent, and a jump to the
particular processor required will be stored over a word
of NOP's 1located at the beginning of the initialization
through PENTR1 and execute the initialization phase;
subsequent calls will be directed to the appropriate
processor at PENTR1. The format of +he call ic:

~302-

5.26.2

- 6000 FORTRAN EXTENDED 4.0

ENTR. NAME
ENTR. macro prototype with arquments:

VFD 6070 ,

VFD 30/SA2(*+2),15/BX6 X2,15/NO

VFD 30/SA6 (FTNNOP.) , 30/EQ(ENTRY.+1)
VFD 30/EQ(*+1) ,15/NO,15/NO

VFD 30/SA1 (NOPS.),30/SA2 (NAME)

VFD 15/BX6 X1,15/1X7 X2,30/SA6 (FTNNOP.)
VFD 30/SA7(ENTR.),15/NO,15/NO

ENTR. macro prototype without arguments:

VFD 6070
VFD 30/SA1(NAME) ,15/BX6 X1,15/NO
VFD 30/SA6 (ENTR.), 15/NO, 15/NO

Parentheses indicate values to be substituted.

REF is called to get the address of NAME, and it is
stored in ENAME. 1If this is not the first time through,
PENTR1 transfers to PENTR6 if the subprogram has
arguments, or to PENTR8 if it does not. Otherwise,
initialization begins by testing word A of the second
symbol table entry to see if the FP bit is set; if it is
not, then there are no formal parameters and after
setting a Jjump to PENTR8 into PENTR1, control is
transferred to PENTRS to complete the initialization for
this case. Otherwise, there are parameters, and the Jjump
at PENTR1 1is set to a jump to PENTR6. SYMBOL is called
to get the address of NOPS., which is saved in ANOPS;
FTNNOP., which is saved in AFTNN; and ENTRY., which is
saved in AENTR. Control is then transferred to PENTR1 to
jump to the proper processor. At PENTRS, initialization
for the no parameters case continues as above with the
calling of SYMBOL to save the address of ENTRY. in AENTR.
PENTR6 is the start of the processing for a call to ENTR.
in a subroutine with arguments. The origin counter is
obtained to form a base for the self-relative
substitutions in the macro prototype, and a jump around
the entire macro expansion is formed and 1left in X4.
Then the following substitutions are made:

1. ORGC+4 upper address of word 2

2. ORGC+5 upper address of word 4

=303~

5.26.3

6000 FORTRAN EXTENDED 4.0

3. FTNNOP. lower address of word 6
q, FTNNOP. lower address of word 3

5. ENTR.+1 lower address of word 3

6. NOPS. upper address of word 5
7. NAME lower address of word S
8. ENTR. upper address of word 7

Now the jump in X4 is sent to the LGO file by WRTEXT, and
WRSEQ is called to write out the entire prototype onto
the LGO file. Exit is to INITL. PENTRS8 is the start of
the processing for a call to ENTR. in a subroutine with
no arguments. The origin counter is obtained and a jump
around the entire macro expansion is formed and Jleft in
X4. Then the following substitutions are made:

1. NAME upper address of word 2
2. ENTR. upper address of word 3

Now the jump in X4 is sent to the LGO file by WRTEXT, and
WRSEQ is called to write out the entire macro expansion
on the LGO file. Exit is to INITL.

The macro prototypes are:

ENTR. MACRO NAME
LOCAL X,Z,T
EQT
NAME BSS 1
ENTRY NAME
SA2 X
BX6 X2
SA6 FTNNOP.
EQ ENTRY. +1
X EQ Z
Z SA1 NOPS.
SA2 NAME
BX6 X1
LX7 BO,X2
SA6 FTNNOP,
SA7 ENTRY.
T BSS 0
ENDM

-304-

5.27

5.28

6000 FORTRAN EXTENDED 4.C

when formal parameters appear or:

ENTR. MACRO NAME
LOCAL T
: EQ T
NAME BSS 1
ENTRY NAME
SA1 NAME
BX6 X1
SA6 ENTRY.
T BSs 0
ENDM

when formal parameters 4o not appear.

EVAL

This subroutine 1is used to evaluate address expressions
consisting of octal constants, symbols and the operators

+ and -. It must be entered by a return jump to EVAL
with:

B3 X1 = the first character of the expression,

plus or minus zero indicating a preceding minus
(or implied plus),

X6

X7 = any previous address sum,
B2 = bit count of the character in X1.

EVAL returns with the expression value in X7, and it has
been added to X4.

REF

REF is wused to obtain the equivalent address of any
symbol or label encountered during the assembly process.
This routine is entered with a return jump to REF with
the symbol name in X1, the first character in B3 and the
bit count of X1 in B2. If the name begins with either of
the special characters [], then its equivalent address
is obtained from the generated label, actual parameter,
IO aplist or variable dimension label definition table.
Otherwise, the subroutine PACKID is used to separate the
label from the input string and format it left justified
with blank fill in the lower 48 bits of X1 in preparation

=305~

6000 FORTRAN EXTENDED 4.0

for calling SYMBOL or LABEL. If the symbol is an
external name, X3 is set to zero (relative address) and
the exit is made. If not external, word B of the symbol
table entry is stored in RBTEMP unless it is already non-
zero, in which case, it is cleared to zero, the RA field
is separated to %3, and the exit is made.

CONVERT

A display coded octal number which may be preceded by a
minus sign is converted to binary. The first character
of the constant must be placed in the lower 6 bits of X1
before the return jump entry. oOn return, the converted
value is in X1.

PACKID

This subroutine is used to separate identifier names from
the input string. It will pack up to eight characters
until a zero byte, +, -, /, blank or comma is
encountered. The character string is left justified and
blank filled in the lower 48 bits of X1. The character
that served as the delimiter is preserved in B1 upon
exit.

WRSEQ

WRSEQ writes up to 15 words of data with relocation
information into the current text table. The calling
sequence is:

A4 = first word address of text block,
X4 = first word of text block,
X7 = left justified 4 bit relocation bytes,

RJ WRSEQ.
L4.15, WRTEXT

L3.15 1is an alternate entry to WRTEXT used when a 15 bit
quantity is to be written. WRTEXT builds and writes text
tables for the loader from the instructions and data the
assembler produces. The calling sequence is:

X4 = data to be written,
Bt = bit count of data,
B6 = return address,

EQ WRTEXT.

-306-

5.35

6000 FORTRAN EXTENDED 4,0

WRTEXT forces upper when it is required by data size or
the FFLAG is greater than zero. It also maintains the
position counter and the origin counter for each
relocation base and adjusts the relocation byte word in
the text table. If the switch at WRTSW has been set,
WRLIST will be called to print the line.

FOTEXT

This subroutine is entered by a return Jjump. It
terminates the current text table by forcing upper,
installing the word count in word 1 and left justifying
the data bytes in word 2. The text table is then written
on the binary output file. Before returning, a new text
table is initialized with the origin counter in word 1.

WRLIST

This subroutine is responsible for producing the assembly
listing. It is given the binary to print, if any, and
the current source statement in ILINE. If the position
counter is 60, the origin counter and the current
relocation base name are also printed. If RBTEMP is non-
zero, the relocation base name of the address field will
also be printed.

L4, CKL, DEF

After a statement has been decoded and the binary added
to the text table, these two subroutines are wused to
define the label that appeared on the statement if any.
The pseudo-ops DATA and VFD result in transfer of control
to L4.CKL, but BSS calls DEF itself. At L4.CKL, DEF is
called if the contents of ALABEL are non-zero and control
is passed to L4.CKRB. DEF looks up the symbol whose name
is in X1 on entry in the two word symbol table using
LSTPROC. For the label, it then sets the RA field to the
origin counter, the RL field to 1 if the current block is
local, for common the RL field is set to 2 and the RB
field to the ORGTAB ordinal for the block the symbol is
defined in. Before the return 1location, AILABEL is
cleared to zero. DEF is disabled by the USE processor
which stores an "EQ DEF" in DEF.1 after the second "USE
CODE™".

L4.CKRB

-307-

5- 37

5.37.1

5.37.2

5.37.3

5.38

6000 FORTRAN EXTENDED 4.

Any 30 or 60 bit quantity that has been gererated may
have a relocatable address in the lower 18 bits. In this
case, RBTEMP will reflect this by having been sct +o word
B of the two word symbol tacle entry, otherwise, it will
be zero. If RBTEMP is non-zero, the RL field is examined
to determine the type of relocation necessary. Program
relocation requires the relocation byte wori in the
current text table have a 2 added to it and EBTFMP be set
to zero. A common Or external reference requires a data
byte for the loader be created and 1linked into the
reference chain corresponding to the variable. For
common, the starting address of this chain is located in
the lower 18 bits of the first CORGTAB word for the entry
that corresponds to the common block in which the
variable is defined. This word is located at (CORGTAB) +
RB*22. The external reference chain begins in the lower
13 bits of the LINKTAB entry that contains the variable
name. The RA field of RBTEMP contains this address. The
new one word 1link is taken at the address contained in
FREEMEM, which is incremented by one and compared to the
contents of MEMEND and replaced. If FREEMEM is greater
than MEMEND, working storage has been exhausted, and the
error routine STOVER 1is called. Otherwise, RBTEMP is
Cleared and IL4.CKL exits to INITL to prepare for the next

line.
ILL, SILL, STOVER

ILL picks up the message "ILL", transfers it to location
ILL.1 which stores the message in LINE + 3, sets ILLFLAG
to non-zero, calls WRLIST to print the message, and the
source image then exits to INITL to prepare for the next
statement.

SILL, where control is transferred in the event LSTPRO
cannot find a symbol name in the two word symbol table,
picks up the message "SYMBOL ERR"™ and transfers to ILL. 1.

STOVER is called when all available working storage has
been used. The first time this occurs the message
"STORAGE OVERFLOW, NO OBJECT PROGRAM WILI BE PRODUCEDWY is
printed. The size of the overflow is added@ to the
contents of location STOVSIZE and FREEMEM is reset to the
contents of MEMSTART. The exit is to INITL.

PEND

-308-

6000 FORTRAN EXTENDED 4.0

Control is transferred to PEND when the END pseudo~op is
encountered to clean up the assembly process and
terminate. The following tasks are performed to
accomplish this:

1. If the contents of STOVSIZE is not equal to zero,
the size of the overflow is calculated and printed
with the message "INCREASE FIELD LENGTH BY XXXXXX"
and exit is made as if ILLFLAG was non-zero.

2. If the contents of ILLFLAG are non-zero, the
following steps are taken before exiting:

a. An End-of-record is written on LGO,
b. LGO is backspaced one logical record,

C. A prefix table with the program name is written
in LGO,

1. Control 1is transferred to EX.90 to do another
end-of-record write on 1GO, print the END
pseudo~op and return.

3. All partially filled text tables are forced out on
LGO from CORGTAB and LORGTAB by calling FOTEXT once
for each relocation base.

4, The accumulated common and external reference
information is formed into FILL and LINK tables
respectively and written on LGO. The contents of
the fill chains for LCM common blocks are formed
into XFILL tables and placed on the binary file.
This is accomplished by following the chain that
begins at the CORGTAB and the LINKTAB entries for
common block and external symbols and packing the
data bytes which are the upper 30 bits in each link
into the correct table formats. The COMPS buffer is
used as scratch memory for this purpose.

5. An XFER table containing the date and the transfer
symbol, if present, is written on LGO.

6. The LGO buffer is cleared out and the relocatable

deck terminated by doing an end-of-record write on
LGO.

-309-

6000 FORTRAN EXTENDED 4.0

7. The last statement of the program (the END Pseudo-
op) is printed by calling WRLIST.

9. The assembler returns through its entry point to
CLOSEZ2.

PTRACE

Process the TRACE macro call and generate the traceback
word on the LGO file.

The macro prototype is:

TRACE MACRO NAME,ADDRESS, NARGS
X MICRO 1+, $NAMES
TRACE. VFD U2/77L#X+

VFD 18/ADDRESS
ARGS. EQU NARGS 0

IFC NE,/NARGS//,1
TEMPAO. BSS 1

ENDM
PAPL

Process the APL macro to generate a pointer word in ScM
to the LCM block address.

The macro prototype is:

APL MACRO SYM, BIAS
VFD 1/1,59/SYM+BIAS
ENDM

The top bit on signifies an LCM address in the lower
part.

ALR

This routine appends the fill table information for an
ICM address to the fill chain. On entry, X2 holds the RB
ordinal of the LCM block - 1. Bit 59 is set in word 3 of
the common block ORGTAB entry to denote an ICM block with
a fill chain. The 30 bit fill entry is flagged as LCM by
setting the tsp bit.

PIOM

-310-

5.42.1

5.42.2

5.43
5.43.1

5.43.2

6000 FORTRAN EXTENDED 4.0

Process the IOM macro to generate an IO parameter list
entry.

The macro prototype is:

10M MACRO BASE1,BIAS, TYPE,COUNT,B59,B57,BASE2
VFD 1/B59
IFC EQ,/BASE1//,2
VFD 171
ELSE 1
VFD 1/0
VFD 1/B57
VFD 9/TYPE
IFC EQ, /B57/7,7
IFC EQ,/BASE2//,3
VFD 24/COUNT
VFD 24/BASE1+BIAS
SKIP 5
VFD 24 /COUNT
VFD 18/BASE2, 6/BIAS
SKIP 2
VFD 18/BASE2+COUNT, 610
VFD 24/BASE1+BIAS
ENDM
EIO

Process the end of IO list macro.

The macro prototype is:

EIO MACRO P
VFD 60/P
ENDM

Data Formats
Working storage during the assembly process.
22 Word ORGTAB (LORGTAB and CORGTABRB)

These two tables have the same format. They contain a 22
word entry for each relocation base that will be
encountered by the assembler. COMMON relocation bases
are entered in the CORGTAB and local relncation bases are
entered in LORGTAB. Each 22 word entry is formatted as
follows:

-311-

WORD1:

WORD2:

WORD3:

WORDS5:

WORDSG 2

WORD7:

WORDS8:

6000 FORTRAN EXTENDED 4.0

Bits 18-59/Relocation base name, left adjusted
with blank fill.

Bits 0-17/Pointer to Fill chain for COMMON
blocks; unused for locals. Initialized to zero
in both cases.

Bits 0-59/NFLAG (force upper, next
instruction), initialized to zero.

Bit 59 =1 if LCM common block, Bits 58~
24/U0nused.

Bits 18-23/Relocation base code. This is 1 for
all local blocks and may be 3 to 77B for common
blocks. It serves as the LCT ordinal for the
loader.

Bits 0-17/0rigin counter, initialized to the
first word address of the block.

Bits 18~59/Unused,
Bits 0-17/Position counter, initialized to 60.
Bits 18-59/Unused,

Bits 0-17/Test table ordinal indicates the
current word being filled, initialized to 2.

Bits 54-59/Text table code number, 40B,

Bits 36-47/Word count, initialized to zero,
Bits 18-23/Relocation code,

Bits 0-17/Load address, initialized to ORGC.

Bits 0-59/4 bit relocation fields, initialized
to zero.

Bits 0-59/Initialized to zero.

WORD9-22: Bits 0-~59 Uninitialized.

LINKTAB

-312-

o))

6000 FORTRAN EXTENDED 4,0

The LINKTAB consists of one-word entry for each external
symbol used in the program being assembled. The last
entry is a zero word. Each word is formatted:

VFD U42/NAME, 18/PTR

wnere NAME 1is the external symbol name, left adjusted
with zero fill and PTR is the start of the reference
chain that describes the usage of the symbol. PTR is
initialized to zero.

LINK and FILL chains (external and common reference
information).

One chain exists for each common relocation base and
external symbol. They are linear 1linked 1lists of one
word elements containing in upper 30 bits a data byte for
the loader and in the lower 18 bits a pointer to the next
link. Each 1list is terminated by a zero pointer. The
elements of these lists are taken from working storage
beginning above the LINKTAB. FREEMEM always points to
the next available word in this area. Following is the
format of each link:

VFD 1/1,2/POS,9/RL, 18/L0C, 127/0,18/PTR

where LOC specified the relative address of the
reference, RL specifies the relocation of this address,
POS the position in the word and PTR points to the next
link in the chain.

ual Parameter, Variable Dimension, and Generated Label
initi

on Tables.
Upon entry, these tables contain the lower 18 bits the
address relative to the origin of the CODE. relocation
base AP, VD or GL labels. They are reformatted during
initialization and take the following form during
assembly.

VFD 22/0,2/1,18/RA,643,12/0
where RA is the program relative address of the label.
Two Word Symbol Table

During initialization of the assembler and during
assembly before the second "USE CODE.", word B of the two

-313-

7.1.2

6000 FORTRAN EXTENDED 4.0

word symbol table entry for each symbol is reformatted as
follows:

VFD 22/0,2/RL,18/RA,6/RB,12/0

where RA 1is a program relative or common block relative
address or a pointer to the LINKTAB ent+ry that
corresponds to the external symbol, RL is the type of
relocation (01=Program, 02=Common, 03=External) and RB is
an ordinal to either the CORGTAB or LORGTAB entry which
corresponds to the relocation base in which the symbol
was defined.

Modification Facilities

Assembly Options

~Options File

1. MACHINE. This option, which is set to either 6400B

- or 6600B, causes the ADDSUB Macro to be expanded

with a JP =*+1 in the last two parcels if set to
6600B.

DEBUG ETC.

This option, and several assembly flags which are
normally equated to it, control debugging aids that have
been left in the assembler. The ncrmal value of DEBUG is
zero, however, setting it to 1 and reassembling will
cause (1) SNAP calls to be inserted at strategic points,
(2) ORG and MOVE macros not to be expanded, and (3) the
last few words of L3.JVEC to be assembled in. The SNAP
routines must be available when DEBUG is non-zero.

Opcode Vectors

Opcode fields are decoded by the assembler by placing the
first two characters of the field in index registers B2
and B3 and jumping to B2+FLVEC-1. 1If the opcode can be
uniquely recognized from the first two letters, an exit
is made to the correct routine for processing the address
field. Otherwise, the address of a further vector is
placed in B2 and the subroutine PNL is called to separate
the next character from the input string, add it +to B2
and jump to the contents of B2. New entries and new
vectors can be placed anywhere in +ha exieting general

-314~

6000 FORTRAN EXTENDED 4.0

scheme, but care must be taken to insure that a valid
vector entry is not within the range of an ORGSTART,
ORGEND pair. Also, each unused word in new vectors
should contain an "EQ ILL" and each block of two or more
unused words should be surrounded by ORGSTART, ORGEND
macro calls.

MIC, ORG, MOVE Macros

MIC creates a micro with the name equal to the second
parameter. Tt will be a character string representing
the value of the first parameter. Thus, after

N SET 423
MIC N, %
the catenation A B C # Z # would equal ABCY423

The purpose of the move macros are to allow the
definition of unused areas in the assembler, of areas of
code which can be moved, and the moving of the code into
the unused areas at assembly time.

The wunused areas are bracketed by ORGSTART and ORGEND
macro calls, which build tables of lengths and first word
addresses of unused areas. After the last ORGEND macro
call, the areas of code which can be moved are bracketed
by MOVSTART and MOVEND macro calls. Each pair of calls
result in the relocation of the associated code into the
smallest area in which it will fit. The tables are
adjusted to reflect the usage. If all unused areas are
too small, no action is taken. Changes in the size of a
code block bracketed by MOVSTART, MOVEND must be
reflected in the MOVSTART call parameter or an ERR
pseudo-op will be produced.

-315-

1.0

6000 FORTRAN EXTENDED 4,0

REFERENCE MAP

General Information

Various modifications were made to passes 1 and 2 of the
compiler for version 3 so it could produce a source keyed
reference map, with relative addresses for the local
variables, statement labels and common variables. In
most cases, the routines were entirely reorganized and
recoded (FTN, ISTPRO, PSI1CTL, PH2CTL, DECPRO, GOTO,
DOPROC, etc.), while in others minor surgery was
performed (DATA, SCANNER, ERPRO, POST, PROSEQ, FAX, etc.)

The R option is keyed off the presence or absence of the
P option on the control card, flags are set by FTN which
are interrogated by pass 1 of the compiler. For the
short map, the reference map processor derives all its
information from the symbol table and the common block
name and length table, ORGTAB. For the R = 2 long map
option, additional information is collected during passes
1 and 2. This includes references to symbols appearing
in source statements, loop information and the table of
usage defined variables as built by ENDPFO. During the
code generation phase of pass 2, PRE builds a loop infor-
mation table. For the R = 3 option, the common block
member and equivalence information tables are saved by
DPCIL.OSE.

All this information is then printed out by REFMAP at the
end of the code generation phase of pass 2.

The routines involved in reference map production and
their functions are:

FTIN--Set flags if R option specified on control card
and allocate a buffer (REFMAP} for collecting the
reference if R2>2.

Flags set are R=FLAG (0,1,2 or 3), and RSELECT is
set to a non-zero value if R>2.

LSTPRO~-Rewind refmap file at the end of pass 2 if
R22.

=316~

2.0

6000 FORTRAN EXTENRFD 4,0

All pass 1 statement processors -- Call ADDREF to
collect references for symbols as they are
encountered in a statement (R22 only).

PSI1CTL--Contains the routine AIDRFF which formats
the references into "lines" and writes *hem out to
the REFMAP file. Also, terminates the REFMAP file
at the end of pass 1 (LDPS2) and writes the saved
common and euqivalence information *c it.

DPCLOSE--saves the common and equivalence class
tables if R = 3.

PRE--Allocates and builds the loop information table
from information saved in do begin macros by DOPROC
in pass 1.

POST--computes the loop length and places it in the
loop table when a jump backwards is generated OP
Bi,Bj,)XX where OP = GE, LT, LE, GT, etc., and)XX
is the loop generated label for the top of the loop.

REFMAP--Updates word B of the symbol table so that
the addresses of all local symbols are changed from
block relative to program relative.

Sorts the symbol table alphabetically and then by
categories. If R22, the REFMAP file is rewound,
read in and the references sorted by symbol table
ordinal. At this point, the reference map for each
category is produced, If R = 3, then the saved
common and egquivalence information is read in and
used by the routines that print out the common
blocks and equivalence classes.

REFMAP-~exits through its entry point.

Flow of Control

Initialization--check flags, compute program length,
adjust addresses of local symbols in symtab, print out
any missing labels, sort symbol table alphabetically and
by categories, print title line, read in REPMAP file if
present and sort, search for stray names.

-317-

6000 FORTRAN EXTENDED 4.0

Output phase--print out reference map for: ENTRY POINTS,
VARTABLES, FILE NAMES, %XTERNAI. NAMES, INLINE FUNCTIONS,
NAMELIST GROUP NAMES, STATEMENT LAREIS.

If (R22 and no compilation errors) print out loop map.
Print out common blocks and members, equivalence classes
and members.

Print program statistics.

Pre-exit code--restore changed names in symbol table and
name of blank common if changed. Note that refmap sets
the function bit for stray names and does not turn it
off. It may in the future be necessary to do so.

Entry Points

REFMAP main entry point

LWA.R LWA+1 of REFMAP
DSORT a simple switch sort routine
Diagnostics

The following messages are informative and pertain to a
lack of storage:

CANT SORT THE SYMBOL TABLE

REFERENCES AFTER LINE NNNN ILOST

INCREASE FL. BY NNNNB
Refmap also checks the program length, and if it is
greater than 377 777B, it issues a FE diagnostic to the
output file,
Environment
Refmap expects that the symbol table is intact and
properly formatted, i.e., all symbols have been assigned

block relative addresses.

The 1local and common block lengths have been saved in
ORGTAB. Pass 1 has collected references for syrmhols,

-318-

6000 FORTRAN EXTENDED 4.0

saved the Common/Equivalence tables, the UDV table, etc.

If 1loops

were present and R22, Pre and Post have

constructed the 1loop table. LWAWORK 1is the LWA of
working storage.

Structure

Print subroutines

z8

OCTC
PSTITLE
LISTV

LISTR

FMT
DLL

PBNB

Sorts
SORTSYM
SORTC
SORTR

SORTRL

DSORT
LINKUP

CNAME

Initialize

converts binary number to octal with trailing B
converts binary number to octal with trailing B
print subtitle 1line

list all references for a symbol

lists all references in a category (Refs, defs)
for a name

formats data into a coded line
dump the last line

prints bias, base (name} for COMMON/EQV
printouts

sorts the symbol table alphabetically
sorts list of names into categories
sort REFMAP file by symbol table ordinals

sorts a single reference list into reference,
definition and FREF lists

simple interchange sort
subroutine of SORTSYM

subroutine of SORTSYM

CPL

computes program length, relocates symbol table

=319~

8000 FORTRAN EXTENDED 4.0

ILW Issues SCM address prointer wor+is for all LEVEL
2 or 3 symbols.

Modification Facilities

REFMAP calls the COMDFCK OPTIONS and the lenagth of a
coded line is determined by the local symbcl WPL.

Methods

The print routines are word oriented for speed. The
symbol table sort is a radix sort on the characters.

On the print loops for the various categories, X1 and X2
hold words A and B of the symbol table entry to be
printed and the use of other registers is controlled by
the macros EFIELD, GSYM, etc.

ttempting to modify

e a ;
v 1.2
4 Stua‘{ the macro GSYM WOl

the print loops, one
S up thie reqgisters.

LWA.R Compiler

sorted
symbol

O. REFBAS Table

index table
FWA reference list

references

O0.CNTEL
Changed name table
symbol
table
FL

-320-

1.0

6000 FORTRAN EXTENDED 4.0

POST

General

POST resides in Pass 2 and performs the following
operations.

Converts R-list entries into COMPASS line images.

Inserts SUB and DEILAY macro references into the COMPASS
string when a location field contains a formal parameter.

Forms traceback information for 60 bit return jumps.

Maintains the number of SUB and DELAY references issued
for each formal parameter.

Maintains the length of generated code for both the CODE.
and VARDIM. relocation blocks.

Defines statement labels (prefixed with a decimal point)
and generated labels (prefixed with equivalence symbol).

Entry Points.
OPNPOST

Initializes the POST routine and is entered via a return
jump each time a new sequence is initiated. It sets the
COMPASS string buffer limits and initializes tc zero the
number of SUB's and DELAY's issued for each formal
parameter.

POST

Entered via a return jump to translate one R-1list entry
into a COMPASS line image. Also uses the instruction
size (15 or 30 bits) and the label field to maintain the
length of the sequence and total length of code issued.

Prior to entering POST via a return jump, the following
cells within POST must be set:

POSTIFO+0 Contains 1st R-1list entry. The R-list op
code must have been changed to the

-321-

2.3

6000 FORTRAN EXTENDED 4,0

appropriate machine code if the R-1list
code has a choice of machine codes (i.e.,
R-list code 10 can be machine code 10 or

22).

POSTIFO+1 Contains the second R-list word (in case
of type III R-list),

POSTIFO+2 Contains the descriptor for the R-1list
entry.

POSTIFO+3 (or I) These three words contain a code

for the actual register type.

POSTIFO+4 (or J and number that is to be used.) I is
the destination register.

POSTIFO+5 {(or K. J and X are the two source
registers if there are two) .

The following is a list of the register codes:

X0=1 A0=9 BO=17
X1=2 A1=10 B1=18
X2=3 A2=11 B2=19
X3=4 A3=12 B3=20
X4=5 A4=13 B4=21
X5=6 A5=14 B5=22
X6=7 A6=15 B6=23
X7=8 A7=16 B7=24

Generally, each instruction is placed in a string buffer,
starting at LWAWORK and working towards FWAWORK. Each
word will contain a right justified character, and the
string is terminated by a zero word. After each R-list
entry is formed, the information is packed and added to
the list of line images to be transferred to the COMPASS
file. Any extra information that needs to be added, such
as trace back information or SUR macro references, is
added at this time. If it seems as though there is
insufficient room (40 words) to POST the next
instruction, POST exits with X6 negative. This looking
ahead is done so that OPT does not release needed flags
if POST happens to fail on the last entry in a sequence.

CLSPOST

-322~-

N
.
~

6000 FORTRAN EXTENDED 4.0

Entered via a return jump to transfer the COMPASS line
images for a sequence to the COMPS file via WRWDS2.
Also, the number of SUR's and DEIAY's issued for each
formal parameter in this sequence is added to the total
for the parameter. This sum and subsum are maintained in
word 2 of the 2 word symbol table entry for +he
parameter.

POSTIFO
POSTIFO is declared an entry point so that the routine

calling POST can preset the information POST needs and is
not to be entered as it is a data area.

FCHAR

FCHAR is declared an entry point in POST so that OPT can
force instructions upper as it wishes.

FCHAR is set by OPT and is either a blank or a plus in
display code.

POST always sets FCHAR blank before it exits.

PARCEL

Contains an instruction parcel count 0, 1, 2, 3 or 4, Tt
is an entry point because OPTB will add or subtract 1

parcel when it adds or deletes a NO instruction from the
code.

Contains a parcel count 0, 1, 2 or 3 of the instruction

word from the immediately prior sequence. This 1is
necessary to maintain the correct length of issued code.

COVD

Contains the address of the location that holds the
length of code issued and is either the address of CODE
for CODE. block or VARDIM for the VARDIM. block.

Diagnostics

POST produces no diagnostics. It will translate the
information it is given. If the information is bad, it

-323-

5.1.2

6000 FORTRAN EXTENDED 4.0

will go into the CHOMPASS file improperly and will
promptly be diagnosed by the assembler.

POST is called by OPT. It expects the information
described under 2.2 to be preset.

Structure
Initialization

POST starts by converting the contents of the I, J, K
cells, which OPTB has set to codes for specific
registers, to display code. The initial values to these
cells I, J, K are given on the preceding page. After
they are converted to display code, the register type
will be in the lower 30 bits of the word, the register
number in the upper 30 bits.

FCHAR 1is transferred to LWAWORK using X7, as the store

. register. A7 is therefore initialized and it is used as

the store register and pointer for the strung out COMPASS
line. A blank is added +to the string and this will
eventually appear in column 2. Thus, we start with a
'+b' or a "bbn,

The R-list descriptor is read up to determine the type of
instruction to be converted and each type is processed in
the following several manners:

TYPE1 Only a maximum of three registers. The op code
is closely examined to find the proper
instruction and the letters for the instruction
and the register assignments are added to the
string.

TYPE2 Only a mask or set instruction needed. Which
one is determined and the letters, register and
constant are added to the string.

TYPE3 The proper 1letters are added according to the
Op code. The IH field is then processed which
takes into account the necessity for issuing a
SUB macro reference.

=324~

5.1.4

5.1.5

(=)

[«
.

b

6000 FORTRAN EXTENDED 4.0

TYPEY Only Jjump can be compiled in this case. The
proper letters are added and the symbol is
processed. '

PACK This is the routine that the above four

routines, go to when they have finished placing
a card image backwards in the string. The
string is packed to look like a card that comes
through the card reader and thus it is
terminated either be a zero word or by the last
word having 12 bits of zero in the lower 12
bits. ‘

After the instruction has been added to the temporary
COMPASS file, the substitution macro reference or delay
substitution macro reference, is placed in the COMPASS
file if necessary. The substitution macro is referenced
any time a 30 bit instruction has a formal parameter as
part of its address field. The delay macro is referenced
only when the same formal parameter is used in both the
upper and lower parts of the same word. Traceback

- information is also output at this time if a 60 bit

return jump was just processed. POST then exits with X6
positive wunless there are not 40 more words of working
storage left (the maximum amount of storage POST could
need to process one R-list entry.) If not enough room is
left, X6 is negative.

Formats
The code at PACK8 may be changed during execution to
facilitate the necessity of putting out a delay

substitution macro reference for the following situation:

Code desired: SA1 FpP1
SA2 FB2

where FP1, FP2 are formal parameters.

Due to the way the address substitution takes place, the
following COMPASS output must be produced:

SA1 FP1
SUB FP1
SA2 FP1+1
DELAY FP1
SUB FP1,1

~325-

6.2

6.3

6000 FORTRAN EXTENDED 4.0

APCA

APLST

APLAST

CALAST

CMPSPR

CMPSPS

TRACEP

COMPASS

Temporary

Sequence

Contains - the CA field of the instruction
presently being sent to COMPASS.

Contains zero or the name of the forml
parameter just formed in a K field.

Contains the name of formal parameter last used
in a K field.

Contains the last CA field put into a sub macro
reference.

Contains the starting address of the line
images for the COMPASs file (OPNPOST sets it to
FWAWORK) .

Contains the address in which COMPASS line
images stored.

Set non-zero on a 60 bit return Jump.
Indicates traceback information should be
added. This is done after the RJ instruction
has been converted to a COMPASS line image.

Line string each 1line for COMPASS is strung
out, one character per central memory word,
backwards starting at LWAWORK. When the entire
instruction has been translated, it is packed
10 characters per word and added to the
temporary COMPASS file.

COMPASS file starts at FWAWORK and grows
forward toward LWAWORK. Contains COMPASS card
images for all instructions translated between
a call to OPNPOST and one to CLSPOST.

SUB and DELAY count is held in bits 41-52 of
word 2 of the 2 word symbol table. The total
SUB and DELAY count is held in bits 19-36 of
the word 2 symbol table entry for the formal
parameter.

-326-

1.0

3.0

6000 FORTRAN EXTENDED 4.0

APLISTE
fr=t P X=X ¥

APLISTE - Aplist Expander is a part of Pass 2.

Converts the APLIST to card images and places them into
the COMPASS file.

Outputs a SUB macro reference for any formal parameters
that were not referenced in the subprogram and maintains

the 1length of the relocation base associated with each
formal parameter.

APLISTP

APLISTP processes the accumulated APLIST and outputs it
to the COMPASS file.

APLISTP is entered by a return jump from CLOSE2 and exits
through its entry point. If there is insufficient room
to process the APLIST, at least as much working storage
as there is APLIST, it exits to PUNT.

The specified APLIST is rebuilt and grouped so that each
list is contiguous in memory and in the proper order in
which they should appear. These grouped lists are then
examined and any that can be eliminated and combined into

another are. The list is then converted t0o COMPASS line
images and placed in the COMPASS file.

No diagnostics are produced.

The following ~cells are referenced and are expected to
contain the indicated values.

AP1. The address of the first entry in the APLIST.
APLAST. The address of the last entry in the APLIST.
HIGHORD. The APLIST ordinal of the largest APLIST.

FWAWORK. First word address of the working storage.

SYM1. Start of the symbol table.

-327-

wm
ey

5.2

6000 FORTRAN EXTENDED 4.0

PGM. The program/subprogram indicator.

SUBREF. Flag that is non-zero if the ADDSUB code has
been put out.

S.NEC. Flag set if it is necessary to issue at least
one word of ST. storage.

AOSTJBO All referenced for the ADDSUB coding.

CMPSPR

CMPSPS

ADDSUBN

CLOSPOST

WRWDS2 is called to transfer the converted APLIST to the
COMPASS file.

The APLIST processing is divided into three phases. The
format of the table built in the processing is under 6.0.

First, the jumbled APLIST is grouped so members of each
group appear in contiguous memory cells in the proper
order. This is done in the following manner.

The present APLIST number that is being grouped is set to
oOne,

If the present APLIST number is greater than the highest
APLIST number (HIGHORD) the grouping of the APLIST is
complete.

Otherwise, the entire APLIST as it appears is searched
and each entry that has the same number as the present
APLIST number is combined into one word and placed in the
grouped APLIST. The grouped lists start at FWAWORK and
grow toward APLAST.

After all entries in a group have been extracted from the
jumbled AP1IST, an entry is made in the GAPL giving the
FWA and LWA of this group. This table starts at AP1 and
grows toward APLAST.

The present APLIST number is bumped by one and processing
continues at 5.1.2.

The grouped APLISTs are then examined to see if it is
possible to eliminate any of them. This is done by

=328~

5.3

6000 FORTRAN EXTENDED 4.0

comparing two 1lists (a primary and a secondary) at a
time. 1If it is found that we hit the end of either 1list
before finding a non-equal entry, the group that we hit
the end of can be eliminated. In this case, the
following is done:

The GAPL entry for the group which is to be eliminated is
set to minus 1.

In the last examined entry of the non-eliminated group, a
GN (Group Number) is placed in the upper 12 bits. TIf it
has a GN already, it is used rather than generating a new
one.

The APLIST number of the eliminated group is combined
with this GN and added to the OUT table (starts at end of
GAPL - grows towards FWAWORK). This table is used when
translating the APLIST to COMPASS line images.

If the eliminated group was considered the first or prime
group, its grouped APLIST is searched for any non-zero GN
fields. If any are found, the OUT table is searched for
each such GN and this GN in the OUT table is then
replaced by the new GN. When translating to COMPASS, a
non-zero entry in the GN field of an APLIST entry says,
"Before this entry is translated to a COMPASS line image,
the APLIST numbers that are linked to this GN in the OUT
table must be placed in the temporary COMPASS file
firstn.

This is continued wuntil all APLIST groups have been
compared.

The list is then translated into COMPASS line images.

An entry is picked from the GAPL to find parameters for a
list that is to be translated to COMPASS line images.
Negative entries are ignored and a zero entry indicates
the end of the GAPL.

When a wusable GAPL entry is found, the number of this
list is placed in the temporary COMPASS file as [APn. BSS
0 where n is the APLIST number.

The actual 1ist is then output to the temporary COMPASS
file. At selected times during this transfer, the
available core 1is checked. If it is running short, the
temporary COMPASS lines that have been formed thus far

-329~

6000 FORTRAN EXTENDED 4.0

are transferred and the pointers are reset. Each member
of an APLIST is transformed in the following manner:

If there is a non~zero GN field, the OUT table is
searched. Each entry in the OUT table that has this GN
also contains an APLIST number of an eliminated APLIST
that should be output to the temporary COMPASS file
before this APLIST entry is processed.

Then the I field is examined. It can indicate either a
Statement temporary, a variable, or it can be an
indication of non-standard return. Default goes to b.

a) Non-standard returns, (I=7) places a VFD 60/0 in the
temporary COMPASS file. This is done so that
substitution of actual parameter addresses at
execution time terminates before any non-standard
return addresses are substituted.

b) Symbols, (I=0) the symbol is read from the symbol
table. If it is a formal parameter, a flag is set

saying it 1is necessary to output a substitution
macro reference. The symbol along with any constant
add in (cfield) is placed in the temporary COMPASS
file followed by a SUB macro reference if necessary.
Example:
Consider a subprogram as follows:
SUBROUTINE X (A,B,C)
DIMENSION A (50)
CALL T (A(40), B,C+1,24)
CALL S (X11, Y, A)
CALL G (Y, A)
END

APLIST would be prlaced in the COMPASS FILE 1IN THE
FOLLOWING format:

[AP1. BSS 0

VFD 60/A+478

-330-

6.2

6000 FORTRAN EXTENDED 4.0

VFD 60/B

SUB B

VFD 60/S5T1. (Statement Temporary)
VFD 60/CON. +nB

VFD 6040

[AP2. BSS 0

VFD 60/X11

[AP3. BSS 0

VFD - 60/Y
VFD 60/A
SUB A

VFD 60/0

Table Formats

APLIST INPUT

APLAST

VFD 30/0,12/1,18/Hi word 2
Ap1.

VFD 12/2nnn, 18/CA, 14/0, 16/NO word 1

nnn is the number of cells back from the present location
in the jumbled APLIST that contains the next member of
this APLIST (nnn=0 indicates the end of a particular
APLIST).

NO, the APLIST group that this entry belongs to.

CcA, I, H1, have the usual meaning.

GROUPED APLIST

=331~

6000 FORTRAN EXTENDED 4.0

FWAWORK VFD 12/GN,18/CA, 12/1, 18/H1
(GN initially zero)

APLAST

GAPL, Grouped APLIST parameters list.

APLAST

AP1. VFD 24/0,18/FWA, 18/LWA

FWA first word address of this group.

LWA last word address of this group.

OUT Out Table

VFD 24/0,18/0N, 18/GN
GAPYL,

bRl
a0 1o

GN is a group number

ON is the number (output number) of an APLIST group that
has been eliminated.

CMPSTR, contains the first word address of the temporary
COMPASS file.

APNAME, contains name of last symbol if it was a formal
parameter.

APCA, CA field of last symbol output if it was a formal
parameter.

=332~

1.0

[\8)
.
o

N
.
—-—h

2‘1.1

6000 FORTRAN EXTENDED 4.0

General Information

PRE is the main controlling routine for PASS 2.

PRE Functions.

de

b.

Call the macro expanders (MACROE, PRODB, PRODE,
PROIXFN) .

Expand all R-list into three-word form and define
the sequence,

Put out inactive 1labels, formal parameter names,
variable dimension storage and the END line to
COMPASS.

Call the optimizers (COPY, SQUEEZE, PURGE, BUILDDT,
OPTA) .

Accumulate APLIST entries and call APLISTP.

Issue BSS storage for statement, DO, and optimizing
temporary storage.

The only entry point for PRE is PRE.

A

jump to PRE causes code generation for all R-list on

the file.

Calling Sequence:

JP PRE

AP1

APLAST address of end of symbol table (SYMEND)

VAR1

VARLAST SYMEND - 100B

MACORG EQU to lowest significant macro number
in MACROX.

FFLAG =0 for standard mode

-333-

6000 FORTRAN EXTENDED 4.0

e. PROGRAM contains transfer address,
if main program

2.1.2 Processing Flow

After reading in a fixed number of words at a time from
the R-1list file, each positive entry with a positive
opcode is expanded into 3-word form. The descriptor ST
field of each is examined to detect one of the following
cases:

a. If ST = 7, a macro ordinal switch determines which
of the macro expanders to call. A PRODE call
terminates the sequence after the DO end jump.

b. If ST = 0, the entry is considered "normal R-list™"
and is added to the sequence at PSZCTL by a call to
ADDTOSOQ.

c. If ST = 1-6, the entry is directed to a jump table,
where the following are detected:

1. Sequence terminators are: DO end jump, entry

statement, active 1label, and unconditional
jumps.
They cause generation of an end of sequence
entry (100). Normally, PROSEQ is called for
code generation. However, in a well-behaved
DO, sequences are allowed to accumulate before
this call.

2. APLIST entries are added to the 1list by
ADDTOAP,

3. The end of R-list entry triggers PASS 2 closing

(CLOSE2). If VARDIM is present, it is coded at
this time.
3.0 Diagnostics Produced
3.1 Fatal to compilation

INSUFFICIENT MEMORY.

3.2 Fatal to execution: none.

-334~

6000 FORTRAN EXTENDED 4.0

Informative

MORE MEMORY WOULD HAVE RESULTED IN BETTER

OPTIMIZATION.
Environment
MACWRDS - Local to READRL. Set by macro expanders

to the number of words placed in MACBUF.

FWAWORK - Local to PRE. Must contain current lowest
unused work storage address.

LWAWORK - EQU VARLAST. Must contain current highest
unused work storage address.

WELLBE Set by DO processor to 1 if a well-behaved
DO loop is in process, else zero.

Processing
Setup

The 1loop table, APLIST table, and VARDIM tables are
allocated. TIf OPT=2 is selected, the OPT file is opened
in order to retrieve the index. Then FWAWORK is advanced
over the index area. At this point, an initial end of
statement marker is placed at FWAWORK.

Main loop

READRL is called to obtain the next item from the R-1list
file. For a zero statement type field, we add the R-
list1, R-1ist2 and descriptor to the sequence under
construction. Then the process is iterated. If the ST
value 1is 7, we must expand the macro returned by READRIL.
ST values from one to six are processed differently
depending on their 1location. Within a well behaved DO
loop, end of statement/sequence markers (ST=1) and
unconditional jumps are treated differently.

ST=1 (End of Statement/End of Sequence)
Within a well behaved DO, end of sequences are appended

to the current sequence and sequence accumulation
continues. End of statements are appended and the card

-~

-335-

5.2.2

5.2.“‘

5.2.7

6000 FORTRAN EXTENDED 4.0

count cell is updated. However, if OPT=0, sequence
processing is forced since a statement is a sequence in
fast compile mode.

In non-well behaved regions, an end of sequence
terminates the sequence and calls PROSEQ to process it.
An end of statement is appended and CARDCT updated.
Sequence processing will be forced when twenty statements
are accumulated or the accumulated SRLIST exceeds one-
quarter of working storage.

ST=2 (APLIST)

The two words (RLIST 1 and 2) are added to the APTAB and
the VARDIM table plus F table (if OPT=0) are moved down
to provide more room.

ST=3 (Unconditional jump)

In a well behaved DO, the jump is added to the sequence,
and the sequence is terminated here. However, sequence
accumulation continues. For a non-well-behaved DO
region, a jump is added, the sequence terminated and
PROSEQ called.

ST=4 (Label)

Inactive labels are issued to the COMPS file as label QU
* lines. For active labels, processing is the same as
for unconditional jumps.

ST=5 (End of R-list)

Terminate the current sequence, call PROSEQ and initiate
cleanup procedures.

ST=6 (Entry)

Forces sequence termination and processing after it has
been appended.

ST=7 (Macro Reference)

If the macro belongs to the group of special macros
(ordinals less than 100B), processing is split off.
These macros are DO begin and end, index functions and
loop begin and end (in OPT=2). For a DO begin, PRODB is
called. DC ends result in a call to PRODE, and index

-336~

6000 FORTRAN EXTENDED 4.0

functions are processed by PROIXFN. All normal macros
are expanded by a call to MACROE. Then the resulting
expansion will be read in the main 1loop by calls ¢to
READRL.

Loop Begin Processing

WELLBE is set to force sequence accumulation end a loop
flag indicator is turned on. Contained in the loop begin
macro 1is a 1list of register candidates. This list is
moved above the APLIST and VARDIM tables where it is held
until loop end is found; then control reverts to the main

loop.
Loop End Processing

If not in loop mode, we immediately discard the macro and
revert to the main 1loop. Then SELECT is called to
perform candidate selection. The candidate table is
sorted by frequency of use. Then the min (4,number of
candidates) are <chosen for register allocation. If a
candidate has no uses, it will be discarded. Next, the
body of the loop is moved up to make room for register
definition and register 1lock R-list in the prologue.
Then the candidate registers are made unavailable to OPT
as scratch registers.

The BIND flag 1is then set on. With this set, OPT will
not call POST to issue COMPASS 1lines. Then PROSEQ is
called. Upon return the number of registers assigned is
printed. Now that it is certain that the sequence can be
coded using the available registers, OPT is reset, POST
is allowed to process code lines and PROSEQ is called
again on the same sequences. Upon return, R-list to post
store necessary, values is generated and PROSEQ called.
Finally, the Jlocked registers are released and control
reverts to the main. loop.

OPT=2 Failure

When PROSEQ fails on a sequence with locked registers, an
attempt is made to reduce the number allocated. For each
failure, another register is released. When all locked

registers have been freed, processing reverts to the
normal fail paths.

Formats

-337-

6000 FORTRAN EXTENDED 4.0

The R-list Descriptor

VFD

LD

SR

JP
M

F2

TY-1

FT

IG
USES

JK

1/LD,1/SR, 1/JP, 4/F1,4/F2,2/TY-1,5/FT,1/K,1/1G,
10/UsES, 1/JK, 1/RS,20+D0,1/FE,1/5%,3/5T, 1/KL, 1/5Q, 1/CM

set on long and short loads.

set on 1long and short stores, including register
store. ‘

set on all jumps.
function unit used.

second possible function wunit, = F1 if only one
possible.

type (I-IV).

6600 function time, = 10B for loads, 12B for stores.

Unit Indicator
Branch 1
Boolean 2
Shift 3
Add (Integer) y
Add (Floating) 5
Multiply #1 6
Multiply #2 7
Divide 10
Increment #1 11
Increment #2 12

set if hardware instruction includes no k
field.

used by DOPRE.

set by BUILDDT, used by CPT.

set if hardware instruction includes jk field.
subsequent register store bit. Used in OPT.
this area is used by DOPRE.

set for jumps and stores.

-338-

6.2

6.2.1

6.2.3

6.2.5

6.2.6

6000 FORTRAN EXTENDED 4.0

SZ set for 30 bit instruction.

ST EOST = 1, APLIST = 2, unconditional jump = 3,
label = 4, end of R~1list = 5, entry = 6.

KL initially = 0, set by SQUEEZE and SQZVARD when
instruciton killed.

SO set for squeezable instructions.

CM set if operands commutative.

Flag words

In PRE (for PROSEQ)

VARGIAG = 0, set to 1 at VARDIM time.

In\READRL

MACWRDS = 0, set to number or words placed in MACBUF.
In ADDTOSQ

MACREF (EQU R-list) LWA+1 of parameter words.

In ADDTOAP (for APLISTP)

APLAST 1WA, APLIST+1.

In PROSEQ

NORLIST number of entries to process.

FWASED FWA of R-list to process external to PROSEQ.

LASTR first word of 1last single entry sequence
encountered.

LASLBL if LASTR = label, LASLBL = LASTR.
In SQZVARD (for PROSEQ)

LENGTH number of cells in redundant VARDIM store code
list for COMPASS.

STORBUF FWA or redundant store list.

-339-

1.0

2.2

6000 FORTRAN EXTENDED 4.0

General Description

READRL is <called to return the next R~list instruction
from the R-list file. Either a macro or an R-1list1, R-
list2, and descriptor will be returned.

Entry Points

MACBUF

Fixed size area used for macro expansion.

NORNXT

Address of the next R-~1list word to be read.

NOREND

Address plus one of the end of R-list words in the
buffer.

MACNXT

Address of the next R-list word in the macro expansion
buffer.

MACWRDS
Holds the number of words in the macro.
TWA1

Three word area holding the descriptor, R-list1 and R-
list2 on exit from READRL.

DESCR
Address of the start of the descriptor table.

USETAB

Address of a table used in OPT=0 for accumulating user
counts.

-340-

2.9

3.0

4.0

READRL

6000 FORTRAN EXTENDED 4.0

Primary entry to return an R-list item.

Diagnostics and Messages

MEMORY OVERLFLOW IN READRL

Environment

Externals

MACREF Same cell as the external R-list

RDWDS Routine to read information from a file

IXLOC Current index location for OPT=2

OPTLVL Holds the OPT=n value from the FTN card

F.OPT Fet for the OPT file

USTDESC Table holding the intra-macro user count

BASE Base R number of the F-table for OPT=0

DOMACK Origin of the DO macros

USEBUF Table in MACROX holding uses counts

MACORG Base of the normal macro numbers

RDRLF Flag to ADDTOSQ to make an F-table entry

FWAWORK Holds the first word address of working storage

RLIST Next, address to store an R-list entry triplet

LOOPFLG Set in OPT=2 if inside a well behaved loop and
register allocation is specified

CNDTAB Candidate table for OPT=2 frequency counts

PUNT Error exit for memory overflow

-341~

6000 FORTRAN EXTENDED 4.0

Processing

Main ILoop

a. Call READAW to read a word.

b. If the word returned is negative, go to a.

c. Extract the opcode of the R-list word. If it is
positive, this is an R-list instruction. Go to o.

d. Bias the opcode by the macro origin and check to see
if this is a DO macro. If so, bias it by the origin
of the DO macros.

e. Store the first word of the macro at FWAWORK.

f. Increment FWAWORK by the number of words in the
macro and check for memory overflow.

g. Copy the remainder of the macro to working storage.
This inciudes manipulation of the NORNXT pointer and
a possible need to replenish the working storage
buffer if the macro text is not all present there.

h, Exit if oPT=1 or 2.

i. Save the number of intermediate R numbers as the
first entry in USE TAB. If no intermediates, go to
1.

Je Extract a six bit uses count. Decrement number of
intermediate R numbers. Store the count in the next
cell in USETAB.

k. If more intermediate uses, go to j.

1. If no formal R numbers, exit from READRL.

m. Extract a six bit uses count. Decrement number of
formal R's. Store the count in the next cell in
USETAB.

n. If more formal R numbers, go to m. Else exit
READRL.

o. If this R-1list instruction did not come from a macro

expansioni go to p (zero uses at this point)

=& s A j o 2 2 A

~342-

dae.

ab.

ac.

ad.

ae,

af.

6000 FORTRAN EXTENDED 4.0

Fetch the corresponding uses count from USEBUF.

Or the uses count with the descriptor and store the
descriptor in TWA1.

Isolate the R-list type from the descriptor.

If OPT=1 or 2 or this R-list is not from a macro, go
to aa. ‘

If this instruction is not a store, go to aa.
Set preceding a store indicator.

If this instruction is not a register store, go to
z.

Set preceding a register store indicator.

If the register store is on a formal R number other
than AO, go to =z.

Insert the precedes a register store indicator into
the descriptor of the last previous R-list
instruction. Go to aa.

Using the F-table and the R number being stored,
locate the descriptor of the defining R-1list and set
the precedes a store indicator.

If this is not a type 3 R-list, set TWA3 to zero and
exit READRL. For type 3, call READAW to get the
second word in TWAZ2.

Exit if READRL is not operating in loop mode for
OPT=2 (LOOPFLG is non-zero).

If the opcode is not a load or a store, exit READRL.
Extract the IH field from R-list2 and search the
candidate table for a match. If no match is fourd,
exit READRL.

Increment the total number of uses., Then exit if it
is a load instruction.

Increment the number of uses as a store and exit
READRL.

~-343-

6000 FORTRAN EXTENDED 4.0

READAW - Read a Word

a. If the macro buffer is not empty, return a word from
it. (If the word is negative, complement it and set
RDRIF (OPT=0 processing) to cause ADDTOSQ to make an
F~table entry). Set R-list from macro flag. Go to
d.

b. If O0PT=2, check the number of words left. If this
count is zero, call READRAN to set up the next
record from the file FTNOPT, update the words left
and go to gq.

c. Normally, try to extract a word from the NOR1
buffer. If it is empty, go to g.

d. If this is OPT = 0, go to f.

e. Set R-1list not from a macro flag.

f. Return the word read in TWA3 and X7. Exit READRL.

g. Call RDWDS to replenish the NOR1 buffer. Update the
pointers and go to c.

READRAN

a. Using IXLOC pick up the next entry from the index.

b. Place the PRU number in the OPT FET plus six word.

c. X1 holds the number of words in the record.

d. Wait for file activity to cease and clear the end of
record condition.

e. Set the file on which to do input to the OPT file.

Exit READRAN.

Table Formats

Descriptor Table

Bit Number Field
59 Load Instruction

58

Store Instruction

-344-

6000 FORTRAN EXTENDED 4.0

57 Jump Instruction
56-53 Functional Unit 1
52-49 Functional Unit 2
48-47 Type of R-1list
46-42 6000 Punction Time
41 Set if instruction has no k field
(set for jk types)
40
39-30 Uses count v
29 Set for instructions with a jk field
28 Set if the instruction may not be killed
27 Object of a store
26 Object of a register store
25-8 Field used by DOPRE
7 Set for stores and jumps
6 Set for 30 bit instructions
5-3 Special type field
1=end of statement, 2=APLIST,
3=unconditional jump, U4=label,
5=end of R-1list, 6=entry
2 Kill bit. Set for dead instructions
1 Set if the instruction is squeezable
0 Set if the operands are commutative

-345-

1.0

2.1

2.1‘1

2.1.2

6000 FORTRAN EXTENDED 4.0

DOPRE

General Information
Task Description

The second pass DO processor examines DO begin and DO end
macro references, standard index function macro
references and all R-list instructions generated within
the innermost loop of a DO nest provided the loop is well
behaved (see section 8.2). R-1list instructions are
generated to count DO 1loops, reference standard index
functions, and to materialize the control variable when
necessary. The R-list is generated by considering the
optimum use of B registers and all code in the DO loop is
altered to take advantage of B register assignments where
possible.

Entry Points
PRODB

PRODB is referenced by PRE when a DO begin R-1list macro
is encountered in the R-1list buffer. ¥For 0OPT=1, 2 and a
well behaved DO, begin macro flags are set for ensuing
calls to PROIXFN and PRODE. For OPT=0 and non well-
behaved DO's PRODB generates R-list instruction necessary
to initialize the loop.

The calling sequence to PRODB is a return jump to PRODB.
Flags and addresses needed are:

OPTLVL -~ holds the value specified by OPT=m on the
FTN card.

MACREF (RLIST) -~ address of the DO begin R-list
macro in memory.

FWAWORK - address of the working buffer where R-1list
items may be stored. Overflow is checked
against VARLAST.

PROIXFN

-346-

2.2.1

N
[
N
"

s

6000 FORTRAN EXTENDED 4.0

PROIXFN is referenced by PRE when pseudo R-list for a
standard index function 1is encountered in the R-1list
buffer. PROIXFN breaks the index function into a table
of terms and either preserves this table for PRODE by
replacing part of the pseudo R-list (standard) or
generates index function (first level optimization).

The calling sequence to PROIXFN is a return jump to
PROIXFN. It is expected that the following variables in
the communications region will be properly set:

MACREF (RLIST) - Address of the DO begin pseudo
R-list macro memory

VARLAST - Address of the next available call in the
VARDIM buffer.

FWAWORK - Address of the working buffer where R-1list
items may be stored. Overflow is checked
against VARLAST.

PRODE

PRODE is referenced by PRE when a DO end R-list macro is
encountered in the R-1list buffer. For an ill-behaved
loop (no optimizing attempted), MACROE 1is called to
generate the instructions for the bottom of a DO loop
given the DO end R-~list macro. If the compiler is in
standard mode and the well-behaved flag is set, then a
series of ten scans or phases of optimization is
executed, These scans and their functions are:

T. Scan all R-list between the DO begin and the DO end
R-list macros selecting candidates for available
execution time B registers from among the load,
store and set R-list instructions and the pseudoc R-
list macros for standard index functions. Scan I
compiles candidate information in two word entries
and places them in the A table (see section 6.0 -
FORMATS). A table items are linked together on the
basis of type: constant, address, index function or
variable increment (see section 8.0).

I. Scan the A table computing the cost in instruction
parcels if a B register is not assigned this
candidate. Assuming that the 1lowest number of
parcels used generates the most efficient object
code, B registers are assigned to the candidates

-347-

I1T.

Iv.

vi.

VII.

VIIT.

6000 FORTRAN EXTENDED 4.0

having the largest cost. Scan II computes this cost
for all constant, address and increment entries in
the A table, marking each as to type and as a
candidate. In each index function chain, the member
which appears in the largest number of instruction
sequences is given a cost and marked as a candidate;
the differences between the candidate and other
group members are filed as candidates.

Scan the A table and assign the B registers by
generating a B table of up to seven entries.
Registers are assigned by largest cost until the A
table is exhausted or the B table is full. If a B
register is assigned to a constant, the constant
chain is searched and wherever possible constants
are marked to use the sum or difference of presently
assigned B registers. If a B register is assigned
to an address, the address chain is scanned and the
difference between the candidate and other addresses
are filed as candidates.

Scan the B table and decide from register
assignments which one of 12 methods should be
employed to count the DO loop. The decision is
based primarily wupon the contents of the B
registers. (See section 8.0 for 1loop counting
methods.)

Scan the B table and mark the candidates in A with
the register (or registers) that have been assigned
to them.

Scan the B table for A assignments. If the A table
entry is a constant, address or difference type
candidate set up the R-list instructions to load
this register at the top of the DO loop.

Scan the A table for increments and index functions
generating the initializing R-list instructions to
pre-compute variable increments and to initialize
and increment index functions.

Generate the DO loop counting code selected by Scan
IV. R-list instructions are generated to initialize
and increment the loop count and, if necessary, the
control variable. The 12 methods of counting are
shown in section 8.0.

-348-

2.3.2

3.0

5.0

IX.

The

6000 FORTRAN EXTENDED 4.0

Scan all - R-list between the DO begin and DO end R-
list macros creating R-list references to B
registers when applicable. The general R-list given
by pass I will be tailored to the B register
assignments made by previous scans and will replace
the general R-1list passed on by PRE. The pseudo R~
list index function macros will be expanded into the
proper sequence of instructions generated for double
precision and complex arrays.

Separates top of the 1loop R-list from end of the
loop R-list and inserts the body of the loop. This
is done by moving the TOP-END buffer just below
VARDIM, putting the referencing R-~1list Jjust below
this. Top of the 1loop instructions are then
extracted and moved to the beginning of the R-1list
buffer where the DO begin macro was. The body of
the loop follows, then the end of the. loop
instructions. "Ignore" op codes are squeezed out
and any remaining negative op codes cause generation
of normal R=list to replace them.

calling sequence to PRODE is a return jump to PRODE.

Addresses needed are:

MACREF (R-1list) Address of the DO begin R-1list
macro in memory.

VARLAST Address of the next available
cell in the VARDIM buffer.

FWAWORK Address of the working buffer
where R-1list items may be
stored. Overflow is checked
against VARLAST.

Diagnostics

None

Environment

Not applicable

Structure

-349~

6000 FORTRAN EXTENDED 4.0

CANON

CANON generates and orders the table of index function
terms (T) given the standard index function pseudo R-1list
macro produced by ARITH in pass one of the compiler.
Fach index function may have as many as five terms
dependent upon the combination of variables and constants
used in the subscript. CANON uses TERM and FILET.

TERM

TERM unpacks a single subscript. If the subscript
contains a variable, exit is made +to the second word
following the return jump to TERM, otherwise the first.

FILET

FILET makes the actual entry of a term in T, combines
terms with like variables, orders the table in decreasing
order wusing all 60 bits as key for the sort and leaves
the address of the next available location in the cell
TN.

IXFN

IXFN is called whenever a standard index function is
encountered in the R-list. IXFN then searches the
integer definitions following the DO end macro to see if
the subscript uses any of the variables that are
redefined within the loop. If so, and it includes the
control variable, the control variable is marked for
materialization. If not, and the index function has not
appeared before, it is filed as a candidate in the A
table.

LINKA-NSRTA

LINKA files candidates for B registers in the A table, if
not already there and links them to cocther candidates of
the same type (address, constant, etc.). If a candidate
has already been filed, then the sequence in which it
appears is noted for wuse in determining the value of
having a B register assigned.

NSRTA files a candidate in the A table without linking
and without checking for prior entry.

REF

-350-

6000 FORTRAN EXTENDED 4.0

Given the 0OC, CA, SO, RI, H2, RF, I, HI fields, REF files
a three word type three R-list item in the R-list buffer
area of memory. This R-list item will generate a
reference to an array element at object time. If the
array is double precision, a second type three R-1list
item will be placed in the buffer.

MRKIXFN

MRKIXFN chains through all index function entries in the
A table by group, selecting the most popular member of
each group (appearance in most sequences) and marking
that member as a candidate for a B register and as a
member of a group.

MRKIXFN then calls FORMDIF.

FORMDIF

FORMDIF inspects address and index function groups and if
a difference is found between the inspected item and the

head of a group does the following:

1) If the difference is constant, the difference is
filed in the constant chain.

2) If the difference is symbolic, then an item is filed
containing both symbols and the constant difference
(if any).

EVALCON

EVALCON evaluates a constant entry in the A table placing
the number of parcels saved by using a B register in the
value field of the A entry. It also marks the entry as a
candidate and as a constant.

MRKCON

MRKCCN scans the 1linked constant candidates in the A
table marking each as a candidate and constant and
computing the cost in parcels if a B register is not
assigned the candidate.

MRXADR

MRKADR searches the address chain of the A table for the
most popular candidate (used in most sequences) and then

~351-

5.12

w
.

b
£

5.15

5.16

5.17

5.18

6000 FORTRAN EXTENDED 4.0

marks that entry as a candidate having a .group and
constant. The cost of not assigning a B register is
stored in the value field of the candidate.

MRKINC

MRKINC scans the linked increment entries in the A table
marking each as a candidate and computing the cost of not
having a B register. :

SRCHC

SRCHC is called to determine if a constant entry in the A
table may be formed using constants already assigned to B
registers. Given a constant which is the sum or
difference of assigned constants, SRCHC chains through
the constant chain for a candidate equal to it. 1If
found, the two are related by setting the appropriate
bits in the REG, REG2, and NEG fields in the A table
entry found.

TOPB
Given a one or two word R-list item, TOPB adds a
descriptor word and files a three word R-list item in the

TOPEND buffer after insuring that the buffer won't
overflow.

ENDB

Given a one or two word R~list item, ENDB adds a
descriptor word and an end flag and files a three word R-
list item in the TOPEND buffer after insuring that
overflow won't occur.

VARB1

Given a one word R-list item, VARB1 stores it in the
VARDIM buffer.

VARB2

Given a two word R-1list item, VARB2 stores it in the
VARDIM buffer.

TDOWN

o
o
(07}
r*
O
a]
)]

Q
0]
7]
£
£
L]
o
n
1}
L]

TDOWN displaces the T table lower by o

-352-

5.19

n
»

N
=]

5.23

6000 FORTRAN EXTENDED 4.0

MOVETR

MOVETR moves the T table (through and including the first
entry of all zeroes) to the last six words of the 12-word
standard index function pseudo R-list, (see section 6.2
- the second table on the page).

MOVERT

MOVERT moves the last six words of a standard index
function pseudo R-list item to the first six words of the
T table. (See section 6.2.)

GENT

GENT generates the R-list to compute and reference a
standard index function. This code replaces the standard
index function pseudo R-1list produced by ARITH in pass
one of the compiler. GENT calls GENVAR.,

GENVAR

GENVAR generates the R-list to compute the variable part
of an index function. This code appears at the loop top
or point of reference depending on the index function.
Non-variable computations appear at the program top.
GENVAR calls SUMC.

SuUMC

SUMC generates the R-list to add up the coefficients of a
single written variable and places this code in the
VARDIM buffer. SUMC calls COEFF.

COEFF

COEFF generates the R~list to multiply the factors of a
coefficient and stores the generated R-list in the VARDIM
buffer.

DOONE

DOONE generates a reference to a subscript quantity based
on the contents of the B registers. The generated R-1list
replaces the standard index function pseudo R-list.

GENALL

=353~

5.27

5.28

5.31

5.32

w
.

(V8
w

6000 FORTRAN EXTENDED 4.0

GENALL moves R-list down in memory and generates the R-
list to compute and reference redefined index functions.
GENALL calls GENT.

MATC

When the control variable must be materialized (updated
in memory) during the course of a DO loop, MATC makes
entries in the A table to allow the loop parameters tc
compete for B registers.

MCOST

MCOST determines the minimum cost for DO loop counting
considering all possible situations available methods.

CCOSsT

CCOST determines the cost of counting a DO loop by using
the upper limit.

LOADX

Given an A table item, LOADX generates R-1list
instructions to load an X register with the item.

LOADY

Given a loop parameter, LOADY generates R-list
instructions to load a register R with it.

STOREX

When counting a DO loop in memory and the count has been
updated in an X register, STOREX generates R-1list
instructions to store the X register in memory.

LOADBMC

Generates R-list to load the first limit and subtract the
second limit of the DO statement. LOADBMC calls LOADY.

COUNTR

Generates the R-list to compute (C-B) /D for counting the
DO loop. Calls CONCNT.

-354~-

5.36

5.37

5.39

5.40

6000 FORTRAN EXTENDED 4.0

Generates the R-list to compute (B-C)/D for counting the
DO loop in the negative direction. Call CONCNT.

CONTOP

Generates R-list instructions to multiply R by an integer
constant in the most efficient manner using shift and add
combinations. R-list is stored in the TOP-END buffer.
Generates R-1list instructions to multiply R by an integer
constant in the most efficient manner using shift and add
combinations where R is a variable division or product of
variable dimensions. R-list is stored in the VARDIM
buffer.

CONCNT

Determines whether the DO may be counted by a constant or
not, i.e., whether (B-C)/D is constant.

DIVCON

Generates R-list to compute (B-C)/D optimally by checking
constants (if any) and shifting or no division at all
where possible.

LMCHK

LNCHK checks DO loop limits to recognize one trip loops
and sets flags for section VIII to bypass the generation
of loop counting code.

REDINC

REDINC checks for index functions with same increment
having these conditions:

1. Not involved in counting the loop.

2. Not requiring two B registers to form index
function.

3. Both index functions in B registers.

u. One incrementing instruction has already been
generated.

-355-

6000 FORTRAN EXTENDED 4.0

When conditions are met, REDINC generates code to compute
difference of index functions which will replace index
function in higher numbered B register. All references
to index functions, other than the base, must then be
generated as a sum of the base index function and the
difference register. At least one parcel per use is
saved as the incrementing instruction is eliminated.

Example:

GIVEN CODE ALTERED CODE

SB1 A SB1 &

SB2 B SB2 B

SB7 A+5 SB2 B2-B1
YAA SA1 B1 SB7 A+5

BX7 X1)AA SA1 B1

SA7 B2 BX7 X1

SB1 B1l1+1 SA7 B1+4B2

SB2 B2+1 SB1 B1+1

GE B7,B1,)AA GE B7,B1,)AA
INIDV

INIDV generates the R-list to set an X register to the
initial value to be given the induction variable (lower
limit of the 1loop) and then generates the store
instruction to materialize the wvariable in memory.

Formats

DOPRE is concerned with two levels of optimization:

1) First 1level optimization where PROIXFN generates R-
list to process the standard index functions in a DO
loop without benefit of B register optimization.

PRODE calls upon MACROE to generate R-list for the
bottom of the DO loop.

-356-

6000 FORTRAN EXTENDED 4.0

2) Second 1level optimization results in PRODB and
PROIXFN setting flags and addresses for ©PRODE to
generate candidates for B registers at execution
time. In addition, instructions generated within
the 1loop during pass 1 by other processors are
changed to take advantage of B register assignment
at execution time.

In first level optimization, only the table of i X

function terms (T) 1is generated. In second level

optimization, a table of candidates (&) and a table of B

register assignments (B) is generated in addition to the

table of index function terms (T). The A table is a

variable length table with two words used for each entry.

Candidates may come from constants, increments,

addresses, address differences, or index functions. The

T table is one word per entry and a maximum of six

entries in the table. The last entry must always be

zero, The B table is a fixed table of seven entries, one
word per entry, and each entry contains information

related to the assignment of the corresponding B

register. Thus, the third word of the B table designates

how B3 was assigned to be used at execution time.

Certain fields of both A and B have double wusage and

these fields will be noted.

In addition to +these tables, section 6.0 will be
concerned with the standard index function pseudo macro
before and after the call to PROIXFN and the TOP-END
buffer created by PRODE in the second level of
optimization.

The tables and formats follow.

T TABLE (INDEX FUNCTION TERMS)

VFD 4/L,32/V1,1/V2,1/V3,4/V4,18/C

L Set of 1 if V1 if the loop control variable
v1 Base-bias of variable involved in the term
V2 Set to 1 if the first dimension of the array V1

is adjustable

v3 Set to 1 if the second dimension of the array
V1 is adjustable

-357-

(o))

w

6000 FORTRAN EXTENDED 4.0

Vi The I part (table number) where C(T) is
variable and the H(BIAS) is found in the C
field

C Constant multiplier for the variable part of

' the term

B TABLE (B REGISTER ASSIGNMENTS)
VFD 30/VALUE/R, 30/ALOC

VALUE Savings in parcels made by the assignment of this
B register

R After Scan V of PRODE, R is register number
defined as that B register

ALOC Address of the A table entry for the candidate
given this register

INCOTTON DSRIINND Ralic+ MAMMO
W kY% A AN AN - A NS A NS & ot s & A d

Before Proixfn

VFD 12/0C,18/NWF,11/0,3/TYPE,16/RI

VFD 12/0,18/CA,30/IH of the array

VFD 3/Ns,3/P(A,B,C),18/C,18/B,18/A

VFD 60/MC of 1st subscript

VFD 6/0,24/CA,30/IH of variable in 1st subscript
VFD 60/AC of 1st subscript

VFD 60/MC of 2nd subscript

VFD 6/0,24/CA,30/IH of variable in 2nd subscript
VFD 60/AC of 2nd subscript

VFD 60/MC of 3rd subscript

VFD 6/0,24/CA,30/IH of variable in 3xrd subscript
VFD 60/AC of 3rd subscript

After Proixfn

VFD 12/0C, 18/NWF,12/0,1/RDIXFN, 1/DP,16/RI
VFD 18/CA,12/0,30/1IH of the array
VFD 6/0,18/ADPSUB, 18/ACHAIN,18/1LSUB
VFD 6/0,18/ASUB,18/AINC, 18/LINC
VFD 30/0,30/1st dimension of the array
VFD 30/0,30/2nd dimension of the array
T Table, Entries To-Tc, See T Table Format

~358-

6000 FORTRAN EXTENDED 4.0

OoC, RI, CA, IH are described in R-1list literature.

TYPE
NS

pP(a,B,C)

c,B, A

MC
AC

ADPSUB

ACHAIN

LSUB

ASUB

AINC

LINC

NWF

3 bit type field as used in SYMTAB
number of subscripts

indicates adjustable dimensions for subscript
1, 2 or 3 respectively

constants or IH of variables for dimensions of
subscripts 3, 2 or 1 respectively

multiplicative constant in subscript
additive constant in subscript

if array is double length points to second A
table item for this index function

points to the A table item which heads the
chain for this unique index function

points to previous unique index function in
R-1list

points to A item for this index function

points to A table item for this variable
increment

points to the previous index function with
unique local terms

number of words following as part of this macro

A TABLE (CANDIDATES FOR B REGISTERS)

Wword 1 is the same for all entries.

word 1 VFD 1/CAND, 1/GRP, 1/IXAD,3/REG,3/REG2,

1/0NE, 1/NEG, 1/DIFF, 18/VALUE/ADIFF,
12/SEQ, 18/LINK

For Index Functions

Word 2 VFD 12/H,18/CA,12/70,18/RLOC

For Increments

-359-

6000 FORTRAN EXTENDED 4.0

Word 2 VFD 30/NAME, 1270, 18/RLOC

For Constants

Word 2 VFD 60/The 60 bit constant

For Addresses

Word 2 VFD 12/H,18/CA,30/0

Address Differences

n
to
Lo

LINK

RLOC

CAND

GRP

IXAD

REG

REG2

ONE

NEG

Word 2 VFD 12/H,18/CA,12/0,18/H2

The ordinal in the symbol table for the
variable.

The constant addend or displacement of the
variable if any.

A field of flaas 4nﬁ-'|r-:a{-'ing which of 12

&a e e N e i LA L _—ta TR s v i

possible sequences the candidate 1is used in.
Sequences are indicated from right to left.

Address of next group member.

Address in the R-list for the head of the
linked entries.

Set to 1 if this entry is a candidate for a B
register. '

Set to 1 if +this candidate is a member of a
group.

Set to 1 for address type candidates.
Number of the B register assigned (if any).

Number of the second B register assigned (if
any) .

Set to 1 1if increment of index function is
constant.

Relates B registers used to form a sum (0) or
difference (1).

-360~-

6000 FORTRAN EXTENDED 4.0

"DIFF Set to 1 if A item is difference of addresses

and cannot take advantage of SB B+B.

NAME I, H values of program temporary or 1loop
temporary.
VALUE Cost in parcels if this candidate is not given a

ADIFF The address of the A table entry created as a
difference with this A table entry

Macros

ADDRR (BUF, XRJ) Generates R-list to do an
integer add of two X registers (R and XRJ)} IX(R+1) =
X (XRJ)+X(R) . R-1list fields are OC, RJ, RK, RI found in
IAPD, XRJ, B7, B7+1 respectively. R-1list is stored in an
address determined from the index given as BUF. The
macro uses TYPEI, OUTBUF macros and the subroutines TOPB,
ENDB, VARB1, VARB2.

DEFBR (BUF, XREG) Defines the B register that
will receive the information in the register specified by
RI SB(XREG)=R. R-list fields are 0OC, SO, RI found in
DEFINE, LOCKB+ZREG, B7 respectively. Type II R-1list is
stored in an address determined from the index given as
BUF. This macro uses macro OUTBUF and the subroutines
TOPB, ENDB, VARB1, VARB2.

DESBR DEXBR (BR1,XR2,XR3) Sets the NEG, REG and
REG2 fields of the first word of an A table entry.
Arguments are BR1, XR2, XR3 which represent a B register
holding a one or zero, and X registers holding the two B
registers assigned to be used as a sum or difference for
generating a needed constant. The A table entry is
located at L (DESBR) or X(DEXBR).

IMUL Packs two integers given in X1, X2 and does a
double multiply with the result left in X6.

INCRR (BUF) sets up an 18 bit (short) add of two
B registers storing the result back into one of the
registers (SB{(R-1) = B(R-1) + B(R)). R-1list fields used
to generate type I R~-list are OC, RJ, RK, RI which are
given by saDD, B7, B7-1, B7-1. The R-1list is stored in

-361-

7.7

7.8

6000 FORTRAN EXTENDED 4.0

an address determined from BUF. Uses TYPEI, OUTBUF
macros, TOPB, ENDB, VARB1, VARB2 subroutines.

LOADADR (BUF, XIH, BCA) sets up the R-1list for the
load address instruction SA(R) = (IH+CA) R-list fields
are OC, ¢A, RI, 1I-HI, £found in LOAD, BCA, B7, XIH
respectively. The type III R-list is stored in an
address determined from the index given as BUF. This
macro uses the macro OUTBUF and subroutines TOPB, ENDB,
VARB1, VARB2.

MULCON (BUF) sets up R-1list to multiply a
register specified by R by an integer constant.
Instructions are stored at an address determined from
BUF. Uses macros SHIFT, PACK,. MULT, OUTBUF and
subroutines TOPB, ENDB, VARB1, VARB2, CONTOP, CONVAR.

MULRR (BUF) sets up the R-list to convert the
integers in registers R and R-11, place in registers R+1,
R+2, and then does a double floating point multiply with
the result ending in R+3.

PX (R+1) R-1,B0
PX (R+2) R ,BO
DX (R+3) (R+1) * (R+2)

R-1list fields are RK, RI, 0OC, RK2, 0C2, RJ, RK3, RI3, OC3
given by R-1, R+1, PACK, R, R+2, PACK RI1, RI2Z, R+3, DMUL
respectively. The generated R-1list 1is stored 1in an
address determined from the index BUF. Calls macro
OUTRBUF and uses subroutines TOPB, ENDB, VARB1, VARB2.

SADRR (BUF, XRJ) sets up Type I R~list to do a
short add of two registers with the result going to the
third register. Fields needed are: RJ, RX, RI, OC,
given by R, XRJ, R+1, and SADD respectively. R-1list
storage address is determined from BUF. Calls on macros
TYPEI, OUTBUF, and subroutines TOPB, ENDB, VARB1, VARB2.

SETRCON (BUF, BRI, XCON) generates R-list to set a
register to a constant value. Fields needed are: IN,
0C, RI, given by XCON, SETII, BRI respectively. The type
II R-list is stored at an address determined from BUF.
SETRCON uses the macro OUTBUF and calls on subroutines
TOPB, ENDB, VARB1, VARB2.

~362~

7.11

7.12

7.14

7.16

6000 FORTRAN EXTENDED 4.0

SETADR (BUF, XIH, BCA, XRI, XRF, XH2) generates
R-list to set a register to an address. Fields needed
are: CA, RF, IH, RI, H2, OC, given by BCA, XRF, XIH, XRI,
XH2, SETIII respectively. The type III R-list is stored
at an address determined from BUF. Uses the macro OUTBUF
which in turn calls upon subroutines TOPB, ENDB, VARBI1,
VARB2.

STORADR (BUF, XIH, BCA) generates type III R-list
to set A6 or A7 to an address causing a corresponding
store of X6 and X7 respectively. Fields needed are IH,
CA, OC given by XIH, BCA, STORE respectively. The
generated R-1list is stored in a buffer determined from
the index BUF. STORADR uses the macro OUTBUF which uses
subroutines TOPB, ENDB, VARB1, VARB2Z.

SRBMB (BUF, XB1, XB2) sets up the R-1list for the
short subtract and stores the result into the R register
(SB (R) =RRTAB+XB1-RTAB+XB2), R-list fields wused to
generate this type of an R-list item are OC,RJ,RK,RI
given by SSUB(67),RBTAB+XB2, RBTAB+XB2, R respectively.
XB1, XB2 are indices for the B table which contains the
designated R that is assigned the B register. The
generated R-list is stored in an area determined from the
argument BUF. This macro uses the OUTBUF macro and TOPB,
ENDB, VARB1, VARB2 subroutines.

SRBPB (BUF, XB1, XB2) sets up the R-list for the
short add and stores the result into the R register
(SB(R) = RBTAB+XB1 = RBTAB=XB2). R-list fields used to

generate this type one R-list item are OC, RJ, RK, RI
given by SADD (46) , RBTAB+RB1, RBTAB+XB2, R respectively.
XB1, XB2 are indices for the B table entry that contains
the R assigned to B register XB1 or XB2. The generated
R-list is stored in an area determined from the argument
BUF. This macro wuses the OUTBUF macro and TOPB, ENDB,
VARB1, VARB2 subroutines.

BPMB (BUF, XRJ, XRK) sets up R-list for a short
load, store or difference with the result going into the
RI register. R-list fields used to generate this type I
R~1list item are OC, RI, RJ, RK given by B4, OP, XRJ, XRK
respectively. The generated R-list is stored in an area
determined from BUF. This macro uses the OUTBUF macro
and TOPB, ENDB, VARB1, VARB2 subroutines.

SUBRR (BUF, XRJ) integer subtract of two X
registers (R and XRJ) IX (R+1) = X(XRJ) - X(R). R-1list

-363-

7.20

6000 FORTRAN EXTENDED 4.0

fields are 0C, RJ, RK, RI found in ISUB, XRJ, B7, B7+1
respectively. R-list is stored in an address determined
from the index given as BUF. This macro uses TYPEI and
OUTRBUF macros and the subroutines TOPB, ENDB, VARB1,
VARB2.

SUBXRR , (BUF) same SUBRR expect IX(R+1) = X(R) -
DIVRR (BUF) integer division of two registers

X{(R+1) = X(R-1)/X(R). R-list fields are OC, RJ, RK, RI
given by 1IDIV, B7-1, B7, B7+1 respectively. R-1list is
stored in an address determined from the index given as
BUF. This macro uses the macros TYPEI and OUTBUF which
uses subroutines TOPB, ENDB, VARB1, VARB2.

JUMP (BUF, BOC, BRI, BRF) generates the loop
ending jump as type III R~list given OC, RI, RF as BOC,
BRI, BRF respectively and the IH of the label for the top
of the DO is found in the DO-END pseudo R-1list generated

by pass I. The jump instruction is stored at an address
determined from RUOF JUMDP uses OUTRUF which uwuses TODR

AT N Al laded A b e WAL A 4@ o ha -~ - e S A VW iiderad -y

ENDB, VARB1, VARB2.

TYPE1 (BUF, XRJ) generates a type I R-list
instruction from the fields 0OC, RJ, RK, RI given by B4,
XRJ, B7 and X3 respectively., The generated R-list is
stored at an address determined from BUF and this macro
uses the macro OUTBUF which in turn uses subroutines
TOPB, ENDB, VARB1, VARB2.

SHIFT (BUF, XCOU) sets up R-list to do a shift
transmit of R to R+1 and a constant shift left the number
of places indicated by register XCOU for R+1. The
resulting R-1list is stored in memory as determined from
BUF using the macro OUTBUF and subroutines TOPB, ENDB,
VARB1, VARB2.

PACK (BUF) generates R-list to pack the
exponent zero with the fraction R into a register R+1.
Uses OUTBUF, TOPB, ENDB, VARB1, VARB2 to put the R-list
at an address determined from BUF.

MULT (BUF) generates R-list to do a double
precision floating multiply of R and R-2 leaving results
in the register specified by R+1. Places instructions at
address determined from BUF by using macro OUTBUF which
uses subroutines TOPB, ENDB, VARB1, VARR2.

-364-

7.24

7.25

8.0

8.1

6000 FORTRAN EXTENDED 4.0

SADXRR . (BUF, XRJ) sets up type I R-list to do a
short aéd of two registers with the result going to one
of the registers (SRi = Ri + XRJ). Fields used are RJ,
RK, RI, OC given by R, XRJ, R and SADD respectively. R-
list storage address is determined from BUF. Calls on
MACRO's TYPEI, OUTBUF and subroutines TOPB, ENDB, VARB1,
VARB2.

XMIT (BUF) sets up type I R-list to transmit
from an input register to an output register. Fields
used are RJ and RI given by R and R+1 respectively. R~
list storage address determined from BUF. Calls on the
macro OUTBUF and subroutines TOPB, ENDB, VARB1, VARB2. '

ADDXRR (BUF, XRJ) generates R-list to do an
integer add of two X registers (R and XRJ) and put the
result back into R. ~ R-list fields are CC, RJ, RK, RI
found in IADD, XRJ, B7, B7 respectively. R-list is
stored in an address determined from BUF. The macro uses
TYPEI, OUTBUF macros and subroutines TOPB, ENDB, VARBI1,
and VARB2.

SADZRR (BUF,XRJ) generates R-list to set an X
register to the value in a B register. XRJ is the R
number for the B register and R is the X register number.
Fields needed are RJ, RI given by XRF and R. R-1list
storage determined from BUF. <Calls on Macro OUTBUF and
subroutines TOPB, ENDB, VARB1 and VARB2,

CONLS (BUF, XCOU, XREG) generated R-list to do a
constant left shift of XREG the number of places
specified by register XCOU. Operation code given by KLS
and BUF determines R-list storage. Uses the macro OUTBUF
and subroutines TOPB, ENDB, VARB1, VARB2.

DOPRE.
Principles

Sample test cases wusing straight forward compilation
techniques indicate that 50% or more of the running time
of TFORTRAN benchmark programs is spent inside innermost
DO loops, although they occupy under 10% of program
space. Therefore, reduction of the time spent in loops
particularly inner loops, is of the first importance.

-365-

6000 FORTRAN EXTENDED 4.0

However, since the time required for a short loop is
greatly reduced by retaining it in the stack, it is
important to reduce the space required within loops as
well. To avoid special cases, DOPRE concerns itself with
space reduction only, assuming that time reduction is
usually a by-product.

Definition of Well-behaved Loops

Loops containing extended ranges, input-output
statements, CALLS's, FUNCTION references, or calls or
arithmetic statement functions which contain CALL's or
FUNCTION references, or imrlicit subroutine calls, are
not considered well-behaved and are not optimized for the
following reasons:

a. The existence of an exit and return to the loop
makes retaining results in registers throughout the
loop impossible.

b. The existence of an exit and return to the loop
makes retaining the entire 1loop in the stack
impossible.

C. The computation outside the 1loop, which may be a

considerable proportion of the compute-time
involved, does not benefit from the loop
optimization.

d. The existence of most of the above situations
creates implicit definition points which complicates
the analysis.

e. The existence of an extended range requires the use
of program-wide temporaries.

Currently, a loop must meet three other requirements in
order to be optimizable:

f. It must fit in memory.

g. It must be an innermost 1loop. Outer 1loop
optimization complicates the analysis considerably,
but saves less execution time and is less likely to
produce in-stack operation than innermost
optimization.

-366-

6000 FORTRAN EXTENDED- 4.0

h. The increment must not be théfcontrol variable.
This situation is rare but when it exists it makes
calculation of the increments of local index
functions outside the loop impossible.

Objectives of DOPRE

DOPRE generates code

a. ToO c0mputé the reference all standard index
functions.

b. To count DO loops.
C. To materialize control variables where necessary.
d. To provide optimization features if requested.

PRE calls DOPRE when it encounters a DO begin or DO end
macro, or a standard index function pseudo-macro.

If no optimization is requested, DOPRE expands each macro
and returns to PRE. Standard index functions are
reordered to minimize +the computations required, and
computations involving adjustable dimensions are done at
the program top.

The code generated for DO I=B, C, D is:

B_Constant B Variable
Set R to B Load R with B
Store R in I Transmit R to R

Store R in I

The code generated for DO end is:

D Constant D Variable
7
IL.oad R1 from I Load RT from I

R1 + D to R3 or Load R2 from D

Store R3 in I R1 + R2 to R3

-367-

6000 FORTRAN EXTENDED 4.0

Store R3 in I

C Constant C Variable

R3 - (C+1) to R4 Load R4 from C
or
NG R4 L R4-R3 to R5

PL R5 L

If standard optimization is requested, DOPRE allows PRE
to form an R-list buffer containing the above macros and
pseudo-macros and the expanded R-list items for an entire
well behaved loop and the first sequence outside the
loop. It analyzes this information in detail, modifies
it, and returns it in final form to PRE.

The analysis provides the following broad features:

1. Standard index functions which do not change in the
loop (global) are computed once outside the loop.

2. Standard index functions which change in the loop
only when the control variable changes (local) are
initialized outside the loop and incremented within
the loop.

3. Variable increments of 1local index functions are
computed outside the loop.

4. Standard index functions containing variables
changed in the loop (redefined) are computed at the
point of reference.

5. The adjustable parts of all standard index
functions, local, global or redefined, in a loop or
out, are computed at subprogram top.

6. B registers are initialized at loop top with
constants, addresses, index functions, and variable
increments chosen to reduce space in the loop.

T Instructions which reference the sums and

differences of B registers are used to reduce space
further.

-368~=

6000 FORTRAN EXTENDED 4.0

The quantities 1loaded in B registers are selected to
minimize the space required by the 1loop, in accordance
with Section 1 above.

The following quantities are initially candidates for B
registers:

1 Index functions none of whose vwvariables are

ie 8§ L0 Lup 4 -l 22 8+

redefined in the loop.

2. Variable increments required for modifying index
functions containing the current control variable.

3. Addresses of variables in load and store
° dinstructions. '

4, Constants in Type II Set instructions.

5. Loop 1limits for use in materializing the control
variable and/or counting the loop.

How Index Functions Are Computed
The general forﬁ of a standard index function is:

DIMENSION A(L,M,N)

«««A (aI+d, bJ+e, cK+f)

(L,M and N are each either constant or adjustable; a, b,
and c are positive integer constants; d, e, and f are
signed integer constants. I, J, and K are variables.)
The above reference necessitates computing the address
A+ (aXl+d-1) + (bJ+e—-1) *L+ (cCK+f-1) * L * M

DOPRE reduces the subscript to a canonical form
containing the following items:

1. The array name, e.g., A

2. The constant addend CA, e.g., d-1 in the example
(assuming L and M are adjustable).

3. From zero to 5 additive terms, each containing from
1 to 3 variables.

-369-

6000 FORTRAN EXTENDED 4.0

Assuming all dimensions are adjustable and I, J, and K

are different, the terms in the example would be aI, bJL,

(e=1)L, cKLM, and (f-1) LM.

Terms are sorted so that

1. Index functions which 1look different, but require
the same computations, are recognized, €.g.,
A(2*I+1) and D(I+1) where D is double length.

2. Non-adjustable variables appearing twice require at
most one multiplication, e.g., A(2*I,1) yields
A+ (L+2) *I+CA, not A+2*I+L*I+CA; (CA=-L-1).

DOPRE computes the constant part of the index function.

It generates code at subprogram initialization to compute

the adjustable part of the index function.

Multiplication by some integer constants is simulated
using shifts and adds. The special cases identified are:

1. negative constant

An instruction BO-R to R is issued and positive
multiplication proceeds.

2. constant = 1
No generation.
3. constant = 3
R1+R1 to R2. R1+R2 to R3
4, constant = 6 |
R1+R1 to R2, Then use code for 3.
5. constant = 2n
shift transmit and left shift n.
6. constant = 2*¥n+2**m (0ee.010...010...0)

shift transmit, left shift n-m, add, shift
transmit, left shift m.

7- COIIStanﬁ ;‘2**11-2**1“ (0...01.,.10-..0)

-370-

8.5

8.6

6000 FORTRAN EXTENDED 4.0

Subtract instead of add.

Program Flow

‘When fast compilation is requested PRODB, PROIXFN, and

PRODE merely generate R-list in 1line. When standard
compilation is requested, most of DOPRE's work is done in
10 sections of code within PRODE. Section I scans the R-
list for the entire loop and forms a table of candidates
- the number of bits saved inside the loop by assigning
it to a B register. Section 1III assigns the most
promising candidate to the 1st B register, recomputes the
values 1if they are altered, assigns the next B register,
etc., until there are no more candidates or no more B
registers. Section IV determines the most space-saving
way of materializing the induction variable (if
necessary) and counting the 1loop, and may alter B7
accordingly. Section V records the final assignments.
Section VI, VII, and VIII generate code in another table
to: load addresses and constants; compute index
functions and increments; and materialize and count,
respectively. Section IX re-scans the R-1list for the
loop, changing references to refer to B registers.
Section X merges the generated code with the original R-
list. Control returns to PRE.

Evaluating Candidates

As section I forms the potential candidate list, it notes
in which sequences each candidate was referenced, notes
uses of B registers already present in the R-1list, and
groups index function and address candidates.

Where Z is a candidate

SEQ (Z) = a bit pattern containing a bit in the nth
position if Z is referenced in the nth sequence.

L= the number of bits in SEQ (Z)

DOPRE cannot tell what the final code will be; it assumes
that quantities in X registers are loaded only once per
sequence in which used.

Section II evaluates the candidates. The "value" of a

candidate is the difference between the number of bits
required for instructions to 1load ands/or reference it

-371-

6000 FORTRAN EXTENDED 4.0

within the loop if it is not assigned a B register, and
the number required if it is assigned a B register.

A. Addresses in Load A and Store A Instructions

All addresses become candidates. After an address
is assigned a B, the differences between it and each
other required address become candidates also. That
is, if Y and Y + 1 are referenced, the code will be
one of the following:

Number of Registers Assigned

0 1 1 2 2
set B1 to - Y Y+1 Y Y+1
set B2 to - - - 1 1
reference Y ref Y ref B1 ref Y ref B1 ref B1-B2
reference Y+1 ref Y+1 ref Y+1 ref B1 ref B1+B2 ref B1

Differences are used because of the likelihood that
constant differences (and possibly symbolic
differences) may occur several times. In the above
example, the constant 1 may be referenced directly
and may occur also as the difference of A and A+1, B
and B+1, C+1 and C+2, etc.

As can be seen from the above chart, the value of an
address is 15L, and the value of a difference is
also 15L. (Symbollc differences are not formed when
either symbol is a formal parameter.)

b. Constants in Set X Instructions, as increments, as
differences, as loop 1limits. All constants are
candidates (negative constants are filed in positive
form). Whenever a constant is assigned a B
register, Section III scans the other B registers
assignments for other constants and determines
which, if any, useful constants may be formed as the
sum or difference of assigned constants. Suppose
the constants 1, 2, 3, 4, 5, 6, 10, and 50 are
required. Suppose also that B register assignments
cf constants are as focliows:

-372-

' 6000 FORTRAN EXTENDED 4.0

B1 4
B3 1
B6 50

References to 5 are generated as B1+B3. References

+to 3 are generated as B1-R3. References +o0 2 are

aivc YruaviLaovew - N AT aTaa Ka S

generated as B3+B3. Although the assignment of,
say, 3, 2, and 50 would have been preferable
{pbecause 1, 4, 5, and 6 can be formed), no attempt
is made to assign the optimum constants.

The value of a constant is 15L since "SX1 B1" is 15
bits shorter than e.g., "SX1 4.

Variable Increments tequired for modifying local
index functions. With the index function in B2, the
code required is:

No B 1 B

Instruction:

SA1 INC -
{(SB2 X1#B2 or SX6 X1+B2) {SB2 B2+#B1 or SX6 B2+B1)
Cost: 30 0
Value: 30

Index PFunction

All index functions with identical variable parts
comprise a "group", e.g., X(I+5), and ¥Y(I), are in
the same group; except that each array which is a
formal parameter has its own group.

Index functions are grouped because costs may be
reduced by using the same memory cell or B register
for more than one of them; e.g., if X(I) is in B1,
Y(I) may be loaded as follows:

SA1 Y~X+B1

and this may minimize space when there aren't enough
B registers to go around.

-373-

6000 FORTRAN EXTENDED 4.0

Formal parameter arrays have their own groups
because references like Y-X+B1 would otherwise have
to be computed at run time.

The value (in bits, within the loop) of an index
function depends on how it is computed and
referenced.

There are six ways to compute/reference X(I) where
Y(I) is also required:

Outside Loop Reference
In Memory X+I to LTEMP SA1 LTEMP
ref X1
In B ¥X+1 to B1 ref B1
Share Memory Y+I to LTEMP SA1 LTEMP
ref X-Y+X1
Share B Y+I to LTEMP
X-Y to B2 SA1 to LTEMP
ref X1+B2
Different Y+I to LTEMP
Memory
X-Y to B2 SA1 to LTEMP
ref X1+B2

Difference B Y+I to B1
X-Y to B2 ref B1+B2

The initial value of a group of index functions is
the cost of having no B register for the group minus
the cost of having one B register for the group.
This is the same as the cost of 1loading the index
function in each sequence in which any member of the
group is referenced, or 30* number of bits in (SEQ
V...V SEQn), plus incrementation cost (for 1local
index functions) of u45.

The differences between the candidate (the most-

loaded group member) and each other member of the
group also become candidates with values of 15L.

=374~

8.7

6000 FORTRAN EXTENDED 4.0

Assignment of B registers

Section II performs the initial evaluation of candidates.
Section III assigns the most valuable candidate to B1,
re-evaluates as necessary and assigns the next highest
candidate to B2, etc., until there are no more B
registers or no more candidates. The first time an
address is assigned the differences with other addresses
are filed. Each time a constant is assigned,
combinations of it and previously assigned constants are

generated.
Loop Control Code and Materialization

Subroutine MATC following Section I, and Sections IV and
VIII select and generate the code to test at the bottom
of the 1loop and to materialize the control variable if
required.

MATC files the loop limits as candidates if
materialization is required. Section IV chooses the best
code for materialization and testing based on the
assignments to B registers made in Section III. Section
IV may alter assignments to produce better code.

Section VIII generates the materialization and testing
code. The code produced is one of the following:

NORMAL LEVEL OF OPTIMIZATION MODE LOOP COUNTING
(where the general form of the DO is DO SN I = B,C,D)

1. Count the loop in memory

ToP END
(C=B) LTEMP SA1 LTEMP
D SX X1-1
‘ SAS LTEMP

PL X6,TOP

2. Count the index function to zero

TOP END
(-mc+mb) Bi (increment Bi)

GE BO, Bi, LABEL

-375-

6000 FORTRAN EXTENDED 4,0

Count the index function up to mc (multiplier
times upper limit)

TOoP END
(index function) Bi (increment Bi)
mc B7 GE B7, Bi, LABEL
Count in B7 where D is a B register

TOR END
(B-C-1) LTEMP SB7 B7+BD |

GE B0, B7, LABEL

Count in memory where D is in a B register

TOP END
(B~-C-1) LTEMP SA1 LTEMP
SX6 X1+BD
SA6 LTEMP

NG X6, IABEL

Count in B7 where there is a 1 in a B register

TOP END
(B-C) B7 SD7 B7+B1
D GE BO, B7, LABEL

Count in memory where there is a 1 in a B register

TOP END

=25 =22
(B-C) -1 LTEMP SA1 LTEMP
D SX6 X1+B1
SA6 LTEMP

NG X6, IABEL
Count the loop B7

OoP END

A—

-376-

6000 FORTRAN EXTENDED 4.0

D B7 GE B7, BO, LABEL
9. Test the control variable I with C loaded
TOP END
(load C)

IX0 Xc-Xi
PL. X0,LABEL

10. Test the control variable I with C+1 loaded

TOP END
-

(load C+1)
IX0 Xi=Xc-1
NG X0, LABEL

11. Test the control variable I where count
(C) is materialized

TOP END
SX0 Xi-C-1

PL X0, LABEL

12. Test the control variable I where the address of
count (C) is in a B register

TOP END
SAi Bc
IX0 Xc-Xi

PL X0, LABEL
Generation

Section V marks the final B register assignments in the A
table. Section VI generates code at 1loop +top to 1locad
addresses, constants, and symbolic differences.

Section VII generates code at 1loop top to initialize
index function and variable increments to 1local index
functions, and code at loop end to increment local index
functions. Section IX re-scans the original R-list,
changing the references to reflect the B register
assignments and generating adjustable computations in
redefined index functions. Section X merges the loop top

-377-

6000 FORTRAN EXTENDED 4.0

and loop end code with the R-list for the body of the
loop, and generates code in-line to compute and reference
redefined index functions.

The program then exits to PRE.

-378-

1.0

2.5

6000 FORTRAN EXTENDED 4.0

PROSEQ

General Information

PROSEQ is the controller for the processing of a sequence
or group of sequences. This processing begins with a
sequence as collected by PRE and results in the final
production of a series of COMPASS 1line images on the
coMps file. A number of these routines are called to
perform the actual processing. Under OPT=2, PROSEQ
controls the selection and assignment of quantities to
registers over the body of a loop. Necessary preload and
post store code is produced within PROSEQ.

Entry Points
USEDT
Data area containing the character string USE DATA.

NORLIST

Cell containing a count of the number of R-list entries
in the current sequence.

FWADESC

Cell containing the address of the start of the
descriptors for the sequence as copied by PROSEQ.

FAILCT

Count of <the number of times failure occurred when
processing a sequence. This is only incremented by
conditional code if the symbol FAILNUM is set non-zero.
FWARLIS

Cell holding the first word address of the R-1list1
entries in the copied sequence.

PROSEQ

Primary entry for all processing by PROSEQ.

-379-

6000 FORTRAN EXTENDED 4.0

Messages and Diagnostics

MEMORY OVERFLOW IN PROSEQ

MORE CORE WOULD HAVE RESULTED IN BETTER OPTIMIZATION

Environment

BASE Current base R number for this sequence. Used
only for OPT=0 processing.

FWAF Holds the first word address of the F table.
Used only for OPT=0 processing.

LWAWORK Holds the last word address of working storage.

ENDSEQ Holds the address of the current end of.
sequence marker in uncopied R-list.

ENDLIST Holds the address of the last end of statement
marker within the optimum size distance from.
FWASEQ when a sequence fail occurs.

VARFLAG Nonzero if a VARDIM code sequence is being
processed.

LASTR Cell in OPTB used to contain the list R-~list1
entry issued. It is used to initiate register
‘clearing by OPT.

LASLBL Holds the last 1label encountered and is
referenced in OPT to determine if stack timing
can be used.

SQUEEZE Routine which removes redundant calculations
from a sequence by marking them as killed and
adjusts the R numbers aprropriately.

PURGE Routine that physically deletes entries in the
R-1list sequence that were killed by SQUEEZE.

BUILDDT Routine to construct the dependency tree used
by OPT in issuing the code in the sequence.

FWAWORK Holds the first word address of working

storage.

-380-

RLIST

SQZVARD
OPTA
FWASEQ

JAMMER

NFPUNT

COVD.
VARDIM

OVERS
POSTIFQ
OPNPOST

CLSPOST

STMTS

6000 FORTRAN EXTENDED 4.0

first word address of the working area
sequence. Typically the

Holds
used in copying the
same as FWAWORK.

Called when insufficient storage is available
to process the sequence.

Routine to produce a COMPASS line image, given
an R-list entry.

Routine to perform squeezing on a VARDIM
sequence.

Routine to issue a sequence of code in optimum
functional unit usage order.

Holds +the first word address of the uncopied
sequence.
Last report sequence processor when all

recovery mechanisms in PROSEQ are unable to
code a sequence into COMPASS. A call to JAMMER
will always code the sequence.

This external is called when the lack of memory
force PROSEQ into a recovery mechanism. The
message MORE MEMORY WOULD HAVE RESULTED IN
BETTER OPTIMIZATION is produced.

Current use block ordinal.

Block ordinal address for the VARDIM block.

Holds the number of leftover parcels from the
previous sequence.

Start of an area used in passing R-list entries
to POST for conversion to COMPASS.

Entry in POST +to initialize sequence proces-
sing.
Entry in POST to dump the accumulated COMPS

images to the COMPS file
successfully coded.

once a sequence is

Number of statements in the current sequence.

-381-

TREEING

FWATREE

S.FWA

OPTLVL
ADSUBTT
SUBREF
SQZFLG
RLOCK

RCHANGE

MEM
BIND

FAIL

RI (J)

DESCR
XOSCR

NLOKR
REPLACE

WRWDS

'Holds the

6000 FORTRAN EXTENDED 4.0

Holds the length of the dependency tree.

Holds the first word address of the dependency

tree.
Holds the start of the sequence +3 on entry.

Hold the optimization level selected on the FTN
card.

Flag word indicating ADDSUB macro placed on
COMPS already.

SUB macro reference flag.

Holds a value indicating sequence or sequences
over which register allocation (0PT=2) is
taking place.

Address of the R-1list1 word for the start of
the locked register prologue code under OPT=2.

If non-zero, indicates a sequence processing
fail for lack of memory.

If BIND is non-zero, no calls to POST will be
made from OPT (used only by OPT=2).

is transferred to this external when a
sequence

Control
sequence processing fail occurs on a
containing locked registers.

Contains the master R number used by REPLACE
when an R-list entry is killed.

Descriptor table in READRL.
Base of the scratch register table in OPTB.

number of locked registers for this
sequence (OPT=2 only).

Routine to replace all references to a killed R
number by a master R number.

Writes words to a specified file.

-382~

6000 FORTRAN EXTENDED 4.0

Processing

PROSEQ 1is called by PRE to process an accumulated
sequence. On entry, the first word address of the
uncopied sequence 1is established (FWASEQ) and for OPT=0
mode the F table is marked non-existent so that a new one
will be constructed for the next statement. An initial
test is made to determine if the sequence will fit in the
available working storage. If this test indicates
insufficient storage, the sequence is scanned forward to
the first end of statement marker and the fail logic is
is employed on that statement. Normally, sufficient
memory will be present. In this case, the sequence is
copied. Initially, each R-1list instruction occupies
three consecutive words (RLIST1, R-list2 and descriptor).
After the copy, all the R-1listi1's are followed by all the
R-1ist2's which are followed by the descriptors. The
original sequence remains untouched by the copy
operation. During this copy, the number of R-1list
instructions (NORLIST) is established. If only one
instruction 1is present, special processing is employed.
In particular, if it is a label, POST is called to issue.
For a register define standing alone, exit is made to the
path for a successfully processed sequence. (A stand
alone register define can occur in this case:

IF(EOF(1)) 10, 10
10 CALL XYZ
and needs no further processing other than a success
exit.). For any other stand alone R-list instruction, a
tree is constructed by PROSEQ and OPT 1is called.
Generally, however, the sequence will hold more than one
R-1list instruction. First, lett's examine OPT=1
successful sequence processing since this is the most
common path.
OPT=1, Success Path

a. Call SQUEEZE to mark redundant operations in the
copied sequence.

b. Call PURGE to remove redundancies marked by SQUEEZE.

C. Call BUILDDT to construct the dependency tree used
by OPTB.

-383-

6000 FORTRAN EXTENDED 4.0

d. Call OPTB to issue the sequence in the most optimum
fashion.

e. On a successful return, a test is made to determine
if the current sequence passed to PROSEQ has been
completely issued (ENDLIST +3 = ENDESEQ). If not,
control is passed block to the copy process after
setting FWASEQ to ENDLIST +3.

f. If the current sequence is fully issued, a check is
made to determine if the group of sequences passed
to PROSEQ have been completely issued (ENDSEQ+6 > R-
list). If not, control reverts to the copy phase.

g. Upon completion, the sequence area is returned to
working storage and PROSEQ is exited.

OPT=0 ProCessing

a. After copying the sequence, PROSEQ is ready to call
OPTB to issue the instructions in their physically
occurring order. However, if PRE determined that
the present statement was more than forty RLIST
instructions 1long, an immediate fast mode fail is
assumed.

b. If OPTB returns indicating failure the sequence
(consisting of one statement) will be forced down
the OPT=1 path.

Failure Processing (OPT=0,1)

A failure occurs when

a. There is insufficient memory to copy a sequence or
build the dependency tree. This is a memory failure
and causes a MORE MEMORY WOULD HAVE RESULTED IN
BETTER OPTIMIZATION MESSAGE to be issued.

b. OPTB is wunable to issue the sequence because of
insufficient registers. '

Recovery processing from each of these failures in the
same, On successive fails with the same sequence,
different things are tried in order to achieve issue.

First Fail

-384~

6000 FORTRAN EXTENDED 4.0

ENDPAR is set to FWASEQ +3%* optimum number of R-list
entries (presenty 40 entries). This demarcates an
upper 1limit on a portion of the sequence to be
examined,

If the sequence contains less than the optimum
number, ENDPAR is set to ENDSEQ.

Then the entries from FWASEQ to ENDPAR are scanned
and the location of the first and 1last end of
statement in +this region are noted (FIRSTMT holds
the location of the first and ENDLIST the location
of the last).

If upon scanning the region FIRSTMT=0 (no end-of-
statement in the area), ENDPAR is bumped one entry
and another check for end-of-statement is made.
This continues until one is 1located or ENDPAR =
ENDSEQ. For no end-of-statment, the NOFIRST flag is
set and an attempt is made to process the sequence
without squeezing.

If FIRSTMT#0 and ENDLIST=0, ENDLIST is set to
FIRSTMT and the first statement alone is copied for
processing.

If FIRSTMT+#0, ENDLIST#0, ENDLIST is used as the copy
boundary, unless it equals ENDSEQ-3, in which case
FIRSTMT is the boundary.

After locating a copy boundary, a failure copy
routine is used to make the copy of the sub
sequence.

Once the sequence is copied SWITCH1 controls
subsequent processing:

Value Action
0 call SQUEEZE,PURGE,BUILDDT,OPTB
1 call BUILDDT,OPTB
- call JAMMER

Second Fail

On

a second fail when FIRSTMT # ENDLIST, an attempt is

made to issue just the R-list wup to FIRSTMT without
squeezing or purging.

-385-

5.3.2

5' 3.3

6000 FORTRAN EXTENDED 4.0

Third Fail .

At this point, OPTB has failed in issuing a single
statement. No further sequence splitting may be done so
JAMMER is called. JAMMER will issue the statement
generating memory temporaries if needed.

Success after Fail

When a fail sequence is finally issued, all failure
indi