
60492600

CONT"OL DATA
CORfO~TION

CO PASS VERSI t~ 3
REFERElr~CE A UAl

--------------~-----------~.-

CDC® OPERATIf~G SVSTE~AS:

NOS 1
NOS/BE 1
SCOPE 2

REVISIO'l'J RECORD
REVISION DESCRIPTION

A Original release.

(11-01-75)

B .Manual revised to reflect a new feature and to clarify existing material. TIle new feature is:

(03-05-76) CP 147, LDSET pseudo instruction. See list of effective pages.

C This revision reflects feature F7540. Model 176 support, feature CP154, Weak Externals. and

(03-25-77) feature CP161, Fast Dynamic Loader, as well as miscellaneous technical corrections, at PSR level 446.

0 This revision documents COMPASS Version 3.5. New features include the DEBUG preset option and

(03-31-78) 8 lines/inch density on the load map.

E This revision documents COMPASS Version 3.6. PSR level 485. New features include the PD and PS

(10-31-78) control statement parameters and common common decks.

F This revision renects the introduction of SEGLOAD common blocks. An error list parameter is added

(06-29-'79) to the COMPASS call. Numerous minor technical corrections are made to section 12.

G This revision documents support for CYBER 170 Models 720, 730. 740, 750, and 760. An example

(07-07-80) program is included. Minor technical corrections are made throughout.

Publication No.

60492600

REVISION LETTERS I. O. Q AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION 1975,1976. 1977, 1978. 1979. 1980

All Rights Reserved

Printed in the United States of America

ii

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publicatio1/s alld Graphics Dil'isioll

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is
affected. A bar by the page number indicates pagination rather than content has changed.

Page Revision

Front Cover -
Inside Front Cover G
Title Page -
ii G
iii G
iv G
v G
vi G
vi-a/vi-b G
vii G
viii C
ix thru xi G
1-1 thru 1-4 G
2-1 thru 2-3 A
2-4 D
2-5 E
2-6 A
2-7 C
2-8 F
2-8.1/2-8.2 F
2-9 thru 2-13 A
2-14 G
2-15 thru 2-20 A
2-21 C
2-22 D
2-23 D
2-24 A
2-25 G
2-26 G
3-1 thru 3-'-15 G
4-1 thru 4-4 G
4-5 A
4-6 C
4-7 C
4-8 thru 4-19 A
4-20 F
4-21 G
4-22 G
4-22.1 G
4-22.2 F
4-22.3/4-22.4 F
4-23 A
4-24 C
4-25 B
4-26 E
4-27 A

60lt92600 G

Page Revision

4-28 A
4-29 G
4-30 G
4-31 A
4-32 E
4-33 D
4-34 thru 4-36 A
4-37 D
4-38 G
4-39 thru 4-41 C
4-42 A
4-43 thru 4-45 C
4-46 thru 4-51 A
5-52 thru 4-54 F
4-55 A
4-56 A
4-57 C
4-58 A
4-59 C
4-60 thru 4-68 A
4-69 C
4-70 A
4-71 A
4-72 B
4-73 thru 4-75 A
4-76 E
4-77 A
4-78 A
5-1 A
5-2 C
5-3 C
5-4 A
5-5 A
5-6 E
5-7 E
5-8 A
5-9 C
5-10 E

I
5-11 D
5-12 A
5-13 A

,
5-14 E
5-15 F
5-16 thru 5-25 A
5-26 G I
5-27 B I

iii ~

iv

Page Revision

12-6 F
12-7 E
12-8 F
12-9 E
12-10 thru 12-13 F
12-14 thru 12-16 E
12-17 F
12-18 thru 12-20 E
12-21 G
12-22 thru 12-24 E
12-25 F
12-26 F
12-27 E
12-28 G
12~29 E
12-30 F
12-31 E
12-32 E
A-I thru A-4 A
B-1 A
B-2 A
B-3 G
B-4 G
B-5 A
C-1 A
D-1 thru D-5 G
E-l D
E-2 E
E-3 D
E-4 thru E-6 G
F-1 thru F-4 D
Index-1 thru -14 G
Comment Sheet G
Mailer -
Inside Back Cover G
Back Cover -

60492600G

f =

PREFACE

m

The Control Data COMPASS Version 3.6 Assembler provides the user with a versatile, extensive language
for generation of object code to be loaded and executed on the central processor unit (CPU) or a peripheral
processor unit (PPO). The assembler executes on the following computer systems and operating systems:

• NOS 1 for the CONTROL DATA® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems

• NOS/BE 1 for the CDC®CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems

e SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer
Systems

The CDC CYBER 170 Models 720 and 730 have unified processors and use the instructions noted in this I
pUblication for computer models with a Compare/Move Unit (eMU) such as the CYBER 170 ["lOdel 172.

The CDC CYBER 170 Models 740, 750, and 760 have functional units and use instructions noted in this
pUblication for computer models with functional units such as the CYBER 170 Model 175.

This pUblication is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instructions. Information in the related computer system
reference manuals takes precedence over information in this pUblication should discrepancies arise between
the pUblications.

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assemblers in general.

NOTE

I

Continued use of COMPASS in creating application programs should be avoided
when possible. COMPASS and other machine-dependent languages can com­
plicate migration to future hardware and software systems. Program mobility
will be restricted by continued use ofCOMPASS for stand-alone programs,
COMPASS sUbroutines embedded in programs using higher-level languages, and
user-written COMPASS owncode routines in CDC standard p['oducts.

Extended memory for the CDC CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760 is I
extended core storage (ECS). Extended memory for the CDC CYBER 170 Model 176 is large central
memory (LCLVI) or large central memory extended (LCME). ECS, LClVI, and LCME are functionally equi­
valent, except as follows:

• LCM and LCME cannot link mainframes and do not have a distributive data path (DDP) capability.

• LCM and LCME transfer errors initiate an error exit, not a half exit, as noted in section 8.4.4.

The CYBER 170 Model 176 supports direct LClVI and LCME transfer instructions. These are described in
section 8.4.8.

In this manual, numbel'S occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numeric mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a SUbstitution are shown in shaded print.

60492600 G v

General explanations of COMPASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept, instr'uction indexes have been included
inside the front and back covers.

Additional information essential to programming in the COMPASS environment can be found in the listed
publications. The first group consists of software-related publications; the second group consists of
hardware-related publications. Publications are listed by ASCII collatingsequence within each group.

The applications programmer will need the CYBER Record Manager Basic Access rvlethods and Advanced
Access Methods manuals for information about the macros needed to define, access, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loadel'
for the SCOPE 2 operating system).

In addition to the above, the systems programmer will need the appropriate operating system manual to
obtain information about system macros. Volume 2 of the NOS reference manual is indispensible for ttle
COMPASS programmer in the NOS environment. Further, more detailed descriptions of COMPASS
instructions can be found in the appropriate hardware reference manual.

A Control Data abstracts manual is a pocket-sized booklet containing brief descriptions of the contents and
intended audience of all manuals for a CDC operating system and its product set. The abstracts manual
can be useful in determining which manuals are of greatest interest to a particular user. The Software
Publications Release History serves as a guide to the revision level of software documentation which
corresponds to the Programming System Report (PSR) level of installed site software.

Software-Related Publications

vi

PUblication

7000 Record Manager Reference Manual

COMPASS Version 3 Instant

CYBER Interactive Debug Version 1 Reference Manual

CYBER Loader Version 1 Reference Manual

CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual

CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual

Modify Reference Manual

NOS 1 Reference Manual, Volume 1

NOS 1 Reference Manual, Volume 2

NOS Version 1 Manual Abstracts

NOS/BE 1 Reference Manual

NOS/BE Version 1 Manual Abstracts

Publication
Number

604546~O

604~2800

60481400

60429800

60499300

60495700

60450100

604354UO

60445300

84000420

60493800

84000470

60492600 G

Publication

CDC CYBER 70 Models 72, 73, and 74 and 6000 Series
Computer Systems I/O Specifications Reference Manual

Publication Number

60352500

CDC CYBER 170 Models 172, 173, and 174 Reference Manual

CDC CYBER 170 Models 175 and 176 Reference Manual

CDC CYBER 170 Computer Systems Models 720, 730, 750, 760

CYBER 70 Model 76 Reference Manual

19981200

60420000

60456100

60367200
I

60492600 F

CDC manuals can be ordered from Control Data
Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described
in this document. Control Data cannot be responsi­
ble for the proper functioning of undescribed features
or parameters.

vi. l/vl. 2

I

SCOPE 2 Loader Version 2 Reference Manual

SCOPE 2 Reference Manual

Software Publications Release History

Update 1 Reference Manual

Hardware-Related Publications

Publication

CDC CYBER 170 Computer Systems Models 171 through 175
(levels A, B, C) Model 176 (level A)

CDC CYBER 170 Computer Systems Models 720, 730, 740,
750, 760 Model 176 (level B)

CDC CYBER 70 Computer Systems-7030 Extended
Core Storage Reference Manual

CDC CYBER 70 Model 71 Systems Description and
Programming Information Reference Manual, Volume 1

CDC CYBER 70 Model 72 Systems Description and
Programming Information Reference Manual, Volume 1

CDC CYBER 70 Model 73 Systems Description and
Programming Information Reference Manual, Volume 1

CDC CYBER 70 Model 74 Systems Description and
Programming Information Reference Manual, Volume 1

CDC CYBER 70 Model 76 Reference Manual

CDC CYBER 70 Models 72, 73, and 74 and 6000 Series
Computer Systems I/O Specifications Reference Manual

CDC CYBER 70 Models 72, 73, and 74 Instruction
Descriptions Reference Manual, Volume 2

60454780

60342600

60481000

60449900

Publication
Number

60420000

60456100

60347100

60453300

60347000

60347200

60347400

60367200

60352500

60347300

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution
Services, 308 North Dale Street, St. Paul, Mirmesota 55103.

This product is intended for use only as described
in this document. Control Data cannot be respon­
sible for the proper functioning of undescribed
features or parameters.

60492600 G vi-a/vi-b •

CONTENTS

Absolute Program Structure 3-6
3.4.1 Absolute Overlays 3-8
3.4.2 Multiple Entry Point Overlays 3-12
3.4.3 Partial Binary 3-12

4-2(1

4-24
4-2:5

4-21
4-22.2

4-7

4-13
4-1(;

4-11

4-1
4-1
4~1

-1-2
4-2

4-32

4-20
4-21

4-2
4-2

4-S

4.4.4
4.4.5

4.4.3

4.3.7
4.3.8

4.3.4

4.3.5

4.3.6

4.3.3

4.4.2

4.3.9

PSEUDO INSTRUCTIONS
Introduction to Pseudo Instructions
4.1.1 Types of Pseudo Instructions
4.1.2 Required Pseudo Instructions
4.1.3 First Statement Group
4.1.4 Permissible Anywhere

Instructions
Subprogram Identification
4.2. 1 IDENT -Subprogram

Identification 4-2
4.2.2 END-End of Subprogram 4-4
Binary Control 4-1;
4.3.1 ABS - Absolute CPU Program -1-G
4.3.2 1\IACHINE - Declare Object

Processor Type
PPU - CYBER 70/l\Iodel 7G or
7600 PPC Program
PERIPH - CYBER 170 Series,
CYBER 70/l\Iodels 72, 73, 74
or GOOO Series PPC Pl'ogram 4-10
IDENT - Identify and Generate
Overlay
SEGl\IENT - Generate Binary
Segment
SEG - Write Partial Binary
STEXT - Generate System
Text Record
COrvIl\IEi\T - Prefix Table
Comment

4.3.10 NOLABEL - Delete Header
Table

4.3.11 LCC - Loader Directive
4.3.12 LDSET - Generate LDSET

Object Directives
Mode Control
4.4.1 BASE - Declare Numeric Data

1\Iode 4 - ') ,) ?

CHAR - Define Other Characte l'

Data Code 4-24
CODE - Declare Character
Data Code
QUAL - Qualify Symbols
Bl=1 and B7=1 - Declare that
B Register Contains One 4-2"

4.4.6 COL - Set Comments Column 4-29
Block Counter Control 4-30
4.5.1 USE - Establish and ese Block 4-:30
4.5.2 USELCl\I - Establish and Use

ECS/LCl\I Block
4.5.3 OnG and OHGC - Set Origin

Counter

4.3

4.2

4.4

4.5

3.4

4.
4.1

1-3
1-3
1-4
1-4

1-1

2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-9
2-10
2-10
2-10
2-11
2-13
2-16
2-21
2-21
2-23
2-26

3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-5

INTRODUCTIO:'-J

PROGRA1\T STRUCTURE
Subprogram Blocks
3.1.1 Absolute Block
3.1.2 Zero Block
3.1.3 Litera Is Block
3.1.4 User-Established Local Blocks
3.1.5 Labeled Common Blocks
3.1. G Blank Common Blocks
3.1.7 Redlmdant Block :Kames
Block Control Counters
3.2.1 Origin Counter
3.2.2 Location COllUter
3.2.3 Position Counter
3.2.4 Forcing Upper
Relocatable Program Structure

lANGUAGE STRUCTURE
Statement Format
2.1.1 First Column
2.1.2 Location Field
2.1.3 Operation Field
2.1.4 Variable Field
2.1.5 Comments Field
2. 1. 6 Comments Statement
2.1.7 Statement Continuation
2. 1. 8 Coding Conventions
Statement Editing
2.2.1 Concatenation
2.2.2 J.\1icro Substitution
Names
Symbols
2.4.1 Linkage Symbols
2.4.2 Default Symbols
2.4.3 Previously Defined Symbols
2.4. -1 Undefined Symbols
2.4.5 Qualified Symbols
CPU Registers
Special Elements
Data Notation
2.7. 1 Data Items
2.7.2 Constants
2.7.3 Literals
2.7.4 Character Data Notation
2.7.5 Numeric Data Notation
2.7.6 Hexadecimal Data Notation
Expressions
2.8.1 Types of Expressions
2.8.2 Evaluation of Ex'})ressions

Configuration
Assembler Execution
Reloca table Object Program Excel! tion
Interactive Program Debugging

3.3

2.5
2.6
2.7

2.8

3.2

2.3
2.4

2.
2.1

2.2

3.
3.1

1.

I

1.1

I
1. 2
1.3
l.4

60492600 G vii

4.5.4 BSS - Block Storage 4.11. 6 NOREF'- Omit Symbol
Reservation 4-35 References 4-76

4.5.5 LOC - Set Location Counter 4-36 4.11.7 CTEXT and ENDX - Disable/
4.5.6 pas - Set Position COlmter 4-38 Enable Listing of Common

4.6 Symbol Definition 4-38 Deck Text 4-77
4.6.1 EQU or == - Equate Symbol 4.11.8 XREF - Reference Symbolic

Value 4-39 Address 4-78
4.6.2 SET - Set or Reset Symbol

Value 4-39 5. DEFINITION OPERATIONS 5-1
4.'6.3 MAX - Set Symbol to Maximum 5.1 External Text (XTEXT) 5-2

Value 4-40 5.2 Remote Assembly 5-3
4.6.-4 MIN - Set Symbol to Minimum 5.2.1 RMT - Save Remote Code 5-3

Value 4-41 5.2.2 HERE - Assemble Remote Code 5-4
4.6.5 MICCNT - Set Symbol to 5.3 Code Duplication 5-6

Micro Size 4-42 5.3.1 DUP - Simple Duplication 5-6
4.6.6 SST - System Symbol Table 4-43 5.3.2 ECHO - Echoed Duplication 5-7

4.7 Subprogram Linkage 4-43 5.3.3 STOPDUP - Stop Duplication 5-9
4.7.1 ENTRY and ENTRYC - Declare 5.3.4 ENDD - End Duplication

Entry Symbols 4-43 Sequence 5-10
4.7.2 EXT - Declare External 5.4 Macros and Opdefs 5-13

Symbols 4-45 5.4.1 ENDM - End Macro Definition 5-14
4.8 Data Generation 4-45 5.4.2 MACRO - Macro Heading 5-15

4.8.1 BSSZ and Blank Operation 5.4.3 Macro Calls 5-18
Field - Reserve Zeroed Storage 4-46 5.4.4 IVIACROE - Equivalenced

4.8.2 DATA - Generate Data \Vords 4-46 Macro Header 5-24
4.8.3 DIS - Generate Words of 5.4.5 Equivalenced Macro Call 5-25

Character Data 4-47 5.4.6 OPDEF - Define CPU Operation 5-27
4.8.4 LIT - Declare Literal Values 4-49 5.4.7 Opdef Call 5-29
4.8.5 VF'D - Variable Field Definition4-51 5.4.8 LOCAL - Local Symbols 5-31
4.8.6 CON - Generate Constants 4-52 5.4.9 IRP - Indefinitely Repeated
4.8.7 R= - Conditional Increment Parameter 5-32

Instruction 4-53 5.5 System Macro and Opdef Definitions 5-35
4.8.8 REP, REPC, and REPI - Gen-

erate Loader Replication Table 4-55 6. OPERATION CODE TABLE
4.9 Conditional Assembly 4-57 MANAGEMENT 6-1

4.9.1 ENDIF' - End of IF Range 4-57 6.1 Mnemonically Identified Ll1structions 6-3
4.9.2 ELSE - Reverse Effects of IF 4-58 6.1.1 PPOP - PPU Operation Code 6-3
4.9.3 IFtype - Test Object Processor 6.1.2 OPSYN - Synonymous Mnemonic

Type 4-58 Operation 6-5
4.9.4 IFop - Compare Expression 6.1. 3 NIL - Do Nothing Pseudo

Values 4-60 Instruction 6-6
4.9•.5 IFPL and IFMI - Test Sign of 6.1.4 PURGMAC - Purge IVIacros 6-7

Expression 4-62 6.2 Syntactically Identified Instructions 6-7
4.9.6 IF - Test Symbol or Expression 6.2.1 CPOP - CPU Operation Code 6-7

Attribute 4-63 6.2.2 CPSYN - Synonymous CPU
4.9.7 IFC - Compare Character Instruction 6-10

Strings 4-66 6.2.3 PURGDEF - Purge CPU
4.9.8 SKIP - Unconditionally Skip Operation Code 6-10

Code 4-68
4.10 Error Control 4-69 7. ~MICROS 7-1

4.10.1 ERR - Unconditionally Set 7.1 Micro Substitution 7-1
Error Flag 4-69 7.2 Micro Definition 7-2

4.10.2 ERRxx - Conditionally Set 7.2.1 MICRO - Define Micro 7-2
Error Flag 4-70 7.2.2 DECMIC - DecimallVIicro 7-4

4.11 Listing Control 4-71 7.2.3 OCTMIC - Octal Micro 7-4
4.11.1 LIST - Select List Options 4-71 7.3 Predefined Micro Names 7-5
4.11.2 EJECT - Eject Page and Begin 7.3.1 DATE 7-5

New Sub-Subtitle 4-74 7.3.2 JDATE 7-6
4.11. 3 SPACE - Skip Lines and Begin 7.3.3 TIME 7-6

New Sub-Subtitle 4--74 7.3.4 BASE 7-6
4.11.4 TITLE - Assembly Listing 7.3.5 CODE 7-6

Title 4-75 7.3.6 QUAL 7-6
4.11. 5 TTL - New Assembly Listing 7.3.7 SEQUENCE 7-7

Title 4-76 7.3.8 MODLEVEL 7-7
7.3.9 PCOMl\'1ENT 7-7

60492600 C

8. CPU SYMBOLIC MACHINE 8.4.18 Logical Sum Instruction 8-26
INSTRUCTIONS 8-1 8.4.19 Logical Difference

8.1 Machine Instruction Formats 8-1 Instruction 8-27
8.2 Instruction Execution 8-2 8.4.20 Complement Instruction 8-9 '7.... 1

8.2.1 6600/6700 and CYBER 70/ 8.4.21 Logical Product and
Model 74 Execution 8-2 Complement Instruction 8-28

I 8.2.2 CYBER 170/Models 171, 8.4.22 Complement and Logical
172, 173, 174, 720, 730, Sum Instruction 8-28
and the CYBER 70/Models 71, 8.4.23 Complement and Logical
72, 73 and 6200/6400/6500 Difference Instruction 8-29
Execution 8-4 8.4.24 Logical Left Shift jk

8.2.3 CYBER 170/Model 175, 176, Places Instruction 8-29

I 740, 750, and 760 and the 8.4.25 Arithmetic Right Shift
CYBER 70/Model 76 and 7600 jk Places Instruction 8-30
Execution 8-5 8.4.26 Logical Left Shift (Bj)

8.3 Operating Registers 8-7 Places Instruction 8-31
8.3.1 X Registers 8-7 8.4.27 Arithmetic Right Shift (Bj)
8.3.2 A Registers 8-7 Places Instruction 8-32

"8.3.3 B Registers 8-7 8.4.28 Normalize Instruction 8-33
8.4 Symbolic Notation 8-8 8.4.29 Round and Normalize

I 8.4.1 Program Stop or Exchange Instruction 8-33
Jump Instruction (CYBER 170 8.4.30 Unpack Instruction 8-34
Series, CYBER 70/Models 71, 8.4.31 Pack Instruction 8-35
72, 73, 74 or 6000 Series) 8-10 8.4.32 Unrounded SP Floating

8.4.2 Error Exi t Instruction Point Add Instructions 8-36
(CYBER 70/1Vlodel 76 or 7600) 8-11 8.4.33 DP Floating Point Add

8.4.3 Return Jump Instruction 8-11 Instructions 8-37
8.4.4 ECS Instructions 8.4.34 Rounded SP Floating Point

I (CYBER 170 Series, Add Instructions 8-37
CYBER 70/Models 71, 72, 73, 8.4.35 Long Add (Fixed Point)
74 or 6000 Series) 8-12 Instructions 8-38

8.4.5 LCM Block Copy Insteuctions 8.4.36 Unrounded SP Floating

I (CYBER 170/Model 176, Point Multiply Instruction 8-39
CYBER 70/Model 76 or 7600) 8-13 8.4.37 Rounded SP Floating Point

8.4.6 Exchange Jump Instruction Multiply Instruction 8-39

I (CYBER 170 Series, CYBER 70/ 8.4.38 DP Floating Point Multiply
Models 71, 72, 73, 74 and Instruction 8-40
6000 Series 8-14 8.4.39 Integer Multiply Instruction 8-40

8.4.7 Exchange Exit Instruction 8.4.40 Mask Instruction 8-..11
(CYBER 70/Model 76 or 7600) 8-15 8.4.41 Unrounded SP Floating

8.4.8 Direct LCM Transfer Instruc- Point Divide Instruction 8-42
tions (CYBER 170/Model 176, 8.4.42 Rounded SP Floating Point
CYBER 70/Model 76 or 7600) 8-16 Divide Instruction 8-42

8.4.9 Reset Input Channel Buffer 8.4.43 Pass Instr uc tion 8-43
Instruction (CYBER 170/ 8.4.44 Population Count Instruction 8--!-±
Model 176, CYBER 70/Model 76 8.4.45 Set A Register Instructions 8-44
or 7600) 8-17 8.4.46 Set B Register Instructions 8-46

8.4.10 Set Real-Time Clock 8.4.47 Set X Register Instructions 8-48
Instruction (CYBER 170/ 8.5 CMU Symbolic Machine Instructions 8-50
Model 176, CYBER 70/ 8.5.1 1M - Indirect Move 8-51
Model 76 or 7600) 8-18 8.5.2 MD - Indirect ~vlove

8.4.11 Reset Output Channel Descriptor Word 8-51
Buffer Instruction 8.5.3 DM - Direct Move 8-52
(CYBER 170/lVlodel 176, 8.5.4 CC - Compare Collated 8-53
CYBER 70/Model 76 or 7600) 8-18 8.5.5 CU - Compare Uncollated 8-54

8.4.12 Read Channel Status
Instructions (CYBER 170/ 9. PPU SYMBOLIC MACHINE
Model 176, CYBER 70/ INSTRUCTIONS 9-1
Model 76 or 7600) 8-19 9.1 Machine Instruction Formats 9-1

8.4.14 X-Register Conditional 9.2 Symbolic Notation 9-2
Branch Instruments 8-21 9.2.1 Branch Instructions 9-5

8.4.15 B-Register Condi tional 9.2.2 Shift Instructions 9-7
Branch Instructions 8-23 9.2.3 No Address Mode Instructions 9-7

8.4.16 Transmit Instruction 8-25 9.2.4 Constant Mode Instructions 9-8
8.4.17 Logical Product Instruction 8-26 9.2.5 No Operation Instruction 9-9

60492600 G ix

9.2.6 Exchange Jump Instruc- 11. 5 Default Symbols 11-8
tions (CYBER 170 Series, 11. 6 Assembler St:'ltistics 11-8
CYBER 70/Models 72, 73, 11. 7 Error Directory 11-9
74, and 6000 Series) 9-10 11. 8 Symbolic Heference TabIe 11-11

9.2.7 Read Program Address 12. COMMON COMMON DECKS 12-1
Instruction (CYBER 170 12.1 Residence of the Common Common
Series, CYBER 70/

Decks 12-1Models 72, 73, 74, and
6000 Series) 9-11 12.2 Description of the Common Common

9.2.8 6416 PPU Instructions 9-11 Decks 12-1
9.2.9 Direct Address Mode 12.2. 1 COl\ICARG - Process

Instructions 9-12 Arguments 12-3
9.2.10 Indirect Address i\10de 12.2.2 COl\JCCDD - Constant to Deci-

Instructions 9-13 mal Display Code Con vel'S ion 12-3
9.2.11 Central/Read/Write Instruc-

12.2.3 COl\ICCRD - Convert Constanttions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 to FlO. 3 Format 12-4

and 6000 Series) 9-14 12.2.4 COl\ICCIO - I/O Operation
9.2.12 Central Read/Wri te Instruc- Processor 12-4

tions (CYBER 170 Series, 12.2. !) COMCCOD - Convert Constant
CYBER 70/Models 71, 72, to Octal Displa~' Code 12-;')
73, 74 or 6000 Series) 9-15 12.2.6 COI\ICCPT - Extl'act Comments

9.2.13 I/O BrancJl Instructions
Field from PRE FIX Table 12-5(CYBER 170 Series, CYBER

70/Ivlodels 72, 73, 74 and 12.2.7 COMCDXB - Convert Displa~'

6000 Series) 9-17 Code to Binar)' 12-6
9.2.14 I/O Branch Instructions 12.2.8 COl\ICl\lNS - l\Iove Non-Over-

(CYBER 70/Model 76 and lapping Bit String 12-6
7600) 9-18 12.2.9 COl\ICMOS - l\Jove Overlapping

9.2.15 A Register Input/Output Bit String 12-7
Instructions 9-19

12.2.10 COl\lCl\ITl\I - l\Ianagec1 Table9.2.16 Block Input/Output
Instructions 9-19 l\Iacros 12-8

9.2.17 Set Output Record Flag 12.2.11 COl\ICl\ITP - l\'lanagecl Table
Instruction (CYBER 70/ Processors 12-9
Model 76 and 7600) 9-20 12.2.12 COl\ICl\IVE - l\Iove Block of

9.2.18 Channel Function Instruc- Data 12-13
tions (CYBER 170 Series, 12.2.13 COMCRDC - Read Coded
CYBER 70/1VI0dels 72, 73, 74

Line, C Format 12-13and 6000 Series) 9-21
9.2.19 Error Stop Instruction 12.2. 14 COl\ICRDH - Read Coded

(CYBER 70/Model 76 Line, H Format 12-14
and 7600) 9-22 12.2. 15 COl\ICHDO- Read One \Vord 12-14

PROGRAM EXECUTION 10-1 12.2. 16 COl\ICRDS - Read Coded Line
Control Statements 10-1 to String Buffer 12-1:5
10. 1. 1 Job Statement 10-1 12.2. 17 COl\ICRD\V - Read \Vorcls to
10. 1. 2 COMPASS Call Statement 10-2 \Vorking Buffer 12-lG
10. 1. 3 LGO Control Statement 10-6

12.2.18 COl\ICRSR - Restore All10. 1. -1 Program Call Statement 10-6
10.1.5 7/8/9 Card 10-6 Registers 12-16

10.1.6 6/7/8/9 Card 10-6 12.2. 19 COMCS FN' - Space Fill Name 12-17
10.1. 7 USER Control Statement (NOS 1 12.2.20 COl\ICSRT - Set Recore! T,\'pe 12-17

Only) 10-7 12.2.21 COl\ICSST - Shell Sort Table 12-17
2 Sample Decks 10-7 12.2.22 COMCSTF - Set Terminnl File 12-19

LISTING FOR l\IAT 11-1 12.2.23 COl\ICSVR - Save All Registers 12-19
1 Page Heading 11-1 12.2.24 COl\ICSYS - Process S'\'stem

--
2 Header Information 11-1 Hequest 12-19

11. 2. 1 Binary Control Card Summary 11-1 12.2.25 COl\ICUPC - Unpack Control
11. 2. 2 Block Csage Summary 11-2 Card 12-:n
11. 2. 3 Entry Point List 11--1

12.2.2G COMC\VOD - Convert Word to11. 2. -1 External Symbol List 11-4
3 Octal and Source Statement Listing 11-5 Octal Displa~' Code 12-22
,J Literals 11-7 12.2.27 COl\IC\VTC - Write Coded

Line, C Format 12-22

60492600 C,

12.2.28 COMCWTH - Write Coded
Line, H Format

12.2.29 COl\1C\VTO - \Vrite One Word
12.2.30 COMC\VTS - \tYrite Coded Line

from String Buffer
12.2.31 COlVICWT\V - \Vrite \'lords

from \'lorking Buffer
12.2. 32COIVICXJR - Restore All

Registers with a Sys tem XJR
Call

12.2.33 COMCTB - Convert All 00
Characters to Blanks

12.3 Macros That Call the Common Common
Decks
12.3. 1 MESSAGE

12-22
12-23

12-23

12-24

12-25

12-25

12-25
12-25

APPENDIXES

12.3.2 MOVE
12.3.3 R EADC
12.3.4 READE
12.3.5 READO
12.3.6 READS
12.3.7 READW
12.3.8 RECA LL
12.3.9 SYSTEM
12.3. 10 WRITEC
12.3. 11 \VRITEH
12.3. 12 \VRITEO
12.3. 13 \VRITES
12.3. 14 WRITEW

1')---'':'

l'L')Q

1')- ')",

12-2D
12-:29
12-29
12-30
12-30

<12-31
12-:)1
12-31
12-32
12-32

A

B

C

CHARACTER SETS

ASSErvIBLY-TIME I/O

BINARY CARD

A-I

B-1

C-l

D

E

F

HINTS ON USING COMPASS

DAYFILE MESSAG ES

GLOSSARY

D-l

E-l

F-l

FIGURES

2-1 COMPASS Coding Form 2-3 8-2 CPU 30-Bit Instruction
3-1 Relocatable Program Struc- Format 8-1

ture 3-6 8-3 Arrangements of Instructions
3-2 Absolu te Program Structure 3-7 in a 50-Bit CPU Word 8-2
3-3 Ovel'1ay Hierarchy 3-9 9-1 PPU 12-Bit Instruction
3-4 IDENT-Type Overlay Structure 3-11 Format 9-1
3-5 SEGMENT-Type Overlay 9-2 PPU 24-Bit Instruction

Structure 3-13 Format 9-2
3-6 SEG-T-ype Partial Binary 3-14 11-1 Format of Octal and Source
3-7 IDENT-Type Partial Binary 3-15 Statement Listing 11-5
8-1 CPU IS-Bit Instruction 11-2 Format of Symbolic Refer-

Format 8-1 ence Table 11-13

TABLES

8-1

8-2

9-1
11-1

CYBER 70/Model 74 and 6600/6700
Functional Units 8-3
CYBER 170/Model 175, 176, CYBER 70/
Model 76 and 7600 Functional Units 8-6
PPU Instruction Designators 9-&
Fatal Errors 11-9

11-2
12-1
12-2
12-3

Informative Errors
Summary of Common Comnlon Decks
Type Codes Returned by COrvlCSRT
Macros That Call Common Common
Decks

11-12
12-2
12-18

12-26

60492600 G xi

INTRODUCTION 1

This manual describes the features of the COMP ASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a CO iVlP ASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar· with assemblers in general.

Rcaderswith no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 8 or 9

Chapter 10

Appendix 0

Introduction

Language Structure

Program Structure, sections 3.1 through 3.3

Pseudo Instructions, sections 4.1 and 4.2

CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Program Execution

Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and opeI'ating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

e Differences between CPU and PPU program environments

• Features of COMPASS not supported by a partiCUlar operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruction sets is shown in the instruction indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output acceptable for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:

• Symbolic machine instructions

• Pseudo instructions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a
means of expressing symbolically the data manipulation functions of the machine. Each symbolic
instruction typically generates one machine instruction.

60492600 G 1-1 ..

Pseudo instructions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

• Storage allocation

• Symbol definition

• Subprogram Ii"nkage

• Listing options

• Automatic genera tion of predefined code sequences (macros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor ooit.

Features inherent to COMPASS include:

• Free-field source
statement format

• Control of local
and common blocks

• Preloaded data

• Data notation

• Address arithmetic

• Symbol equation and
redefinition

• Symbol qualification

• Binary control

• Selective assembly of
code sequences

• Mode control

1-2

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interpt'ogram communication. In CPU programs, common areas can be
defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LC1\j).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses can be specified making extensi ve use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.

Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied
to character data as either display code, ASCII, internal BCD, or
external BCD.

60492600 G

• Listing control

• Micro coding

• M: acrocoding

• Operation code table

• Operation code
definition

• Code repetition

• Remote assembly

• Library routine calls

• Diagnostics

1.1 CONFIGURATION

Assembly-time control of list content.

Substitution of sequences of characters defined in the program wnenever the
micro name is referenced. Several micros are predefined by the system for
user convenience.

Assembly of sequences of instructions defined in the program 01' on the
system library whenever the macro name is referenced. MaCL'O definitions
can be redefined or purged from the operation code table.

The programmer can specify or respecify the syntax of aepu or PPU
instruction. The assembler generates an entry in the operation code table for
the instruction. No macro or opdef definition is associated with the entry.

Assembly of sequences of instructions defined in the program or on the
system library whenever an operation code of the specified syntax is
referenced.

Sequences of code can be repeated during assembly or at load time.

Defers assembly of defined coding sequence until later in the assembly.

Routines can be called from the system library.

Diagnostics for source program errors are included on output listing.

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a CaMPASS IDENT statement in the source input file. Parameters on the I
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables I
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues.a diagnostic message.

60492600 G 1-3 ·

All nested processing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS Ius a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

Whcll the assembler has completely processed the source deck, a control statement (for example, LGO) can
be lIsed to call for loading and execution of a CPU object program from the load-and-go file. The loader
linl,s the new ly assembled subprogram to any previously assembled subpl'ograms and subl'outines referred to
I)y Ule new progl'am and to programs on any other files specified by the progl'ammer. After all
SUbprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the SUbprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBEH.
Interactive Debug (CID) software. CID. allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

• Suspend program execution at a specific location or upon occurrence of a specific trap condition, such
as execution of a return jump instruction

• Alter location content during program suspension

• Resume execution at a specified location or at the location where suspension occurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
I Manual listed in the preface.

~..

1-4 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEIAENT fORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and CODlment lines. \Vith the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters. However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re­
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80-to-90 column lines. When punched on cards, each card is considered a line. A single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted
by COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used for additional
comments or sequencing. Column 81-90 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line images.

2.1.1 FIRST COlUN,N

The contents of column one designate the type of line, as follows:

, (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3. 2. 4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a· comma.

Peripheral processor unit mnemonic operation code

60492600A
2-1 •

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas. The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are
no nonblank characters between the operation field and column 30.

A variable subfield contains one of the following:

Data item
Expression
Register designator
Name
Special element
Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be
changed through the COL pseudo instruction (Section 4.4.5).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assenlbly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine contim.~ation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

2-2 60492600A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column

1

2-9

10

11-16

17

18-29

30

Contents

Blankt asterisktor comma

Location field entry or plus t or minus left justified

Blank

Operation field entry left jus tified

Blank

Variable field entry left justified

Beginning of comments

All examples in this manual abide by this convention.

ROUTINE
LOCATION IoPERATION VARIABLE

I NAME
1DATE

COMMENTS

I PAGE OF
IDENT.

I ~ ! • S" 1 • t 1'i> •• ;J UI4 al"':" .. :":1111< l':l n,. 11 loo u·"'I:""n'n'~~~.l.~",.uliUlJ;5oJ1D'_"'11 IoIP"tO'.t1.1'n"!":"j.ll!,,·t~1~~~!'lt,"'''i...:..~

H-~..L......-"""""-'--'--+-"--'---...L.C---+~-"--~.~~-I-....L~- !!! ',I ..l---l-L.J.-..L..l......J..~~~.--'-'-' "--..L..- -....1....-...\---'-'-'----'-----'-'

H--~-'-'---LJ.--L.L--f--"------'LL-.,~~.---.J.-----'--t-I--'--, --'--"---'------'-'---'----'------''"---'-----l--J--l--.- ~-'-,--,-'--,-'--,--,--"--------'-----L--'--'----'---l..-J'---'-'---"_.L-l--t-L~~--'---'----
H--'-'---'-'---,-"---L.L-+-J--'-~---'--''---'----JI-'---,------,-_._~-----L--ii--L.L----l-J-J-J~"-,-~-'-L-l.----l--l.----l-_-,---"---"--------J.--'----'-J--'---L.L-J-J---l..-JLl-,--"--.L-l-..L-L+--C----'-'---"------1

H-'----'-'---L---'-'--'---'---t--'----'----'-''----'---'----t---'--'------~ ._~~+'t -'----'"---'---'----.l.---l-~------'--------'-~--"---'---L-L--'---"-, 'L!.'---L'-'-'-'----'"---.L-L-J-!,-'----'--'---'-~
I ." ""

.-"---'--_--'---l-I-L,-L,-L,--'-,-L,--'-,--'-,--L.J_'-----'-----'--"--'-----'----'----'-----'---'--L· L.L.-'--.L1I----L-'--'----'---'---'----"---'----'-"--+-'--'---'---'----'--'--'-­

I '"""
I'I' , , ,

. I

.. ,I, " .,,, ! ! ' , ! " ", , ""!"""!,,,

I
i , , I ! ,! ,!", i', I , , , " , ' ! , , , , , , , , , ! , , I , , ! ,

I-+--'----LJ.-L---L.J---'---'--+-'~'--'----LLI--'---LL_'__'_L'-'-'--'----'----'--l-l----L . '!"!'!'!!""" i , , I '

I

i
T

"I! ,

. f! , !

i

...... 2U7 ltv. '-69

Figure 2-1. COMPASS Coding Form

~rolNU.S.""

60492600A 2-3

2.2 STATEf1\ENT EDITING

COMPASS reads statenlents in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in colunln one, or
(2) it is part of a definition, that is, it is a statement between a luacro or OPDEF header and an END?v!,
between a DUP or ECHO and an ENDD, or between an R.l\IT pair. Statements within definitions are
saved for editing and interpretatim v,hm the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character r- and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parmueter nanle. After the substitution takes
place, the r- is superfluous and is removed by editing before the definition is interpreted.

Each removal of r shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (;i) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i. e., the two micro n1arks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of the following:

Subprogram or ove rlay

Block

2-4 60492600 D

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)

IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs of Inicro marks are relTIoved
before the name is scanned (see section 2.2 Staternent Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-Z) and is limited to seven characters ma,""{imum. Conventions imposed on na..."11es by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name. For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for a CYBER 170 Series or a CYBER 70/Model 72,
73, 74 or a 6000 Series PPU assembly it is limited to three characters maximum. In all cases, the
last character of a subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or::: or: or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+ - * / blank ,r or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section 2. 4.1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (section 2.2
Statement Editing). In CPU assemblies, to avoid cO!lJ.4.ict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A. x, Be x,
or X.x, because x is asswned to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =5 or =X (section 2.4. 2)."
Register designators are described further in Section 2.5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

60492600 E 2-5

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter (section
3.2.2) and having an attribute defined as follows:

Absolute for the absolute block

Common for labeled or blank common blocks (relocatable assemblies only)

Relocatable for local blocks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (section 4.6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attmnpt to define it with a different value
produces a duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram. and is declared as
external in the current subprogram or is defined in relation to a syLIlbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol.

5. COMPASS defines a symbol by defaul t if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further deRcribed
in section 2.4.2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:

Legal Symbols

P
R3
PROGRAM

2.4.1 LINKAGE SYMBOLS

nlegal Symbols

5A
ABCDEFGHI
ABE+15
=.11

First character numeric
Exceeds eight characters
Contains plus sign
First character equal sign

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last
character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any synlbol
declared as an entry point in the current subprogram can be declared as an external symbol in some

2-6 60492600A

other subprogram. The symbol has a zero value and an attribute of external. An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X or =Y; see section 2.4.2 Default Symbols).

An external symbol can be~strong or weak. A strong external symbol reference causes the loader to try
to find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a
strong external in this \vayis flagged as a non-fatal error by the loader. A weak external does not
require the loader to search for a satisfying subprogram; however if one is loaded for some other
reason, the loader associates the matching linkage symbols in the usual way. At the end of loading, the
existence of unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external symbol
± an integer, the location field symbol is defined as having an integer value and external attribute.
Entry point symbols and external symbols are not qualified (section 2.4.5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or :=Y and the symbol is,,not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the
end of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol

=Xsymbol

=Ysymbol

If symbol is not defined, COIVIPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a
previously defined sy-mbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the progranlmer definition.

This option permits a programmer to define his symbols in a subroutine or link
to them in another subprogram. If the progranlmer defines the symbol, the
assembler uses the progranlmed definition. If the programmer does not define

the symbol, the assembler assumes that the symbol is a strong external as though
declared in an EXT pseudo instruction. A symbol prefixed by =X must conform
to the requirements for external symbols.

This option perm its a programmer to define symbols in a subroutine or to link
to them in another subprogram that need not be loaded. If the programmer
defines the symbol, the assembler uses the programmed definition. If thE. pro­
grammer does not define the symbol and if it is not referenced elsewhere with an
=X or =8 prefix, or declared in an EXT pseudo instruction, the assembler
assumes that the symbol is a weak external. A symbol prefixed by =Y must
conform to the requirements for external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both
=Sand =X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the=S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instnlCtion.

60492600 C 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4.3) can be referred
to outside of the qualifier sequence in which it was defined through:

/ qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier
is in effect, and a symbol qualified by the san1e qualifier has been defined. In this case, the unqualified
symbol can be referenced as / / symbol. "

The combination of qualifier and symbol permits a value to be identified by a unique I6-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU' operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =8, =X, or =Y (see section 2.4.2). However, a warning message is '
issued when such symbols are defined. The prefix cannot be used in the location field of machine
instructions and symbol defining, data generating, BSS pseudo instructions, in the variable field of
ENTRY, EXT, and SST pseudo instructions.

Register Type

Address

Index

Operand

Designator

An or A.n

Bn or B.n

Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example B, causes
An, En, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A. n, B. n, X. n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

IRegisters designated by Al through A5 or A.I through A. 5 are used for addressing to obtain information
from central memory. Registers designated by A6, A7, A.6, or A. 7 are used for addressing to place
information into central memory.

2-8 60492600 F

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:

Al

A10

A.l

A.NUM

A.I0

Designates address register 1

Interpreted as a symbol, not a register

Designates address register 1

If the value of NUM is 6, it designates address register 6

Designates address register 2; however, it produces a warning flag because the
two was derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (section 4. 6. 2) defines SUM and
SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the SaIne
result as if the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 F 2-8.1/2-8.2 I

Code Generated

60320Ql{!OO

~

2
6032001000

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

C:B3 A2H\LPHA I

LOCATION OPERATION VARIABLE COMMENTS

I II 18 -130

SUM SET 3
I

I
S lJB SET 2 I

S8.SUM A.SUR+ALDHA I

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in
section 3. 2.

Designator

* or *L

*0

$

*p

*F

Significance

The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

The assembler uses one less than the absolute value of the position counter
for the block in use.

The assembler uses the absolute value of the position counter for the
block in use.

The assembler uses an absolute value obtained as follows:

o COMPASS was called by a COMPASS control statement

1 COMPASS was called by a RUN-type compiler

2 COMPASS was called by a FTN-type compiler

These designators are inherent to COMPASS and cannot be altered by the programmer during an
assembly.

60492600A 2-9

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I II 111 130

JP • ... 1+R7 I
• I·• I
Z~ X3,·L-1 I
•
• I
• I,L')C ·O-~E~"PP~

I

i • I
I • II • I

I I~~r) ·PI
I

• I

• I
VF1 $1 .. ,1/1 I•
• I·I IFr:::Q "F',~ I

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,
etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce
data in the program in three basic ways.

As a data item
As a constant in an expression
As a literal

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4.8.2) and LIT
(section 4.8.4) pseudo instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal,
hexadecimal, or character notation. It resembles a data item but is restricted by its use as an
expression element in two ways:

2-10 60492600A

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2.7.4) and the preradix for numeric values.

2. The fieLd size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DA TA (section 4. 8. 2) or a LIT (section 4. 8. 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1.3).

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the
data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11. 1).

Example:

In the follOWing example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state­
ment at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101
and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

60492600A 2-11

55'55
6120005555 +

102 6130005556 +

100 6120005555 +
6130005555 +

101 6140~05S5& +

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

SB2 =1 ISB3 =lRA
S84 =l~A I

L LIT l~l ISB2 L
SB3 l+-l I

CON1ENl OF LITERALS etO(~.

OOS555 OoooooorOOnJOOnOo0ot
00555S ooooaoooooonOOOOOOO?

A

9

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated i..n the litzrals block:

Location Code Generated

55')7

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

LIT t,"l!,1~O,2 I

CON1ENl CF LITER~lS eLCC~.

OQ~Dooooon0000000001 a
ryon~onnr.ooooann00002 a
ooonooo"oon~aOoonOOl A
~ooonoonono~~on00003 r.
nOODOO~0000naOD00004 0
o~noooonoooooonoQon?- B

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1,3, lRD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

LIT t,?,1,f+ I

I

CON1ENl OF LITERALS StOC~.

2-12

onnnnoorrooononoon01
ooonOOQ"OODOOOOOnoo?
aOO"OOoooocnno"nooo~
oooooonnonononOon004

A
R
r.
n

60492600A

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4.4.2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). Wnen no CODE instruction has been issued, conversion is to display code representation.

Fornlat:

Data Item

Constant t

Literal t

~Istringl

or

~
~stringl

I = ISigl1[~JtYPe Istring I
or

Example

-3RABC

-R*ABC*

3HABC

=-3RABC

=-R*ABC*

+ or omitted

Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data itenl or literal. A sign with a constant is interpreted as an element
operator.

The value is positive

The complemented (negative) value is formed

n Signifies how the string is determined:

omitted

o

n

t Expression element

60492GOOA

The string is delinlited by d. n cannot be omitted for a constant.

For data itenl or literal, the string consists of all characters following
type to:

blank or ,

For a constant, string consists of all characters following type to:

+ - * / blank , or /\

For a data item or literal, n is an integer count of the nunlber of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, .n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expres sian. A truncation error is flagged fora right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is fla.gged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the ncharacters follOWing type.

Regardless of base, COMPASS assumes that n is decinlal.

2-13

type Character string justification. The characters forn1ed by the data item
or constant are right or left justified into the destination field as follows:

Type

C

H

A

R

L

Z

Significance

-Left justified with zero fill. For data item or
literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, C is the same as Lj the 12 zero
bits are not guaranteed.

Left justified with blank fill

Right justified with blank fill

Right jus tified with zero fill

Left justified with zero fin

Left justified with zero fill. For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, Z is the same as L; the six zero
bits are not guaranteed.

I

I

2-14

d

string

A delimiting character used only when n is omitted. The characters
between the first occurrence of d and the second occurrence of d form the
string. d can be any character other than~ or :f..

Characters from one of the COl\iPASS character sets (appendix A), except
for those characters that act DS delimiters (see n and d), the concatenation
character (r+), and pairs of micro marks (1).

Concatenation marks and pairs of micro marks are removed by editing
before a string is examined. A single micro mark can be used in a string.

An empty or om itted character string is defined under one of the following
conditions:

• n is 0 and type is immediately followed by a delimiter, for
example, OLe

• n is omitted and the two delimiting characters are adjacent, for
example, H+ +.

Omission of a string in a DATA pseudo instruction is legal and does not
.cause generation of a data word.

For a constant, an omission of the string is valid and has a zero value.

An om itted string in a LIT pseudo instruction is legal and does not cause
generation of a literal for that item; however, the LIT must contain at
least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an
error.

It is not possible to generate empty strings using types C, Z, R, or A.

60492600 G

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected.

Data Items

144 052222172?SSllt6SS20
145 042tS5QrOO~nQOaonnOn

14~ 555SS5S555S5S5S555S5

Location

Location

1100
1101
1102

Constants

Code Generated

Code Generated

1725
24?O
2524

LOCATION OPERATION VARIABLE COMMENTS

I II lB 130
L:--

OAT!\ L~ERKOR IN PDQ ",L •• ,10H

LOCATION OPERA liON VARIABLE COMMENTS

130 -
I II 18

PPU
I

. I

I

DATA OLOUTPUr· I
I

Location

4722
4723

4725

4726

Code Generated

7130000047
7140000060

511Cl031117
b260530000

1111240155
0155555~31

1725242025
2400000001

07000aOOoo

LOCATION OPERA TlON VARIABLE COMMENTS

I 11 18 130
SX3 lR.¥

,
I

TAG ~X4 lRr+.+l I
SAl 3RCIO I
~8o XO+1L'b I
VFU 30/4HIOfA,6/1RA,24/UAX+l

I
VFO 42/0LOUTPUT,18/1

I
I VFJ 1 51 al G, 15 I 0 Lj

Note that the character constant in the expression in the second line consists of a decimal point
(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(55555530) so that 55555531 is generated.

60492600A 2-15

100003765
lfJOCJ0377fJ

2652 5110003772 +
5120003774 +

2653 513nOOJ767 +

Location Code Generated lOCATION OPERATION VARIABLE COMMENTS

1 II 18 130
I

TAGl LIT ~ ~ + - >,'. I (A,6 L)'b = ,.,IJCn,OL
LIT 20HLITERAL5
C:Al =f1CTENCHl'IRrTS
SA? -=:H+LfFT JUSTIFY WITH PLANKS+
C:A1 ='1LO

CONlfNT OF lITE~ALS elOC~.

00376'>
00376~

001761
003771)
001771
003772
oO~77"~

003774
OO~17!)

OO~776

oooon000004S46475051
525~C;45SSnS700000000

330000000~OQ~OOOaOoo

141124052?01142~C;555

SS5555SS555S5SS55555
2405160~1~0122032423

OOOnOOf)OOOOOOO~OOOOO

14050624551225232411
063155/7112410550214
011n132~5S5S55SS55SS

+_If./(
) q::= ,.
o
LIrp~ALC:;

TfNCHARCTS

LEFT JUST!
FY WITH flL
ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL itel11 is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variableJields of the SAlt SA2 t and SA3 instructions each consist of a
literal element. The character strings in the SAl and SA2 literals do not duplicate former literals
block entries so COMPASS generates new entries. However t since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:

Data Item

Constant

Literal

2-16

~preradiX~ modifiers

~I modifiers'

~ preradix Ivalue Imodifiers I

60492600A

+ or omitted

sign

preradix

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

Thevalue is positive

The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.

omitted

BorO

D

Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

Octal notation

Decimal notation

value

modifiers

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fractiono An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 10 15 x 1018 (fixed point) or 7 0 9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.

postradi~

decimal exponent

Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

Defines a power of 10 scale factor

E+n or En or E Single precision

60492600A

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to beO. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.

2-17

binary scale Defines a power of two scale factor and is specified as follows:

When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be O. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power.

Applies to floating point values only and is specified as follows:binary point
position

S+n

P+n

or

or

Sn

Pn

or

or

S

P

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit o. When the sign is -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary poin t occurs to the
right of the nth bit.

The exponent is adjusted to a value of - 0:n)

For example, a value with P-6 will have a biased exponent of 20068; a
value with P10 will have an exponent of 17658"

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1. OE4000S-1200 yields a number that is approximately 5.8 x 1038

and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

2-18 60492600A

CPU Numeric Data Items

~OOO 771777777777777777~2

5001 1723500nOnOouononnoo
5002 16430000000000000000
5003 20000000000000000012
S004 17760000000000000002
5005 1715405t76163??4~264

5006 17200314631463146314
5007 77777777777777777771
5Ql0 00000000000000000000

Location .Code Generated lOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
porl nATA -2<3 1NUM DATA 1.0EEt

I
DATA 1.0F+1 P O I

I nATA 1.2P1S-5E1
OATA 0.0151£+01 I

I
nATA O.1P47,-E,OEES

I

CPU Numeric Constants

Location Code Generated

SOOl +
555

lOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

ALPHA fQU POOL+-1 I

VAL f"QU 5558 I

RSSZ 100r I
LX3 -14R I
MX7 Ita

I SX5 lS17 I

CPU Numeric Literals

lOCATION OPERATION VARIA8lE COMMENTS

I 11 18 130

SAC; =200467550002340000048
SA~ =1.1 I

ABLE' LIT 1.0FE1 ILIT O.lP47
LIT -OlQ I
LIT O.0151E+01,-E,DfES

Code GeneratedLocation

5113 5150005151'"
'.)130005152 +

5153
5155
5156
5151

CONlfNl OF LITERALS elOC~.

DUS1S1
005152
OU5153
005154­
005155
005156
005157
005160
0051&1

200~675S0002J4000004

17204314631463146315
1723560000QUOOOOOODO
16~3000000uooooooono

17200314631463146314
77111117177177771754
1715~651767635544264

77717777717717777777
00090000000000000000

POA 81 0
OP!!L allL 1M
OSI
NA
OPCLIL'ILtL
••••••• • e_., .. ".",-
OM- C''''2=lt
••••••••••.,.".",.

60492600A 2-19

Examples of numeric data (assume default radix is decimal):

PPU Data Items

Location

PPU Literals

Location

311
313
311)

Code Generated

Code Generated

2000 1103
2100 1104
2000 1105

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

PPU I

I
• • I• •

I • • I
DATA 5,-QO,+B13,14BS1,248E-l

LOCATION OPERATION VARIABLE COMMENTS

I 11 1B 130
rO"J 0,+11 I

I
rON -3334 I

AP~ = 7'50
Nt~ SET 0101 I

CQt-J 7777 I-

LOCATION OPERATION VARIABLE COMMENTS

1 n 18 130

LOC =100 I

AOC :-1 !
lOe =1777 I

CONTENT OF LITERALS BLOCK.

1103
110lt
110r.;

2-20

0012
7776
7777

J...........
"""." ; t

60492600A

2.7.6 HEY~DECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single
precision.

Formats:

Data Item

Constant

Literal

LOCATION OPERATION . VARIABLE COMMENTS

I " 18 130

DATA =123AaC,-=,-~=AA~AA,=1234S12
I
J
J
J
I

)(CO:'~ O=:AC1576 I

HEX SX~ -. -S2 I=-::123't~ I

CONTENT
I

OF lIT::'~ALS "~LOCK. I

; ; ; ; ;; ." " '<$
J
I& 77177777177776671353

o 0000000000000443?27~

1 77777777!77777777777
2 77777777777775252525
3 OOOOQ0000001106~OOUy

~ 0000000000005301276b
5 713JiJO-Ju·J6"

Applies to literals only; signifies that a literal follows.

sign Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+ or omitted Value is positive.

Complemented (negative) value is formed.

o The zero is optional for data items and literals but must be present for constants, so
the preradix will not be taken as the first character of a symbol.

preradix Must be present to indicate that a hexadecimal value follows. The preradix character
is == or =# depending on the printer used.

value A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either
a decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9 and the letters
A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

modifiers The binary scale (S) modifier is optional and has the same form and meaning as for
octal and decimal data (see section 2.7.5).

The binary point position (P) modifier is permitted but ignored, since it does not
apply to integer values.

Examples of hexadecimal data:

Location Code Generated

2.8 EXPRESSIONS
Entries in subfields of most source statements are interpreted as expressions consisting of a combina­
tion of one or more terms. Each term consists of one or more elements joined by operators. A comma
or a blank terminates the expression.

An expression element can be a:

Symbol
Numeric or character constant
Spec ial element

Register designator (CPU only)
Literal

60492600 C 2-21 •

Examples of elements:

ALPHA
$
*p

A.7
X3
77BS3

3HABC
=10HOUTPUT

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
Subtraction

" Logical minus (exclusive or)

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in
the ASCII character set.

Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE *+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them.

7. If an expression begins with an additive operator (+ or - or "), COMPASS provides a term with
zero value preceding the operator.

8. All arithmetic in expression is performed in integer mode, even if an element is a floating
point constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value
exceeds 60 bits, the excess high-order bits are discarded without comment.

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

+ - * or /

Examples of expressions:

ABLE

1-29

2-22

Single term

Two terms; $ and 29

60492600 D

1+=3.141S9EE+6

ABLE~4-72/NUH

lOR

3+A6-NUH

lR=A1RI

Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

Two tenns; value of the location counter and numeric constant 3.

Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUl\I.

Single term consisting of a numeric cons tant.

The components of the expression are register A6 and 3-NUM.

The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)

An external syInbol .= a 21-bit integer

~ relocatable value :!::. a 21-bit integer

Register designators and one of the above

Register designators

Absolute Expressions

} CPU assembly only

An expression is absolute if its value is unaffected by program relocation. An eArpression can be
absolute, even though it contains relocatable terms, under these two conditions:

1. The expression contains an even number of relocatable elements

2. The relocatable elenlents must cancel each other. That is, each relocatableelement (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elenlents that form a pair need not be contiguous in the expression.

Examples of absolu te expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

EASY-FOX+MIKE

MIKF+16

60492600 D

EASY and FOX cancel each other.

FOX and the location counter cancel each other.

The expression contains no relocatable elements.

EASY and the location counter cancel 2 times FOX.

2-23

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and
absolute terms:

1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block. The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common relocation is not permitted by the loader).

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EA SY and FOX.

lIHA+MIKE-16

FQX-EASY+FOX

FOX-l00S/MIKE

=10HMESSAGE 33

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated
by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

2-24 60492600A

1. The expression contains an even number of relocatable terms.

2. The relocatable elell1ents must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elenlents in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the eh-pression.

EXa111ples of external expres sions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA. l\lIKE is absolute.

ARC+IOOB+"1IKE.

Register Expressions

The pairs * and LI.i\IA, and FOX and EASY cancel each other.

The relocatable elements all cancel.

MIKE and lOOB are absolute; no relocatable elements.

illegal; both are external.

illegal; ABC is negative.

illegal; *0 is an unpaired relocatable element.

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to syll1bolic CPU machine
instructions (Sections 8.4 and 8.5). If the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +.

Exanlples of register expressions:

In the following eXal11ples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIHA-l0B

l I r~ 1\ +)(3 -1 0 ~

BltYY7

'f+A.NUM

Evaluatable Expressions

} Produce identical results

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatableo

60492600 G 2-25

2.8.2 EVALUATION OF EXPRESSIONS

\Vhen evaluating an expression, COMPASS replaces each element with a GO-bit value. A character
constant is first right or left adjusted in a field the size of the des tination field and then extended to
GO bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - or /\ operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced froll1 the cumulative sum of the absolute elements, relocatable elen1ents, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. If it is too large for the field, the system issues an
error flag. The maximum field size for an expression is GO bits.

The value of an external symbol is zero if the external syn1bol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined
within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, COI\1PASS uses the value of a relocatable svmbol relative to the block in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program 01' com mon
block origin.

i1 -.- • " s
The field size for an eXpression depends upon the instruction and is determined as follo\~"s:

• For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field.

• In a VFn pseudo instruction, the expression is placed in a field of the size specified.

• For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

• In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values
are assembled into the same field of the same word more than once, as a result of ORGing backward
over the word, or by having more than one subprogram preset a common block. The OnGC pseudo
instruction (see section 4.5.3) can be used to avoid such problems.

2-26 60492600 G

PROGRA1v\ STRUCTURE 3

A COMPASS subprogram consists of statements begimling with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruction.

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These blocks can be controUed during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the blocks.

I

I
1'1

I
~
~
~A subprogram loaded into central memory can be either absolute or relocatable. An absolute subprogram is l'~

loaded at the same fixed address every time; a relocatable subprogram can be loaded into different ~
locations, according to the available central memory at load time. Sections 3.3 and 3.4 discuss the ~
structure of absolute and relocatable programs, respectively, and show the differences in block usage for I:.."....·...

both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can" be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM,a programmer
can intersperse instructions for the different blocks. The assembler assigns locations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within a block is not
local to the block. That is, it is global and can be referred to from any other blocl< in the subprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

60492600 G 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block fora relocatable assembly. It is a
local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero block is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute

I assembly, the zero block immediately follows the absolute PROGRAM* block. The zero block is also
named PROGRAM*.

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local block, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name isI lffiique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCI\l or ECS/LCyI
through the USE and USELCM pseudo instructions respectively, where the name of the block is the nameI enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

I
3-2 60492600 G

)

If an absolute subprogram attempts to establish a labeled common block by using a USE Iname! or USELC:\l
Iname/ pseudo instruction, COMP ASS treats the block as a local block having the slash-enclosed name. I

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the eM/SCM and ECS/LCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms. A CM/SCM blank common block is established through use of the USE pseudo instruction
(section 4.5.1). An ECS/LCl\1 blank common block is established through use of the USELCl\l pseudo
instruction (section 4.5.2). A blank common block has no name. A USE!/ indicates blank common in
CM/SCM; A USELCM 1/ indicates blank common in ECS/LCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a
USE II or USELCM II pseudo instruction, COMPASS treats the block as a local block named // and data can ~
be stored in this block.

The USELCM pseUdo instruction can occur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (eM/SCM or ECS/LCM). Thus,
altogether, there may be up to fOUf different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass
two, as the assembler constructs the program, it assigns an initial value to each local block origin counter
and location counter. ThUS, expressions containing relocatable symbols are not necessarily evaluated the
same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin cotmter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGe, or BSS pseudo
instructions to advance the origin counter; ORG and ORGC also permit the programmer to reset the
counter to some lower location in the block or to change blocks. BSS allows the programm er to decrem ent
the counter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is decremented by one for each word skipped in the reverse direction. i
When the special element *0 is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60492600 G 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter is
incremented. It is possible through the LaC pseudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to occur. As another example of
its use, the programmer assembling a large table may reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the block. (For an
example of these applications, see the LOC pseudo instruction, section 4.5.5.) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the loca tion
counter for the block in use.

3.2.3 POSITION COUNTER

I Assume that bits are numbered 59 through 00, from left to right within a GO-bit CPU word and numbered 11
through 00 within a 12-bit PPU \\lord. Then, the position counter is initially 60 or 12, respectively, and
indicates the number of bits remaining in the word. The position counter, which is decremented by onefor
each completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the I5-bit and 3D-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to
be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *p is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2..4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining in a
partially completed word with no-operation instructions (section 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruction:

• Insufficient room remains in a partially filled word for the next instruction or data to be generated.

• The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol
or + in the location field.

• The current statement is an RE, WE, PS, XJ, CC, CU, DM, or 1M instruction for a CYBER 170 Series
or CYBER 70/Model 71, 72, 73, 74, or 6000 Series. (The programmer can negate this force upper by
placing a minus sign in the location field of the instruction.)

• The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD pseudo instruction.

3-4 60492600 G

The assembler forces upper after it assembles code for one of the following:

JP
RJ
Unconditional EQ
Unconditional ZR
ES (CYBER 70 Model 76 or 7600)
1\1J (CYBER 70 Model 76 or 7600)
PS (CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 170 Series, CYBER 70 l\lodel 71, 72, 73, 74, or 6000 Series)
1M (CYBER 70 Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, stol'age allocating, or binary control pseudo instr'uction in the same
USE block. The programmer can negate the force upper following the instruction by placing a minus sign in
the location field of the next instruction. ThUS, pseudo instructions following one of the above machine
in.cqtructions and referencing the origin, location, or position counter will use the value before the force
upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABlE PROGRAM STRUCTURE

The loader is thus able to load subprogram blocks independently, as required. Program execution is not
affected by the relocation process.

COMPASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTR YC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local blocks, including the zero block and literals block, but not the absolute block. AllY
absolute text is simply inserted at the absolute location relative to RA.

A nonblank IDENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram. Upon completing assembly of a relocatable subprogram, COMPASS assigns each local block an
origin relative to the zero block. Each block thus becomes an extension of the zero block (figure 3-1).

~

I
}1
d

Il!
When a subprogram is relocated, each machine instruction in it that references a specific address must ne ~l
adjusted. Because of this necessity, relocatable subprograms are assembled as though they begin at address ;'1
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet ~
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the j~

first word address of the subprogram, each address in the program effectively becomes a function of RA. ;~

~.tn
I
~~

I
i
I
~

I

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can all be written in COMPASS source
language,or can be written in any other source language available in the product set of the operating
system as long as the compiler or assembler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language SUbprogram is composed of instructions beginning with an IDENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguous blocks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

COMPASS binary output for a relocatable subprogram consists of one section for each LeC pseudo
instruction (if any) in the source program, followed by one section containing the subprogram lo~der tables .

60492600 G
.

3-5

Low
Address

...----------,-- IDENT

Subprogram 1

t----------l---END

Subprogram 2

Subprogram 3

Subprogram n

Sizes and locations
determ ined by first
subprogram declaring
them

Subprogra m length

Labeled Common
Blocks

Progr8m*
(Zero mock)

LITERALS*

Local Block 1

~

__ IDENT

High
Address

1
Size determined by

Blank Common largest block declared
L....- --' by any subprogram

l\'Tap of
Loaded Progra m

Figure 3-1. Relocatable Program Structure

Local Block m

'----------'-- END

Organization of
Subprogram 1

3.4 ABSOLUTE PROGRAA~ STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access pri vilege.

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
DiViding a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute Dlock. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
block is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero block and the literals block, respectively. Local blocks A, B,
and C follow the literals block. The transfer symbol in the END pseUdo instruction indicates a main
subprogram. In the binary load module the' prefix (PRFX or 77008) table and the header table precede

I the binary section that is the memory image of the program.

·3-6 60492600 G

IDENT na me _r-----------,

PROGRAM*

A

PROGRAl\tl*

}
zero. Block
(DefDult)

I----------J

B

c
END trasym-'----------'

Source Program
Block Structure

Binary
Section

LITERALS*

A

B

c

Binary
Load Module

Low Address

PROGRAM*

}
Zero BlOCk.
(Default)

~-------1

LITERALS*

A

B

c
High Address

Map of
Loaded Progra m

Figure 3-2. Absolute Program Structure

60492600 G 3-7 •

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a proJram
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 77008) table, a header ~able,

and the binary image of the program or overlay. A header table can be one of the following:

• ASCM or 50008.

• EASCM or 51008'

• ACPM or 53008.

• EACPM or 54008'

Tables are shown on a COMPASS listing by their octal numbers. The table formats are described in the
Loader reference manual.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

• If a complete block group is being written (everything between an IDENT and an END or between two
!DENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

• If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4.1 ABSOLUTE OVERLAYS \

When an absolute program contains more than the one ID ENTt pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77 8' The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only
two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

tIDENT instructions described in this section ~e assumed to have nonblank parameters. The special case
of the blank IDENT is described in section 3.4.3.

3-8 60492600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary overlay 1,0 has three
associated secondary overlays numbered 1,1; 1,2; and 1,3. A primary overlay and aU of its associated
secondaries have the same primary level number. The next branch of overlays (indicated by level
numbers 77,y) shows tha.t the level numbers of thE! overlays are not required to be consecutive nor to be
indicative of the order in which they were generated.

-----~

}
Figure 3-3. Overlay Hierarchy

Secondary
Overlays

Primary
Overlays

Main
Overlay

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once a
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: execution can begin at anyone of them. Usually,
primary and secondm:y overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay. A primary overlay can reference
entry points in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions concerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. However, a PPU overlay with assembled code in locations 77748 through 77778 may load
incorrectly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G 3-9 ·0

IDENT-Type Overlays

An IDENT-type overlay consists of the portions of the program from:

• One IDENT to (but not including) the next IDENT

• The last 10 ENT in the overlay to the END

IOENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of w1ique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify levelnumbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to an subsequent overlays.

fhe first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruction,
COMPASS generates output consisting ora memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An IDENT subsequent to a SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin counter. Following the memory image, CO MP ASS writes an end-of-section
(or end-oi-record) and the overlay identification information specified by the new IDENT for the overlay to
follow.

For an ID ENT-type overlay, CO MP ASS completes all blocks, including the Ii te1'a1s block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAlVI* on the listing) and block A, as depicted in the
block structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each block. Concatenation also occurs in the
primary overlay, OV 1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and C.

The occurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruction (BETA, in the
figure), as shown in the map of the loaded overlays.

The first IDENT pseudo instruction assigns the level number 0,0 to the first overlay (MAIN). COMPASS
assigns level number 1,0 to overlay OVI by default.

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:

• The IDENT that identifies the program to a SEGMENT pseudo instruction

• One SEGMENT to the next SEGMENT

• The last SEGMENT to the END pseudo instruction

• 3-10 60492600 G

OV 1 overlay
1,0

l\IAIN overlay
0,0ZERO

A

First Binary
Load Module

">"I. ~ -.. -..

ABSOLUTE'

ZERO'

LITERALS'

A'

B

C

LITERALS
BETA--r------~

--- --- --- --- ---

"'-
'" "'-
Low'"
Addres~

I '" "'-

I """

"'-
'"

ABSOLUTE

Source Progra m
Block Structure

I
{~~~d~'~'c~~'t;~'i]
:::::::: Information ::::::).....•.·......•..•.....•.•·:·:·:·:1

-
-"

ABSOLUTE

A

ABSOLUTE

A

ABSOLUTE

7 A' ~

B

ABSOLUTE'

C

ABSOLUTE'

B

- A'
END

IDEKT OVI

ORG BETA

IDE NT MAIN,O,O

BETA

ABSOLUTE'
Second Binary
Load IVIodule

ZERO'

LITERALS'
OV1
1,0

A'

B

c High Address

Map of Loaded
Overlays

Figure 3-4. IDENT-Type Overlay Structure

60492600 G 3-11 G

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, 0 V1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks occur in the overlay MAIN, because it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay a v1, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) OVI establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 51008 overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51008 table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 51008
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), CaMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-oi-record) or a new prefix table. A SEGMENT, nonblook IDENT, or END instruction
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, CaMP ASS writes
binary beginning with the first block established in that portion of binary and ending with the final count
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized.

3-12 60492600 G

1\1AIN
Overlay

0,0I

A

ZERO

LITERALS

ABSOLUTE

~ -- __ TAG---­--'" -- -- '/'" '--"--F-i-r-st-B-in-a-r-y--"

'" Load Module

'"
'" '" ~~ttp:~·~:fi~:·T~b:i~tf~

:::::::.;-:-:.:.:.:.:.:.:.:.:.:..:.:.:.:..:.:.;::::::
" ••••••••••••••••••.•••••• '·'1'\

" T '" ;;:.~~oader Contr<?!.::: &
'" 0\ 1 ::::::::Information:::::::: ~

~rigin -" :.:.:.: ;.:.:.:' i 0 VI

'" A Overlay
\. C I 1,0

'" D I
"'''-- . l'iJ

!:
..:.::::::~~~.:.:.~
:::::::Prefix Table ::;:;:;1:.:.:.:•.........•............•.............:.:.:.~

O
M~ IJ'{ ft~~~:~~: C:~~~~~m\

rIgm,,-- I:~:::;: Informa tion :::::~:~:I______">etJ•••.••••••.•.•••••.•...•.••••••.J

Source Progra m
Block Structure

ABSOLUTE

- A

/\BSOLUTF.

A- 1-----------R

C

D
NDF.

TAG

IDENT Mr\IN

SEGMENT OVI
one TAG

Second Binary
Load 1\1odule

Low Address r. !

I::: Loader Control ;::1
~:;:::;: Information :;:;:;:;r.•.•.•.•...................•.........•.."..•.•.•.•. _

ABSOLUTE ABSOLUTE

r'rAIN

1-------_.-
ZERO

LITERALS

ZERO

LITERALS

A

'--L- _High Address

A - -TAG--

~~:-:-:-:-":"7:"::-:--;-;-:-:-:-:-~+'-- - - - - - ...

}"i:~~d·~~···C"~~·t~·~·l·:~:i
::::::::; Information ::::::;;11 Overlaid...,\ Portion

A I~ of ~.TAIN

C IJ Overlay

D
1...-. ...1- __ - __ - •

OVI
Overlay

1,0

Map of Loaded
Overlays l\1AIN and 0 V1

Figure 3-5. SEGl\lENT-Type Overlay Structure

60492600 G 3-13 •

I Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of memory required to assemble the program. The resulting absolute section
is loaded and executed as a single program or overlay.

AbsoJutf' Binary
Spction

End-o f -sec t ion

......................_~

ABSOLUTE

LITERALS

A

B

C}

Largest partial assembly
determines assembler
storage requiremerts

ABSOLUTE

---- ------- - --
ABSOLUTE

A--- ----------
B

C

IPFNT PP.OG

END

SEG
(\'.'rite's pDrtial

hinary)

SEC:
(writes partial

binary)

I

Source Progra m
Block Structure

Binary Load
Module

I Figure 3-6. SEG Partial Binary

IDENT Partial Binary

An JDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 77008 prefix table.
The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary section generated in this manner are allocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local blocks.
This allows portions of a program to be self-contained W1its even though they are not overlays but are
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group; that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

COMPASS completes all blocks. The literals block is terminated. Block structuring starts fresh with each
IDENT. Each new partial binary section created by a blank IDENT can use the same block names as are
used by the other blank IDENT-created partial binary sections and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the blocks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes an assembler range error.

3-14 60492600 G

Figure 3-7 illustrates how the binary for an overlay can be written in three discrete partial binary sections
to reduce the amount of central memory required to assemble the program and divide the program into
self-contained units. The resulting absolute section is loaded and executed as a single overlay.

IDENT POM

IDENT

IDENT

IDENT OVLY

ABSOLUTE

LITERALS

Local Blocks

ABSOLUTE'

LITERALS'

Local Blocks

ABSOLUTE"

LITERAlS"

Local Blocks

Source Program
Block Structure

LITERALS

Local Blocks

ABSOLUTE'

LITERALS'

Local Blocks

ABSOLUTE"

LITERALS"

_______ ---,,__L_oc_-a_I_B__l_o_c_k_S--..J fnd-of-section

)j)jr:~?~1.i:*:f~:~!~·)j~j~~~:}
::::::::::::::i·:::d·:·;·;::::::::~t; Ident ifica tion
:::::.:.:.:~:. ·oa er .:~:~:.:~::::::: for 0 V I,Y
~:~~.S:.9.T.1.tr8.l.))~.9.!.~.:~:~:: '

IPEtJT OVI.Y----

Binary Load
IV"odules

60492600 G

Figure 3-7. IDENT Partial Binary Records

3-15' •

PSEUDO INSTRUCTIONS 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruction; it
includes the location field, the operation field, the variable field, and the comments field. The pseudo
instruction differs from the symbolic machine instruction in that it is used to control the actions of the
assembler at assembly time, rather than those of the machine at execution time.

The pseudo instructions available in the COMPASS language are presented in this chapter and in
chapters 5, 6, and 7. Programmers with little COMPASS experience should give special attention to a few
important pseudo instructions, which are listed in the following table. It is not possible to write a
COMPASS program without using some of them. The table indicates the type of assemblies in which the
pseudo instructions can be used.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

IDENT 4.2.1 X X X
ABS 4.3.1 X
PPU or PERIPH 4.3.3 or 4.3.4 X
ORG 4.5.3 X X X
ENTRY 4.7.1 X
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4.2.2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions discussed in this chapter are classed according to application as follows:

• Subprogram identification (IDENT and END)

., Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, LDSET, STEXT,
COMMENT, and NOLABEL)

• Mode control (BASE, CHAR, CODE, COL, B1=1, B7=1, and QUAL)

• Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)

• Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SST)

• Subprogram linkage (ENTR Y, ENTR YC, and EXT)

• Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and
REP!)

• Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)

• Error control (ERR and ERRxx)

• Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60496200 G 4-1

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instructions can be summarized according to where they can be
placed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first source
statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler with
required information. These instructions make up the first statement group which must precede any
symbol definition, storage allocation, or object code generation. The following instructions, if used, must
be in the first statement group:

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE
Bl=l
B7=1
CHAR
CODE
COMMENT
CPOP

CPSYN
DECMIC
EJECT
ELSE
END
ENDD
ENDIF

ENDM
HERE
IFC
IRP
LDSET
LIST
l\1ACRO

MACROE
MICCNT
MICRO
NIL
NOLABEL
NOREF
oeTMIC

OPDEF
OPSYN
PPop
PURGDEF
PURGMAC
QUAL
RMT

SKIP
SPACE
SST
TITLE
TTL
XREF

Comment lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the first
statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTifiCATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or more
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the
end of the source decks is indicated by an end-of-section, such as a 7/8/9 card.

4.2.1 IDENT - SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the follOWing form is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are assumed to
be comments. However, when COMPASS has been called by some other language processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
iDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before END as an
error. For an absolute subprogram, a second form of IDENTdescribed under BINARY CONTROL is

I available for overlay generation.

4-2 60492600 G

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCA TlON OPERATION

IDENT

VARIABLE SUBFIELDS

name

CPU Absolute Format:

LOCATION OPERATION

IDENT

VARIABLE SUBFIELDS

name, origin, entry '(1' f 2

7600 PPU Absolute Forn1at:

LOCATION OPERA TlON

IDENT

VARIABLE SUBFIELDS

name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION OPERATION

IDENT

VARIABLE SUBFIELDS

name, origin

name

origin

60492600 G

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable
or absolute assembly, name can be 1 through 7 characters, of which the first must be
alphabetic (A through Z) and the last must not be a colon.

For a CYBER 70jlVIodel 76 or 7600 PPU assembly, name can be 1 tnrough 7 cnaracters.
For CYBER 170 Series or CYBER 70/Model 72,73, 74 or 6000 Series PPU assembly,
name can be 1 through 3 characters. In either case, there is no restriction on the first
character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or overlay. The
overlay loader table and all code assembled starting at this address and ending with the
next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a sing1t..~

entry point CPU program, the load address for the overlay is origin-I. The word at
origin-l is overlaid by the 5000g loader control table. For a multiple entry point CPU
program, the load address for the absolute overlay is origin-wc-l, where wc is the
number of entry points in the 51008 loader table.

For a PPU SUbprogram, the ioad address is origin-5. Five 12-bit PPU words are overlaid
by the GO-bit loader table.

Data can be generated in locations starting with origin and above, but not below origin.
The origin subfield does not serve the same funtion as ORG, nor does it replace OliG for
setting the origin counter.

4-3

I

If the origin field is null for an absolute subprogram, the assembler uses address
000000 RA(S) as the origin for a CPU program and 0000 as the origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RA(S)+100g, the second
subprogram starting at the first available location following the first subprogram, and so
forth.

entry For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
subfield contains an expression specifying the subprogram entry address, which can be
symbolic.

Absolute expressions specifying the level numbers of the overlay. 11 is the primary
level (0 through 63) and 12 is the secondary level (0-63). When the first ID ENT
identifies the main overlay, 11 and 12 can be omitted. If 11 is omitted, it is set
to 00. If 12 is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the level
numbers on this IDENT are evaluated as decimal unless specifically designated as octal
by a post radix.

ppu Absolute expression specifying the number of the PPU on which this program is to be
. loaded. On the first IDENT, this number is evaluated as decimal unless specifically
designated as octal.

A location field symbol, if present, is ignored.

I
If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in columns 11 through 15.

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:

lOCATION OPERATION VARIABLE COMMENTS

I II 18 130

IflFNT GT,~CNTROl,rONT~OL
-

AP.c:; /AnSOlUTf. CPu PROG~AM

O~G 110P
1°f:FINFSCOr-'TROl BSS 0 SYM~Ol CONfPOl

fNO

Absolute CPU program CT will be loaded at origin address 001108.

4.2.2 END - END OF SUBPROGRAM

An END pseUdo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4 60492600 G

For a relocatable subprogram, the assemble.r combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origi.n relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, -generates the absolute binary section and
produces the listing.

END can also be used to signal the end of source statenlents from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:

LOCATION

sym

OPERATION

END

VARIABLE SUBFIElDS

trasym

sym

trasym

Example:

Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.

A symbol specifying the entry point to which control transfers for a reloca­
table subprogram. This symbol must be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasym is ignored.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

IOENT PROGl 1ENTRY BEGIN
I• •

• • I• •
BEGIN SRt 1 I· • I• •

• • IEND BEGIN

60492600A 4-5

4.3 BINARY CONTROL

Pseudo instru.ctions that allow the user extensive control of binary output produced by the assembler
are summarized below and described fully in this section.

ABS

MACHINE

PPU

PERIPH

IDENT

SEGMENT

SEG

STEXT

COMMENT

NOLABEL

LCe

LDSET

Specifies CPU absolute binary output

Specifies processor type

Specifies CYBER 70/rvlodel 76 or 7600 PPU binary output

Specifies CYBER 170 Series, CYBER 70/Mode171, 72, 73, 74, or 6000
Series PPU binary output

Begins absolute overlay or writes partial binary section

Begins absolute overlay

Writes partial binary section

Generates system text overlay

Inserts comments into the 77
8

prefix table

Suppresses header information on binary output

Passes loader control information to the relocatable loader

Generates loader directive LDSET

\ ·4.3.1 ABS - ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement
group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no signifi­
cance because a conventional definition takes precedence (Section 2.4.2).

Format:

lOCATION OPERATION

ABS

"ARiABlE SUBFIElDS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6 60492600C

Example:

LOCATION OPERA TlON VARIABLE COMMENTS

I II 18 130
IDENT Cr,r.ONTROl,C!oNTROl
~6S IAR~OLUTE CPU PROGRAM
• •
• • I
O~G ii0A

bEFINESCONTROL RSS a SYMBOL CONTROL
• • J
• •
• • I
EN!) I

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MA CHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program.
If used, MACHINE must be in the first statelnent group.

Fonnat:

LOCATION OPERATION VA~lABlE SUBFIElDS

A location field symbol, if present, is ignored.

typ~ Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

60492600C

6

7

The object program is restricted to the following computer systems: CYBER
170 Series, CYBER 70/Model 71, 72, 73, or 74, or 6000 Series. All machine
instructions unique to the CYBER 70/Model 76 or 7600 Computer Systems are
undefined.

The object program is restricted to a CYBER 70iModel 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruction (often used
for subroutine entry points in CPU assemblies), all instructions unique to the
following computer sy8tems are undefined: CYBER 170 Series, CYBER 70/
Models 71, 72. 73, and 74, and 6000 Series.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro­
gram are blanks. If the type subfield is present and its first character is 6 or 7,

4-7

the valid field contains 6X or 7X. If the type subfield is at least two characters,
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters.

In a PPU assembly, if the MACHrnE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHrnE 6 is assumed; if the PPU pseudo in­
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P.

Optional subfield, a character string designating an optional hardware feature re­
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effect on
assembly of the program. The first character of the subfield is placed in the hard­
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

C Compare/Move Unit

D Distributive Data Path

I Integer Multiply Instruction

L ECS/LCM

R Interlock Register

X Central and Monitor Exchange Jumps

Up to nine hf. subfields are processed; any additional subfields are ignored. If the
bf

i
subfields lare omitted, the comma following type can also be omitted.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

MAGHI~E 6,CMU,LCM,XJ
I

I

4.3.3 PPU. CYBER 70/MODEl 76 OR 7600 PPU PROGRAM

A PPU instru<.:tion declares a program to be a CYBER 70/Model 76 or 7600 absolute PPU program rather
than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruction, refer to the Loader reference manual.

4-8 60492600A

·Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY
ENTRYC
EXT
LCC
REP
REPC
REPI
SEG

SEGMENT
USELCM
R=
B1=1
£7=1

A symbol can be prefixed by = X if it is also defined conventionally.

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.
PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
.assembly:

OPDEF
CPOP
CPSYN
PURGDEF

Format:

LOCATION OPERATION VARIABLE· SUBF!ElDS

J

PPU J

A character string beginning with J supplied in the variable field alters the way
that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (:31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location cOlmter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value
that is a true relative address.

A symbol in the location field, if present, is ignored.

60492600A 4-9

Example:

Location

7,.0
160

Location

7'+0
760

Code Generated

03~7

Code Generated

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

ppu
I•

• I
TAG BS~ ~1Jq I

UJN fAG·· IEXP~ESSION <: :ZlB

LOCATION OPEilATION VARIABLE COMMENTS

I II 18 130

VPU JUMP I

I
• I.

IT~G f\S~ 20~ f
UJN TAG IEXPR£~SIOf\l·· < ~7n

4.3.4 PERIPH - CYBER 170 SERIES OR CYBER 70/MODELS 72, 73,

74 OR 6000 SERIES PPU PROGRAM

A PERIPH instruction declares a program to be a CYBER 170 Series or CYBER 70/J\1odel 72, 73, 74,
or 6000 Series absolute PPU program rather than a CPU program. If u"')cd, PERIPH must be in the
first statement group. For a description of binary output produced as a result of this instruction,
refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY
ENTRYC
EXT

LCC
REP
REPC

REPI
SEG
USELCM

R=
Bl=l
B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP

. CPSYN
PURGDEF

Fonnat:

lOCATION OPERATION VARIABLE SUBFIElDS

J

4-10

PERIPH J

A character string beginning with J supplied in the variable field alters the
way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN t or PJN instructions.

60492600A

If J is not specified, COMPASS first tests the range of the expression value
against the short jump limit (:.31). If the valueis in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
perfonns a second test, this time using the expression value 111inus the location
counter value. If the value is now in range, COlvlPASS assembles the instruction
using the expression value Ininus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

~.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. :First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter
this, however (Section 3. 4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end-of-section or a new 77 8 table. However, the USE table and the
block counters are reinitialized and each syxubol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+l.

The fonnat of the IDENT varies according to the type of assembly as follows:

CPU Absolute Fonnat:

LOCATION

60492600A

OPERATION

IDENT

VARIA8lE SU8FIELDS

name, origin, entry, ~,1 2

4-11

or

LOCATION OPEltATION

IDENT

VAlllABlE SUBflElDS

7600 PPU Absolute Format:

LOCATION OPERATION

IDENT

VARIABLE SU8FIElDS

name, origin, entry, ppu

6000 series PPU Absolute Format:

LOCATION OPERATION

IDENT

VARIABLE SUSFIElDS

name, origin

4-12

name

origin

entry

Name of the overlay. For a CPU program, 1-7 characters, the first of which
must be alphabetic (A-Z); for CYBER 170 Series or a CYBER 70/Model 72, 73,
or 74 or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76
or 7600 PPU program, 1-7 characters. In all cases, the last character must
not be a colon. A name is a loader linkage symbol required for overlays.

An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-I. The word at origin-l is overlayed by the 50

8
loader table. For a

multiple entry point CPU program, the load address for the overlay is origin­
wc-l, where wc is the number of entry points listed in the 518 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. When the overlay is
called, .control optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. £1 is the primary level (00-778), f.2 is the secondary level

(00-778). If base is M, £1 and £2 are assumed to be octal. If £1 and £2 are not
specified, £1 is set to 01 and £2 is set to 00.

60492600A

ppu An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is lVI, ppu is assumed to be octal.

A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control statement. END
dumps the last overlay or completes a partially written section.

Examples:

The following program uses IDENT for overlay creation. Symbols ToOVL, o. DMP1, etco are
defined ·on a system text overlay.

t-iP2
8

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

IDENT OMP.l,T.OVL,O.DHPl

1
~BS I
BASE H I
COMHENl 10/01170.CONTROL CARD CAlL.OMP.
LIST G I
SST I OVERLAY
ORG T.OVL OMP!
QUAL OMP1 I

J
PMP SXO 81

I• •
• • I• •
QUAL OMP2 I
tDENT OMP2,T.OVL,O.OMP2 1
ORG T.OVL I OVERLAYS 0

UBW2 S)(O 8&+1 I THROUGH OMP
• •

J• • I
• •
QUAL OMPq I ..,
IDENT OMP.9,T.OVL,O.DMP9 OVERLAY
ORG T.OVL I OHP9

J
~XO ~. OMP2+F. MDE

f•
• • f
• •

~NOENO OVERLAY DMP9
I

o.. t1

60492600A 4-13

The following program uses IDENT instructions having blank variable fields.

1617

7116

lOCATION OPERA"TION VARIABLE COMMENTS

I 11 18 130
I lJENT VVV-, I JOB, ENT I

1
J\8CS I
ORG 110~ IfNT ~)(O 1

I
• • I
· · I• • First
LIT 1,2,1

I Partial Binary
• •

J
• • I
• •
JOENl I

I

1• •
I• •

• • ILIT 2,3 Second

• • I Partial Binary

• •
I J• •

IOfNT I·
• • I 1• •
• • ,
LIT 1,2

I Third
• • Partial, Binary
• • (J• •
fNIl I

~-14

Origin-

1617 -

3455 -

7116 -

lwa -

ABSOLUTE

LITERALS

weal Blocks

ABSOLUTE'

LITERALS'

ABSOLUTE"

LITERALS"

Local Blocks

Core Map

1
First

Partial Binary

J,
Second

Partial Binary
J

1
Third

Partial Binary

J

60492600A

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGlvIENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG­
MENT pseUdo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. "-'hen COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a
CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION

name

name

origin

entry

60492600A

OPERATlON VARIABLE $UBFIELDS

SEGMENT origin. entry, 1
1

, 1
2

Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-I. The word at
origin-1 is overlayed by the 50S loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

An expression specifying the overlay entry address. It is used for CPU
assemblies only. \\Then the overlay is called, control optionally transfers to
this address.

Absolute expressions specifying the level numbers of the overlay for CPU
progr~s only• .£1 is the primary level (00-77

8
), .£2 is the secondary level

(00-77
8
). If base is M, .£1 and.2

2
are assumed to be octal. If.t

1
and 1

2
are not specified, 11 is set to 01 and 1

2
is set to 00.

4-15 .

Example:

LOCATION OPERATION VARIABLE COMMENTS

J 11 18 130

!f)r::NT SAM,ENTA I

A'3S
IO~G 110A

fNTA PS5 f) ENTRY POINT
I

• •
• · I
• ·OVLOr. RS~ 1) IOVFRl AY LOAO POINT
• •
• • I
• •

S£G1 SFGMEN STRT,ENTA IORG OVLcr;
BS5 1 LOADER TAPLE

STRT nss Il JFIRST WORD OF OVERLAY

• · 1
• •
• • I

ENTO flSS 0 EXECUTION BEGINS HERE
I

• · I• •
• •

lENDEND OF OVERl AY
I \

SEGI is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLO C +1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning
at OVLOC.

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end-of-section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the hlock in use when the SEGwas encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

4-16 60492600A

Fonnat:

LOCATION OPERATION

SEG

VARIABLE SUBFIElDS

Symbols in the location field and variable field, if present, are ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 \30

IOENT NAME,ORIGIN,ENTRV
ASS I
USE A I
• • I• •
• • ISEG
USE 8 I
• • I• •
• • I
SEG I• •
• • I
• • IEND

I

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcocles (macros, opdefs, and machine and pseudo instructions), written in overlay
fonnat at the end of pass one. The STEXT instruction must be in the first statement groupo

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only once for all COMPASS programs using the same system text. System text over­
lays cannot be generated and used in the same assembly batch; system te:x't overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement calls.

The symbols included in the system text overlay written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600A 4-17

The symbol is redefinable (i. e., defined by SET. MAX. MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i. e., is a system symbol input to the present system text assembly).

The symbol is 8 characters beginning with t ~.

~ll defined micros are included in the system text overlay.

~ll program-defined opcodes are also included. Machine and pseudo instructi.ons automatically
lefined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
ncluded.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con­
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, th~ symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the following control table:

59 48 42

'-5-00-0--"~l
Fonnat of Text:

36 00
01 1=========00=0=0=0=00=0=0=0=00============'

System Symbol
Table
2 words per entry

Micro Definitions

[----------~fi=Number of words in each part of overlay

4-18

Macro/opdef Definitions

Operation Table
Entries (2 words per entry)

60492600A

Format:

LOCATION

rname

OPERATION

STEXT

VARIABLE SUBFIElDS

rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a
letter (A- Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generates
the system text only. Otherwise, the system text is generated in addition to the re­
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 11 lB 130

IOENT SYSTEXT
I

I
STEXT

I8ASE MIXED
HPRS EOU 100 '1• • •

'SYSTEM CONSTANTS, SYMBOLS,
lAND COMMUNICATIONS AREAS

• • • !J• • •
TRTS EQU 1777
lXX/X OPDEF l,J,K '1• • •

'SYSTEM-DEFINED• • • HACROS

• • • fAND OPOEFS
END"

iJ
SYSCOM MACRO N

• • •
• • •
• • •

ENOM :1DATE MICRO 1,10,..... •
• • •
• • • ISYSTEH-DEFINED MICROS
• • • tjEND

60492600A

4.3.9 COMMENT-PREFIX TABLE CO'-AA'\ENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into
the eighth through fourteenth words of the PRFX table in the object program. The prefL"'< table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent
binary control statement. If the subprogram contains a NOLABEL instruction, the COM1IENT instruc- I

tion is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification.

Format:

lOCATION OPERATION VARIABLE SUBFIELDS

string

COMMENT string

COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments -cohimn
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement.- 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and C01nment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4.3.5 for an example.

4.3.10 NOLABEl - DELETE HEADER TABLE

The NOLABEL instruction modifies the fonnat of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero.

Format:

LOCATION OPERATION VARIABLE SUBFIElDS

NOLABEL I

4-20 60492600 F

I Optional; if the variable field contains a character string beginning with an It
COMPASS suppresses all prefix (7700 8) tables, but retains the other program
header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (77008)
Overlay control tables (50008)
Multiple entry point tables (51008)
PPU header control tables

A location field symbol, if present, is ignoredo NOLABEL is illegal in a relocatable CPU assembly.

4.3.11 LCC-LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:

LOCATION OPERATION VARIABLE SUBFIElDS

directive

LCC directive

First nonblank character following LCC to the first blank. For directive
formats, refer to the Loader Reference Manual.

A location field symbol, if present, is ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.3.12 LDSET-GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A
program may contain any number of LDSET instructions. COMPASS collects all LDSET options and
writes a single LDSET (7000 8) table in the relocatable binary output between the PRFX (77008)
table and the PIDL (34008) tables. The LDSET table is not written if LDSET instructions do not
appear in the program. LDSET is not allowed in a PPU or absolute CPU assembly.

Fonnat:

LOCATION

60492600 G

OPERATION

LDSET

... ARIABLE SUBFIELDS

options

4-21

.ions One or more options separated by commas.

LIB Clear local library set.

LIB=libname

MAP

MAP=p

MAP=p/lfn

MAP=/lfn

PS=p

PD=p

PRESET=p

Add the specified libraries to the local library set. More than one library can
be specified by separating library names with a slash, in tile form:

libname1/libnam e2/... /libnamen

Write load map to file OUTPUT.

Write load map to file OUTPUT. Map items are selected by p:

N No map.
S Statistics.
B Block list.
E Entry point list.
X Cross reference map.

p can be written as N or as any combination of SBEX in any order.

Write load map to file named lfn. p is as above.

Write load map to file named lfn. Installation default determines items on
the map.

Select page size for load map by a specification of number of lines. p can be
decimal 10 through 999999. A value outside this range results in the
installation default page size.

Select print density for load map by a specification of decimal number of
lines per inch. p can be:

6 6 lines per inch.

8 8 lines per inch.

other Installation defaul to

Preset memory to the value specified by p. Under NOS/BE, p can be a 1
through 20 digit octal number with an optional + or - prefix and an optional B
suffix.

p can also be one of the following key words:

NONE
ZERO
ONES
INDEF
INF
NGINDEF
NGINF
ALTZERO
ALTONES
DEBUG

No presetting for ECS; same as ZERO for CM
0000 0000 0000 0000 0000
7777 7777 7777 7777 7777
1777 0000 0000 0000 0000
3777 0000 0000 0000 0000
6000 0000 0000 0000 0000
4000 0000 0000 0000 0000
2525 2525 2525 2525 2525
5252 5252 5252 5252 5252
6000 0000 0004 0040 0000

:2

PRESETA=p

ERR=ALL

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24
bits (ECS/LCM) of each word contains its address. This option is not
supported by SCOPE 2.

Select loader abort for all errors.

60492600 G

ERR=FATAL

ERR=NONE

REWIND

NOREWIN

EPT=eptname

NOEPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON=blkname

SUBST=pair

OMIT=eptname

Select loader abort only for fatal errors.

Select loader abort only for catastrophic fatal errors.

Reset the default REWIND/NOREWIN option for load files to REVrIND. The
NR parameter on LOAD and SLOAD directives can override this default for
individual files.

Reset the default RE\\7JND/NORE'iNIN option for load files to NOREWIN. The
R parameter on LOAD and SLOAD directives can override this default for
individual files.

If the symbol eptname is defined, declare it an entry point of the CAPSULE
or 0 VCAP binary SUbsequently generated by the loader in the form:

pnamel/pname2/.../pnamen

Do not define eptname as an entry point of the CAPSULE or OVCAP binary
subsequently generated by the loader.

Cause the designated object modules to be loaded whether or not they are
needed to satisfy external references. More than one module can be
specified by separating module names by a slash.

Cause the load of object modules containing the specified entry points
whether or not they are needed to satisfy external references. More than one
entry point can be specified by separating entry point names by a slash in the
form:

eptnamel/eptname2/.../eptnamen

Assign all labeled blocks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common block named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.
More than one block name can be specified by separating the individual alack
names with a slash in the form:

blknamel/blkname2/.../blknamen

Treat external references to eptnamel as though they were references to
eptname2' where the entry point names are specified as a pair in the form:

eptnamel-eptname2

More than one pair of entry point names can be specified by separating the
pairs with a slash in the form:

Omit satisfying external l'eferences to the specified externals. More than
one entry point name can be specified by separating the names with ·a slash in
the form:

eptnamelleptname2/ ...1eptnamen

A location field symbol, if present, is ignored.

See the Loader refe~'ence manual for details of these parameters, including the operating system to which a
given option applies.

60492600 G 4-22.1

4 MODE CONTROL

>de control pseudo instructions influence the basic operating characteristics of the assembler o

:lcifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data
Generates character data
Interprets the beginning of comments on statements
Qualifies symbols or does not qualify them
Interprets the R= instruction

BASE pseudo instruction
CODE pseudo instruction
COL pseudo instruction
QUAL pseudo instruction
Bl=l or B7==1 pseudo instruction

each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.1 BASE - DECLARE NUMERIC DATA MODE

e BASE pseudo instruction declares the mode of interpretation for numeric data for which a base
dix is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subpro­
am, COMPASS evaluates unspecified numeric data as decimal.

e alternate application of BASE is to define the previous base as a micro.

addition, if no program or system micro named BASE has been defined, COMPASS changes the
:edefined BASE micro to be a single letter D, M, or 0, corresponding to the new mode established
: this BASE instruction.

~rmat:

loeA TlON

mname

OPERATION

BASE

VARIABLE SUBFIElDS

mode

mname

mode

Optional 1-S character micro name by which the previous BASE mode can be referenced
in subsequent BASE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter D, M, or 0, corresponding to the BASE mode
in effect prior to this BASE instruction.

Blank, in which case the base remains unchanged, or 1-S characters, the
first of which designates the new base as follows:

-22.2

a Octal assembly base; any subsequent use of a data item not
specifically identified by an 0, D, or B prefix or· suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15S; constant 15D is evaluated as 17 S. Any
item containing an S or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

60492600 F

60492600 F

D

M

Decimal assembly base; any subsequent use of a data item
not specifically identified by an 0, D, or B prefix or suffix
is evaluated as decimal.

l\1ixed assembly base; any subsequent use of a data item not
specifically identified by an 0, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

bUP or ECHO line count

Character count

Shift counts (8 modifier)

Scale factors

4-22.3/4-22.4 I

Binary point position

COL column number

DIS word count

SPACE line count

*

other

Use base in effect prior to current base. The assembler records
occurrences of BASE pseudo instructions and nlaintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and rem.oves it from the list. When the
subprogram contains luore BASE * instructions than there are
entries in the stack, COIvlPASS uses a decimal baseo

If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I 11 IS 130

~ASE 0
I

VFO GOll0 I
• • I
• • I
BASE 0 IVFO 48/6

I
• • I
• • IBASE H
VFO 1t8/10 I

I

0 ..0

O~D

noon

0.."
00000000

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 10 •. 8

C{)de Generated

00000001]00000010

000000000010

000110010

The following example illustrates the micro capability of BAS~:

O..H

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

SAVES BASE H ISAVE eASE IN USE

• • • I
· • • ICODE USING BASE M

• • •
IRESTOREBASE :tSAVEBt SAVED BASE

BASE (J RESTORE SAVEO BASE

• • • I

• • • I
• • • I

60492600A 4-23

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE 0 (for Other)
mode is in effect.

Format:

LOCATION /OPERATION

ICHAR

VARiABLE SUBFIHDS

expl,exp2

expl

exp2

Evaluatable absolute expression whose value is 00 to 778. The value of expl
is the display code value of the character to be redefined.

Evaluatable absolute expression whose value is 00 to 778. The value of exp2
is the new code other value of the character designated by expl.

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those
characters whose code other values are different from display code. Characters may be redefined
as many times as desired by subsequent CHAR pseudo instructions.

Example:

OO~63

63"00

lOCATION OPERATION

CHAR
CHA~

VARIABLE SUBFIHOS

INTc~CHANG£ COLON ANO
PERCENT fOR COOl OTHEH

4.4.3 CODE - DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII t, display, external BCD, or internal BCD, codes. If no
CODE instruction is used, COMPASS generates display code. Codes are given in appendix A.

An alternative application of CODE is to define the previous code as a micro.

In addition, if no program or system micro named CODE has been defined, COMPASS changes the
predefined CODE micro to be a single letter A, D, E, It or 0, corresponding to the new mode
established by this CODE instruction.

Format:

LOCATION

mname

OPERATION

CODE

VARIABLE $UBFIElOS

char

tAmerican Standard Code for Information Interchange.

4-24 60492600C

mname

char

Example:

Optional 1-8 character micro nanle by which the previous CODE mode can be :sferenced
in subsequent CODE instructions. If mname is present, the value of the rni:::: named
mname is (re)defined to be a single letter A, D, E, I, or 0, corresponding t) :<-:e CODE
mode in effect prior to this CODE instruction.

The first character of a string indicates the code conversion:

A ASCn six-bit subset

D Display

E External BCD

I Internal BCD

o Other code, defined by CHAR pseudo instructions.

* Use code in effect prior to current code. The assembler records occurrences of
CODE pseudo instructions and maintains a table of the most recent 50 occurrences.
Each CODE * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more CODE * instructions than there are entries in
the stack, COMPASS generates display code.

Code Generated

17252420252400000000
O,.A

57&5646065640UOOOJOG
A,.E

462423412~2JOOOOOOOO

E,.r
4664634764&3~JuGuOOO

I .. O
17252420252400000000

O,.I
466463476463JOOOUOJG

LOCATION OPERATION VARIABLE COMMENTS

I II \8 130

DATA OLOUTPUT ICODE ASCII
DATA OLOUTPUT I
CODE EXTERNAL BCD
DATA OLOUTPUT I
CODE INTERNAL aCD
DATA OLQUTPUT I
CODE DISPLAY

IDATA OLOUTPUT
CanE .. IDATA OLOUTPUT

I

4.4.4 QUAl- QUALIfY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined
in it are either qualified or are unqualified (global)o If no QUAL is in a subprogram., aU symbols are
defined as global.

An alternative application of QUAL is to define the previous qualifier as a luicro.

In addition, if no program or system micro named QUAL has been defined, COMPASS changes the
predefined QUAL micro to be the new qualifier name established by this QUAL instruc::too.

60492600 B 4-25

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualifieda
Used outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and
a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same synlbol used with a different qualifier is local to a different QUAL sequence. If a sY111bol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAL sequence is assumed to be a reference to the qualified symbol rather than to the global symbol.
In this case, a reference to the global symbol must be written as 1/ symbol. However, in a
NOREF statement when the unqualified symbol is previously defined and the qualified symbol is not,
COMPASS assumes the reference is to the unqualified symbol.

Default symbols and linkage symbols are not qualified.

LOCATION

mnam€

OPERATION

QUAL

VARIABLE SU8FIElDS

qualifier

mnatne

qualifier

Optional 1-8 character micro name by which the previous qualifier can be
referenced in subsequent QUAL instructions or symbol references. If mname
is present, the value of the micro named mname is (re)defined to be the 0-8
characters comprising the qualifier in effect prior to this QUAL instruction.

A symbol qualifier or * or blank, as follows:

4-26

qualifier

*

1-8 character name, the first character of which cannot be $ or
= or : or numeric. The qualifier cannot contain the characters

+ - * / , or 1\

A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as

/ qualifierIsymbol

The current qualifier appears as the third sub-subtitle on the
assembly listing (section 11.1).

The assembler resumes using the qualifier in use prior to the
current qualifier. The assembler records occurrences of QUAL
pseudo instructions and maintains a table of the most recent 50
occurrences. Each QUAL * resumes use of the most recent entry
and removes if from the list. When the subprogram contains more
QUAL * instructions than there are entries in the stack,
COMPASS uses the null (global) qualifier.

60492600 E

blank

Examples:

./

A blank variable field causes any symbols defined up to the next QUAL to be
global. A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The Sylllbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, :MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 /30

QUAL PASS1 I
erOF ~X6 F IBCOE QUALIFIED BY ?tlSSl

• · I· • IFO lOCi
QU4L PASS2 I

nCOE fQU LOC2 IRCOE QUALIFIED BV ~ASS2

OUAL ISVMROLS GLORAL F~OM NOW ON

· • I• ·· • I
GLOB SSe:; n IGlOe IS GLOBAL

· •
· · I
RJ IPASSl/8COFIJUMP TO P~SSl ROUTINE

· · I• ·RJ IPASS?/RCOEIJUMP TO PAe:;S2 ROUTINE

1>',

60492600A 4-27

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

11 18 3~

T ~p ~ACRO I'fl art<, l(WAL
USE ~torK

QUAL 1(WAl
T1lG1 BSS filA
TPG2 VF"D 60/-1

USE •
QUAL •
fNOM

-•
•

lOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

QUAL Z I

21 ass 0 111 QUALIFIED BY Z
• • f:• •
• • I-QUAL B IEQUATE SYMBOL5 SO THAT

21 = /ZIZ1 Z1 IN Z CAN BE REFERRED
ITO AS Zl IN 8

4..4.5 81 = 1 AND 87 = 1 - DECLARE THAT B REGISTER CONTAINS ONE

The Bl=l and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (section 4. 8.7) and define the symbol Bl=l
or B7=1. If more than one instrootion is used, the assembler uses the last one encountered.

4-28 60492600A

Formats:

LOCATION OPERATION

Bl=l
B7=1

VARIABLE SUBFIElDS

A symbol in the location or variable field is ignored.

Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (section 4.8.7).

4.4.6 COL- SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, CO NIP ASS uses 30.

LOCATION OPERATION VARIABLE SUBF1ELDS

COL n

n An absolute evaluatable expression designating the column number; n?,12. When base is ;VI, n
is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero
or blank, COMPASS sets the column to 30, the default column.

~

If the current operation field extends past the current comments column, CO MP ASS ~
substitutes a very large number for n in the current instruction only; that is, if n is less than ~j
or equal to the last column of the operation field, a variable field must be present if a I~:
comment is present.

A location field symbol, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 1B 130

COL 36 I

USE :~ETURN TO PLOCK 0

In this example, subsequent statements for which the variable field is blank cannot have comments
beginning before column 36.

60492600 G 4-29

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control use of
~ll ;;>rogram blocks, and provide the user with a means of changing origin, location, and position counters.

4.5.1 USE - ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established blocl<. The block in use is the block
into which code is subsequently assembled. A user may establish up to ~52 blocks in a block group.

Format:

LOCATION OPERATION VARIABLE SUBFIElDS

block

USE block

Identifies block to be used, as follows:

oor blank

II

Inamel

name

*

Nominal block (absolute or 0).

Blank common block; for a relocatable subprogram, this block cannot
contain data. The only storage allocation instructions that can follow are
BSS and ORG. The BSSZ instruction is illegal because it presets the block
to zeros.

Labeled common block. A name can be a maximum of 7 characters and
cannot include blank or comma. The first and last characters must not lJe
colons. Conventions imposed by the loader or other assemblers or
compilers could further restrict the use of names.

Local block. A name can be 1 through 8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled common
block. For example, USE A and USE/AI are different blocks.

Block in use prior to current USE, USELCM, ORG, or ORGC. See
discussion following.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELClVI is encountered.

Redundancy between block names is permitted as follows.

A labeled common block designated by /0/ can coexist with the program block designated by O. Blank
common designated by 1/ can coexist with a labeled common block designated as / / / /.

4-30 604~2600 G

A CPU subprogram may have two blocks with the same name and the same memory type if they h2.Te
different block types (local or common). Furthermore, a CPU subprogran1 may have two blocks
with the same name and the same block type if they havedifferent memory types (CM/SCIvl or
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name.

When a block is first established, its origin and location counters are zero and its position counter : ~
either 60 (CPU subprogram) or 12 (PPU subprogram). Vilhen a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. \\'hen the designated block has'been
previously established, COMPASS resumes assembly in the block using the last known values for
the origin and position counters. The value of the location counter is not saved. Upon resumption of
the bl?ck, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE :I< and
USELCM * resumes use of the most recent entry and removes it from the table. \Vhen the subprogram
contains more USE * or USELCM * instnwtions than there are entries in the stack, COMPASS uses
the nominal block.

Examples:

1.. 5130000000

13 0100000000

35 1120~OOOOOOOOOOOOOOO

Location Code Generated LOCATION OPERATION VARIA8lE COMMENTS

1 11 18 /30

USE I
GAMMA RJ ALPHA I BLOCK 0 IN USE

USE DATAl I BLOCK DATAl IN USE
SAB DATA 1.0 I

USE .. IRESUME USE OF BLOCK 0
SA3 <;tH1 t

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

USE TABLE ;US'E TABLE LOCAL BLOCK
VFO 6/0 I
USE • IRESUME PREVIOUS BLOCK
• • '.I
• • I·
• •

:RESUMEUSE TABLE USING TA8LE
VFO 6/1RX,18/S
USE • IR£~UH£ PREVIOUS BLOCK

30002600 +

2615 00

Note that the SA3 is forced upper because the &J causes a force upper of the next instruction in the
block.
Location Code Generated

. Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing iD.
a block other than the one primarily being used.

60492600A 4-31

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatableassernbly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORO, and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU
assemblies.

Format:

LOCATION OPfRATION

USELCM

VARIASlE SU8FIElDS

block

block: Identifies block to be used, as follows:

o or blank

II

lname/

name

•

nlegal.

Blank common block. A subprogram can have two blank common
blocks if one of them is in E CS/LCM.

Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

Local block. t The name can be 1-8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled
common block. For example, A and /A/ are different blocks. All
of the local ECS/LC1vI blocks are concatenated to form a single block,
which is treated by the loader as an ECS/LCl\l common block whose
name is Wlique to the subprogram•

Block in use prior to current USE, USELCM, ORG, or ORGC.

A location field entry, if present, is ignored.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LC:M: block is 1,048,568
words.

Further rules for USELCM are the same as for USE.

t SCOPE 2 does not currently allow local blocks in LeM.

4-32 60492600 E

Examples:

LOCATION OPUATION VARIAIllE COMMENTS

,
" 18 130

BASE 0 f
I
I

USELCt'l lCM ,EST ABLISH AND USE ll;M BLOCK
lCMC as:) 0 ,UEFINE SV,'iBOL. lCHC
SlOC1 ass 100 ,RESERVE 100 ~OROS

BLoez ass 20a IRESERVE zoo WORDS
U:)E .. ",RESUME PREVIOUS 8Lctk
• • I• •
ORG 8LOC1+1000B I

BLOC3 ass 20 'RESERVE 20 MORE WORDS
USE • !RESUHE PttEVI GUS SlOLk

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC t indirectly indicates the block to be used for assembly of subsequent code ~d specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by
the linking loader if that common block was first declared by a previously loaded subprogram. If two
or more programs in a load sequence preset relocatable text within the same common block, the ORGC
must be used; otherwise, multiple relocation of those words can occur.

Fonnats:

LOCATION O'UATION VAlUAlllE $UIFIElOS

ORG exp
ORGC exp

exp Expression specifying the address to which the origin and location counters are to be
set. Follmving ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows: '

t Not supported by SCOPE 2 Loader.

60492600 D 4-33

1. If the expression contains a symbolic address, COMPASS uses the block in
which the symbol was defined.

2. COMPASS uses the current block if the value of the expression is *, *L, or
*0. If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *0 is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is losto

If the counter values differ, * or *L sets the origin counter to agree \\lith the
location counter value; *0 sets the location counter tothe origin counter value.

30 An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable valueo It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignoredo

Once an ORGC pseudo instruction has established the conditional loading indication for a given common
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that blocko

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

USE ALPHA I
• • ,-
- - I-
• • I -

A8C DATA 20,100,1000ILOCATED IN ALPHA

I
I• • •

- • I •
USE BETA I

XY1 ess 0 'LOCATED IN BETA
• - ,-
• • •
• • I.
ORG ABC ISETS ALPHA COUNTERS TO ABC
• • ,AND RESUMES USE OF ALPHA
• • I·ess lDOO I
• • •
• • I.

4-34 60492600A

LOCA.TlON OPERATION VARIABLE COMMENTS

0- _

DATA

FOUR

11

ORG
•
•
ORG
•
•
-USE

•
•
-USE

•
•
•
USE

•
•
•
•
USE

•
•
•
USE

•
U'SE
ass
ORGC
DAoTA

USE:
CON
USF.
DATA
lJATA

O~G

zq,
RJ
•
•
-

18

-•
XYZ+l0fJ

•
•
•

•
•
•

•
•
•
".

•
•
•
•

•
•
•..
•

IDATAI
o
DATA
1,2,3

ANYBLOCK
3RXYZ..
4
5,6

FOU~

X1,ERROR
SUB4

130

ISETS ABSOLUTE BLOCK COUNTER
ITO 50 AND BEGINS ITS USE
•

ISETS BETA COUNTERS TO)(Y2+100
I-
I-
•

IRESUHES A8S0LUTE aLOCK
f-,.
'RESUMES BLOCK ALPHA
I
•

I.
I.
,RESUMES BLOCK BETA
Ie
Ie

I:
IRESUMES BLOCK ALPHA
Ie
I·-~RESUHES NOMINAL BLOCK.
I
f

ICONDITIONALLY PRESET DATA,
I
'UNCONDITIONAL DATA
I
,RETURN TO IDATAI STILL
CONDITIONALLY SKIPPING

I
IUNCONDITIONALLY LOADED
IINSTRUCT IONS

I
I

'\
)

J

4.5.4 BSS-B10CK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reservingblank
common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,
and REPI, section 40 8.8).

60492600A 4-35

Format:

LOCATION

sym

OPERATION

BSS

VARIABLE SU8FIElDS

aexp

sym

aexp

Example:

If present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.

Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp cannot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130
USE II I

COMMON 8SS 10008 'RESERVE: 512 WORDS OF BLANK COf"
USE .. I
• - I-
• • •
• · I·SAG COMMON.SOOP

1• • •
• • I·
• • IDEFINETAG ass 0 SYMBOL l'AG

• • I

MON

4.5.5 loe - SET LOCATION COUNTER

A LOe pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:

LOCATION

4-36

OPERATION

Loe

VARIABLE SU8flELOS

exp

60492600A

exp Relocatable expression specifying the address to which the location counter
is to be set. Any symbols in the expression must be al ready defined in the
assenlbly and must not result in negative relocation.

A loea tion field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged with an L on the listing until a LOC *0, USE, ORG,ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not affect the origin counter except that it causes the next instruction to be
forced upper. The only effect of LOC * or LOC *L is to force upper. Because COMPASS does not
save the value of the location counter when it switches blocks, a USE, ORG, OHGC, or USELClVI for
a different block effecti vely resets the location counter to the origin counter value. When use of the
block is resumed, it is the responsibility of the user to reset the location counter to produce the desired
results.

Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one
PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
progranl, LOC *0 returns the location counter to the value of the origin counter.

Location

7100
7100

L 100
L 100
L 101
L 102
L 103

L 205
L 0
L 0
L 1
L 2
L 3
L 4
L ?
L 6
l 7

l 215
l 215
L 240

7240

60492600 D

Code Generated

2400
2400
2400
6100 0100

0100
0114
0121
0132
0136
0147
0240
1000

1
o

LOCATION OPERA TlON VARIABLE COMMENTS

I lJ lB 130

Tl EQU 1 I

CH EQU 0 I
ORG l10f! I

RfS ass 0
ILOC 100

PPR PSN 0 I
I

P~N 0 IPSN 0
fIM PP~,CH I

• · I·• • • I
• • • IPPRA RSS 0

lOC 0 I
CON PPR

ICON 5TH
CON OPM ICON fXR

~ CON CHS I
CON OMP ICON END
CON 1000 I

· • • I
• • • I· • •

LOC "O-RES+PPR IesC) 240-'"
IfNO ass

lOC "0 I

4-37 •

4.5.6 POS - SET POSITION COUNTER

The POS pseudo instnlCtion sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:

LOCATION OPERATION

POS

VARIABLE SUSF IElDS

aexp

aexp An absolute evaluatable expression having a positive value less than or
equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

I
A location field symbol, if present, is ignored.

NOTE

If the POS instruction is used on a word containing relocatable or external
addresses, undefif}ed results can occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, iIa data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12).

A POS *p has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instnlCtions EQU, =, SET, lVTAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the synlbolic reference table, a refer­
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and = cannot be redefined; syu1bols defined using any of the other symbol definition
instructions can be redefined.

4-38 60492600 G

4.6.1 EaU OR =- EQUATE SYMBOL VALUE

An EQU or == pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:

LOCATION

sym
or

sym

OPERATION

EQU

VARIABLE SUBFIELDS

exp

exp

sym

exp

Examples:

A location symbol is required. See section 2.4 for symbol requirements.

An evaluatable expression. Any symbols in the expression must be previously
defined or declared as externaL The expression cannot contain symbols
prefixed by ==8, =X, or ==Y lL.'11ess the symbols have also been defined conven­
tionally. If the expression is erroneous, COMPASS does not define the location
symbol but flags an error.

20437
74­

3
74­

61.t271

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
OPS = 204376 I
LINP = 748 I
GH EQU 3 I
PAGESIZ = LINP I
lGOPS EOJ ""-OP$ I

4.6.2 SET - SET OR RESET SYf¥\BOl VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MIC CNT, only.

Format:

LOCATION

sym

60492600C

OPERATION

SET

VARIA8lE SUBFIElDS

exp

4-39

VARIA8LE SUBFIElOS

IA

: BHAS ,"y',;

Ie HAS~ VALUE A+3~O~ 18
I " _. '
I ILLEGAL, B IS DOUBLY DEFINED
t
,LEGAL, C CHANG£S FROM 18. TO 20

I ILLEGAL, F AS YET, UNDEFINED'I '. . .

IILLEGAL, REFERENCE P~£CEOES

IFIRST DEF!NIlION,

I

A location symbol is required•. see section 2.4 for symbol requirements.

An evaluatable expression. Any symbols in the exp.ression must be previou
defined. The e:xpression cannot contain symbols prefixed by =8, or
unless the symbols are also defined conventionally.

A location field symbol is required.

An evaluatable expression. The expression cannot include symbols as yet und
and cannot contain symbols prefixed by =S, =X, or =Y, unless the symbols aI'

also defined cooventionaUy.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

sym

exp

4.6.3 MAX - SET SYMBOL TO MAXIMUM VALUE

4-40

The MAX pseudo instruction defines the symbol in the location field as having the value and attributE
iDdicated by the. largest (most positive) value of the expressions in the variable field. A subsequent
SET;-MAX,-lVIIN, or MICCNT using the same symbol redefines the symbol to the new value.

,Conversely, MAX can be used to redefine symbols defined by these instructions.

Tlle symbol in the ,locat:ion field cannot be referred to prior to its first definition~

The expressions should have similar attributes. No test is made for attributes. The test for maximum
value is made in pass one. In testing for the maxilnum value in pass one, COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:

5
&
2

LOCATION OPERATION VARIABLE COMMENTS

I II 18 \30

PT3 EQU 5 I

I
pr31 EQU 6 I
PT32 EQU 2 I

I
I

SYH MAX PT3,PT31,PT32
I

4.6.4 MIN - SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum orleast positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine sYlnbols defined by these instructions.

Format:

lOCATION

sym

OPERATION

MIN

VARIABLE SUBFIElDS

sym A location symbol is required (section 2.4).

An evaluatable expression. Any symbols in the expression must be previously
defined. The expression cannot contain symbols prefixed by =8, =X, or =Y,
unless. the symbols are also defined conventi.Jnally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

60492600C 4-41

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning
flag.

The symbol in the location field cannot be referred to prior to its first definition.

4.6.5 MICCNT - SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols defined by these instructions.

Format:

LOCATION'

sym

OPERATION

MICCNT

VARIABLE SUSFIElDS

mname

sym

mname

Example:

A location symbol is required (Section 2.4).

Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.

23

4-42

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

HSG MICRO 1,,·STRING· jDfFINE &-CHARACTER MICRO
• • I-
• • Ie
• • •

"SIZE MIeCNT HSG IHSIZE EQUALS £>
.

• - I.
• • I-
• • I·

HSG MICRO t'~.ALPHANU~ERIC.tMSG~. 19 CHAR. MICRO
MSG MICRO 1,,·llPHANUERIC·STRING· 19 CHA~. MICRO

KSIZE "ICCNT HSG' !,..SIZE EQUALS 19

60492600A

4.6.6 SST - SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction.

Format:

LOCATION OPERATION

SST

VARIABLE SUBFIElDS

One or more symbols on the file that are not to be defined.sym!

A location field symbol, if present, is ignored.

Refer to section 10.2 for an example of SST use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define sym.bols but either declare symbols
defined within the subprogram as being available out-;ide the subprogram or declare symbols referred
to in the subprogram as being defined outside the suiiprogram.

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

Th~ ENTRY pseudo instruction specifies which oJ t:!'e symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or ~:1s<-;8mbled independently; ENTRY lists entry points to
the current subprogramo ENTRY is illegal in PP(- assemblies.

The ENTRYC t pseudo instruction conditionally spu;ifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograr/:u- compiled or assembled independently; ENTRYC
lists conditional entry points to the current subp1'o'~~ram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemhlies. In a reloc3table assembly, an entry point
symbol declared by ENTRYC is ignored by the Hnking loader if the value of the symbol is relative to a
common block and that common block was first declared by a previously loaded subprogram.

tNot supported by SCOPE 2 Loader.

60492600C 4-43

Formats:

lOCATION OPERATION

ENTRY
ENTRYC

VARIABLE SUBflElDS

syrn1 ,SYTU2,···,SYTUn
syrnl,SYTU2,···,syrnn

Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon. The symbol cannot include the following characters:

+ - * I blank , or 1\

Each symbol must be defined in the subprogram as nonexternal (cannot begin with
=X or =Y or be listed on an EXT pseudo instruction). Entry point symbols must be
unqualified (section 2.4.5).

A location symbol, if present, is ignored.

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk
appears to the right of each conditional entry point.

Example:

1111
110
110 5120000100

73720
111 5110000002

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

TOENT CT'CONTROL,C~NTROl
ASS
ENTRY MOOE I
ENTRY ONSW IENTRY OFFSW
fNTRY ROLLOUT I
ENTRY SETPR

IENTRY SETTL
ENTRY SWITCH IORG 110n

~ONTROl BSS 11 I
~OOE SA2 ACT~ ISX1 X2

SAl ?- I
I• • I• •

• • I

4-44 60492600C

4.7.2 EXT - DECLARE EXTERNAL SYMBOLS

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled or
assembled subprograms for which references can appear in the subprogram being assembled. The
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT
defines symbols as strong externals (section 2.4.1).

Fonnat:

lOCATION OPERATION

EXT

VARIABLE SUBFIElDS

Linkage symbol, 1-7 characters of which the first must- be alphabetic (A- Z) and the
last must not be a colon. The symbol cannot include the following characters;

+ - * I blank , or A

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ

blank operation field

DATA

DIS

LIT

VFD

CON

R=

REP, REPC, or REPI

60492600C

Generates zeroed words

Generates one zeroed word

Generates one or more words of data

Generates one or more words of data

Generates literals block entries

Places expression values in user-defined fields

Places expression values in full words

For use in macros; R= assumes that either (Bl)=l or (B7)=1 and
generates increment instructions accordingly

Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4-45

4.8.1 BSSZ AND BLANK OPERATION FIELD-RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the SaTIle effect as a BSSZ of one word.

Format:

lOCATION

sym

OPERATION

BSSZ

VARIABLE SUBFIElDS

aexp

sym If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.

Absolute evaluatable expression specifying the number of zeroed words of
storage to be reserved. The eh'Pression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count.

4.8.2 DATA - GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words in the
current block for each item listed in the variable field.

Format:

lOCATION

sym

OPERATION

DATA

VARIABLE SUBFIELDS

item1 , item2' ••• ,ite~

sym

4-46

if present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.

60492600A

iten1­
1

Character, octal numeric, or decimal numeric data item, according to
specifications described in section 2. 7. Floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Unless the D list option is selected, only itemI appears on the listing.

Examples:

Location

5,2
553
554­
555
556
551
SoO

Location

1250
1251
1252
1253

-1254
1255
1256
1257
1260
1261
1262

Code Generated

140717UOOOOOOOOOOOOO
~DOOnOOOoooOOOOOOOOO

031115201114U50aOGOO
11252~202524UDOnOnOO

00000000000000000000
17205146314631463146
16403146314631463146

Code Generated

0,.0

7070
7770
0000
0034
5501
0000
0506
0123
7713
0401
2401

LOCATION OPERA TlON VARIABLE COMMENTS

I 11 IB 130

OPTS DATA IlLLGO I
OPT DATA 18sc;Q I
OPTT DATA IlLCOMPIlE: I
OPTD DATA OLOUTPUT,O I

I
OPTY DATA 1.3[E I

LOCATION OPERATION VARIABLE COMMENTS

1 11 1B 130

PERIPH
I

SASE ~
I
t. ~ I• •

JAr DATA fT070,-1,O,lRt
I
I

DATA ~C A,OLEf I
I

DATA 0123,-4
I
I

PATA H'"OATA" I

4.8.3 DIS-GENERATE WORDS OF CHARACTER DATA

The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected
only the first word of character data appears on the listing. The instruction has two formats:

60492600A 4-47

Format one:

LOCATION

sym

OPERATION

DIS

VARIABLE SUBFIElDS

n, string

sym

n

string

If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

An absolute evaluatable expression specifying an integer number of words to be
generated. When base is M, COMPASS assumes that n is decin1al.

Character string

Fora CPU program, COMPASS takes 10 times n characters from the string and packs them as th~y occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with bl?:11ks •
If n is 0, COMPASS assumes the instruction is in format two.

Format two:

LoeA TlON

sym

OPERATION

DIS

VARIABLE $UBFIElDS

,dstringd

sym

d

string

If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

Delimiting character

Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COl\:IPASS must generate an
additional word for them. If COMPASS detects the end of the statement before it detects a second
delimiting character, it produces a fatal error.

4-48 60492600A

Examples:

Location

561
562
563
564
t;6c;

Code Generated

07051605220124055535
5SfiJ2025552117220423
07051605220124055535
55032D255;2711220~23

ouoooonoooo~OOOOOOOO

LOCATION OPERATION VARIABLE COMMENTS

1 II \8 130

ONE DIS 2,GEN£RATE ?! CPU WORDS
I

TWO OIS ,·GENERATE 21 CPU WORDS·

I

1402
1403
1404
,litO 5
1406
1407
1410
1411
1412
1413
1414
1415
1416
1417
1420
1421
1'+22
1423
1'+2'+
1425
1426

.
Code Generated

O.. M
0705
1605
2201
2405
5534
3355
2020
5527
1722
0423
0705
lb05
2201
2405
5534
3355
2020
5527
1722
0423
0000

LOCATION '" OPERATION VARIABLE COMMENTS

I 11 18 130

PPJ I

I

BASE M
l

f
UIS 10,G£NERATE ltl pp WORUS

I
I
I

t
I
I

I
I

DrS t ""GEN ERA TE 10 pp WORDS"

I

I

I

r

r

4.8.4 LIT - DECLARE LITERAL VALUES

A LIT pseudo instruction generates data words in the literals block. This instruction ana the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:

LOCATION

sym

60492600A

OPERATION

LIT

VARIABLE SUBflElDS

iteml , item2, •• • , itemn

4-49

sym If present, sym is assigned the value of the literals block location counter.

At least one and not more than 100 words of character, octal numeric, or
decimal numeric data items. Section 2.7.3 contains specifications. Items
are separated by commas and ternlinated by a blank. Floating point data
items are illegal in PPU assemblies.

COMPASS enters data items into the literals block in the order specified.

If "the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an
= prefix is not duplicated. A null item (e. g. H** or OL) does not cause a word to be generated.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

POOL lIT 3.1,1.59265,2.7182182,57.2957795££1611

CONlfNl OF lITEP~lS GLOCK.
17216146314631463146 OOf-Y-Y-Y-
11206275576441776271 OP1~.t6;).

11215337351136\114426 OQ1!4?I3A9V
11314363651440663121 OY8t~L5vYQ

16513333033540576566 N(OOC2S.~v

Code Generated

000611
00061l
000613
000614
000615

Location

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

N2 LIT lR.1,70TO,7,ol
LIT 2C A,OLEF I
lIT H·LITERAlS· I

7447
7CtS3
7456

CONlfWl OF lITf~ALS ElOC~.

Code GeneratedLocation

7 7
7..50
7 ..51
7ftS2
7453
745..
7 ..55
7 ..56
7"57
7tt60
7 ..61

0034
7070
0007
DODO
5501
0000
0506
1..11
2~05

2201
1 ..23

1
1'+

G

EF
II
TE
RA
LS

4-50 60492600A

4.8.5 VFD - VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATiON

sym

OPERATION

VFD

VARIABLE SUBFIElDS

sym For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym

+

blank

If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

Causes a force upper. Data generation begins in a new word.

COM:PASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

COMPASS begins the first field at the current value of the position
counter.

item!

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

An unsigned constant or previously defined symbol having a value specifying a
positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, item,
is assumed to be decimal notation. 1

An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by itemi. The e>"lJression is evaluated using
the specified field size. Character constants are right or left justified in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of aquarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no­
operation instructions.

60492600A 4-51 .

When a VFD instruction that does not have a location field entry immediately follows another VFD in the
same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as they are
specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the last
word in which data was generated by the VFD.

Examples.:

In the first example, the symbol TABLOC has been defined earlier in the program and associated with
000551.

31
566 24010200000023000551
567 00000005665555555555
570 777777774

oonOOOOOOOOO
571 1117240155U155555531
572 00000015052323DI0705
573 0311170000n0033

Location

Location

1310
1311
1312
1313
1314
1315
1316
1311
1320

Code C:renerated

Code Generated

333\
3536
37 ... 0
4142
1t344
0010
0011
7765
0707

Ot+11

LOCATION OPERATION VARIABLE COMMENTS

I i1 18 /30

ALPHA SET 25 I
TABLE VFO 36/3CrAB,6/1~,18/TABLOC

VFO 311/J;l-1,30/5H ,AlPHA/-O
I

VFO "PI I
VFO 30fOHIOTA,6/1RA,24/0AX+l
VFO 60fORMESSAGE,30/3LCIO,15/0RO

I

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

PPU I

BASE H I
N4 VFO 60/10R0123456789

I
I
I

Atl YFO 12/10,12/11,12/-12,12/-1010
I
I

4.8.6 CON - GENERATE CONSTANTS

The CON pseudo instruction generates one or more full words of binary data in the block in use. It
differs from DATA in that it generates expression values rather than data items and differs from VFD
in that the field size is fixed.

Format:

LOCATION

sym

OPERATION

CON

VARIABLE SUBFIElDS

sym

4-52

If present, sym is assigned the value of the location counter after the force
upper occurs.

An absolute, relocatable, or external expression the value of which will be
inserted into a field having a size of one word. For PPU assembly, floating
point iE', not allowed; for CPU assembly, double precision is not allowed.

60492600 F

Examples:

In the first example, the symbols FAIL and PASS have been defined earlier in the program and associated I
with 2204 and 2172, respectively. I

Location Code Generated

1460 0000
1461 0006
1462 0003
1463 2204
1464 0024
1465 0000
1466 0006
1461 0003
1470 2172
1471 0024

Location Code Generated

57...
L 0
L 0 oooonooooounnCOOOO55
L 1 00800000000000000062
l 2 0000000000UUOOOOU064
L 3 00000000000000000060

L
L
l

75
76
77

67..

00000000000000000066
OOOOOOU0000000000076
OOOOOOO~OOOOD0000055

LOCATION OPERATION VARIA8LE COMMENTS

I II 18 130

Msal C'1N 0 I

CON 6 I
CON 3 ICON FAIL
CON 20 IMSG2 CON 0
CflN 6 ICON 3

ICON PASS
CON 20 I

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
'"'""fAO BSS 0 I

LOC 0 I
CON 1R 1°0
CON tR.l

1
01

CON lRt 02
CON lR; 103

• • I·
• • I •

I-<- • •
115CON tRv

CON 1~'" 11 6
CON lR 1

71
lOC "0 I

4.8.7 R = - CONDITIONAL INCREMENT INSTRUCTION

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl=l or B7=1 pseudo
instruction (section 4.4.4).

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:

LOCATION

sym

OPERATION

R=

v AilABLE SU8FIElDS

reg,exp

sym

60492600 F

Optional, if present, sym is assigned the value of the location counter after
the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.

4-53

reg

exp

Examples:

A register designator (A, X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operation code.

Ope.rand register or value expression. If exp is the same two characters
as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the Bl=l instruction has been assembled prior to this ins truction and the
expression value is 1, 2, or -1, the variable field of the instruction is B1,
B1+B1, or -B1, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,
B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression.

1. R= used with B1=1

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 \30

B1:1 I

R: B3,2 I
» >

,V' 'Cree",>,,,,,,,.,,,,,> I, .. "
R= 63,3

I.'10 ».'>."i>

2. R= used with BIll

Code Generated LOCATION OPERATION VARIABLE COMMENTS

11 18 30

4-54 60492600 F

3. Expression is same as register designator:

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130

RF"G MICRO 1,,"'85.11- I

35,tREGt I
I

< 85,&5

. No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP, REPe, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun­
tering the table; for REP, the replication takes place at the end of loading. For REPC+the loader
ignores the REPL table if the destination data address is in a common block that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables.

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be inpreviously assembled text.

Format:

LOCATION OPERATION

REP
REPCt
REPI

VARIABLE SUBFIElDS

S/saddr, D/daddr, C/rep, B/bsz, I/inc

A location field symbol, if present, is ignored.

The variable field subfields can be in any order.

S/saddr

D/daddr

Relocatable expression specifying first word address of code to be copied.
The slsaddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.

Relocatable expression specifying the destination of the first word of the first
copy. If DIdaddr is omitted, the assembler sets daddr to zero, and, when
daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

. t Not supported by SCOPE 2 Loader.

60492600A 4-55

C/rep

B/bsz

I/inc

Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the asselnbler sets rep to zero. 'When rep is zero or one, the loader
makes one copy.

Absolute expression specifying the number of words to be copied (block size).
When base isM, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. 'When bsz is zero or one,
the loader copies one word.

Absolute expression specifying the increment size in words. When base is M,
COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:

1. The S subfield cannot be omitted

2. Room must be reserved for the copies in the destination block (for example, thrOllgh
ORG, ORGC, or BSS)

3. REP, REPC, and REPI can be used in relocatable assemblies only

4. Data to be replicated must not contain any external references or common block relocatable
addresses

5. For REPC and REPI, data must be in previously loaded text

Example:

Location

r:;017
c;o?o
r:;021
C;022
r:;023
C;024

t;251

4-56

Code Generated

10

ooonoooooooOOO~00015

nnoooOOOnOOQ00000020
OOOOOOOOOOOO~OD07070

000000000000Qon00001
Ooooooorooooo0000005
17216300000000000000

13

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 /30

Rr = 10 I

USE NEWP f,
8~ fJATA 1~,20,7070B,1,r:;,3.14

I
I
I

I f.QU .v--RA +?
I

USF- ORL0CK I
OA ~SC) RC"'r IUSE ..

IPFPI S/BA,O/OA,B/I-S,C/RC,I/I

60492600A

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environnlent (IFtype)
Compare values .of two expressions (IFop)
Compare values of two character strings (IFC)
Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement -count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to adeclared external,
the value is the relative value.

4.9.1 ENDIF - END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. \Vhen the sequence containing the
ENDIF· is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Sdpped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:

LOCATION

ifname

OPERATION

ENDIF

VARIABLE SUBF1ElDS

ifname Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any
other type of symbol elsewhere in the program.

Skipping of a sequence initiated by an IF, SKIP, or ELSEthat is assigned a name can be terminated ­
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and anyunnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60492600C 4-57

4.9.2 ELSE - REVERSE EFFECTS OF IF

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the EIBE. An ElSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:

LOCATION

ifname

OPERATION

ELSE

VARIABLE SUIlFIElDS

!nct

ifname

mct

Name of an IF, SKIP, or ELSE sequence, or blank.

Optional absolute evaluatable expression specifying integer number of source
lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that fnct is decimal.

An ELSE specifying the. sequence by name or any unnamed ELSE terminates skipping of a sequence
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not eh"Panded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:

LOCATION

ifname

4-58

OPERATION

IFtype

VARIABLE SUBFIElOS

£nct

60492600A

ifname

type

Optional 1-8 character name.

Mnemonic specifyi.ng type of object processor.

Condition Causing Assembly

CP

CP6

CP7

PP

PP6

PP7

Any central processor unit

Neither PERIPH nor PPU nor, MACHINE 7 has been specified.
CPU code is assembled for a CYBER 170 Series, CYBER 70/
Model 71, 72, 73, or 74 or 6000 Series Computer System. '

Neither PERIPH nor PPU nor MACHINE 6 has been specified.
That is, CPU code is assembled for a CYBER 70/Model 76
or a 7600 Computer System.

Any peripheral processor unit

One of the follOWing is true:

1. PERIPH has been specified but MACHINE 7 has not
been specified.

2. PPU and MACHINE 6 have both been specified. PPU
code is assembled for a CYBER 170 Series, CYBER
70/ModeI71, 72, 73, or 74 or a 6000 Series Computer
System.

One of the follOWing is true:

1. PPU has been specified but MACHINE 6 has not
been specified.

2. PERIPH and l\L\CIITNE 7 have both been specified.
That is, PPU code is assembled for a CYBER 70/
Model 76 or a 7600 Computer System.

Rnct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that lnct is decimal.

The ifname and Rnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

60492600C 4-59

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

Code Generated

o
173 0130000000

LOCATION OPERAnON VAR!ABLE COMMENTS

J II 18 130

I'1ENT XYZ I
MACHINE 6 I
• I
• IBSS 123
IFCP6 2 I
XJ 0 IELSE 1
MJ 0 I

I

4.9.4 IFOP"- COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:

LOCATION

ifname

OPERATION

I Fop

VARIABLE SUBF1HDS

eXP1 ' exp2' £net

ifname

op

Optional 1-8 character name

Specifies comparative test:

4-60

QE

EQ

NE

GT

Condition causing assembly

Equality, the expressions are equal in all respects. That is, they
not only have the same numeric value but have the same attributes
as well. For example, both are names that are common
relocatable, or absolute, or external, etc.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.

The first expression is greater in value than the second expression.
No other attributes are tested.

60492600A

GE

LT

The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

The first expression is less in value than the second expression.
No other attributes are tested.

LE The first expression is less than or equal in value to the
second expression. No other attributes are tested.

For these tests, positive zero and negative zero are equal.

An e~ression. When the value of exp is tested, eArp can include only previously
defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

lnct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. \Vhen base is M, COMPASS assumes
that lnct is decimal. When lnct is blank, the comma can be omitted.

The ifname and £nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matchi.ng or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an EJ\TDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION VARIABlE COMMENTS

1
.

11 18 130

IF DEF,LOOP
IFLT "'-LOOP,40B
ZJN LOOP
EL~E 2
NJN ""+3
LjH LOOP
•
•
•

This code assembles a zero jump to the symbol J.4,X>P if LOOP has been defined wttnln 37 'Wurds (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJil'are assembled.

60492600A 4-61

4.9.5 IFPL AND IFMI - TEST SIGN OF EX~RESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (M1). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION

ifname
ifname

OPERATION

IFPL
IFMI

VARIABLE SU BflElDS

exp,.tnct
exp,.£nct

ifname

exp

.£nct

Optional1-S character name

An expression. It can include only previously defined symbols and the result
can be absolute, relocatable, or external. If all undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

Optional absolute expression specifying an integer count of the number of
statements to be skipped. \Vhen base is M, COMPASS assumes that .enct is
decimal. When .tnct is blank, the comma can be omitted.

The ifname and £nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF butnot over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by ail unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by 1FPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

4-62 60492600A

Example:

The following opdef defines the CPU instruction l\1Xi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression

, value modulo 60.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 "/30

"XQ OPOEF REG,VAL I
LOCAL A I

A SeT VAL (

A SET A-A/600.y.oOol
IFPl A,3 I
IFEQ A,O,3 IIFLE VAL,D,1
Sl(IP 1 I

A SET A+60D I
VFD 6/438,3/REG,&/A
El'fDM I

I
I

Example of call:

Code Generated

777771.3

7177713

10
'+3610

LOCATION OPERATION VAR1AlllE COMMENTS

1 11 18 130
MXf> -Sl I

1'+onnr.111 S~T -t;l I
't>+OIlr)Pf11 SE"T ,.onJon.1-1'~~OOOnt/600.60D

IFPL "'~r:lOOOQ1,3 I
I~EQ l'+OCDQOt,O,31
IFLE -~?,'J,1 ISKIP 1

.... nnl1n. n1 qET "'. I) 0 (lID ry 1 "'1; on
VFO h/43B,~/6,6/1'.OOOOO1

ENDM I
I

4.9.6 IF. TEST SYMBOL OR EXPRESSION ATTRI8UTE

The IF pseudo instruction tests a symbol" or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

60492600A 4-63

Format:

LOCATION

ifname

OPERATION

IF

VARIABLE StJ8FIElDS

att, expt .£net

ifname

att

Optional 1-8 character name

Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.

4-64

att

SET

-SET

ABS

-ABS

REL

-REL

REG

-REG

COM

-COM

EXT

-EXT

LCM

-LCM

LOC

-LOC

Condition causing assembly

The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined other than
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

The expression in the second subfield reduces to a local or
common relocatable address

The expression in the second subfield does not reduce to a local
or common relocatable address

The expres sion in the second subfield contains one or more
register names

The expression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common re­
locatable address (any blank or labeled common block)

The expression in the second subfield is not a common relocatable
address (any blank or labeled common block)

The expression in the second subfield contains one or more
external symbols

The expression in the second subfield does not contain an
external symbol

The expression reduces to an LCM address

The expression does not reduce to an LCM address

The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

60492600A

DEF

-DEF

MAC

·-MAC

MIC
,

-MIC

SST

-SST

All the symbols in the expression in the second subfield are
defined

One or more of the symbols in the expression in the second
subfield is undefined

The name in the second subfield is an opcode name

The name in the second subfield does not contain an opcbde name

The name in the second subfield is a micro

The second subfield does not contain a micro name

The second subfield contains a system symbol

The second subfield does not contain a system symbol

exp

£nct

For SET, SST, -SET, and -SST, exp must be a single defined symbol. For
MIC and -MIC, exp must be a name. For any other test, it is an e)..rpression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
- REG, EXT, or - EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction. Note that if
a symbol is never defined conventionally but only by use of =S or =X prefix
(see section 2.4. 2), COMPASS does not define the symbol until the end of
the assembly, and IF tests will consider the symbol undefined.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. \Vhen base is M, COMPASS assumes
that fnct is decimal. When fnct is blank, the comma can be omitted.

The ifname and !nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en­
countered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is term.inated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name orby an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

60492600A 4-65

Examples

o

LOCATION OPERATION VARIABLE COMMENTS

, Jl 18 130

ABLE ass 20 I

I
• • • I
• • • I
• •

REl t ABlE+15 :T'EST IF
• • • I• • • I• • • ITEST ENOIF

IF COM,DTA,2 ERRONEOUS, OlA AS YET UNOEFINE
• • I
• • I
• • I
USE 11 IOlA ass 1

I
I

4.9.7 IFC· COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:

LOCATION OPERATION VARIABLE SUBFIELOS

lfname IFC

ifname Optiona11-8 character name

d Delimiting character. Characters between the first and seccnd occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

op Specifies comparative test:

Condition causing assembly

EQor -NE

NE or -EQ

GTor -L.E

string! has the same value as string
2

string! does not equal string
2

string! is greater than string
2

4-66 60492600A

GE or -LT

LTor -GE

LE or -GT

string1 is greater than or equal to string
2

stringl is less than stringi

stringl is less than or equal to string2

string.
1

mct

Character string. When IFC is within a macro definition, each character string
can be a formal parameter.

Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is 11, COMPASS assumes that inct is
decimal. When £nct is blank, the comma can be omitted.

The ifname and mct parameters are related as follows:

1. If a count· is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an- ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in stringl is compared with the corresponding character in string2 progressing from
left to right until an inequality is found or both strings are exhausted. \V"hen one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

TEST1 IFC EQ, ABCABC$; ABC EQUALS ABC
TE5T2 1FC l T, Jl'AS·ABC'" I AB IS Lt:SS THAN ABC
TEST3 IFC GT,XAXX I A IS GREATER THAN NULL

1FC -GE,"'Z·elf.,3 I Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

60492600A 4-67

LOCATION OPERATION VARIA8LE COMMENTS

I II 18 130

XX MACRO Pl,P2 I

IFC EQ, ... ·P2·.1 I
P ERR I F. ~G EPROR

• I

• I

• I
I

ENOM I

The following example illustrates a character string terminated incorrectly. When CO:MPASS reaches
end of statement without finding a third asterisk, the asterisk omitted following PI causes an error flag.

LOCATION OPERATION VARIA8LE COMMENTS

I 11 18 130

IFC !EQ,·OO·Pl,2$P2

4.9.8 SKIP- UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format

LOCATION

ifname

OPERATION

SKIP

VARIA8lE SU8FIElDS

£net

ifname

fnct

Optional 1-8 character name

Optional absolute evatuatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS asswnes that fnct is
decimal.

The ifname and ,fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
termins.tes when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

4-68 60492600A

2. If neither a count nor a name is supplied, the SKIP range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed EIBE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or ELSE with
a matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.1 O.·~ERR - UNCONDITIONALLY SET ERROR fLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

Format:

LOCATION

flag

OPERATION

ERR

VARIABLE SUBFIElDS

flag A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11. 7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 lB \30
NNN MACR.O Pl,P2,P3,Pltl

IFEQ P1,O I
A ERR I• •

• • I
• • I. ENOH

I• •
• • I
• • INNN O,A,B,C

60492600C 4-69

4.10.2 ERRxx - CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:

lOCATION

flag

OPERATION

ERRxx

VARIABLE SUBFIElDS

aexp

flag

xx

A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11. 7,
COMPASS uses P.

Defines condition under which aexp value is erroneous.

xx

NG or MI

NZ

PL

ZR

Error Condition

Value of expression is negative

Value of expression is nonzero

Value of expression is positive

Value of expression is zero

aexp

Example:

Absolute express{on. It.cannot contain external symbols or references to blank
common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks.

Test for memory overflow inPPU assembly

Location

4-70

Code Generated

7177447

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

PERIPH I

• I
• ILASTTAG ass tI

R ERRPL lASTTAG-1777/
END

60492600A

4.11 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format.

4.11.1 LIST - SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions
are disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control statement (section 10.1. 2) is zero, or

When the list option parameter (LO) on the COMPASS control statement is used and is other
than LO=O.

Use of the LIST pseudo instructionis optional. If it is not used in the subprogram, COI\1PASS list
output is according to the L and LO parameters on the COMPASS control statement. If the LO parameter
is omitted or LO=O, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
'error only), and a symbolic reference table. Formats of this output are described in detail in
chapter 11 and brief summaries are given below.

Heading information

Assembly text

Assembler statistics

Error directory

Symbolic reference table

Formats:

Program length, orIgIn, and length of each block, entry points
and external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by &"\J1T, DUP,
ECHO, XTEXT, or a macro or opdef e"''Pansion). For data
generating pseudo instructions DA TA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements,
defined symbols, invented syr.i.1bols, and references to symbols.

Lists fatal and nonfatal errors and summarizes the causes of each.

List of all symbols defined in the program according to symbol
qualifier, if any, followed by an index to every reference to the
symbol in the lis ted statements.

LOCATION

60492600A

OPERATION

LIST
or

LIST

VARIABLE SU8flELDS

*

4-71

A location field symbol, if present, is ignored.

A list option represented by a single letter or a letter prefixed by a minus sign.
The unprefixed letter selects the option; the prefixed letter cancels the option.
Options are separated by commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation and micro substi­
tution marks is listed with the marks in it exactly as presented to the
assembler. When the A option is selected t however, the assembler lists
the line before and after the editing takes place. Selecting A also causes
the listing of lines of code resulting from the R= pseudo instruction.

B List binary control statements

When B is selected, the listing includes BEG, SEGM:ENT, IDENT, and
END pseudo instructions.

C List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

D Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS
Code assembled remotely when HERE or END causes its assembly
Literals block
Default symbols

E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of. DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statell)ents.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L Master list control

This option is normally selected. When L is canceled t the long list contains
error flagged Unes, an error directory, and LIST and END pseudoinstruc­
tions only, regardless of selection of any other options on LIST.

M Lis t macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

4-72 60492600B

$

*

. N List nonreferenced symbols
This option is normally selected. Cancellation of this option causes
any nonsystem symbol for which no reference has been accumulated
(e. g., all occurrences are in IF statements with the F option deselected,
or are between GTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When It is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
references.

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

A dollar sign in the variable field selects aU options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each

.LIST· * resumes use of the most recent entry and removes it froll'l the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion caused by an XTEx"'T within a system macro call is
listed only when both X and S are selected. To obtain a listing shOWing rand ~ marks removed from
external text inside a DUP range, A, X, and E must all be selected.

Example:

o 1720514631463146314&

2 17205146314&3146314&
3 164031463146314&3146

4 11205146314631463146

& 1720514631463146314&
1 16403146314631463146

60492600A

LOCATION OPERATION VARIA8lE COMMENTS

I II 18 130
LIST A I

DATA 1.3,.EE I

DATA 1.3EE I
LIST D I
DATA 1.3,.EE I
DATA 1.3EE I
LIST

I
-A,-O I

DAfA 1.3,.EE ILIST • IDATA 1.3,.EE~~ IDATA 1.3EE
I

4-73

4.11.2 . EJECT-EJECT PAGE AND BEGIN NEW SUB;.SUBTlTlE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor­
responding LIST options are not all selected.

Format:

LOCATION

name

OPERATION

EJECT

VARIABLE SUBFIELDS

nam.e New program sub-subtitle for the page will be printed in character positions
70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE - SKIP LINES AND BEGIN NEW SUB-\SUB TITLE

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION

name

OPERATION

SPACE

VARIABLE SUBFIElDS

sent, rent

name

sent

New subprogram sub-subtitle will be printed in characters 70-79 on the second
line of the next page heading. A blank name clears the sub-subtitle.

An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If base is M, sent is assumed
to be decimal. If sent is omitted or zero, no line is skipped.

rent An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
be decimal.

If sent + rcnt exceeds the number of lines on the page before spacing occurs, the SPA CE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards or statements can also be used to space the listing.

4-74 60492600A

4.11.4 TITLE - ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing.

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not

include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is

in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions

(except the first which sets the main title) cause a page eject, even when generated by a macro

expansion, unless LIST option L is deselected.

Format:

LOCATION

name

OPERATION

TITLE

VARIABLE SUBFIELDS

string

name

string

Example:

New subprogram sub-subtitle to be printed in character positions 70-79

on the second line of the page. A blank name clears the sub-subtitle.

COMPASS searches the columns following the blank that terminates the

operation field. If it does not find a nonblank character before the default

comments column (see COL pseudo instruction), it takes the characters

starting with the default comments column minus one up to the end of the

statement. Otherwise, the title or subtitle begins with the first nonblank

character following TITLE and continues to the end 'of the stateuwnt or to

62 characters. AllY characters beyond the 62nd are lost. A blank string

produces an untitled listing.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

IOENT MTO I

LIST C I

TITLE I'1T DRIVER I

•
I
I

• I

• I

TITLE I/O ROUT INESI
• I

• I
•

60492600A 4-75

First page:

Subsequent pages:

MT DRIVER

tiT DRIVER
1/0 ROUTINES

4.11.5 TIL - NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to :be printed on each page of the listing, and
clears the subtitle.

Format:

LOCATION OPERATION

TTL

VARIABLE SUBFIHDS

string

name

\ string

New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.

COMPASS searches the columns following the blank that terminates the operating
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.
A blank string produces an untitled listing.

TTL does not cause a page eject.

4.11.6 NOREF - OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:

'h

LOCATION OPERATION

NOREF

VARIABLE SUBFIElDS

sym.
1

One or more symbols defined in the subprogram. If a symbol qualifier is in
effect when the NORE F is encountered, the symbols are assumed to be
qualified by the qualifier in use, unless an unqualified symbol of that name
is defined before the NORE F and the qualified symbol is not defined before

- the NOREF. Alternatively, sym. , can be a nonblank qualifier symbol en­
closed by slant bars, /qualifier/~ in which case all symbols qualified by
the specified qualifier are suppressed from the symbolic reference table.

A location field symbol, if present, is ignored.

4-76 60492600 E

4.11.7 CTEXT AND ENDX - DISABLE/ENABLE LISTING OF COAAMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed and symbol
references' are recorded, only if the X list option is selected.

Format:

LOCATION

name

OPERATION

CTEXT

VARIABLE SUBFIELDS

string

name

string

If X list option is selected, name is treated as a sub-subtitle; other­
wise it is ignored.

If the variable field is nonblank and the X list option is selected, the CTEXT
is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle. begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION OPERATION

ENDX

VARIABLE SUBFIElDS

Entries in the location field or variable field, if present, are ignored.

60492600A 4-77

4.11.8 XREF-REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references to symbols according to (1) location counter address,. (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 110 8.

Format:

LOCATION OPERATION

XREF

VARIABLE SUBFIElOS

string

string An optional character string, the first character of which indicates how symbols
are to be referenced.

A The symbolic reference table lists addresses only. Flags are not included.

B The symbolic reference table lists references to symbols according to
page number, line, and address. F1ags are included.

P The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

4-78 60492600A

DEFINITION OPERATIONS 5

c m

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be,saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

Any instructions other than END, including other' definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. \Vhen the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
innermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. \Vhen the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.
A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed bu~ otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 558; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
8

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 00778
65 spaces replaced by 0077558
66 spaces replaced by 007755558
67 spaces replaced by 00770002

8
, etc.

Trailing spaces are considered as embedded and are included in the image. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60492600A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code
in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TeXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statemen.ts from a file other than
that being-u~ed for input. COMPASS transfers the text from the external source and assembles it
before taking the next. statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFyt random-access program library
file.

Format:

LOCATION

file

OPERATION

XTEXT

VARIABLE SUBFIELDS

rnarne

file

mame

Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control statement
(section 10.1. 2). If no X parameter was specified, COMPASS assumes OLDPL.

If mame is blank, COMPASS assumes that the file is sequential; it rewinds the
file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records, a record indexed file with named records, a random-access program
library file in UPDATE format, or a random-access program library file in
MODIFY format.

t MODIFY is not supported by NOS/BE 1 and SCOPE 2.

5-2 60492600C

Text records may be in any of the following formats:

1. Normal text. If the first line contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFyt random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped. If the file is in
MODIFY format, the identification (7700) and modification (7702) tables are skipped. COMPASS
does not recognize UPDATE or MODIFY directives such as *IF inthe common deck.

3. An UPDATE or MODIFyt compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSelliBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit- code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all Wllabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT - SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:

LOCATION

nntname

OPERATION

RMT

VARIABLE SUBFIElDS

rmtname Optional 1-8 character name identifying the remote sequence. It is
significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

Any instruction legal when the remote lines are called for assembly is legal between the RIvIT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

t MODIFY is not supported by NOS/BE 1 and SCOPE 2.

60492600C 5-3

5.2.2 HERE - ASSEMBLE REMOTE CODE

1\ HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE,. USELCM, IDENT, or an ORO within
;he saved sequence, the remote code is assembled under the block in use at the time the HERE is
;mcountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
:tUalifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
~ffect on assembly.

Format:

LOCATION

rmtname

OPERATION

HERE

VARIABLE SUBFIElDS

rmtname Optional; the name of a previously saved RMT sequence. Ohly the named
sequence will be assembled at this time.

A variable field entry, if present, is ignored.

If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of
assembly is encountered, COMPASS assembles them before it terminates assembly. However, any
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled renlote
code is lost.

Examples:

The following example illustrates use of RMT within a macro definition. FollOWing the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 60492600A

Loca.tion Code Generated lOCATION OPHATlON VA~IA8U: COMMENTS

~·RMttt.

~RMT~

f}Rt<H*

TABLE .1
TABLE .1
TABLE 01
Tt,BL£ .1
TABLE -1
TABLE 1111
TABLE. .1

TABLE .1
TABLE .1
TABLE -I
TABLE $1

TABLE &1
TABLE ~1

TABLE .1

TAStE .1
TP,8LE .1
TA8LE 01
Tl~~aL£ .1
TJ\BLE ~i

T,'BLE e}

J ~l

TABLE .1

30

LASTAthSlt;:ES

I~nER+SIlES

LASTA8+SIlES
NRTAfj+SIlES

r

I
.INTER+SIZES

2

E:Q~***

~""ORIGINS

BUCK£T

EO
{;.-ORIGINS

TNAt<1+S I ZES

bUCKET

f Al:'Jlt." TNAt~-iQ 1V
EfJ" **Et,J I v*
*-ORIGINS
8UCK.ET
2
I:.OIV
O.£QIV

18

•
•..

L.INIEFf EOU I
Rt'"1T
ENDr'l
TA8L£
IFe

Eau
00Lt"Srt,e% CON

I·ELSE
Rr·tr

L II Lt~STAS EQU
t fH·/T

ENOI'l
TABLE
t.LSE

NF<T AS ((;,IV
o. Ni:(rAt! EQU

~~?·n

L13NRTAH [QU
f{;':1I'

11

- t4f-\Ct~O

IfC
TNAt~ EQU
O.TNAM CON

ELSE
TNAM EQU
O.. TNAM [QU

RMT
L.TNAM Eau

RMT
•..
•
t:NOM
..
•..

INTER
O¢!NlEH

HERE
(.$ INTER! . tOU

L •... l AS 1." Affl·~ E~hJL.NRTAB Eau

60492600A 5-5

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

FLO
PRS

5.3 CODe DUPLICATION

RMT
OECMIC
LIT

I
BUf+BUFL-WSA+ENDS
C*~fLD~ DECIMAL REQUIRED.*

I

I
C I

BUF~BUfl-WSA·ENDS

C**FLO* DECIMAL REQUI
C*25759

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP - SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.
The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

Format:

LOCATION

dupname

OPERATION

DUP

VARIABLE SUBFIElOS

rep,.fIlct

dupname

rep

5-6

Optional name of the DUP sequence; 1-8 characters. When supplied, it can be
used in an ENDD. When no name is supplied, the range of the DUP is determined
by a statement count or by any unnamed ENDD.

Absolute evaluatable expression specifying the integer number of times state­
ments in the DUP range are to be assembled. If rep is null or zero, the instruc­
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS assumes that rep is decimal.

60492600E

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

.mct An evaluatable expression specifying an integer count of the number of
statements to be asselnbled repeatedly. When base mode is M, COMPASS
assumes that fIlct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assen1bler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expandedo

The Qupname and £nct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed
ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the
range.

5.3.2 ECHO - ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;
comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:

LOCATION

dupname

OPERATION

ECHO

VARIABLE SUBFIELDS

dupname

60492600E

Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. \Vhen no name is supplied, the range of the
ECHO is determined by a statement count or by any unnamed ENDD.

5-7·

£nct Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the
count is assumed to be decimal. If fnct is zero or omitted, the comma must
be present and the ECHO range is defined by an E1'-.TDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and £nct parameters are related.

If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

5-8

2.

3.

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
ENDD.

If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not rnatch does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored. The substi­
tutable parameter name can occur in any field within a definition.

The separator between Pi and (lis~) is conventionally an =but can be any of the
following:

+ - * / () $ = , or •

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - * / () $ = blank , • I- or r+

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i. e. ~ with
micro and concatenation marks. Use of the senlicolon is restricted in the
defilrltion because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

60492600A

The character -,-0. flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the -,-. so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
;A, ;B, etc. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the
name with the flag. (Example 8, section 5.4.3 illustrates a similar application
of this technique.)

(list.)
1

Actual parameter list in the form ~,a2" .• ,an where a1 is substituted for PI

on the first assembly of the ECHO sequence, a2 is substituted on the second
asselnbly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before
substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are :null, COM:P.ASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP - STOP DUPLICAliON

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION OPERATION

STOPDUP

VARIABLE SUBF1ELDS

An entry in the location or variable field is ignored.

60492600C 5-9

5.3.4 ENDD - END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:

LOCATION

dupname

OPERATION

ENDD

VARIABLE SUBflElDS

dupname Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement cOlmt is terminated only by an unnamed ENDD.
An ENDD does not terminate a sequence controlled by a statmnent count.
The ENDD is included in the count but has no other effect.

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

ENDD is part of the definition it terminates; consequently, it is not edited at ECHO definition time.
The following definition is in error:

T r-l ECHO
Code

T r-IENDD

In this code, the location field of the edited ECHO statement is Tl, but the location field of the un­
edited ENDD statement remains at Tr-l.

Examples:

In the following examples, the statements that result from expansion are shown shade~L They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location

5153
5154
5155
5156
5157

Code Generated

OOOOOS

00000000000000000001
00000000000000000001
00000000000000000001
00000000000000000001
OOOOOOOOOOOOOOUOOOOI

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 30

OllP c., • t
DATA 1
Df\TA 1 *OUp* 1
OATh 1 *uup* 1
() AT f\ 1 *OlJP* 1
DATf\ 1 *oUP* 1
DATA 1 *oup* 1

5-10 60492600 E

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
by a STOPDUP.

LOCATION OPERATlON VARIABLE COMMENTS

11 \8 30

NO IS 6 IN LAST ITERATION

Nn.I./~ALPHA8ETt/

NO.I_/A~CDEfGrlIJK/

EQ./~TAG~/E/.l ASSEM~lE STOPDUP wHEN TAG=E
EQ./E/E/.l ASSEMBLE STOPDUP WHEN TAG=E

NO+ 1

NO.l./~ALPHAHETt/

~Q./~TAG~/E/,l ASSEMBLE STOPD0P WHEN TAG=E

NO'1 I NO 1$ 6 IN LAST ITERATION

l •• /AHCDEFGHIJK/
1
-1 UNOBTAINABLE ITERATION COUNT

MACPO
MICRO
IFC

GO
I-1ICRO
MICRO
IFe
IFC
5TOPDljP
SFT
ENOM
["'JOn

SfT
END~

MICRO
SET
OUP
GO
[NOD

GO
TAG

60492600 D 5-11.

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO The ENDD terminates the first level. Notice how COMPASS assembles each
copy before it begins the next iteration.

Location Code Generated LOCAylON OPERATION VARIABLE COMMENTS

n 18 30

PPU

• I
• I•

.. 1M PPOP 5,54158 ILIST ~,O.f.

ECHO • CM =(X. Y. Z) I
ECHO ?Pl=(A.B.C)
LON CM ISTM PI
ENOD
ECHO 2,P(=(A,
LDN X ISTM Pi *£CHO
LON)(I *£CHO
STM A *ECHO
LDN X I *fCHO ""
STM 8

J
*ECrlO

LON)(*ECHO
STM C I *ECHO
ENOD

2 ,P i = (A, B, C)1
*[CHO

ECHO *ECHO
LON y I *ECHO
STM pI *ECHO
LDN y I *ECHO

0036 5TM A I *ECHO
LON y *ECHO

0037 STM B I ~'ECHO

LON y I *ECHQ
0040 ST~ C *ECHO

[NOD , *fCHQ
ECHO ?,Pl:<A.B.C)! *ECHO
LDN 7 *ECHO
ST~ PI I *ECHO

1470 LON 1 I *ECHO
1475 5415 0036 STM " I *ECHO
1477 1470 LON Z *ECHQ
1500 5415 0017 STM R I *E:CHO
1502 1470 LDN Z

, *ECHQ
1503 5415 0040 STM C , *ECHO

ENOD
I

*ECHO
1505 5415 1524 STM TAG

5-12 60492600A

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted
for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading

Body

60492600A

A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

The body begins with the first stateulent in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is e"'-'Panded a
semicolon is interpreted as a substitutable parameter mark or a local SYmbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter or local symbol listed in the heading can
occur in any field within the body. A reference to a substitutable parameter or
local symbol is recognized when it is between two of the folloWing characters in
an expression or field:

+ - * / () $ = blank , • I- or r-
The character, flags the occurrence of a name not bounded by any other special

5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the .. so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters • () :
$ and = in symbols, but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 ll.l1der macro calls). A symbol
should not begin with a colon; if it does, the colon is
ignored and no error message is issued.

The macro body optionally contains ffiP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local
symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM - END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:

LOCATION

mname

OPERATION

ENDM

VARIABLE SUBFIElDS

mname

5-14

Name of a macro sequence, syntax of an OPDEF sequence, or blank.

60492600 E

An ENDM specifying a macro by name terminates the named macro definition and any unterminated
macro or opdef definitions wi.thin it. An ENDM that does not specify a macro by name terminates all
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than
to be included in statement counts.

ENDM is part of the definition it terminates; consequently, it is not edited at MACRO definition time. I
The following definition is in error:

Tr+l

Tr+l

MACRO
Code
ENDM I

In this code, the location field of the edited lV1ACRO statement is Tl, but the location field of the I
unedited ENDM statement remains at Tr+l.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 \30

JAY MACRO Pl,P2,P! I

• I

• J

• I
KAY MACROE PK2,PK2,PK3~PK4

• I
• I
• !

J~X/)(Q OPDEF OP1,OP2,OP3,
• I
• I•

KAY ENOH ! TERMINATES KAY AND
• I THE OPDEf OEFINITION
• I
• I

I ENOH TERMINATES JAY
I

5.4.2 MACRO - MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation
code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION

mname

60492600 F

OPERATION

MACRO

VARIABLE SUBFIElDS

parameters

5-15

Format two:

lOCATION OPERATION

MACRO

VARIA8LE SU8FIElDS

mname,pararneters

The blank location field identifies the second format.

5-16

mname

parameters

A legal name other than END, ENDD, ffiP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call.
Each name is 1-8 characters, the first of which must be alphabetic. A name
cannot be END, IRP, LOCAL, ENDD, ENDM, or the same as a local symbol.
A name that begins with a number, or a second or later occurrence of a para­
meter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - * / () $ = , or •

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate th.e mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for anyone macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two adjacent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60492600A

Examples of nlacro instructions:

1. Legal MACRO instructions:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

ABC t1ACRO Pl,P2,P3 I
MACRO OEF·LOC~ONE·TWO·TEN

MESSAGE MACRO A I

2. MACRO instructions having identical parameter lists.

IpARAMETER ARE IGNORED

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

SUM "lACRO X=Y+Z+X ,SECOND X PARAMETER IS IGNORED
SUM MACRO X(y+Z)

ISUM MACRO X:y+Z
SUM, MACRO X,V,(Z+X) INULL PARAMETER AND SECOND

RAO MACRO X
:X ARE IGNORED

RAO MACRO I){::X+1 ISECOND X AND NUMERIC

3. nlegal use of format two:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130 ~

MACRO ABC I NO SUBSTITUTABLE PARAMETERI
MACRO ABC"FP I NULL PARAMETER FIELD
MACRO ABC,16,FP t NUMERIC PARAMETER fIELO

60492600A 5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION

sym

OPERATION

mnanle

VARIABLE SUBFlElDS

sym Optional; depends on definition (see discussion following)

Parameter list composed of alphanumeric strings. Parameters are separated
by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the 1v1ACRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the. second substitutable parameter occurs in the definition, etc. When the definition .lVlACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (section 5.4. 9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
ina line. Embedded parenthetical items must be properly paired. A parenthetical item can contain
blanks and commas.

Example:
LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

MESSAGE (=C·PROGRAHIABORT.·),

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actu~l parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

5-18 60492600A

Processing of a location symbol and forcing upper of the first macro instruction depend on the :M.A CRa
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using fonnat two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument cs.me from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
in the variable field of a macro call line.

Example:

1. An illustration of concatenation

Location Code

Generated

60492600A

LOCATION OPERATION VARIABLE

11 18

MACK MACRO Pl.P2
S"Pl Pl+lR,+P2
•
•
•
ENDM
•
•
•
MACK A2 A
Sr+A2 A2 Ip".A

SA2 A2+ RA
ENOM I

COMMENTS

30

5-19

2. An illustration of nested definitions and calls

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

NAMEl MACRO 1

I
• • I
• • I
• • fNAHE2 MACRO

I
• I
• I
• I

NAME2 ENUH I
• I

• I
• IAT THIS lIME, THIS LINE
NAME2 'IS PART OF A DEFINITION
• IRATHER THAN BEING A CALL.
• I
• I

• I
NAMEl ENDH t

• ,
• I

• f

NAMEl 'NAME1 IS CALLED AND EXPANUED.
I

• I
[

• I
• I

NAME2 'CALL TO NAME2 IS VALID
I
1

3. The following example illustrates two calls to a definition headed by a MA eRa in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1, an4 VALUE2, where TABNAM is the location argument.

4743
4743 172040000000 0000000
4744 000000000000 uOOOOOO

Location

TABLE

TABLE .1

TABLE .1

30

COMMENTS

I
I
I
I

;CALL TwO

I
I
I

TAHLE,TABNAM.VALUEl,VALUE2
oO/VALUEl.6p/VALUE2

I
I

•
•
•

ENOM

TABLE 1.0
60/1.0,601

[NOM ./

OPERATION VARIABLE

11 18

MACRO
VfO
ENOM
•
•
•
TABLE

VFO

VFO

VAL
VAL

HNAM

LOCATION
Code Generated

1'72040'OO(}O'OOO'·(),OOOO'{)~ ,,'
17214000000000000000

14741
'4742

5-20 60492600A

4. An illustration of embedded parameters:

Definition:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 /30

XAH MACRO A,e I
LOM a LlJM f.i IENOM

I

Call:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

XAM (SLJM,1I1B),CSAM IN03)

Expansion:

Location Code Generated LOCATION OP~RATION VARIABLE COMMENTS

II

LDt·1
LJM
£NOM

18 30

5. The follOWing example illustrates use of R= in macros:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
ONS" MACRO N

IR= Xl,N I
SX2 118 I
RJ =XCPM= I
ENO" I

OFFSW MACRO N I
R= Xl,N I
SX2 128 I
R"" =XCPH= I
ENDH I

60492600A 5-21

6. The following example illustrates a character in a symbol erroneously being interpreted asa
delimiter for a parameter.

ILLEGAL SYM80L.

LOCATION OPERATION VARIABLE

11 18

BC r-1ACRO Z.VAL,P5
SET VAL
SA7 Z.ALPHA
• •
• •
• •
ENOM

COMMENTS

30

I
IILLEGAL

I
I

I
I
I
I
I

SYMBOL, TOO LONG

LONG
ABC
ABC
ABC

.1

.1
·1

7. The following example illustrates changing of control blocks and symbol qualifiers through
substi~tableparameters in a macro. (The same call could be used by using micros to
change actual parameters.)

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

TAB MACRO BLOCK,KWAL I

USE BLOCK I
QUAL KWAL I

f~

TAGl BSS lOB ITAG2 VFO 60/-1 IUSE ..
QUAL ... t
ENDM I
• I-

• I
• ITAB
USE
QUAL

TAGl aSS
TAG2 VFO

USE ·1
QUAL .~

ENDM .1
TAB TWO,TWO
USE TWO TAB .1
QUAL TWO TAR .1

TAG! BSS lOB TAB .1
TAG2 \IrQ 60/-1 TAB ·1

USE ... TAB .1
QUAL .. TAB .1
ENOf'.1 TAB .1

5-22 60492600A

8. The following example illustrates a technique that an e"'-'Perienced programmer may wish to
use to save time in processing of definitions. Renlember that the assembler replaces the
first substitutable paranleter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display char~cters, 7702 is ;B, etc. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and 'achieve the same results as if the assembler had nlade the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces each 77xx with the
actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION OPERATION VARIABLE COMMENTS

II 18 30

CHAR MACRO
COf\!
ENOt'"

•

ASC1I.INTEPNAL.EXTERNAL.HCD
;O;~;t-l:A.

60492600A

RAt;f
CHA~

CON
Ft-!Ott
CHAP
CON
ENO~

CHAP
CON'
ENf)t-1
CI-iAR
CON
FNDM
CHAQ
CON
ENDM
CHAR
CON
[NDNI,

CHAR
CHAR

CHAR
CH.AR

5-23 .

5.4.4 MACROE - EQUIVALENCED MACRO HEADER

A MA CROE pseudo instruction can be used instead of a MA CRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro
call.

The MAcROE pseudoinstruction has two forms:

Format one:

LOCATION

mname

Format two:

LOCATION

OPERATION

MACROE

OPERATION

MACROE

VAR.IABlE SUBFIHOS

parameters

VARIABLE SUBFIHOS

mname, parameters

The blank location field identifies the second format.

mname

parameters

5-24

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It can be
1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters,. the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, ENDM, or the same as a local
symbol. A name that begins with a number, or a second or later occurrence of
a parameter name in the list is ignored. Any of the following special characters
separate parameters in the list:

+ * / () $ = , or .

These characters have no meaning other than as separators. A blank terminates
the list of parameters. Also, any of these can be used to separate the mname
from parameters in format two.

The total number of unique parameter names and local symbols must not exceed·
63 for anyone macro definition.

Format one does not require parameters.

60492600A

Fornlat two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a ,MACRO
instruction in fornlat two causes the assembler to issue a fatal error flag and
ignore the definition.

The assembler ignores a blank parameter produced by two adjacent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a rvIACROE pseudo instruction can be called by an instruction of the
following format:

LOCATION

sym

OPERATION

mna-me

VAilABlf SUBFIElDS

mname

sym

60492600A

Name of IVIA eROE definition

Optional symbol. A s:ymbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first­
code-generating line in the macro e:x.-pansion.

An equivalenced parameter. Each p is the name of a substitutable paranleter.
The ai is an actual paranleter to be substituted for Pi' The paranleters need not
be listed in the same order as they are listed on the l\lA CROE instruction.
Equivalenced parameters in the list are separated by commas and ternlinated
by a blank.

A null value is substituted for any parameter omitted from the list.

When the firstcharacter of an actual paranleter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5.4.9, IRP). Otherwise, it is an embedded paranleter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

5-25

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the varia.ble field and the first
parameter is a location argument, the location symbol of the call is substituted for the first parameter or
location argument. The fact that this argument came from the location field rather than the variable field
has no special significance in the macro expansion. After substitution, spacing between fields is the same
as it was before substitution.

Example, format one:

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

II 18 30

Example, format two:

SAM MACROE A,B,C
CON A
CON B
CON C

•

SAM
SAM
SAM

1
1

Location Code Generated

Z 00000000000000000001

lOCATION OPERATION VARIABLE COMMENTS

1 11 18 30

MACRaE SAM,Xx,A,B,e
eON A
eON B
CON e
ENDM

A-l,B-z,e-3SAM

5-26 60492600 G

5.4.6 OPDEF - DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:

LOCATION

syntax

OPERATION

OPDEF

VARIABLE SUBFIElDS

parameters

syntax

60492600 B

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:
A, B, or X in which case the operation field of the opdef call is recog­
nized as cAn, cXn, or cBn (c is a unique character; n is 0-7); or the second
character can be any other character, in which case the operation field of
the opdef call is recognized simply by a two-character mnemonic, such as
EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the follOWing 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax.

void Q

r rQ

-r -rQ

r
1

+r2 r 1 +r2Q

-r1 +r2
-r1 +r

2
Q

r
1

*r
2 r 1*r2

Q

-r *r -r *r Q
1 2 1 2

r1 /r2 r1 /r2Q

-r 1/r 2 - r 1 /r2Q

r
1
-r

2
r

1
-r2Q

-r -r -r -r Q
1 2 1 2

5-27 •

parameters

For example t -r1*r2 would be written as -X*B to describe -X3*B1 whereas rQ
would be written as BQ to describe B2+ALPHA. The first descriptor immedi­
ately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Each name is 1-8 characters,
the first of which must be alphabetic. A name cannot be END, ENDD t ENDM,
IRP, LOCAL, or the same as a local symbol. A name that begins with a num­
ber, or a second or later occurrence of a parameter name in the list is ignored.
Parameters can be separated by any of the characters:

+ - * / () $ = , or •

These characters have no meaning other than as separators. A blank terminates
the list of parameters.

The total number of unique parameter names and local symbols must not exceed
63 for anyone OPDEF definition.

The assembler ignores a blank parameter produced by two concurrent s~parators

or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

Examples:

1. Listed below are some instructions that could be defined through OPDEF:

Calling Instruction Opdef
Operation Variable Subfields Syntax

Jpt Ktt JPQ

Jpt Bn+K JPBQ

JP Bn:t.Bn.:!:K JPB+BQ

JP Bn,K JPB,Q

JP Xn/Xn.:!:K JPX/XQ

NEt Bn,Bn,K NEB,B,Q

LJ Bn-Bn,An-Xn,K LJB-B,A-X,Q

BXnt -Xn*Xn BX-X*X

SBnt Xn+Bn SBX+B

LXnt Bn,Xn LXB,X

Jpt Bj+K JPBQ

NEt Bj, Bk,K NEB,B,Q

BXit -}{k*Xj BX-X*X

SBit Xj+Bk SBX+B

SBit Bj+Xk SBB+X

t Legal COMPASS CPU instructions
tt K represents an expression.

5-28 60492600A

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

JPQ OPOEF Pi I
EQ Pi I
FNOM I

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location

llH102

Code Generated

0233000005 +

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 /30

JP ~3+ALPHI\
I
I

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

LOCATION OPERATION VARIABLE COMMENTS

1 n 18 130

OX)(-x OPOEF I,J,I(I

I
• I• I•
RJ CKOU,. I
ENOM I

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

RXQ OPOEF Pl,P2 I

AX.PI P2 I

ENOH I
"

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and .
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

60492600A

NOTE

If the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ JP K Not combined

JPBQ JP Bn+K Combined

JPB,Q JP Bu,K Not combined

JPX/XQ JP Xn/Xn=K Combined

AnOPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. Alocation
field on the line in the definition that generates code is assigned the same value. If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code­
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.

Examples:

The following opdef defines an instruction having the syntax lXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for PI, P2, and P3, respectively.

Location

30 22343

Code Generated

27000

LOCATION OPERATION VARIABLE COMMENTS

I " 18 30

""'"' (XX/X OPO£F Pl,P2,P3
PX.P2 X.P2
PX.P3 X.P3
NX.P2 ~.P2,B4

Nx.P3 X.P3,84
FX.PI X.PZ/X.P3
UX.Pl X.Pl,B4
LX.PI X.Pl,B4
ENOM
•
•
•
IX3 X4/X.DIV
PX.4)(.4 I •
PX.OIV X.DIV IX3 ·1
NX.4 X.4,H/. lX3 .1
NX.OIV X.DIV.84 IX3 • 1FX.3 X.4/X.lJIV IX3 .1
UX.3 X.3.U4 IX3 • 1LX.3 X.3,84 IX3 .1
ENOM IX3 •

5-30 60492600A

The following OPDEF selectively traps the SXi Xj-fBk instructions.

Definition:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

S)()(+B OPOEf I,J,K I
• I
• I
• I
ENOH I

Statements that call the definition:

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

SX3 X1+82 I
• I

• J

• I

SYfiI SX.NN X6+a.XXX I
I

Statements that do not call the definition:

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

SX5 Xc. INO B DESIGNATOR OR +.
I

SXG B3+X,+ IREGISTERS INTERCHANGED
I

SX.Y 93 INO X DESIGNATOR OR OPERAND

SY)(4+84 'MNEMONIC CODE NOT SX.
I

5.4.8 LOCAL-LOCAL SYMBOLS

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,
MA CROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:

LOCATION OPERATION

LOCAL

VARIA8lE SU8FIElDS

symbols

symbols

60492600A

List of local symbols. Each symbol must begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:

+ - * / () $ = , or •

5-31

A blank terminates the list. The assembler ignores a null symbol produced by
two adjacent separators or by a separator at the end of the list. COMPASS ignores
the use of a substitutable parameter name, another local symbol name, or a name
beginning with a number in the local symbol list. A local symbol cannot be E1\'D,
ENDD, ENDM, IRP, or LOCAL. The total number of lmique parameter names and
local symbols must not exceed 63 for anyone macro or OPDEF definition.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro definition.
On each expansion of the macrO J COMPASS creates a new symbol for each local symbol and substitutes it
for each occurrence of the local symbol in the definition (other than in comment lines identified by * in
column 1). Thus, invented symbols replace LDCAL-named symbols wherever they appear in a macro
definition in a manner similar to the way substitutable parameters are replaced. The chief difference
between substitutable parameters and local synlbols is that COMPASS automatically supplies the value C
(character string to be substituted for) a local symbol so that it is unique for each macro call.

A user passes a local symbol to inner rnacro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declar~ it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition.. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COlYIPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is sho\\"'D. as Hsym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
HOOOOOI to C and replaces each occurrence of 7703 in definitions ABC and XY Z.

5-32

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
- .

ABC MACRO A,B f
LOCAL C I

C ass 10a I
1

• • I

• • I DEFINITION
• I

OF ABC•

I!O£FINITION

xyz MACRO 0
SAl C

• ,OF XYZ
• I
ENDH I

I
ABC 3,4

EXPANSION1'.000001 tlSS 108 I IXyz MACRO ~"'OOOOOI }: DEFINITION

OF ABC

SAl
ENDM IOF XYZ

f I

A8C
ABC
ABC
ABC

60492600A

"2. In the following example, C is local to each level. Note how this example differs from the
preceding one.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
BCD MACRO A,S I 'I

I
LOCAL C I

C ass tllS I

• • I

• I
> DEFINITION• I• • I

OF BCD
YZA MACRO ,

LOCAL C I

SAt C ~OEFINITION
• ,OF YZA
• I

C assz 1 I
ENOM I "

On the call to BCD, the assembler replaces each occurrence of C with the invented· symbol,
H000002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION OPERATION VA~IA8LE

11 18

COMMENTS

Finally, on a call to YZA, H000002 is defined as local and the assembler replaces each
H000002 with another invented symbol. Thus, each reference to C in the source code SAl
instruction does not result in a reference to the BSS in the· outer macro.

LOCATION OPERATION VARIABLE COMMENTS

11 18

YZA EXPANSION Of YZA
SAl DEFINITION

ENDM

5.4.9 IRP -INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION

60492600A

OPERATION

IRP

IRP

VARIABLE SUBflElDS

parameter

5-33 •

The first form introduces the sequence and names the substitutable parameter; the second form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the nUlnber of subparameters (none at all when the
actual parameter is null). When the list of subparameters is exhausted, the assembler continues with
the next line in the definition. If the named substitutable parameter does not occur. between the two
IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement
counts.

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement
counts becauseillP expansions are done even when an IF-skip is used and because the number of
statements generated by IRP is variable.

Anything that can be done with an illP pair can be done with ECHO and ENDD. IRP is faster at assembly
time but ECHO is more flexible (it is not expanded during IF-skips, allovvs multiple arguments, and
can be nested). IRP should be used when greater speed is desired and the expanded capabilities of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

22

LOCATJON OPERATION VARIABLE COMMENTS

I Il 18 /30

~A8 MACRO ARG.B
f
IIRP ARG
ISAl ARG
~EPEATED

DEF'IN
SX6 Xl+B OF' ZA
SA6 ARG /sEQUENCE
IRP I

ENOM I
I

• I

• I
I

• IlAB (J,K,L).CON ZAB
IRP J,K.L l ZAB
SAl J I ZAB
SX6 Xl+CON I ZAB
SA6 J I lAB
SAl K I ZAB
SX6 Xl+CON I lAB
SA6 K I lAB
SAl l I ZAB
SX6 Xl+CON I ZABISAo L I ZAB
IRP I ZAB
F'NOM I

ITION
ill

5-34 60492600A

2. Assign symbol at every 1008 words of zeroed storage:

LOCATION OPERAnON VAlUABLE COMMENTS

BUf

PI

II

USE
MACRO
IRP
BSSl
IRP
ENOM
BUF

18

STORAGE
PI

PI
100B

(P,fi,R,S,T)
P,Q,R.S.T
008
OOB
008
008
008

130

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are available to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his program.
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a
system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11.1) enables listing of expansions of system definitions.

60492600A 5-35

OPERATION CODe TABLE MANAGEIV\ENT 6

Hi

The COMPASS operation code table contains the information that COMPASS requires for interpreting
legal operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries:

Pseudo instructions (except LOCAL)
CPU symbolic instructions (Section 8.4)
CMU symbolic instructions (Section 8.5)
PPU symbolic instructions (Chapter 9)
System macro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (chapter 5) cause entries to be made in this
table. In addition, the programmer has the capability of creating entries through the following
instructions discussed later in this chapter:

CPOP

PPOP

OPSYN

CPSYN

CPU operation

PPU operation

Synonymous PPU or pseudo operation or macro

Synonymous CPU operation or opdef

If a new entry redefines a.ll instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table can be reconstructed between assemblies.
COMPASS reconstructs the operation code table using all the original system macros, opdefs, pseudo
instructions, and symbolic machine instructions. No programmer-created entry is preserved from
assembly to assen1bly. The number of entries in the table is limited to 4123.

The only pseudo instructions that logically remove entries from the operation code table are PURG:f\iAC
and PURGDE F.

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. One type of entry permits identification of an instruction by finding a match for the contents of
the operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS
analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,
and again searches the table.

60492600 E 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions

PPU symbolic instructions

Instructions described through PPOP

Macro instructions

Instructions described through OPSYN

The entry contains addresses to routines that perform
pass one and pass two operations

The entry describes the format of the instructions to
be assembled

The entry describes the format of the instruction to
be assembled

The entry directs the assembler to the location of the
saved definition

The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions

Instructions described through CPOP

Instructions defined through OPDEF

Instructions described through CPSYN

The entry describes the format of the CPU instruction
to be assembled

The entry describes the format of the CPU instruction
to be assembled

The entry directs the assembler to the location of the
definition

The entry is a copy of the synonymous instruction
The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPUassembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction.

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already
in the table for a different instruction, the new entry takes precedence over the old entry. Similarly.,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 60492600A

2. System macros, pseudo instructions, PPU symbolic machine instructions, and CMU
instructions other than the 1M instruction.

3. Progralumer-created entries for syntactically identified instructions

4. CPU symbolic instructions and the CMU 1M instruction

Example:

The following example illustrates a special case in which a macro narne takes precedence over one
form of a machine instruction, i. e., the form using SB4 as an operation code.

LOCATION OPERATION VAlUABLE COMMENTS

1 11 18 /30

SB4 MACRO Pl,P2 IDEFINE MACRO NAMED SBLt
• I
• I

• I

END" I
I

• I• I
•

lCALLSB4 Al+ABLE TO MACRO. NOT CPU INSTRU
• I
• I

• I
S8J Al+ABLE IHACHINE INSTRUCTION

I
I

S8.. OPSYN NIL :DISABLES MACRO aUT DOES NOT
• ,RESTORE NORMAL USE OF SBLt
• ,AS AN OPERATION CODE. EVEN IF
• ,IT WERE REDEFINED WITH OPDEF
• lIT WOULO NOT BE RECOGNIZED.
• lTHE MACRO FORM ALWAYS TAKES
• ,PRECEDENCE.
• IRESTORES NORMALPURGMAC SB4 USE OF SB4

eTION

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
SYmbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURG1vIA C
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP - PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP

-instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assenlbly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue
a 7-type error flag.

60492600A 6-3

Format:

LOCATION OPERATION VARIABlE SUIIFIElDS

name PPOP ctl, val, type

name

ctl

Mnemonic name, 1-8 characters

Control of instruction assembly

7

2

6

5

Significance

nlegal; if used, COMPASS ignores the PPOP

24-bit instruction with 12-bit address and no indexing

12-bit instruction with signed relative address or absolute address
(e. g., UJN)

24-bit instruction with 18-bit address (e. g. , LDC)

12-bit instruction with 6-bit address (e. g. , LDN)

24-bit instruction with 12-bit address and optional indexing
(e. g., LDM)

12-bit instruction with signed relative address (e. g., SHN)

24-bit instruction with 12-bit address and required second
field (e. g., lAM)

An evaluatable expression specifying the octal 4-digit operation code value;
usually, only the two leftmost digits are significant. If the assembly base isM,
the field is assumed to be octal.

ett

o

4

3

1

val

type An evaluatable expression specifying an integer value that COMPASS interprets
as follows:

6 Restrict the instruction being defined to the CYBER 170 Series,
CYBER 70/Models 71, 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used in a CYBER 70/
Model 76 PPU assembly.

7 Restrict the instruction being defined to the CYBER 70/Mode176;
COMPASS sets an error flag if the instruction bein..g defined is
used in a CYBER 170 Series, CYBER 70/Mode171, 72, 73, or
74 PPU assembly.

other or
omitted

The instruction is not restricted to either machine type.
If the base is M, type is assumed to be octal. If type is omitted,
the comma preceding it can be omitted also.

6-4 60492600C

Example:

O~O

Code Generated

7311 5,.15 9040

Ie;
40

lOCATION OPERATION VAlUABlE COMMENTS

I n IS 130

PERIPH
I

I8ASE 0 I
• t
• I0

LA FQU 15 1
C v:au 40 I
STH PPOP S,S400+lA I

• I
• t
• I
~Tfli C I

6.1.2 OPSYN - SYNONYMOUS MNEMONIC OPERAliON

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:

LOCATION

namel

OPERATION

OPSYN

VARIABLE SUBFIElDS

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results. If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually called is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMA C.

Example:

1. An operation named CALL is synonymous with RJM.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 /30

CALL· OPSYN RJH
.
I

• I

• I
• I
CALL =XSUBR= IpRODUCES SAME RESULTS

tAS If IT HERE AN RJH

60492600A 6-5

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION VARIA8lE COMMENTS

I 1I 18 130
LJH. OPSYN LJM ~AVE ORIGINAL DEFINITION AS LJ

PURGHA(LJM 1 URGE ORIGINAL OEFINITION
• t
• t
• I

~JH "ACRO XX
I• I•

• I

...J" END"

}~OOE USING
•
• LJH MACRO

•
Io.JH - OPSYN LJH. } jRESTORES ORIGINAL lJH

•
~OOE USING ORIGINAL lJH•

•

6.1.3 NIL - DO NOTHING PSEUDO INSTRUCTION

The NIL pseudo instruction resembles a no-opj it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION

NIL

VARIABLE SUBftElDS

A location field symbol if present is ignored.

Example:

LOCATION OPERATION VARIABlE COMMENTS

1 11 18 130

MACK OPSYN NIL I

I

• I

• f
I

• I
TAG MACK A,Bt 6 ,73 I

•
,
I·

6-6 60492600A

The assembler interprets each call to lV1ACK as a NIL instruction. TAGis not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGIMAC-PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:

LOCATION OPERATION VARIABLE SU BF1ElDS

name.
1

PURGMA C name1 , name2 ' ••• ,namen

Names of mnemonic operation codes for macro definitions, pseudo instructions,
or PPU instructions.

A location field symbol if present is ignored.

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIO&\JS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP - CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag.

Format:

LOCATION

sytx

OPERATION

CPOP

VARIABLE SUBFIElDS

ctl, val, reg, type

sytx

60492600B

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register design~tor:

A, B, or X, in which case, the operation field of the instruction is recognized
as cAn, cXn~ or cBn, (c is a unique character; n is 0-7); or the second
character can be any other character except blank, in which case the operation
field of the instruction is recognized simply by a two-character mnemonic, such
as EQ.

6-7

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression. An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

r rQ

-r -rQ

r 1+r2 r
1
+r2Q

-r
1
+r2 -r

t
+r

2
Q

r 1*r2
. r

1
*r

2
Q

-r *r -r *r Q
1 2 1 . 2

r t /r2 r 1/r2Q

-r1/r2 -r1/r2Q

r t -r
2

r
1
-r

2
Q

-r
1
-r

2
-r -r Q

1 2

For example, to describe -X3*Bl, the descriptor, -r1*r2, would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

etl Control of instruction assembly.

6-8

ctl

o

t

2

3

4

5

6

7

Significance

15-bit instruction

30-bit instruction

15-bit instruction, force upper before assembly

30-bit instruction, force upper before assembly

15 bit instruction, force upper after assembly

30-bit instruction, force upper after assembly

IS-bit instruction, force upper before and after
assembly

30-bit instruction, force upper before and after
assembly

60492600A

val

reg

An evaluatable expreSsion specifying a 9-bit operation code; if the base is M,
val is assumed to be octal.

Three octal digits specifying the ord~r from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction. If the assembly base is M,

reg is as sumed to be octal.

1

2

3

o

Register number obtained from operation field

Number of second register or only register in
variable field

Number of first of two regis tel'S in variable field

Set field to 0

type An evaluatable expression specifying an integer value that COl\1PASS interprets
as follows:

6

7

other
or

omitted

Restrict the instruction being defined to the 6000 Series, CYBER
170 Series and CYBER 70/Models 71, 72, 73, and 74; COMPASS
sets an error flag if the instruction being defined is used when
MACHINE 7 has been specified.

Restrict the instruction being defined to the 7600 or the CYBER 70/
Model 76; COMPASS sets an error flag if the instruction being
defined is used when MACHINE 6 has been specified.

The instruction is not restricted to a machine type.

Example:

.If base is M, type is assumed to be octal. If type is omitted, the comma
preceding it can be omitted also.

Code Generated

53731

122 7231000003

60492600C

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
SAX+B CPOP 0,5306,13213 IDEFINES SAl XJ+BK

I

SXXQ CPOP
I \

1 , l2 0 B,120 B ,0 EF IN E.\S SXl XJ+K
• I

• I
I

• I
SAl X3+1:J1 I

I

TAG SX3 X1+3
I
I

6-9

6.2.2 CPSYN - SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an !nstruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in" the variable field. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table
(4123 entries).

Fornlat:

LOCATION

sy~

OPERATION

CPSYN

VARIABLE SUBFIElDS

Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for sytx2 takes precedence
over the old table entry for sytx1 without notification.

Syntax of a CPU instruction for which there must be an entry in the operation
code table. Following the CPSYN, an instruction in either syt~ or sytx2
produces an octal instruction of the format described by the entry for sytx2.

6.2.3 PURGDEF-PURGE CPU OPERATION CODe

The PURGDEF pseudg instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:

LOCATION OPERATION VARIABLE SUBFIElOS

PURGDEF sytx

sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

6-10 60492600A

MICROS

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a. particular character,
counting characters, concatenation of strings, etc.

Use of a micro definition requires two steps: definition of the character string, and substit:u.tion. In
this discussion, substitution rather than defip.ition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 .tiUCRO SUBSTITUTION

7

wherever a micro name between micro marks (I) occurs in a statement other than a comment
line(* in column 1), the assembler substitutes the micro before it interprets the statement. If
column 72 of the last statement read is exceeded as a result of micro substitution, the assembler creates
up to a maximum of 9 continuation statements, beyond which it discards excess characters withont noti­
fication on the listing. No replacement takes place if the micro name is unknown or if one of the micro
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error.
If the micro name is null (that is, the two micro marks are adjacent), then

1. Both micro marks are deleted, and

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM Is in the variable field of a line:

LOCATION OPERATION VAlUABLE COMMENTS

1 11 18 /30

LOC SAl lH~"~+'t
J

However, before the line is interprete~ COMPASS substitu.tes the definition for NAM producing the
following line:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

LOe SAl ADDRESS+-4 I

t

NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

60492600A 7-1

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and
QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

7.2.1 MICRO - DEfiNE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION

mlcname

OPERATION

MICRO

VARIABLE SUBflElDS

~ ,n2 ,dstringd

micname

dstringd

Name by which definition is called; 1-8characters

Absolute evaluatable expression specifying starting character in string; when the
base is M, .COMPASS assumes that n

1
is decimal.

Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n

2
is decimal.

Delimited character string. The delimiter d is a character not used in the
string.

Counting the first character after d as character 1, the assembler forms the string by extracting ~
characters starting with character ~. If the second delimiting character occurs before count n2 is
exhausted, the defined string terminates at that point. If~ is greater than zero and n2 is omitted, zero,
or negative, the defined string includes all the characters from ~ to the closing delimiter (see second
example).

If n1 is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n2 and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined
originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If nl or n2 is negative, the assembler generates a 7-type error.

Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION VARIABLE COMMENTS

,
" 18 130

N At1E MICR.O 1,19,·AlPHANUMERIC STRING·

7-2 60492600A

2. This example illustrates a blank character count. The defined string begins with A and is

terminated by the closing delin1iter.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T30

MICKY MICRO /1, ,"'"ALPHANUMERIC ST~ING·

3. One micro can be defined as a substring of another.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

NAMl MICRO 1,2?,·MAJOR~~ALPHANUM
ERIC STRING""

• • • I

• • I: :• •
NAM2 I MICRO " ,"'tNAMlt-'" ISAME STRING AS IN EXAMPLES 1 ANO ~

LE.

4. One micro can combine others.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 /30

NAMl MICR.O 1,12,$ALPHANUMfRr
C~

NAH2 MICRO 1,7,X STRING X

NAM3 MICRO I 1,,+tNAMlttNAM2
~+ COt1BINES NAMl AND NAH2

5. A micro name can be redefined.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

MSG MICRO 1 , 6 , ...S TRI NG"'I

• • •
} JeOOE• • • USING FIRST OEFI~'ITION

• • •
MSG MICRO 1,1q,·ALPHANU~ER

IC tMSGt'"

• •
Io.

} :eOOE USING SErONO DEFINITION.
• • I: 'FIRST DEFINITION IS INACCESSrS
• • I

6. Micro substitution takes place before a line is assembled or examined for synta."{. Thus,

the following is possible.

lOCATION OPERATION VARIABLE COMMENTS

1 11 118 30

NAM MICRO 1,25,'" LOe SA1 ADDRESS+'"

•
•
•

tNAMtl
... OC SAl AD08ESS+1

I

60492600 G

7-3

7.2.2 DeeMle - DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified.

Format:

LOCATION

micname

OPERATION

DECMIC

VARIABLE SUBflElDS

aeh"P, n

micname

aexp

n

Example:

Name by which definition is called; 1-8 characters

Absolute evaluatable expression

Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. When base is M, COMPASS assumes that
n is decimal

If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has ll10re than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.

B has the value 1024 decimal or 2000 octal before conversion.

LOCATION OPERATION VARIABLE COMMENTS

v

SYMBt
ISY~Bl..

II 18 \30

OECMIC\8,6 :

MICRO 11,,¥tvt STodAGf NEEDEO~
t4.:rGRQi·t,,· IlCl.1Q?4 ·••• $lQRAGE .•• NEEOEO.

7.2.3 OCTMle - OCTAL MICRO

Using an octal conversion, the OCTMIC pseudo instruction. converts the value of the expression into a
character string to be saved under the name specified.

7-4 60492600 D

Format:

lOCATION

mlcname

OPERATION

OCTMIC

VARIABLE SUBFIElOS

aexp,n

micname

aexp

n

Na:rne by which definition is called; 1-8 characters

Absolute evaluatable expression

Optional absolute evaluatable expression specifying number of characters
in the string. The defined string is a maximum of 10 characters regardless
of the magnitude of ll. \V'hen base is M, COMPASS assumes n as a decimaL
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted ez-.-pression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive.

Example:

B has the value 1024 decimal or 2000 octal before conversion.

lOCATION OPERATION VARIABLE COMMENTS

II IB 30

Vi OCTMIC 8,6 I
I
I
I
I
t

1,,~tV1t ADDITIONAL STORAGE NEEDED·
1" ... 0040 0 0: .. APPII I 0 ~~.~>§I QRA@g,f\lRg9g9~.

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. They are available for every
assembly. The programmer simply writes the micro reference as desired.

These micros are automatically defined at the beginning of each assembly, and have the default values
specified below until they are redefined by the programmer; thereafter, the programmer's definition
holds until the start of the next assembly.

7.3.1 DATE

The DATE micro contains the current date in 10 characters in one of the following forms as obtained
from the operating system:

Ayr/rno/dy. or Arnoldy/yr.

The micro reference is iDATEio

60492600 E 7-5

7.3.2 JDATE

The automatic value of the JDATE micro is five digits yYddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is ~JDATE~.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system:

D. hr. min. sec.

The micro reference is ;tTIME~.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130

TITLE PROGRAM ASSEMBLED ON $OATE$ AT1TIHEt

7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or 0, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is ~BASE;i.

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, 0, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is
initially D.

The micro reference is ICODE;t.

7.3.6 QUAL

The automatic va lue of the QUA L micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is ~UAL;t.

7-6 60492600 F

7.3.7 'SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field
(columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i. e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is ,lSEQUENCEf.

7.3.8 MODlEVEl

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML pa­
rameter on the COMPASS control statement. If no ML parameter is present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. VJhen COMPASS is called by a compiler to
process embedded CO:MPASS subprograms, the automatic value of the :M:ODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler.

The micro reference is #MODLEVEU.

7.3.9 I PCQMMENT

The a~tomati~ value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control statement, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the auto­
matic value of the PCOMMENT micro is 30 blanks. 'When COMPASS is called by a compiler to process
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call­
ing compiler. The PCOMlVlENT micro is intended to be used in a COMMENT pseudo instruction to
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, in conjunction
with the *F special symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in
effect at the time of assembly.

The micro reference is 1PCOMMENT1.

60492600A 7-7

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all CYBER 170 Series Central Processor Unit (CPU) I
instructions, all CYBER 70 Series Central Processor Unit instructions, all 7600 Central Processor Unit
instructions, and all 6000 Series Computer Systems Central Processor Unit instructions.

The assembler identifies each symbolic instruction according to its syntax and generates a one-parcel
I5-bit instruction or a two-parcel 30-bit instruction. The object code for an instruction is generated in tne
block in use when the instruction is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU I5-bit and 30-bit instructions generated by the
assembler.

14

__f_m__~

08 05 02 00

I

Figure 8-1. CPU I5-Bit Instruction Format

I
20 17 142329

Io-----_frn_._I~",------,-__K__-l
00

Figure 8-2. CPU 30-Bit Instruction Format

fm 6-bit instruction code

fmi 9-bit instruction coae

3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai)

j 3-bit c.ode (0 through 7) specifying one of eig11t designated registers (for example, Hj)

k 3-bit code (0 through 7) specifying one of eight designated registers (for example, Xk)

K 18-bit integer value used as an operand, address of an operand, or branch destination address

jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one- and two-parcel instructions in a60-bit CPU instruction
word. Generally, the assembler does not allow a two-parcel instruction to begin in the fourth parcel of a
word.

60492600 G 8-1

First Second Third Fourth

Parcel (Parcel 0) Parcel (Parcell) Parcel (Parcel 2) I>arcel (Parcel 3)

15 I 15 ~ 15 [15 r
I

59 44 29 14 00

30 I 15 I 15 I
59 29 14 00

f
15

l4
30 [15 I

59 14 00

I 15 I 15 I 30 I
59 44 29 00

I 30 I 30 I
59 29 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

I
When a two-parcel instruction begins in the last parcel of a word, the CYBER 170/Model 175,176,740,
750, or 760, and the CYBER 70/Model 76 or 7600 executes it as if the instruction word had a fifth parcel
containing all zeros. On the CYBER 170/ModeI171, 172,173,174,720, or 730, and the CYBER 70/Model
71, 72, or 73, or 6400, this condition causes an error exit. On the 6600 or CYBER 70/Modei 74, the CPU
takes the first parcel of the current instruction.

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it assembles
an instruction that requires the instruction following it to be forced upper, the assembler completes a word
as follows:

• Lower 15 bits remain

• Lower 30 bits remain

• Lower 45 bits remain

They are packed with a one-parcel NO (pass) instruction.

They are packed with a two-parcel SBO BO+K instruction.

They are packed with a NO instruction and an SBO 80+K instruction.

8.2 INSTRUCTION EXECUTION

8.2.1 6600/6700t AND CYBER 70/MODEL 74 EXECUTION

After an exchange jump start by a peripheral processor unit \PPU) and CPU program, CPU instructions
issue automatically in the original sequence, to an 8-word instruction stack. The s\ack can hold a program
loop consisting of up to twenty-six IS-bit instructions and one 30-bit instruction.

Instructions are read from the stack, one ata time, and issued to the functional units (table 8-1) for
execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

tThe 6700 also includes a 6400-type central processor unit

8-2 60492600 G

Unit

TABLE 8-1. CYBER 70/MODEL 74 AND 6000/7600 FUNCTIONAL UNITS

General Function

Branch

Boolean

Shift

Floating Add

Long Add

Floating Multiply

Floating Divide

Increment

Handles all jumps or branches from the program.

Handles the basic logical operations of transfer, logical product,
logical sum, and logical difference.

Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask
generator.

Performs single or double precision floating point addition and
subtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of l8-bit operands.

Each functional unit executes several instructions, but only one at a tinle. Some branch instructions
require two units, the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds
(one minor cycle). Sustained issuing at this rate may not be possible because of functional unit and eM
conflict or because of serial rather than simultaneous operation of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

• An instruction is issued to a function unit when:

Specified functional unit is not reserved.

Specified result register is not reserved for a previous result.

• Instructions are issued to functional units at minor cycle intervals when no reservation conflicts
are present.

• Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

• No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

60492600A 8-3

• After a branch instruction no further instructions are issued until instruction has been executed.
In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to K if Bi 00.

Long add unit to perform the ins tructions that branch to K if Xj 0 0 •

Time spent in the long add or increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an
operand is available in X operand register. Minimum time is 500 nanoseconds assuming no central
menlory bank conflict.

1
802.2 CYBER 170/MODELS 171, 172, 173,174,720,730, AND THE CYBER 70/

MODELS 71,72,73 AND 6200/6400/6500 EXECUTION

The CYBER 170/Models 172, 173, 174, 720, and 730, and the CYBER 70/fvIodels 71,72, and 73, and 6200,
6400, and 6500 systems CPU has a unified arithmetic unit, rather than separate functional units as in tne
6600 system. Instructions in the CPU are executed sequentially.

For efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (read next instruction, 2 minor cycles) and the possibility of a memory
l:>ank conflict with (P + 1).

\Vhere possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.

Reading the next instruction words of a program from central memory, RNI, is partially concurrent
\Yith instruction execution. RNI is initiated between execution of the first and second instructions of the
word being processed. Initiating RNI operation requires hvo minor cycles; the remainder of the RNI
is parallel in time with execution of the remaining instructions in the word:

P 1 1 -----+-1-,---2I 3 I

Initiate\ ~
RNI Execution of
+ ~instruCtions~

2 and 3

200
nsec

RNI
~minimumof~

800 nsec

8-4

I"'~__--------Total RNI time ----------1......1

60492600 G

In calculating execution times, two minor cycles are added to each instruction word in a program to cover
the RNI initiation time. Exceptions are the return jump and the jump instructions (in which ttle jump
condition is met) when they occupy the upper position of the instruction word. Since the times for these
instructions already include the time required to read the new instruction word at the jump address, no
additional time is consumed.

Example:

P IJump to K (met) Pass Pass I

K IAdd 1 I Add 2 Load Store I
Instruction Minor Cycles Required

Jump

Add 1

RNI Initiation

Add 2

Load

Store

Total Time

13

5

2

5

12

10

41 minor cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight minor
cycles elapses before the next instruction word is available for execution. Even if the lower order positions
of the word should require less than eight minor CYCles, a minimum of eight minor cycles is allowed.

Example:

Pass I Pass
--'- ---J.. _

p IJump to K
(not met)

P+ 1 1'--- _

8.2.3 CYBER 170/MODElS 175, 176,740,750, AND 760 AND THE

CYBER 70/MODElS 76, AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the
computation section of the CYBER 170jl\'lodels 175, 176, 740, 750, or 760 and the CYBER 70/Models 76 or
7600 CPU. Each is a specialized unit with algorithms for a portion of the CPU instruction execution.
Table 8-2 lists the general function of each unit. A number of functional units can be in operation at the
same time.

60492600 G 8-5

I TABLE 8-2. CYBER 170/MODELS 175, 176, 740, 750, AND 760 AND THE CYBER 70/MODEL 76

AND 7600 FUNCTIONAL UNITS

Unit

Boolean

Shift

Normalize

Floating Add

Long Add

Floating Multiply

Floating Divide

Population Count

Increment

General Function

Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Performs the normalize operations.

Performs single or double precision floating point addition or subtraction
on floating point operands.

Performs integer addition or subtraction of two 60-bit fixed point
operands.

Performs single or double precision floating point multiplication on
floating point operands.

Performs single precision floating point di vision of floating point
operands.

Counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three­
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held
in a new set of registers at the end of every cl ock period. It is therefore possible to start a new set
of operands for unrelated computation into a functional unit each clock period even though the unit may
require more than one clock period to complete the calculation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination in the proper
order but at a later time. All functional units perform their algorithms in a fixed amount of time. No
delays are possible once the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit
in any clock period prOViding there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time.
Program branching within the instruction stack causes no storage references and small program loops
can therefore be precisely timed.

8-6 60492600 G

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number

Operand Registers XO - X7 60 Bits 8

Address Registers AO - A7 18 Bits 8

Index Registers BO - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated XO, Xl, ••• , X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and theLCM (not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers.
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers.

On the CYBER 170/Model176, CYBER 70/Model 76 and 7600, the X registers also serve as address
registers for referencing single words from LCM. XO is used as the LCl\rI relative starting address
in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as AO, AI, ••• , A7, are
essentially SCM (CM) operand address registers. With the exception of AO and XO, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register Xl - X5. Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

Tlh. 1\0 and XO registers operate independently of each other and have no connection with SCM (CM).
AO is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 8 REGISTERS

Eight l8-bit B registers in the computation section of the CPU designated as BO, Bl, ... , B7 are
primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

60492600C 8-7

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests.

BO always contains positive zero; that is, BO is held clear. Otten as a programming convention, Bl
or B7 contains positive 1. See the Bl=l, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unique to a computer system are identified as such.
These instructions can be assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.

The variable field contains one, two, or three subfields. For 15-bit instruction, subfields take the
forms:

r
-r
r,r
r op r
-r op r

;:tjk

} r is a register designator

} op is a register operator + - * /

jk is an absolute expression specifying a shift count or mask bit count. If
the expression value is in the range -60 to -0, inclusive, COMPASS adds 60 to it.
If it is less than ~o or greater than 63, COMPASS sets a warning flag and uses
the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the forms:

8-8

K

r op K

r,K

r,r, K

The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * /
One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

Two subfields contain register designators; a third contains an absolute,
relocatable, or external expression that does not include a register.

60492600A

In the formats and examples, K reduces to an IS-bit value that represents one of the following in pass
two:

• An absolute address or a word count

• An external synlbol 2: an integer value

• An address that is relocatable relative to the prograul origin or COUlmon block origin.

• An address of a literal

If K is negative, the assembler inserts the oners complement of the integer value in the K portion of the
instruction.

In the descriptions of the fonnats, 2:K designates that the evaluation of all nonregister elements can
result in a positive or negative value for the expression (see section 2.8.2 Evaluation of Expressions).
Use of .±-K to represent the integer portion of the expression does not imply that the first term oper­
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407 • The first term operator (-) forms the
value 777370

S
' Subtracting 1 from this results in 777367

8
o1'

8
a -K (-410s).

Code Generated

13 7212717357

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

$Xl X2-XRAY-l I
I

Unless otherwise noted, subfields can be in any order. COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be written in the operation field with
each subfield preceded by a comma. For example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 1B 130

UXl "?,)("l I

can be wri tten

Code Generated LOCATION OPERA TlON VARIABLE COMMENTS

I II 18 130

ltxt,q? X3
I

I

The instructions are identical to the assembler.

60492600A 8-9

Similarly, the following instructions are regarded as identical. Use of this feature is optional.

U~ZJ010641

Ott2J010641

OttZ:J0106t..l

O~2301li641

LOCATION OPERATION VARIABLE COMMENTS

, II 18 130
I

fQ 82,93,(I

£~Q, 82, B!,K I
I

ECh82,B3 K l
I l£Q,82,83,K

I

I

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODEL 71,72,73,74, AND 6000 SERIES)

The CEJ!MEJ Panel Switch determines \vhether this instruction causes the central processor unit to
halt or to execute an exchange jump. The DISABLE position disables the central exchange jump or
the monitor exchange jump. In this case, the instruction is illegal for a CYBER 170/Model 175. For
all other systems, PS halts the central processor unit at the current step in the program. An exchange
jump is necessary to restart the central processor unit. The ENABLE position enables the jump capa­
bilities for all systems. In this case, PS causes an exchange jump to monitor address (MA) in the
exchange package. For the CYBER 170!Model 176, the CEJ!MEJ switch is ignored; exchange jumps
are always enabled. For 6000 series systems, the CEJ/MEJ switch is ignored; PS always causes the
central processor unit to halt. The job continues to hold a control point until the time-limit is satis­
fied; at that time the job aborts.

The contents of the location field become a sub-subtitle on the assembler listing. The assembler forces
upper before and after assembling a PS instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 Functional Unit: None

Format:

Operation Variable Description Size Octal Code

PS Program stop or exchange jump to (MA) 30 bits 00000 00000

PS K Program stop or exchange jump to (MA) 30 bits OOOOK

Example:

Code Generated

OOOOOOOOO()

8-10

LOCATION OPERA nON VARIA8lE COMMENTS

I II 18 130
PS I

I

6049260a G

&.4.2 ERROR EXIT INSTRUCTION {CYBER 70/MODEl 76 OR 7600}

ES execution is treated as an error condition and the machine sets the program range condition flag
in the PSD register. The condition flag then generates an error exit request which causes an exchange
jump to address (EEA). All instructions iscued prior to this instruction are run to completion. Any
instruction following this instruction in the current instruction word is not executed. \Vhen all operands
have arrived at the operating registers as a result of previously issued instructions, an exchange
jump occurs to the exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the
assembler. The program address stored in the exchange package on the terminating exchange jump is
advanced one count from the address of the current instruction word (P=P+l). This is true regardless
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The progranl range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should occur when an incorrectly coded program
jumps into an unused area of the SCl\I field or into a data field. The program range condition flag is
also set on the condition of a jump to address zero. These conditions can be determined on the basis
of the register contents in the exchange package. The existence oian error exit condition resulting
from execution of this instnwtion can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

ES Error exit to EEA 15 bits 00000
ES K Error exit to EEA 15 bits 00000

Example:

Code Generated

00000

8.4.3 RETURN JUMP INSTRUCTION

LOCATION OPERATION VARIABLE COMMENTS

J II 18 /30

::s I
I

When this instruction is executed, an unconditional jump to the current address plus one [(P)+l] is
stored in the upper half of relative address K in SCIVI and control then transfers to K+l for the next
instruction. The lower half of the stored word is all zeros. The instruction always branches out of
the instruction stack and voids all instructions currently in the instruction stack.

After the instruction is executed the octal word at K is:

Address K

60492600 C

I0 4 0 0

59 "-vJ
Bi=Bj

___P_+_l ~L-__o_o_o_o_o_o_o_o_o_o_~1
29 00

8-11

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jUTIlp
instruction in the current instruction are not executed. The called subroutine must exit at address K
in eM (SCM). A jump to address K of the branch routine returns the program to the original sequence.
The assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/lVlodel 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: None

Format:

Operation Variable Description Size Octal Code

RJ K Return jump to K 30 bits 0100K

Example:

Code Generated

0100005250 +

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130

RJ HELF I

8.4.4 ECS INSTRUCTIONS (CYBER 170 SERIES, CYBER 70/MODELS 71,
72, 73, 74 OR 6000 SERIES)

These instructions initiate either a read or write operation to transfer (Bj)+K 50-bit words between
extended core storage (ECS) and central memory (CM). The initial ECS address is (XO)+RA ECS;
the initial CM address is (AO)+RA eM'

The assembler forces upper before assembling an RE or WE instruction.

If no error occurs, the next instruct ion executed is the first instruction in the current address plus one
[(P)+l].

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing
the RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions
are:

1. Parity errors when reading ECS. If a parity error is detected, the entire block of data is
transferred before the exit is taken.

2. The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenance mode, or the bank has lost power. If either of these conditions exists on an
attempted read or write, an immediate error exit is taken.

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immedi ate error exit is taken. If the attempted operation is a read,
and addresses are in range, zeros are transferred to central memory. This is a convenient
high-speed method of clearing blocks of central memory.

On a CYBER 170 Model 176, action in the case of error depends on the operating system being run.
Under SCOPE 2, error processing is just as for the RL and WL instructions (section 8.4.5). Under
NOS 1, an error causes the job to abort. Under NOS/BE 1, an error exit to the lower 30 bits of the
instruction word takes place. This action is provided by the operating system, not by the hardware.

For additional information about these instructions, refer to the 7030 Extended Core Storage Reference
Manual.

8-12 60492600 G

Format: Functional Uni.t: None

Operation Variable Description Size Octal Code

HE Bj Read extended core storage 30 bits 011jO 00000

HE K Read extended core storage 30 bits 0110K

RE Bj±K Read extended core storage 30 bits 011jK

WE Bj Write extended core storage 30 bits 012jO 00000

WE K Write extended core storage 30 bits 0120K

WE Bj±K Write extended core storage 30 bits 012jK

Examples:

Code Generated

011000?OOO

011 7 1)010"00

012~f)01000

LOCATION OPERATION VARIA8lE COMMENTS

I II 18 130

Rr 20008 I
I

PE "7+10008 I

WF 1000A+8S I

8.4.5 LCM BLOCK COpy INSTRUCTIONS (CYBER 170/MODEL 176,
CYBER 70/MODEL 76 OR 7600)

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All
activity in the CPU other than I/O word requests is stopped during a block copy operation. All
instructions issued prior to a block copy instruction are executed to completion and no further
instructions issue until the block copy is nearly completed. As a result of these restrictions the
data flow between LCM and SCM can proceed at the rate of one 60-bit word each clock period.
When an I/O multiplexer word request for SCM occurs during this transfer t the data flow is
interrupted for one clock period. The I/O word address is inserted in the stream of addresses to
the SASt and the addresses for the block copy are resumed with a minimum of a one clock period delay.
An additional delay will occur if the I/O reference causes a bank conflict in SCM.

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement.· The result is an IS-bit integer which is truncated
to a 10-bit quantity. Thus t a maximum block size is 1777S. (For example t if the result of the add is
003000st the instruction transfers 1000S words.) No error indications are gi ven when this occurs unless
the field length is exceeded causing a block range error. If the block length is zero t the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (AO) in the SCM and at the relative LCIVI address
determined from the lowest order 19 bits of (XO). If (XO) is negative, the 19 bits are treated as a
positive integer. If the sum of (X01S- 00) and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sunl of
(AO) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag is
set in the PSD register.

COMPASS will truncate a block copy instruction if it begins in the last parcel and its K field is zero.
Under such conditions, a block copy is a 15-bit instruction.

60492600 F S-13

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are iss.ued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception
of rio word requests, stops.

On a CYBER 170 Model 176, if no error takes place, the next instruction executed is the first instruction
in the current address plus one [(P) + 1]. Action in the case of error depends on the operating system
being run. Under SCOPE 2, error processing is just as for any program running on the CYBER 70
Model 76, as described in the SCOPE 2 Reference Manual listed in the preface. Under NOS 1, an error
causes the job to abort. Under NOS/BE 1, an error exit to the lower 30 bits of the instruction word takes
place. This action is provided by the operating system, not by the hardware.

Format: Functional Unit: None

Operation Variable Description Size Octal. Code

RL Bj Block copy (Bj) words from LCM to SCM 30 bits 011jO 00000

RL K Block copy (K) words from LCM to SCM 30 bits 0110K

RL Bj:':K Block copy (Bj) .=::. K words from LCM to
SCM 30 bits 011jK

WL K Block copy (K) words from SCM to LCM 30 bits 0120K

WL Bj Block copy (Bj) words from SCM to LCM 30 bits 012jO 00000

WL Bj.=::.K Block copy (Bj) .=::.K words from SCM to
LCM 30 bits 012jK

Example:

Code Generated

0115001000

0110002000

0124177f17

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

Rl 1000 B+ ~5
I

I

Rl 200n8
I
I
I

lolL 94-100B I

8.4.6 EXCHANGE JUMP INSTRUCTION (CYBER 170 SERIES,

CYBER 70/MODELS 71, 72, 73, '74, AND 6000 SERIES)

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is set or
clear.

This'instruction is not legal for a CYBER l70/Model 175, 740,750, or 760 if the lVIEJ/CEJ switch is in the
DISABLE position or if the instruction does not reside in parcel 0 of the instruction word.

Operation is as follows:

• Monitor flag bit clear: The starting address for the exchange is taken from the l8-bit Monitor Address
register. This starting address is an absolute address. During the exchange) the monitor flag bit is set.

• Monitor flag bit set: The starting address for the exchange is the IS-bit result formed by adding K to
the contents of register Bj. This starting address is an absolute address. During the exchange) the
monitor flag bit is cleared.

For additional information, refer to the appropriate hardware reference manual.

8-14 60492600 G

The assembler forces upper before and after" assembling an XJ instruction.

Formats: Functional Unit: Branch

Operation Variable Description Size Octal Code

XJ Exchange jump to MA if in program mode. 30 bits 01300 00000

XJ Bj Exchange jurr.l.t; to (Bj); flag set 30 bits 013jO 00000

XJ K Exchange jump to K; flag set 30 bits 0130K

XJ Bj±K Exchange jump to (Bj) ± K; flag set 30 bits 013jK

Examples:

Code Generated

01\30000000

lU.3 0001000

0135000600

LOCATION OP:RATION VARIABLE COMMENTS

1 II 18 130

XJ
I

f

XJ 1000B I
I

XJ 85+6009

8.4.7 EXCHANGE EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction is used for calling a system monitor program for input/output, monitor calls, etc. and
has priority over all other types of exchange jump requests. If an r/o interrupt request or an error exit
request occurred prior to execution of this instruction, it is denied and the exchange jump specified by
the !\1J is executed. The rejected interrupt request is not lost, however. The conditions that caused it
are reinstated when the exchange package enters its next execution interval.

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The MJ instruction voids the instruction word stack. Any instructions remaining in
the stack are not executed. The exit mode flag in the PSD register determines the source of the ex­
change package as follows:

Exit mode flag set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) ± K. An overflow of the
lowest order 16 bits of this result causes an error condition that is not sensed in the hardware.
Should a program erroneously execute an exchange exit instruction with an overflow condition, the
exchange jump sequence begins at the absolute SCM address correspond ing to the lowest order 16
bits of this sum. This 3D-bit form of MJ is privileged to a monitor program.

Exit mode flag not set: When the exit mode flag is not set, the object program terminates the exe­
cution interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the
absolute address of the exchange package. This is an absolute address in SCM and is generally not
in the SCM field for the current program. This form of the MJ instruction has a blank variable
field; the assembler sets the j and k designators to zero.

The system makes no protective tests on the exchange jump address.

60492600C 8-15

...•.... ::;~

Octal CodESize

15 bits

functional Unit: None

~scription .

Exchange exit to (Bj) if exit flag set

Exchange exit to (Bj) ± K if exit flag set

Exchange exit to Kif exit flag set·

-;0----:--_

A single word transfer either reads one 60-bit word from LCM and 'enters this word into anX regist
or writes one 60-bit word directly into LCM from an X register. .

8.4.8 DIRECT LCM TRANSfER INSTRUCTIONS ·(!CYBER 170/MODEL.176,·
CYBER 7·6/MODEL 76 OR 7600)

;"

8-16

The execution time for transferring a word from LCM to an X register depends on whether theq~:, .~f.

requested word already resides in one of the bank operand registers.. A read LCM instructioIilo:J:":~j
word not currently residing in a bank operand register will require 17 clockperiods for deliveiing;.~
field of eight 60-bit words to the designated X register. A read LCM instruction fora-wordair~adi
residing in a LCM bank operand register as a re.sult of a previous instruction will requirethree'ct<>.-c
periods to deliver the requested word to the designated X register. Thus, although the first6?~~1~"{f
word will require 17 clock periods, the second through eighth words in the same LCM wordr~~~~

three clock periods ·each. This means that consecutive LCM operands are available, on anaverag~
everyfive clock periods as opposed to SCM operands at eight clock periods. .., . . c,

" . }. ...•::/
The LCM address is determined from the low order 19 bits of Xk•. Even if(Xk) is· .L,_.__
bits are treated as a positive integer. If the address exc~eds the field length (FLL),. Tu.... ,..t'1·Trl'lnM

does not take place and the LCM direct range condition flag is .set in the PSD register.
the source or destinat~onregister ~

All operating register values, program addresses, and mode selections are preserved in the exchang
package for the object program so that the object program can be continued at a later time. The prol
address in the object program exchange package is advanced one count from the address of the instru
tion word containing the exchange exit instruction. The monitor program normally resumes the objel
program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than
bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute addrE
in SCM for the exchange jump. A force upper occurs after the instruction is assembled.

- ---'

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM
reference is in process. \Vhen an RX instruction issues, the LCM busy flag is set and remains set
until the requested word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

Fonnats: Functional Unit: None

Operation Variable Description Size Octal Code

RXj Xk Read LCM at (Xk) and set Xj 15 bits 014jk

WXj Xk Write (Xj) into LCM at (Xk) 15 bits 015jk'

Examples:

Code Generated

011+55

01570

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

RX6 XC; I

I
WX7 XO' I

8.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION (CYBER 170/MODEL 176,

CYBER 70/MODEl 76 OR 7600)

This instruction initiates a new record transmission from a PPU to SCM. This instruction prepares
the input channel (Bk) buffer for a new record transmission from a PPU to SCM. The instruction
clears the input channel buffer address and resets the input channel assembly counter to the first
12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that tenninates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register.. If the monitor mode flag is cleared, this instruction
becomes a pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or actiVity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored•. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the

- channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Two or more consecutive HI instructions referring to different channels will issue in consecutive
clock periods with no interference resulting in the multiplexer. If two consecutive instructions refer to
the same channel, they repeatedly perform the same function but do not cause interference in the
multiplexer.

60492600 C 8-17

Fonnat: Functional Unit: None

Operation Variable Description Size Octal Code

RI Bk Reset input channel (Bk) buffer 15 bits 0160k

Example:

Code Generated

01607

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

RI 87 i

8.4.10 SET REAL-TIME CLOCK INSTRUCTION (CYBER 170/MODEL 176,
CYBER 70/ MODEL 76 OR 7600)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in
B1. The I8-bit clock counter advances one count in two's complement mode for each clock period. The
2 7 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt
is handled, the bit is cleared. It permits measurement of CPU execution.

Fonnat: Functional Unit: None

Operation Variable Description Size Octal Code

TBj Set Bj to current clock time 15 bits 016jO

TBj K Set Bj to current clock time; K is ignored. 15 bits 016jO

Example:

Code Generated

01670

LOCATION OPERATION VARIABLE COMMENTS

I n 18 130

T87 ;

8.4.11 RESET OUTPUT CHANNEL BUfFER INSTRUCTfON (CYBER 170/MODEL 176,
CYBER 70/MODEL 76 OR 7600)

This instruction initiates a new record transmission from SCM to Ppu. It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine to initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is executed. The output channel buffer is loaded with the data for the next record, and this instruction ­
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

8-18 60492600C

This, instructi.on is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. \\llen this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length. The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more
consecutive RO instructions referring to different channels will issue in consecutive clock periods with
no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that occur.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

RO Bk Reset output channel (Bk) buffer 15 bits 0170k

Example:

Code Gene rated

01705

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130

RO Be; I

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (CYBER 170/MODEL 176

CYBER 70/MODEL 76 OR 7600)

These instructions copy the contents of the input or output channel buffer address register indicated
by masking the low order 4 bits of Bk and enter the value in Bj. The instructions are used for
monitoring the progress of an input channel buffer or an output channel buffer.

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffe r area.

The IBj instruction is the only vehicle for a program to determine whether an I/O multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the

8-19
60492600C

input channel buffer address from one interrupt period to the next. If the buffer address is in the same
field as for the preVious interrupt, the interrupt request was from a record flag. If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) = 0, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more ffij instructions or OBj instructions may occur in consecutive program instructIon locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi­
plexer in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction
nor mayan OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: . Functional Unit: None

Operation Variable Description Size Octal Code

mj Bk Bj -Read input channel (Bk) status 15 bits 016jk

OBj Bk Bj -Read output channel (Bk) status 15 bits 017jk

Example:

Code Generated

0166,.

017'56

LOCATION OPERATION VARIABLE COMMENTS

1 n 18 130
IRIS q4 I

I

085 ~6
I
J

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to K and branches to the relative CM (SCM)
address specified by the sum. The remai.ning instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit oners complement mode. On a CYBER 170 Series, (except Model
176), a CYBER 70/ :Model 71, 72, 73, or 74 or 6000 Series system this instruction voids the stack.
On a CYBER 70/Model 76 and 7600 or CYBER 170/Model 176, the instruction word stack is not altered
by execution of this instruction. The instruction is intended to allow computed branch point destinations.
It is the only CPU instruction in which a computed parameter can specify a program branch destination

. address. All other jump instructions have preassigned destination addresses at execution time.

The assembler sets the unused j designator to the same value as the i designator. A force upper occurs
after the instruction is assembled.

8-20 60492600C

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176,740,750, or 760 and the

CYBER 7U/Model 76 or 7600 Functional Unit: None

Format:

Operation Variable Description Size Octal Code

JP Bi±K Jun1p to (Bi)±K 30 bits 02iiK

JP Bi Jump to (Bi) 30 bits 02iiO 00000

JP K Jump to K 30 bits 0200K

Example:

I

Code Generate'

OZt:lS0000Q4 •

o2 7"1 t) 00 () 0 0

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130
JP BS+GOlO I

I
JP 81 I

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to K or to continue with the current program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj register
is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

e The ZR and NZ operations test the full 60-bit word in Xj. The words 0000 and 77 ••••. 778 are I
treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for
floating point zero coefficients. However, they can be used for underflow of floating point quantities.

• The PL and NG operations examine only the sign bit (bit 59) of Xj. If the sign bit is zero, the word is
positive; if the sign bit is one, the word is negative. ThUS, the sign test is valid for fixed point words
or for coefficients in floating point words.

• The IR and OR operations examine the upper-order 12 bits of Xj.

On the CYBER 170/Model 176, CYBER 70/Model 76 or 7600, the following octal quantities are I
detected as being out of range:

3777x ••••• x (positive overflow)
4000x ••••• x (negative overflow)
1777x •••.• x (positive indefini te)
6000x ••••. x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On a CYBER 70/Model 71, 72, 73, or 74, CYBER 170 Series (except Model 176) or 6000 Series
computer system, the octal quantities 3777x •••x and 4000x ••.x are out of range; all other words are I
in range.

60492600 G 8-21

I

• The DF Hnd ID operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite
forms are detected:

1777x ••••• x and 6000x ••••• x are indefinite.

All other words are definite. The value of the coefficient is ignored in making this test.

• An error exit occurs on a 6000 Series, a CYBER 170 Series or a CYBER 70/Model 71, 72, 73 or 74
system when an indefinite or out of range value is used as an operand of an arithmetic instruction.
Such error exits can be avoided by using DF, ID, lR, or OR instructions to test for such values before
using the m as operands.

On a 7600 or CYBER 70/Model 76 system, an error exit occurs as soon as indefinite or out of range
value is produced as the result of an arithmetic instruction. The DF, ID, 1R and OR instructions are
useful only when a MODE control statement is used to suppress such error exits.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: None

Format:

Operation Variable Description Size Octal Code

ZR Xj,K Branch to K if (Xj) = 0 30 bits 030jK

NZ Xj,K Branch to K if (Xj) -I 0 30 bits 031jK

PL Xj,K Branch to K if (Xj) sign is plus 30 bits 032jK

NG Xj,K Branch to K if (Xj) sign is minus 30 bits 033jK

MI Xj,K Branch to K if (Xj) sign is minus 30 bits 033jK

IR Xj,K Branch to Kif (Xj) in range 30 bits 034jK

OR Xj,K Branch to K if (Xj) out of range 30 bits 035jK

DF Xj,K Branch to Kif (Xj) definite 30 bits 036jK

ill Xj,K Branch to K if (Xj) indefinite 30 bits 037jK
I

8-22 60492600 G

Exanlples:

Code Generated

0305002363 +

0313002364 ..

0324.0023&5 +

0331002366 +

0:>31002300 ..

0340002367 +

0351002370 ..

0365002371 +

J377002372 ..

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

ZR X5,ZEt<O I
I
I

t-.Z X3 ,N01~ZERO I
I

PL X4 ,PL US I
I

NG X1 ,NEG
I
I
I

HI Xl.NEG I
I

I':;~ XO,INRANG£ I

1

OR XltOUT~NGc
I

I
I

UF X5,UEFINf I

I lXl,IN Uf:.FNl

I
I

1U I

8.4.15 B.REGISTER CONDITIONAL BRANCH INSTRUCTIONS

The following rules apply in the tests made by these instructions:

• Positive zero is recognized as unequal to negative zero.

• Positive zero is recognized as greater than negative zero.

• A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in a
19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous results
caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The
branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the instruction stack.

60492600 G

I

I
Format:

CYBER 70jModel 74 or 6600/6700 Functional Unit: brunet.
CYilER 170lModel 175, 176, 740, 750, or 760 and the

CYBER. 70lModel 76 or 7600 f'unetional Unit: ~one

Operation Variable Description Size Octal Code

ZR K Branch to K 30 bits 0400K

ZR Bi,K Branch to K if (Bi) = 0 30 bits 04iOK

EQ K Branch to K 30 bits 0400K

EQ Bi,K Branch to Kif (Bi) = 0 30 bits 04iOK

EQ Bi, Bj, K Branch to K if (Bi) = (Bj) 30 bits 04ijK

NE Bi,K Branch to K if (Bi) I- 0 30 bits 05iOK

NE Bi, Bj,K Branch to K if (Bi) =} (Bj) 30 bits 05ijK

NZ Bi,K Branch to K if (Bi) I- 0 30 bits 05iOK

PL Bi,K Branch to Kif (Bi) ~ 0 30 bits 06iOK

GE Bi,K Branch to K if (Bi) ~ 0 30 bits 06iOK

GE Bi, Bj, K Branch to K if (Bi) ?: (Bj) 30 bits 06ijK

LE Bj, Bi, K Branch to Kif (Bj) ~ (Bi) 30 bits 06ijK

LE Bj,K Branch to Kif (Bj) ~ 0 30 bits 060jK

NG Bi,K Branch to Kif (Bi) < 0 30 bits 07iOK

1M ! Bi,K Branch to K if (Bi) < 0 30 bits 07iOK

GT Bj,Bi,K Branch to K if (Bj) > (Bi) 30 bits 07ijK

GT IBj,K Branch to Kif (Bj) >0 30 bits 070jK

LT IBi,K Branch to K if (Bi) < 0 30 bits 07iOKIBi, Bj,KLT Branch to K if (Bi) < (Bj) 30 bits 07ijK

•

8-24 60492600 G

Examples:

Code Generated

04C;OOOC;?21 ..

0405005?22 ..

04530052?3 +

040000522~ +

OC;1Cl005224 ..

05f,0005225 ..

062000r;226 +

064~005??7 +

0&5')005230 +

067600r;Z31 +

0170005232 +

073COOr;?33 +

0167005234- +

0705005?:3r; +

0112005236 +

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

ZR B5,6ZERO I
I

EQ BO,85,EQUAl I
f

EQ B5,B3,JUM? I
EQ JUMP . I

I

HE Bl,RC;,NOTEQ I
I

HZ e6,BNOTZR I

I
Pl B~,BPlUS I

GE B4-,aC;,GEQ 1
1

GE 85,GEBO I
I

lE B6,R7,lTHAN I
Nt; ~7,6NEG

I
t

"I B3,93LTO I
I

GT 87,66,B7GT I
I

CiT 85,85GTO I
J

LT 91,92,BLTB 1

8.4.16 TRANSMIT INSTRUCTION}

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a copy
instruction intended for moving data from X register to X register as quickly as possible. No logical
function occurs. The assembler sets the k designator to the value specified for j.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the I

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation Variable Description Size Octal Code

BXi Xl Transmit (Xj) to Xi 15 bits lOijj

Example:

Code Generated

10622

60492600 G

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

aX6 X2 :

8-25

I

8.4.17 LOGICAL PRODUCT INSTRUCTION

This instruction forms the logical product (AND function) of GO-bit words from operand registers -Xj and Xk
and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits
of the Xj and Xk registers are 1 as in the following example:

(Xj) =0101
(Xk) = 1100
(xi) = U1lJU

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, the instruction becomes a transmit instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750 or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation Variable Description Size Octal Code

BXi Xj*Xk Logical product of (Xi) and (Xk) to Xi 15 bits l1ijk

Example:

Code Generated

11553

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

exe; X5·X3 I

I

8.4.18 LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of 60....bit words from operand registers Xj and Xk and
places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit of the Xj or
Xk register is a 1, as in the following example:

(Xj) =0101
(Xk) =1100
(xi) =1101

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit
instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation Variable Description Size Octal Code

BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk

Example:

Code Generated

12767

8-26

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

BX1 X6+X7
I
I.- _. -- -.

60492900 G

8.4.19 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers Xj and
Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the corresponding
bits in the Xj and Xk registers are unlike, as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, the result will be a word of all zeros written
into register Xi.

CYBER 70/Model 74 Qt' 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the ~

CYBER 70/Model 76 or 7600 Functional Unit: Boolean fJll

Format:

Operation Variable Description Size Octal Code

BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk

Exanlple:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

, 11 18 130
PX6 XO-X1 I

8.4.20 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruction to k.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/lVlodel 175, 176, 740, 750, or 760 and the I

CYBER 70/Model 76 or 7600 Functional Unit: Boolean I

Format:

--
Operation Variable Description Size Octal Code

BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk

Example:

Code Generated

14311

60492600 G

LOCATION OPERATION VARIABLE COMMENTS

, 11 lB 130

BX3 ·-Xi t

8-27 •

I

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register Xj
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the
complement of the Xk register are 1, as in the follOWing example:

(Xj) = 0101
Complemented (Xk) = 0011

(Xi) = 0001

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, a logical product is formed between two complementary quantities. The
result will be a word of all zeros.

CYBER 70/Modei 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation .Variable Description Size Octal Code

BXi -Xk*Xj Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

Examples:

Code Generated

15432

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130
B)(4 -X2-\tX3 I

I

8.4.22 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the
Xk register is a 0, as in the following example:

(Xj) =0101
(Xk) = 1100
(xi) =0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Modei 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation Variable Description Size Octal Code

BXi -Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

8-28 60492600 G

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

8X6 -X4+X5 I

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj and
the complement of the 60-bit word feom operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike, as in the following
example:

(Xj) = 0101
(Xk) = 1100
(Xi) =0110

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/lVIodel 175, 176,740,750, or 760 and the I

CYBER 70/lVlodel 76 or 7600 Functional Unit: Boolean B

Format:

~eration Variable Description Size Octal Code

BXi -Xk-Xj Logical difference of (Xj) and complement
of (Xk) to Xi 15 bits 17ijk

Example:

Code Generated

17731

LOCATION OPERA TION VARIABLE COMMENTS

I 11 18 130
BX? -X1-xJ I

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instructionshifts the 60-bit word in operand register Xi left circular jk places if expression jK is
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi
replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of (xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS Places the lower 6 bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
ThUS, a negative value effectively designates a logical right shift. A positive value designates a left shift.

If the negative shift count is less than -60, the assembler generates a type 7 error. I

60492600 G 8-29

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

L"i jk Logical shift (Xi) by !:. jk places 15 bits 20ijk

Example:

Code Generated

21:'375

lOCATION OPUATION VARIABlE COMMENTS

1 n 18 130

lX3 ?5B I

I
I

lY3 -128 t

8.4.25 ARITHMETIC RIGHT SHIFT ik PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and
right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is
extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the
operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jkis an absolute expression. If it is positive, COMPASS places the lower 6 bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
Thus, a negative value effectively designates the number of high order bits of the operand that are to be

I retained. If the negative shift count is less than -60, a type 7 error is generated.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

AXi jk Arithmetic shift (Xi) by .:.!: jk places 15 bits 21ijk

Example:

Code Generated

~tS37

8-30

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

AX5 378
,
~

60492600 G

8.4.26 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the I.
quanti ty in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

• If (Bj) is positive (that is, bit 17 of Bj=O), the quantity from Xk is shifted left circular. The low order 6
bits of (Bj) specify the shift count. The higher order bits are ignored.

• If (Bj) is negative (that is, bit 17 of Bj=l), the quantity from Xk is shifted right (end off with sign
extension). For the CYBER 170 Series (except Model 176), the CYBER 70 Series/Models 71, 72, 73,
and 74, and the 6000 Series, the one's complement of the low order 11 bits of (Bj) specify the shift
count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), the result stored in
the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64 (decimal) or
greater, the result register Xi is cleared to 60 zeros. For the CYBER 170/Model 176, CYBER 70/
Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specify the shift count.
The higher order bits are ignored. If the shift count is 59 (decimal) or greater, the result stored in the
Xi register consists of 60 copies of the operand sign bi t.

If -Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might be
the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient.
This instruction is used for shifting a coefficient from a floating point number to the integer position after
an unpack operation.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170jModel 175, 176, 740, 750, or 760 and the I

CYBER 70/Model 76 or 7600 Functional Unit: Shift I

Format:

Operation Variable Description Size Octal Code

LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

LXi Bj,Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

LXi Xk Transmit (Xk) to Xi 15 bits 22iOk

LXi Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji

LXi -Bj,Xk Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk

LXi Xk,-Bj Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk

LXi -Bj Arithmetic right shift (Xi) by (Bj)
places to Xi 15 bits 23iji

I

Example:

Code Generated

2?675

22534

22302

60492600 G

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 /30

LX6 x5,67 I
I

LX; B3,X4 I

L(3 X2 I
I

8-31 •

8.4.27 ARITHMETIC RIGHT SHIFT (B j) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the

I quantity in index register Bj and places the result in operand l>egister Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

• If (Bj) is positive (that is, bit 17 of Bj=O), the quantity from register Xk is shifted right (end off with
sign extension). For the CYBER 170 Series, (except Model 176) CYBER 70/1Vlodel 71,72,73,74 and
6000 Series Computer Systems, the low order 11 bits of (Bj) specify the shift count. The higher order
bits are ignored. If the shift count is 59 to 63 (decimal), the Xi register contains 60 copies of the (Xk)
sign bit. If the shift count is 64 (decimal) or more, the Xi register is zeroed. For the CYBER 170/
Model 176, CYBER 70/Model 76 or 7600 Computer Systems, the low order 12 bits of (Hj) specify tIle
shift count. The higher order bits are ignored. If the shift count is 59 (decimal) or more, the Xi
l'egister contains 60 copies of the sign of the operand.

• If (Bj) is negative (that is, bit 17 of Bj=l), the quantity from register Xk is shifted left circular. The
complement of the lower order 6 bits of Bj specify the shift count. The higher order bits are ignored.

If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is intended
for use in data processing where the amount of shift is derived in the computation. This instruction is also
useful for adjusting the coefficient of a floating point number while it is in its unpacked form.

I
CYBER 70/lVlodel 7401' 6600/6700 Functional Unit: Shift

CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

AXi Xk,Bj Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 23ijk

AXi Bj,Xk Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 23ijk

AXi Xk Transmit (Xk) to Xi 15 bits 23iOk

AXi Bj Arithmetic shift of (Xi) by (Bj) places to Xi 15 bits 23iji

AXi -Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

AXi Xk, -Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

AXi -Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji

Exan1ple:

Code Generated

237~4

23211

23502

23424

8-32

LOCATION OPERATION VARIABLE COMMENTS

I \I 18 130

AX7 X,+,A6 f

I
AX2 Rl,X1 I
tU(5 X2 I

I
AX4 82 I

60492600 G

8.4.28 NORMALIZE INSTRUCTION

This instruction normalizes the floating point quantity from operand register Xk and places it in operand
register Xi. Normalizing consists of shifting the coefficient the minimum number of positions ['equired to
make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest
order position of the coefficient portion of the word. The exponent portion of the word is then decreased
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered
in index register Bj.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the I

CYBER 70/Model 76 or 7600 Functional Unit: Shift .

Format:

Operation Variable Description Size Octal Code

NXi Xk Nonnalize (Xk) to Xi 15 bits 24iOk
NXi Bj,Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Xk,Bj Nonnalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Normalize (Xi) to Xi 15 bits 24iOi
NXi Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji

Example:

Code Generated

:?4CJ05

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130
~!X5 X5,B7 I

I
NXC; I

I

NX5,gr; X2 I

8.4.29 ROUND AND NORMALIZE INSTRUCTION

This instruction performs the same operation as the NXi instruction with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased
by one-half the value of the least significant bit. Normalizing a zero coefficient places the round bit in bit
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and
indefinite results.

If (Xk) is an infinite quantity (3777x •••xS or 4000x •••xS) or an indefinite quantity (1777x •••xS or
6000x •••xS), no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero. I

60492600 G S-33

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

CYBER I70/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Mode176 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

ZXi Xk Round and normalize (Xk) to Xi 15 bits 25iOk
ZXi Bj,Xk Round and normalize (Xl<:) to Xi; shift

count to Bj 15 bits 25ijk
ZXi Xk,Bj Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk
ZXi Bj Round and normalize (Xi) to Xi; shift

count to Bj 15 bits 25iji
ZXi Round and normalize (Xi) to Xi 15 bits 25iOi

Example:

Code Generated

2S414

2540~

253&1

LOCATION OPERA TlON VARIABLE COMMENTS

1 II 18 130

ZX4 X4,97 I

I
I

ZY4 I

I
ZX3,B6 X1

Coefficient

8.4.30 UNPACK INSTRUCTION

This instruction unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the II-bit exponent to index register Bj. The exponent packing is
removed during unpack so that the quantity in Bj is the true one's complement representation of the .
exponent. The contents of Xk need not be normalized.

The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below:

Sign Packed Exponent

Packed Quantity ITJ~__--;-_.L.I ----''-- --JI Xk

5958 148 00

Unpacked

Exponent Sign EXPOlnent Coefficient

Extended Sign Extended

Unpacked Bj Lr.£.!~~_~~~~ -----,I ~-----------'IXi
17 10 9 00 59 48 47 00

Special operand formats are treated in the same manner as normal operands.

8-34 60492600 G

CYBER 7U/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the m

CYBER 70/Model 76 or 7600 Functional Unit: Boolean I
Format:

Opel'ation Variable Description Size Octal Code

llXi Xk Unpack (Xk) to Xi 15 bits 26iOk
l1Xi Bj,Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk

llXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 2Gijk
llXi Unpack (Xi) to Xi 15 bits 26iOi
(lXi Bj Unpack (Xi) to Xi and Bj 15 bits 26iji

Examplt\:

Code Generated

26777

2631+2

267Q7

26777

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

UX7 X7,g7 I

UX3,X2 84 I

lUX? I I
I I

IUX7
1
37 I

I

8.4.31 PACK INSTRUCTION

This instruction packs a floating point number in operand register· xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained fro·m index register Bj. The exponent is
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction
does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruction. Tllus, bits 58 through 48 of I...
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in
the PSD register by this instruction.

Note that if (Xk) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits
10 through 00 of Bj by complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09 I:
through 00 are complemented.

The j designator can be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent=O).

60492600 G 8-35

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

CYBER 170/Model 175, 176, 740, 750, or 760 and tnc
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:

Operation Variable Description Size Octal Code

PXi Xk Pack (Xk) to Xi 15 bits 27iOk
PXi Xk, Bj Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Bj, Xk Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Pack (Xi) to Xi 15 bits 27iOi
PXi Bj Pack (Xi) and (Bj) to Xi 15 bits 27iji

Example:

Code Generated

27565

27671

27505

??565

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

PX5 X5,66 I
PX6,97 Xi !

I, I

jPX5 i I
I

lp'(5 iab I

I

8.4.32 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the unrounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a
double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference of the
exponents. The other coefficient is then added to or subtracted from the upper half of the accumulator. If
overflow occurs, the result is right-shifted one place and the exponent of the result increased by one. The
upper half of the accumulator holds the coefficient of the result, which is not necessarily in nOl'malized
form. The exponent and upper coefficient are then repacked in operand register Xi.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/lVlodel 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Format:

Operation Variable Description Size Octal Code

FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk

FXi Xj-Xk Floating point difference of (Xj) minus
(Xk) to Xi 15 bits 31ijk

8-36 60492600 G

Examples:

Code Generated

31213

LOCATION OPHATION VARIABLE COMMENTS

I 11 18 130

FXJ X4+X5 1

I

FX2)(1-X3 I

8.4.33 DP FLOATING POINT ADD INSTRUCTIONS

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack the lower half of the double precision result with an exponent 48 less than the upper
sum. The result is not necessarily normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the I

CYBER 70/Model 76 or 7600 Functional Unit: Floating Add I
Format:

Operation Variable Description Size Octal Code

DXi Xj+Xk Floating DP sum of (Xj) and (Xk) to Xi 15 bits 32ijk I

Xj-Xk Floating DP difference of (Xj) and (Xk) I
DXi

Ito Xi 15 bits 33ijk

Examples:

Code Generated

32323

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

OXJ X2+x3 I
I

0)(4)(1-'(4 I

8.4.34 ROUNDED SP FLOA TING POINT ADD INSTRUCTIONS

These instructions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These
instructions are intended for use in floating point calculations involving single precision accuracy.

60492600 G 8-37 •

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add

CYBEH 170/lVIodel1 r15, 176,740,750, or 760 and tl1e
CYBER 70/Model 76 or 7600 Functional Unit: Floating Ado

Format:

pperation Variable Description Size Octal Code

~i Xj+Xk Rounded floating sum of (Xj) and (Xk)
to Xi 15 bits 34ijk

tRxi Xj-Xk Rounded floating difference of (Xj) minus
(Xk) to Xi 15 bits 35ijk

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

I
I

PX5 X1+X4 I

t
RX6 XS-'lt'3 !I I35653

341534

Code Generated

8.4.35 LONG ADD (FIXED POINT) INSTRUCTIONS

These instructions form the 60-bit one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the increment
unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all
D's), the result is a positive zero quantity. If both operands are minus zero (all 1's), the result is a negative
zero quantity.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Long Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Long Add

Format:

Operation Variable Description Size Octal Code

IXi Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bits 36ijk

IXi Xj-Xk Integer difference of (Xj) minus (Xk)
to Xi 15 bits 37ijk

Example:

Code Generated

3654;

37631

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

rX5 X4.+Y5
I

I
I

IX& X3-X1 I

8-38 60492600 G

8.4.36 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier) and
Xk (multiplicand) and packs the upper product result in operand register Xi.

In this operation t the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted to
form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/lVlodel 175 t 176 t 740 t 750 t or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:

Operation Variable Description Size Octal Code

FXi Xj*Xk Floating point product of (Xj) and
(.xl<) to Xi 15 bits 40ijk

Example:

I

Code Generated

41)011

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

FX:) X1~X1
I
I
I

8.4.37 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction mUltiplies the floating point number from operand register Xk (multiplicand)t by the
floating point number from operand register Xj. The upper product result is packed in operand
register Xi. (No lower product is available.) The multiply operation is identical to tnat of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit product. The upper
half of the product is then extracted to form the coefficient for the result. An alternate output path is
provided with a left shift of one bit position to normalize the result coefficient if the original operands
were normalized and the double precision product has only 95 bits of significance. The exponent for the
result is decremented by one count in this case.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175 t 176, 740 t 750 t or 760 and the I'

CYBER 70/Model 76 or 7600 Functional Unit: Floating MUltiply··

Format:

Operation Variable Description Size Octal Code

RXi Xj*Xk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41ijk

60492600 G 8-39

Example:

Code Generated LOCATION OPERA TlON VARIABLE COMMENTS

I 11 18 /30

RX2 Y3 >:-y 2. I
I

8.4.38 DP FLOA TINGPO INT M Ul TIP l YIN STRue TIO N

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk and
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to

I form a 96-bit product. The lower order 48 bits of the product (bits 47 through 0) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less
than the exponent resulting from an unrounded single precision instruction using the same operands.

This instruction is intended for use in multiple precision floating point calculations. It may also be used to
form the product of two integers providing the resulting product does not exceed 48 bits of significance.
The operands must be packed in floating point format before executing this instruction. The results must
be unpacked to obtain the integer product.

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply

CYBER 170/1V1odel 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:

Operation Variable Description Size Octal Code

DXi Xj*Xk floating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk

Example:

Code Generated

42345

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

OX3 X4 \I> X5 I

I

8.4.39 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point
multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruction is executed as
follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the 47-bit integer product
is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each operand has bit 47 different
from its sign bit, the result is shifted left one bit position.) Otherwise,a double precision floating point
multiplication 1'3 performed. Thus, there is no need to pack exponents into the operands, and unpack the
result, for an integer multiply. COMPASS provides the alternate symbolic representations IXi Xj*Xk and
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer can indicate
whether or not the instruction is being used for integer multiplication.

8-40 60492600 G

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER TO/Model 76 or 7600 functional Unit: Floating Multiply

Format:

operation Variable Description Size Octal Code

IXi Xj*Xk Integer product of (Xj) and (Xl\:) to Xi 15 bits 42ijk

Example:

Code Generated

42234

LOCA TlON OPERATION VARIABLE COMMENTS

I 11 18 130

I
I

IX2 X3Jf.X4 I
I

8.4.•10 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines the
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk
defines the number of 0 bits (unmasked) counted from the low order bit in Xi. The completed masking
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word.

The contents of operand register i are zero when jk is zero. The contents of operand register i are all ones
when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruction,
this instruction creates an arbitrary field mask faster than by reading a previously generated mask from I
storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk
field of the assembled instruction. If the value of absolute expression jk is negative, the assembler adds 00
to the expression value and places the sum in the jk field of the assembled instruction.

A negative jk value less than -60 results in a type 7 assembly error.

60492600 G 8-41

I

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

MXi jk Form mask in Xi, =jk bits 15 bits 43ijk

Example:

Code Generated

430'+2

'+33bO

LOCATION OPERATION VARIABLE COMMENTS

1 11 \8 130
MXO ,+~tj i

I
,.,)() -14i:1 I

I

8.4.41 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj
(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/Model 175, 176, 740,750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide

Format:

Operation Variable Description Size Octal Code

FXi Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 bits 44ijk

Example:

Code Generated

44631

LOCATION OPERATION VARIA8lE COMMENTS

1 11 1B 130
FX6 X3/X1 I

I

8.4.42 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

8-42 60492600 G

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/lVlodel 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide

Format:

Operation Variable Description Size Octal Code

RXi Xj/Xk Rounded floating point division of (Xj)
by (Xk) to Xi 15 bits 45ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
RX7 X2/X4 I

I

8.4.43 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do-nothing
instruction used typically to pad the program between steps. An integer value in the variable field
(optional) is inserted into the lower 8 bits of the instruction. The assembler automatically pads the
remainder of a word whenever a force upper occurs; in this case, the programmer is not required to insert
the NO.

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 4008 causes the
instruction to be interpreted as a CMU instruction.

On a CYBER 170/Model 175, 740, 750, or 760, a value of n greater than or equal to 4008 is illegal. I
CYBER 70/Model 74 or 6600/6700 Functional Unit: 1\40ne

CYBER 170/Model 175, 176, 740, 750, or 760 and the I
CYBER 70/Model 76 or 7600 Functional Unit: None I

Format:

Operation Variable Description Size Octal Code

NO Pass 15 bits 46000

NO n Pass 15 bits 46n

Example:

Code Generated

60492600 G

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

NO
I

I

8-43

8.4.44 POPULATION COUNT INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower order
I 6 bits of operand l'egister Xi. Bits 59 through 06 are cleared.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all
zeros, a zero word is delivered to the Xi register.

The assembler sets the unused j designator to k.

I
CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide

CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Population Count

Format:

Operation Variable Description Size Octal Code

CXi Xk Count of number of l' s in (Xk) to Xi 15 bits 47ikk

Example:

Code Generated

'47700

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

eX? xo I

8.4.45 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register, which receives
the address formed from the operands, and either the Xi register or a CM (SCM) storage location.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting
sum or difference as the relative storage address depending on machine size. The upper bits are ignored.
The type of storage reference is a function of the i designator value, as follows:

i = 0; no storage reference

i = 1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

i = 6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

8-44 60492600 G

CYBER 70/IvIodel 74 or 6600/0700 Functional Unit: Increment I
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Increment

Format:

Operation Variable Description Size I Octal Code

57ijk

57ijk

55ijk

55ijk

56ijO

56ijk

57iOk

50ijK

5liOK

5lijK

52ijK

53ijO

53ijk

53ijk

54ijO

54ijk

54ijk

15 bits

15 bits

15 bits

15 bits

15 bits

15 bits

15 bits

30 bits

30 bits

30 bits

30 bits

15 bits

15 bits

15 bits

15 bits

15 bits

15 bits

Set Ai to (Aj)"::::' K

Set Ai to K

Set Ai to (Bj) :!::. K

Set Ai to (Xj) ~ K

Set Ai to (Xj)

Set Ai to (Xj) + (Bk)

Set Ai to (Xj) + (Bk)

Set Ai to (Aj)

Set Ai to (Aj) + (Bk)

Set Ai to (Aj) + (Bk)

Set Ai to (Aj) - (Bk)

Set Ai to (Aj) - (Bk)

Set Ai to (Bj)

Set Ai to (Bj) + (Bk)

Set Ai to (BO) - (Bk)

Set Ai to (Bj) - (Bk)

Set Ai to (Bj) - (Bk)

Aj+K

K

Bj+K

Xj+K

Xj

Xj+Bk

Bk+Xj

I Aj

I
I Aj+Bk

! Bk+Aj

SAi

SAi

SAi

SAi

SAi

Aj-Bk

-Bk+Aj

I Bj

I Bj+Bk

I -Bk

I BHlk

S~~ L_ -Bk+Bj

SAi

SAi

SAi

SAi

SAi

SAi

SAi

SAi

SAi

SAi

SAi

60492600 G .8-45

Examples:

Code Generated

C),'t"lOOC"i11

s ~ f) n 7 7 7 7 7 I~

!j ? :-z: 1 7 7 77 7 t

S77?t

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

I\U+~
I

~Al I

I
~A'J -~ I

I

~A2 :+81 J

<"~~ xl-6 I
I

<"1\4 Xl+B1 I
I

~t\S f4+Bl I

~AC; ~4 ... ~H I
I

1S~r; 1\4 I
I

~A& 1-81+A4
I

C:07 Bl+P1 I
I

~A7 i32-Pl

8.4.46 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and sUbtraction of IS-bit operands and store an
IS-bit result in index register Bi. Note the result will never be -0 unless -0 is added to -0.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = IS-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction.

I 8-46 60492600 G

Format:

CYBER 70/Model 74 or 6600/0700 Functional Unit: Increment
CYBER 170/Model 175, 176, 740, 750, or 760 and the I.

CYBER 70jModel 76 or 7600 Functional Unit: Increment I

I ------_.~------_._-

Operation Variable Description Size Octa.! Code
.... ,-

--------~

SBi Aj+K Set Bi to (Aj) ~ K 30 bits 60ijK

:SBi K Set Bi to K 30 bits 61iOK

iSBi Bj+K Set Bi to (Bj) ~ K 30 bits 61ijK

SBi Xj+K Set Bi to (Xj) ~ K 30 bits 62ijK

:SBi Xj Set Bi to (Xj) 15 bits 63ijO

iSBi Xj+Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

;SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

:SBi Aj Set Bi to (Aj) 15 bits 64ijO
i
SBi' Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

isBi Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Aj-Bk .,- Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi -Bk+Aj Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 bits 66ijO

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

SBi -Bk Set Bi to (BO) - (Bk) 15 bits 67iOk

SBi Bj-Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

SBi -Bk+Bj Set Bi to (Bj) - (Bk) 15 bits 67ijk

60492600 G 8-47

Examples:

Code Generated

611077777?

f:6711

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

~81 A1-5
I

I
~Ql -15 I

I

Sf32 '3+n1+;" I
I
I

S!13)(1+1.00 fl

I
~8u X?+87 I

I
~q'5 ,'\~ +A 1 I
S~C:; 1\4 I
C::06 -111+1'4 I

I
~f]F) t\4-83 I
SR7 81+81 I

I
~B7 BI5-['l

8.4.47 SET X REGISTER INSTRUCTIONS

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the upper
42 bits of operand register Xi. An overflow condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the
60-bit word. The highest order bits are ignored.

I 8-48 60492600 G

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Increment

Format:

deOperation Variable Description Size Octal Co
--

SXi Aj+K Set Xi to (Aj) =. K 30 bits 70ijK

SXi K Set Xi to K 30 bits 71iOK

SXi Bj+K Set Xi to (Bj) ±. K 30 bits 7lijK

SXi Xj+K Set Xi to (Xj) :. K 30 bits 72ijK

SXi Xj Set Xi to (Xj) 15 bits 73ijO

SXi Xj+Bk Set Xi to (Xj) -+- (Bk) 15 bits 73ijk

SXi Bk+Xj Set Xi to (Xj) -+- (Bk) 15 bits 73ijk

SXi Aj Set Xi to (Aj) 15 bits 74ijO

SXi Aj-+-Bk Set Xi to (Aj) -+- (Bk) 15 bits 74ijk

SXi Bk+Aj Set Xi to (Aj) -+- (Bk) 15 bits 74ijk

SXi Aj-Bk Set Xi to (Aj) - (Bk) 15 bits 75ijk

SXi -Bk+Aj Set Xi to (Aj) - (Bk) 15 bits 75ijk

SXi Bj Set Xi to (Bj) 15 bits 76ijO

SXi Bj-+-Bk Set Xi to (Bj) + (Bk) 15 bits 76ijk

SXi -Bk Set Xi to (BO) - (Bk) 15 bits 77iOk

SXi Bj-Bk Set Xi to (Bj) - (Bk) 15 bits 77ijk

SXi
,

-Bk-+-Bj Set Xi to (Bj) - (Bk) 15 bits 77ijkI

L

60492600 G 8-49

Exanlples:

Code Generated

711077C)7SCi

7 ? "'l 7 7 7 7 7 4 i,

74S40

756"'4

7f77&

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

~XrJ
I

0Nrr,+Al+1 I

~yt -?O??~
I
I

C"Y2 Ql+t; I
I

~)("l X3-:'"l9 I
~)(4)(4+92 I

I
~)f5 1\5+83 I

I
~X5 .1\4 I

I
SX6 -!:31+A4 I
SXfl A1-34 I

I
~X7 nl+9f, I

C;;Y? nE)-F,t I

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Series Model 72
and Model 73, and the CYBER 170/Models 172, 173, 174, 720, and 730. It provides CPU instructions for
moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word
boundaries and can begin and end at any character position within a word. A data field is specified by its
length in characters and the location of its leftmost character (according to word address and character
position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right (high
order to low order).

COMPASS provides a symbolic forms of the four CMU instructions plus a pseudo instruction used to
generate a descriptor word to be referenced by the indirect move instruction. Of the four instt'uctions, the
indirect move OM) instruction is the only one that syntactically resembles other CPU instructions. The
other three instructions have formats dissimilar to CPU instructions and are generated through COMPASS
pseudo instructions. All of these instructions must begin at the top ora 60-bit word; COMPASS automat­
ically forces upper before each of them unless the location field contains a minus sign. All but 1M are 60
bits in length. 1M is 30 bits, but the hardware requires that the instruction be in the upper half of its word.
The lower half of the word is not executed. COMPASS automatically forces upper following 1M, unless the
next instruction has a minus sign in its location field.

8-50 60492600 G

8.5.1 1M - INDIRECT MOVE

The indirect move instruction moves the contents of a data field to another location. It is a 30-bit
instruction that specifies the address of a descriptor word which, in turn, contains the length and address of
the data fields.

The assembler forces upper before and after the 1M instruction.

The descriptor word is fetched from storage location (Bj)+K. If the data field length is zero, the
instruction is executed as a pas...') but the execution time is longer. Otherwise, the contents of the source
field are moved to tlle destination field. rf the two fields overlap, the results are undefined. The XO
register is used for intermediate storage during execution of the instruction, and is cleared upon
completion of the instruction.

Operation Variable Description Octal Code

1M K Move data according to word at K 4640K

I1M BjiK Move data according to word at (Bj):, K 464jK
1M Bj Move data according to word at (Bj) 464j 000000 I

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD

The MD pseudo instruction generates a descriptor word for use by the indirect move (1M) instruction.

Format:

lOCATION

sym

OPERATION

MD

VARIABLE $UBFIElDS

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the descriptor word.

Absolute address expression specifying the field length in characters (0 through 8191). The I
upper 9 bits (,f) are placed in bits 56 through 48 of the descriptor word; the lower 4 bits (,0 are I~·..
placed in bits 29 through 26. •

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting character position of the source
·field within the word at location ks' Characters are numbered from left to right.

60492600 G

An expression specifying the first word address of the destination field in CM.

An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location kct.

8-51

I

ndirect Move Descriptor Word format:

59 48 30 26 22 18 00

~xample:

0 £. 12-4
source _Isrc des destination
address £3-0ch ch address

I

Code Generated

.C,4001066?

LOCATION OPERATION VARIABLE COMMENTS

J 11 18 130

I
\1WORO r-1] lQ~J,3UFF~,G,HUFF~,5

· I
· I
· I1·'1 OWQ?f)

t

3UFFA is at address 2560; BUFFB is at address 3584.

3.5.3 OM. DIRECT MOVE

fhe direct move (OM) pseudo instruction generates a eMU instruction that moves the contents of a data
1eld to another data field. The machine instruction occupies one full word. The instruction includes its
)wn data field descriptor.

fhe assembler forces upper before a DM instruction.

:f the data field length is zero, the instruction is executed as a pass, but the execution time is longer.
)therwise, the contents of the source field are moved to the destination field. If the two fields overlap,
:he results are undefined. The XO register is used for intermediate storage during execution of the
nstruction and is cleared upon completion of the instruction.

li'ormat:

LOCATION

sym

OPERATION

DM

VARIABLE SUBFIElDS

sym

B-52

If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction word.

Absolute address expression specifying the field length in characters (0 through 127).

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location ks•

An expression specifying the first word address of the destination field in eM.

An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location kd. Characters are numbered from left to right.

60492600 G

Octal format of instruction:

59 51 48 30 26 22 18 00

Example:

465 ~6-'4 source ~ ,Jsrc des destination
address 3- ch ch address

I I

Code Generated

4057~JSJuL74J5~G7GLr;

LOCATION OPERATION VARIABLE COMMENTS

J II lB 130

D'-1 127, 1UFF l\, 0 ,ll\JCl='"!'} , 5
I

8.5.4 CC - COMPARE COLLATED

The compare collated (ee) pseudo instruction generates a CMU instruction that compares the contents of
two data fields, one character at a time, from left to right, until a pair of corresponding characters is
found to have unequal collating values or until the data fields are eXhausted. It is a fiO-bit instruction that
occupies one full word. It cannot be split between two words. The instruction includes its own data field
descriptor. Register AO contains the first word address of a table in storage that contains the collating
values to be used in comparing characters. The result of the comparison is placed in register XO.

The first word address of the collating table is obtained from register AO. The contents of the data fields
are compared from left to right, one character at a time from each field, until two unequal characters are
found. The collating value of each character is obtained from the collating table. If these values are
equal, the compare continues until another character pair is unequal or until all characters have been
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers.
Note that two unequal characters could have the same collating value and would compare equal.

Upon instruction completion, register XO contains a 60-bit signed integer as follows:

n is the number of pairs of characters that compared equal. If .£=0, then (XO) is O.

(Field A}>(Field B)

(Field A)=(Field B)

(Field A)< (Field B)

(XO}=!':'n; (XO»O

(XO)=O

(XO)=n-!; (XO)<O

I

I
The format of the collating table for 6-bit characters is:

(AO)

(AO)+1

(A 0)+7

60492600 G

59 53 47 41 35 29 23 27 11 0

00 01 02 03 04 05 06 07 tltm~mlr~tI~~~~~
10 11 12 13 14 15 16 17 ·~~I~~~~~\~t~{\Ii\~\i\~~

~ ~ ~ < ~

74~
~ ~.

1\\\·\\·\\\\\\~\\\\I\\\11 1 711 751
1

70 72 I 73 76 77
I

8-53

Format:

LOCATION

sym

OPERATION

cc

VARIA BlE SUBF IE LDS

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
Oecomes the symbolic address of the instruction.

Absolute address expression specifying the field length in characters (0 through 127).

An expression specifying the first word address of the first data field in eM.

An absolute expression specifying the starting character position of the first data field witnin
the word at location ka . Characters are numbered from left to right.

An expression specifying the first word address of the second <.lata field in CM.

An absolute expression (0 through 9) specifying the starting character position 01 the second
data field within the word at location kb.

Octal format of instruction:

59 51 48 30 26 22 18 00

466 £6-t
first string £ I fs ss second string
address 3-0 ch ch address

I I

Example:
Code Generated

51JJJJ312C
4667uJ5uuC74J5uJ7GJO

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130
'S ~ a T Aqu: 1
CG 127,qUF~A,G,~UFF8,?

I

8.5.5 CU - COMPARE UNCOLlATED

The compare uncoUated (CU) pseudo instruction generates a eMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters are
found to have unequal values or until the data fields are eXhausted. The machine instruction is a oD-bit
instruction that occupies one full word and cannot be split between two words. It includes its own Gata
field descriptor. The result of the comparison is placed in register XO.

Execution resembles the CC instruction except that AO and the collating table are not used. Instead, tne
characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register XO is set in the same manner as by the CC instruction.

8-54 604~2600 G

Format:

LOCATION

sym

OPERATION

CD

VARIABLE SUBFIELDS

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction.

Absolute address expression (0 through 127) specifying the field length in characters.

ka An expression specifying the first word address of the first data field in CM.

ca An absolute expression (0 through 9) specifying the starting character position of the first data I
field wi thin the word at location ka . Characters are numbered from left to right.

kb An expression specifying the first word address of the second data field in CM.

An absolute expression (0 through 9) specifying the starting character position of the second
data field within the word at location kb'

Octal format of instruction:

59 51 48 30 26 22 18 00

Example:

467
£. I. first string ~ _I f s ss second string
6-4 address 3-q ch ch address

I

Code Generated

4077JrySJCG74J5J0700J

60492600 G

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 \30

CU 127, 3UFF A, 0 ,;QUFF9, 5

I

8-55

PPU SY'i\SOLIC MACI11NE INSTRUCTIONS 9

P7·

The COMPASS assembler recognizes symbolic notation for peripheral processor unit (PPU)
instructions. When a PPU or PERIPH pseudo instruction is in the first statement group, the assembler
identifies each symbolic instruction by name and generates a one word (12 bit) or two word (24 bit)
object code machine instruction lL.~der control of the current origin, location, and position counters.
All PPU code is absolute. Numeric_data must be in integer notation. Floating point notation is illegal.

9.1 MACHINE INSTRUCTION FORfAATS

An assembled instruction has a I2-bit or 24-bit format. The 12-bit format has a 6-bit operation code f
and a 6-bit operand d. A PPU accomplishes program indexing and manipulates operands in several
modes. The 12-bit and 24-bit instruction formats provide for 6-bit, I2-bit, or IS-bit operands and
6-bit or I2-bit addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit
instruction format, respectively.

Direct Mode:

d = memory address of operand

operation
code

(P) 1__f__--L.I__d_~1
11 0605 00

Indirect Mode:

d =memory address of the address
of the operand

No Address Mode:

d =6-bit operand, shift count, or
relative address

Other:

d =special value; e. g., channel designator

60492600A

Figure 9-1. PPU 12-bit Instruction Format

9-1

The 24-bit format uses the 12-bit quantity ill, which is the contents of the next progranl address (P + 1),
with d or the contents of d to form. an 1S-bit operand or a 12-bit operand address.

Indexed Mode:

operation
code

(P) I f I d I
II---------:o~6-'-:-05-------00

(P+I) 1'-- m ~1 -
11 00

d = address of the index for
modifying the address of
the operand

m =base address of the operand

(d) + m = address of operand

Constant Mode:

dIn = IS-bit operand

Other:

dIn = special values; e. g., d = channel
designator and m = 12-bit address
of word count on IAM and DAM
instructions

Figure 9-2. PPU 24-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PPU machine instructions. Instructions are
described in octal operation code sequence which generally reflects the mode of addressing.
Instructions unique to a computer system are identified as such.

The location field of a symbolic PPU machine instruction optionally contains a location symbol. When
the symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PPU machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, or 1S-bit value.

Designators used in this section are listed in table 9-l.

Generally, the third character of the lnstructionmnemonic (N, D, M, C, or I) indicates the mode of
addressing:

N No operand address reference
D Direct operand address: d contains operand
M Memory address m or m + (d) contains operand
C IS-bit constant
I Indirect; operand address is (d)

9-2 60492600A

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A 18-bit A register

c An expression that reduces to an 18-bit operand value.

d A 6-bit operand or operand address expression.

m A 12-bit expression value used with d or (d) to form an IS-bit operand or l2-bit
operand address.

P 12-bit Program Address register

Q 12-bit Q register

r An expression that reduces to a 6-bit value (-378~ r ~ 378)
specifying relative address or shift count .

O' Contents of a regis ter or location

« » Refers to indirect addressing

Some of the instructions provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

Function

Data transmission

Description

The following instructions either load data into the A register or store
data from it. A load instruction loads a 6-bit, 12-bit, or l8-bit value
as indicated by the instruction; any remaining upper bits of A are zeroed,
except for the LCN instruction for which remaining bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into
a memory location indicated by the instruction.

The contents of A are not altered.

60492600A

Instruction

LDN
LCN
WC
LDD
STD
LDI
STI
LDM
STM

Octal Code

14
15
20
30
34
40
44
50
54

Section

9.2.3
9.2.3
9.2.4
9.2.9
9.2.9
9.2.10
9.2.10
9.2.11
9.2.11

9-3

Function (cont'd)

Arithmetic

Logical

Description (cont'd)

A PPU arithmetic instruction adds or subtracts a 6-bit, 12-bit, or
18-bit quantity from the contents of the A register and enters the result
in A.

Instruction Octal Code Section

ADN 16 9.2.3
SBN 17 9.2.3
ADC 21 9.2.4
ADD 31 9.2.6
SBD 32 9.2.6
ADI 41 9.2.7
SBI 42 9.2.7
AD:M 51 9.2.8
SBM 52 9.2.8

A logical instruction forms a logical value in A using the contents of A
as one of the operands and a 6-bit, 12-bit, or 18-bit value indicated by
the instruction as the second operand. \Vhen the second operand is
fewer than 18 bits, the remaining upper bits of A are unaltered, except
for the LPN instruction for which the upper 12 bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A
that is unlike the corresponding bit in the second operand. For example,

Initial (A)
Operand

Final (A)

=0101
=1100

=1001

Formation of a logical product is equivalent to setting a bit in A when
the original setting of the bit in A and the corresponding bit in the second
operand are both one's.

For example t

Initial (A)
Operand

Final (A)

=0101
=1100

=0100

A selective clear sets a bit zero in the A register wherever a bit is set
in the second operand. For example,

9-4

Initial (A)
Operand

Final (A)

=0101
=1100

=0001

60492600A

Function (cont' d)

Logical (cont'd)

Replace

Description (cont'd)

Logical instructions include the following:

Instruction Octal Code Section

LMN 11 9.2.3
LPN 12 9.2.3
SCN 13 9.2.3
LPC 22 9.2.4
LMC 23 9.2.4
LMD 33 9.2.9
LMI 43 9.2.10
LMM 53 9.2.11

A replace instruction performs an arithmetic operation and returns the
results to the A register and the memory location from which one operand
was obtained. The lower 12 bits of the result replaces the operand
obtained from a memory location. Replace instructions include the
following:

Instruction Octal Code Section

RAD 35 9.2.9
AOD 36 9.2.9
SOD 37 9.2.9
RAI 45 9.2.10
AOI 46 9.2.10
SOl 47 9.2.10
RAM 55 9.2.11
AOM 56 9.2.11
SOM 57 9.2.11

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01 through 378), the jump is forward r locations. When r is
negative (-768 through -408), the jump is backward 778-1' locations. In the following tests, negative
zero (777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes
place. \\"'hen the condition is not met, execution continues with the next instruction.

NOTE

The jump count must not be 00 or 77. If it is, execution loops on
the jump instruction.

The J option of the PPU instruction (section 4.3.3) and the PERIPH Instruction (section 4.3.4) cause the
value of the location counter to be subtracted from the value of the symbolic address (tag) before it is
placed in the d field of the object code instruction.

60492600 G 9-5

Formats:

Jperation Variable Description Size Octal Code

LJl\I m,d Long jump to m+(d); if d = 0, m is not
modified 24 bits 01dm

~JM m,d Return jump to m+(d); Store P+2 at m+(d)
and jump to nl+(d)+l. 24 bits 02dm

JJN r t Unconditional jump to P.:::, r locations 12 bits 03d

JJN tag Unconditional jump to tag 12 bits 03d

~JN r t Zero jump; jump to P=.r locations if
(A) = 0 12 bits 04d

~JN tag Zero jump to tag 12 bits 04d

MN rt Nonzero jump; jump to P=.r locations if
(A) f- 0 12 bits 05d

~JN tag Nonzero jump to tag 12 bits 05d

)IN rt Positive jump; jump to P:t.r locations i~

(A)~O 12 bits 06d

)IN tag Positive jump to tag 12 bits 06d

1JN rt Minus jump; jump to P.:::,r locations if
I (A)< 0 12 bits 07d

IJN tag Minus jump to tag 12 bits 07d

If PPU J or PERIPH J option has been selected, l' is not valid. The contents of the variable field must
be a symbolic address (tag).

xampIes:

Code Generated

1100 1 ~62

02 7 1 01]1)0

n~71

04n4

OC:;2?

Of)f,7

1')726

LOCATION OPERATION VARIA8lE COMMENTS

1 11 18 /30

LJM STAPT I

I

PJ~ O,r-TO I

I
UJN TI\(;1-· I

I
7JN +4 I
NJ~I TAr;:) I

I

PJ'" 'Lt',f;?_. I

I
MJN 1'f1Gt.. I

the above examplefi, the LJM instruction is at address 00148• TAGl is address 00128, TAG2 has a
Llue of 138, TAG3 has a value of 258, and TAG4 has a value of 26

8
•

·6 60492600 A

Code Generated

0347

04("'4

0550

OoO?

9.2.2 SHIFT INSTRUCTION

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

ppu J I

I
I
I

UJN TAG1 I
ZJN TAG3 I In this example, the UJN is at

I address 0040. TAG1 is address

NJN rfiG2+10 I 0010, TAG2 is 0011, TAG3 is
I address 0045, and TAG4 is

PJN -1+ T fiGl+ I address 0046.

MJN TAGl I

The SHN instruction shifts the contents of the A register right or left r places. If r is positive (+1 to
+31), the shift is left circular r places; if r is negative (-31 to -1), the shift is end off r places to the
right with no sign extension. No shift takes place when r is :t O. The assembler places the value of
the r expression in the d field. If -31 >r >31, the assembler generates an address error.

Format:

Operation Variable Description ~- Size Octal Code

SHN r Shift (A) by + (left) or - (right) r bits 12 bits lOr

Examples:

1. Shift contents of A left circular 6 places

Code Generated

1006

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130
<;HN 6 I

2. Shift contents of A right end off 6 places

Code Generated

£,

1071

lOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

S~NT S(T 6 I

SHN -Sr.NT I
I

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit
positive operand. This mode eliminates the need for storing many constants in core.

60492600 D 9-7

Formats:

Operation Variable Description Size Octal Code

LMN d Logical difference (A)-d - A 12 bits lId

LPN d Logical product (A) *d--A 12 bits 12d

SCN d Selective clear (A) 12 bits 13d

LDN d Load d-A 12 bits 14d

LCN d Load cOTIlplement d - A 12 bits 15d

ADN d Add (A)+d-A 12 bits 16d

SBN d Subtract (A)-d-A 12 bits 17d

Examples:

Code Generated

1112

1207

13i'1

llt15

1524

160-1

1102

lOCATION OPUATION VARIABLE COMMENTS

I II 18 130
LMN 128 I,
LPN 7 I

I
SeN 21P I

AA SFT P;B I
LnN AA

I
LeN AA-1 I
AON t I

I
SRN 2 I

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an
operand. This mode also eliminates the need for storIng many constants. The assembler reduces
absolute or relocatable expression c to an IS-bit value and stores the upper six bits in d and the lower
12 bits in m.

9-8 60492600A

Format:

Operation Variable Description Size Octal Code

LDC c Load c-A 24 bits 20dJ.n

ADC c Add (A)+c-A 24 bits 21dm

LPC c Logical product (A) *c -A 24 bits 22dm

LMC c Logical difference (A)-c-A 24 bits 23dm

Examples:
Code G€nerated

2070 7010

0
2177 7176

2207 0707

70707
2301 0107

LOCATION OPERATION VARIABLE COMMENTS

1 II 18 130

-
707070B ILoe I

I
VAL = (j I

ADC VAL-1
I
I
I

LPC 0707078 1
I

MASK SET 0707078 I
LHe HASK I.

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed. It provides a means of padding
a program.

Format:

Operation Variable Description Size Octal Code

PSN No operation (Pass) 12 bits 2400

Example:

Code Generated

24110

LOCATION OPERATION VARIABLE COMMENTS

I II 18 \30

PSN ,

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

CYBER 170 Series, CYBER 70/
Models 72, 73, 74 and 6000 Series CYBER 70/Model 76 and 7600

60492600A

00
25

25
26
27
75
76

9-9

9.2.6 EXCHANGE JUMP INSTRUCTIONS (CYBER 170 SERIES,
CYBER 70/MODEl 71,72,73,74 OR 6000 SERIES)

The EXN instruction transmits an IS-bit (absolute) address from the A reg"ister to the CPU with a signal
notifying the CPU to execute an exchange jump. The address in A is the starting location of the 16-word
exchange package which contains information about the CPU program to be executed. The IS-bit initial
address must be entered in A before the EXN instruction is executed. The CPU replaces the file with
similar information from the interrupted CPU program. The PPU is not interrupted. The EXN instruc­
tion does not affect the monitor flag bit.

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If
the monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor
flag bit is set, this instruction acts as a pass instruction. The starting address for this exchange is
the 18-bit address in the PPU A register. This address must be entered in A before the MXN instruc­
tion is executed.

Execution of MAN resembles 1L~N. However, the exchange package address is taken from the IS-bit
Monitor Address (MA) register in CPU d, rather than from the PPU A register.

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump
will interrupt. In single processor systems, this value is not interpreted.

Formats:

!Operation Variable Description Size Octal Code

EXN d Exchange jump CPU d to (A) 12 bits 260d
MXN d Monitor exchange jump CPU d to (A) 12 bits 261d
MANt d Monitor exchange jump CPU d to (MA) 12 bits 262d

Examples:

Code Generated

2601

2610

2623

LOCATION OPERATlON VARIABLE COMMENTS

I II 18 130

EXN 1 I
I

HXN 0 I
HAN 3 I

I I
I J

,JCYBER 170 Series and CYBER 70/Mode171, 72, 73, and 74 only.

9-10 60492600 F

9.2.7 READ PROGRAM ADDRESS INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODElS 71,72,73,74, AND 6000 SERIES)

This instruction transfers the contents of the CPU P register to the PPU A register; this allows the PPU
to determine whether the CPU is in execution. In a dual central processor system, the lowest order bit
of the instruction format specifies which CPU P register is to be examined. This bit is not interpreted
for a single central processor system.

Format:

Operation Variable Description Size Octal Code

RPN d Read program address CPU d - A 12 bits 270d

Example:

Code Generated

2700

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

RPN I

For the 6000 and CYBER 70 series, the largest value that (P) can be is. 17 bits. An ~CS n:ansfer. is in
progress when bit 17 of the A register is set. For the CYBER 170 serLes, the P regLster lS 18 bltS.

9.2.8 6416 PPU INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The
ETN instruction initiates memory transfer operations by transmitting an 18-bit address from the
PPU A register to the 6416 16K memory. This address points to a word having the following format:

I x_o__---'I-----...__AO -'--I K__----l'
59 36 18 00
,.......-----.v,------"'" ,"-- "'Vy --'.J '--.....-------.v,-------./

starting Address start~Address Word Count
in Extended Core storage in 16 K Memory

Expression d of this instruction specifies the transfer to be performed:

If d is 0, K words are transferred from ECS to 16K memory.

If dis 1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e. g., Is address + RA > FL? The
Exchange Jump package contains RA and FL values for central memory and for extended core storage.
The 6416 has no hardware for automatic relocation and field length testing; it is therefore incumbent
upon the program to perform these functions whenever required by an operating system.

60492600C 9-11

The ERN instruction examines the status of the data trunk behveen 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d
portion of this instruction is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Formats:

Operation Variable Description Size Octal Code

ETN d Extended core transfer 12 bits 260d

ERN d Read extended core coupler status 12 bits 270d

Examples:

Code Generated

2600

2700

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130
ETN I

I
I

ERN I

9.2.9 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 1008 addresses in core memory (0000 - 00778). During instruction execution,
(d) is treated as a positive 12-bit quantity.
Format:

Operation Variable Description Size Octal Code

LDD d Load (d)-A 12 bits 30d

ADD d Add (A) + (d)-A 12 bits 31d

SED d Subtract (A) - (d)-A 12 bits 32d

LMD d Logical difference (A) and (d) -A 12 bits 33d

STD d Store (A)-d 12 bits 34d

RAD d Replace add (d) + (A)-d and A 12 bits 35d

AOD d Replace add (d) + 1-d and A 12 bits 36d

SOD d Replace subtract one (d) - 1-d and A 12 bits 37d

9-12 60492600A

Examples:

Code Generated

3012

3103

3240

'l327

34:01

3&12

3713

LOCATION OPERATION VARIABLE COMMENTS

, II 18 130

LOO rnG1 I

I
I

ADO TAG2-10B I
I

S8fJ 4QB I
LMO f!\t;1+156 I

I
STO 1 I

I
~AO 5C; B I

I
~OO fAG! I

I
sao TAG2 I

I

0&

9.2.10 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the
address of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 100

8
addresses in core nlemory (0000 - 0077

8
).

On the 7600 (or CYBER 70/Model 76), the address formed permits referencing of all memory locations
but one (0000 - 7776

8
).

On a 6000 Series Computer System (as well as CYBER 170 Series or CYBER 70/Model 71, 72, 73 or 74)
PPU, the address formed in indirect address mode permits referencing of all memory locations,
including address 7777s.
Formats:

Operation Variable Description Size Octal Code

LDI d Load «d»-A 12 bits 40d

ADI d Add (A) + «d»-A 12 bits 41d

SBI d Subtract (A) - «d»-A 12 bits 42d

LMI ..
d Logical difference (A) - «d»-A 12 bits 43d

STI d Store (A) -(d) 12 bits 44d

RAI d Replace add «d» + (A) - (d) and A 12 bits 45d

AOI d Replace add one «d» + 1-(d) and A 12 bits 46d

SOl d Replace subtract one «d» - 1 - (d) and A 12 bits 47d

60492600C 9-13

Examples:

Code Generated

ft012

4103

43?7

4401

4555

4612

4713

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

lOI TAG1 I

f

AOI TAG2-10 I

SRt f+O~

LHI 'fAG1+1C;~

STI 1

RAI 55B

AOt. TAG1
I

SOl lAG2 I

9.2.11 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the value formed by m+(d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit
value that specifies one of the first 1008 addresses in core memory (0000 - 00778).. The value of
absolute or relocatable expression m is a 12-bit base address.

NOTE

The address formed in indexed addressing permits
referencing of all memory locations but one
(0000-77768). Although m and/or (d) can have a
value of 77778' the computer system does not
permit m+(d) to reference address 77778.

When in indexed direct address mode, if d is nonzero the contents of address d are added to m to
produce a 12-bit operand address (indexed addressing). If d is zero, m is taken as the operand address.

9-14 60492600A

Forrnats:
..----

Operation Variable Description Size Octal Code I
I

LDM m,d Load (nl+(d»-A 24 bits 50dm I
!

.ADM nl,d Add (A) + (m+(d»-A 24 bits 51dm i
i

SBM m,d Subtract (A) - (m+(d»-A 24 bits 52dnl
i
I
i

LMlvr m,d Logical difference (A) - (m+(d»--A 24 bits 53dnl I
STM m,d Store (A)- m+ (d) 24 bits 54dm I
RAM TIl,d Replace add (m+(d» + (A)-m+(d) and A 24 bits 55dm

I
I
I

AOM
I

m,d Replace add one (m+(d» + I-m+(d) and A 24 bits 56dm
!

SOM m,d ~~8txce subtract one (m+(d» - I-m+(d) 24 bits 57dm I
Examples:

Code Generated

5077 0203

5106 0202

5200 0202

5315 700U

5410 0272

5500 o3ft ~

5600 0173

5712 0203

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

LOti TAG6,17B I
I

ADM TAG5,b I
I

SUM ITAG5
I
I

I lMM 7000a,15B I
r

~1:-1 TAGS+70B,TAGl-2
I

RAM llt06+IAGS,O,

ADM I -108+TAG6 I

SOM ITAG6, TAG1 I
I

9.2.12 CENTRAL READ/WRITE INSTRUCTIONS
(C YBE R 170 SERIES, CYBE R 70/ MOD El S 71, 72, 73, 7.4 0 R 6000 SE RIES)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PPU locations. The
IS-bit address of the central memory location must be loaded into A prior to executing this instruction.
(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to successive locations.
The contents of A are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The contents of location d give
the block length. The 18-bit address of the first central word must be loaded into A prior to executing this
instruction. (Note that this is an absolute address.) During the execution of the instruction, the contents
of P go to processor address 0 and P holds m. Also, the block length (from d) goes to the Q register where
it is reduced by one as each central word is processed. The original content of P is restored at the end of
the instruction. The new contents of P are fetched from word O. If the read operation overwrote the
contents of word 0, the restored value of P will be different .from the original contents.

60492600 G 9-15

The contents of A are incremented by one to provide the next central memory address after each fiO-bit
word is disassembled and stored. The contents of the Q register are also reduced by one. The block
transfer is complete when (Q)=O. The block of central memory locations proceeds from address (A) to
address (A)+(d)-l. The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into fi ve 12-bit words beginning with the high-order 12 bits. The
first word is stored at processor memory location m. The content of P (which is holdingm) is advanced
by one to provide the next address in the processor memory as each 12-bit word is stored. If P overflows,
operation continues as P is advanced from 7777

8
to 00008' These locations will be written into as if

they were consecuti vee

fhe C\VD instruction assembles five successive 12-bit words into a GO-bit word and stores the word
n central memory. The 18-bit address word designating the central memory location must be in A
>rior to execution of the instruction. (Note that this is an absolute address.)

c..ocation d holds the first word to be read out of the processor memory. This word appears as the
ligher order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken
'rom successive addresses.

rhe CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
,f location d gives the number of 60-bit words. The content of the A register gives the beginning
:entral memory address. (Note that this is an absolute address.) During the execution of this in.'3 truction
P) goes to processor address 0, and P holds TIl. Also, (d) goes to the Q register, where it is reduced
ly one as each central word is assembled. The original content of P is restored at the end of the
nstruction.

['he content of P (the m portion of the instruction) gives the address of the first word to be read out of
he processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be
tored in central memory.

~he content of P is advanced by one to provide the next address in the processor memory as each
2-bit word is read. If P overflows, operation continues as P is advanced from 77778 to 00008•
'hese locations will be read from as if they were consecutive.

l\) is advanced by one to provide the next central memory address after each 60-bit word is assembled•
•lso, Q is reduced by one. The block transfer is complete when (Q)=O.

;ormats:

Operation Variable Description Size Octal Code

CRD d Central read from (A) to d 12 bits 60d

CRM m,dt Central read (d) CM words beginning
at CM (A)-+PPU m 24 bits 61dm

CWD d Central write from d to (A) 12 bits 62d

CWM m,d t Central write (d) words beginning
at PPU ffi-+CM (A) 24 bits 63dm

t Expression d is required.

1-16 60492600 G

Example:

Code Generated

6015

6125 0012

6232

6350 0012

LOCATION OPERATION VARIABLE COMMENTS

I II IS 130
eRO 158

I
I

CRM TAG1,259 I
I

CWO 328 I
I

CWM TAGI,50B I
I

9.2.13 I/O BRANCH INSTRUCTIONS
(CY8ER 170 SERIES, CVBER 70/ MODELS 71, 72, 73, 74, AND 6000 SERIES)

The following instructions are conditional long jump instructions, each of which tests for a condition
on channel d. When the condition is true, the jump to address m takes place. \\Then the condition is
not met, execution continues with the next instruction. The d expression is required.

For the FJM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PPU accepts the word and clears the
flag. An output channel remains full when a PPU sends a word to the channel register and sets the
full flag. The channel is empty when the output equipment accepts the word and notifies the PPU.

Formats:

Operation Variable Description Size Octal Code

AJM m,d Jump to m if channel d active 24 bits 64dm

IJM m,d Jump to m if channel d inactive 24 bits 65dm

FJM m,d Jump to m if channel d full 24 bits 66dm

EJM m,d Jump to m if channel d empty 24 bits 67dm

Examples:

Code Generated

&402 0012

&502 D013

660 .. 002e:;

(71)4 0026

60492600E

LOCATION OPERATION VARIABLE COMMENTS

1 II IS 130
AJt" TAGI,2

I
I

1JM TAG2,CHAN-2 I
I

FJM TAG3,4 I

I
EJM TAG4,CHAN I

9-17

9.2.14 I/O BRANCH INSTRUCTIONS (eYBER 70/MODEL 76 AND 7600)

The following instructions are conditional long jump instructions each of which tests a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not
met, execution continues with the next instruction. These instructions are exclusively 7600 PPU
instructions. The d expression is required.

Formats:

Operation Variable Description Size Octal Code

FIM m,d Jump to m on channel d input word flag 24 bits 60dm

ElM m,d Jump to m ,if no input word flag on channel d 24 bits 61dm

IRM m,d Jump to m on channel d input record flag 24 bits 62dm

NIM m,d Junip to m if no input record flag on
channel d 24 bits 63dm

FOM m,d Jump to m on channel d output word flag 24 bits 64dm

EOM m,d Jump to m if no output word flag on
channel d 24 bits 65dm

ORM m,d Jump to m on channel d output record flag 24 bits 66drn

NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm

(

Examples:

Code Generated

6005 1~6~

6102 1~f)5

&201 1366

4

6~0" 13&6

6415 7000

6C;OO 1525

6601 12&6

&105 136&

9-18

LOCATION OPERATION VARIABLE COMMENTS

J II 18 130

FI..., Tl\G5.C; I

I
I

fIM T~Gc;,2 I

IRM l'AGf>,1
t
I

C~DN SJ:T .. I
I

t-tIM TAG6,CHAN I
I

FOM 70009,158 I
t

EO.., 140n.T4Gc;,!l I
I

ORM -10nR+TAG6,CHAM-3
I

NOM TAGn ,e HA N+ 1 ~

60492600A

9.2.15 A REGISTER INPUT/OUTPUT INSTRUCTIONS

The following instnwtions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70/Model 76 or 7600, the IAN instruction is not executed lmtil the input channel d word
flag is set. If the flag is not set when the instnwtion is read, execution halts until an external signal
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70/Model 76 or 7600, the OAN instruction is not executed while the output channel d
word flag is set. If the flag is set, execution stops lmtil an external resume signal clears the flag.
This instruction sets the output charulel d word flag and transmits a work pulse over the output channel
cable.

On a CYBER 170 Series, CYBER 70/Model 71, 72, 73, or 74 or 6000 Series machine, executing
either of these instructions when the channel is inactive causes the peripheralprocessor unit to become
inoperative until some other peripheral processor activates the channel or the system is deadstarted.

Formats:

Operation Variable Description Size Octal Code

IAN d Input: channel d to A 12 bits 70d

OAN d Output: (A) to channel d 12 bits 72d

Examples:

Code Generated

7003

7204

LOCATION OPERATION VARIABLE COMMENTS

I \I 18 130

I~N 3 t

OAN CHAN I
I

9.2.16 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a block of 12-bit words on channel d to or from a starting PPU memory
location specified by m. The number of words transferred is specified by the contents of the A register
which is reduced by one as each word is transferred. The operation is completed when (A)=O or the channel
becomes inactive (CYBER 170 Series, CYBER 70/Modei 71, 72, 73, 74 or 6000 only).

On a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74 or 6000 Series machine, the input operation is
complete when the contents of A equal 0 or the data channel becomes inactive. If the operation is
terminated by the channel becoming inactive, the next location in the processor memory is set to all
zeros. The word count is not affected by this empty word. Therefore, the contents of the A register give
the block length minus the number of real data words actually read in.

During execution of either of these instructions, address 0000 temporarily holds P, while the P register
holds m. The contents of P advance by one to give the address for the next word as each word is
transferred.

If a read operation overwrites word 0 (address 0000), the restored value of P may be different from the I..
contents of P before the operation.

60492600 G 9-19"

NOTE

If this instruction is executed on a CYBER 170 Series,
CYBER 70/Model 71, 72, 73, or 74 or 6000 Series machine when
the data channel is inactive, no operation is accomplished and
the program continues at P + 2. However, the location specified
by m is set to all zeros for the lAM instruction.

On a CYBER. 70/Model 76 or 7600, the lAM instruction is not executed until the input channel d word flag
is set. If the flag is not set when the instruction is read, execution halts until an external signal sets the
flag. The presence of an input channel d record flag is ignored for the first word of the block but
terminates the block input at any word after the first. In this case, the next location in the PPU block
input storage area contains a noise word; any remaining locations are unaltered. Note that the storage
location can be incremented through location 77768 to 0008 on a 7600 (or CYBER 70/Model 76), or
location 7777 through 0000 on a 6000 Series machine (or a CYBER 170 Series, CYBER 70/Model 71, 72, 73,
or 74), which could destroy existing data or a program.

On a CYBER 70/Model 76 or 7600, the OAM instruction is not executed until the output channel d word
flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pUlse clears
the flag. An output channel d record flag does not affect OAM execution.

Formats:

Operation Variable Description Size Octal Code

lAM m,d t Input: (A) words to m from channel d 24 bits 71dm

OAM m,d t Output: (A) words to channel d from m 24 bits 73dm

tExpression d is required•

.Examples:

Code Generated

7103 1364

7~(l4 1364

LOCATION OPERATION VARIABLE COMMENTS

I " 1B \30

lAM lAG.) I

I

0(11"1 TAG,4 I
I

9.2.17 SET OUTPUT RECORD FLAG INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable.
The instruction ignores the previous status of the channel d flags; the instruction is executed even if the
output channel d record flag is set.

Fornlat:

Operation Variable Description Size Octal Code

RFN d Set output record flag on channel d 12 bits 74d

9-20 60492600 G

Example:

Code Generated

7406

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130
RFN 6 I

I

9.2.18 CHANNEL FUNCTION INSTRUCTIONS
(CYBER 170 SERIES, CYBER 70/MODElS 71, 72, 73, 74, AND 6000 SERIES)

The ACN instruction activates the channel specified by d. This instruction must precede the IAN, lAM,
OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the exchange of
data. Activating an already active cha.nnel causes the PPU to become inoperative until another PPU or
an external equipment deactivates the channel, or the system is deadstarted.

The DeN instruction deactivates the channel specifieQ by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PPU to
become inoperative until deadstart or until the channel is activated. Avoid disconnecting the
channel before first sensing for chan..11el empty, deactivating a channel before stopping the associated
processor, or deactivating a channel before placing a useful program into the associated processor.
After deadstart, PPUs wait on an input channel. Deactivating a channel after deadstart causes an
exit to address 0001 and execution of the program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on
channel d.

The FNC instruction sends the external ftUlction code specified by m on channel d. For this instruction,
expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PPU to become inoperative
until another PPU or an external equipment deactivates the channel, or the system is deadsta.rted.

Formats:

Operation Variable Description Size Octal Code

ACN d Activate channel d 12 bits 74<1

DCN d Insconnectchanneld 12 bits 75d

FAN d Function (A) on chaimel d 12 bits 76d

FN;C c,d Function c on channel d 24 bits 77dm

Examples:

7405

7504

76C5

7705 0020

60492600C

LOCATION OPERATION VARIABLE COMMENTS

I " 18 130

ACN 5 I

I
DeN CHAN I

I

FAN CHAN"1 I
I

FNC 208,5 I
1

9-21

9.2.19 ERROR STOP INSTRUCTION (eYSER 70/MODEl 76 AND 7600)

The ESN instruction halts execution of the peripheral processor program and indicates a program
error condition to the monitor control unit. The PPU must be restarted by a deadstart sequence from
the MCU, only.

Format:

Ope~tion Variable Description Size Octal Code

ESN d Error Stop 12 bits 7700

Example:

Code Generated

7700

9-22

LOCATION OPERATION VARIAElE COMMENTS

I 11 18 130
~SN

I

J

60492600A

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through a COl\lPASS compiler call
statement or through an IDENT statement (section 4.2.1) in a FORTRAN source deck. Ordinarily, when
COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS.

10.1 CONTROL STATEfv\ENTS

Normally, assembly of COl\IPASS source programs or the execution of CPU binary object decks is done
from a job file. A file is usually submitted in the form of card decks or card images. The first section of
the file must contain the control statements described in this section. Other optional statements are
described in the operating system reference manual. Following the control statement section are one or
more sections containing source statements and data.

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or
right parenthesis terminates a parameter string. Comments optionally follow the terminator. 'Vithin the
parameter strings, blanks are ignored. Ordinarily, a parameter can contain only letters a.Dd digits. \\;11en a
parameter is enclosed between dollar signs, all characters are permitted and blanks are not ignored. Within
such a dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters following
name can be in any order or can be omitted. For any omitted field, a default value is supplied which is an
installation option.

Format:

(name, Tt,E Clem.

name 1 through 7 letters or digits by which the job is identified.

The first character must be a letter.

Tt CPU time limit in seconds (NOS/BE 1, SCOPE 2: 1 through 777778; NOS 1: 1 through
3276010)' Must be sufficient to process all control statements for the job, including
assem bly and execution.

EClcm (NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCl\I or ECS in octal
thousands, required for assembly or execution (1 through 14008)'

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased
accordingly.

60492600 G 10-1

Examples:

(JOBI, TIOO, EC30.,

(TESTER.

10.1.2 COMPASS CAll STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files.

Format:

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted or
can be in one of the following forms:

mode

mode=O

mode=lfn

, Mode is one or two characters as described below; lfn is a 1 through 7 character name of a file or a
character string.

Mode

A- Abort mode.

A

omitted

B- Binary output.

omitted or B

B=O

B=lfn

BL - Burstable listing.

Significance

Abort job at end of run if any assembly errors occurred.

Do not abort job for assembly errors.

Binary on the load-and-go file (LGO).

No binary output.

Binary on the named file.

Generates output listing easily separable into components:

• Issues page ejects between load map, source code, and cross referenc~

map.

• Assures an even number of pages (page parity) for each program unit
listing, issuing a blank page at end if necessary.

10-2

omitted or BL=O Generates listings in compact format. Page ejects issued only before new
subprograms.

60492600 G

Mode

D - Debug mode.

o

omitted

Significance

Binary is generated on the file indicated by B parameter in spite of assembly
errors and regardless of the abort mode (A parameter). The A parameter is
ignored when the D parameter is selected.

D is ignored if B=O.

Assembly errors inhibit binary output. In abort mode (A parameter present),
no binary output is written at all for a subprogram containing assembly errors.
Otherwise (A parameter omitted), the message ERRORS IN ASSEMBL Y is
written to the file indicated by the B parameter for each subprogram
containing assembly errors.

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors occur.
However, if the full list and error list are on different files (for example, the full list is written to
OUTPUT and the error list is written on the named file), the error iist will contain all statemen ts
having error flags. If an error line was generated by a macro call, the macro call can also appear in
the error list. Specification of both the E and the 0 parameter results in a control statement error.

omitted

E

E=1fn

E=O

Error list on file OUTPUT.

Error list on file ERRS.

Error list on named file.

No error list is generated (equivalent to directing error list to the same file as If
full list).

F - FORTRAN mode. Establishes value of special element *F.

omitted or F

F=number

F=name

G - Get system text.

omitted or G=O

G

G=1fn

G=1fn/ovl

60492600 G

*F is O.

*F is number (one decimal digit).

*F is a number corresponding to name as follows:

COMPASS =0
RUN = 1
FTN = 2

Load no system text from a sequential binary file.

Load the first system text overlay, if any, from file named SYSTEXT.

Load the first system text overlay, if any, in the specified sequential binary
file.

Search the specified sequential binary file for a system text overlay whose
name is ovl and load the first such overlay.

10-3"

Mode Significance

I - Source of assembler input.

omitted

1=0

l=lfn

L - Full list.

omitted or L

L=lfn

L=O

Source deck is on INPUT file.

Source deck is on COMPILE file in either compressed or expanded format.

Illegal.

Source deck is on named file.

List output on OUTPUT file.

List output on named file. When the full list is on a different file than the
short list, the listing for each subprogram is a separate section beginning with
a one-word header consisting of an asterisk and the first six characters of the
subprogram name. This header identifies the subprogram as a convenience for
sorting and cataloging. For ease in bursting listings between subprograms, a
blank page will be used, if necessary, to ensure an even number of pages per
subprogram. Also see 0 option.

No full list will be generated.

LO - List options. Selects or deselects a maximum of nine of the list options A, B, C, D, E, F, G, L, lVI, N,
R, S, T, or X.

omitted or LO=O

LO

LO=$$$$

Same as selecting B, L, N, and R only.

Selects list options C, F, G, and X, and deselects R.

A list of up to nine characters. Inclusion of B, L, N, or R deselects the
corresponding option. Otherwise, inclusion of a character selects the option.
For options, refer to LIST pseudo instruction, section 4.11.1.

Selects all list opt ions.

ML - Initial Value of MODLEVEL Micro.

omitted or ML

ML=string

MODLEVEL is defined equal to JDATE at the start of each assembly.

MODLE VEL is defined as string (nine characters maximum) at the start of
each assembly.

N - No eject. This parameter has been obsoleted by the BL parameter.

o - Short list. Suppressed if full list is directed to the same file or if no assembly errors occur.
However, if the full list and short list are on different files (for example, the fun list is written on
OUTPUT and the short list is written on the named file), the short list will contain all statements
having error flags. If an error line was generated by a macro call, the macro call may also be in the
short list. Specification of both the 0 parameter and the E parameter results in a control statement
error.

10-4

omitted or 0

O=lfn

0=0

List output on OUTPUT file.

List output on named file.

No short list will be generated (equivalent to directing short list to the same
file as full list).

60492600 G

Mode Significance

P - Continue page.

P

omitted

Page numbering continues from subprogram to subprogram.

Page numbering begins with 1 at the start of each subprogram.

PC - Initial Value of PCOMMENT Micro.

omitted or PC

PC=string

PCOMMENT is defined as 30 blanks at the start of each assembly.

PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

PD - Print Density. Print density of six is assumed upon entry. Listing control is changed only when print I
density of 8 is requested, then returned to 6 when finished.

PD=6

PD=8 or PD

PD=other or
omitted

PS - Page Size.

PS=x

PS=other or
omitted

S - System Text Name.

omitted

S=o

S

S=ovl

S=lib/ovi

Print density is six lines per inch.

Pring density is eight lines per inch.

Print density defaults to IP .PD lines per inch.

Page size is x lines per page. Acceptable values of x are 4 :5x:5 99.

If PD is not specified, page size defaults to IP .PS lines per page. If PD is
specified, page size defaults to PS=(PD*IP.PS)/IP.PD.

If there are no G parameters other than G=O, load the overlay named
SYSTEXT from the job's current global library set.

Load no system text from a library.

Load system text overlay named SYSTEXT from job's current globallibl'ary set.

Load the system text overlay named ovl from the job's current global library
set.

Load the system text overlay named ovl from the library named lib, which may
be a user library file or a system library.

Overlay residence in user libraries is not currently supported by NOS. I
x - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted

X=lfn

X=o

x

60492600 G

External text OLDPL file.

External text on named file.

Illegal.

External text on OPL file.

10-5·

Examples:

(COMPASS(B, D, S=OVI)

(COM PASS(LO=ASGXD)

(COMPASS'

MULTIPLE SYSTEM TEXT OVERLAYS

Reads source from Il\TPUT, writes the binary output to LGO,
and the listing to OUTPUT. Assemble in debug mode with
system text from overlay OVI in the global library set.

Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D.

Uses the standard default options.

COMPASS 3 allows up to seven system text overlays to be used for an assembler run. They are specified oy
G and S parameters on the COMPASS control statement. Each G parameter (except G=O) specifies loading
of a system text overlay from a sequential binary file, and each S parameter (exceptS=O) specifies loading
of a system text overlay from a user library file or a system library. The G and S parameters can be used
in any combination and in any order', and can be intermixed freely with other parameters, provided the
total number of system text overlays specified does not exceed seven. COMPASS loads the system text
overlays in the order in which the G and S parameters occur on the COMPASS statement. If a system
macro, micro, or symbol is defined by more than one system text, only the last definition is used. S=O has
no effect if there are any other S or G parameters.

Examples:

(COMPASS(I, S, S=PFMTEXT, G=MYTEXT)

COMPASS(G=FILE!SCPTEXT, S=MYLIB!TEXT)

10.1.3 lGO CONTROL STATEMENT

Reads source from file COMPILE and gets system
text from overlays SYSTEXT and P FMTEXT in the
global library set, and from. the local file MYTEXT.

Get system text from overlay SCPTEXT
on the file FILE, and from overlay TEXT
in library MYLIB.

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler unless the B option on the COMPASS control statement is set to 0 or to some other file name.
When binary output is on some file other than LGO, the statement is replaced by a program call statement
for that file. The file is automatically rewound before loading. The LaO file is temporary; it is released
at job termination.

Formats:

or

10.1.4 PROGRAM CAll STATEMENT

The program call statement directs the operating system to search for a file or CPU program that has the
specified name, load it into central memory (CM or SCM), and execute it as a CPU program.

10-6 60492600 a

Formats:

(name(pl'p2' .. ·' Pn)

(name.

name Program name.

Parameters in a format acceptable to the program being called.

When the opel'ating system locates the file, it rewinds and loads the file. When loading is complete, it
executes the program as a CPU program.

10.1.5 7/8/9 CARD

A card with rows 7, 8, and 9 punched in column one separates sections in the job deck. The level is
assumed zero unless columns 2 and 3 contain an octal level number punched in Hollerith code. The
remaining columns optionaJly contain comments.

As an example, a deck consisting of a control statement section and a CaMPASS source input section
would include two 7/8/9 cards. The first terminates the control sta tern ents and the second termina tes
COMPASS input. A 7/8/9 card of level 17 is interpreted by the operating system as a 6/7/8/9 card.

10.1.6 6/7/8/9 CARD

A card with rows 6, 7, 8, and 9 punched in column one signals the end of the job deck. Columns 2 through
80 optionally contain comments.

10.1.7 USER CONTROL STATEMENT (NOS 1 ONLY)

The user control statement format is:

USER, usernam, passwrd, famname.

usernam

passwrd

famname

User number or name

User password

Name of US(Jr permanent file device family name I

The USER statement, required by NOS 1, follows the job control statement and specifies user access
information. The user name is used in system bookkeeping and defines the user's file catalog area. The
user can specify a different permanent file catalog during job processing by issuing another USER control
statement.

60492600 G 10-7

10.2 ~AMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access
information. COI'vIPASS reads source statements from file INPUT, writes the listing on OUTPUT, and
writes a binary object deck on file LOa. Control statement LOO calls for execution of the binary object
program, which obtains its data from file INPUT.

6
7
8 ,
9 ,

Data forI /,
Executi0!1

,

(
7
8
9

{
(END TEST

-
/

/,,

(IDENT TEST
/

7
I 8

9
I ('LGO.

Ifco IVP ASS.

(CHARGE statement. -
('USEF statement.

, SAMPLE, 1'100.

-
-

f--

I--

Control
Section

Subprogram
Test

10-8 60492600 G

In the following job, the COMPASS assembler is called twice. Duringthe first assembly, binary object
decks for subprograms TESTI and TEST2 are written on file LGFILEl. The source decks for these
subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes a
binary object deck for subprogram CD A on file LGFILE2. Each assembler run produces a full listing.
Following the second assembly, LGFILE2 is repositioned to the beginning of the file. Then, the COPYBH.
program is called to copy the contents of LGFILE2 to a punch file (PUNCH B). The LGFILEI statement
then calls for the loading and execution of subprograms TESTl and TEST2 from LG PILEI. Following
successful execution of the subprograms, the file is rewound and copied to the punch file, after \vhich the
job terminates.

Control
Section

A

ST2

am TESTI

Ii
t

,(

9 ' END CDA I
.t

} Subprogram CDt

(IDENT CDA

'7 I8
9 END TEST2 I I-

t
,

11111
} Subprogran1 TE•.

I----- IDENT TEST2

""-
I END TESTl I

•
,

i111
} Subprogr

10.-- IDENT TESTI

-- ~
9 (COPYBR(LG FILEI, PuN CRB)

- (RE\VIND(LG FILEI)

~(LGFILEl.

COPYBR(LG FILE2, PUNCHB)

(REWIND(LG FILE2) ,-

(COMPASS (B=LGFILE2) 1-

(COMPASS(B=LGFILEl) i-

SAMPLE, T500, EC50. !-

-
i-

I-

60492600 G 10-9 I

I

I
I

In the following example, the IDENT statement causes FTN to call COMPASS to process tile COMPASS
source deck. If the COMPASS END statement is not followed by another IDENT statement, then
COMPASS returns control to the compiler that called it.

6
7
8
9

IDENT begins in
column l1------i..-

FORTRAN Source Deck

The following sample programs illustrate how to assemble and use a system text overlay.

10-10

I
it,

IOf:NT M'1Tlxl

STfX T

ONt. It,/U ! CONSTANl ONE:
HAL,. t:QU JU PUS CO~~rANT

SHU- ! MACRu AL"'HA,tH:.lA POSITIONING "'tACRO

1Ft f'Jt. ~ALPHA$X2$,1
SA~ ALPHA

IF C t'J t , 'j, Bt-. TA -) H2 $ • 1
S~2 dt:fA

LXh X2,t32

t ,\10M

foNt>

60492600 G

blluOQOOul

~1t::'(,uu()on4 +

bltooOOOJo

~160u00006 +

2
1

I Otl\J T TEST
ENTRY TEST
SST

TEST Sbl OM:. CONSTANT ONl: FROM TEXT

5~2 INtjUF PICK U~ VALUE FROM STORAGE

SHIFT Xc.HALF POSITION . WORD IN X6

SAb OUTtiUr RETUR;\J Nfw wORD TO STORAGE

t.N()~UN

rNBUF tiSS t!.
OuTbUF tjS5 1

fNO rES T

The deck for this job could be set up as follows:

6
7

IIIIII

8
,,

9 I
r---

(IDENT TEST

I I7
8 ,
9

I !

III
(IDENT l\IYTEXT

I I7
- 8

(9 COMPASS (G=MYTEXT, S)

(COl\lPASS(S=O, B:::l\IYTEXT)

I TEXT,T17.

-
-

60492600 G 10-11- I

LISTING FORJ\l\AT 11

This section describes assembly listing format. Control of the contents of the listing is described in
section 4.11 Listing Control, and in section 10. L 2 COMPASS Call Statement. I

11.1 PAGE HEAtHNG

Each page of the assembly listing contains a title line and a subtitle line in ~he following format:

title COMPASS Version date time PAGE x

subtitle sub-sub
title

block
name

symbol
qual

title

date

time

PAGE x

subtitle

sub-subtitle

block name

symbol qual

Up to 62 characters taken from the' first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction

Date of assembly

Time of assembly in hours, minutes and seconds

Page number of listing. Pagination begins with 1 for each END instruction
unless the P option is selected on the COMPASS control statement

Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading (assuming the C list option is
also selected).

Name of the block in use at beginning of page

Qualifier in use (see QUAL pseudo instruction) I

11.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram. and lists of entry points and
external symbols.

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following fonnat is generatedJor each IDENT instruction when the

60492600 F 11-1

COMPASS control statement or the LIST instruction selects the B list option:

!\DDRESS

lddr
1

lddr
2

BINARY CONTROL CARDS

binary card
1

binary card
2

~op

binary card.
1

addr.
1

eop

leap

:xamp1es:

binary cardn

END card or blank

The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and IDENT instruc­
tions.

The central memory or peripheral processor memory origin address for the
subprogram, overlay, or partial binary written out as a result of the binary
card.

The octal length of the subprogram, overlay or partial binary, in central
memory words for a central processor assembly, or in peripheral processor
words for a peripheral processor assembly.

The octal central memory or peripheral processor address for the end of the
~rogram unit begun by the previous IDE NT •

The octal length in central memory words of a peripheral assembly; not present
in a listing of a central processor assembly.

ADDRESS
loll
372

5633
707~

13242
20ft37
22011

LENGTH
271

52ft1
12..2
41&;CS
5115
1352

BINARY
10£N1
SEG
SfG
SEG
SEG
SEG
£NO

CONTROL CAPOS.
COHPASS,LOVER,CHP

COMPASS

1-2

AOORE~S LENeTH
e 7761

77t>1 (14&2)

ilNARY eONTROL eA~OS.
JOiNT 050,0

60492600 F

%;..

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under control of the
B list option:

BLOCKS TYPE ADDRESS

baddr1

baddr2

LENGTH

b.l
n

name.
1

Name of the block used in the subprogram, as follows:

PROGRAM* For a relocatable assembly, indicates the zero block. For an
absolute assembly, the first PROORAM* indicates the absolute
block, the second indicates the default symbols block.

ABSOLUTE * Appears in a relocatable assembly only and indicates the use
of an absolute block.

LITERALS*

other

Identifies the literals block.

Identifies a local, labeled common, or blank common block.

type

baddr.
1

length.
1

Examples:

The type of the block as follows:

ABSOLUTE All addresses in the block are relative to absolute zero. For
• an absolute asembly, all blocks are ABSOLUTE.

+LOCAL Addresses in the block are relative to the origin assigned to
block zero. The + is present for an E CS/LCM block.

+COMMON Addresses in the block are relative to the origin of the common
block. The + is present for an ECS/LCM block.

Beginning address of the block according to type.

Number of words in the block.

BLOCKS

PROG~AM'"

l.ITERALC;"
eONTROL
PSEUDO
SUBS
BUFFERS

60492600 F

TYP£

A~SOLUTE

ABSOLUTE
ABSOLUTF
ABSOLUTE'
ABSOLUTr:
ABSOLUTE'

Al'''tJRESS

o
5416
56~3

707-:5
t3242
20437

LENGTH

541&
215

1242
4145
5175

11140

11-3 I

BLOCKS TYPE ADORESS

ABSOLUTE· ABSOLUTE 0
PROGRAM· LOCAL 0
DATAl LOCAL 35
lCM ..LOCAL 0
TABLE "LOCAL 5
TABLE +CO~UmN 0
TABLE LOCAL 36
TABLE COHMON 0
II COHMON 0

lEtJGTH

62
35

1
5
5

123
1
1

1000

11.2.3 ENTRY POINT LIST

f the subprogram declares entry points, a list of entry point symbols in the following format follows the
)lock usage summary.

ENTRY POINTS.

sym1*+addr1+block1

syrn2 *+addr2+block2

Sym *+addr +blockn n n

symn+1*+addrn+1+blockn+1

sYInn+2*+addrn+2+blockn+2

sym2n+1*+addr2n+1+block2n+1

sym2n+2*+addr2n+2+block2n+2

\There n is one-third the number of entry points. The asterisk to the right of sym. is present if sym. is a
:onditional entry point (declared by ENTRYC). The + to the left of addr. is presenl if block. is an ECS/LCM
Ilock. The + to the right of addr. is present if addr is relocatable. Bldck. is blank or a cobmon block
,arne surrounded by slashes. 1 L

f the symbol is undefined, addr. is *******.
1

:xample:

:NTRY POINTS.

iNAP1
;NAPZ
iNAP3
fUHPVEC
lEGIN
lYTESIZ

•

1345+
1352+
1357+

O+/JUHPVECI
0+
G

CALL
GOTO
If
LABEL
REAO
RECORD

12+
156+
224+
372+
435+

Z4... /0ATAI

REORDER
RPF
RPH
LCH
LCHB

+....

2375+
2461+
24&3+

0+
1.~, O+/lCMA/

1.2.4 EXTERNAL SYMBOL LIST

f external symbol references are declared in the subprogram, a list of the following format follows the
ist of entry point symbols:

EXTERNAL SYMBOLS.

1-4

sYIn3n+1 •••

60492600 F

symn sym2n

Where n is one-eighth the number of external symbols. If a symbol Is a weak external it is
followed by an asterisk.

Example.

Cn.NEXTT 'l(n~f"pr ~YM~OL r,OGOTO cpr

11.3 OCTAL AND SOURCE STATEf~\ENT LISTING

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

Title Line

Subtitle Line

Error Locatio!'; Octal Source Lines Sequence
Flags Addresses Code

Figure 11-1. Format of Octal and Source Statement Listing

60492600C 11-5

11-6

Error Flags

Location
Addresses

Octal Code

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These 11ags are
described more fully under Error Directory. Lines containing errors are always
listed.

The: value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or an words generated for data generation
instructions. The field does not include NO instructions (460008) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

If the word contains an address, the octal code is flagged as follows:

Negative relocatable address
+ Positive relocatable address
C .Common relocatable address
X External address

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number.

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field .contains the octal value of the symbol right jus tified with leading
zeros suppressed.

For an instruction resulting in a change of base, the notation brb2 is right
justified in the field. b1 indicates the old base and b2 indicates the new base.

For an instruction resulting i.n a change of code conversion, the notation
cl r- c2 is right justified in the field. cl indicates the old code and c2
indicates the new code.

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed. If the word count is
zero the field is blank.

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed.

60492600A

Source Code

Sequence

Source statement image (columns 1 through 72)

Columns 73 through 90 of the card image or an identifier for an expansion of a
definition operation as follows:

I
Macro
Remote code
Duplicated code
Echoed code
XTEXT
OPDEF

macro name
RMT
DUP
ECHO
file name
Operation field of opdef call, such as SBI

The recursion level is indicated in the right half of the field.

COtiPASS 3.71210 - CYBER 70/ COl"PREHEHSIVE ASSEMRLER.
COHMON MIO urrurv SUBROUTINES.

COMPAS') 3.71210
ALC

C:ltlOASS
C'J''''AS';
C:l'1,'As,
COM:""! A~ 5
CO~"A';~

CO'l"A'
eJIl"A :'$
C"P1:""1A('"S
C,J""~'·."

C"J"~~·~~"·

CJ'1"~S'

r:~'1' A'- ~

r: J'" ~. :'.~....
":1':'1 d
r l~-'A

':.: "; A-:
C1'·"'ft
C-"'" ~,

CJ"! .'1.<_';

r.J"'h' a­
C{}~' ".'~. ~
CJ'1"n:' ~
~'V""fI~

;;')'1 'f'.'

Co·~·.\~~

'..:1. 0. ;;
~:') .. ,)~. (~("'

,-;;" A;' ~
cu ·, 1\\-:'
r. 1 ·- a: ~

Ct)Io.4~"''' 0.:,..,

r:'j"':' A;, ~
r:0"';1J\,~

i::J~"4~~

CC~ 'AS,
-.:0M:-A~'C"

r""~"''''''AS~

r;M~'---'"'-2.--__...,1------

JU~r' TO "'i-ftLlor.nT~ !':n~:

jro~f. ~j::W <";tZ~:

ocrr

RrTUPN [HT
POf~rT HhJ~'''X' QEr; r'STr~s
f.U,.l ..:)('~jT O·<Tt. r·,
("U~ ..H-~.r L::f'::~rl-{

NEXT rA1L~ ~-<rr,r'l

t-lf w sr 7t:.
H',T tF ~OO'1 F"~ <:Vt'~'I~I')'l

lIT A9Lf'>
O~ I~ r'l$+-'4
A2'P
602·.1
~ l'X 3
X'o-X2
XCI-Xo
xu,~LC2

43
AL':X

O~tGPIS.A~

51 ZES.A:;

HOllE TA9lfS.

ALe - TABLE PlANAGER ANI) HlO~r.rO~.

Ao.LOCATOR \lILL HOVE TA'llES TO ftCQurq,,: RO()~. ALSO "'AY au/,p
INTERMEDIATE OR CRI)SS-R£FE"C:NC~S OIITO SC'1ATCH fILE.
E'lTRY (AO' = TA9lE HEJfX.

(XU = CHANG~ c. OR -, TO TA3LE SHE.
EXIT CX21 = ORIGIN 0'" TAllE.

IX31 = NEW LENGTH OF TAALF.

.......

5~14 512JO; 3172 AlC2 S~? $I7<;O~E ,FE [F <:NOUr:H poo"
1(,411 ~~.(.:.- Xl

67721 $17 02-'ll
5475 67171 AlCl S17 A7-H

51<;7~1l3516 54, SIES.,H
36"45 IX4 X' ,X5

5416 0<;70005475 N! '17,AL'l3 LOOP
5130003345 ~~ 1 PA 'j~

;;471 63730 S I' x3
:HOZ4 to X2-X4

63440 SH X<, I n 41 rOf at l~·,r;TH

f>7 S-l:" -'"
JOJ5~33

5"66 ,02110'J3462 ALCX
5030003516

,1,&1 OJOOoJooooo AL~

St.7u 6120000 a 3" ALr:1
5020003462

<;471 5'0322
5"421

36613
370<,2

5472 31006
JJ300 OS" r4

S'o6JO,..,3 0'0110';0<;466

11.4 LITERALS

\\"hen the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing. Following each literal address are the octal contents of the word and
a display code conversion of the contents of the word.

60492600 G 11-7

Examples:
CO~lEN10F LITERALS BLOCk.

174~S77~7S~01Q~On000

ln~snonrnnnoonQOOn00

1~O~23?~r1n7~SCS~6~n

SSD40Sn.~111S~114S5?2
nS?12S1~??nS04~70non

SS??~521?S1122DS040n
nooqonnQo~nooooooooo

?O??17n72?0115~~OlD?

17???4S7nnnanOoooooO

O+.»X
N...
Mr~'Sl\r:E ~3

f"'J="f'IM!\l ~

fnUT~ rl1.
PFnUl~r-n

DPCGRl\M AR
f)RT.

7 31. ~
7~1~

7317
7"l?1

7321
7 3~"
7~2~

1~?4
73?f;
"3?~
7~')"'!

cnN1ENl OF LITERALS etoCK.
On~4 1
707n ~~

Oar? G
onno
SC; n 1 A
onno
OS06 FF
1411 II
2405 ~r:

2201 R~
14?3 lS

11.5 DEFAULT SYMOOLS

When the DUst option is selected, a list of default symbols immediately precedes the literals block.

Example:

000000 X

00;461
OOt;4f)?

or'i4fl'"
T 0 54ol.t

11.6 ASSEMBLER STATISTICS

OEF~UlT SYMBOLS OEFINEO BY r-OMPASS

MSG=
TftG1
Ta(;2
Ant:'
~V'"'

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list option
is selected, following the default symbols. Information includes the following:

• Amount of storage used (octal)

• Number of source statements

• Number of symbols defined

• Number of invented symbols

• Number of symbol references

• CPU type in which COMPASS executed and assembly time

• Number of errors encountered during assembly

• Number of lost references, that is, references to symbols that have been omitted from the symbolic
reference table

11-8 60492600 G

11.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assen1bly. The
directory begins a new page identified with the subtitle EHHOR DIRE CTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURHED ON PAGES PI'

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

TABLE 11-1. FATAL ERRORS

Type Message

A ADDRESS FIELD
BAD.

60492600 G

Significance

An error exists in a variable subfield
entry. The following is a list of
possible errors:

The CODE character is not A, D, E, I,
0, or *.

The symbol or name is greater than 8
characters.

The expression does not reduce to one
external term.

The relocatable terms do not cancel
properly.

The instruction requires an absolute
expression.

The instruction disallows register
designators.

A data error; 8 or 9 is encountered in
octal data and the modifier is not S,
P, 0, E, D, or B.

No data is found in the variable field
of a LIT instruction.

No symbol is following an =S, =X, or
=y prefix.

The relative jump is out of range
(-3l>r>31) on a PPU instruction.

The BASE character is not 0, M, D,
or *.

Action

Refer to the
manual for the
correct address
field format
for the opera­
tion code
specifIed.

11-9

I

Type

A

D

E

F

1-10

Message

ADDRESS FIELD
BAD. (Contd)

DOUBLY
DEFINED
SYMBOL.
THE FIRST
DEFINITION
HOLDS.

ECHO, DUP,
RMT, OR
MACRO
ILLEGALLY
NESTED.

NUMBER OF
ENTRIES
EXCEEDS
PERMISSIBLE
AMOUNT.

TABLE 11-1. FATAL ERRORS (Contd)

Significance

A register is illegal in a CON
instruction.

A synonymous instruction for OPSYN or
CPSYN cannot be located.

The micro count is less than zero or
greater than ten.

The NOLABEL character is not I.

A negative relocation is specified on
ORG or ORGC.

The POS value is less than 0 or
greater than word size.

The OPDEF reference is erroneous.

No comma is following the DIS word
count.

An illegal entry is in the variable
field of IDENT.

A symbol has been previously defined
or declared external.

The definition of ECHO, DUP, RMT, or
MACRO is not entirely within the next
outer definition.

One of the following error conditions
exists:

LIT generates more than 100 words.

Data is missing or erroneous on XTEXT
file.

More than 63 formal parameters and
local names are in a macro definition.

There are more than 255 blocks.

There are more than 511 external
symbols.

Action

Rename the
duplicate
symboL in the
program.

Correct the
program.

Correct error
condition and
rerun the job.

60492600 G

Type Message

TABLE 11-1. FATAL ERRORS (Contd)

Significance Action

L LOCATION
FIELD BAD.

The required location field entry is Correct the
erroneous. The format two macro defi- location field
nition has no substitutable parameters. entry.

N

o

NEGATIVE An entry point may not be negatively
RELOCATION ON relocated.
ENTRY POINT.

OPERATION One of the following error conditions
FIELD BAD. exists in the operation field:

The instruction is unrecognizable.

The instruction is out of sequence,
such as ABS or PPU not in the first
statement group.

The instruction is illegal for binary
mode.

The relational mnemonic on the IF
statement is erroneous.

Change to use
positive or
absolute
relocation for
entry points.
Rerun job.

Correct the
operation
field.

P

R

u

v

CONSULT
LISTING FOR
REASON BEHIND
P-ERROR

DATA ORIGIN
OUTS IDE BLOCK
OR IN BLANK
COMMON.

UNDEFINED
SYMBOL.
VALUE
ASSUMED O.

BIT COUNT
ERROR ON VFD
(MUST BE
O~COUNT$60) •

A user-generated error flag from an
ERR or ERRxx instruction has been
encountered.

An attempt was made to set data into
blank common or beyond block limits.

There is a reference to a symbol that
is not defined; for example, an IF
statement line count, a DIS word
count, an unrecognizable attribute on
an IF statement, or an undefined
qualifier.

The VFD field size is erroneous.

Action to be
taken depends
upon source of
error.

Use labeled
common or
increase bloCK
size and rerun
job.

Define tne
symbol.

Correct the
size of the VFD
field.

60492600 G 11-11 I

TABLE 11-2. INFORMATIVE ERRORS

Type Message Significance Action

1 LOCATION SYMBOL The location field entry is erroneous. The instruc- Define or
BAD. tion does not require an entry. eliminate the
SYMBOL NOT symbol in the
DEFINED. location field.

2 ADDRESS ERROR The variable field entry is erroneous. The location Correct the
ON SYMBOL field symbol is not defined. symbol
DEFINITION. definition.

3 DUPLICATE MACRO The macro, opdef, or synonymous operation Rename the
DEFINITION. NEW redefines the operation code. duplicate
ONE OVERRIDES. macro name.

4 BAD FORMAL The macro or ECHO formal parameter name is Correct the
PARAMETER NAME repeated or illegal. formal
IGNORED. parameter

name.

5 CPU OPERATION The OPDEF, CPOP, CPSYN, or PURGDEF specifies Correct the
SYNTAX INCOR- an illegal syntax. syntax of the
RECTL Y SPECIFIED. pseudo

instruction.

6 LOCATION FIELD The entry in the location field is erroneous; it is Correct the
MEANINGLESS. ignored. location

field.

7 ADDRESS VALUE The value of the address is erroneous; one of the Check the
EXCEEDS FIELD following conditions exists: possible
SIZE, RESULT

The value of the expression exceeds the size of the
values of the

TRUNCATED. variable
destination field. subfield.
The BSS address expression value is negative.

The MICRO starting character position or charac-
ter count is negative.

S MISSING OR EXTRA The variable subfield entry is missing or superfluous. Correct the
ADDRESS SUBFIELD. variable

subfield.

9 MICRO SUBSTITU- The micro reference is unrecognizable. Correct the
TION ERROR. NO micro
SUBSTITUTION. reference.

11.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
tables lists symbols according to the qualifier, if any, under which they were defined. The global symbols
are listed first. A new heading of the following form introduces each new list of qualified symbols.

SYMBOL QUALIFIER =qualifier

I 11-12 60492600 G

The qualifiers are in the order declared in the subprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST REFERENCES.

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3
reflect the effects of XREF Band XREF A, respectively.

Title Line l
SYMBOLIC REFERENCE TABLE. /1

7f
Format 1 (XREF Ph ,symbol I value

bo bD OJ)

block page/line $ page/line ~ page/line $
c.... c.... c....

bL bD
page/line ~ page/line ~

Format 2 (XR EF B):

/
bD bo

symbol value block page/line $ address, page/line ~
c.... c.... address, page/line

Format 3 (XREF A):

symbol value block address, address, address,

I

Jaddress,

I

address,

symbol

value

block

page/line

address

60492600 G

Figure 11-2. Format of Symbolic Reference Table

Alphabetical list of symbols defined under the qualifier.

Absolute value of the symbol or the address assigned to this symbol relative to
the block named.

If the symbol was defined by the SST pseudo instruction, block is the system
text file or overlay nameo Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it.contains the name of the block containing the
symbol.

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol. Present when XRE F B or P is in effect.

The location counter address of the instruction containing the reference. Pres­
ent when XREF A or B is in effect.

11-13

flag Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

D Definition statement; EQU, =, SET, MAX, MIN, or MICCNT

E ENTRY or ENTRYC pseudo instruction

F Symbol used in conditional test

I Symbol used for indirect storage (applies only to PPU or PERIPH
assemblies)

L Symbol used in location field of the statement

S Symbol used for storage

X EXT pseudo instruction

Nben XREF A is in effect, the table does not include the flags.

E:xample:

COIIPASS 3.71210 - cvaER 701 COHPREHENS IVE 15SEI'l9LER. COHPass J.7120 .. &1Z~/71 1&.Z5."4. PAr." r;I;1
SVIIBOLIC REfEREr4eE TABLE. DEBUG

SitT EI'lP 5115 72112 l 7 .. /51 S 7 .. /53 7012 ! S 7&12 ..
SHUltS 5 .. Z1 73/ .. & 7"/~3 7 .. /12 110125 7"'''2 75/ 75/5Q 7r.1-:" t.
SNUltB1 51010 78/ .. 8 L 711/;'3 78/50
SNlfLIN 5.. 23 1J/25 73/ .. 1 7t./i;S 7 .. ,<;2 7&123 7'J/t8 L 7<>/"1
S"NIILIltl 5 ..Z5 79/1" l 7Q/lo
SNlfLINZ 5 .. 27 79/13 79/17
SNX 513,. 72116 L '!~/3Cj 7,.,lil 17/1,. 771~"

72132 S 7V ..Z 1 .. /16 7UJj 1UB

SYH!!Ol QU4LIFIER ,. CATI

IF 6&75 115/Jq L 11&1 ..6 121/37 13U5Z .3211 q 132/32
ces 132'" 132/.... 1331,,2 133/18 I"UI J1 133/ 13"/:2 135/"" L lJ&1 6
CCS1 1H2 135/52 13".;/5" L
ecsz 1J23 13513/1 l 13"/0 I
eSA 125 .. l1un 121123 13~/':1

esc 1257 117n6 121/17 133/16
CSH 725il 117120 121/1 " 1321"2 L
eSL 12&3 117/17 121/11 1"O3/ .. ? L
CSq 72&& 117/11 1211oj, I H/57 L
CSZ n"'l 1171.8 121/u5 133nq L
DCS 1ZZ2 1171.9 111112 117/111 lIT!?1 117/27 117/3;' 131/33 L
DCS1 7225 131/ .. 2 L 1311"'"
Ol 667,. Ibn, L 12"'3'" 134/2 ;
00 6613 115/31 L 1151"'" 11'>13" 12"'135 IJ.. /IQ
0'1 &£>53 115/1f> L t2~'2'" 1Z:? 1:'1 J2~/;5 12"/C7 13<.'IC!"
EF &&"'1 115121 L IlU21 12fj/l1 12&/13 127/~5 <;
ER~ 6115 11£>13;; l 121135 1 ~2/r.:t:, 12'"!/ j:> l~&''; ? P7/".7 131/~1 U2Il&

115/<;3 121/51 1221 ~ 7 125/3' 12&/11 : 26119 1321.8
115/57 12U~1 122110. 125/5. 12<,1 1?1\/"l IJUI1

ES &£>6l usn? l
ESC 71'01 122122 121\/0 .. L
(V "£>~3 115/2 3 L 1Z2/tt3 123/::1 ., 1231 ..2
Fe b&6D 115/19 l 12jl35 S 12:'" q
FII 6&76 115/... L 1 Jr,'~3 130/17
GCS 7Z1j 132/1oq 1.1 ~,~~ 133121 133n~ 13y.. 7 13..hS 13"/19 L
GeSI 7275 131013 .. l 13 .. /37
GCS2 1'217 13..nz 13"/J9 l
GCSJ 13(1u 13"/'01 L 13 .. '
GCSIt 1303 131o' .. u IJfot/1t5 l
GCS5 13&1 .. 13',1"8 L 13 .. /51
GCS6 13(1& 13,., .. " IJ .. /53 L
lOCS1 7337 11"';3 13<0/55 L
C.CSII 131& 1351.2 135/11 U5ns l
HIT 7135 125/"5 12"/55 L
LRS 67'00 111'15 1:7/2'+ 119/06 L
NCS 233 121106 121/':;9 Il1l15 121115 1211'21 IJlIOS l

32/

.1-14 60492600·D

COMMON COMMON DECKS 12

, fe 4-'.\i! £1 &

T he common common decks are a set of COMPASS subroutines which are powerful tools for use by
COMPASS programmers. The common common decks perform functions such as:

Data canvel'S ion
Dynami'c table management
Saving/restoring registers
Providing an input/output interface at the CIO and FET level

A11 of the common common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2.
Table 12-1 shows each deck name, relocatable program name, entry point names, and the decks
supported under SCOPE 2.

12.1 RESIDENCE OF THE COtJl'/iON COfli1MON DECKS'

The source of the common common decks resides on the COMPASS old program library as a set of
COMDE CKs. This old program library can be used by Update-based procedures as a secondary old
program library (see the Update Reference Manual); the decks can be called just as one would call a
common deck from one's own old program library. Modify-based products can convert the COMPASS
old program library to an OPL via the UPMOD utility (see the Modify Reference Manual); the OPL is
then used as the source for the common common decks. The source of the common common decks can
also be obtained via the use of the COMPASS XTEXT pseudo-instruction using either an old program
library or an OPL as input. System texts required to assemble the common common decks residing
on the COMPASS old program library are IPIEXT and CPUTEXT.

The common common decks (except the table management decks COMCMTM and COMCMTP) are also
available as relocatable subroutines which reside on the system library SYSLIB. Relocatable progra'ms
need only include external references to entry point names in the common common decks. These
external references are satisfied from SYSLIB at load time. (The CYBER Loader searches SYSLIB by
default when satisfyil1..g external references but the SCOPE 2 Loader does not. Hence, under SCOPE 2,
SYSLIB must be explicitly included in the library set.)

12.2 DESCRIPTION OF TIiE COt\f1MON COPtU\,'ON DECKS

A detailed external reference description of each common common deck follows. The decks are
described in alphabetical order. Each description lists entry and exit conditions, registers used, and
routines explicitly called.

The following rules apply to the uSe of all common common decks:

Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by
any of the common common decks should not be located with the last lOB words of the field length.
Some fetch loops, move loops, and so forth, may mode out if the above restriction is not adhered to.

Registers thatare not used by the common common decks are not modified.

Entry and exit conditions are only those listed in the descriptions below.

60492600 E 12-1

TABLE 12-1. SUMMARY OF COMMON COMlVION DECKS

Common Common Relocatable Entry Points A va i labIe under
Deck Name Program Name SCOPE 2

COMCARG CPU.ARG ARG= Yes

COMCCDD CPU. CDD CDD= Yes-
COMCCFD CPU. CFD CFD= Yes

COMCCIO CPU. CIa CIO= No

COMCCOD CPU. COD COD= Yes

COMCCPT CPU. CPT CPT= Yes

COMCDXB CPU.DXB DXB= Yes

COMCMNS CPU.MNS MNS= Yes

COMCMOS CPU. MaS MOS= Yes

COMCMTM Yes

COMCMTP Yes

COMCMVE CPU.MVE MVE= Yes

COMCRDC CPU.RDC RDe= No

COMCRDH CPU.RDH RDH= No

COMCRDO CPU.RDO RDO:::: No

COMCRDS CPU.RDS RDS= No

RnW= No
COMCRDW CPU.RDW RDX=

LCB=

COMCRSR CPU.RSR RSR= Yes

COMCSFN CPU.SFN SFN= Yes

COMCSRT CPU.SRT SRT= Yes

COMCSST CPU. SST SST= Yes

COMCSTF CPU. STF STF= No

COMCSVR CPU.SVR SVR= Yes

SYS= No

COMCSYS CPU.SYS
RCL=
WNB=
MSG=

COMCUPC CPU.UPC UPC= Yes

COMCWOD CPU.WOD WOD= Yes

COMCWTC GPU.WTC WTC= No

COMCWTH CPU.WTH WTH= No

COMCWTO CPU.\VTO \VTO= No

COMCWTS CPU.WTS WTS= No

WTW= No
COMCWTW CPU.WTW WTX=

DCB=

COMCXJR CPU.XJR XJR= No

COMCZTB CPU. ZTB ZTB= Yes

2-2 60492600 F

12.2.1 COMCARG - PROCESS ARGUMENTS

COMCARG processes a list of arguments by the use of an equivalence table. The argument list must
be in the following format: ..

12/op,18/asv,12/st,18/addr

op One or two character keywords (left justified, zero filled) I
asv Address of assumed value

st Status

addr Address where argument is placed

This format is generated by COMCUPC or the COMPASS VFD pseudo instruction. ARG= is the only
entry point for COMCARG.

Entry conditions:

(BI) .
(B4)
(A4)
(X4)
(B5)

1
Argument count
Address of first argument
First argument
Address of argument table I

Exit cond itions:

(Xl) 10
1 Option not found in table
2 Single argument equivalenced
3 Illegal re-entry of argument

Registers used:

A2, A3, A4, A7
B2, B3, B4
XO, XI~ X2, X3, X4, X6, X7

The following conditions apply to the use of COMCARG:

If a keyword=value form is found in the argument list, addr is set to the upper 42 bits of the argu­
ment value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0).

If only a keyword is found in the argument list, addr is set to the full 60 bits of asv.

If asv < 0, the argument cannot be equivalenced.

If status=4000B, a zero value is retained as a display zero. Otherwise, a value of zero (full word)
is stored at addr.

If asv=addr, only one entry of that argument is allowed and op is set to -0.

12.2.2 COMCCDD - CONSTANT TO DECIMAL DISPLAY CODE CONVERSION

COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with
leading zero suppression. The converted integer contains space fill. One register contains the display
code right justified; another register contains it left justified. CDD= is the only entry point for .
COMCCDD.

I

60492600 F 12-3

Entry conditions:

(Bl) 1
(Xl) Number to be converted

Exit conditions:

(B2) 6*(cotmt of digits converted)
(X4) Conversion left justified
(X6) Conversion right justified

Registers used:

A2, A3, A4
B2, B3, B4
Xl, X2, X3, X4, X6, X7

12.2.3 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT

COMCCFD converts a 30 bit integer to display code in FORTRAN FlO. 3 format. The integer
represents the floating point value time 1000. One register contains the display code right justified
with blank fill; another register contains it left justified with blank fill. Leading zeros in the integer
portion are suppressed. CFD= is the only entry point for COMCCFD.

Entry conditions:

(Bl) 1
(Xl) Integer to be converted

Exit conditions:

(B3) -(number of blank fill bits in result)
(X4) Conversion left justified
(X6) Conversion right justified

Registers used:

AI, A2, A3, A4
B2, B3, B4, B5
Xl, X2, X3, X4, X6, X7

12.2.4 COMCCIO - I/O OPERATION PROCESSOR

COMCCIO performs input/output operations via the peripheral processor program CIO. An operation
is performed when the buffel' is not busy. If the file-status-word is zero, the operation is not proces­
sed and IN and OUT are set to FillST. CIO= is the only entry point for COMCCIO.

Entry conditions:

(X2) 24/unused, l8/skip count to CIO, 18/FET agdress for file
(X7) Function code; if < 0, X7 is the complement of the request and auto recall is requested

Exit conditions:

(X2)
(X7)

12-4

FET address
o

·60492600 F

If ERP$ is defined:

(X2) FET address
(X7) FET error code:

o No error, operation performed, normal exit
other Error code from FET; operation not performed, exit to ER P$

[f ERP 1$ is defined:

(X2) FET address
(X7) FET error code:

o No error, operation performed, normal exit
other Error code from FET; operation not performed, normal exit

Registers used:

At, A6, A7
XI, X2, X6, X7

12.2.5 COMCCOD - CONVERT CONSTANT TO OCTAL DISPLAY CODE

COMecon converts an integer constant to octal display code wah leading zero suppression. Up to ten
digits can be converted. The converted integer contains space fill. Oue register contains the display
code right justified, another register contains it left justified. COD::: is the only entry point for
CO:\ICCOD.

Entry conditions:

(BI) I
(X 1) Number to be converted

Exit condit ions:

(B2) 6*(cooot of digits converted)
(X4) Conversion left justified
(X6) Conversion right justified

R~gisters used:

A4
B2, B3, B4
XI, X2, X3, X4, X6, X7

12.2.6 COMCCPT - EXTRACT COMMENTS FIELD FROM PREFIX TABLE

<.;OMCCPT copies the comments field of a prefix (77008) table to a working storage area. Either the old I
or new forms of the prefix table can be used. COMCCPT differentiates between the forms by checking
word FWA+3 of the table to see if it looks like a time-of-day word. The copy terminates on end-of-tabl~,

zero byte, or COpy RIGHT. The working storage area is terminated by a zero word. CPT= is the only
entry point for COMCCPT.

Entry conditions:

(AI) Prefix table address
(A6) Address of working storage - 1

60492600 G 12-5

(BI) I
(Xl) Control word

Registers used:

A2, A3, A4, A6
B3, B4
Xl, X2, X3, X4, X6

12.2.7 COMCDXB - CONVERT DISPLAY CODE TO BINARY

~Ol\ICDXB converts one word of display code digits into internal integer format. Either a base 10 or a
base 8 string of digits can be converted as specified in the call. Th is specification, however, is over­
ridden if an explicit B (octal) or D (decimal) is the last character of the value to be converted. DXB:-..:
is the only entry point for COl\ICDXB.

The assembly option DXBl$ controls the processing of an 8 or 9 when octal is specified for the display
code value and no explicit B or D appears in the value. If DXB1$ is not defined, an error occurs. If
DXB 1$ is defined, the value is considered to be decimal.

Entry conditions:

(Bl) I
(B7) Base; if > 0, decimal base; if 0, octal base.
(X5) Word to be converted (left justified, zero filled)

Exit conditions:

(X6) Converted digits
(X4) Error code:

o No error
other Error in assembly

Registers used:

B2, B3, B·I, B5
XO, Xl, X2, X3, X4, X5, Xu, X7

The presence of one or more of the following always causes an error:

• A non-digit in the word to be converted

• A character after the post radix

• An 8 or 9 with the post radix equal to B

12.2.8 COMCMNS - MOVE NON-OVERLAPPING BIT STRING

COl\ICl\INS moves a specified source string from one location to another in central memorr. The onl\'
bits disturbed in the destination field are those extracted to accept the source string. The' destination'
field mllst not overlap the source field in any way; results are undefined if overlapping occurs;
COl\ICIVIOS can be used for overlapping moves l\INS= is the only entry point for COl\ICl\INS.

Entry conditions:

(Bl)

(B2)

(B4)

12-6

1
Source first bit (0, 1, ••• , 59)
Destination first bit (0, 1, •.• , 59)

60492600 F

(XO) Number of bits to move
(X2) Source first word address
(X4) Destination first word address

Exit conditions:

(Bl) 1
(B2) Source next bit (0 9 1 9 ••• , 59)
(B4) Destination next bit (0, 1, • • • , 59)
(X2) Source next word address
(X4) Destination next word address

Registers used:

AI, A2, A3, A5, A6
Bl, B2, B3, B4, B5, B6
XO, Xl, X2, X3, X4, X5 9 X6, X7

12.2.9 COMCMOS - MOVE OVERLAPPING BIT STRING

COMCMOS moves a specified source string from one location to another in central memory. The only
bits disturbed in the destination field are those extracted to accept the source string. COlVICMOS
allows the user to move strings where the destination field overlaps (lies partly or completely within)
the source field. If the move is not an overlap move, COMCMOS calls the faster common common
deck COMCMNS to do the move. For this reason, COMClVINS should always be called whenever
COMCMOS is. MOS= is the only entry point for COMCMOS.

Entry conditions:

(Bl) 1
(B2) Source first bit (0, 1, • • • , 59)
(B4) Destination first bit (0, 1, ••• , 59)
(XO) Number of bits to move
(X2) Source first word address
(X4) Destination first word address

Exit conditions:

(B1) 1
(B2) Source next bit (0 9 1, ••• , 59)
(B4) Destination next bit (0, 1, • • • , 59)
(X2) Source next word address
(X4) Destination next word address

Registers used:

AI, A2, A3, A5, A6, A7
B1, B2, B3, B4, B5, B6
XO, Xl, X2, X3, X4, X5, X6, X7

Calls:

MNS=

60492600 E 12-7 •

12.2.10 COMCMTM - MANAGED TABLE MACROS

COMCMTl\:1 contains four macros, ADDWRD, ALLOC, SEAR CH, and TABLE, for generation, alloca­
tiOD, and processing of managed tables. COMClVITM is intended to be used with COMCl\ITP.

ADDWRD - ADD WORD TO TABLE

ADDWRD adds a word to a managed table. ADDWRD calls AD'V and uses AO and Xl.

Format:

LOCATION OPERATION

ADDWRD

VARIABLE SUB FIELDS

table, reg

table Table number

reg Register name or expression for word to be added

ALLOC - ALLOCATE TABLE SPACE

ALLOC allocates table space. ALLOC calls ATS and uses AO and Xl.

Format:

LOCATION

table

OPERATION

ALLOC

Table number

VARIABLE SUBFIElDS

table, words

words Word count (+ or -) to be added

SEARCH - SEARCH MANAGED TABLE

SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses AO, B7, and X6.

Format:

LOCATION OPfRATION

SEARCH

VARIABLE SU8FIElDS

tname, entry, mask

tname

entry

mask

Table name

Entry to be searched for

Search mask in XO; if not present, defaults to all bits.

TABLE - GENERATE MANAGED TABLE

TAB LE generates a managed table.

12-8 60492600 F

Format:

LOCATION OPERATION

TABLE

VARIABLE SU8FIElOS

tname, count, equiv

tname

count

equiv

Table name

Word count per entry (1 if not specified)

Equivalent table name; allows certain tables to be used by different processors

After the table is generated:

F. tnarne is the name of the word containing the table FWA.

L. tname is the name of the word containing the table length.

C. mame is the word count per entry.

12.2.11 COMCMTP - MANAGED TABLE PROCESSORS

COMCMTP contains the following routines for processing managed tables:

ADW

AMU

ATS

EQS

MES

MTD

MTU

Adds a word to the table.

Returns the total memory used by the tables.

, Allocates table space.

Searches table for equal entries.

Searches a table for equal entries using a mask.

Moves the table down.

Moves the table up.

Macros for calling these routines and for table generation are contained in COMCMTM.

The managed table processors allow the partitioning of central memory into variable regions called
tables. These tables are referenced by pointers that indicate the first word address of the table and
the table length. Memory is allocated to each table as it is required; the user can delete space from
the tables. Each table is allowed at least one word of expansion space to allow a dummy word between
each table, thUS, ensuring efficient search methods.

The caller of the table processors is expected to provide certain constants for use by the processors.
Other data is provided by COMCMTM.

Data provided by the caller:

MEML

TOV

Lowes t addres s of managed memory

Address of the table overflow processor

Data provided "by COMCMTM:

NTAB Number of managed tables

FTAB

LTAB

F.tnam

60492600E

Start of table addresses

Start of table lengths

Address pointer for table tnam

12-9

I
L. tnam Length pointer for table tnam

Data dynamically changeable:.

TN

TO

LM

F.TEND

TOVT

Number of managed tables. Set to NTAB by COMCM.TM. TN must be less than NTAB
during use.

Table overflow processor. Set to TOV by COMCMTM.

Low memory limit. Set to MEML by COMCJ\.ITM. If this value is increased t MTU
should be called to allow room for change.

High memory limit. F. TEND must be initialized by the user. If this value is
decreased t MTD should be called to allow room for change.

TOV threshold. If the word is defined, it should contain the threshold for calling
TOV; ATS calls TOV when the tables must be moved and less than TOVT free words
remain. If TOVT is not defined, an effective value of zero is used.

I

ADW- ADD WORD TO TABIE

ADW adds a word to a managed table.

Entry conditions:

(AO) Table number
(X1) Word to be added

Exit conditions:

(A6) Address of added word
(Xl) Added word
(X2) FWA of table
(X3) Length of tabIe
(X6) Added word

Registers used:

AI, A2, A3, A4, A6, A7
Xl, X2, X3, X4, X6, X7

Calls:

ATS

AMU - ACCUMULATE MEMORY USED

AMU returns the amount of memory used by the managed tables or the current length, whichever is the
largest. The variable MU is set to this value.

Exit conditions:

MU MAX(memory used, current assigned length)

12-10 60492600F

Registers used:

AI, A2, A6
B2
Xl, X2, X3, X6

ATS - ALLOCATE TABLE SPACE

ATS allocates table space. The table length can be increased or decreased as specified.

Entry conditions:

(AO) Table number
(Xl) Change (+ or -) to the table size

Exit conditions:

(Xl) Change made to the table size
(X2) FWA of table .
(X3) New length of table
(X7) Less than 0 if tables moved

Registers used if tables are not moved.

A2, A3, A4, A6
X2, X3, X4, X6, X7

Registers used if tables are moved:

AI, A2, A3, A4, A6, A7
B2, B3, B4, B5, B6, B7
XO, Xl, X2, X3, X4, X5, X6, X7

Registers restored:

B2, B3, B4, B5, B6, B7 (except -0 restored as +0)
XO, Xl, X5

Calls:

AMU, MVE=, TOV

TOV, the user provided table overflow processor, is described be low.

Entry conditions:

(HI) 1
(B5) Complement of number of words required
(B6) Return address to continue processing

The location TOV must contain executable code. TOV is entered via a JP instruction.

Exit from TOV via a JP B6 instruction.

Exit conditions:

I

Only B1 must be preserved.

A pointer word must be incremented by the number of words newl.yavailable. If TN has not been I
altered during execution, the address of t he pointer word is F. TEND. If TN has changed, the ..
address of the pointer word is FTAB-1 plus the contents of TN.

60492600 F 12-11

I

I

EQS ~ EQUALITY SEARCH TABLE

EQS searches for a specified entry.

Entry conditions:

(AO) Table number
(B7) Word count per entry
(X6) Entry for search

Exit conditions:

(X2) =0 if entry not found
(X2) =entry, if found
(A2) = address of entry found

Registers used:

AI, A2, A6
Xl, X2, X3, X7

MES - MASKED EQUALITY SEARCH TABlE

ME S searches for a specified entry us ing a mask.

Entry conditions:

(AO) Table number
(B7) Word count per entry
(XO) Mask
(X6) Entry for search

Exit conditions:

(X2) := 0 if entry not found
(X2) =entry, if found
(A2) =address of entry found

Registers used:

AI, A2, A6
Xl, X2, X3, X4, X7

MTD - MOVE TABLES DOWN

I MTD moves the tables down (away from RA) to eliminate unused memory.

Exit conditions:

(B2) Number of tables

Registers used:

AI, A2, A3, A7
B2, B3
XO, Xl, X2, X3, X4, X7

Calls:

MVE=

12-12 60492600 F

MTD - MOVE TABLES UP

MTU moves the tables up (toward RA) to eliminate unused memory.

Registers used:

AI, A2, A7
B3
XO, Xl, X2, X3, X7

Calls:

MVE=

12.2.12 COMCMVE - MOVE BLOCK OF DATA

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source
address through the source address plus the word count minus one to the destination address through
the destination address plus the word count minus one. The move can be in either direction. MVE=
is the only entry point for COMCMVE.

Entry conditions:

(BI) I
(Xl) Word count
(X2) Source address
(X3) Destination address

Registers used:

A2, A4, A6, A7
B7
Xl, X2, X3, X4, X6, X7

12.2.13 COMCRDC - READ CODED LINE, C FORMAT

COMCR DC reads a coded line term inated by a zero byte from a CIO buffer to a working buffer. RDC=
is the only entry point for COMCRDC.

Entry conditions:

(B6) FWA of working buffer
(B7) Word cOlmt of working buffer
(X2) Address of FET for file

If B7 is less than zero, then -B7 is the word count of the working buffer; COMCRDC will not read
and discard words until an end-of-line for lines longer than the working buffer.

Exit conditions:

(Bl) 1
(B6) Address of last word transferred to working buffer plus one
(Xl) Status of transfer:

o Transfer completed
-1 EOFdetected on file
-2 E 01 detected on file
B6 E OR detected _on file before transfer completed

60492600 F 12-13

(X2) Address of FET for file
(X4) Contents of last data word transferred before EOL guaranteed
(X7) Level number of EOR

Registers used:

AI, A2, A3, A4, A6, A7
BI, B2, B3, B4, B5, B6, B7
Xl, X2, X3, X4, X6, X7

Calls:

LCB=, RDX=

12.2.14 COMCRDH - READ CODED LINE, H FORMAT

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with
trailing space fill. RDH= is the only entry point for COMCRDH.

Entry conditions:

(B6) FWA of working buffer
(B7) Word COlmt of working buffer
(X2) Address of FET for file

Exit conditions:

(Bl) 1
(B6) Address of last word transferred to working buffer plus one
(Xl) Status of transfer:

o Transfer completed
-1 E OF detected on file
-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FET for file
(X7) Level number of EOR

Registers used:

AI, A2, A3, A4, A6
BI, B2, B3, B4, B5, B6, B7
Xl, X2, X3, X4, X6, X7

Calls:

LCB=, RDX=

12.2.15 COMCRDO - READ ONE WORD

COMCRDO reads one word from a CIO buffer into X6. RDO= is the only entry point for COMCRDO.

Entry conditions:

(AI)
(Xl)

12-14

Address of IN pointer
IN

60492600 E

\
I

)

Exit conditions:

(B1) 1
(Xl) Status of transfer:

o Transfer completed
1 EOR detected on file

-1 EOF detected on file
-2 EOI detected on file

(X2) Address of FET for file
(X6) Word read

Registers used:

AI, A2, A3, A4, A6, A7
B1
Xl, X2, X3, X4, X6, X7

Calls:

CIO=

12.2.16 COMeRDS - READ CODED LINE TO STRING BUFFER

COMCRDS reads a coded line from a CIO buffer to a working buffer. \Vords in the circular buffer are
unpacked and stored one character per word in the working buffer. This process is continued until
the end-of-line byte is detected. If the coded line terminates before the working buffer is filled, the
working buffer is padded with spaces; the buffer is not padded if the complement of the word count of
the buffer is used. If the coded line exceeds the size of the working buffer, the excess characters are
ignored. RDS= is the only entry point for COMCRDS.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than 0, B7 is the complement of the buffer length and the string buffer will not be
space filled.

Exit conditions:

(Bl) 1
(B6) Address of the last character from the coded line in the working buffer plus one
(Xl) Status of transfer:

o Transfer completed
-1 EOF detected on file
-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FE T for file
(X7) Level number of EOR

Registers used:

AI, A2, A3, A4, A6, A7
Bl, B2, B3, B4, B5, B6, B7
Xl, X2, X3, X4, X6, X7

60492600 E 12-15

Calls:

LCB=, RDX=

12.2.17 COMCRDW - READ WORDS TO WORKING BUFFER

COMCRDW reads a specified number of words from a CIO buffer to a working buffer. COMCRD\V also
contains the load CIO buffer and read exit routines required by COIVICRDC, COMCRDH, and COMCRDS.
RDW=, LCB=, and RDX= are the entry points for COMCRD\V.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

Exit cond itions:

(B1) 1
(B6) Address of last word transferred to the working buffer plus one
(B7) Word count remaining to be transferred
(Xl) Status of transfer:

o Transfer completed
-1 EOF detected on file
-2 E 01 detected on file
-3 CIO= was called to read more data and returned an error status
B6 EOR was detected on file before transfer was completed

(X2) Address of FET for file
(X7) Error status if Xl is -3, otherwise level number of EOR

Registers used:

AI, A2, A3, A4, A6, A7
B1, B2, B3, B4, B5, B6, B7
Xl, X2, X3, X4, X6, X7

Calls:

CIO=

12.2.18 COMCRSR - RESTORE ALL REGISTERS

COMCRSR restores the B, A, and X registers from a specified register save area. The format of the
registers in the save area is BO, BI, ••• , B7, AO, AI, ••• , A7, XO, Xl, ••• , X7. Each regis­
ter occupies a full word with the B and A register values in bits 17-0. RSR= is the only entry point for
COMCRSR.

Entry conditions:

(Xl) Address of register save area

Exit conditions:

All registers are set to the content of the register save area.

12-16 60492600 E

Registers used:

AO, AI, A2, A3, A4, AS, A6, A7
B1, B2, Ba, B4, B5, B6, B7
XO, Xl, X2, X3, X4, K5, X6, X7

12.2.19 ·COMCSFN - SPACE FilL NAME

COMCSFN converts trailing 00 characters in a word to blanks. SFN= 1s the only entry point for
COMCSFN.

Entry conditions:

(Xl) Name left justified, zero flU
(Bl) 1

Exit conditions:

(X6) Name space filled
(X7) Final character mask

Registers used:

A3
B2
X3, X6, X7

12.2.20 COMCSRT - SeT RECORD TYPE

COMCSRT identifies the format of a record from the first 64 words located in a working buffer. The I
type codes returned are listed in table 12-2. L. SRT is defined to be the largest number assigned a
record type code. SRT= is the only entry point for COMSCRT.-

Entry conditions:

(B1) 1
(Xl) LWA+1 of block
(X2) FWA of current record

Exit conditions:

(X6)
(X7)

42/0L r+ name, 12/0, 6/type number
Record name in L format

I

If type number and record name are zero, the record is zero length.

Registers used:

AI, A2, A3
B~, B3
XO, Xl, X2, X3, X4, X6, X7

12.2.21 COMCSST - SHELL SORT TABLE

COMCSST sorts a table of one word entries into ascending order using a shell sort. A11 of the entries
should be of the same sign. SST= is the only entry point for COMCSST.

60492600 F 12-17

TABLE 12-2. TYPE CODES RETURNED BY COMCSRT

Type Number Format

TEXT 0 Text record

6PP 1 6000-series peripheral processor overlay

COS 2 Chippewa OS formatted program

REL 3 Relocatable subprogram

OVL 4 Central processor overlay

ULIB 5 NOS user library

OPL 6 Mod ity program library deck

OPLC 7 Modify program library common deck

OPLD 8 Modify program library directory

ABS 9 Multiple entry point overlay

7PP 10 7000-series peripheral processor overlay

UPL 11 Update sequential program library

UCF 12 Update compressed compile file

ACF 13 Modify compressed compile file

CAP 14 Fast dynamic load capsule

DATA 15 Arbitrary data

16 CDC reserved

PROC 17 Procedure record

SDR 18 Special deadstart record

Entry conditions:

(Bl) 1
(B7) Address of table to be sorted
(Xl) Number of elements in the table

Exit conditions:

The table is sorted.

Registers used:

AI, A2, A6, A7
B2, B3, B4, B5
Xl, X2, X3, X4, X6, X7

12-18 60492600 E

12.2.22 COMCSTF - SET TERMINAL FILE

COMCSTF detects if a file is assigned to an interactive terminal. STF= is the only entry point for
COMCSTF.

Entry conditions:

(B1) 1
(X2) Address of FET

The FET must be greater than fi ve words in length.

Exit conditions:

(X2) Address of FET
(X6) °if file is assigned to a terminal

Registers used:

AI, A4
Xl, X3, X4, X6

Calls:

CIO=

12.2.23 COMCSVR - SAVE ALL REGISTERS

COMCSVR saves the B, A, and X registers in a specified register save area. The registers are saved
in the following order:

BO, B1, .•• , B7, AO, AI, ••• , A7, XO, Xl, ••• , X7

Each register occupies a full word with the B and A register values in bits 17 -0. B and A registers are
sign extended. SVR= is the only entry point for COMCSVR.

Entry conditions:

Bits 17-0 of the word from which SVR= was called contain the address of the register save area.

Exit eond iUons:

(save thru save+7)
(save+8 thru save+15)
(save+16 thru save+23)

Registers used:

B registers
A registers
X registers

AO, AI,. A2, A3, A4, A5, A6, A7
Bl, B2, B3, B4, B5, B6, B7
XO, Xl, X2, X3, X4, X5, X6, X7

12.2.24 COMCSYS - PROCESS SYSTEM REQUEST

COMCSYS issues a system monitor request through RA+l. SYS=, R CL=, WNB=, and MSG= are the
entry points for COMCSYS.

60492600 E 12-19

SYS= - PROCESS SYSTEM REQUEST

SYS= waits for RA+I to clear before issuing the desired request. Central exchange jump hardware is
used if it is available. If the hardware is not available and the auto-recall bit is set, SYS= waits for the
monitor to process the call before returning.

Entry conditions:

(X6) System request

Exit conditions:

Request processed

Registers used:

AI, A6
X6

RCL= - PLACE PROGRAM ON RECALL

RCL= issues a single system request for periodic recall. If RA+I is busy, no request is issued.

Exit conditions:

Request processed.

Registers used:

Al
Xl, X6

WNB= - WAIT NOT BUSY

WNB= waits for a specified status word, bit 0, to be set. If the word is initially 0, WNB= returns.

Entry conditions:

(X2) Address of status word

Exit conditions:

Returns when bit 0 of status word is set.

Registers used:

Al
Xl, X6

MSG= - SE ND ME SSAGE

MBG= formats and issues a system request to send a dayfile message.

12...20 60492600 E

Bntry conditions:

(X 1) Address of data
(X6) Message options:

bit 16 - Auto recall if on
bits 11 through 0 - Message option code

Exit conditions:

Returns when operation is complete.

Registers used:

AI, A6
Xl, X6

12.2.25 COMCUPC - UNPACK CONTROL CARD

COMCUPC unpacks a control statement into the keyword and individual parameters. The following I
conditions apply to the use of COMCUPC:

• If B7 is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks
are ignored.

• The characters) and • are considered as the termination of the control statement.

• Characters with display code values 0 or 60B through 77B are illegal before the terminator.

• The parameter must contain 7 or fewer characters.

• The parameters are stored left-justified with zero fill.

• The separator character is placed in the lower 18 bits of the parameter unless it is a·,* in which case
the lower 18 bits are zero.

• Two successive separators or a separator followed by a terminator results in a parameter of all zeros.

upc= is the only entry point for COMCUPC.

Entry conditions:

(A5) Address of first word of control statement
(Bl) 1
(87) First word address of buffer containing parameter information
(X5) First word of control statement

1f 87 is negative, B7-contains the complement of the first word address of the parameter buffer.

Exit conditions:

(B6) Parameter COWlt
(XG) 0 if no error during Wlpacking

Registers used:

AI, A2, A5, A6. A7
82, B3. 84, 85, 86
XO,XI, X2,X3,X4,X5.X6.X7

60492600 G 12-21

I
I

12.2.26 COMCWOD - CONVERT WORD TO OCTAL DISPLAY CODe

COMC'"\,\,OO converl~ a w\)rd into octal display code. WOO= is the only entry point far COMCWOD.

Entry conditions:

(Xl) Word to "be cooverted

Exit conditions:

(BI)
0'6, X1)

Registers used:

1
Cooversion

A2, AJ, A4, AS
XO, Xl, X2, X3, X4, X5, X6, X7

12.2.27 COMCWTC - WRITE CODED LINE, C FORMAT

COMC'NTC writes a zero byte delimited line from a. w'Jrking buffer to a CIO blllfer. If the CIO buffer
becomes sufficienny fun to require writing or if the device type indicates a NOS/BE terminal, COMCWTC
performs a WRITE function unless the symbol WnIF$ is defined. In thiS case, the CIO function that is in
the FET is reissued. WTC=-= is ihe only eut.ry point for COMc\VTC.

Entry conditiOtls:

(B6) FWA of working buffer
(X2) Address of FET for file

Exit conditions:

I
(Bl)
(X2)

1
Address of FET for file

Registers used:

AI, A2, A3, A4, A6, A7
BI, B2, B3, B4, B5. B6
Xl, X2, X3, X4. X6. X'I

Calls:

DCB=, WTX-=

12.2.28 COMCWTH - WRITE CODED LINE, H FORMAT

COM~wVTHwrites a coded line in H forma'(from a working buffer to a CIO buffer. Trailing spaces are
deleted. If the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE
terminal. COMCWTH performs a WRITE function unless the symbol WHIF$ is defined. In this case. the
CIO function that is in the FET is re issued. If the line to be written terminates with 6 bits of zero, a
w')rd containing a blank byte is appended to preserve the 00 character as a colon. If the line terminates
on an end-of-line, it is written as is. WTH= is the only entry point for COMC\VTH.

12-22 60492600 E

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

(Bl) 1
(X2) Address of FET for flIe

Registers used:

AI, A2, A3, A4, A6, A7
Bl, B2, B3, B4, B5, B6, B7
Xl, X2, X3, X4, X6, X7

calls:

DCB=, WTX=

12.2.29 COMCWTO - WRITE ONE WORD

COMCWTO wr ites me word to a CIO buffer from X6. If the buffer becomes sufficiently full to require
writing, COMC\VTO performs a WRITE function unless the symbol WRYF$ is defined. In this case, the
CIO function that Is In the FET is reissued. WTa= is the only entry point for COMCWTO.

Entry conditions:

(A 1) Address of IN pointer
(Xl) IN
(.X6) Word to write

Exit conditions:

(BI) I
(X2) Address of FET for fUe

Registers used:

Al, A2, A3, A4, A6, A7
Bl
Xl, X2, X3, X4, X6, X7

12.2.30 COMCWTS - WRITE CODED LINE FROM STRING BUFFER

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression.
Characters Ln the working buffer are packed and stored in the circular buffer. If the buffer becomes
sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS perforn:s
a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that Is in the FET
is reissued. WTS= is the only entry point for COMCWTS.

60492600 E 12-23

Entry conditions:

(BG) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

(HI) 1
(B6) Word count of data written
(X2) Address of FET for file

Registers used:

AI, A2, A3, A4, A6, A7
BI, B2, B3, B4, BS, B6, B7
Xl, X2, X3, X4, X6, X7

Calls:

DCB::, WTX=

12.2.31 COMCWTW - WRITE WORDS FROM WORKING BUFFER

COMCWTW writes data from a working buffer to a CIO buffer. If the buffer becomes sufficiently full to
require writing or If the device type indicates a NOS/BE terminal, COMC-WTW performs a WRITE
function unless the symbol WR IF$ is defined. In this case, the CIO function that is in the FET is reissued.
WTW=, DCB:::, and WTX= are the entry points for COMCWTW.

Entry conditions:

I
(B6)
(B7)
(X2)

FWA working buffer
Word count of working buffer
Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

(Bl)
(B6)
(B7)

(X2)
(X7)

1
Address of next word to be transferred from working buffer
Status of transfer:
o Transfer completed
other Remaining word count if CIO= was called to write data and returned an error status
Address of FET for file
Error status if B7 is 0

Registers Used:

AI, A2, A3, A4, AS, A7
Bl, B2, 00, B4, BS, BS, B7
Xl, X2, X3, X4, X6, X7

Calls:

CIO=

12-24 60492600 E

12.2.32 COMCXJR - RESTORE ALL REGISTERS WITH A SYSTEM XJR CALL

COMCXJR restores all registers from a register save area with a system XJR call. The format of the
registers in the save area is BO, Bl, ••• , B7, AD, AI, ••• , A7, XO, Xl, ••• , X7. Each register
occupies a full word with theJ3 and A register values in bits 17-0. XJR= is the only entry point for
COMCXJR.

Entry conditions:

(Xl) Address of the register save area.

Exit conditions:

All registers are set to the contents of the register save area.

Registers used:

AD, AI, A2, A3, A4, A5, A6, A7
BO, BI, B2, B3, B4, B5, B6, B7
XO, Xl, X2, X3, X4, X5, X6, X7

12.2.33 COMCZTB - CONVERT ALL 00 CHARACTERS TO BLANKS

COMCZTB converts all 00 characters in a word to blanks. ZTB= is the only entry point for COMCZTB.

Entry conditions:

(Bl) 1
(Xl) Word to be converted

Exit conditions:

(X6) Converted word
(X7) Final character mask

Registers used:

A3
X3, X6, X7

12.3 MACROS THAT CALL THE COMMON COMMON DECKS

Entry points in the common common decks can be called by using system macros. Table 12-3 shows
which macros call entry points in the common common decks. All of the macros are supported under
NOS and NOS/BE. Only the MOVE macro is supported under SCOPE 2. All macros applicable to a
given operating system exist in the system text CPUTEXT. Each macro is described in detail in the
following paragraphs.

12.3.1 MESSAGE

MESSAGE displays a message on the system console display and enters it into a dayfile. If the job is of
system origin, the message can be flashed on the B display by including a dollar sign as the first cbarac- I
ter of the message. MESSAGE requires the common common deck COMCSYS.

60492600 F 12-25

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS

Macro Entry Points Description
Called

MESSAGE MSG= Displays a message on the system
console and enters it in a dayfile.

MOVE MVE= Moves a block of data from one
address to another.

READC RDC= Reads one coded line from the input/output
buffer to the working buffer.

READH RDH= Reads one coded line with space fill from
the input/output buffer to the working
buffer.

READO RDO= Reads one word from the input/output
buffer to X6.

READS RDS= Reads a line image to a character
buffer.

READW RnW= Fills the working buffer from an
input/output buffer.

RECALL ReL: Relinquishes the CPU until a
WNB= function is completed or the CPU

recall time has elapsed.

SYSTEM SYS= Requests the system to process
any three-character request.

WRITEC WTC= Writes a coded line image from the working
buffer to the input/output buffer.

WRITEH WTH= Writes a coded Hne, deleting all
trailing spaces, from the working
buffer to the input/output buffer.

WRITEO WTO= Writes one word from X6 to the
input/output buffer.

WRITES WTS= Writes a line image from the
character buffer.

W"RITEW VolTW= Writes data from the working
buffer to the input/output buffer.

I

12-26 60492600 F

The maximum length that a message can be is 80 characters; up to ·10 characters per line are displayed.The message ends wi.th either the first word containing 12 bits of zeros in any byte or at the eightiethcharacter. The user must pack the display code message in sequential locatioas before calling MESSAGE.
The form at of the RA +1 call for this macro is:

59 40 :35 23 17 0RA+l (----M-SG----~I---x---,W----a-d-d-r---l

Macro format:

lOCATION OPERATION

MESSAGE

VARIA8lE SU8flElDS

addr,x,r

addr Beginning address of the message. If the upper 12 bits of the location specified by thisaddress are zero, then the next 18 bits (47 thru 30) of this location are assumed to containthe beginning address of the message.

x Message routing option:

o Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 ofthe control point.
1 Message is displayed at line 1 of the control point.
2 Message is displayed at line 2 of the control point.
3 Message is placed in the user dayfile and displayed at line 1 of the control potal.
4 Message is placed in the error log dayfile if the job is a special system job (that is, hasan SSJ=-entry point) or is of system origin; otherwise, the message is placed in the userdayfile.

5 Message is placed in the account dayfile if the job is a special system job or is of systemorigin; otherwise, the message is placed in the user dayfile.
6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 ofthe control point.

7 Message is placed in the user dayfile and displayed at line 1 of the control point.
If x is not specified or is an illegal value, x=o is assumed. If x is nm: defined, x=l isassumed. If x is the character string LOCA L, x=3 is used.

r If r is specified, control is not retunled until the operation is complete.

The control point message areas (lines 1 and 2) provide the user with the ability to display cOl~currentlymessages that enter the dayfile and those that reqUire operator action. Line 2 is normally used ::0 displayinformation about the current status of the executing program.

Only messages that do not refer to the job, such as the control statements processed and co:npilers used,should be placed in the system dayfile (x-=O). A II messages that refer to the job, such as the path taKenby the programs and the number of records copied, should be placed only in the user dayfile (x=3). Allmessages placed in the user dayfile (x-=O and x=6) are counted by the system. If the number of messagesissued by the job exceeds the limit for wnich the user is validated, the error message l\IESSAGE LnIIT;is issued to the user dayfile and the job is aborted.

60492600 E
12-27

12.3.2 MOVE

MOVE mO'/es a block of data from oae address to another. MOVE requires the common common deck
COMCl\fVE for absolute assemblies.

Macro forma~:

lOCATION OPfUTION

MOVE

VARIABLE SUBFIHDS

count, addrl, addr2

count

acidrl

addr2

Number of words in the block to be moved

Address of the first worc! of the block to be moved

Address of the first word of the destination

MO V E allows overlap in data moves (addr2 can be less than addrl plus count).

12.3.3 READe

READe reads on.e coded line from the input/output buffer to the wr)rldng buffer. Data is transferred
until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of words are
transferred. READC requires the common common deck COl\ICRDC.

Macro format: I
LOCATION

adell'

OPERATION

READC

FET address

VARIABLE SUBflElDS

addr, buf, n

bur

n

12.3.4 READH

\Vorking buffer address

'Vorking buffer word count

READH reads a coded line wi.th space fin fro.n the input/output buffer to the w~)rkingbuffer. Data is
transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the spec ined number of
words :lre transferred. READE requires the common common deck COMCHDH.

l\lacro formal:

LOCATION

12-28

OPERATION

READH

VARIABLE SUBFIElDS

addr, buf, n

60492600 G

addr FET address

buf Working buffer address

n Working buf{er word count

12.3.5 READO

READO reads one word from the input/output buffer to X6. REAnO requires the common common deck
COMCRDO.

Macro format:

LOCATION OPERATION VAIIA8lE SUIFlflOS

READO addr

addr FET address

12.3.6 READS

READS reads a line image to a character buffer.. The words are unpacked and stored in the working
buffer right justified, one character per word, until the end-of-byte (0000) is detected.. If the coded
line terminates before the specified number of characters are stored, the working buffer is blank filled.
READS requires the common common deck COMC"'RDS.

Macro format:

LOCATION OPERATION

READS

VA'IABLE SUBFlELDS

addr,buf,n

addr FET address

buf WorkIng buffer address

n Working buffer word count

12.3.7 READW

READW fills the working buffer from an input/output circular buffer. READW reads ahead in the input!
output buffer.. This could cause the program to abort if the last word address of the input/output buffer is
within four words of the FL. If the word count is greater than the length of the working buffer, READW
writes beyond the end of the working buffer. READW requires the common common deck COMCRIJW ..

Macro format:

LOCAtiON

60492600 E

OPEUTION

READW

VARIAIU SUBFIHOS

addr,buf,n

12-29

addr

buf

n

12.3.8 RECALL

FET address

Working buffer address

Working buffer word count

BE CA LL enables the user to re linquish the CPU until a function is completed or the CPU recall time has
elapsed (delay time depends on the operating system and the site). If the stat parameter is included in the
call, control is not returned to the program until bit 0 of the word specified by stat is set. If stat is not
included in the macro call, the program relinquishes the CPU only until the next pass through the recall
loop. BE CA LL requires the common common deck COMCSYS.

The format of the RA+l call for this macro is:
59 40r-- .:;.17:...- ..:.:;0

RA+l I RCL ~ 0 I s_t_at l
Macro format:

RECALL stat

If this parameter is present, control is returned to the program when bit 0 of the word
specified by the address stat is set.

LOCATION

stat

OPERATION VARIABLE SU8flElDS

I
12.3.9 SYSTEM

SYSTE M processes a three-letter request. The request can be either the functions that MTR performs
or a PPU program. A PPU program can be called from a CPU program if the first character of the
name is alphabetic. SYSTEM requires the common common deck COMCSYS.

The format of the RA+l call for this macro is:

59 40 35 17 0

RA+l 1:.- ~=====P=2===~I__P_l__1
Macro format:

lOCATION

12-30

OPERATION

SYSTEM

VAlUABlE SUBflElOS

req,r,pl,p2

60492600 F

req

r

pI

p2

12.3.10 WRITEC

Three-character system r~uest

If specified, control is returned only after the request is completed

Bits 17 through 0 of the request

Bits 35 through 18 of the request

WRITE C writes a coded Une image from the working buffer to the input/output buffer. Data is trans­
ferred until the end of the line (0000 in bits 11 through 0) Ls sensed. WRITEC requires the common
common deck COMCWTC.

Macro format:

LOCATION Of'EUTION

WRITEC

VA.,ASLE SU,FIElDS

addr,buf

addr FET address

buf Working buffer address

12.3.11 WRITEH

WRITEH writes a coded line, deleting all trailing spaces, from the working buffer to the input/output
buffer. WRITEH requires the common common deck COMCWTH.

Macro format:

LOCATION OPEIATION

WRITER

VARtASlE SUIFIElDS

addr,buf, n

addr FET address

buf Working buffer address

n Working buffer word count

12.3.12 WRITEO

WRITE 0 writes one word from X6 to the input/output buffer. WHITEO requires the common common
deck COMCWTO.

60492600 E 12-31

Macro format:

LOCATION

addr

12.3.13 WRITES

OPUATION

WRITEO

FET address

'\#AIlIA8lE SUIFIHDS

addr

WRITES writes a line image from the working buffer. Characters are packed ten characters per word.
TralHng spaces are deleted before the characters are packed. WRITES requires the common cQmmon
deck COMCWTS.

Macro format:

LOCATION

WRITES

VAlUABLE SUIFIElDS

addr,buf,n

addr

buf

n

FET address

Working buffer address

Working buffer word count I
12.3.24 WRITEW

WRITE'" writes data from the working buffer to the input/output circular buffer. WRlTEW writes ahead
in the input/output buffer. This could cause the program to abort if the last word address of the input/
output buffer is within four words of the FL. If the word count is greater than the length of the working
buffer, WRITEW reads beyond the end of the working buffer. WRITEW requires the common common
deck COMCWTW.

Macro format:

LOCATION OPERATION

WRITEW

VAlli AilE SUBflELOS

addr,buf,n

addr

buf

n

12-32

FET address

Working buffer address

Working buffer word count

60492600 E

CHARACTER SETS

NOTES

1. The tenns upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

2. When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

3. When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

4. All Ascn and EBCDIC codes not listed are translated to display code 55 (space).

5. Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC 64-character
ASCII subset (system assembled with IP CSET set to C64.2).

6. In a 63-character set system, the display code for the : graphic is 63. The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (55

8
). The display code value 00 is undefined in 63-character set systems.

7. Tweive or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

8. This code is changed to 12 when written on a 7-track magnetic tape in even
parity (coded) mode.

9. 11-0 and 11-8-2 are equivalent on input. The character will be punched as
11-0 on output.

10. 12-0 and 12-8-2 are equivalent on inputo The character will be punched as
12-0 on output.

1l.. 12-8-7 and 11-0 are equivalent on input. The character will be punched as
12-8-7 on output.

12. 12-8-4 and 12-0 are equivalent on input. The character will be punched as
12-8-4 on output.

13. CODE pseudo selects 6-bit octal code as follows:

A

60492600A

A
D
E
I

ASCII
Display Code (default)
External BCD
Internal BCD

A-I

CODE D (default)

~

CODE ECODE I! t CODE A

Display Hollerith BCD ASCII EBCDIC ICode Punch Upper Case Lower Case Upper Lower I

(026) 6-Bit
Octal Char. Ext. Int. Octal Hex. Char. Punch Hex. Char. Punch Hex. Char. Hex. Char.@ @ @ @ (029)

I

00 /v 8-2 oo® 12 32 3A l 8-2 1.40 SUB 9-8-7 7A : ,sF 'Sl:B i01 A 12-1 61 21 41 41 A 12-1 61 a 12-0-1 C1 A 81 :a
02 B 12-2 62 22 42 42 B 12-2 62 b 12-0-2 C2 B 82 b 103 C 12-3 63 23 43 43 C 12-3 63 c 12-0-3 C3 C 83 I c I
04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 C4 D 84 I d

105 E 12-5 65 25 45 45 E 12-5 65 e 12-0-5 C5 £ 85 e
!06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 C6 F 86 f

07 G 12-7 67 27 47 47 G 12-7 67 g 12-0-7 C7 G 87 g
10 H 12-8 70 30 60 48 H 12-8 68 h 12-0-8 C8 H 88 h
11 I 12-9 71 31 51 49 I 12-9 69 t 12-0-9 C9 I 89 1
12 J 11-1 41 41 52 4.40 J 11-1 6A J 12-11-1 Dl

I
J 91 I I

13 K 11-2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k
!
114 L 11-3 43 43 54 fC L 11-3 6C 1 12-11-3 03' L 93 1« ;15 M 11-4 44 55 4D M 11-4 6D m 12-11~ D4 M 94 m !

16 N 11-5 45 45 56 4£ N 11-5 6E n 12-11-5 D5 N 95 n
17 0 11-6 46 46 57 4F 0 11-6 6F 0 12-11-6 D6 0 96 0 !20 P 11-7 47 47 60 50 P 11-7 70 P 12-11-7 D7 P 97 p

!21 Q 11-8 50 50 61 51 Q 11-8 71 q 12-11-8 D8 Q 98 q j
:22 R 11-9 51 51 62 52 R 11-9 72 r 12-11-9 D9 R 99 r i

23 S 0-2 22 62 63 53 S 0-2 73 8 11-0-2 E2 S A2 8
I

!24 T 0-3 23 63 64 54 T 0-3 74 t 11-0-3 E3 T .403 t
j25 U 0-4 24 64 65 55 U 0-4 75 u 11-0-4 E4 U .404 u

26 V 0-5 25 65 66 56 V 0-5 76 v 11-0-5 E5 V AS v !
I27 W 0-6 26 66 67 57 W 0-6 '17 w 11-0-6 E6 W A6 w I
I30 X 0-7 27 67 70 58 X 0-7 78 x 11-0-7 E7 X .407 x

I
31 Y 0-8 30 70 71 59 Y 0-8 79 Y 11-0-8 E8 Y .408 y
32 Z 0-9 31 n 72 SA Z 0-9 7A z 11-0-9 E9 Z A9 z I33 0 0 12 00 20 30 0 0 10 DLE 13-11-9-8-1 FO 0 10 DLE
34 1 1 01 01 21 31 1 1 11 DCI 11-9-1 FI 1 11 DCl
35 2 2 02 02 22 32 2 2 12 DC2 11-9-2 F2 2 12 DC2
36 3 3 03 03 23 33 3 3 13 Dca 11-9-3 F3 3 13 TM
37 4 4 04 04 24 34 4 4 14 DC4 11-9-4 F4 4 3C DC4

I

A-2
60492600A

CODE 0 (default)

Diaplay Hollerith BCD MeD EBCDIC
Code Puncb Upper Cue Lower Cue Upper Lower

(026) a-Bit
Octal Clar. Ext. Into ~t

Hex. Char. Punch Hex. Quar. Punch lfex. Char. Hex. Char.
@ @ @ 13 (029)

40 5 5 0& OS 25 35 5 6 16 NAK 9-8-5 FS 5 3D NAK

41 6 6 OG 08 26 3G 6 a 18 8YN 9-2 Fe 8 32 SYN

42 ., ., 07 0"1 27 31 '1 1 1'7 ETB 6-9-a F1 '1 26 ETB

43 8 , 10 10 30 38 8 8 18 CAN 11-9-8 Fa 8 18 CAN

44 9 9 11 11 31 39 9 9 19 EM 11-9-8-1 F9 9 19 EM

45 + U ao 20 1~ 2B + 12-8-6 OB VT 12-9-8-3 4E + OB vT
46 - 11 40 40 15 2D - 11 OD Cft 12-9-8-5 60 - OD Cft

41 • 11-8-4 54 54 12 2A • 11-8-4 OA LF 0-9-5 5C • 25 LF

50 / 0-1 21 61 17 2F / 0-1 OF m 12-9-8-7 61 / OF SI

51 (6-8-4 34 '14 10 28 (12-8-5 08 BS 11-9-6 4D (18 BS

&2) U-8-4 74 34 11 29) 11-8-5 09 fIT 12-9-5 5D) 05 HT

53 $ 11-8-3 53 63 04 24 $ 11-8-3 04 EOT 9-7 5B $ 37 EOT

54 = 8-3 13 13 35 3D = 8-8 ID OS 11-9-8-6 7E = ID lOS

55 space space 20 60 00 20 space space 00 NUL 12-0-9-8-1 40 space 00 NUL

56 • 0-8-3 33 73 14 2C • 0-8-3 OC FF '12-9-8-4 6B • OC FF

57 12-8-3 '13 33 16 2E · 12-8-3 OE SO 12-9-8-6 4B OE SO

60 .,® 0-8-6 36 76 03 23 t 8-3 03 I ETX 12-9-3 '7B , 03 'ETX

61 (8-1 1'1 17 '13 5B (12-8-2 lC FS 11-9-8-4 4A ~ lC IFS

62 J 6-8-2 32 72 75 5D] 11-8-2 01 SOH 12-9-1 5A I 01 SOH

63 ,,® 8-6 16 16 05 25 , 6-8-4 05 ENQ I 0-9-8-5 6C % 2D ENQ

64 -i" 8-4 14 14 02 22 " 8-'1 02 STX 12-9-2 7F II 02 STX

65 i- 0-8-5 35 75 '17 SF 0-8-5 7F DEL 12-9-7 6D - 01 DEL

U-O® -
12-8-7@))66 VI 52 62 01 21 I 7D } 11-0 4F I DO

I

fYt)\& 0-8-7 37 77 06 26 It 12 08 ACK 0-9-8-6 50 It 2E ACK

70 , I 11-8-5 55 27 I 8-5 01 BEL 0-9-8-7 7D I 2F BE~
I55 07
!71 I ? 11-8-6 56 66 37 3F ? 0-8-'7 IF US 11-9-8-7 6F ? IF IUS I

12 < 12-0@ 72 32 34 3C < 12-8-4@ '1B { 12-0 4C < CO { I
73 > 11-8-'1 57 57 36 3E > 0-8-6 IE as 11-9-8-6 6E > IE IRS

.:s@ @ " '1C i 79 " i"14 8-5 15 15 40 40 8-4 60 8-1 I
12-8-5 , 7C " 12-11 EO " 6A I j'15 ~, 75 3S '14 5C 0-8-2 ,

I
I

'76 .,/\ 12-8-6 76 38 '16 5£ 1\ 11-8-'1 7E tv 11-0-1 SF -, Al IV I
I

T1 ; 12-8-7 17 3'1 33 3D ; 11-8-6 IB ESC 0-9-7 5'E ; 2'1 ESC
1

60492S00A A-3

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit

0 1 2 3 4 5 6 1 8 9 A 8 C 0 E F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360

Hexadecimal

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

1 007 027 047 067 101 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370.

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

C 014 034 054 014 114 134 154 174 214 234 254 274 314 334 354 374

0 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000- 040- 100- 140- 200- 240- 300- 340-

037 017 137 177 237 277 337 377

I

A-4 60492600A

SCOPE 2

ASSEMBLY-TIME I/O B

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/o operations. Thus, COMPASS 3
can read and write files with a variety of external formats. For each of the files used by COMPASS,
the default format, and the combinations of file format description parameters that may be specified in
FIlIE control statements to override the defaults, are given below.

Main Source Input File

The main source input file may be a normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file. A normal source input file under SCOPE 2
comprtses the following:

File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequential (SQ)

unblocked

none

control word (W)

100 chars.

NO

unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X=allowed,
-=not allowed):

Block Record Type
Type F W Z

unblocked X X -
C X X X

I - X -
File Organization (FO) must be sequential (sQ).

Maximum Record Length (MRL) must not exceed 160 characters.

Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 char­
acters of each record are reproduced in the llsting output files.

60492600A B-1

If the file is a compressed compile file (written by UPDATE in X mode or MODIFyt in A mode),
COMPASS sets the file format description parameters to resemble normal input; however, MRL =
5120 characters.

Listing Output Flles

The default format under SCOPE 2 comprises the following:

Binary Output File

The only other formats that ~y be specified by FILE control statements are as follows (X=allowed,
-=not allowed):

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exceed 137 characters.

Label Type (LT) may be any value supported by the operating system.

I

none

sequential (SQ)

unblocked

control word (W)

137 chars.

NO

Unlabeled (UL)

File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (BT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

Block Record Type
Type F W Z

unblocked X X -
C X X X

1 - X -

lnLE control statements can be used under SCOPE 2 to specify the format of binary output files for any
of the operating systems, such that a program can be assembled under SCOPE 2 and the object program
executed under a different system if so desired.

tMODIFY Is not available Wlder SCOPE 2.

B-2 60492600A

I

File Characteristics SCOPE 2 NOS and NOS/BE 1

File Organization (FO) sequential (SQ) sequential (SQ)

Block Type (BT) unblocked character count (C)

Maximum Block Length (MBL) none 5120 chars.

Hecord Type (RT) control word (W) system-logical-record (S)

Maximum Record Length (MR L) 1,310,710 chars. none

Conversion Mode (eM) NO NO

Label Type (LT) Unlabeled (UL) ANY

No other formats are allowed, except that the label type (LT) can be any value supported by the operating
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format
under that system.

Scratch Files

COMPASS uses two scratch files named ZZZZZRL and ZZZZZRM, when table storage space overflows.
Regardless of what is specified by FILE control statements, COMPASS sets the file format description
parameters tor these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (eM) =NO.

For file ZZZZZRL:

Block'Type (BT) = Wlblocked.

Maximum Block Length = 5120 characters.

Kecord Type (RT) =Wldefined (U) Maximum Record Length =2550 characters.

~ For file ZZZZZRM:

Block Type (BT) :;::: character COWlt (C), Maximum Block Length =5120 characters.

~ Record Type (RT) = SCOPE logical (S), no Maximum Record Length.

~ ALL OPERATING SYSTEMS

System Text Input Files

A user library file designated by an S parameter on the COMPASS control statement must have the I
' standard library file format for the system on which COMPASS is being used.t COMPASS uses the
operating system overlay loader to access these files.

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control statement,
the default and permitted formats are the same as those given above for the COMPASS binary output file.

) t Overlay residence in user libraries is not currently supported by NOS.

604~2600 G I3-J

I

•

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction can have any of several format:;;.
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is empty
and (b) by inspecting the data in the file.

lf the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds the
file and reads until end of section or a COMPASS END statement is encountered, whichever comes first.
The default and permitted formats under SCOPE 2 are the same as those given above for the main source
input file,

If the XTEXT vat'iable field is non-empty, the file organization can be any of three non-standard types:

Record indexed with name index (under SCOPE 2 only).

,

• SCOPE 3,3 style random file with name index (not supported under SCOPE 2).

Update or Modifyt random program library file.

In each case, COMPASS sets the file format description parameters to the appropriate values; no FILE
contl'ol statement is needed.

The l'ecord indexed file organization is actually the word addressable (WA) file organization with a set of
format conventions superimposed on it. Such a file can be created by a FORTRAN program by using the
library subroutines OPENMS, STIN OX, WRITMS, and CLOSMS with a name index, or by a COBOL program

I specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects
such a file under SCOPE 2, it sets the file format description parameters as follows (no FILE card is
needed):

• File Organization (FO) =word addressable (WA).

• Block Type (BT) = unblocked. I
•
•
•

Record Type (RT) =control word (W); Maximum Record Length (MRL) =160 characters.

Conversion Mode (CM) :: NO.

COMPASS positions the file at the record pointed to by the index entry containing the name given in
the XTEXT statement variable field, and then reads records sequentially until end of section or a
COMPASS END statement is encountered, whichever comes first.

The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of
COMPASS. When COMPASS detects such a file, it searches the file index and positions the file at the
beginning of the specified section, and then reads sequentially until end of section or a COMPASS END
statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2.

I An Update or Modifyt random program library file is processed similarly. The name in the variable field of
the XTEXT statement must be the name of a common deck. When COMPASS detects such a file under
SCOPE 2, it sets the file format description parameters as follows (no FILE control statement is needed):

I tModify is not available under SCOPE 2 or NOS/BE 1.

B-4 60492600 G

File Organization (FO) =word addressable (WA).

Block Type (BT) = unblocked

Record Type (RT) == control word (W). Maximum Record Length (MRL) = 5120 characters

Conversion Mode (eM) =NO

COMPASS positions the file at the first card image of the designated section (common deck). For
an UPDATE program library, the first active card image (the *COMDECK card) is skipped.
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section
or a COMPASS END statement is encountered. whichever comes first.

60492600A B-5

BINARY CARD FORMATS

Column 1

C

7,8,9 levels 0 to 16
6,7,9
6, 7 , 8, 9 or 7, 8, 9 leveI 17
7,9
7 and 9 not both in column 1

1 2 3 4 5

End-of-sectLon
End-of-partition (NOS only)
End-of-information
Binary card
Coded card

12

11
o

1

2

3

4

5

6

7

8

9

-
"ll;;~ ...~-..... - Column Binary Information -0

C1 It) ... - Cl,)
;::1 0) fI)

8 0 §"l14

-0 0 ~- Q)
~

~
.0.

~ ... ::::. ... :::.. §

~
"0~zCl,)

§ l1.l Cl,)
;::1 0

en c:l
- ~ 8 OJ

0 5ea "0

m ~ ~d
c.>

~

l:7..~

:::=:::'

A binary card can contain up to 15 60-bit. CPU words starting at column 3. Column 1 also contains
a count of GO-bit words in rows 0, 1, 2, and 3 plus a check indicator in row 4. If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on
input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. If a
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logfcal record.

'60492600A C-1

HINTS ON USING COMPASS

1. Within a macro definition:

• Use comment statements having * in column one. These are not saved, whereas other types of
comments are saved.

• Whenever possible, minimize the number of lines of code.

• ffiP is faster than either ECHO or DUP.

• Use the substitute parameter flags ;A, ;B, and so forth, for macros, to avoid a second line.

• Within macros, use symbols such as .1, .2, and so forth, instead of local symbols.

• If possible, avoid recursive macro structure to increase assembly speed.

• If a macro call is the cause of an error, direct full list output to a rUe other than OUTPUT
(L=filename) to obtain a list of the erroneous macro call with the error listing.

2. In IF sequences:

.. Use line counts rather than ENDIF to terminate sequences.

• Use SKIP rather than IF PP to skip code.

3. Macros:

• Micro replacement is time-consuming.

• Avoid using local symbols for micros.

• Use :I ; tor a null substitution.

4. Minimize SYSTEXT size.

5. To reduce core requirements, use SEG statements in absolute programs.

6. Use NOREF tor symbols for which listing is not required.

o

7. Use QUAL for all overlays.

The program EXAMPLE (figure D-l) presents fundamental program organization. It also demonstrates I
some COMPASS coding conventions and illustrates efficient coding practice. The program obtains numbers
from six successive locations, adding the numbers one at a time to the running sum. The total is then
printed with a label.

60492600 G D-1

512008 C~ STORAGE USED
7bOO-TYPE CPU ASSEMBLY

327 55241~0555011~232705

331 1
3

" V -r"

0100000443 ..
312 51&0000331.

6160000327 +
315 7120000301"
317 71&0247021

321 00000000000000000001
322 00000000000000000002
323 00000000000000000003
324 00000000000000000004
325 00000000000000000005
326 00000000000000000006

THESE A~E

TIo4E ~U"8ERS

TO TOTAL.

TO OEFINE SYSTEM SYMBOLS

OUTPUT BUFFER

INITIALIze ADDRESS COUNTel TQ lEla
SET FOR USE AS A LOOP LIMIT
t~!TtALIZE RUNNING SUM TO zelo

GET NEXT MEMORY ADDRESS
INCRE~ENT THE ADDRESS COUNTE~

ADD NEW NUMBER TO RUNNING SUA
LOOP IF ADDRess eNT' , 1831

E~O OF PROGItAflI

443 STATEMENTS 78 SYMBOLS
0.l16 SECONDS 2' REFEIEMCES

~* THE A~sweR IS *
1
*-VORDS

1
Z
3
4
5
b

EXAMPLE
QEGtN
3018
OBUF.301B
1
80
6
o

TABlE+az
82+81
)(Z+X1
82,83,LOO"

COMC SYS
COMCWTH
COMCC 10
COMCCDO
BEGIN

DATA
DATA
DATA
DATA
DATA
DATA

RJ .XCOD CONVERT BINARY NUM8ER TO DISPLAY CODE
SA6 ANS STORE THE DISPLAY COOEO MUHseR 1M ANS
WRITEH OUTPUT,WO~OS.lE~ WRITES TO THE OUTPUT SUFFER
WRITER OUTPUT PRINTS CONTENTS OF OUTPUT BUFFeR
EMDRUN E~D QF ExeCUTABLE CODE

SA2
S62
IX1
HE

DATA
8SS
EQU

SST

XTEXT
XTeXT
XTEXT
XTEXT
END

IOENT
eNTRY
ass
FILEC
S81
sa2
583
"Xl

ACCESS TO EXTER~AL TEXT.

oauo:
OUTPUT

BEGIN

•

•
TABLE

•
LOOP

••VOROS
ANS
LEN
•••
•RNCPL
RNCPL
RNCPL
RNCPl

Octal Code
Assembled

5122000321 •
66Z~1

36121
0523000310 ..

301
17Z524Z0Z5Z400000~Ol

bllOOOOOOl
66200

6130000006
43100

310

311

301

o
301
306

332
372
425
440
452--Octal Location

Addresses

1
2
3
4
5
6
7
8

Ie
19
20
21
22
23

9
10
11
12

24
25
26

13
14
15
16
17

27

28
29
30
31
32

•
t.(
~

Figure D-l. Example COMPASS Program

33 THE ANSWER IS

••~

0)
o
tI::>o
CO
too:)
m
o
o
(;1

••••

Z1

•••• •. •• • ••••

One of the main considerations in assembly language programming is the reduction of execution time. Toe
instruction repertoire of COMPASS often allows an operation to be coded in several ways. The
programmer, therefore, should give careful consideration to the instructions used in the pt'ogram to
perform specific functions.

• Line 1. The IDENT pseudo instruction is always the first instruction in a program. It specifie~ a
program name (EXAMPLE, in this case) to identify the program to the assembler.

• Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to
begin. The main entry point in a program is the control transfer address.

• Line 3. The BSS instruction establishes the output buffer 08UF. The programmer has allocated
3018 words of storage for the buffer, as shown in the assembled octal code listed to the left of the
source code. Note that the octal code format for the pseudo instructions will differ from the format
for the symbolic machine instructions because pseudo instructions do not have single machine
instruction equi valents.

• Line 4. The operating system macro FILEC is called to create a file environment table (FET) for the
output buffer. Only the first word of the FET is shown in the octal code, but examination of the
location addresses reveals that the table is actually five words in length (the minim um length of a
PET). For more information about FETs, see the appropriate operating system reference manual.

• Line 5. The first executable line of code has been designated the main entry point for the program.
Incrementing by one occurs so often within a program that it has become a COMPASS coding
convention for register 81 to al ways be initialized to one, and to remain one throughout the entire
program. This is particularly important during the use of the common common decks (chapter 12), and
can be a factor in execution time (see Bl=1 pseUdo instruction) as well as in assembly time.

• Line 6. A counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the
cont.ents of the 80 register. 80 is hard-wired to zero, thereby avoiding the need for repeated
processing of the literal or constant zero.

• Line 7. Comparing the octal code for lines 6 and 7, the programmer can see the difference between
two forms of register-setting instructions. The IS-bit form of the instruction is used in line 6, where
only three bits are required to represent the BO register as the source of an operand. The 30-bit form
of set B register instruction is required for line 7, where the constant 6 is represented by the lower 18
bits of the instruction.

• Line 8. The mask instruction is normally used to extract fields from a register. Here, it is used
instead of the slower set X register instruction to initialize an X register.

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the
lower 15 bits of the current word in memory have been left blank. This is the result of a force upper.
The next instruction is too large to fit in the remaining IS-bit parcel, so COMPASS packs that parcel
with a no-operation instruction. The next instruction is placed at the beginning of the next word (see
section S.O.

• Line 9. The use of the set A register' instruction to obtain a word of data is demonstrated here. As
seen in the octal code, the address of the word (3218) is placed in the specified A register. The data
itself is placed in the corresponding X register (X2 in this instance). (See section 8.4.45.)

The plus sign (+) after the octal code indicates that the address or K portion of the instruction (the
lower 18 bits in this case) is relocatable.

• Line 10. The IS-bit format of the set B instruction is illustrated here. The first six bits contain the
oper'aUon code for the instruction (668 in this instance). The next three bits designate the
destination register (82) for the results of the instruction. The next three bits indicate the register
containing the first source operand (B2). The final three bits indicate the source register for the
second source operand (B O.

60492600 G D-3 •

••
•

•

Line 11. The number obtained in the previous instruction is added to the rUMing sum kept in Xl. This
is a 6G-bit add instruction, as opposed to the SXi instruction, which adds only IS-bit operands.

Line 12. The NE instruction shows another use of the B registers in testing for a conditional branch.
In each iteration of the loop, the source operands are compared. While they are unequal, control is
transferl'ed from this instruction back to LOOP. When the operands become equal, control passes to
the next instruction.

•••

• Line 17. Another operating system macro, ENDRUN, is called to terminate program execution.

• Line 15. Another method of accessing a common common deck is shown here. A call is made to a
system macro, WRITEH, which utilizes the common common deck COMCWfH to write 8 line from a
working buffer to an output buffer.

• Line 16. A call is made to the operating system macro WRITER to write the contents of the buffer
OHUF (with which the system communicates through the FET OUTPUT) to the system default output
file, also named OUTPUT. (For more information about operating system macros, see the appropriate
operating system reference manual.)

• Line 14. The method of storing an operand in memory is illustrated here. Setting register 1\6 or A7
to a valid address causes the contents of X6 or X7, respectively, to be stored in the address specified.
When COMCCDO has converted the word, it places the result in register X6, ready for storage upon
return to the calling routine.

•

••
••
•

I

Line 13. The return jump (RJ) instruction is used here to access a common common deck,
COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS
default method of defining external symbols. The =X indicates to the assembler that COO, the entry
point to the subroutine, is external to EXAMPLE.

The use of common common decks is important to the programmer. Note that the decks require
certain entry conditions. Specific arguments are expected to be in certain registers, for example,
upon entry to the routines. An efficient program will establish these conditions with a minimum of
data transfers by using the registers jUdiciously prior to the call. COMCCDD, for example, converts
an octal word to decimal display code; that word is expected to be in register Xl. For this reason, the
running total has been kept in Xl, avoiding the need for extt'a data transfers.

•

• Lines 18 through 23. DATA pseudo instructions are used here to establish a table comprising six
consecutive words in memory, starting at location TABLE. The default base mode is base 10 in
COMPASS (see section 4.4.1). •• Line 24. DATA is used here to set in memory a display-coded image of the characters specified, for
use in the output line. Ten 6-bit characters can be stored per word in this fashion. Therefore, more
than one word is required here, as seen from the location address on the next line.

• Line 25. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this
word is not initialized by the BSS instruction.

••• Line 26. The symbol LEN is equated with the value of the origin counter minus the address of
WORDS. This yields the length of the output line specified in line 15.

o Line 27. The SST instruction ensures that symbols from the system texts used by the program are
defined.

• Lines 28 through 31. These XTEXT pseudo instructions tell COMPASS to search the system-defined
program library OPL for the common common decks named. Declarations of this type are normally
grouped together after the end of the executable code for easy reference.

• Line 32. The END instruction signifies the end of the program. Control is released thrOUgh the
transfer address at BEGIN.

••••
• 0'-4 60492600 G •

0.051KC05.

O.OO]l<UNS.
O.041I(UNS.
1.42ZI(UNS.

lZ.f)19KUNS.
2.011SECS.
·l.912UNTS.

7~)5, 0.449KlNS.

The dayfile for the program is shown in figure D-2. It shows how the COMPASS program libl'ury was
obtained from a tape with the LABEL command and converted to a random access file via Update.

A~l4~FD. aO/04/1~.(~Z) SVl SNIlZ NJS.

03.1q.43.EXA~PlE.

08.19.43.JCCR, 7631,
08.19.43. USER stlltement.
O:.).t~.ltJ. Crf4RGE statement.
Oa.iq.43.C1MME~T. GET COMM1N CQ~MON DECKS FROM C
08.19.43.1~~AS) PROGRAM lIBPARV.
Oe.19.43.LA3El,CPl,R.D·Ht,F·SI,PO·URM,VSN·OUIOb~.

06.24~lO.~T53, ASS[G~EO TO CPl , VS~.OU10~b,

08,24.10.U~)AfE,~,P·CPl,N·RN~PL,L·OUTPUT.

06,24,29. UPDATE ~Jf1PLETe.

08.24.2Q.U~LaAO,CPl.

08.~4.JO.:l~P4SS(S,S·IPTEXT,S.:PUTF(T,XsQNCPL,1.

08.l4.31. h)SE~aL1 CJMPLETE. 512008 CM USED.
06.l4.11. 0.231 CPU SECONDS ASSEMRlY TI'E.
Oe.24.31.LGCJ.
Oa.?4.32.UE40,
06.24.32.UF.~F,

01).24.32.UI:'1r,
OB.24.3Z.lJE'1S,
0&J.?4.3?.UECP,
06.l4.)Z.AES~,

08.37.30.UCLP,

Figure n-2. Dayfile of Program EX AMPLE

60492()OO G D-5 •

DAYFILE MESSAGES E

m

The dayfile messages that can be issued by COMPASS are listed in table B-1.

The following message, with XXXXXXX denoting the name of the subprogram being assembled, is displayed at
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when­
ever it processes an IDENT statement with a non-blank variable field.

ASSEMBLING xxxxxxx

I
~

~

~

~

~

~

~

~

~
60492600 D E-1

TABLE E-l. DAYFILE MESSAGES

Message Significance Action

ASSEMBLY ABORTED - ECS READ ERROR. This message can occur only when Rerun job. If con-
the job has an ECS field length and dition persists, con-
is used on a CYBER 170 or CYBER tact a system
70/Model 71, 72, 73, or 74. COM- analyst.
PASS may store some of its inter-
nal tables in EeS. When an ECS
error persists through four at-
tempts to read the data, the mes-
sage is issued, and the job is
aborted. For the CYBER 10/
Model 76, LCM errors are hand-
led by the operating system.

ASSEMBLY ABORTED - ECS WRITE ERROR. This message can oecur only when Rerun job. If con-
the job has an ECS field length and dition persists, con-
is used on a CYBER 170 or CYBER tact a system
70/Model 71, 72, 73, or 74. COM- analyst.
PASS may store some of its inter-
nal tables in EeS. When an error
occurs in writing data to ECS, no
retry attempt is made. The mes-
sage is issued, and the job is
aborted. For the CYBER 70/Model
76, LCM errors are handled by the
operating system.

ASSEMBLY ABORTED - PASS n TABLE While processing the program indi- Rerun job inserting
OVERFLOW ASSEMBLING xxxxxxx cated by xxxxxxx, an irrecoverable an RFL statement

table overflow condition has occur- specifying suffi-
red in assembly pass n (l or 2). cient field length to
COMPASS allocates memory space assemble.
dynamically to all of its internal
tables. If one table overflows. they
all do. When the tables do not fit
in the available SCM space, COM-
PASS will request additional cen-
tral memory up to a threshold at
which time the intermediate rUe
and cross-references are dumped
to mass storage scratch files. If
table space is still inadequate,
COMPASS will request additional
central memory up to the maxi-
mum available to the job. When
insufficient SCM exists after all
such possibilities have been ex-
hausted, COMPASS issues the
message and aborts the job.

60492600E

Message

TABLE E-L DAYFILE MESSAGES (Cont'd)

Significance Action

ASSEMBL Y COMPLETE. nnnnnnB {~~} USED.

CPU {SECONDS ASSEMBLY TIME. }
xxxx.xxx - {ECS }

SEC. nnnnnnB LCM USED.

ASSEMBLY ERRORS. nnnnnnB {;~} USED.

xxxx.xxx CPU {SECONDS ASS~~~LY TIME.}
SEC.nnnnnnB {LCM} USED.

BAD CONTROL STATEMENT ARGUMENT - xx

60492600 D

If COM PASS did not detect any
fatal errors during assembly,
this message is issued at the
completion of processing of all
source programs on the input
file. The minimum field length
needed to perform the assem­
blies successfully is the octal
number of SCM words, nnnnnn.
If this number i3 larger than the
actual field length, it is the
minimum field length needed to
avoid lost references. The
second line of the message can
be suppressed by an installation
parameter; xxxx.xxx represents
the total central processor time
used by COMPASS, in seconds to
three decimal places. If any
ECS/LCM space was assigned to
the job, nnnnnn is the octal num­
ber of words used.

If COMPASS detected at least
one fatal error during assembly,
this message is issued at the
completion of processing of all
source programs on the input
file. If the A option was speci­
fied on the COMPASS control
statement, the job is aborted
after this message is issued. The
minimum field length need to
perform the assemblies success­
fully is the octal number of SCM
words, nnnnnn. The second line
of the message can be suppressec
by an installation parameter;
xxxx.xxx represents the total
central processor time used by
COMPASS, in seconds to three
decimal places. If any ECS/LCM
space was assigned to the job,
nnnnnn is the octal number of
words used.

The COMPASS control state­
ment contains an unrecognized
or invalid argument. The
offending argument is named in
the message.

No action required.

Correct the fatal
errors and
reassemble.

Refer to chapter 10
of this manual to
correct the COM­
PASS control
statement.

E-3

TABLE E-l. DAYFILE MESSAGES (Cont'd)

Message Significance Action

CANT LOAD COMP3$ The operating system loader Refer to the loader
reported a fatal error when diagnostics in the
COMPASS attempted to load its loader reference
primary overlay. This message manual for informa-
should be preceded by an explan- tion about the
atory message from the loader. specific loader

error.

COMPASS NEEDS AT LEAST nnnnnB SCM. The SCM field length for the Rerun job inserting
job is too small for COMPASS. an RFL statement
The number of octal words specifying suffi-
needed by COMPASS before it cient field length.

~ can begin processing is nnnnnn.
This number varies depending on
the version of COMPASS used
and the listing and binary out-
put options specified on the
control statement. It is an abso-
lute minimum number of words;

til it does not include whatever
space may be required for
system text, local macro and
micro definitions, and so forth.

nnnnnnnnn ERRORS IN xxxxxxx COMPASS issues this message Correct the fatal
for each source program in errors and
which fatal errors are detected; reassemble.
nnnnnnnnn is the number of
errors, and xxxxxxx is the sub-
progra~ name.

FILE USE CONTRADICTION. Control statement specifies Correct contra-
the same file name for two or diction.
more of the following:

- Source input- List output (full or short
list)- Binary output

- XTEXT source

IDENT STATEMENT MISSING. COMPASS issues this message Correct the source
for each source program in program to include
which an END statement is en- an IDENT and END
countered before an IDENT statement for each
statement is found. This is a subprogram.
fatal error.

IMPROPER SYSTEM TEXT FORMAT. A system text overlay does not Correct the inter-
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz have the internal format nal format of the

required by this version of system text
COMPASS. This may be caused overlay.

E-4 60492600 G

TABLE E-1. DAYFILE MESSAGES (Cont'd)

Message Significance Action

by a system error. COMPASS
ignores the bad overlay but does
not abort the job. The expres-
sion, x=yyyyyyy/zzzzzzz. iden-
tifies the offending overlay in
the same form in which it is
specified in the COMPASS con-
trol statement; it Llay be any of
the following:
- G=filenam
- G=filenam/overlay
- S=overlay
- S=library/overlay

INPUT FILE EMPTY OR MISPOSITIONED. When attempting to read the Correct the name
first line from the source input of the source input
file, COMPASS encountered end file or reposi tion
of data and aborted. the file.

INSUFFICIENT STORAGE FOR SYSTEM TEXT. When an irrecoverable table Increase the SCM
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz overflow occurs, COMPASS field length for the

issues this message before job.
the first assembly is begun. It
does not abort the job. The
expression, x=yyyyyyy/zzzzzzz,
identifies the system text being
loaded at the time.

nnnnnnnnn LOST REFERENCES IN xxxxxxx The symbolic cross-reference Increase the SC M
table is sorted before it is field length for the
printed. If the table does not fit job.
in the job's SCM field length
for sorting, COMPASS discards
some of the references. A
message is issued; nnnnnnnnn is
the number of references
discarded, and xxxxxxx is the
subprogram name. The job is not
aborted. The ASSEMBLY COM-
PLETE message gives the field
length needed to avoid lost
references.

MORE THAN 7 SYSTEM TEXTS SPECIFIED. COMPASS issues this message Restructure the job
and aborts the job, when the G to reduce the num-
and S parameters on the COM- ber of system text
PASS control statement specify overlays required.
a total of more than seven
system text overlays.

N PARAMETER OBSOLETE, IGNORED. The N parameter has been Remove the N
obsoleted by the BL parameter. parameter from I

60492600 G E-5

TABLE E-1. DAYFILE MESSAGES (Cont'd)

Message Significance Action

the control state-
ment.

NO CONTROL STATEMENT TERMINATOR. Before finding a parenthesis or Correct the con-
period not in a $-delimited trol statement.
string, COMPASS read continua-
tion control statements and
encountered an end-of-section.
This is not a fatal error.

RECURSION DEPTH EXCEEDED 400. COMPASS maintains a push- Correct the macro
down stack for source input con- call program error.
trol. This stack has one entry
for each active DUP, ECHO,
HERE, XTEXT, or macro call.
The maximum depth of the
stack is set by an installation
parameter; it is 400 in the
released system. When this
limit is exceeded, COMPASS
sets a fatal error and clears the
stack. The next statement can
then be read from the source
input file. The job is not aborted.
This error is usually caused by a
source program in which a
macro calls itself indefinitely.

SYSTEM TEXT NOT FOUND. When it cannot load the system For an overlay
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz text overlay identified by loaded from a

x=yyyyyyy/zzzzzzz, COMPASS library file, refer
issues this message. It does not to the diagnostics
abort the job. For an overlay in the loader refer-
loaded from a library file (8 ence manual. For
parameter), this message an overlay loaded
should be preceded by an from a non-library
explanatory message from the file, check that the
operating system loader. Foran overlay name is
overlay loaded from a non- specified correctly
library file (G parameter), and that the over-
COMPASS could not find the lay is located on
overlay on the file. the file.

nnnnnnnnn WARNING MESSAGES IN xxxxxxx COMPASS issues this message Correct the non-
for each source program in fatal errors and re-
which nonfatal errors are de- assemble.
tected; nnnnnnnnn is the number
of errors, and xxxxxxx is the
subprogram name.

60492600 G

ABSOLUTE BLOCK-

GLOSSARY

A block of object code generated in an abso lute assembly. The ABS pseudo
instruction is used to declare a program absolute.

F

ASSEMBLER - A computer language that prepares an executable program from a source
language program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic addresses.

BLANK COMMON BLOCK -
A common block into which no data is stored at load time. The first declaratlon
of a blank common block need not be the largest declaration for the common
block.

BLOCK -

CAPSULE -

A grouping of words of object code or storage within a subprogram for a
specific purpose.

A re locatable collection of one or more programs bound together in a special
format that allows the programs to be loaded and unloaded dynamically to form
an executing program by the Fast Dynamic Loading facility.

CENTRAL PllOCESSOfi UNIT (CPU) -
The high-speed arithmetic unit that performs the addition, subtraction,
multiplication, division, incrementing, logical operations, and branching
instructions needed to execute programs.

COMMENT LINE - A statement providing documentary information for a section of code. Comment
lines are indicated by either an asterisk in column 1 or blanks in columns 1
through 29, and are listed but not otherwise processed by the assembler.

COMMENTS FIELD - The field in a COMPASS statement providing documentary information for the
statement. It is listed but not otherwise processed by the assembler. This
field begins with the first nonblank character following the variable field, or
in column 30 if the variable field is blank.

CQMMON BLOCK - An area of memory that can be declared by more than one subprogram and used
for storage of shared data.

CONSTANT - An expression element consisting of a value represented in octal, decimal
hexadecimal, or character notation.

DATA ITEM - A type of character or numeric value that can be used in subfields of the DATA
and LIT instructions, and as specifications of field lengths on VFD pseudo
instructions.

ENTRY POINT - A location within a subprogram that can be referenced from other subprograms.
Each entry point has a name with which it is associated.

EXTERNAL llEFERENCE -
A reference in one subprogram to an entry point in another subprogram.

FORCE UPPE1{ -

60492600 D

To guarantee that an instruction begins on a word boundary by packing the
parcels remaining in a partially completed word with no-op instructions and
beginning to assemble the specified instruction in the next word. The assembler

F-l

automatically forces upper in some cases, and the user program can specify
that a gi ven instruction be forced upper.

lABELED COMMON BWCK-
A common block into which data can be stored at load time. The first program
declaring a labeled common block determines the amount of memory allocated.

LINKING - The process of matching external references to entry points of the same names
and inserting the addresses of the entry points into the external references.

LITERAL - A read-only constant. Conventionally, it is the only element in an expression.
Literals are stored in the program's literals block to avoid duplication of
read-only data.

LITERALS BLOCK - A block of literal data entries local to a subprogram.

LOAD SEQUENCE - One or more consecutive control statements processed by the loader as a
unit. A load sequence can be a single name call statement, or it can consist
of loader statements (such as LOAD and LDSET) that are terminated by NOGO,
EXECUTE, or a name call statement.

j

LOCAL BLOCK A storage area defined by a USE or USELCM pseudo instruction.

LOCATION COUNTER - Normally the same as the origin counter. Can be reset by the programmer to
relocate code or data without affecting relative positions within the block.

LOCATION FIELD- The first field in a COMPASS statement, usually providing a name for the
address of the instruction or for the entity defined by the statement. The
location field begins in column 1 or 2.

MACHINE INSTRUCTION -
A string of bits capable of being interpreted directly by a central processor
or peripheral processor as an instruction to perform some operation.

MACRO - A sequence of source statements that are saved and then assembled whenever
needed through a macro call.

MICRO - A character string identified by a symbolic name. Wherever the name is
encountered in the program, the character string is substituted.

OPDEF - A sequence of source statements that are saved and then assembled whenever
needed through an opdef call. Differs from a macro in that the assembler
interprets the call by examining the format or syntax of the instruction rather
than the contents of the operation field alone.

OPERATION CODE - A mnemonic opera tor, used in the operator field of a COMPAS S statement,
to indicate a specific machine instruction.

OPERATION FIELD - The field in a COMPASS statement indicating the operation to be performed. It
begins with the first nonblank character following the location field; or, if the
location field is blank, it begins with the first nonblank character after column
2.

OR IGIN COUNTER - A pointer indicating the relative location of the next word to be assembled or
reserved in a gi ven block.

F ... 2 60492600 D

OVERLAY -

PARCEL -

One or more relocatable programs that were relocated and linked together into
a single absolute program.

One of the I5-bit sections of a central memory word. A CPU machine instruc­
tion occupies one, two, or four parcels.

PERIPHE.tlAL PROCESSOd UNIT (PPU) -
An indi vidual computer with its own memory, used for high-speed transfer of
information (input and output) between peripheral devices and central memory.

POSITION COUNTER-
A pointer indicating the bit position within the word of the next item to be
assembled in a given block.

PROGJiAM - One or more subprograms capable of being executed as a unit.

PSEUDO INSTRUCTION -
An assembler-defined instruction appearing in the operation field of a statement.
It normally does not specify the assembly of a single machine instruction, but
instead specifies some other assembly process (such as symbol definition,
listing control, and so forth.)

QUALIFIED SYMBOL - A symbol defined when a qualifier is in effect during assembly. Through
qualification, the same symbol can be referred to in different subprograms
without conflict.

REFERENCE ADD.tlESS (RA) -
The first word in the field length of a job. Because of dynamic relocation, the
RA frequently changes with respect to the first word in central memory; but it
always remains the same with respect to other addresses within the job's
fie ld length.

REGISTER - A unit within the central processor used to hold operands. The A registers
contain the addresses of words within central memory; the X registers contain
operands used in calculations; the B registers are used for incrementing and
indexing.

RE LOCA TION - Placement of object code into central memory in locations that are not pre­
determined, and adj usting the addresses accordingly.

REMOTE ASSEMBLY - An operation ~n which code is assembled, saved, and then inserted into the
object code when specified.

STRONG EXTE.tlNAL - An external reference whose satisfaction is obligatory for program loading.

SUBPROGJiAM -

SYMBOL -

SYSTEM TEXT-

A group of COMPASS statements beginning with an IDENT pseudo instruction
and ending with an END pseudo instruction.

A set of characters that identifies a value and its associated attributes.

A set of tables containing symbol, micro, macro, and opdef definitions that
can be saved on a file to be accessed by other programs.

TRANSFE.d ADDRESS - The address of the entry point to which the loader jumps to begin program
execution.

60492600 D F-3

VARIABLE FIELD-

WEAK EXTERNAL-

ZERO BLOCK-

The field in a COMPASS statement identifying operands for the statement. It
consists of one or more subfields, and begins with the first nonblank character
after the operation field.

An external reference that is ignored by the loader during library searching
and cannot cause any other program to be loaded. A weak external is linked,
however, if the corresponding entry point is loaded for any other reason.

The nominal central memory block for a relocatable assembly. It is local to
a sub-program. Also, a zero block is created for an absolute assembly if
default symbols are used.

60492600 D

)

•

A abort mode 10-2
A code option 4-24

I A error 11-9
A list option 4-7.2
A reference table option 4-78
A register

description 8-7
designators 2-8

I setting 8-44
AUS attribute 4-G4
ABS pseudo

description 4-G
example -1-4,7,13,14, 1G, 17,44
first statement group 4-2

Absolute block
absolute program a-(i

I description 3-2
establishment 4-30
1'e locatable pt'ogram 3-5
using 4-30,31

Absolute program
declaration 4-6
structure 3-G

Absolute text 3-5
ACN instruction 9-21

I
ADC instruction

arithmetic function 9-4
description 9-9
example 2-20,9-9

ADD instruction
arithmetic function 9-4
description !)-12

Add unit
floating point 8-3, G, 37
long 8-3.8-39

Address modes, PPU 9-1
Address

absolute 4-4
direct 9-12
entry point 4-4,5,43
externa1 4-6,9,45
indexed 9-14
indirect 9-13

AnI instruction
arithmetic function 9--1
description 9-13

ADivI instruction
arithmetic function 9-4
description 9-15

ADN instruction
arithmetic function 9-4
description 9-8

AJM instruction 9-17

60492600 G

INDEX

AOD instruction
description 9-12
replace function 9-5

AOI instruction
description 9-13
replace function 9-5

AOM instruction
description 9-15
replace function 9-5

Arithmetic functions, PPU 9-4
Arithmetic shift 8-32
Arrow

parameter separator 5-8,13
special character 2-4

ASCII code
character set A-I
option 4-25

Assembler 1-1
central memory requirements 1-3; 10-1
statistics 4-71; 11-8

Assembly environment test 4-58
Assembly listing

detailed description 11-1
general description 4-71
generation 1-3

Assembly, remote code 5-3
Assembly time 11-8
Asterisk

BASE instruction 4-23
element operator 2-22
first column 2-1,2
local symbol separator 5-31
location counter 2-9; 3-4
parameter separator 5-8, 13, 16, 24. 28
special element 2-9,32; 3-4
USE instruction 4-30
USELCM instruction 4-32

Attribute, symbol 2-5
Attribute test 4-64
AXi instruction 8-30,32

B base 2-17,18;4-22
B binary mode 10-2
B list option 4-72
B reference table option 4-78
HI=I or D7:--=1 pseudo instruction

description 4-28
effect on R= 4-53
example 4-54
illegal for PPU 4-9,10

B register
conditional jumps 8-23
contents of 4-28
description 8-7

Index-1

I

desig-nators 2-8
setting 8-46

Base, assembly 4-22.1
COL column count 4-29
DIS word count 4-47
DUP count 5-6
ECHO count 5-7
line count 4-58,59,61,62,65,67,68
micro count 7-2,4
numeric value 2-16
overlay level numbers 4-4
P PU nu mber 4-4
REP counts 4-55
setting through BASE 4-22.2
SPACE line count 4-74
string count 2-13
VFD count 4-51

BASE micro 7-6
BASE pseudo

description 4-22.2
example 4-13, 19, 23, 47,49
permissible anywhere 4-2

Binary control statements 4-1, 72; 11-1
Binary load module 3-8
Binary mode 10-2
Binary output generation 1-3; 3-7, 9, 11, 13; 10-2
Binary write 3-8
Blank

compressed 5-1
embedded 2-1
expression terminator 2-1
name terminator 2-5
operation field 2-1
parameter separator 5-8,1:3
statement terminator 2-1
string terminator 2-14
lise in character data 2-14
variable field 2-2,3; 3-8

Blank card 4-74
Blank common

C:M 4-30
description 3-3
ECS 4-32
est.'1blishment 4-30,32
example 4-36
LCM 4-32
SCM 4-30

Blank fill 2-H
DIS 4-47

Blank operation field 4-45
Block copy instruction 8-13
Block group 3-1, 12, 14
Block group listing 11-2
Block

absolute 3-1; 4-32,36
blank common 3-3; 4-32,34
labeled common 3-2; 4-30
literals 2-11; :3-2, 3-5 thru 15
loea I 3-2; 4-30
maximum number 3-1; 4-30
origin assigned 1-2; :3-5,7
subprogram 3-1
used [or definition operation 5-2
lIser estahlished :3-2; 4-30, :32
zero :3-2; 4-30, :32

Index-2

Block name 3-3; 4-30, 32
Block name listed 11-1
Block origin 1-2; 3-5
Block usage sumrn ary 11-2
Boolean unit

description 8-3, 6
instructions 8-25, 26, 27, 28, 29, 34, 35, 36

Branch instructions
CPU 8-10, 11, 14,20, 23
PPU 9-5

Branch unit
description 8-3
instructions 8-10, 11,14,20,21,23

BSS pseudo
description 4-35
effect on origin cOlmter 3-3
example 4-4,7,10,16,28,33,36,37,40,44;

5-22,32
force upper 3-4

BSSZ pseudo
description 4-46
dumped by SEGMENT 4-16
example 2-19; 5-33,35
force upper 3-4

BXi instruction 8-25 thru 8-28
Byte, guaranteed zero 2-14; 4-48

C hardware feature code 4-8
C list option 4-72
C on octal listing 11-6
Call

equi valenced macro 5-25
macro 5-18
opdef 5-29

CC instruction 8-53
Central memory requirements 1-3, 10-1
Central processor unit

functional units 8-3,6
instructions 8-1
registers 8-7

Channel buffer instruction
read status 8-19
reset input 8-17
reset output 8-18

CHAR
define other character 4-24

Character codes A-I
Character data 2-13

code conversion 4-24
evaluation 2-27.
examples 2-12,15

CMU 8-50
Code

CPU operation 6-7; 8-1
duplication 5-6
Code other 4-24
PPU operation 6-3; 9-1
remote assembly 5-3
replication 4-55

CODE micro 7-6
CODE pseudo

description 4-24
effect on character datu 2-13; 4-47
example 4-25
permissible anywhere 4-2

60492600 G

I

I

I

I

Coding form 2-3
COL pseudo

description 4-9
octal listing 11-6

Column one 2-1
COM attribute 4-64
Comma

character string 2-13
column one 2-1
continuation 2-1
expression terminator 2-21
local symbol separator 5-31
name terminator 2-5
parameter separator 5-8,13,16,24,28
string terminator 2-13
subfield delimiter 2-1

COMMENT pseudo
description 4-20
example 4-13
first statement group 4-2

Comments colunm control 4-29
Comments field 2-2, 3; 4-29
Comments statement 2-2

heading of definition 5-13
micros not substituted 7-1
not counted 4-57; 5-7,8
permissible anywhere 4-2

Comments, prefix table 4-20

Common common decks
COMCARG 12-3
COMCCOD 12-3

I COMCCFD 124
COMCCRD 12-4
COMCCIO 12-4
COMCCOD 12-5
COMCCPT 12-5
COMCDXB 12-6
COMCMNS 12-6
COMCMa3 12-7
COMCMTM 12-8
COMCMTB 12-9
COMCMVE 12-13
COMCRDC 12- 13
COMCRDH 12-14
COMCRDO 12-14
COMCROS 12-15
COMCRDW 12-16
COMCRSR 12-16
COMCSFN 12-17
COMCSRT 12-17
COMCSST 12-17
COMCSTF 12-19
COMCSVR 12-19
COMCSYS 12-19
COMCUPC 12-21
COMCWOD 12-22
COMCWTC . 12-22
COMCWTH 12-22
COMCWTO 12-23
COMCWTS 12":'23
COMCWTW 12-24
COMCX.m 12-25
COMCZTB 12-25

60492600 G

Compare character strings 4-66
Compare expression values 4-60
Compare/Move unit 8-50
COMPASS call statement

description 10-2
effect on LIST 4-77

Compile file 10- 4
Comp and log difference instruction 8-30
Comp and log sum instruction 8-30
Complement instruction 8-29
Compressed code 5-1
CON pseudo

description 4-52
example 2-22; 4-53; 5-5.23,26
force upper 3-4

Concatenation 2-4
Concatenation mark 2-4

example of use 5-19
in definition 5-1

Conditional assembly 4-57
Conditional jump

B register 8-23
PPU 9-5
X register 8-21

Configuration 1-3
Constant

character 2-14
description 2-10
expression element 2-21.26
field size 2-11
generated by pseudo 4-52
numeric 2-16
read only 2-11

Continuation, statement 2-2
generation of lines 2-4; 7-1

Control statements
COMPASS 10-2
job statement 10-1

Counters, block control 3-3, 10, 12
Counter control

BSS 4-35
forcing upper 3-4
LaC 4-36
ORG 4-33
ORGC 4-33
POS 4-38
USE 4-30
USELCM 4-32

CPOP pseudo 6-7
CPSYN pseudo

description 6-10
permissible anywhere 4-2

CPU instructions
block copy 8-13
Boolean 8-25 thru 28, 34, 35, 36
branching 8-21, 26
channel buffer 8-17. 18
channel status 8-19
complement 8-28,29
conditional 8-21,23
direct LCM transfer 8-16
divide 8-42
double precision 8-37.40
ECS 8-12
error exit 8-11

Index-3

I

I

I

I

I

I

I
I

I
I

I

octal 2-17
DATA pseudo

description 4-46
example 2-15,19,20; 4-25,31,35.47
force upper 3-4 .

Data transmission, PPU 9-3
DATE micro 7-5
Date of listing 11-1
DCN instruction 9-21
Debug, interactive 1-4
Debug mode 10-3
Decimal exponent 2-17
Decimal notation' 2-17
DECMIC pseudo

description 7-4
example 5-6; 7-4
permissible anywhere 4-2

DEF attribute 4-65
Default symbols

definition 2-7
Hsting 11-9
unqualified 4-25
zero block 3-2

Deferred symbols
(see default symbols)

Definition
equivalenced macro 5-24
macro 5-13,15,24
micro 7-2
opdef 5-13,27
processing 5-13
purging 6-9
reference 5-18,25,30
symbol 2-6; 4-42
system 5-35

Definition operation
duplicated code 5-6
eqUivalenced macro 5-13
external text 5-2
macro 5-13
operation code 5-13
processing 5-14
recursion level 5-1
remote text 5-3

Delimiter
actual parameter 5-18,26
data item 2 -15, 16
expression element 2-21
field 2-1,2
substitutable parameter 5-8,13. 16
term 2-22

Descriptor, variable field 5-27
Destination field 2-26
Detailed listing 4-72; 11-1
DF instruction 8-23
Direct address 9-12
Directives, loader 4-21
Directory. error 11-9
DIS pseudo

description 4-47
example 4-47.49
force upper 3-4

Display code option
character set A-I
default mode 2-13
option 4-24

exchange exit 8-15
exchange jump, 6000 8-14
fixed point 8-38
floating point 8-33,36,37.39.40,42
increment 8-44, 46, 48
left shift 8-30, 31
logical 8-26 thru 31
long add 8-38
mask 8-41
multiply 8-39, 40
no operation 8-43
normalize 8-33
pack 8-35
pass 8-43
populati on 8-44
program stop 8-10
real-tim e clock 8-18
return jump 8-11
right shift 8-30, 32
set register 8-44, 46, 48
set time 8-18
shift 8-30 thru 33
single precision 8-36
transmit 8-25
unconditional jump 8-20
unpack 8-34

CPU program execution 1-3; 10-1
CPU register designators 2-8; 8-7
CRD instruction 9-16
Created symbol 5-31; 11-8
CRM instruction 9-16
Cross reference table

(see symbolic reference table)
CTEXT pseudo 4-77I CU instruction 8-54
CWD instruction 9-16
CWM instruction 9-16I CXi instruction 8-44

Dbase 2-17; 4-22.2
D code option 4-24
D debug mode 10-3

I D definition flag 11-14
D error 11-10
D hardware feature code 4-7
DUst option 4-72
Data generation 4-45
Data item

character format 2-13
DATA pseudo 4-47
general description 2-10
LIT pseudo 4-49
numeric format 2-17
VFD pseudo 4-51

Data notation
character 2-13
constant 2-10,13,16
decimal 2-17
element 2-10,21
fixed point 2-17
floating point 2-17
hexadecimal 2-21
item 2-10,13,16
literal 2-11,13,16
numeric 2-16

Index-4
60492600 G

I

Divide instructions 8-42I DM instruction 8-52
Dollar sign

local symbol separator 5-31
parameter separator 5-8,13,16,24,28
spec ial element 2-5

Double precision instructions 8-36,37.40
DUP pseudo

description 5-6
example 5-10,11
listing of count 11-6

Duplication
code 5-6
echoed 5-7
indefini te 5-7. 9

DXi instructions
add 8-37
multiply 8-40

E code option 4-25
• E entry point flag 11-14

E error 11-10
E list option 4-72
E numeric data modifier 2-17
ECHO pseudo

description 5-7
example 5-12

ECS blocks 4-32
Editing 2-4
EE numeric data modifier 2-17
ElM instruction 9-18
EJECT pseudo 4-74

permissible anywhere 4-2
Eject suppression 10-4
EJM instruction 9-17
Element

absolute 2-23
data 2-10
expression 2-21,26
external 2-24
operator 2-22
register 2-25
relocatable 2-9,24
special 2-9,21

ELSE pseudo
description 4-58
example 5-5
permissible anywhere 4-2

END pseudo
assembly of remote code 5-3
binary generation 3-6
description 4-4
effect on blocks 3-1, 6, 8, 10, 12
example 4-4; 5-7, 13, 14, 16
external text use 5-3
force upper 3-4
illegal definitions 5-1
permissible anywhere 4-2

ENDD pseudo
acting as nil 6-6
description 5-10
example 5-11
permissible anywhere 4-2
used with DUP 5-7
used with ECHO 5-8

60492600 G

ENDIF pseudo
acting as nil 6-6
description 4-57
permissible anywhere 4-2

ENDM pseudo
acting as nil 6-6
description 5-14
example 4-29; 5-11,15,19,20,21
permissible anywhere 4-2

End-of-line mark 5-1
ENDX pseudo 4-77
Entry address

absolute 4-3
declaration 4-43
multiple 3-12
relocatable 4-4

ENTRY pseudo
description 4-43
example 4-5,44

ENTRYC pseudo 4-43
Entry point list 11-4
Environment test 4-58
EOM instruction 9-18
EQ instruction

description 8-24
example 8-25
force upper 3-4

EQ IF operator 4-60
IFC operator 4-66

EQU pseudo
description 4-39
example 2-19,21; 4-19,37,39,62; 5-6
listing 11-6

Equal sign
default symbol prefix 2-7
instruction 4-39
literals prefix 2-11,13,17
local symbol separator 5-31
parameter separator 5-8, 13, 16,25,28

ERN instruction 9-12
ERR pseudo

description 4-69
Error, assembly

fatal 11-9
informative 11-12
programmer controller 4-69,70

Error directory
detailed description 11-9
general description 4-71

Error exit instruction 8-11
Error flags

conditionally set 4-69
fatal 11-9
informative 11-12
unconditionally set 4-70
where on listing 11-6

ERRxx pseudo 4-70
ES instruction 8-11
ESN instruction 9-22
ETN instruction 9-12
Evaluation of expression 2-26
Exchange exit instruction 8-15
Exchange jump instruction 8-14
Execution, CPU program 1-3
EXN instruction 9-10

Index-5

I

I F conditional flag 11-14
F error 11-10
F FORTRAN mode 10-3
F list option 4-72
FAN instruction 9-21
Fatal error flag 11-9I Features of COMPASS 1-2
Field

comments 2-2; 4-29
conv~ntional 2-3
delimiter 2-1,2
destination 2-25; 4-51
free 2-1I length, thresoold 1-3
location 2-1
operation 2-1
size 2-1
subfield 2-2
terminator 2-1
variable 2-2

File
COMPILE 10-3
INPUT 10-3
LGO 10-2
list output 10-3
load and go 10-2
OLDPC 10-5
OPL 10-5
OUTPUT 10-3

I

I

I

Exponent 2-17
Expression

absolute 2-23
attribute 4-64
comparison 4-60
CON use 4-52
description 2-21
evaluation 2-21,26;3-3
examples 2-24, 25
external 2-24
maximum size 2-26
operators 2-22
pass one value 2-26; 3-3
pass two value 2-26; 3-3
register 2-25; 8-2,9
rules 2-22
size 2-26
types 2-23
value 2-23,26; 3-3; 8-5
VFD 4-51

EXT attribute 4-64
External BCD

character set A-I
option 4-25

External symbol
declaration 4-45
descr_iption 2-5
strong 2-7
weak 2-7

External symbol list 11-4
External text

assembly 5-2
file declaration 10-3
listin~ 4-77

EXT pseudo
description 4-45
illegal in absolute code 4-6,9,10

source 10-3
SYSTEXT 4-17; 10-3,4,5
System text overlay 10-5

Fill
blank 2-14
zero 2-14

FIM instruction 9-18
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-38,40
FJM instruction 9-17
Flag, error

listing 11-6
setting 4-69
type 11-34

Floating point data notation 2-16
Floating point units 8-3, 6

add 8-36,37
divide 8-42
multiply 8-39,40

FNC instruction 9-21
FOM instruction 9-18
Forcing upper 3-4

BSS 4-35
CPU instructions 8-2
LOC 4-36
macro call 5-18,25
opdef call 5-27
ORG 4-33
ORGC 4-33
R= 4-53
USE 4-30
USELCM 4-32
VFD 4-51

Form, COMPASS coding 2-3
Format

control statement 10-1
CPU instruction 8-12
line 2-1
listing 11-1
PPU instruction 9-1

FORTRAN 4-4; 10-3
Full list 10-3
Functional units 8-3,6
Functions, PPU

arithmetic 9-4
data transmission 9-3
logical 9-4
replace 9-5

FXi instruction
add 8-37
divide 8-42
multiply 8-39

G assembly mode 10-3
G list option 4-72
GE instructions 8-23
GE IF operator 4-60

I FC operator 4-66
Generated code listing 4-72
Generation, data 4-46
Get text mode 10-3
GT instruction 8-23
GT IF operator 4-67

IFC operator 4-72
Guaranteed zero 2-14 4-48

I

Index-6 60492600 G

I

I

I

I

I

I

I

I

I

L control statement option
description 10-3
related to LIST 4-72

L error 11-11
L hardware feature code 4-8
L list option 4-72
L location flag 4-36; 11-14
Labeled common

description 3-2
establishment 4-30. 32

LeC pseudo
description 4-21
illegal if absolute 4-6,9.10

LCM attribute 4-64
LCM blocks 3-2; 4-32
LCM transfer instructions 8-13,16
LCN instruction

data transmission 9-3
description 9-8

LDC instruction
data transmission 9-3
description 9-9
example 2-20

LDD instruction
data transmission 9-3
description 9-12

LDI instruction
data transmission 9-3
description 9-13

LDM instruction
data transmission 9-3
description 9-15
example 5-21

LDN instruction
data transmission 9-3
description 9-8
example 5-12; 9-8

LDS ET pseudo
description 4-21
permissible anywhere 4-2

Left shift instruction 8-29,31
LE IF operator 4-60

IFC operator 4-66
LE instruction 8-24
Library maintenance programs 2-1
LGO control statement 10-6
Linkage symbols 2-6; 4-43
Listable output

assembled code 11-5
assembler statistics 11-8

J option 4-9,10; 9-5
JDATE micro 7-6
Job s'tatement 10-1
J P instruction

description 8-21
force upper 3-5

IRM instruction 9-18
IRP pseudo

acting as nLl 6-6
description 5-33
example 5-34, 35
permissible anywhere 4-2

IXi instructions 8-38,40

Hardware configuration 1-3
Hardware feature dependency 4-7
Heading

listing 4-71; 11-1
macro 5-13
opdef 5-13

HERE pseudo
description 5-4
permissible anywhere 4-2

Hexadecimal data 2-21

I code option 4-21
I hardware feature code 4-7
I input mode 10-3
I NOLABEL option 4-21
lAM instruction 9-20
IAN instruction 9-19
IBj instruction 8-20
ID instruction 8-22
IDENT pseudo

binary generation 3-8, 9, 10
blank variable field 3-14; 4-11
description 4-2, 11
example 4-4,7,13,14,16,17,19
force upper 3-4
overlay generation 3-8, 9, 10
program identification 4-2

IF pseudo 4-63
IF skipped lines listed 4-72
IFCP pseudos 4-59
IFe pseudo

description 4-66
example 5-5,11
permissible anywhere 4-2

IFop pseudo 4-60
IFPP pseudo 4-59
IFtype pseudo 4-59
IJM instruction 9-17
1M instruction 8-51
Increment unit 8-3, 6, 44, 46, 48
Indexed address, PPU 9-14
Index register 8-7
Indirect address, PPU 9-13
Input, assembler 10-3
Instructions

coding of 2-1
CMU 8-49
CPU 8-1
mnemonically identified 6-3
nil 6-6
no-operatlon 8-43; 9-9

\ PPU 9-1
pseudo 4-1
redefinition 5-16,25
synonymous 6-5, 10
syntactically identified 6-7

Integer add 8-37
Integer subtract 8-37
Integer multiply 8-40
Integer value 2-17

I Interactive debugging 1-4
Internal BCD

character set D-l
option 4-24

Invented symbol 5-32; 11-8
m instruction 8-22

60492600 G Index-7

I

I

I

I

binary control cards 11-1
block usage 11-2
control statement 10-3
default symbols 11-8
entry point symbols 11-4
error directory 11-9
error Clags 11-9 thru 12
external symbnols 11-4
header information 11-1
literals 11-7
source statements 11...5
statistics 11-8
subtitles 11-1
symbolic reference table 11-13
titles 11-1
user control 4-77; 10-3,4

List, full 10-3
Listing control

eontr·ol statement 10-3,4
pseudo 4-71

List, parameter
ECHO 5-8
equi valenced macro 5-25
macro 5-18

LIST pseudo
description 4-71
exampie 4-13; 5-6,12
permissible anywhere 4-2

List, short 10-4
Literals

I absolute program 3-6, 7, 10, 11
description of block 3-1, 2

I IDENT 3-10, 14
listing 11-7
location 1-3; 3-1,2
notation 2-11

protection 4-33
SEGMENT overlay 3-10
SEG partial binary 3-12
symbol (default) 2-7

LIT pseudo
description 4-49
example 2-12,17,21; 4-15,56; 5-6
listing 11-6,7

I.JM instruction
description 9...6
example 5-21

LMC instruction
description 9-9
logical function 9-5

LMD instruction
description 9-12
logical function 9-5

LMJ instruction
description 9-13
logical function 9-5

LMM instruction
description 9-15
logical function 9-5

LMN instruction
description 9-8
logical function 9-5

LO control statement option 10-4
Load address 4-3

I Load-and-go file 1-3. 10-2

rndex--8

Loader control statement 4-21
WC attribute 4-64
Local blocks 3-2

absolute program 3-6
description 3-2
establishment 4-30, 32
relocatable program 3-5

LOCA L statement
description 5-31
example 5-32
heading 5-13

Local symbol
CPU instruction 8-4
macro body 5-13
subprogram 3-1; 4-27

Location counter
BSS 4-35
control 4-36
description 3-4
forced upper 3-4
ORG 4-33
ORGe 4-33
special element 2-9; 3-4
USE 4-30
USELCM 4-32

Location field
listing 11-6
s tatemen t 2-1

LO control card option
description 10-4
related to LIST 4-71

WC pseudo
description 4-36
example 4-37,53
location counter changed 3-4

Logical difference instruction 8-27
Logical functions, PPU 9-4
Logical minus 2-22
Logical product instruction 8-26
Logical product and complement instruction 8"'28
Logical shift instruction 8-29, 31, 32
Logical sum instruction 8-26
Long add uni t

description 8-4, 6
instructions 8-38

LPC instruction
description 9-9
logical function 9-5

LPN instruction
description 9-8
logical function 9-5

LT IF operator 4-60
IFC operator 4-64

LT instruction 8-24
LXi instruction 8-29, 31

,example 2-19

M base option 4-22.2
M list option 4-72
Machine test 4-58
MACHINE pseudo 4-7
Macro

body 5-13
call 5-18,25
equi valenced 5-24

60492600 G

I

I

definition 5-13
header 5-14
list cootrol 4-72
name 2-2; 5-15,18,25; 6-1
permissible anywhere 4-2
processing 5-1,14
system defined 4-73; 5-35
terminator 5-14

MACROE pseudo
description 5-24
example 5-26

·IRP related 5-33
operation code table entry 6-1
permissible anywhere 4-2

MACRO pseudo
description 5-15
example 4-29,74; 5-5,19,20,21,22,32,33,34
IRP related 5-33
operation code table entry 6-1
permissible anywhere 4-2

MAN instruction 9-10
Mask instruction 8-3
Mass storage, system 1-3
Master list control 4-71
MAX pseudo

description 4-40
lis ting 11-6

I MD ins truction 8- 51
MESSAGE macro 12-25
MI instruction 8-22, 24
MIC attribute 4-65
MICCNTpseudo

description 4-42
example 4-42
listing 11-6
permissible anywhere 4-2

MICRO
decimal 7-4
definition 4-22,25,26; 7-2
editing 2-4
mark 2-4; 5-1
octal 7-4
reference 7-1
size 4-42; 7-2
system defined 4-17; 7-2,5
test for 4-65

MICRO pseudo
description 7-2
example 4-42; 5-11; 7-2,3
permissible anywhere 4-2

M1 instructions 8-22,24
MIN pseudo

description 4-41
listing 11-6

Minus as local symbol separator 5-31
Minus as parameter separator 5-8,13,16,24,28
Minus on listing 11-6
Minus operator 2-21,22; 8-4
Minus sign in location field

CPU instruction 3-4,5; 4-51
PPU instruction 3-4; 4-51
Vl"D instruction 4-51

MJ instruction 8-16
force upper 3-4

60492600 G

MJN instruction
description 9-6
effect of J 4-9, 11

ML control statement option 10-4
Mnemonic operation code

legal operation field entry 2-1
OPDEF defined 5-27
search for (i-l

Modifiers, numeric data 2-17
MODIFY common decks 5-2
MODLEVEL micro 7-7
MOVE maero 12-28
Multiple entry point table

suppression 4-20
used for overlays 3-12

MXi instruction
description 8-41
example 2-19; 8-41

MXN instruction
description 9-10

N eject mode 10-4
N error 11-11
N Hst option 4-73
Name

block 4-30,32
different types 2-4
duplicate code 5-7, l:'l
general description 2-4
IF sequence 4-57
macro 5-16
micro 4-22,24,26; 7-2,4,5
mnemonic operation 6-1
overlay 4-11,15
parameter 5-8
remote code 5-3

NE instructioo 8-24
NE IF operator 4-60

IFC operator 4-66
Nesting, level of 1-3
NO instruction 8-22,24
NIL pseudo 6-6

permissible anywhere 4-2
NIM instruction 9-18
NJN instruction

description 9-6
effect of J 4-9, 10

NO eject option 10-4
NO instruction 8-43
NOLABEL pseudo

description 4-20
permissible anywhere 4-2

NOM instruction 9-18
NOREF pseudo 4-76

permissible anywhere 4-2
Normalize instruction 8-33
Normalize unit

description 8-6
instructions 8-33

Not equal sign
parameter separator 5-8, 13
special character 2-4

Numeric data 2-16
NXi instruction 8-33
NZ instruction 8-22,24

Index-9

I

I

I

I

o base 2-18; 4-22.2I 0 error 11-11
o mode 10-4
OAM instruction 9-20
OAN instruction 9-19
OBj instruction 8-20
Octal Hsting 11-5
Octal notation 2-16
OCTMIC pseudo 7-4

permissible anywhere 4-2
OLDPL file 10-3
Opdef

body 5-13
call 5-29
definition 5-13
heading 5-13
list control 4-72,73
processing 5-14
system defined 4-17,33

OPDE F pseudo
description 5-27
example 5-29,30,31,32
operation code table entry 6-1
permissible anywhere 4-2

Operand register 8-8
Operation code table 6-1
Operation code value

CPU 6-7; 8-1
PPU 6-3; 9-1

Operation, definition
compressed 5-1
duplicated text 5-6
external text 5-2
general description 5-1
macro definition 5-13
opdef definition 5-13
remote text 5-3
system 5-35

Operation field
blank 4-46
description 2-1
search 6-1

OperatorI element 2-22
mnemon ic 5-27; 6-3
register 2-21; 5-28; 6-7
term 2-22

Operator with constant 2-13, 16OPL file 5-2; 10-3; 12-1
OPSYN pseudo

description 6-5
perm issible anywhere 4-2

ORG pseudo
description 4-33
determine blocks 3-1
establish absolute blocks 3-2; 4-33example 4-4,7, 13, 14, 16
location counter changed 4-33origin counter changed 3-3; -1-33ORGC pseudo 4-33

Origin
multiply entry point 4-3
overlay 4-12,15
program 4-3

Origin counter
BSS 4-35

Index-lO

control 3-3; 4-33,35
description 3-3
final value, absolute 3- 6
final value, relocatable 3-5
forced upper 3-4

ORG 4-33
ORGC 4-33
special element 2-9; 3-3
USE 4-30

OR instruction 8-22
ORM instruction 9-18
Overflow error 2-17
Overlay

absolute 3-8
control tables 4-21
entry point 4-12, 15
general description 3-6, 8
level numbers 4-4, 12, 15
multiple entry point 3-12
name 4-12, 15
origin 4-12, 15
PPU 3-7,9
primary 3-8, 9, 11, 13; 4-12, 15
secondary 3-6, 8, 9; 4-12, 15

P error 11-11
P numeric data modifier 2-17
P pagination mode 10-4
Pack instruction 8-35
Padding of CPU word 3-4; 4-51; 8-2Page heading 11-1
Page number 11-1
Pagination control 10-4
Parameter

actual 5-7,18,25
embedded 5-18,25
formal 5-8,13
indefinitely repeated 5-34
iterative 5-18,25,34
substitutable 5-8, 13, 16,25,28, 34Parameter mark 5-9,13

Parameter, null 5-9,18,25
Parameter separator

actual 5-18,25
formal 5-8,13,16

Parcel 8-1
Parentheses

local symbol separator 5-31
nested 5-9
parameter separator 5-8,13,16,25, 28Partial binary
IDENT type 3-14
SEG type 3-12

Pass instruction
CPU 8-43
PPU 9-9

Pass one
expression evaluation 2-23,26,28; 3-3general description 1-3
maximum test 4-40
minimum test 4-41
symbol definition 2-6

Pass two
expression evaluation 2-22,26; 3-3; 8-2general description 1-3

60492600 G

I

I

I
I
I

I
I

I

I

I

I

symbol definition 2-5
value for MAX 4-40
value for MIN 4-41

PC control statement option 10-4
PCOMMENT micro 7-7
PD control statement option 10-4
PERIPH pseudo

description 4-10
effect on branch instructions 9-5
example 4-47; 6-5
first statement group 4-2

PJ N instruction
description 9-6
effect of J. 4-9,10

PI. instruction 8-22, 24
Plus in location field

CPU instruction 3-4
PPU instruction 3-5
VFD instruction 4-51

Plus as parameter separator 5-8,13, 16, 25,28
Plus as local name separator 5-31I Plus on listing 11-6; 0...2, 3
Plus operator 2-21, 23; 8-4
Point

binary 2-18,19
decimal 2-18, 19
octal 2-18,19
par.ameter separator 5-8,13,16,25,28
register designator 2-8I Population unit 8-44

Position counter
control 4-38,51
description 3-4
special element 2-9; 3-4

POS pseudo 4-38
Post radix 2-17
PPOP

description 6-3
example 5-12; 6-5
permissible anywhere 4-2

PPU instructions 9-1
A-register I/o 9-19
block I/O 9-19
branch I/O 9-17,18
branch 9-5
central read/write 9-15
channel function 9-21
constant mode 9-8
designators 9-3
direct address 9-12
error stop 9-22
exchange jump 9-10
format 9-1
functions 9-3
indexed direct address 9-14
indirect address 9-13
no address 9-7
no operation 9-9
output record flag 9-20
shift 9-7

PPU pseudo
description 4-8
effect on branch 9-5
example 4-10,52
first statement group 4-2

60492600 G

Prefix table
comments 4-20
generation 3-6, 7, 8
suppression 4-21

Preradix 2-17
Program, absolute 3-6; 4-6 .
Program execution 10-5
Program identification 4-2
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8-10
Program structure 3-1
PS control statement option 10-4
Pseudo instructions

binary control 4-6
block counter control 4-30
conditional assembly 4-57
data generation 4-45
definition operation 5-1
error control 4-69
first statement group 4-2
introduction 4-1
listing control 4-71
micro 7-1
mode control 4-21
operation code table management 6-1
operation field entry 2-2
permissible anywhere 4-2
required 4-2
subprogram identification 4-2
subprogram linkage 4-43
symbol definition 4-38
types 4-1

PS instruction
description 8-10
force upper 3-4

PSN instruction 9-9
PURGDEF pseudo

description 6-10
permissible anywhere 4-2

PURGMAC pseudo
description 6-7
example 6-6
permissible anywhere 4-2

Push down stack 1-3
PXi instruction 8-35

Q to represent expression 5-27; 6-8
Qualifier, symbol 4-25

used for definition operations 5-2
QUAL micro 7-6
QUAL pseudo

description 4-25
example 4-13,28; 5-22
permissible anywhere 4-2

R error 11-11
R hardware feature code 4-8
R list option 4-73
R== pseudo

description 4-53
example 4-54; 5-21
illegal in PPU program 4-9,10

Index-ll

I
I

I

I

RAD instruction
description 9-12
replace function 9-5

Radix 2-17
RA I instruction

description 9-13
replace function 9-5

RAM instruction
description 9-15
replace function 9-5

Real-time clock set instruction 8-18
Record name, external text 5-3
Recursion level 1-4; 5-1
Recursion stack 1-4; 5-1
Reference

macro 5-18
macroe 5-24
nested 5-1
opdef 5-27

Reference table, symbolic 11-13
Hegisters, CPU 2-8; 8-7
Register designators

CPOI' 6-7
description 2-8; 8-7
not symbols 2-5
OPDEF 5-27
OPSYN 6-5
PURGDEF 6-10

RE instruction
description 8-13
force upper 3-4

READe macro 12-28
READH macro 12-28
READO macro 12-29
READS macro 12-29
READW macro 12-29
RECALL macro 12-30
REL attribute 4-64
Helocatable program structure 3-5
Relocatable test 4-64
Remote assembly 5-3
Repeat count

DUP 5-7
replication 4-55

RE P pseudo 4-55
REPC pseudo 4-55
REPI pseudo

example 4-55
description 4-55
illegal if absolute 4-6,9, 10

HEPL table
result of BSSZ 4-46
result of REPtREPC, or REPI 4-55
written by SEGMENT 4-15

Replace functions, PPU 9-5
Replication of code 4-55
Return jump, CPU 8-11
HFN instruction 9-20
RI instruction 8-18
Right shift 8-30, 32
RJ instruction

description 8-12
example 4-31; 5-21; 8-12
force upper 3-5

Index-12

RJM instruction 9-6
RL instruction 8-14
RMT pseudo

description 5-3
example 5-5, 6
permissible anywhere 4-2

RO instruction 8-19
Round and normalize instruction 8-34

RPN instructions 9-11
RXi instructions

add 8-38
divide 8-42
multiply 8-39

RXj instruction 8-17

S list option 4-73
S numeric data modifier 2-18
S storage flag 11-14 I
S system text mode 10-5
SAi instructions

description 8-44
example 2-15,16,19; 4-31,36; 5-22,33; 8-45

SBD instruction
arithmetic function 9-4
description 9-12

SBI instruction
arithmetic function 9-4
description 9-13

SBi instructions
description 8-46
example 2-9, 12; 8-47

SBM instruction
arithmetic function 9-4
description 9-15

SBN instruction
arithmetic function 9-4
description 9-8

Scale, binary 2-18
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction

description 9-8
logical function 9-5

SEG pseudo
binary generation 3-12 I
description 4-15
example 4-16
force upper 3-4
illegal in PPU program 4-9,10

SEGMENT pseudo
binary generation 3-8t 9, 10, 12 I
description 4-16
example 4-17
force upper 3-4
illegal in PPU program 4-9, 10
overlay structure 3-10, 12 I

Semicolon in definition 5-8,13
SEQUENCE micro 7-7
Sequencing

listing 11-7
statement 2-1

SET attribute 4-64
Set instructions 8-44 thru 8-49 I

60492600 G

SET pseudo
description 4-39
example 2-9,20; 5-11,22
listing 11-6

Shift
description of unit 8-3,6

I CPU instructions 8-29 thru 8-32,41
PPU instructions 9-7

SHN instruction 9-7
Short jump limit 4-9,11
Short list 10-4
Single precision instructions

I add rounded 8-37
add unrounded 8-36
divide rounded 8-42
divide unrounded 8-42
multiply rounded 8-39
multiply unrounded 8-39

SKIP pseudo
description 4-68
permissible anywhere 4-2

Slant bar
local symbol separator 5-31
operator 2-22
parameter separator 5-8,13,16,24,28

SOD instruction
description 9-12
replace function 9-5

Sal instruction
description 9-13
replace function 9-5

SaM instruction
description 9-15
replace function 9-5

Space, embedded (see blank)
SPACE pseudo

description 4-74
permissible anywhere 4-2

Special elements
FORTRAN call 2-9
general description 2-9
in variable field 2-2
location counter 3-4

I origin counter 3-3
position counter 3-4

SST attribute 4-65
SST pseudo 4-43

example 4-13
permissible anywhere 4-2

Stack, recursion 1-4; 5-1
Statement

coding conventions 2-3
comments 2-2
compressed 5-1
continuation 2-2
external source 5-2
first column 2-1
first group 4-1
format 2-1
listing 11-5
number assembled 11-8
size 2-1
source of 5-1; 10-3

Statistics, assembler 11-8
STD instruction

data transmission function 9-3
description 9-12

60492600 G

STEXT pseudo
description 4-17
example 4-19
first statement group 4-2

STI instruction
data transmission function 9-3
description 9-13

STM instruction
data transmission function 9-3
description 9-15

STOPDUP pseudo
description 5-9
example 5-11

Storage reservation 4-35, 46
String, character

comparison 4-66
data generation 4-47
delimited 2-11, 14
empty 2-14
micro 2-4
notation 2-13

Strong external 2-7
Subprogram length 3-5
Substitution, micro 7-1
Subsubtitle

CTEXT 4-77
EJECT 4-74
listing of 11-1
QUAL 4-25
SPACE 4-74
TITLE 4-75
TTL 4-76

Subtitle
CTEXT 4-77
listing of 11-1
TITLE 4-75

SXi instruction
description 8-48
example 2-15, 19; 5-21,31; 8-48

Symbol
attribute 2-6; 4-37, 64
created 5-32
default 2-7
definition 2-5; 4-38
duplicate 2-6
entry point 2-6
external 2-7
invented 5-32; 11-8
literals 2-6
local to macro 5-13,31
local to QUAL 3-1
location field 2-6
lost 11-8,13
number defined 11-8
number referenced 11-8
previously defined 2-7
qualified 2-7; 4-25
redefinition 4-27, 39
system-defined 2-6; 4-43
undefined 2-7
value 2-6; 4-37

Symbol qualifier listed 11-1
Symbol table

clearing 3-10, 12
system text 4-17

Symbolic reference table
address reference 4-78

Index-I3

I

I

I

I

I

I

I

detailed description 11-12
general description 4-71
generation 1-3
list control 4-71; 10-3
omit symbol 4-76

Synonymous operation
CPU 6-10
mnemonic 6-5
PPU 6-5
syntactic 6-7

Syntax definition 5-27; 6-7,10
Syntax search 6-1
SYSTEM macro 12-30
System text 4-19
SYSTEXT option 10-4

related to G mode 10-4
related to STEXT 4-17

T list option 4-73
Table

operation code 6-1
symbolic reference 11-12
USE 4-30

TBj instruction 8-18
Term 2-22
Term operator 2-22
Terminator, macro 5-13
Test symbol attribute 4-64
Time limit 10-1
TIME micro 7-6
Time of assembly 11-1
Title

ES 8-11
IDENT 4-3
listing of 11-1
PS 8-10
TITLE 4-75

TITLE pseudo 4-75
permissible anywhere 4-2

Transfer symbol 4-4
Transmit instruction 8-25
Truncation, character data 2-13

expression value 2-26
TTL pseudo 4-76

permissible anywhere 4-2

U error 11-11
UJN instruction

effect of J 4-9, 10
description 9-6

Unconditional jump
CPU 8-20
PPU 9-6

Underflow error 2-18
Unpack instruction 8-35
USE pseudo

change blocks 3-1, 2, 3, 5; 4-30
description 4-30
establish common blocks 3-2,3; 4-30
establish local blocks 3-2; 4-30
example 4-17,28,29,31,34,36

USE table
entry 4-30, 32, 33
reinitialization 3-10, 12; 4-11

USELCM pseudo
description 4-32

Index-14

establish common blocks 3-2, 3
exam pIe 4-33
illegal in PPU program 4-9,10

USER control statement 10-7
UXi instruction 8-34

V error 11-11
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-51
VFD pseudo

description 4-51
example 2-15; 4-23,28,31,52; 5-22

WE instruction
description 8-13
force upper 3-4

Weak external 2-7
WL instruction 8-14
WRITEC macro 12-31
WRITEH macro 12-31
WIUTEO macro 12-31
WRITES macro 12-32
WRITEW macro 12-32
WXj instruction 8-17

X external flag 4-45; 11-6
X external text mode 10-5
X flle option

description 10-5
XTEXT default 5-3

X hardware feature code 4-8
X list option 4-73
X register

conditional instructions 8-21
description 8-3
designator 2-8
setting 8-48

XJ instruction
description 8-15
force upper 3-4

XREF pseudo
description 4-78
permissible anywhere 4-2

XTEXT pseudo 5-1
related to CTEXT/ENDX 4-77

XTEXT source 10-5

Zero block
absolute program 3-2, 6, 7
description 3-2
relocatable program 3-5

Zeroed words 4-46
Zero fill 2-14, 4-51
Zero guaranteed

data item 2-14
DIS item 4-48

ZJN instruction
description 9-6
effect of J 4-9, 10

ZR ins truction
description 8-22,24
force upper 3-4

ZXi instruction 8-34

60492600 G

I

I
I

I

I

I

	Revision Record
	List of Effective Pages
	Preface
	Contents
	1. Introduction
	2. Language Structure
	3. Program Structure
	4. Pseudo Instructions
	5. Definition Operations
	6. Operation Code Table Management
	7. Micros
	8. CPU Symbolic Machine Instructions
	9. PPU Symbolic Machine Instructions
	10. Program Execution
	11. Listing Format
	12. Common Common Decks
	A. Character Sets
	B. Assembly-Time I/O
	C. Binary Card Formats
	D. Hints on Using COMPASS
	E. Dayfile Messages
	F. Glossary
	Index

