60492600

(=1 £ CONTROL DATA
\Z1 =/ CORPORATION

COMPASS VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION DESCRIPTION

A Original release.
(11-01-75)

B Manual revised to reflect a new feature and to clarify existing material. The new feature is:
(03-05-76) CP 147, LDSET pseudo instruction. See list of effective pages.

C This revision reflects feature F7540, Model 176 support, feature CP154, Weak Externals, and
(03-25-77) feature CP161, Fast Dynamic Loader, as well as miscellaneous technical corrections, at PSR level 446.

D This revision documents COMPASS Version 3.5. New features include the DEBUG preset option and
(03-31-78) 8 lines/inch density on the load map.

E This revision documents COMPASS Version 3.6, PSR level 485. New features include the PD and PS
(10-31-78) control statement parameters and common common decks.

F This revision reflects the introduction of SEGLOAD common blocks. An error list parameter is added
(06-29-79) to the COMPASS call. Numerous minor technical corrections are made to section 12.

G This revision documents support for CYBER 170 Models 720, 730, 740, 750, and 760. An example
(07-07-80) program is included. Minor technical corrections are made throughout.

Publication No.
60492600

REVISION LETTERS 1, O, Q AND X ARE NOT USED

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

© COPYRIGHT CONTROL DATA CORPORATION 1975, 1976, 1977, 1978, 1979, 1980
Al Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is
affected. A bar by the page number indicates pagination rather than coutent has changed.

Page Revision Page Revision
Front Cover - 4~28 A
Inside Front Cover G 4-29 G
Title Page = 4~30 G
1i G 4-31 A
iii G 4-32 E
iv G 4-33 D
v G 4-34 thru 4-36 A
vi G 4-37 D
vi-a/vi-b G 4-38 G
vii G 4~39 thru 4-~41 c
viii C 4-42 A
ix thru xi G 4-43 thru 4-45 C
1-1 thru 1-4 G 4-46 thru 4-51 A
2-1 thru 2-3 A 5~52 thru 4-54 F
2-4 D 4-55 A
2-5 E 4~56 A
2-6 A 457 C
2-7 C 4-58 A
2-8 F 4-59 o
2-8.1/2-8.2 F 4~60 thru 4—68 A
2-9 thru 2-13 A 4—-69 C
2-14 G 4-70 A
2-15 thru 2-20 A 4-71 A
2-21 C 4-72 B
2-22 D 4-73 thru 4-75 A
2-23 D 4-76 E
2-24 A 4-77 A
2-25 G 4-78 A
2-26" G 5-1 A
3-1 thru 3-15 G 5-2 C
4~1 thru 4-4 G 5-3 C
4-5 A 5-4 A
4-6 C 5~5 A
4-7 C 5-6 E
4~-8 thru 4-19 A 5-7 E
4~-20 F 5-8 A
4-21 G 5-9 C
4—-22 G 5-10 E
4-22.1 G 5-11 D
4-22.2 v F 5-12 A
4-22.3/4~22.4 F 5-13 A
4-23 A 5-14 E
424 C 5-15 F
4-25 B 5-16 thru 5-25 A
4~26 E 5-26 G
427 A 5-27 B

60492600 G iii @

Page Revision
.{ 5-28 thru 5-35
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4 thru 8-6
8-7
8-8
8-9
8-10
8-11
8-12
» 8-13
1 8-14

8-15 thru 8-20
8-21 thru 8-55
9-1 thru 9-4

10-1 thru 10-11
11-1 thru 11-4

11-7 thru 11-13

12-2 thru 12-4
12-5

OHEHOOP>POHMOPOOQAPEHOOP>OPOEHDELUERPOPAOOHOOAP>P>OQAP>PO0QAPHMUOPEPEORPE2>>O>>HDD

Page

Revision

iv

12-6

12-7

12-8

12~9

12-10 thru 12-13
12-14 thru 12-16
12-17

12-18 thru 12-20
12-21

12-22 thru 12-24
12-25

12-26

12-27

12-28

12-29

12-30

12-31

12-32

A-1 thru A-4

B-1

B-2

B-3

B-4

B-5

c-1

D-1 thru D-5

E-1

E-2

E-3

E-4 thru E-6

F~1 thru F-4
Index~1 thru -14
Comment Sheet
Mailer

Inside Back. Cover
Back Cover

IO 1 OO QURDOPPOQAPPIPREEEQEDYEORNTETM NS

60492600 G

PREFACE

The Control Data COMPASS Version 3.6 Assembler provides the user with a versatile, extensive language
for generation of object code to be loaded and executed on the central processor unit (CPU) or 4 peripheral
processor unit (PPU). The assembler executes on the following computer systems and operating systems:

e NOS 1 for the CONTROL DATA® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems

e NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems '

e SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer
Systems .

The CDC CYBER 170 Models 720 and 730 have unified processors and use the instructions noted in this
publication for computer models with a Compare/Move Unit (CMU) such as the CYBER 170 iodel 172.

The CDC CYBER 170 Models 740, 750, and 760 have functional units and use instructions noted in this
publication for computer models with functional units such as the CYBER 170 Model 175.

This publication is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instructions. Information in the related computer system
reference manuals takes precedence over information in this publication should diserepancies arise between
the publications. '

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assemblers in general.

NOTE

Continued use of COMPASS in creating application programs should be avoided
when possible. COMPASS and other machine-dependent languages can com-
plicate migration to future hardware and software systems. Program mobility
will be restricted by continued use of COMPASS for stand-alone programs,
COMPASS subroutines embedded in programs using higher-level languages, and
user-written COMPASS owncode routines in CDC standard produects.

Extended memory for the CDC CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760 is
extended core storage (ECS). Extended memory for the CDC CYBER 170 Model 176 is large central
memory (LCM) or large central memory extended (LCME). ECS, LCM, and LCME are functionally equi-
valent, except as follows:

e LCM and LCME cannot link mainframes and do not have a distributive data path (DDP) capability.
o LCM and LCME transfer errors initiate an error exit, not a half exit, as noted in section 8.4.4.

The CYBER 170 Model 176 supports direct LCM and LCME transfer instructions. These are described in
section 8.4.8. :

In this manual, numbers ocecurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numeric mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a substitution are shown in shaded print.

60492600 G v’

General explanations of COMPASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept instruction indexes have been included
inside the front and back covers. '

Additional information essential to programming in the COMPASS environment can be found in the listed
publieations. The first group consists of software-related publications; the second group consists of
hardware-related publications. Publications are listed by ASCII collating sequence within each group.

The applications programmer will need the CYBER Record Manager Basic Access Methods and Advanced
Access Methods manuals for information about the macros needed to define, acceess, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader
for the SCOPE 2 operating system).

In addition to the above, the systems programmer will need the appropriate operating system manual to
obtain information about system maecros. Volume 2 of the NOS reference manual is indispensible for the
COMPASS programmer in the NOS environment. Further, more detailed descriptions of COMPASS
instructions can be found in the appropriate hardware reference manual.

A Control Data abstracts manual is a pocket-sized booklet containing brief descriptions of the contents and
intended audience of all manuals for a CDC operating system and its product set. The abstracts manual
can be useful in determining which manuals are of greatest interest to a particular user. The Software
Publications Release History serves as a guide to the revision level of software documentation which
corresponds to the Programming System Report (PSR) level of installed site software.

Software-Related Publications

: Publication
Publication Number
7000 Record Manager Reference Manual 60454690
COMPASS Version 3 Instant : 60492800
CYBER Interactive Debug Version 1 Reference Manual 60481400
CYBER Loader Version 1 Reference Manual ‘ 60429800
CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual 60499300
CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual 60495700
Modify Reference Manual 60450100
NOS 1 Reference Manual, Volume 1 ' 60435400
NOS 1 Reference Manual, Volume 2 60445300
NOS Version 1 Manual Abstracts 84000420
NOS/BE 1 Reference Manual 60493800
NOS/BE Version 1 Manual Abstracts 84000470

vi 60492600 G

Publication " Publication Number

CDC CYBER 70 Models 72, 73, and 74 and 6000 Series 60352500
Computer Systems I/0 Specifications Reference Manual

CDC CYBER 170 Models 172, 173, and 174 Reference Manual 19981200

CDC CYBER 170 Models 175 and 176 Reference Manual 60420000
CDC CYBER 170 Computer Systems Models 720, 730, 750, 760 60456100
CYBER 70 Model 76 Reference Manual 60367200

CDC manuals can be ordered from Control Data
Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota 55103,

This product is intended for use only as described

in this document. Control Data cannot be responsi-
ble for the proper functioning of undescribed features
or parameters.

60492600 F ‘ : vi.1/vi. 2

SCOPE 2 Loader Version 2 Reference Manual , . 60454780

SCOPE 2 Reference Manual 60342600
Software Publications Release History 60481000
Update 1 Reference Manual ' 60449900

Hardware-Related Publications

v Publication

Publication ’ Number
CDC CYBER 170 Computer Systems Models 171 through 175
(levels A, B, C) Model 176 (level A) 60420000
CDC CYBER 170 Computer Systems Models 720, 730, 740,

~ 750, 760 Model 176 (level B) 60456100
CDC CYBER 70 Computer Systems-7030 Extended
Core Storage Reference Manual 60347100
CDC CYBER 70 Model 71 Systems Description and
Programming Information Reference Manual, Volume 1 _ 60453300
CDC CYBER 70 Model 72 Systems Description and :
Programiming Information Reference Manual, Volume 1 60347000
CDC CYBER 70 Model 73 Systems Description and
Programming Information Reference Manual, Volume 1 60347200
CDC CYBER 70 Model 74 Systems Description and
Programming Information Reference Manual, Volume 1 60347400
CDC CYBER 70 Model 76 Reference Manual 60367200
CDC CYBER 70 Models 72, 73, and 74 and 6000 Series
Computer Systems I/O Specifications Reference Manual 60352500
CDC CYBER 70 Models 72, 73, and 74 Instruction
Descriptions Reference Manual, Volume 2 60347300

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This produet is intended for use only as deseribed
in this document. Control Data cannot be respon-
sible for the proper functioning of undescribed
features or parameters.

60492600 G | | | vi-a/vi-b @

CONTENTS

1. INTRODUCTION 1-1 3.4 Absolute Program Structure 3-6
3.4.1 Absolute Overlays 3-8
1.1 Configuration 1-3 3.4.2 Multiple Entry Point Overlays 3-12
1.2 Assembler Execution 1-3 3.4.3 Partial Binary 3-12
1.3 Relocatable Object Program Execution 1-4
1.4 Interactive Program Debugging ‘ 1-4 4. PSEUDO INSTRUCTIONS 4-1
4.1 Introduction to Pseudo Instructions 4-1
4.1.1 Types of Pseudo Instructions 4-1
2. LANGUAGE STRUCTURE 2-1 4.1.2 Required Pseudo Instructions t-2
2.1 Statement Format 2-1 4.1.3 First Statement Group 4-2
2.1.1 First Column 2-1 4.1.4 Permissible Anywhere
2.1.2 Location Field 2-1 ~ Instructions 4-2
2.1.3 Operation Field 2-1 4.2 Subprogram Identification 1-2
2.1.4 Variable Field 2-2 4.2.1 IDENT-Subprogram
2.1.5 Comments Field 2-2 Identification 1-2
2.1.6 Comments Statement 2-2 4.2,2 END-End of Subprogram 4-4
2.1.7 Statement Continuation 2-2 4.3 Binary Control 4-6
2.1.8 Coding Conventions 2-3 4.3.1 ABS - Absolute CPU Program +4-6
2.2 Statement Editing 2-4 4.3.2 MACHINE - Declare Object
2.2.1 Concatenation 2-4 Processor Type 4-7
2.2,2 '~ Micro Substitution 2-4 4.3.3 PPU - CYBER 70/Model 76 or
2.3 Names 2-4 7600 PPU Program 4-8
2.4+ Symbols 2-5 4.3.4 PERIPH - CYBER 170 Series,
2.4.1 Linkage Symbols 2-6 CYBER 70/Models 72, 73, 74
2.4.2 Default Symbols 2-7 or 6000 Series PPU Program 4-10
2.4.3 Previously Defined Symbols 2-7 4.3.5 IDENT - Identify and Generate
2.4.14 Undefined Symbols 2-8 Overlay 4-11
2.4.5 Qualified Symbols 2-8 4,3.6 SEGMENT - Generate Binary
2.5 CPU Registers 2-8 Segment 4-15
2.6 Special Elements 2-9 4.3.7 SEG - Write Partial Binary 4-16
2.7 Data Notation 2-10 4.3.8 STEXT - Generate System
2.7.1 Data Items 2-10 Text Record 4-17
2.7.2 Constants 2-10 4.3.9 COMMENT - Prefix Table
2.7.3 Literals 2-11 Comment 4-20
2.7.4 Character Data Notation 2-13 4.3.10 NOLABEL - Delete Header
2.7.5 Numeric Data Notation 2-16 Table 4-20
2.7.6 Hexadecimal Data Notation 2-21 4.3.11 LCC - Loader Directive 4-21
2.8 Expressions 2-21 4.3.12 LDSET - Generate LDSET
2.8.1 Types of Expressions 2-23 Object Directives 4-21
2.8.2 Evaluation of Expressions 2-26 4.4 Mode Control 4-22.7
4.4.1 BASE - Declare Numeric Data
3. PROGRAM STRUCTURE 3-1 Mode 1-22.
3.1 Subprogram Blocks 3-1 4.4,2 CHAR - Define Other Character
3.1.1 Absolute Block 3-2 Data Code 4-24
3.1.2 Zero Block 3-2 4.4.3 CODE - Declare Character
3.1.3 Literals Block 3-2 Data Code 4-24
3.1.4 User-Established Local Blocks 3-2 4.4.4 QUAL - Qualify Symbols 4-25
3.1.5 Labeled Common Blocks 3-2 4.4.5 B1=1 and B7=1 - Declare that
3.1.6 Blank Common Blocks 3-3 B Register Contains One 4-2%
3.1.7 Redundant Block Names 3-3 4.4.6 COL - Set Comments Column 4-29
3.2 Block Control Counters 3-3 4.5 Block Counter Control 4-30
3.2.1 Origin Counter 3-3 4.5.1 USE - Establish and Use Block +4-3C
3.2.2 Location Counter 3-4 4.5.2 USELCM - Establish and Use
3.2.3 Position Counter 3-4 ECS/LCM Block 1-32
3.2.4 Forcing Upper 3-4 4.5.3 ORG and ORGC - Set Origin
3.3 Relocatable Program Structure 3-5 Counter 4-33

60492600 G | | vii

KR ST

Ty

4.6

4.7

4.10

4.11

4.5.4 BSS - Block Storage

Reservation 4-35
4.5.5 LOC - Set Location Counter 4-36
4.5.6 POS - Set Position Counter 4-38
Symbol Definition 4-38
4.6.1 EQU or = - Equate Symbol

Value 4-39
4.6.2 SET - Set or Reset Symbol

Value 4-39
4.6.3 MAX - Set Symbol to Maximum

Value 4-40
4.6.4 MIN - Set Symbol to Minimum

Value 4-41
4.6.5 MICCNT - Set Symbol to

Micro Size 4-42
4.6.6 SST - System Symbol Table 4-43
Subprogram Linkage 4-43
4.7.1 ENTRY and ENTRYC - Declare

Entry Symbols 4-43
4.7.2 EXT - Declare External

Symbols 4-45
Data Generation 4-45
4.8.1 BSSZ and Blank Operation

Field - Reserve Zeroed Storage 4-46
4.8.2 DATA - Generate Data Words 4-46
4.8.3 DIS - Generate Words of

Character Data 4-47

4.8.4 LIT - Declare Literal Values 4-49
4.8.5 VFD - Variable Field Definition 4-51
4.8.6 CON - Generate Constants 4-52
4.8.7 R= - Conditional Increment

Instruction 4-53
4.8.8 REP, REPC, and REPI - Gen-

erate Loader Replication Table 4-55
Conditional Assembly 4-57
4.9.1 ENDIF - End of IF Range 4-57
4.9.2 ELSE - Reverse Effects of IF 4-58
4.9.3 IFtype - Test Object Processor

Type 4-58
4.9.4 IFop - Compare Expression

Values 4-60
4.9.5 IFPL and IFMI - Test Sign of

Expression 4-62
4.9.6 IF - Test Symbol or Expression

Attribute 4-63
4.9.7 IFC - Compare Character

Strings 4-66
4.9.8 SKIP - Unconditionally Skip

Code 4-68
Error Control 4-69
4.10.1 ERR - Unconditionally Set

Error Flag 4-69
4.10.2 ERRxx - Conditionally Set

Error Flag 4-70
Listing Control 4-71
4.11.1 LIST - Select List Options 4-71
4.11.2 EJECT - Eject Page and Begin

New Sub-Subtitle 4-74
4.11.3 SPACE - Skip Lines and Begin

New Sub-Subtitle 4-74
4.11.4 TITLE -~ Assembly Listing

Title 4-75
4.11.5 TTL - New Assembly Listing

Title 4-76

Gy oran
Y

5.3

5.4

5.5

6.1

6.2

-3 ~1 =
P
DO

7.3

4.11.6 NOREF - Omit Symbol
References 4-76

4.11.7 CTEXT and ENDX - Disable/

Enable Listing of Common

Deck Text 4-77
4.11.8 XREF - Reference Symbolic

Address 4-78
DEFINITION OPERATIONS 5-1
External Text (XTEXT) 5-2
Remote Assembly 5-3
5.2.1 RMT - Save Remote Code 5-3
5.2.2 HERE - Assemble Remote Code 5-4
Code Duplication 5-6
5.3.1 DUP - Simple Duplication 5-6
5.3.2 ECHO - Echoed Duplication 5-7
5.3.3 STOPDUP - Stop Duplication 5-9
5.3.4 ENDD - End Duplication

Sequence 5-10
Macros and Opdefs 5-13
5.4.1 ENDM - End Macro Definition 5-14
5.4,2 MACRO - Macro Heading 5-15
5.4.3 Macro Calls 5-18
5.4.4 MACROE - Equivalenced

Macro Header 5-24
5.4.5 Equivalenced Macro Call 5-25
5.4.6 OPDEF - Define CPU Operation 5-27
5.4.7 Opdef Call 5-29
5.4.8 LOCAL - Local Symbols 5-31
5.4.9 IRP - Indefinitely Repeated

Parameter 5-32
System Macro and Opdef Definitions 5-35

OPERATION CODE TABLE
MANAGEMENT 6-1
Mnemonically Identified Instructions 6-3

6-3

6.1.1 PPOP - PPU Operation Code -
6.1.2 OPSYN - Synonymous Mnemonic
Operation 6-5
6.1.3 NIL - Do Nothing Pseudo
Instruction 6-6
6.1.4 PURGMAC - Purge Macros 6-7
Syntactically Identified Instructions 6-7
6.2.1 CPOP - CPU Operation Code 6-7
6.2.2 CPSYN - Synonymous CPU
Instruction 6-10
6.2.3 . PURGDEF - Purge CPU
Operation Code 6-10
MICROS 7-1
Micro Substitution 7-1
Micro Definition 7-2
7.2.1 MICRO - Define Micro 7-2
7.2.2 DECMIC - Decimal Micro 7-4
7.2.3 OCTMIC - Octal Micro 7-4
Predefined Micro Names 7-5
7.3.1 DATE 7-5
7.3.2 JDATE 7-6
7.3.3 TIME 7-6
7.3.4 BASE 7-6
7.3.5 CODE 7-6
7.3.6 QUAL 7-6
7.3.7 SEQUENCE -7
7.3.8 MODLEVEL 7-7
7.3.9 PCOMMENT 7-7

60492600 C

x®
.« .
DD -

8.3

CPU SYMBOLIC MACHINE
INSTRUCTIONS :

Machine Instruction Formats

Instruction Execution

8.2.1 6600/6700 and CYBER 70/
Model 74 Execution

CYBER 170/Models 171,

172, 173, 174, 720, 730,

and the CYBER 70/Models 71,
72, 73 and 6200/6400/6500
Execution

CYBER 170/Model 175, 176,
740, 750, and 760 and the
CYBER 70/Model 76 and 7600
Execution

Operating Registers

8.2.2

8.3.1 X Registers
8.3.2 A Registers
'8.3.3 B Registers

Symbolic Notation

8.4.1 Program Stop or Exchange -
Jump Instruction (CYBER 170
Series, CYBER 70/Models 71,
72, 73, 74 or 6000 Series)
8.4.2 Error Exit Instruction

- (CYBER 70/Model 76 or 7600)

8.4.3 Return Jump Instruction

8.4.4 ECS Instructions

- (CYBER 170 Series,
CYBER 70/Models 71, 72, 73,
74 or 6000 Series)
LCM Bloek Copy Instructions
(CYBER 170/Model 176,
CYBER 70/Model 76 or 7600)
Exchange Jump Instruction

8.4.5

8.4.6

(CYBER 170 Series, CYBER 70/

Models 71, 72, 73, 74 and
6000 Series

Exchange Exit Instruction
(CYBER 70/Model 76 or 7600)
Direct LCM Transfer Instruc-
tions (CYBER 170/Model 176,
CYBER 70/Model 76 or 7600)
Reset Input Channel Buffer
Instruction (CYBER 170/

8.4.7

8.4.8

8.4.9

Model 176, CYBER 70/Model 76

or 7600)

Set Real-Time Clock
Instruction (CYBER 170/
Model 176, CYBER 70/
Model 76 or 7600)

Reset Output Channel
Buffer Instruction

(CYBER 170/Model 176,
CYBER 70/Model 76 or 7600)
Read Channel Status
Instructions (CYBER 170/
Model 176, CYBER 70/
Model 76 or 7600)
X-Register Conditional
Branch Instruments
B-Register Conditional
Branch Instructions

8.4.16 Transmit Instruction

8.4.17 Logical Product Instruction

8.4.10

8.4.11

8.4.12

60492600 G

ooolooo
R

8-2

8-18

8-18

8-19
8-21
8-23

8-25
8-26

8.

w w
.

.
DO -

5

.18 Logical Sum Instruction

.19 Logical Difference
Instruction

20 Complement Instruction

21 Logical Produet and
Complement Instruction

8.4.22 Complement and Logical
Sum Instruction

8.4.23 Complement and Logical
Difference Instruction

8.4.24 Logical Left Shift jk
Places Instruction

8.4.25 Arithmetic Right Shift
jk Places Instruction

8.4.26 Logical Left Shift (Bj)
Places Instruction

8.4.27 Arithmetic Right Shift (Bj)

. Places Instruction

8.4.28 Normalize Instruction

8.4.29 Round and Normalize
Instruction

8.4.30 Unpack Instruction

8.4.31 Pack Instruction

8.4.32 Unrounded SP Floating

Point Add Instructions

8.4.33 DP Floating Point Add
Instructions :

8.4.34 Rounded SP Floating Point
Add Instructions

8.4.35 Long Add (Fixed Point)
Instructions

8.4.36 Unrounded SP Floating
Point Multiply Instruction

8.4.37 Rounded SP Floating Point
Multiply Instruction

8.4.38 DP Floating Point Multiply
Instruction

8.4.39 Integer Multiply Instruction

8.4.40 Mask Instruection

8.4.41 Unrounded SP Floating
Point Divide Instruction

8.4.42 Rounded SP Floating Point
Divide Instruction

8.4.43 Pass Instruction

" 8.4.44 Population Count Instruction

8.4.45 Set A Register Instructions

8.4.46 Set B Register Instructions

8.4.47 Set X Register Instructions

CMU Symbolie Machine Instructions

8.5.1 IM - Indirect Move

8.5.2 MD - Indirect Miove
Descriptor Word

8.5.3 DM - Direct Move

8.5.4 CC - Compare Collated

8.5.5 CU - Compare Uncollated

PPU SYMBOLIC MACHINE

INSTRUCTIONS
Machine Instruction Formats
Symbolic Notation

9.2.1 Branch Instructions

9.2.2 Shift Instructions

9.2.3 No Address Mode Instructions
9.2.4 Constant Mode Instructions
9.2.5 No Operation Instruction

Lol
den e

i
[ST RNSTINY OURN SR £

ooooooolooooooooo
b= D00 T s o WO

[V ol

wr QY Ut U
s Q2

]

ARG

]

i

W WO W W W W
!
O QO =1 =3 Ut LD e e

—

9.2.6

9.2.7

W w0
Y
l..\ZS\’)
W0 o

9.2.10

9.2.11

Exchange Jump Instrue-
tions (CYBER 170 Series,
CYBER 70/Models 72, 73,
74, and 6000 Series)

Read Program Address
Instruction (CYBER 170
Series, CYBER 70/
Models 72, 73, 74, and
6000 Series)

6416 PPU Instructions
Direct Address Mode
Instructions

Indirect Address Vode
Instructions
Central/Read/Write Instruc-
tions (CYBER 170 Series,

. CYBER 70/Models 72, 73, 74

9.2.12

9.2.14

9.2.15
9.2.15

9.2.17

9.2.18

9.2.19

and 6000 Series)

Central Read/Write Instruc-
tions (CYBER 170 Series,
CYBER 70/Models 71, 72,
73, 74 or 6000 Series)

I/0 Branch Instructions
(CYBER 170 Series, CYBER
70/lodels 72, 73, 74 and
6000 Series)

170 Branch Instructions
(CYBER 70/Model 76 and
7600)

A Register Input/Output
Instructions

Bloek Input/Output
Instructions

Set Output Record Flag
Instruction (CYBER 70/
Model 76 and 7600)
Channel Function Instrue-
tions (CYBER 170 Series,
CYBER 70/Modeis 72, 73, 74
and 6000 Series)

Error Stop Instruction
(CYBER 70/Model 76

and 7600)

PROGRANM EXECUTION
Control Statements

10.1.1
10. 1.

10.1.3
10.1.4
10.1.5
10.1.6
10.1.7

Job Statement

COMPASS Call Statement
LGO Control Statement
Program Call Statement
7/8/9 Card

6/7/8/9 Card

USER Control Statement (NOS 1

Only)

Sample Decks

LISTING FORMAT
Page Heading
Header Information

11.2.1 Binary Control Card Summary

11.2.2
11.2.3
11.2.4

Block Usage Summary
Entry Point List
External Symbol List

Octal and Source Statement Listing

Literals

9-10

9-15

9-17

9-18
9-19

9-19

9-20

9-21

9-22
10-1
10-1
10-1
10-2
10-6
10-6
10-6
10-6

10-7
10-7

11-1
11-1
11-1
11-1
11-2
11-4
11-4
11-5
11-7

11.5
11.6
11.7
11.8

12,
12.1

12.2

Default Symbols

Assembler Statistics

Error Directory

Symbolic Reference Table
COMMON COMMON DECKS
Residence of the Common Common

Decks

Description of the Common Common

Decks
12.2.1

12.2.2

12.2.3

12.2.4

.
Yt
(s}

[V}

b
L
« s .
NN N NN
« s e e
| AV ST AV G I ()
no

COMCARG - Process
Arguments

COMCCDD - Constant to Deci-

mal Display Code Conversion

COMCCRD - Convert Constant

to I'10.3 Format
COMCCIO - 1/0 Operation
Processor

COMCCOD - Convert Constant

to Octal Display Code

COMCCPT - Extract Comments

Field from PREFIX Table
COMCDXB - Convert Displayv
Code to Binary

COMCDMNS - Move Non-Over-

lapping Bit String

COMCAMIOS - Move Overlapping
Bit String

COMCDMTNM - Managed Table
Macros

COMCNMTP - Managed Table

Processors

COMCDMVE - Move Block of
Data

COMCRDC - Read Coded
Line, C Format

COMCRDH - Read Coded
Line, H Format

COMCRDO - Read One Word
COMCRDS - Read Coded Line
to String Buffer

COMCRDW - Read Words to
Working Buffer

COMCRSR - Restore All
Registers

COMCSFN - Space Fill Name

COMCSRT - Set Record Type
COMCSST - Shell Sort Table
COMCSTF - Set Terminal File
COMCSVR - Save All Registers
COMCSYS -~ Process System
Request

COMCUPC - Unpack Control
Card

COMCWOD -~ Convert Word to

Octal Display Code
COMCWTC - Write Coded
Line, C Format

11-8
11-8
11-9
11-11
12-1

12-16
12-17
12-17
12-17
12-19
12-19

[y
[

|
o
{8V

60492600 G

12.3

A
B

C

8-1
8-2

9-1
11-1

COMCWTH - Write Coded
Line, H Format

COMCWTO - Write One Word
COMCWTS - Write Coded Line
from String Buffer

COMCWTW - Write Words
from Working Buffer
COMCXJR - Restore All
Registers with a System XJR
Call

COMCTB - Convert All 00
Characters to Blanks

Macros That Call the Common Common
Decks

12,3.1 MESSAGE

12,.2.28

12.2.29
12.2.30

12,2,31

12,2.32

12,2.33

CHARACTER SETS
ASSEMBLY-TIME 1/0

BINARY CARD

COMPASS Coding Form
Relocatable Program Struc-
ture

Absolute Program Structure
Overlay Hierarchy
IDENT-Type Overlay Structure
SEGMENT-Type Overlay
Structure

SEG-Type Partial Binary
IDENT-Type Partial Binary
CPU 15-Bit Instruction
Format

- CYBER 70/Model 74 and 6600/6700
Functional Units

CYBER 170/Model 175, 176, CYBER 706/

Model 76 and 7600 Functional Units
PPU Instruction Designators
Fatal Errors

60492600 G

12.3.2 MOVE
12-22 12.3.3 READC
12-23 12.3.4 READH
12.3.5 READO
12-23 12.3.6 READS
12.3.7 READW
12-24 12.3.8 RECALL
12.3.9 SYSTEM
12,3.10 WRITEC
12-25 12.3.11 WRITEH
12,.3.12 WRITEO
12-25 12,3.13 WRITES
12.3.14 WRITEW
12-25
12-25
APPENDIXES
A-1 D HINTS ON USING COMPASS
B-1 E DAYFILE MESSAGES
C-1 F GLOSSARY
FIGURES
2-3 8-2 CPU 30-Bit Instruction
Format
3-6 8-3 Arrangements of Instructions
3-7 in a 60-Bit CPU Word
3-9 9-1 PPU 12-Bit Instruction
3-11 Format
9~-2 PPU 24-Bit Instruction
3-13 Format
3-14 11-1 Format of Octal and Source
3-15 Statement Listing
11-2 Format of Symbolic Refer-
8-1 ence Table
TABLES
11-2 Informative Errors
8-3 . 12-1 Summary of Common Common Decks
12-2 Type Codes Returned by COMCSRT
8-6 12-3 Macros That Call Common Common
9-3. Decks
11-9

! I i i H
[N IR T

[SVIRN TV NV SV N I SV

<

W

&

1

P b e e b e e
1o [0 09 19 19 19 19 1o i
w o

o

12-31
12-31
12-32
12-32

D-1

E-1

11-5

11-13

11-12
12-2
12-18

12-26

Xi

INTRODUCTION | 1

This manual describes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed o
be familiar with assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3

Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

‘Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Chapter 10 Program Execution

Appendix D Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and operating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

e Differences between CPU and PPU program environments

e Features of COMPASS not supported by a particular operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruction sets is shown in the instruetion indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output aceeptable for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:

e Symbolie machine instructions

e Pseudo instructions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a

means of expressing symbolically the data manipulation functions of the machine. Each symbolic
instruction typically generates one machine instruction.

60492600 G -1

Pseudo instructions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation
Symbol definition
Subprogram linkage

Listing options

Automatic generation of predefined code sequences (macros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMPASS include:

1-2

Free-field source
statement format

Control of loeal
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol qualification

Binary control

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas can be
defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from witinin any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.
Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied

to character data as either display code, ASCII, internal BCD, or
external BCD.

60492600 G

e Listing control Assembly-time control of list content.

e Micro coding Substitution of sequences of characters defined in the program whnenever the
miero name is referenced. Several micros are predefined by the system for
user convenience. :

e Macro coding Assembly of sequences of instructions defined in the program or on the
system library whenever the maero name is referenced. Macro definitions
can be redefined or purged from the operation code table.

e Operation code table The programmer can specify or respecify the syntax of a CPU or PPU
instruction. The assembler generates an entry in the operation code table for-
the instruction. No macro or opdef definition is associated with the entry.

e Operation code Assembly of sequences of instructions defined in the program or on the
definition system library whenever an operation code of the specified syntax is
. referenced.
e Code repetition Sequences of code can be repeated during assembly or at load time.
e Remote assembly Defers assembly of defined coding sequence until later in the assembly.
® Library routine calls Routines can be called from the system library.
e Diagnostics Diagnostics for source program errors are included on output listing.

1.1 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
eompiler upon encountering a COMPASS IDENT statement in the source input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostic message.

60492600 G : 1-3°

All nested processing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control statement (for example, LGO) can
be used to call for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines referred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBER
Interactive Debug (CID) software. CID.allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

e Suspend program execution at a specific location or upon occurrence of a specific trap condition, such
as execution of a return jump instruection

e Alter location content during program suspension
e Resume execution at a specified location or at the location where suspension occurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
' Manual listed in the preface.

1-4 . 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters, However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re-
stricted by the maximum statement size only, Statement format is essentially free field.

Statements are 80~to-90 column lines. When punched on cards, each card is considered a line. A single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted

by COMPASS but does appear on the assembly listing, Thus, columns 73-80 can be used for additional
comments or sequencing. Column 81-30 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN
The contents of column one designate the type of line, as follows:

» (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3.2.4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60492600A ' 2-1 -

Pseudo instruction mnemonic operation code
Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas, The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks, It is blank if there are
no nonblank characters between the operation field and column 30.

A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30, The beginning comments column can be
changed through the COL pseudo instruction (Section 4, 4. 5).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4. 9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement.. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

2-2 ' v 604926004

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents

1 Blank, asterisk,or comma

2-9 Location field ehtry or plus, or minus left justified
10 Blank ,

11-16 Operation field entry left justified

17 Blank :

18-29 Variable field entry left justified

30 Beginning of comments

All examples in this manual abide by this convention.

f

A A Y c‘@

PROCRAM

ROUTINE | past OF
LOCATION JOPERATION VARIABLE COMMENTS IDENT.

[BN ETADD N MITITIE) PN N NI PN P N N A e T S N I I N DY A D S O TR I N T P T R R 1) RBSISICIEN
RIS DI DS T A S T A AT ST AT I S S A A A
TN T . TS S R S S S A A A A R A AT AT I AT AT AT SR S
U S U S S T 1 T B L4 1 »!« USSR N S S S SR U SU N SN0 U0 § oot i 4 SO S T T A S 4 10 4 L B U T W §
TS NS SR i S AR A AT A IS TSI AR AP
NI NS S L s A
IS N LU e i b
MRS P S I W SV S ST AT T A A R I I IT AT AP .
N P Ly A I A S ST AT ST
NS SIS N R I S

M IR IO DSTNIND e TSI 5 B S I TN I R T I S I I I MO e

AA2987 REV.5-49

Figure 2-1. COMPASS Coding Form

60492600A

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretatim wien the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r—is superfluous and is removed by editing before the definition is interpreted.

Each removal of > shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (#) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are

shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it

discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and ne
error flag is set. ’

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES
A name is a sequence of characters that identifies one of the following:
Subprogram or overlay

Block

2-4 ’ : 60492600 D

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)
IF sequence

Micro

"A comma or a blank terminates a name. Concatenation marks and pairs of micro marks are removed
before the name is scanned (see section 2,2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms, It must begin
with a letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name, For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for a CYBER 170 Series or a CYBER 70/Model 72,
73, 74 or a 6000 Series PPU assembly it is limited to three characters maximum. In all cases, the
last character of a subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or =or :or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+-*/Dblank [T or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section 2.4.1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (secticn 2.2
Statement Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.X,
or X.x, because x is assumed to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =8 or =X (section 2. 4. 2).
Register designators are described further in Section 2.5.

The process of associating a symbol with a value and attributes is known as symbol definition. ' This
can occur in five major ways.

60492600 E 2-5

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter {section
3. 2. 2) and having an attribute defined as follows:

3.

Absolute for the absolute block

Common for labeled or blank common blocks (relocatable assemblies only)

Relocatable for local blocks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

A symbol used in the location field of definition pseudo instructions (section 4. 6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag.

An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value

definition is not known to the current subprogram.

Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol,

COMPASS defines a symbol by default if a reference to a symbol is preceded by =8 and the
symbol is not otherwise defined in the subprogram. This feature is further described

in section 2. 4. 2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:

Legal Symbols

P
R3

PROGRAM

2.4

LINKAGE SYMBOLS

Tllegal Symbols

5A
ABCDEFGHI
ABE+15

=11

First character numeric
Exceeds eight characters
Contains plus sign

First character equal sign

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last
character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some

60492600A

other subprogram. The symbol has a zero value and an attribute of external. An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X or =Y; see section 2. 4.2 Default Symbols).

An external symbol can be-strong or weak. A strong external symbol reference causes the loader to try
to find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a
strong external in this way is flagged as a non-fatal error by the loader. A weak external does not
require the loader to search for a satisfying subprogram; however if one is loaded for some other
reason, the loader associates the matching linkage symbols in the usual way. At the end of loading, the
existence of unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. 1If the value of the expression reduces to an external symbol
+ an integer, the location field symbol is defined as having an integer value and external attribute.
Entry point symbols and external symbols are not qualified (section 2.4.5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or =Y and the symbol is_not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respeciively, at the
end of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a
previously defined symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the programmer definition,

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link
to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define
the symbol, the assembler assumes that the symbol is a strong external as though
declared in an EXT pseudo instraction. A symbol prefixed by =X must conform
to the requirements for external symbols.

=Ysymbol This option permits a programmer to define symbols in a subroutine or to link
to them in another subprogram that need not be loaded. If the programmer
defines the symbol, the assembler uses the programmed definition. If the pro-
grammer does not define the symbol and if it is not referenced elsewhere with an
=X or =S prefix, or declared in an EXT pseudo instruction, the assembler
assumes that the symbol is a weak external. A symbol prefixed by =Y must
conform to the requirements for external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both
=S and =X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 C 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be plaéed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4, 3) can be referred
to outside of the qualifier sequence in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier

is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as // symbol. ' ,

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not gualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =S, =X, or =Y (see section 2.4.2). However, a warning message is
issued when such symbols are defined. The prefix cannot be used in the location field of machine
instructions and symbol defining, data generating, BSS pseudo instructions,. in the variable field of
ENTRY, EXT, and SST pseudo instructions.

Register Type - Designator
Address Anor A.n
Index Bn or B.n

Operand : Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

Registers designated by Al through A5 or A.1 through A. 5 are used for addressing to obtain information
from central memory. Registers designated by A6, A7, A.6, or A.7 are used for addressing to place
information into central memory.

2-8 . 60492600 F

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols,

Examples:
Al Designates address register 1
Al10 Interpreted as a symbol, not a register
Al Designates address register 1
A.NUM If the value of NUM 1s 6, it designates address register 6
A.10 Designates address register 2; however, it produces a warning flag because the

two was derived from the truncation of 12, the octal value for 10.
The following produce equivalent results, A SET pseudo instruction (section 4. 6. 2) defines SUM and

SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 F 2-8.1/2-8.2 §

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) " 18 {30
5032001000 i<83 A2+ALPHA }
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [0
3 suM SET 3 i
2 Ste SET 2 I
6032001000 SB.SUM|A.SUR+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in
section 3. 2,

Designator Significance

* or *L The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

*0 The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter
for the block in use.

*pP The assembler uses the absolute value of the position counter for the
block in use.

*P The assembler uses an absolute value obtained as follows:

0 COMPASS was called by a COMPASS control statement
1 COMPASS was called by 2 RUN-~type compiler
2 COMPASS was called by a FTN-type compiler

These designators are inherent to COMPASS and cannot be altered by the programmer during an
assembly. :

o

60492600A : 2-

Examples:

LOCATION OPERATION | VARIABLE COMMENTS
i n 18 [N
Jo *$1+R7 l
¢ |
. |
ZR X3,%L-1 i
* .
.]
1 LIC *O-2ES+PPR !
| o]
. !
VFND »py l
' |
VFI $7.491/71 l
: |
IFEQ | *F,? I

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,
etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce
data in the program in three basic ways.

As a data item

As a constant in an expression
As a literal

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4.8.2) and LIT
(section 4. 8.4) pseudo instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS
A data constant is an expression element consisting of a value represented in octal, decimal,

hexadecimal, or character notation. It resembles a data item but is restricted by its use as an
expression element in two ways:

2-10 60492600A

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2.7.4) and the preradix for numeric values. '

2, The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers,

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression,

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4, 8, 2) or a LIT (section 4. 8. 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1.3).

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the

data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11.1).
Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state-

ment at the lower part of 101,

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102, In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

604926004 2-11

Location

Code Generated

100

101

6120005555 +
61301005555
6140005556 +

+

102

805555
005555

6130005556 +

5555
5120005555 +

CONTENT OF LITERALS BLOCK.

0000000N00N300000001
0n000000000720090002

A
g

LOCATION OPERATION | VARIABLE COMMENTS
n 18 {30
sSn2 =1 l
SB3 =1RA
sB4 |=1R”B |
L LIT 1,2 l
SB2 L
SB3 L+t |

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated in the litarals block:

LOCATION

OPERATION

VARIABLE

COMMENTS

1

18

130

A S

LIT

CONTENT CF LITERALS ELCCK,

Location Code Generated

56%7
0055565 090900000000 00000001
0055545 nganannngoooonNnonog2
005557 anonQooNpoonNnoNNnNiny
005561 TNoNnoonNQnACnNonNg0003
005661 9000000000002 0N0000G
005562 annneoonocoononNngon?

WOI>D>

1,3,1R0,2 |

1

However, if the literals sequence in the first part of the example had been followed by a LIT that

duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1,3,1RD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location Code Generated LOCATION OPERATION | VARIASLE COMMENTS
i T 18 {30
5555 LIT 1924348 |

CONTENT OF LITERALS BLOCK.,
g0s5s55 aAnAnNnNOonNOnQONNNONNQ! A
005556 900N00NN0O0N00000N002 13
005657 0Ngn000N0NCNAONN0002R I
poss60 000000 ONONQONONOOND0OL n

2-12 60422600A

.

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4.4. 2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

Format: : Example
Data Item [sign] n} type] strinil -3RABC
or v

! sig‘nl type ’ d Istring{ dl -R*ABC*
Constant ¥ | I n] type! string | 3RABC
Literalt [= lsig*n{ n]type] string l =-3RABC

’ or
[=]sign} typel d]string[d] =~-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows,

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator.
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be omitted for a constant.
0 | For data item or literal, the string consists of all characters following
type to:
blank or

k]

For a constant, string consists of all characters following type to:
+-%/blank , or A

n For a data item or literal, n is an integer count of the number of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case, A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

T Expression element

60492600A : ; 2-13

type Character string justification. The characters formed by the data item
' or constant are right or left justified into the destination field as follows:

Type Significance
C ‘Left justified with zero fill. For data item or

literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, C is the same-as L; the 12 zero

bits are not guaranteed.

Left justified with blank fill
Right justified with blank fill
Right juétified with zero fill
Left justified with zero {ill

N X o> om

Left justified with zero fill. For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, Z is the same as L; the six zero
bits are not guaranteed.

d A delimiting character used only when n is omitted. The characters
] . between the first occurrence of d and the second oceurrence of d form the
string. d can be any character other thanr>or #.

| string Characters from one of the COMPASS character sets (appendix A), except
for those characters that aet as delimiters {see n and d), the concatenation
character (r*), and pairs of miero marks (#).

Concatenation marks and pairs of micro marks are removed by editing
before a string is examined. A single micro mark can be used in a string.

An empty or omitted character string is defined under one of the following
conditions:

¢ n is 0 and type is immediately followed by a delimiter, for
example, OL.

® n is omitted and the two delimiting characters are adjacent, for
example, H++.,

Omission of a string in a DATA pseudo instruction is legal and does not
_cause generation of a data word.

For a constant, an omission of the string is valid and has a zero value.
An omitted string in a LIT pseudo instruction is legal and does not cause
generation of a literal for that item; however, the LIT must contain at

least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an
error. :

It is not possible to generate empty strings using types C, Z, R, or A.

2-14 60492600 G

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected.

Data Items
Location Code Generated ' lO.CAT\ON OPERATION | VARIABLE COMMENTS
i I 18 [30
1
14l 0522221722%5111655%20 BATA L¥*ERRIR IN PDQ ¥sLeoesliH
145 0L21s500000000030000N
146 5565655555555556556565
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
. 1 " 18 [30
PPU \

o : !
1100 1725 DaATA gLOUTPUT ! :
1101 2420
1102 2524
Constants
Location Code Gerierated LOCATION OFERATION | VARIABLE COMMENTS

i n 18 f30
4722 7430000047 SX3 1R* i
4723 7140000060 TAG SX& 1RPs+ 1 !
5113031117 SAL JRCIO i
L724 6260530000 SBs X0+1iL ¢ |
1117240155 VFU S0/4KHI0IA,6/71RA,2L4/UAX+]
k725 0155555531 |
1725242025 VFD 42/70L0UTPUT, 1871
4726 2400000001 |
§700000000 VFD 15/0LG,15/0Li

Note that the character constant in the expression in the second line consists of a decimal point

(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(55555530) so that 55555531 is generated. .

60492600A 2-15

Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 [30
}
100003765 TAGL LIT RA+=F/(A,6L) 5= 4440C0,0L
1000037710 LIV 20HLIYERALS
2652 5110003772 + <Al =ACTENCHARCYS
5120003774 + SA? =H+LFFY JUSTIFY WITH PLANKS+
2653 5131003767 + <A =9L0

CONTENT OF LITERALS BLOCK.

003765 000NN0Q0N04S5464L75051 +=¥/(
003765 5253%54555657001000000 YE= 4.
003767 330000000709930000000 8

003770 14112405220114235555 LIYERALS
003771 55555555555555555555

003772 2L0516031N0122032423 TENCHARCTS
p0%77% 000N0070000000N00AQ00

003774 1LL05062L551225232411 LEFT JUuSTI
003775 063155”77112410550214 FY WIYH pL
003776 011613235555555555%5 ANKS

The first LIT pseudo instruction generates three words in the literals block; the 0L item is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SA1l, SA2, and SA3 instructions each consist of a
literal element. The character strings in the SAl and SA2 litevals do not duplicate former literals
block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation, The value is converted to an integer or a
floating point value in single or double precision,

Formats:
Data Item sign|preradix | value | modifiers |
Constant [value | modifiers |

Literal |=|sign| preradix| value[modifiers |

2-16 60492600A

-

sign

preradix

value

modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+ or omitted The value is positive

- The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.

omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

BorO Octal notation

D Decimal notation

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point,

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1,15 x 1018 (fixed point) or 7.9 x 1028 ffloating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

Associated with the value are the following optional modifiers specified in any sequence.

A specific type of modifier can be specified only once. A duplicate produces an error
flag.

postradix Indicates the notation used for the value. See preradix for legal values.

An error is flagged if notation contains both a preradix and a postradix.

decimal exponent Defines a power of 10 scale factor

60492600A

Einor Enor E Single precision
EE+n or EEn or EE Double precision
When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point

number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.

2-17

2-18

binary scale Defines a power of two scale factor and is specified as follows:

S+n or Sn or S

When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be 0. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power.

binary point : Applies to floating point values only and is specified as follows:

. position

P+n or Pn - or p

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the signis -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit,

The exponent is adjusted to a value of - (in)

For example, a value with P-6 will have a biased exponent of 20068; a
value with P10 will have an exponent of 17658.

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error. :

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1, 0E40008-1200 yields a number that is approximately 5.8 x 1038
and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardléss of the sequence
in which they are specified is: '

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

60492600A

CPU Numeric Data Items

"Code Generated

Location
S000 TPRTTTI?7777T77777T 7462
5001 17235600000000000NNG0
5002 16430000000000000000
5003 200000006000000000042
5004 4177600000000G000000G2
5005 171546517676355LL264
5006 1720031463146314631 6
5007 T7777770?TTTTITIVITY
0e000000000000000000

5010
CPU Numeric Constants

Code Generated

Location
5001
5566
5012
5112 20360
‘ 43760
7150400000

CPU Numeric Literals

Location Code Generated
5113 5150005151 +
5130005152
5153
51556
5166
5157

LOCATION OPERATION | VARIABLE COMMENTS

i 18 {30
POOL DATA -29 ;
NUM DATA | 1,0EE1 I

DATA |1.0F+1PQ ‘

NATA | 3.2P1S=5E1

DATA | 0.0151F+01

NDATA | 0.1P47,-E,DEES

|

LOCATION OPERATION | VARIABLE COMMENTS

n 18 [0
ALPHA EQU POOL +1 ;
VAL FQu 5550

nSS? 1p0p |

LX3 -14R |

MX7 48

SXS5 1517 !
LOCATION OPERATION | VARIABLE COMPAENTS

" 18 T30

SAS =200L6755000234600004R

SA3 =1.1 |
ARLE LIT 1.0FE1 l

LIY 0.1P47

LITY -019 [

LIT 0.0151€+01,-E,DEES

CONTENY OF LITERBLS ELOCK,

PDa 81 O

005151 200&675500023%00000%
005152 17204314631463146315
005153 172350690005000000000
005154 16430006000000000000
005155 1720031463146314646314
005156 TFI7T77777777777F775¢4
005157 1715%4651767635544L264
005160 7T7FT7777777T7T77IITIT
005161 00000000000000003000

60492600A

oPBLeLILsM
oS/
N8
oPCLeL L 3L

..‘..:..'-

333853 3
7
*
H

?
OM=-(T72
H

we H

e W 0

9 e 9
+999% 9 ¢

2-19

Examples of numeric data {(assume default radix is decimal):

PPU Data Items

COMMENTS

Location Code Generated LOCATION OPERATION | VARIABLE
1 i 18
PPU
300 0005 DATA
3014 7766
302 pGe13
303 6030
304 0002 -

PPU Constants

{30
|
I

5,’90,*813,1#851’2485’1

Locatioﬁ Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
35 0one FoM T,+91 P
306 0011 !
307 L4632 COM |-3334 |
31 anc = 250
101 N UM SET 9101 |
310 7777 con 7777 |
PPU Literals
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
311 2000 1103 Loc =10D ;
313 2100 1104 ADC =-1 :
315 2000 110S LoC =7777 |

CONTENT OF LITERALS BLOCK.

1103 " 0012 J
1104 7776 133335333
11085 7777 X

2-20

60492600A

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single

precision.

Formats:

Data Item
Constant

Literal

sign

preradix

value

modifiers

Examples of hexadecimal data:

|0} preradix|value| modifiers

sign}0|preradix|value {modifiers

=| sign | 0| preradix|value| modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator,

+ or omitted Value is positive.
- Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants, so
the preradix will not be taken as the first character of a symbol.

Must be present to indicate that a hexadecimal value follows. The preradix character
is = or # depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either
a decimal digit 0-9 or a letter A-F, The digits 0-9 represent values 0-9 and the leiters
A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

The binary scale (S) modifier is optional and has the same form and meaning as for
octal and decimal data (see section 2.7.5).

The binary point position (P) modifier is permitted but ignored, since it does not
apply to integer values.

LOCATION OPERATION . YARIABLE COMMENTS
Location Code Generated
1 n 18 T30
0 60000000000QDLL3527L v JATA | Z12343C,-3,-0ZAAAAA,S1234512
1 TTTTITRIIIINIIIIILNY ’ !
2 7TTITTTTITI?IS5252525 !
3 0D00G0000D00L106L00LG i
4 00000000DCDGS530L2566 X con GSAC1576 !
5 7133004336 + HE X $X3 z=21234552
CONTENT OF LITZRALS 3LOCK, |
& T7II77717777776671353 $333327AKS !

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a combina-
tion of one or more terms. Each term consists of one or more elements joined by operators. A comma
or a blank terminates the expression.

An expression element can be a:

Symbol

Register designator (CPU only)

Numeric or character constant Literal
Special element

60492600 C

2-21 .

Examples of elements:

ALPHA A7 3HABC
$ X3 - =10HOUTPUT
*P 77BS3

A term can be a single element or two or more elements joined by the following element operators:
* Multiplication
/ ~ Division

An expression can be a single term or two or more terms joined by the following term operators:
+ Addition

- Subtraction
A Logical minus (exclusive or)

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in
the ASCII character set,
Rules:
1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.
5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them.

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term with
_ zero value preceding the operator.

- 8. All arithmetic in expression is performed in integer mode, even if an element is a floating
point constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value
exceeds 60 bits, the excess high-order bits are discarded without comment.

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

4+ - ¥ or /
Examples of expressions:

ABLF Single term
$-29 Two terms; $ and 29

2-22 60492600 D

1+=3.14153EE+H Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

#4+3 Two terms; value of the location counter and numeric constant 3.
ABLE®L-72/NUM Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.
i0R Single term consisting of a numeric constant.
3+A6-NUM The components of the expression are register A6 and 3-NUM.
{R=A1R/ The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS
Evaluation during assembly reduces an expression to:

An absoluté value (absolute address or an integer value)
An external symbol + a 21-bit integer

+ relocatable value + a 21-bit integer

Register designators and one of the above

Register designators CPU assembly only

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element {(or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose

_ each other. The elements that form a pair need not be contiguous in the expression.

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the location counter cancel each other,
MIKF+16 The expression contains no relocatable elements.
EASY=FOX¥2+% EASY and the location counter cancel 2 times FOX.

60492600 D ' 2-23

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and

absolute terms:
1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block. The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common relocation is not permitted by the loader),

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MIKE~-16
FOX-EASY+FOX

3 FOX=2%FASY
EASY-*+FOX
FOX~1008/MIKE
-MIKE®24LIMA
=1 0HMESSAGE 33

-%0
The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated

by the same amount. The comparative value of the two terms remains the same regardless of program
relocation,

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

2-24 : 60492600A

1. The expression contains an even number of relocatable terms.

2. The relocatable elements must cancel each other, That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA, MIKE is absolute.

XV 72 FOX-CASY+LIMA The pairs * and T.IMA, and FOX and EASY cancel each other.

FOX-TREASY ¢ 2¥FOX+XYT The relocatable elements all cancel.

ARC+10CB+MIKE | MIKE and 100B are absolute; no relocatable elements.
CXYZ+AREC Illegal; both are external.

~APCe®~f THA Mlegal; ABC is negative.

XYZ7+3(0

Nlegal; *O is an unpaired relocatable element.

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU machine
instructions (Sections 8.4 and 8.5). If the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +,

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.
X3+LIMA-10R

LIMA+X3-10R Produce identical results

~“1OR+LIMA+ X2

BitXY?7

AL NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

60492600 G 2-25

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2%2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - ora operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. If it is too large for the field, the system issues an
error flag. The maximum field size for an expression is 60 bits,

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined

within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, COMPASS uses the value of a relocatable symbol relative to the block in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program or common
block origin.

K . &
The field size for an expression depends upon the instruction and is determined as follows:

@ For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field.

® Ina VFD pseudo instruction, the expression is placed in a field of the size specified.

® Tor a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

e In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values
are assembled into the same field of the same word more than once, as a result of ORGing backward
over the word, or by having more than one subprogram preset a common block. The ORGC pseudo
instruction (see section 4. 5.3) can be used to avoid such problems. '

2-26 60492600 G

PROGRAM STRUCTURE 3

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This diseussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruetion.

BRSO o e s s

R T R R T R

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These bloeks can be controlled during the loading process. The first section of
the chapter presents subprogram block conecepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the blocks.

A subprogram loaded into central memory can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every time; a relocatable subprogram can be loaded into different
locations, aceording to the available central memory at load time. Sections 3.3 and 3.4 discuss the
strueture of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory oceasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM, a programmer
can intersperse instructions for the different blocks. The assembler assigns loeations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within & block is not
local to the block. That is, it is global and can be referred to from any other block in the subprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is cleared, the list of USE, %
USELCM, ORG, and ORGC instructions is eleared, and block structuring restarts. For END, the symbol

table is cleared before the next subprogram is assembled. If the group does not contain a USE instruction

or if object code is generated (or storage reserved) before the first USE instruction, COMPASS piaces the
code in the nominal bloek (identified as PROGRAM* on the listing). For an absolute program, the nominal
block is the absolute block. For a relocatable program, the nominal block is the zero block. The user

controls use of the nominal block and any user-established blocks through USE, USELCM, ORG, and ORGC
pseudo instructions (section 4.5). Each occurrence of a non-redundant literal constant causes an entry in

the literals block; otherwise, the user has no control of this block.

60492600 G 341

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
bloek is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It is a
local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero bleck. The zero block is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block. The zero block is also
named PROGRAM*,

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local bloek, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name is
unique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM block, including the combined local block, is rounded up, if hecessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
bloeks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

3-2 60492600 G

If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or USELCAM
/name/ pseudo instruction, COMPASS treats the block as a local block having the slash-enclosed name. %

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest bloek area declared by any of the
subprograms. A CM/SCM blank common block is established through use of the USE pseudo instruction
(section 4.5.1). An ECS/LCM blank ecommon block is established through use of the USELCM pseudo
instruction (section 4.5.2). A blank common bloek has no name. A USE // indicates blank common in
CM/SCM; A USELCM // indicates blank common in ECS/LCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a ‘
USE // or USELCM // pseudo instruction, COMPASS treats the block as a local block named // and data can }
be stored in this block. '

The USELCM pseudo instruction can occur only in CPU programs. g

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (CM/SCM or ECS/LCM). Thus,
altogether, there may be up to four different blocks with the same name.

3.2 BLOCK COMNTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a bloek is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass
two, as the assembler constructs the program, it assigns an initial value to each local block origin ecounter
and location counter. Thus, expressions containing relocatable symbols are not necessarily evaluated the
same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.

It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo

instruetions to advance the origin counter; ORG and ORGC also permit the programmer to reset the

counter to some lower location in the bloek or to change blocks. BSS allows the programmer to deecrement

the counter but not to change bloeks. The origin counter is incremented by one for eacih word assembled or
skipped forward. The origin counter is decremented by one for each word skipped in the reverse direction. §

When the special element *O is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60432600 G 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter is
incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to oceur. As another example of
its use, the programmer assembling a large table rnay reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the block. (For an
example of these applications, see the LOC pseudo instruetion, section 4.5.5.) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the location
counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word and numbered 11
through 00 within a 12-bit PPU word. Then, the position counter is initially 60 or 12, respectively, and
indicates the number of bits remaining in the word. The position counter, which is decremented by one for
each completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruetion or data value to
be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter ecan be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining in a
partially completed word with no-operation instructicns (section 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles ecode for the next instruetion:

e Insufficient room remains in a partially filled word for the next instruction or data to be generated.

e The current statement is a machine instruction, or a VFD pseudo instruction, with a loeation symbol
or +in the location field.

o The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM instruction for a CYBER 170 Series
or CYBER 70/Model 71, 72, 73, 74, or 6000 Series. (The programmer can negate this force upper by
placing a minus sign in the location field of the instruction.)

e The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD pseudo instruction.

3-4 . - ’ 60492600 G

The assembler forces upper after it assembles code for one of the following:

Jp

RJ

Unconditional EQ

Unconditional ZR

ES (CYBER 70 Model 76 or 7600)

MJ (CYBER 70 Model 76 or 7600)

PS (CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (CYBER 70 Model 72 and 73)

This post force upper does not oceur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruction in the same
USE bloek. The programmer can negate the force upper following the instruction by placing a minus sign in
the location field of the next instruction. Thus, pseudo instructions following one of the above machine
instructions and referencing the origin, location, or position counter will use the value before the force
upper.

In a PPU assembly, no foreing upper ocecurs; the assembler ignores a + in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can all be written in COMPASS source
language, or can be written in any other source language available in the produet set of the operating
system as long as the compiler or assembler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language subprogram is composed of instructions beginning with an IDENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguous blocks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

-When a subprogram is relocated, each machine instruction in it that references a specific address must be
adjusted. Because of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes a function of RA.

A nonblank IDENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram. Upon completing assembly of a relocatable subprogram, COMPASS assigns each local bloek an
origin relative to the zero block. Each block thus becomes an extension of the zero block (figure 3-1).

COMPASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and aceess common storage locations.

affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local blocks, including the zero block and literals block, but not the absolute block. Any
absolute text is simply inserted at the absolute location relative to RA.

2
The loader is thus able to load subprogram blocks independently, as required. Program execution is not é
i

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruetion (if any) in the source program, followed by one section containing the subprogram loader tables.

60492600 G . 3-5

Low

Address ~— IDENT Sizes and locations ‘
Subprogram 1 determined by first)| Labeled Common
B subprogram declaring Blocks
END them \ IDENT
Subprogram 2 (Program#*
(Zero Block)
Subprogram 3 LITERALS*
T — T Local Block 1
R P\ Subprogram length <
/\/\
Subprogram n R
Size determined by
Blank Common largest block declared
H" N : by any subprogram \ Local Block m
ig
Address : END

Map of
Loaded Program

Organization of
Subprogram 1

Figure 3-1. Relocatable Program Structure

3.4 ABSOLUTE PROGRAPM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access privilege.

The programmer has the option of construeting an absolute prograin as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute plock. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
block is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero pdlock and the literals block, respectively. Local blocks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruetion indicates a main
subprogram. In the binary load module the prefix (PRFX or 7700g) table and the header table precede

1 the binary section that is the memory image of the program.

b 3-6 60492600 G

IDENT name

END trasym

Low Address

\
High Address

60492600 G

Prefix Table Program

Identification
CPU or PPU and Loader Control
Header Table Information
Origin__7
PROGRAM* PROGRAM*
Zero Bloek
A (Default)
. LITERALS*
B Binary
Secti
ection A
C
- B
Source Program
Block Structure c

Binary
Load Module

Loader Contro :
Information

Origin—sF:

PROGRAM*

} Zero Block
(Default)

LITERALS*

A

C

Map of
Loaded Program

Figure 3-2. Absolute Program Structure

3-7

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the opticn of writing part of a binary section at a time by using either a
SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700g) table, a header table,
and the binary image of the program or overlay. A header table can be one of the following:

e ASCM or 5000g.
¢ EASCM or 5100g.
e ACPM or 5300g.
e EACPM or 5400g.

Tables are shown on a COMPASS listing by their octal numbers. The table formats are described in the
Loader reference manual.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

¢ If a complete block group is being written (everything between an IDENT and an END or between two
IDENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

e If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4.1 ABSOLUTE OVERLAYS

When dn absolute program contains more than the one IDENTT pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77g. The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only

two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

TIDENT instructions described in this section are assumed to have nonblank parameters. The special case
of the blank IDENT is deseribed in section 3.4.3.

3-8 v 60452600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary overlay 1,0 has three
associated secondary overlays numbered 1,1; 1,25 and 1,3. A primary overlay and all of its associated
secondaries have the same primary level number. The next branch of overlays (indicated by level
numbers 77,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated.

1,3 77,2 23,40)
1,2 77,20 23,30 Secondary
> Overlays
1,1 77,7 23,10
1,0 77,0 23,0 Overlage
Main
0,0 Overlay

Figure 3-3. Overlay Hierarchy

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once &
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: exeecution can begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay. A primary overlay can reference
entry points'in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions concerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central mem ory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other |
respects. However, a PPU overlay with assembled code in locations 7774g through 7777g may load
incorrectly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G ‘ 3-9

@

IDENT-Type Overlays

An IDENT-type overlay consists of the portions of the program from:
e One IDENT to (but not including) the next IDENT
e The last IDENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruction,
COMPASS generates output consisting of a memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An IDENT subsequent to a SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin counter. Following the memory image, COMPASS writes an end-of-section
(or end-of-record) and the overlay identification information speclfled by the new IDENT for the overlay to
follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, bloek usage
alternates between the absolute block (labeled PROGRAM®* on the listing) and block A, as depicted in the
bloek structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each block. Concatenation also occurs in the
primary overlay, OV1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and C.

The occurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo mstrue‘uon (BETA, in the
figure), as shown in the map of the loaded overlays.

The first IDENT pseudo instruction assigns the level number 0,0 to the first overlay (MAIN). COMPASS
assigns level number 1,0 to overlay OV1 by default. v

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:
e The IDENT that identifies the program to a SEGMENT pseudo instruction
e One SEGMENT to the next SEGMENT

e The last SEGMENT to the END pseudo instruction

® 3-10 60492600 G

N

IDENT MAIN,0,0

BETA ——~

ABSOLUTE

IDENT OV1

A

ABSOLUTE

A

ABSOLUTE

e

ORG BETA

END —s

Al AN

B

ABSOLUTE'

C

ABSOLUTE'

B

AV

Overlaid portion
of MAIN overlay

60492600 G

Source Program
Block Structure

ABSOLUTE

Loader Control :

ABSCLUTE'

ZERO'

LITERALS' | »

Al

B

N

¢ /

Map of Loaded
Overlays

AN
N

Low

Addres

~N
OV1 origin—>

ABSOLUTE
ZERO
LITERALS
BETA —»
~— A
First Binary
N Load Module
N
\
AN
AN

“Informatio

ABSOLUTE'

ZERO'

LITERALS'

Al

B

C

High Address

Second Binary
Load Module

Figure 3-4. IDENT-Type Overlay Structure

MAIN overlay
0,0

OV1overlay
1,0

3-11

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, OV1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks occur in the overlay MAIN, because it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay OV1, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) OV1 establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 5100g overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 5100g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100g
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-of-record) or a new prefix table. A SEGMENT, nonblank IDENT, or END instruection
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, COMPASS writes
“binary beginning with the first block established in that portion of binary and ending with the final count
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized. ’

3-12 ' 60492600 G

Pable
MAIN \
Information’
IDENT MAIN —» b
ABSOLUTE
ABSCLUTE
TAG —= A ‘ MAIN
: Overl
ABSOLUTE ZERO oo
LITERALS ’
SEGMENTOV1 | A
ORG TAG T\\ ~ _ TAG A
C \ T~ — y,
D N First Binary
END N Load Module
Source Program N N
Block Structure N
AN
AN
ovi
Qverlay
1,0
Second Binary
Load Module
Low Address “ Toader Controls
2 Information 3 MAIN
Origin
ABSCLUTE ABSOLUTE
ZERO ZERO
I",'AIN< LITERALS LITERALS
A Overlaid
: Portion oVvi
of MAIN \ (yerlay
o \ P Overlay 1,0
High Address \NL___
D
Mep of Loaded
Overlays MAIN and OV 1
Figure 3-5. SEGMENT-Type Overlay Structure
60492600 G

3-13 &

Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of memory required to assemble the program. The resulting absolute section
is loaded and executed as a single program or overlay.

INENT PRCG
ABSOLUTE ABSOLUTE
SEG
(writes partial—s—t -~ - - - - - —_ _| Absolute Binary
binary) ABSOLUTE LITERALS > Section
SEG A . A
(writes partiol—l - - - - - - - -
binary) B . B
Largest partial assembly
determines assembler
C storage requiremerts C
END)End~of-section
Source Program Binary Load
Block Structure Module
I ; Figure 3-6. SEG Partial Binary

IDENT Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or

l SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700g prefix table.
The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary section generated in this manner are allocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local bloeks.
This allows portions of a program to be self-contained units even though they are not overlays but are
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group; that is, it normaily
ends with the last word address. If part of the block group has aiready been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block. '

COMPASS completes all blocks. The literals block is terminated. Bloek structuring starts fresh with each
IDENT. Each new partial binary section created by a blank IDENT can use the same block names as are
used by the other blsnk IDENT-created partial binary sectiens and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the bloeks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes an assembler range error. .

3-14 60492600 G

Figure 3-7 illustrates how the binary for an overlay can be written in three discrete partial binary sections
to reduce the amount of central memory required to assemble the program and divide the program into
self-contained units. The resulting absolute seetion is loaded and executed as a single overlay.

IDENT PGM —» IDENT PCM
ABSOLUTE
LITERALS LITERALS
p B L 3 S
IDENT — LocalBlocks | ocal Blocks
ABSOLUTE' ARSOLUTE'
LITFRALS' LITERALS'
Local Block L B S
IDENT — ocalBlocks | ocal Bloecks
ABSOLUTE" ABSOLUTE"
LITERAILS" LITERALS"
Local Blocks Local Blocks Fnd-of-section

IDENTOVLY —b+—ruronn——
Source Program
Block Structure

Identification
for OVLY
IDENTOVLY—"~___ ~___J
Binary Load
Modules

Figure 3-7. IDENT Partial Pinary Records

60492600 G ' » o 3-15- @

PSEUDO INSTRUCTIONS | 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruection; it
includes the location field, the operation field, the variable field, and the comments field. The pseudo
instruetion differs from the symbolic machine instruction in that it is used to control the actions of the
assembler at assembly time, rather than those of the machine at execution time.

The pseudo instructions available in the COMPASS language are presented in this chapter and in

chapters 5, 6, and 7. Programmers with little COMPASS experience should give special attention to a few
important pseudo instructions, which are listed in the following table. It is not possible to write a
COMPASS program without using some of them. The table indicates the type of assemblies in which the
pseudo instructions can be used.

Pseudo Instruction Section CPU Relocatable .CPU Absolute PPU Absolute
IDENT 4.2.1 X X X
ABS 4.3.1 - -
PPU or PERIPH 4.3.3 or 4.3.4 - - X
ORG 4.5.3 X X X
ENTRY 4,7.1 X - -
BSS 4,5.4 X X X
CON 4,8.6 X X X
END 4.2,2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS
Pseudo instructions discussed in this chapter are classed according to application as follows:
® Subprogram identification (IDENT and END)

o Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, LDSET, STEXT,
COMMENT, and NOLABEL) .

e Mode control (BASE, CHAR, CODE, COL, B1=1, B7=1, and QUAL)

e Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and FOS)
e Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SST)

e Subprogram linkage (ENTRY, ENTRYC, and EXT)

e Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and
REPI)

e Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)
e Error control (ERR and ERRxx)

e Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60496200 G - 4-1

iy

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instructions can be summarized according to where they can be

placed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first source
statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler with
required information. These instructions make up the first statement group which must precede any
symbol definition, storage allocation, or object code generation. The following instructions, if used, must
be in the first statement group:

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE CPSYN ENDM MACROE OPDEF SKIP
Bl=1 DECMIC HERE MICCNT OPSYN SPACE
B7=1 EJECT IFC MICRO PPOP SST
CHAR ELSE IRP NIL PURGDEF TITLE
CODE END LDSET NOLABEL PURGMAC TTL
COMMENT ENDD LIST NOREF QUAL XREF
CPOP ENDIF MACRO OCTMIC RMT

Comment lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instruetions and all other pseudo instructions ecannot be placed in the first
statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or more
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the
end of the source decks is indicated by an end-of-section, such as a 7/8/9 card.

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are assumed to
be comments. However, when COMPASS has been called by some other language processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
tDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before END as an
error. For an absolute subprogram, a second form of IDENT deseribed under BINARY CONTROL is
.available for overlay generation.

4-2 60492600 G

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name

CPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name,origin, entry, ,';1 4 9

7600 PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

name

origin

60492600 G

IDENT name,origin

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable
or absolute assembly, name can be 1 through 7 characters, of which the first must be
alphabetic (A through Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 tarough 7 characters.
For CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000 Series PPU assembly,
name can be 1 through 3 characters. In either case, there is no restriction on the first
character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or overlay. The
overlay loader table and all code assembled starting at this address and ending with the
next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a single
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlaid by the 5000g loader control table. For a multiple entry point CPU
program, the load address for the absolute overlay is origin-we-1, where we is the
number of entry points in the 5100g loader table.

For a PPU subprogram, the ioad address is origin~5. Five 12-bit PPU words are overlaid
by the 60-bit loader table.)

Data can be generated in locations starting with origin and above, but not beiow origin.
The origin subfield does not serve the same funtion as ORG, nor does it replace OKG for
setting the origin counter.

e

ST

Kool IS

2R

[

entry

IR

ppu

If the origin field is null for an absolute subprogram, the assembler uses address
000000 RA(S) as the origin for a CPU program and 0000 as the origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RA(S)+100g, the second
subprogram starting at the first available location following the first subprogram, and so
forth.

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
subfield contains an expression specifying the subprogram entry address, which can be
symbolic.

Absolute expressions specifying the level numbers of the overlay. 27 is the primary
level (0 through 63) and f9 is the secondary level (0-63). When the first IDENT
identifies the main overlay, £1 and £9 can be omitted. If £; is omitted, it is set

to 60. If £ is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the level
numbers on this IDENT are evaluated as decimal uniess specifically designated as octal
by a post radix. ‘

Absolute expression specifying the number of the PPU on which this program is to be

-loaded. On the first IDENT, this number is evaluated as decimal unless specifically

designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in columns 11 through 15.

} When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 1 18 i30
INENY |CT,CCNTROL,CONTROL
ars JARSOLUTE CPU PROGRAM
0RW 110R | :

COMTROL |8SS n lDEFINFS SYMROL CONTROL
END

Absolute CPU program CT will be loaded at origin address 00110g,

4.2.2 END — END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4

60492600 G

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and

produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT)., In
this case, it does not terminate the subprogram.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

sym

sym

trasym

Example:

END trasym

Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks,
The value is the last word address plus one,

A symbol specifying the entry point to which control transfers for a reloca-
table subprogram, This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasym is ignored.

LOCATION

OPERATION

VARIABLE COMMENTS

n

18

BEGIN

60492600A

IDENT
ENTRY

PROG1
BEGIN

EGIN

" 4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler
are summarized below and described fully in this section.

ABS
MACHINE
PPU
PERIPH

IDENT
SEGMENT
SEG
STEXT
COMMENT
NOLABEL
Lce
LDSET

Specifies CPU absolute binary output

Specifies processor type

Specifies CYBER 70/Model 76 or 7600 PPU binary output

Specifies CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 6000
Series PPU binary output

Begins absolute overlay or writes partial binary section

Begins absolute overlay

Writes partial binary section

Generates system text overlay

Inserts comments into the 77 5 prefix table

Suppresses header information on binary output

Passes loader control information to the relocatable loader

Generates loader directive LDSET

: 4.3.1 ABS — ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement

group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no signifi-
cance because a conventional definition takes precedence (Section 2.4. 2).

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6

60492600C

Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
IDENT CY,CONTQOL,CbﬁTWOL
ABS lﬁﬂSOLUTE CPU PRIOGRAM
0ORG 1108 ’ .
CONTROL |RSS ¢ EEFINES SYMBOL CONYTROL
. *® l
L) L] '
END '

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program.
If used, MACHINE must be in the first statement group.

Format:

LOCATION ~ |OPERATION VARIABLE SUBFIELDS

MACHINE |type, hf ,hf,, by, ..., bE

A location field symbol, if present, is ignored.

type Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

6 The object program is restricted to the following computer systems: CYBER
170 Series, CYBER 70/Model 71, 72, 73, or 74, or 6000 Series. All machine
instructions unique to the CYBER 70/Model 76 or 7600 Computer Systems are
undefined.

7 The object program is restricted to a CYBER 70/Model 76 Computer System or
to a 7600 Computer System, With the exception of the PS instruction (often used
for subroutine entry points in CPU assemblies), all instructions unique to the
following computer systems are undefined: CYBER 170 Series, CYBER 70/

Models 71, 72, 73, and 74, and 6000 Series.
In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the fype
subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro-

- gram are blanks., If the type subfield is present and its first character is 6 or 7,

60492600 C 4-7

the valid field contains 6X or 7X. If the type subfield is at least two characters,
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters.)

In a PPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHINE 6 is assumed; if the PPU pseudo in-
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P,

hf Optional subfield, a character string designating an optional hardware feature re-
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effect on
assembly of the program, The first character of the subfield is placed in the hard-
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

Compare/Move Unit
Distributive Data Path
Integer Multiply Instruction
ECS/LCM

Interlock Register

IR SR - I

Central and Monitor Exchange Jumps

Up to nine hfi subfields are processed; any additional subfields are ignored. If the
b.fi subfields are omiited, the comma following type can also be omitted.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

) 1 18 T30

i

MACHINE[6,CMU,LCM,X]
1
]

4.3.3 PPU - CYBER 70/MODEL 76 OR 7600 PPU PROGRAM

A PPU instruction declares a program to be a CYBER 70/Model 76 or 7600 absolute PPU program rather
than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruction, refer to the Loader reference manual.

4-8 , 60492600A

‘Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LCC B1=1"

REP B7=1
REPC

REPI

SEG

A symbol can be prefixed by = X if it is also defined conventionally.

" If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.
PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
' PPU J
J ‘ A character string beginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJIN instructions.

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value, If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value,
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression. '

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value
that is a true relative address,

A symbol in the location field, if present, is ignored.

60492600A ' 4-9

Example:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 I30
PPy ’
. |
. i
740 TAG pss | 298 |
760 0357 YIN TAG-* |EXPRESSION < 278
|
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! n L] [0
PPy JUMP ;
. ,
. |
;: g 2 TAG RSS 20R |
0357 UIN TAG [EXPRESSION-* < 37R

4.3.4 PERIPH - CYBER 170 SERIES OR CYBER 70/MODELS 72, 73,

74 OR 6000 S‘ERiES PPU PROGRAM
A ?ERIPH instruction declares a program to be a CYBER 170 Series or CYBER 70/Model 72, 73, 74,
or 6000 Series absolute PPU program rather than a CPU program, If used, PERIPH must be in the

first statement group. For a description of binary output produced as a result of this instruction,
refer to the Loader Reference Manual,

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG Bi=1
EXT REPC USELCM B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP
. CPSYN
PURGDEF »
Format: ’
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH J '
J ; A character string beginning with J supplied in the variable field alters the

o way that COMPASS assembles the variable field expression on UJN, ZJN,
J MJN, cr PJN instructions.

4-10 60492600A

If J is not specified, COMPASS first tests the range of the expression value

~ against the short jump limit (+31), If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absclute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (Section 3.4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end-of-section or a new 77 8 table. However, the USE table and the

block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
. partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+l.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, 11, { 9

60492600A . 4-11

or

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT

7600 PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name,origin
name Name of the overlay, For a CPU program, 1-7 characters, the first of which

must be alphabetic (A-Z); for CYBER 170 Series or a CYBER 70/Model 72, 73,
or 74 or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76
or 7600 PPU program, 1-7 characters. In all cases, the last character must
not be a colon, A name is a loader linkage symbol required for overlays.

origin An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1. The word at origin-1 is overlayed by the 50_ loader table. For a
multiple entry point CPU program, the load address for the overlay is origin-
wc-1, where wc is the number of entry points listed in the 51g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. When the overlay is
called, control optionally transfers to this address.

£y Absolute expressions specifying the level numbers of the overlay for CPU
programs only. g4 is the primary level (00-778), Ly is the secondary level

(00-775), If base is M, £; and g, are assumed to be octal. If §; and £, are not
specified, £ is set to 01 and g, is set to 00. ’

4-12 60492600A

ppu An absolute expression specifying the number of the PPU in which the overlay

is to be loaded.

A location field symbol, if present, is ignored.

If base is M, ppu is assumed to be octal.

The binary is written on the file specified by the B parameter on the COMPASS control statement. END

dumps the last overlay or completes

Examples:

The following program uses IDENT for overlay creation.

a partially written section.

defined on a system text overlay,

Symbols T.OVL, O.DMP1, etc., are

LOCATION OPERATION

VARIABLE COMMENTS

1 " 18 [0
IDENT [DMPe1,T.0VL,0.NMP1
ABS]

De# BASE |M |

COMMENY 10/07/70.CONTROL CARD CALL .DMP.
LIST |6
SST | OVERLAY
ORG T.OVL DMP1
QUAL |DMP1 |

nMp SX0 B1 [
QUAL [DMP2 |
IDENT DMP?,T.OVL,OrDMPZ 1
ORG T.OVL OVERLAYS DMP2

awW2 SX0 86+1 { THROUGH OMP8
< * '
QUAL [DMP9 =
IDENT DﬁP.Q,T.OVL,%.UMPQ OVERLAY
ORG T.0VL | DMPQ
SX0 O.DHP2+F.MDﬂ
° [] l
END ENo overLAY oMo i

60492600A

4-13

The following program uses IDENT instructions having blank variable fields.

1617

© 3455

7116

Origin—

1617

3455

7116

lwa

=14

—

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30

TOENT | VWV, 110B,ENT !
ARS I
ORG 1108 i

ENT X9 1 |
. . - l
. . l First
LIT 1,2,3 | Partial Binary
TNENT ;
i 17 ; s 3 ‘ Second
N . | Partial Binary
IDENY '
LI T ;. 2 '

’ I Third
* . Partial Binary
£ND] i
~ ABSOLUTE]

LITERALS First

Local Blocks

ABSOLUTE'

LITERALS'

ABSOLUTE"!

LITERALS"

Local Blocks

Core Map

Partial Binary

1
Second
Partial Binary

J

Third
Partial Binary
d

60492600A

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG-
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a

CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

name SEGMENT | origin,entry, 4,4,

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon, It is a required loader linkage symbol.

origin A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table, Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter., The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

11,12 ‘ Absolute expressions specifying the level numbers of the overlay for CPU
programs only. ll is the primary level (00-778), ,Qz is the secondary level

(00—778). If base is M, .Ql and 22 are assumed to be octal, If £1 and 12
are not specified, ‘Ql is set to 01 and 22 is set to 00.

60492600A 4-15°

" Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
IDENT |SAM,ENTA !
ABS
ORG 110R ‘
ENTA ASS n lENTRY POINT
° - |
ovLne ASS) [OVERLAY LOAD POINT
. ® ‘
SEGY SEGMEN] STRT,ENTA |
ORG ovLet
RSS 1 LOADER TAPLE
STRT . | eSS n JFIRST WORD OF OVERLAY
L] * ‘]
ENTB RSS 0 IEXECUYION BEGINS HERE
END L {END OF OVERLAY

SEG1 is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning

at OVLOC,

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end-of-section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the hlock in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

4-16 60492600A

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SEG

Symbols in the location field and variable field, if present, are ignored.

Example:
LOCATION QPERATION | VARIABLE COMMENTS
1 " 18 {30

IDENT | NAME,ORIGIN, ENTRY
A8S
USE A |
. . I
. ° ‘
SEG
USE |8 |
- L] l
. . I
SEG ‘
* * ‘
END :

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only once for all COMPASS programs using the same system text. System text over-
lays cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement calls.

The symbols included in the system text overlay written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600A 4-17

Thé symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e., is a system symbol input to the present system text assembly).
The symbol is 8 characters beginning with 1 {.

\ll defined micros are included in the system text overlay.

\11 program-defined opcodes are also included. Machine and pseudo instructions automatically
lefined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
ncluded.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con-
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the following control table:

59 48 42 36 00
| 5000 | oif o1} 000000000000

Format of Text:

System Symbol
Table
2 words per entry

)
W L, Micro Definitions

23
\/\//—\// > Macro/opdef Definitions

£

9 Operation Table
m Entries (2 words per entry)

4-18 60492600A

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
rname STEXT
rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter (A-Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generates

the system text only.

Otherwise, the system text is generated in addition to the re~

locatable or absolute binary and precedes the binary output on the binary file,

An entry in the variable field', if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
} n 18 {30
IDENT | SYSTEXT |
STEXT |
BASE | MIXED
MPRS EQU 100 |
'SYSTEM CONSTANTS, SYMBOLS,
|AND COMMUNICATIONS AREAS
TRTS £QU 77T ’ zJ
IXX/X OPDEF | IyJ,K |
L] [] *
. . . {svsreu-osrxuen MACROS
. . . 'AND OPDEFS
ENDM I
SYSCOM |MACRO |N l
[] [] []
- L] [) ‘
3 . . l -
ENDM |7
DATE MICRO [1,10,%¢0e¥
* * [] l
. . . [SYSTEM-DEFINED MICROS
END ¢

60492600A

4-19

4.3.9 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into

the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent 7
binary control statement. If the subprogram contains a NOLABEL instruction, the COMMENT instruc-!
tion is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are

ignored without notification.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
COMMENT |string
string COMPASS searches the columns following the blank that terminates the operation

A location field symbol, if present, is ignored. Refer to section 4.3.5 for an example.

field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters, If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost,

[N
7

4.3.10 NOLABEL — DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

NOLABEL (I

60492600 F

I Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (77008) tables, but retains the other program
header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (7700g)

Overlay control tables (5000g)
Multiple entry point tables (5100g)
PPU header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4.3.11 LCC—LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LCC directive
directive First nonblank character following LCC to the first blank. For directive

formats, refer to the Loader Reference Manual.
A location field symbol, if present, is ignored,
COMPASS writes a directive as a section in packed display code for subsequent interpretation by the

loader, COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.3.12 LDSET—GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A
program may contain any number of LDSET instructions, COMPASS collects all LDSET options and
writes a single LDSET (7000g) table in the relocatable binary output between the PRFX (7700g)
table and the PIDL (3400g) tables. The LDSET table is not written if LDSET instructions do not
appear in the program. LDSET is not allowed in & PPU or absolute CPU assembly.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

LDSET options

60492600 G) v : 4-21

ions One or more options separated by eommas.
LIB Clear local library set.

LIB=libname " Add the specified libraries to the local library set. ore than one library can
be specified by separating library names with a slash, in the form:

libnamej/libnamey/.../libnamep
MAP Write load map to file OUTPUT.
MAP=p Write load map to file OUTPUT. Map items are selected by p:
N No map.
S Statisties.
B Block list.
E Entry point list.
X Cross reference map.

p can be written as N or as any combination of SBEX in any order.

MAP=p/lfn Write load map to file named lfn. p is as above.

MAP=/lfn Write load map to file named 1fn. Installation default determines items on
the map.

PS=p Select page size for load map by a specification of number of lines. p can be

decimal 10 through 999399, A value outside this range results in the
installation default page size.

PD=p Select print density for load map by a specification of decimal number of
lines per inch. p can be:

6 6 lines per inch.
8 8 lines per inch.

other Installation default.

PRESET=p Preset memory to the value specified by p. Under NOS/BE, p canbe a 1
through 20 digit octal number with an optional + or - prefix and an optional B
suffix.

p can also be one of the following key words:

NONE No presetting for ECS; same as ZERO for CM
ZERO 0000 0000 0000 0000 G000
ONES 7T 10T T 17
INDEF 1777 06000 0000 0000 0000
INF . 3777 0000 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 0000 0000

ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252
DEBUG 6000 0000 0004 0040 0000

PRESETA=p p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24
bits (ECS/LCM) of each word contains its address. This option is not
supported by SCOPE 2..

| ERR=ALL Select loader abort for all errors.

2 60492600 G

ERR=FATAL
ERR=NONE
REWIND
NOREWIN
EPT=eptname
NOEPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON-=blkname

SUBST=pair

OMIT=eptname

Select loader abort only for fatal errors.
Select loader aport only for catastrophic fatal errors.

Reset the default REWIND/NOREWIN option for load files to REWIND. The
NR parameter on LOAD and SLOAD directives can override this default for
individual files.

Reset the default REWIND/NOREWIN option for load files to NOREWIN. The
R parameter on LOAD and SLOAD directives can override this default for
individual files.

If the symbol eptname is defined, declare it an entry point of the CAPSULE
or OVCAP binary subsequently generated by the loader in the form:

pnamej/pnames/.../phamey

Do not define eptnanie as an entry point of the CAPSULE or OVCAP binary
subsequently generated by the loader.

Cause the designated object modules to be loaded whether or not they are
needed to satisfy external references. More than one module can be
specified by separating module names by a slash.

Cause the load of object modules containing the specified entry points
whether or not they are needed to satisfy external references. More than one
entry point can be specified by separating entry point names by a slash in the
form:

eptnamey/eptnamesy/.../eptnamep

Assign all labeled blocks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common block named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.
More than one block name can be specified by separating the individual vlock
names with a slash in the form:

blknamej/blknames/.../blknamey

Treat external references to eptnamey as though they were references to
eptnameg, where the entry point names are specified as a pair in the form:

eptnamej-eptnameg

More than one palr of entry point naines can be specxﬁed by separating the
pairs with a slash in the form:

pairllpairz/.../pairn
Omit satisfying external references to the specified externals. More than

one entry point name can be specified by separating the names with a slash in
the form:

eptnamej/eptnamesy/.../eptnamep

A location field symbol, if present, is ignored.

See the Loader reference manual for details of these parameters, including the operating system to which a
given option applies.

60492600 G 4-22.1

4 MODE CONTROL

xde control pseudo instructions influence the basic operating characteristics of the assembler.
scifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data

Generates character data

BASE pseudo instruction
CODE pseudo instruction

Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruction
Interprets the R= instruction B1l=1 or B7=1 pseudo instruction

each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.1 BASE — DECLARE NUMERIC DATA MODE

e BASE pseudo instruction declares the mode of interpretation for numeric data for which a base
dix is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subpro-
am, COMPASS evaluates unspecified numeric data as decimal.

. alternate application of BASE is to define the previous base as a micro.

addition, if no program or system micro named BASE has been defined, COMPASS changes the
redefined BASE micro to be a single letter D, M, or O, corresponding to the new mode established
“this BASE instruction.

rmat:
LOCATION OPERATION VARIABLE SUBFIELDS
mname BASE mode
mname Optional 1-8 character micro name by which the previous BASE mode can be referenced
in subsequent BASE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE mode
in effect prior to this BASE instruction.
mode Blank, in which case the base remains unchanged, or 1-8 characters, the

-22,2

first of which designates the new base as follows:

o

Octal assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15g; constant 15D is evaluated as 17g. Any
item containing an 8 or 9 without a D radix is flagged as
erroneous., Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

60492600 F

D Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.

M Mixed assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count
B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

60492600 F 4-22.3/4-22.4 [

Binary point position
COL column number
DIS word count

SPACE line count

* . Use base in effect prior to current base. The assembler records
’ occurrences of BASE pseudo instructions and maintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and removes it from the list, When the
subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS uses a decimal base.

other If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.
Examples:

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 10 g

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 {30
Dr0 BASE |0 .
0000000000000010 VFD |60/10 '
. . |
* L J I
02D BASE |D |
90086 VFD 5878
0000800000010 |
L] ® l
DeH BASE M ’
06000000 VFD |&8/10 ‘
00000010 |

.

The following example illustrates the micro capability of BASE:

lOCATIQN OPERATION | YARIABLE COMMENTS
) " 18 [0
DeM SAVEB BASE | M ISAVE BASE IN USE
L] L] N L] ‘
. . . [CODE USING BASE M
BASE | #SAVEB# IRESTORE SAVED BASE
HoD BASE | O RESTOﬁE SAVED BASE
L] [] []
* L] * I
* [3 I

60492600A 4-23

44.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE O (fo