CONTROL DATA
SR

CORPORATION

CONTROL DATA®
7600 COMPUTER SYSTEM

REFERENCE MANUAL

57i
601]K

62ijK
63ijk
64ijk
65ijk
66ijk
67ijk

INSTRUCTION INDEX

. CENTRAL PROCESSOR

Error. exit to EEA

Return jump to K

Block copy (Bj) + K words from LCM to SCM
Block copy (Bj) + K words from SCM to LCM
Exchange exit to NEA (Exit Mode flag cleared)
Exchange exit to (Bj) + K (Exit Mode Flag set)
Read LCM at (Xk) to Xj

Write Xj into LCM at (Xk)

Reset Input channel (Bk) buffer if j=0

Read Input channel (Bk) status to Bj, if j#0
Reset Output channel (Bk) buffer if j=0

Read Output channel (Bk) status to Bj if j#0

~ Jump to (Bi) +K

Branch to K if (Xj) =

Branch to K if (Xj) # 0

Branch to K if (Xj) positive
Branch to K if (Xj) negative
Branch to K if (Xj) in range
Branch to K if (Xj) out of range
Branch to K if (Xj) definite
Branch to K if (Xj) indefinite

Branch to K 1f (Bi) = (Bj)
Branch to K if (Bi) # (Bj)
Branch to K if (Bi) > (Bj)
Branch to K if (Bi) < (Bj)

Transmit (Xj) to Xi

Logical product of (Xj) and (Xk) to Xi

Logical sum of (Xj) and (Xk) to Xi

Logical difference of (Xj) and (Xk) to Xi
Transmit complement of (Xk) to Xi

Logical product of (Xj) and comp (Xk) to Xi
Logical sum (Xj) and comp (Xk) to Xi
Logical difference of (Xj) and comp (Xk) to Xi

Left shift (Xi) by jk

Right shift (Xi) by jk

Left shift (Xk) nominally (Bj) places to Xi
Right shift (Xk) nominally (Bj) places to Xi
Normalize (Xk) to Xi and Bj

Round and normalize (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bj

Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) and (Xk) to Xi

Floating difference of (Xj) minus (Xk) to Xi
Floating DP sum of (Xj) and (Xk) to Xi
Floating DP difference of (Xj) minus (Xk) to Xi
Round floating sum of (Xj) and (Xk) to Xi

Round floating difference of (Xj) minus (Xk) to X1

Integer sum of (Xj) plus (Xk) to Xi
Integer difference of (Xj) minus (Xk) to Xi

Floating product of (Xj) and (Xk) to Xi
Round floating product of (Xj) and (Xk) to Xi
Floating DP product of (Xj) and (Xk) to Xi
Form mask of jk bits to Xi

Floating divide (Xj) by (Xk) to Xi

Round floating divide (Xj) by (Xk) to Xi

No operation (pass)

Population count of (Xk) to Xi

Set Ai to (Aj) + K
Set Ai to' (Bj) + K
Set Ai to (Xj) + K
Set Ai to (Xj) + (Bk).
Set Ai to (Aj) + (Bk)
Set Ai to (Aj) - (Bk)
Set Ai to (Bj) + (Bk)
Set Ai to (Bj) - (Bk)~

Set Bi to (Aj) + K
Set Bi to (Bj) +K
Set Bi to (Xj) + K
Set Bi to (Xj) +(Bk)
Set Bi to (Aj) + (Bk)
Set Bi to (Aj) - (Bk)
Set Bi to (Bj) + (Bk)
Set Bi to (Bj) - (Bk)

WWWWWWWWWW w
1

1 1
[.4
3

]
= .00 D W
(=]

-

e
W

'3-16

3-19

3-20
3-20

- 3-20
3-20

3-20
3-20
3-20
3-20

3-21
3-21
3-21
3-21

3-22
3-22
3-23
3-24
3-24
3-25
3-25
3-26

3-29
3-29
3-30
3-31
3-32
3-33
3-27
3-28

3-34
3-36
3-36
3-37
3-38
3-39
3-39
3-40

3-40
3-42
3-43
3-32
3-43
3-45
3-46
3-486

3-47
3-47
3-47
3-47
3-47
3-47
3-47
3-47

3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48

704K
71ijK
72ijK
73ijk
74ijk
75ijk
76k
77ijk

Set Xi to (Ai) + K
Set Xi to (Bj) + K
Set Xito (Xj) + K
Set Xi to (Xj) + (BKk)
Set Xi to (Aj) + (Bk)
Set Xi to (Aj) - (Bk)
Set Xi to (Bj) + (Bk)
Set Xi to (Bj) - (Bk)

PERIPHERAL PROCESSORS

Error Stop

Long jump to m + (d)
Return jump to m + (d)
Unconditional jump d
Zero jump d

Nonzero jump d

Plus jump d

Minus jump d

Shift (A) by d

Logical difféerence (A) and d
Logical product (A) and d
Selective clear (A)

Load d

Load complement ¢

Add (A) +d

Subtract (A) - d

Load dm

Add (A) + dm

Logical product (A) and dm
Logical difference (A) and dm
Pass

Pass

Pass

Pass

Load (d)

Add (d) + (A)

Subtract (A) - (d)

Logical difference (A) and (d)
Store (A) at d

Replace add (A) + (d)
Replace add one (d)

Replace subtract one (d)

Load ((d))

Add (A) + ((d)

Subtract (A) - ((d))

Logical difference (A) and ((d))
Store (A) at (d)

Replace add (A) +_((d))
Replace add one ((d))

Replace subtract one ((d))

Load (m + (d))

Add (A) + (m + (d)

Subtract (A) - (m' + (d))

Logical difference (A) and (m + (d))
Store (A) at m +(d)

Replace add (A) + (m + (d))

Replace add one (m + (d))

Replace subtract one (m + (d))

Jump on input word flag
Jump if no input word flag
Jump on input record flag
Jump if no input record flag
Jump on output word flag
Jump if no output word flag
Jump on output record flag
Jump if no output record flag

Input to A from channel d

Input (A) words to m from channel d
Output from A on channel d

Output {A) words from m on channel d
Output record flag on channel d

Pass

Pass

Error Stop

1
== OO0 (<108 IEN IO e pie tl e ol)

-
[=N ==

1

DRI DN OISO D
1

LI I

CONTROL DATA
[comPoraTIoN]

CORPORATION

CONTROL DATA®
7600 COMPUTER SYSTEM

REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
01 Preliminary edition.
(11-1-68)
02 Manual revised; Engineering Change Order 21882, publications change only. Pages iii, 1-4,1-6,
(3-21-69) 1-7,2-2,2-3,2-4,2-5,2-6,2-14,2-19,3-2,3-4,3-5,3-7,3-12,3-13,3-15, 3-25, 3-32, 3-33, 3-35,
3-36, 3~37, 3-43, 3-45, 3-46,4~1,4-2,4-3,4-4,4-7,4-8,4-10,4-11,5-1,6-1, 6-17,7-2, 7-4, A-1, A-2,
A-3 ,A-4, A-6,A-7,B-6 and B-8 revised. Deleted page 7-5.
A Manual released. This printing obsoletes all previous editions.
(5-15-70)
B Manual revised; includes Engineering Change Order 26320, publication change only. Revision
(10-15-70) Record, Comment Sheet, iii,iv, 1-2 through 1-13,3-2,3~36,4-3 through 4-18, 7-5, A-9, B-4,C-5,
and C-7 revised. Appendix D added.
C Manual revised; includes Engineering Change Order 27040, publication change only. This edition
(2-15-71) obsoletes all previous editions.

Publication No.
60258200

© 1970, 1971

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

by Control Data Corporation

Printed in the United States of America

or use Comment Sheet in the back of
this manual,

CONTENTS

P

1. SYSTEM DESCRIPTION Floating Point Add Unit 3-34
Long Add Unit 3-39
Introduction 1-1 Floating Point Multiply Unit 3-40
Central Processor Unit - Floating Point Divide Unit 3-43
Peripheral Processor Unit Pass Instruction 3-45
Characteristics 1-4 Population Count Unit 3-46
Basic System Description 1-4 Increment Unit 3-47
Central Processor Unit (CPU) 1-5
Peripheral Processor Unit 4. CENTRAL PROCESSOR MEMORY
(PPU) 1-7
Maintenance Control Unit Introduction 4-1
(MCU) 1-7 Memory Protection 4-1
Power Distribution Cabinet 1-8 Small Core Memory 4-2
Refrigeration System 1-8 Address Format 4-3
Operator Station 1-8 Parity Conditions 4-3
System Communication 1-10 Duty Cycle Integrator 4-3
Small Core Memory Access 4-4
2. CENTRAL PROCESSOR UNIT Memory Reference 4-7
Computation Section 2-1 I/O Multiplexer 4-8
Operating Registers 2-1 Large Core Memory 4-15
CPU Instruction Formats 2-4 Address Format 4-16
Instruction Word Stack 2-6 Parity Conditions 4-16
Functional Units 2-9 Large Core Memory Access 4-17
Exchange Jump 2-10

Program Status Designators 2-15 5. PERIPHERAL PROCESSOR UNIT

Organization 5-1
3. CENTRAL PROCESSOR C . S . 5-2
INSTRUCTIONS omputation Section -

. Memory 5-3
Instruction Formats 3-1 Input/Output 5-3
Monitor, LCM and I/O 3-2
Branch 3-17 4 PERIPHERAL PROCESSOR
Boolean Unit 3-22 INSTRUCTIONS
Shift Unit 3-29 Instruction Formats 6-1
Normalize Unit 3-32

60258200 C iii

Address Modes

No Address Mode

Constant Mode

Direct Address Mode
Indexed Direct Address Mode
Indirect Address Mode

Description of Peripheral
Instructions

7.

Error Stop

No Operation

Branch

No Address

Constant

Direct Address
Indirect Address
Indexed Direct Address

Input /Output

MANUAL CONTROL

Introduction

iv

Basic System Diagram
Typical Operator Station
CPU Information Flow

Parcel Instruction Arrange-
ment

Exchange Package

Flag and Register Arrange-
ment

Memory Map
SCM Address Format
1/O Exchange Package Areas

Typical Buffer Area Arrange-

ments

Maintenance Controcl Unit

MCU Scanner

MCU Dead Start
PPU Dead Start
CPU Dead Start

6-3 PPU Dead Dump
PPU and MCU Parity
6-4 Errors
6-5 SCM and LCM Parity
6-5 Errors
6-6 PPU Program Error
6-8 Console
6-10 Alphanumeric Keyboard
6-12 Display
6-15
6-17 APPENDIXES
6-20 A. Timing Notes
B. Floating Point Arithmetic
C. Mnemonic Codes
7-1 D. 6000/7000 Result Differences
FIGURES
- 4-5 LCM Address Format
- 5-1 Signals for One PPU Bi-
_ Directional Channel
5-2 PPU/Controller Communi-
9-5 cations
6-1 PPU 12-Bit Instruction
2-11
Format
9-16 6-2 PPU 24-Bit Instruction
Format
4-2 -3 71 Flow Chart
4-3 -4 73 Flow Chart
4-5 -1 MCU Configuration
- i 1
4-9 Display Console

7-6
7-7

6-1
6-23
6~25

7-8

60258200

3-1 Central Processor Instruc-
tion Designators

6-1 Addressing Modes for Periph=
eral Processor Instructions

60258200 C

TABLES

6-2
3-1

6-2

Peripheral Processor
Instruction Designators

6-4

SYSTEM DESCRIPTION 1

INTRODUCTION

The CONTROL DATA® 7600 computing system is a large-scale solid-state, general
purpose digital computing system. The 7600 is the result of a development program
to provide computing capacity significantly beyond that of the 6000 systems. The
advanced design techniques incorporated in this system provide for extremely fast and

efficient solutions for large scale, general purpose processing.

The 7600 system comprises (Figure 1-1) a Central Processor Unit (CPU) and a num-
ber of Peripheral Processor Units (PPU). Some of the PPU are physically located

with the CPU and others may be remotely located. The PPU provides a communica-
tion and message switching function between the CPU and individual peripheral equip-
ment. Each PPU may have a number of high speed data links to individual peripheral

equipment as well as a data link to the CPU.

CENTRAL PROCESSOR UNIT CHARACTERISTICS

Computation Section
e 60-bit internal word
e binary computation in fixed point and floating point format

e nine independent functional units

Boolean Floating Multiply
Shift Floating Divide
Normalize Population Count
Floating Add Increment

Long Add

ng /
=]

e 12-word instruction stack
e synchronous internal logic with 27.5 nanosecond clock period
Operating Registers

e eight 60-bit operand registers (X registers)

60258200 C 1-1

—

A
2425)] la0:asy) |(38.3m) (44.45) {47

SHIFT FLING TONG mne FLTNG POPULATION ' ‘,
23, T’""“,'ﬁ ADD 00 Mumm DIVIDE coum'u 'I"(g'(‘f,';f"

\\\74

COMPUTATION AND CONTROL
(8 80-BIT X REGISTERS)
(8 18-BIT A REGISTERS)
(8 18-BIT B REGISTERS)

DATA
INSTRUCTIONS (80 BITS)
OR DATA
(60 BITS) LARGE
CORE
SMALL MEMORY
CORE DATA (256.000
MEMORY (60 BITS) OR
(32,768 OR 512,000)
65,536) 80 -BIT
60-8I1T WORDS)
WORDS)
1/0 BUFFERS| X
EXCH PKGS
1/0 DATA
(60 BITS)
CENTRAL PROCESSOR UNIT
(CPU)
1/0
'MULTIPLEXER
(8. 12 OR 16 CHANNELS)
1/0 DATA

(12 BITS)

=N e
LJ
l\|/,l_, MCU PPU1 PPU2 PPU3 PPU4 PPUS PPUG
1/0 DATA
DISPLAY CONSOLE 1"2 BITS) 1 I I l I
“ J
~—
TO PPUS OR PERIPHERAL EQUIPMENT

CARD READER

PERIPHERAL PROCESSOR UNITS
(PPUS AND MCU)

Figure 1-1, Basic System Diagram

UP TO 15 PPU
MAY BE DIRECTLY
CONNECTED .

13 PPU MAY

BE CONTAINED
IN THE MAIN
FRAME.

EACH PPU

HAS 8 1/0
CHANNELS AND
INCLUDES A 4K
MEMORY OF
12-BIT WORDS

60258200 C

e eight 18-bit address registers (A registers)

e eight 18-bit index registers (B registers)

Small Core Memory

e 32,768 or 65,536 60-bit words of coincident current memory with five parity

bits per 60-bit word
e organized into 16 or 32 independent banks (2, 048 words per blank)
e 275 nanosecond read/write cycle time

e 27.5 nanosecond per word maximum transfer rate

Large Core Memory

e 256,000 or 512,000 60-bit words of linear select memory with four parity
bits per 60-bit word

e organized into four or eight independent banks (64, 000 words per bank)
. 1, 760 nanosecond read/write cycle time
e eight words read simultaneously each reference

e 27.5 nanosecond per word maximum transfer rate (512, 000 memory only)

Multiplexer
° Seven independent 12-bit channels (expandable to 15 channels)
e each channel bi-directional
° fixed SCM buffer areas for each channel; 128 or 256 60-bit words

e normal channels and high speed channels

System Options

® I/O Multiplexer Channel Increments (M UXI) to increase the number of channels
to 11 or 15

¢ Large Core Memory Increment (LCMI) to increase a basic system of 256, 000
words to 512,000 60-bit words

e Small Core Memory Increment (SCMI) to increase a basic system of 32, 768
words to 65, 536 60-bit words

60258200 C 1-3

PERIPHERAL PROCESSOR UNIT CHARACTERISTICS

Computation Section
° 12-bit internal word
° binary computation in fixed-point

e synchronous internal logic with 27.5 nanosecond clock period

Operating Registers
° 18-bit Arithmetic Register (A)
e 12-bit Program Address Register (P)
e 13-bit Memory Read Register (X)
e 12-bit Instruction Register (fd)

e 12-bit Working Register (Q)

Core Memory

™ 4,096 12-bit words of coincident current memory with a parity bit for each
12-bit word (odd parity)

e organized into two independent banks (2, 048 words per bank)

° 275 nanosecond read/write cycle time

Input/Output Section
e eight independent channels (asynchronous)

P each channel bi-directional (12-Bit)

BASIC SYSTEM DESCRIPTION

The 7600 mainframe includes a Central Processor Unit (with its associated memory),
a Maintenance Control Unit, and up to 13 Peripheral Processor Units. Additional
PPU's may be mounted externally. Overall system operation depends on the integral

operation of these elements. Following are brief descriptions of the system elements;

1-4 60258200 C

detailed descriptions appear in subsequent chapters. Unless otherwise specified, these

descriptions assume the largest system configuration of memory and I/O channels.

CENTRAL PROCESSOR UNIT (CPU)

The CPU is a single integrated processing unit. It consists of a computation section,
small core memory, large core memory and an input/output multiplexer. These
sections are all contained in the main frame cabinet and operate in a tightly synch-

ronous mode. Communication outside the main frame cabinet is asynchronous.

COMPUTATION SECTION

The computation section of the CPU contains nine functional units, and 24 operating
registers. These units work together to execute a CPU program. Data moves into,

and out of, the computation section of the CPU through the operating registers.

CORE MEMORY

The CPU contains three types of internal memory arranged in a hierarchy of speed

and size.

1. The instruction stack contains 12 60-bit words for issuing of instructions.
This register memory holds the latest ten instruction words and the two-
instruction word look-ahead. Program loops can be held in the stack thereby

avoiding memory references.

2. The Small Core Memory (SCM) contains 32, 768 or 65, 536 60-bit words
arranged in 16 or 32 banks of 2, 048 60-bit words each. Each bank is phased;
that is, consecutive addresses go to different banks. This gives a marked
decrease in memory conflicts and allows overlapping of memory cycles. Each
bank is made up of ten memory stacks. Each stack contains 1,024 12-bit
words plus one parity bit per 12-bit word (odd parity). These stacks are

identical with the Peripheral Processing Unit memory. Either instructions
or data may be held in SCM.

60258200 C 1-5

3. The Large Core Memory (LCM) contains 256, 000 or 512, 000 60-bit words
arranged in four or eight phased banks. This memory is a linear select
memory with one parity bit for each 15 bits (odd parity). Each LCM word
contains eight 60-bit words for rapid transfer of blocks of data. However,
individual 60-bit words may be accessed. Instructions cannot be executed
directly from LCM.

The SCM performs certain basic functions in system operation which the LCM cannot
effectively perform. These functions are essentially those requiring rapid random
access to unrelated fields of data. The first 4K addresses in SCM are reserved for
the input/output control and data transfer to service the communication channels to
the PPU. CPU object programs do not have access to these areas. The remainder of
the SCM may be divided between fields of CPU program code and fields of data for the

currently executing program. A small portion will contain a resident monitor program.

INPUT/OUTPUT MULTIPLEXER

The CPU Input/Output Multiplexer (MUX) includes the mechanism to buffer data to (or
from) a PPU that is directly connected to the CPU. The PPU communicates with the
CPU over a 12-bit bi-directional channel. In the basic system, there are eight such
channels in the MUX, one of which is reserved for use by the Maintenance Control
unit. Each channel has assembly/disassembly registers to convert 12-bit channel data
to 60-bit CPU words (and vice versa). The function of the MUX is to deliver these
60-bit words to SCM for incoming data, read 60-bit words from SCM for outgoing data,
and provide the capability to interrupt the CPU program for monitor action on the
buffer data.

Each channel normally has a SCM buffer area for incoming data and a separate buffer
area for outgoing data. Each channel also has separate exchange packages for in-
coming and outgoing data. The I/O exchange package areas and the buffer areas are

permanently assigned in the lowest order addresses of SCM.

1-6 60258200 C

Some of the I/O channels are called high speed channels as opposed to normal channels.
High speed channels transfer data at approximately twice the speed of normal channels.

The maximum speeds of normal and high speed channels are listed below.

Normal Channel High Speed Channel
Input: 60 clock periods/60-bit word 34 clock periods/60-bit word
Output: 72 clock periods/60-bit word 35 clock periods/60-bit word

PERIPHERAL PROCESSOR UNIT (PPU)

The Peripheral Processor Units (PPU) are separate and independent computers, some
of which may reside in the main frame cabinet. Others may be remotely located. A
PPU may be connected to SCM, another PPU, a peripheral device or a mix of these.
PPU's that connect directly to the CPU, whether on the mainframe or remotely located,
are termed first level PPU's. FEach PPU has a computation section that performs
binary computation in fixed point arithmetic. A PPU memory provides storage for
4,096 12-bit words. This storage is arranged in two independent banks, each with a
cycle time of 275 nanoseconds. The two memory stacks used in a bank contain 1024
12-bit words each. These same stacks are used in groups of five to form SCM. The
PPU instruction set, combined with the high speed memory and channel flexibility,
enables a PPU to drive many types of peripherals without the necessity of an inter-
mediate controller. There are eight input data paths and eight output paths connecting
the PPU to other devices. The PPU input/output facility pro'vides a flexible arrange-
ment for very high speed communication with a variety of I/O devices. The bi-
directional channels allow additional Peripheral Processor Units to be added to the
system by linking PPU to PPU.

MAINTENANCE CONTROL UNIT (MCU)

The Maintenance Control Unit is a mainframe PPU with specially connected I/0O
channels. It is capable of selecting any PPU that is connected to the scanner, and
dead starting this PPU. It can write into any part of SCM by specifying the SCM ad-
dress. It can dead start the CPU by entering a program into SCM and initiating an

Exchange Jump to start execution.

60258200 C 1-7

With these capabilities it may perform system initialization and basic recovery of the
system. The MCU also serves as a maintenance station for directing and monitoring
system maintenance activity.

POWER DISTRIBUTION CABINET

The power distribution cabinet distributes 400-Hz power to the central computer dc
power supplies. It also contains a warning system that monitors logic chassis tem-

perature, room dew point temperature, and condensing unit condition.

A warning panel contains relay circuits that activate a horn and automatically shut off

computer power when cooling system malfunctions occur.

REFRIGERATION SYSTEM

Two water-cooled condensing units, each with a capacity rating of 10 tons, provide
cooling for the mainframe and up to two stand-alone Operator Stations adjacent to the
mainframe. Each remotely located Operator Station is cooled by a condensing unit
with a capacity of two tons. The condensing units cool by pumping R12 refrigerant
through cold plates in each chassis.

There are two types of two-ton condensing units, water-cooled and air-cooled. In the
water-cooled condensing units, water from an external source removes the heat from
the condenser. In the air-cooled condensing units, fans draw air around refrigerant
tubes in the condenser. The air absorbs heat from the refrigerant and exhausts the

heat into the computer room.

OPERATOR STATION

An Operator Station (Figure 1-2) is a self-contained data processing system that
serves primarily as an input/output processor for the CPU. Typically, the Operator
Station is composed of:

6 Peripheral Processor Units

1 Display console

1-8 60258200 C

D 00286209

6-1

CARD PUNCH

PRINTER

S —
CARD READER PRINTER
cHaN 7,7 0 g ¢l

IS SHARED

L

DISPLAY CONSOLE

T0 CPU OR
FIRST LEVEL PPU

DISK DRIVE MAGNETIC TAPE UNITS

Figure 1-2, Typical Operator Station

1 Disk drive

1 Card reader with Dead Start capability
1 Card punch unit

2 Line printers

2 Magnetic tape drives

One of the six PPU's in the Operator Station usually connects to the CPU through an
I/O Multiplexer channel. An alternate method is for the Operator Station to connect to

the CPU through a first level PPU residing in the mainframe.

The maximum cable length between the CPU and a first level PPU, or between a first
level PPU and the Operator Station is 200 feet. Communication is over 12-bit bi-

directional channels.

The PPU connected to the card reader receives the Dead Start signal and is assigned
the task of loading the resident programs and Dead Starting the other five PPU's in
the station. The system also performs its own parity error detection and dead dump

procedures.

SYSTEM COMMUNICATION

System communication paths are illustrated in Figure 1-1. All input data enters and
leaves the system via peripheral equipment. The PPU's gather input data from the
peripheral equipment for delivery to the CPU for processing, and distribute processed
data to the output devices. Communication between the PPU and the I/O devices is
generally limited by the rate at which the equipment or controller can deliver or

accept data.

Communication between a PPU and the CPU is over a channel identical to that used for
communication between the PPU and peripheral equipment. All 15 CPU I/O channels
may be in operation at the same time. Data may be sent to or from the CPU on long
records. These records can exceed the size of the SCM buffer area which is filled and
emptied in a circular mode. This is done by I/O interrupts that initiate a CPU program
that can empty or fill the buffer area some fifty times faster than a PPU can f{ill or

empty it.

1-10 60258200 C

For example, the PPU starts filling the buffer area at its lowest address and continues

entering words until the midpoint of the buffer is reached. This causes an interrupt to

a CPU program which empties the lower half of the buffer. Meanwhile the PPU con-

tinues filling the buffer. At the end of the buffer another interrupt occurs to reinitiate
the CPU program which has completed its task of emptying the lower half of the buffer.

Meanwhile, the PPU starts to refill the buffer at the lower address.

60258200 C

CENTRAL PROCESSOR UNIT 2

C "

COMPUTATION SECTION

The computation section of the Central Processor Unit contains all logic necessary to
execute program instructions stored in Small Core Memory. It includes the registers
and control logic to direct the arithmetic operations and provide interface between the
arithmetic units, SCM, and LCM. In addition to instruction execution, the Central
Processor Unit performs instruction fetching, address preparation, memory protec-

tion and data fetching and storing. Figure 2-1 illustrates the general flow of informa-
tion.

Program execution is begun by an exchange jump. The operating system can use an
exchange jump to switch program execution between two SCM programs, leaving the

first program in a usable state for later re-entry.

The Central Processor Unit reads 60-bit words from SCM and stores them in an in-
struction stack capable of holding up to twelve 60-bit words. Each instruction word
in turn leaves the stack, enters a Current Instruction Word register for interpretation
and testing. The Current Instruction Word register holds four 15-bit intructions, two
30-bit instructions, or combinations of the two types of instructions. The 15- or
30-bit instructions issue individually from the Current Instruction Word register to
one of nine functional units. The functional units obtain the instruction operands from
and store results in 24 operating registers. Reservation control keeps an account of

active operating registers to avoid conflicts.

OPERATING REGISTERS

Twenty-four registers are provided to minimize memory references for arithmetic

operands and results. These 24 are divided into:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8
Address Registers A0 - AT 18 Bits' 8
Index Registers BO - B7 18 Bits 8

60258200 C 2-1

2-¢

[WSTRUCTDN ADDRESS STACK(I8 BlTS)l [INSTRUCTION WORD STACK (60 BITS)]
T1

]

|
|

D 00288%209

FROM SCM

A REGISTERS
(18 BITS)

CURRENT
INSTRUCTION WORD,

INSTRUCTION
ISSUE

FUNCTIONAL
UNITS

LONG ADD
FLOATING ADD J
FLOATING MULTIPLLI
FLOATING DIVIDEJ

BOOLEAN |

SHIFT

NORMALIZE |

POPULATION COUNT J

INCREMENT J

B REGISTERS

(18 BITS)

|
SCM SCM LCM LCM
ADDRESS DATA ADDRESS DATA

Figure 2-1. CPU Information Flow

X REGISTERS

There are eight 60-bit X registers in the computation section of the CPU. These regis-
ters (X0, X1, . . . XT) are the principal data handling registers for computation.

Data flows from these registers tothe SCM and the LCM. Data also flows from SCM
and LLCM into these registers. All 60-bit operands involved in computation must

originate and terminate in these registers.

Operands and results transfer between SCM and these registers as a result of placing
SCM addresses into corresponding address registers.

The X registers also serve as address registers for referencing single words from

LCM. XO0 is used as the LCM relative starting address in a block copy operation.

A REGISTERS

There are eight 18-bit A registers in the computation section of the CPU. These
registers (A0, Al, . . . A7) are essentially SCM operand address registers. The
registers are associated one-for-one with the X registers. Placing a quantity into an
address register Al - A5 causes an immediate SCM read reference to that relative
address and sends the SCM word to the corresponding operand register X1 - X5.
Similarly, placing a quantity into address register A6 or A7 causes the word in the
corresponding X6 or X7 operand register to be written into that relative address of

SCM. Only the lower 16 bits are used; the remainder are ignored.

The A0 and X0 registers operate independently of each other and have no connection
with SCM. AO is used as the relative SCM starting address in a block copy operation

and for scratch pad or intermediate results.

B REGISTERS

There are eight 18-bit B registers in the computation section of the CPU. These reg-
isters (B0, B1, . . . B7) are primarily indexing registers for controlling program
execution. Program loop counts may be incremented or decremented in these regis-

ters.

60258200 C 2-3

Program addresses may be modified on the way to an A register by adding or subtract-
ing B register quantities. The B registers also hold shift counts for pack and normal-

ize operations and the channel number for channel status requests.

B0 always contains positive zero. It can be used as an operand (positive 0), but cannot

hold results from instructions.

CPU INSTRUCTION FORMATS

Program instruction words are divided into 15-bit fields called parcels. The first
parcel (parcel 0) is the highest order 15 bits of the 60-bit word. The second, third,
and fourth parcels (parcels 1, 2 and 3) follow in order. A CPU instruction may occupy
either one or two parcels, depending on the type of instruction. The possible arrange-
ments of one and two parcel instructions are shown in Figure 2-2, If an instruction
requires two parcels it should not begin in the fourth parcel of the word. When a two
parcel instruction begins in the last parcel of an instruction word it will be executed as
if there were a fifth parcel in the instruction word and this parcel contained all zeros;
it will not obtain its second half of the instruction word from the next instruction word.
For example, an 02 Jump instruction in the fourth parcel may be acceptable if the pro-

grammer wishes K to be zero.

A one parcel Pass instruction may be used to complete a 60-bit word in order to

place a particular instruction in the first parcel of a word. It may also be used to avoid
starting a two-parcel instruction in the fourth parcel of a word. Note that 60, 61, 62
instructions with i equal to zero become Pass instructions, (Page 3-48). Since these
are 30-bit instructions they may be used as two parcel pass instructions. Pass in-
structions may be necessary for branch entry points because a branch instruction

destination address must begin with a new word.

Groups of bits in an instruction are identified by the letters g, h, i, j, k, and K. Each
letter represents an octal digit except K, which represents six octal digits. The

designators are arranged in one and two parcel words as shown in Figure 2-2,

The g and h designators form the operation code. The g designator generally identifies
the type of instruction and frequently specifies the functional unit. The h designator
completes the function code specification for all but a few instructions by specifying

the functional unit mode.

2-4 60258200 C

4
INSTRUCTION COMBINATIONS
IN SCM

PARCEL O

'
[s [s | 15 |
59

PARCEL
'd

15 | 60BITS
0

[30

Figure 2-2,

60258200 C

INSTRUCTION FORMATS
g h i i k
33 [3[3] 3] 58T
0

\ﬂ_/
OPERATION
CODE

RESULT
3 REG
(1 OF 8)

v
iST OPERAND
REG (| OF 8)

:

2ND oPERAND
REG (I OF 8)

9 h i i K

3] 3] 3| 3] I8

] 30 BITS

_V_I
OPERATION

CODE
2ND opERAND

RESULT
REG
(1 OF 8)

ST OPERAND
REG (i OF 8)

Parcel Instruction Arrangements

(o]

The i, j, and k designators are the operand source and destination indicators. They
specify which one of the eight possible A, B, or X registers is referenced. The i
designator is normally the destination indicator. If there are two destinations re-
quired for the instruction, both the i and j designators specify destination. In some

15-bit instructions the j and k designators specify shift count.

The K designator in a 30-bit instruction is an 18-bit operand for branch destination

addresses and for small integer constants.

INSTRUCTION WORD STACK

The Instruction Word Stack (IWS) is a group of twelve 60-bit registers in the CPU
computation section that hold program instruction words for execution. The instruc-
tion stack information is essentially a moving window in the program code. The stack
is filled two words ahead of the program address currently being executed. A small
program loop of up to ten instruction words may be entirely contained within the
instruction stack. When this happens, the loop may be executed repeatedly without

further references to SCM.

A group of twelve 18-bit address registers are associated with the Instruction Word
Stack. These registers, called the instruction address stack (IAS), hold relative SCM
program addresses on a one-for-one basis with the program words in the instruction
word stack. The rank one register contains the oldest address in the stack and the

SCM address from which the word in rank one of the instruction word stack was read.

When a shift stack condition exists each rank is cleared and simultaneously entered
with information from the next highest order rank. The information in rank one is

discarded. New information arriving from SCM is entered in rank 12,

The twelve registers are individually identified by rank. The rank one register con-
tains the oldest data in the stack. If the Instruction Word Stack contains sequential
program instruction words, the contents of the rank one register in the stack corre-
sponds with the lowest storage address in the instruction address stack. The rank 2
register contains the last word to enter the stack. This register is loaded directly
from SCM.

2-6 60258200 C

PROGRAM ADDRESS REGISTER

An 18-bit P register serves as a program address counter and holds the relative
address for each program step. P is advanced to the next program step in the follow-

ing ways:
1. P is advanced by one when an instruction word is sent to the Current Instruc-

tion Word register.

2. P is set to the address specified by a Branch instruction. If the instruction
is a Return Jump, (P)+1 is stored before entering P with the new value to

allow a return to the original sequence.

3. P is setto the address specified in the Exchange package.

INSTRUCTION ISSUE ’

Program instruction words are read one at a time from the instruction stack into the
current instruction word (CIW) register for execution. An instruction "issues'' from
the CIW register when the conditions in the functional units and operating registers are
such that the functions required for execution may be performed to completion without
conflicting with a previously issued instruction. Once an instruction has issued it
must be completed in a fixed time frame. No delays are allowed from issue to deliv-

ery of data to the destination operating registers.

Since each instruction word is divided into four 15-bit parcels, there may be as many
as four instructions in the CIW register at one time. These instructions are executed
in sequence (parcel 0 instruction first) and the proper allowance made for the mixture

of one- and two-parcel instruction formats.

PROGRAM BRANCHING

When program execution reaches a branch instruction, the action taken depends upon
whether the destination address is already in the Instruction Address Stack. If the
destination address is in the instruction address stack the P register is altered to the
new program address and the corresponding word is read from the instruction stack to
the CIW register. The jump is then completed without an SCM reference for a new

instruction word.

60258200 C 9.7

If the destination address is out of the stack,two new words, located at the destination
address and the destination address plus one, are requested from SCM to begin the
new program sequence. Instruction execution continues upon receipt of the words
from SCM.

DUPLICATE ENTRIES IN STACK

It is possible for a branch out of IWS to occur when the destination address corresponds
to a program word that has already been requested from SCM as a result of the sequen-
tial two-word read ahead. If the word has not actually arrived at the IWS at the time of
the branch test, the jump occurs and a duplicate of the first word in the new sequence
is read from SCM. Execution of the new sequence begins as soon as the earlier word

arrives at the instruction stack.

Duplicate entries in the IWS cause no problems unless an instruction is modified
during execution. Since this modification occurs only in SCM, and since duplicate
entries are merged in a logical sum network, an erroneous instruction may result.
Therefore, the IWS should be voided by executing a Return Jump (01) instruction after
instruction modification has been performed.

HOLES IN THE STACK

It may happen that several small program sequences reside in the instruction stack at
the same time. Program execution may branch back and forth between two such
sequences. The execution of the sequence occupying the lower ranks of the instruction
stack may branch in such a way as to continue sequential execution into a program
area not loaded into the stack on the initial pass. When this happens it is possible for
the next sequential instruction word to be missing in the stack and no request has been

made for it.

This situation is equivalent to a branch out of stack with no branch instruction involved.

Two new words are requested from SCM to continue the program sequence.

2-8 60258200 C

PROGRAM ADDRESS REGISTER

An 18-bit P register serves as a program address counter and holds the relative
address for each program step. P is advanced to the next program step in the follow-

ing ways:

1. P is advanced by one when an instruction word is sent to the Current Instruc-

tion Word register.

2. P is set to the address specified by a Branch instruction. If the instruction
is a Return Jump, (P)+1 is stored before entering P with the new value to

allow a return to the original sequence.

3. P is settothe address specified in the Exchange package.

INSTRUCTION ISSUE :

Program instruction words are read one at a time from the instruction stack into the
current instruction word (CIW) register for execution. An instruction 'issues'' from
the CIW register when the conditions in the functional units and operating registers are
such that the functions required for execution may be performed to completion without
conflicting with a previously issued instruction. Once an instruction has issued it
must be completed in a fixed time frame. No delays are allowed from issue to deliv-

ery of data to the destination operating registers.

Since each instruction word is divided into four 15-bit parcels, there may be as many
as four instructions in the CIW register at one time. These instructions are executed
in sequence (parcel 0 instruction first) and the proper allowance made for the mixture

of one- and two-parcel instruction formats.

PROGRAM BRANCHING

When program execution reaches a branch instruction, the action taken depends upon
whether the destination address is already in the Instruction Address Stack. If the
destination address is in the instruction address stack the P register is altered to the
new program address and the corresponding word is read from the instruction stack to
the CIW register. The jump is then completed without an SCM reference for a new

instruction word.

60258200 C 2-1

Except for the floating multiply and divide units, all functional units have one clock
period segmentation. This means that the information arriving at the unit, or moving
within the unit, is captured and held in a new set of registers at the end of every clock
period. It is therefore possible to start a new set of operands for unrelated computa-
tion into a functional unit each clock period even though the unit may require more than
one clock period to complete the calculation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination
in the proper order but at a later time. All functional units perform their algorithms
in a fixed amount of time. No delays are possible once the operands have been deliv-

ered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter
the multiply unit in any clock period providing there was no multiply operation initiated

in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is
executed. There is no segmentation possible in this unit. However, to increase
execution speed, the beginning of a new divide operation can follow a previous divide

operation by 18 clock periods.

EXCHANGE JUMP

The CPU Exchange Jump is a mechanism for switching CPU execution between pro-
grams.

The execution of an Exchange Jump involves the simultaneous storing of all pertinent

information in the CPU operating registers and control registers into SCM and writing
new information from SCM into these same registers, This block of data is called an
exchange package. An exchange package (Figure 2-3) provides the following informa-

tion on a program to be executed:
1. Program address (P) - 18 bits
2. Reference address for Small Core Memory (RAS) - 18 bits
3. Field length of program for Small Core Memory (FLS) - 18 bits

4. Reference address for Large Core Memory (RAL) - 19 bits

2-10 60258200 C

SCM LOCATION n 7 P AO BPA
n+ | RAS Al BI
n+2 FLS A2 B2
n+3 /, PSD A3 B3
n+4 * RAL A4 B4
n+5 FLL A5 B5
n+6 —" NEA A6 B6
n+7 EEA A7 B7
n+8 X0
n+9 X1
nt 10 X2
n+ 1l X3
n+12 X4
n+13 X5
n+ 14 X6
n+ 15 X7

= IS

60258200 C

59 53 35 17 0

Figure 2-3. Exchange Package

No hardware registers exist; bits not used.

Hardware registers exist; bits not used. These bits are reserved for
hardware use and are not to be used as software flags.

Hardware registers exist; system software uses bits 254-259

5. Field length of program for Large Core Memory (FLL) - 19 bits
6. Program Status Designation register (PSD) - 18 bits
7. Normal exit address (NEA) - 16 bits
8. Error exit address (EEA) - 16 bits
9. Breakpoint address (BPA) - 18 bits
10. Current contents of the eight A registers
11. Current contents of the eight X registers

12. Current contents of B registers Bl through BT7.

The period of time during which a particular exchange package resides in the CPU
hardware registers is termed the execution interval. The execution interval begins
with an exchange jump that reads the exchange package from SCM and enters these
parameters into the CPU registers. It ends with another exchange jump that stores

the exchange package back into SCM.

Several instructions or conditions initiate exchange jumps and select the exchange

package that is to begin execution:
1. Exchange exit instructions (01300 and 013jK)
2. Error exit
3. Input/Output interrupt
4. Real time interrupt
5. Program breakpoint

6. Step mode

EXCHANGE EXIT INSTRUCTIONS
The Normal Termination for an exchange package execution interval is caused by an

Exchange Exit instruction (01300 or 013jK) in the associated program. The Exit Mode
flag in the PSD register determines the source of the exchange package.

2-12 60258200 C

The Exit Mode flag is intended to indicate a privileged monitor program and is normal-
ly not set for an object program execution interval. When the flag is not set and the
object program terminates the execution interval with an 01300 instruction, the nor-
mal exit address (NEA) is the absolute address of the exchange package. When this
flag is set and program terminates the execution interval with an 013jK instruction,

the absolute SCM address for the exchange package is formed by adding (Bj) + K +
(RAS).

An overflow of the lowest order 16 bits of this result causes an error condition that is
not sensed in the hardware. Should a program erroneously execute an Exchange Exit
instruction with an overflow condition, the exchange jump sequence will begin at the

absolute SCM address corresponding to the lowest order 16 bits of this sum.

ERROR EXIT

An object program terminates execution with an exchange jump to the Error Exit
Address (EEA) upon encountering an Error Exit instruction (00) or under certain con-
ditions defined by the Program Status Designation register (PSD). Some of these
conditions may be selected by the programmer, and some are unconditional. In gen-
eral, errors caused by arithmetic overflow, underflow, or indefinite results during
computation may be allowed to proceed through the calculation, or may cause an error
exit, depending on mode selection. Errors caused by hardware failure or program
addressing out of an assigned field in storage cause unconditional error exits. In any
error exit case the programmer may allow the object program to continue where the

error can be corrected or ignored.

The error condition flags and mode selection flags are all contained in the Program
Status Designation register (PSD), which is loaded from the exchange package for each
program execution interval. The mode selections are made in the exchange package
prior to the execution interval of the program. If an error condition occurs during
the execution interval the type of error can be determined by analyzing the terminating
exchange package parameters. Each bit in the PSD register has significance either
as a mode selection or an error condition flag. For a detailed description of the PSD

register refer to Program Status Designators (page 2-15),

60258200 C 2-13

INPUT/OUTPUT INTERRUPT

The 1/O Multiplexer section of the CPU monitors I/O activity between the PPU and
SCM. The multiplexer issues an interrupt request to the CPU when the threshold of
an SCM input or output buffer is reached. A Record Pulse from a PPU also causes an
interrupt request. When accepted, an I/O interrupt request initiates an exchange

jump to the CPU program.

REAL TIME INTERRUPT

CPU programs may be timed precisely by using the CPU clock period counter which

is advanced one count each clock period of 27.5 nanoseconds. Since the clock advances
synchronously with program execution, a program may be timed to an exact number

of CPU clock periods.

The CPU clock period counter contains a 17-bit register that can be read by a Read
Input Channel (0) Status instruction. An overflow of the highest order bit in this
counter sets the Real Time Clock Interrupt flag, which can be seen as the 18th bit

when the time is read.

The Real Time Clock Interrupt flag attempts an interrupt of the CPU program to ab-
solute address 0020 in SCM every 3. 6 milliseconds (approximate). The real time
exchange package at this SCM address executes a CPU program that performs opera-
tions associated with the clock.

PROGRAM BREAKPOINT

A program may be executed in small sections during a debugging phase by using the
Breakpoint Address register (BPA)., This is a hardware register in the computation
section of the CPU that is loaded from the program exchange package. A coincidence
test is made between (BPA) and the Program Address register (P) as each program
instruction word is read from the instruction word stack, When coincidence occurs
the program execution terminates with an exchange jump to the Error Exit Address
(EEA). If the (BPA) are equal to (P) in the initiating exchange jump package, no in-

structions are executed. Normally, no instructions are executed at address BPA.

2-14 60258200 C

STEP MODE

A program may be executed in Step mode by setting the Step Mode flag in the Program
Status Designation register for the program execution interval. Step mode causes the
program to be interrupted at the end of each program instruction word with an ex-
change jump to the Error Exit Address (EEA).

PROGRAM STATUS DESIGNATORS

The Program Status Designator register (PSD) is a collection of 18 program status
flags. Six of these flags are mode designators and 12 are condition designators. The
arrangement of these flags in the register is shown in Figure 2-4.

The PSD register is loaded from the exchange package during an exchange jump se-
quence. All 18 bits are entered inthe register at this time. The six mode designators
remain unaltered throughout the execution interval for the exchange package. The 12
condition designators may be set by conditions that occur during the execution inter-
val. All flags are stored in the SCM exchange package at the end of the execution

interval.

The execution interval for an exchange package may be terminated by an error condi-

tion that occurred during this interval.

MODE FLAGS

Exit Mode Flag (Bit 17): The Exit Mode flag controls the source of the exchange pack-

age address for the execution of an exchange exit instruction (013). If this flag is set,
the exchange package absolute address is (Bj) + K + (RAS). If this flag is not set, the
exchange package absolute address is (NEA).

Monitor Mode Flag (Bit 16): The Monitor Mode flag controls the mode of input/output

activity. If this flag is set, the program currently being executed cannot be interrupted
by an I/O interrupt request. If an I/O interrupt occurs, it will not be honored until

the end of the execution interval for the current exchange package.

60258200 C 2-15

91-¢

D 00286209

MODE FLAGS CONDITION FLAGS
/ A Vv A \
[vvlwe[is[w[le]nlw]s[s]|7]els|a]3]2]1]0]
ExiT—] UNDERFLOW
MONITOR OVERFLOW
STEP INDEFINITE
INDEFINITE STEP
OVERFLOW— L BREAKPOINT
UNDERFLOW— L PROGRAM RANGE
LCM PARITY— L_SCM DIRECT RANGE
SCM PARITY — L_LCM DIRECT RANGE

LCM BLOCK RANGE —

—SCM BLOCK RANGE

Figure 2-4. Flag and Register Arrangement

The monitor flag also controls the execution of the Reset Buffer instructions (0160,
0170). If the Monitor Mode flag is set, the reset buffer instructions are executed.
Otherwise, the reset buffer instructions are executed as Pass instructions. This flag

prevents an object program from interfering with I/O activity.

Step Mode Flag (Bit 15): The Step Mode flag, if set, causes the current program to be

interrupted at the end of each program instruction word. The terminating exchange
package is at absolute address (EEA) in SCM.

Indefinite Mode Flag (Bit 14): The Indefinite Mode flag enables interruption of the

current program on the condition of an indefinite floating point result., The combina-

tion of this flag set and the Indefinite Condition flag set terminates the execution inter-
val at the end of the current program instruction word. Note, however, that this in-
struction word is not necessarily the word containing the instruction that caused the
indefinite condition. Rather, it is the current instruction word at the time the error
condition is generated in the functional unit. The terminating exchange package is
located at absolute address (EEA) in SCM.

Overflow Mode Flag (Bit 13): The Overflow Mode flag enables interruption of the

current program on the condition of an overflow of a floating point result. The com-

bination of this flag set and the Overflow Condition flag set terminates the execution
interval at the end of the current program instruction word. Note, however, that

this instruction word is not necessarily the word containing the instruction that caused
the indefinite condition. Rather, it is the current instruction word at the time the
error condition is generated in the functional unit. The terminating exchange package
is located at absolute address (EEA) in SCM.

Underflow Mode Flag (Bit 12): The Underflow Mode flag enables interruption of the

current program on the condition of an underflow of a floating point result. The com-

bination of this flag set and the Underflow Condition flag set terminates the execution
interval at the end of the current program instruction word. Note, however, that

this instruction word is not necessarily the word containing the instruction that caused
the indefinite condition. Rather, it is the current instruction word at the time the
error condition is generated in the functional unit. The terminating exchange package
is located at absolute address (EEA) in SCM.

60258200 C 2-17

CONDITION FLAGS

Whenever Condition flags 23 - 21\1 enter the PSD register from an exchange package
an error exit will occur and no program instructions will be executed. Condition

flags 20 - 22 require the corresponding Mode flags to be set.

LCM Parity Condition Flag (Bit 11): The LCM Parity Condition flag is set whenever an
LCM parity error is detected during an LCM reference. When this flag is set the

execution interval for the exchange package terminates at the end of the current pro-
gram word. The terminating exchange package is located at absolute address (EEA)
in SCM.

SCM Parity Condition Flag (Bit 10): The SCM Parity Condition flag is set whenever an
SCM parity error is detected during an SCM read/write cycle. When this flag is set

the execution interval for the exchange package terminates at the end of the current
program instruction word. The terminating exchange package is located at absolute
address (EEA) in SCM.

LCM Block Range Condition Flag (Bit 9): The LCM Block Range Condition flag is set

whenever a block copy instruction is issued that would cause an LCM reference to an

address equal to or greater than (FLL). The block copy instruction is issued as a
Pass instruction in this case. When this flag is set the execution interval for the ex-
change package terminates at the end of the current program instruction word. The

terminating exchange package is located at absolute address (EEA).

SCM Block Range Condition Flag (Bit 8): The SCM Block Range Condition flag is set
whenever a block copy instruction is issued that would cause an SCM reference to an

address equal to or greater than (FLS). The block copy instruction is issued as a
Pass instruction in this case. When this flag is set the execution interval for the ex-
change package terminates at the end of the current program instruction word. The

terminating exchange package is located at absolute address (EEA) in SCM.

LCM Direct Range Condition Flag (Bit 7): The LCM Direct Range Condition flag is set
whenever a read LCM (014) or write LCM (015) instruction causes an LLCM reference
to an address equal to or greater than (FLL). Writing into LCM is inhibited in such

a case. When this flag is set the execution interval for the exchange package termi-
nates at the end of the current program instruction word. The terminating exchange

package is located at absolute address (EEA) in SCM.

2-18 60258200 C

SCM Direct Range Condition Flag (Bit 6): The SCM Direct Range Condition flag is set
whenever an Increment instruction (50-57) issues that causes an SCM reference to an

address equal to or greater than (FLS) or whenever the P register is greater than or
equal to (FLS). Writing into SCM is inhibited in such a case. When this flag is set
the execution interval for the exchange package terminates at the end of the current
program instruction word. The terminating exchange package is located at absolute
address (EEA) in SCM.

Program Range Condition Flag (Bit 5): The Program Range Condition flag is set when

the P register equals zero or an Error Exit instruction (00) is issued. When this flag
is set by P equal to zero, the execution interval for the exchange package terminates
immediately. When this flag is set by a 00 instruction, execution terminates immedi-

ately. The terminating exchange package is located at absolute address (EEA) in SCM.

Breakpoint Condition Flag (Bit 4): The Breakpoint Condition flag is set whenever (P)

equals (BPA). When this flag is set the execution interval for the exchange package
terminates at the end of the current program instruction word. The terminating
exchange package is located at absolute address (EEA) in SCM.

This condition flag normally sets in time to terminate the execution interval before

the instruction word located at program address (BPA) is executed. If two increment
instructions with 30-bit formats are contained in the instruction word at (BPA) -1,
however, it is possible for execution of the instruction word at (BPA) to begin before
the Breakpoint Condition flag has taken effect. In this case the execution interval for
the exchange package terminates at the end of the execution of the instruction word
located at address (BPA). If the Breakpoint Condition flag is set at a word immediately
following a branch instruction, the program will terminate whether or not the branch

is taken.

Step Condition Flag (Bit 3): The Step Condition flag is set whenever the Step Mode

flag is set and an instruction issues. This combination of conditions allows only one
instruction word to be executed during this execution interval for the exchange pack-
age. When this flag is set the execution interval for the exchange package terminates
at the end of the current program instruction word. The terminating exchange package
is located at absolute address (EEA) in SCM.

60258200 C 2-19

Indefinite Condition Flag (Bit 2): The Indefinite Condition flag is set whenever an

indefinite floating point value is detected by a floating point functional unit. An indefi-
nite value may occur during execution of instructions 30, 31, 32, 33, 34, 35, 40, 41,
42, 44, and 45. When this flag is set and the Indefinite Mode flag is also set, the
execution interval for the exchange package terminates at the end of the current pro-
gram instruction word. Note that this program instruction word is not necessarily the
word containing the instruction that caused the indefinite condition. Rather, it is the
current instruction word at the time the error condition is generated in the functional

unit. The terminating exchange package is located at absolute address (EEA) in SCM.

Overflow Condition Flag (Bit 1): The Overflow Condition flag is set whenever an over-

flow of the floating point range is detected by a functional unit. A floating point over-
flow may occur in the execution of instructions 30, 31, 32, 33, 34, 40, 41, 42, 44,

and 45. When this flag is set and the Overflow Mode flag is also set, the execution
interval for the exchange package terminates at the end of the current program instruc-
tion word. Note that this program instruction word is not necessarily the word con-
taining the instruction that caused the overflow condition. Rather, it is the current
instruction word at the time the error condition is generated in the functional unit.

The terminating exchange package is located at absolute address (EEA) in SCM.

Underflow Condition Flag (Bit 0): The Underflow Condition flag is set whenever an

underflow of the floating point range is detected by a functional unit. A floating point
underflow may occur in the execution of instructions 32, 33, 40, 41, 42, 44, and 45.
When this flag is set and the Underflow Mode flag is also set, the execution interval
for the exchange package terminates at the end of the current program instruction
word. Note that this program instruction word is not necessarily the word containing
the instruction that caused the underflow condition. Rather, it is the current instruc-
tion word at the time the error condition is generated in the functional unit. The

terminating exchange package is located at absolute address (EEA) in SCM.

2-20 60258200 C

CENTRAL PROCESSOR INSTRUCTIONS 3
“

INSTRUCTION FORMATS

This section describes the Central Processor Unit instructions. The CPU instructions
tend to fall into two distinct categories: those causing computation, and those causing
storage references or program branching. The CPU instructions causing computation
are generally executed in a fixed amount of time after they have issued from the Cur-
rent Instruction Word register. Instructions involving storage references for operands
or program branching cannot be precisely timed. Program branching within the instruc-
tion stack causes no storage references and small program loops can therefore be
precisely timed.

Careful coding of critical program loops can produce substantial improvements in exe-
cution time. Detailed timing information is provided in the appendix section of this
manual to allow a complete analysis of those situations warranting the programming
effort.

Preceding the description of each instruction is the octal code, the instruction name
and length. Table 3-1 defines the Central Processor Unit instruction designators.

TABLE 3-1. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use
A Specifies one of eight 18-bit address registers.
B Specifies one of eight 18-bit index registers; B0 is fixed

and equal to zero.

gh A 6-bit instruction code.

ghi A 9-bit instruction code.

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

] A 3-bit code specifying one of eight designated registers
(e.g., Bj).

60258200 C 3-1

TABLE 3-1. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS (Cont'd)

Designator Use

jk A 6-bit constant, indicating the number of shifts to be
taken.

k A 3-bit code specifying one of eight designated registers
(e.g., Bk).

K An 18-bit constant, used as an operand or as a branch
destination (address).

X Specifies one of eight 60-bit operand registers.

Instruction formats are also given; parallel lines within a format indicate these bits
are not used in the operation.

MONITOR,LCM,AND 1/O

00 Error Exit to EEA (15 Bits)

g LR 7/

14 12 11 9 8 o

This instruction is treated as an error condition and will set the Program Range Con-
dition flag in the PSD register. The condition flag will then generate an error exit
request which will cause an exchange jump to address (EEA). All instructions issued
prior to this instruction will be run to completion. Any instructions following this
instruction in the current instruction word will not be executed. When all operands
have arrived at the operating registers as a result of previously issued instructions,

an exchange jump will occur to the exchange package designated by (EEA).

The i, j, and k designators are ignored. The program address stored in the exchange
package on the terminating exchange jump is advanced one count from the address of
the current instruction word. This is true no matter which parcel of the current

instruction word contains the Error Exit instruction.

3-9 60258200 C

This instruction format is not intended for use in user program code. The Program
Range Condition flag is set in the PSD register to indicate that the program has jumped
to an area of the SCM field which may be in range but is not valid program code. This
should occur when an incorrectly coded program jumps into an unused area of the

SCM field or into a data field. The Program Range Condition flag is also set on the
condition of a jump to address zero. These conditions can be determined on the basis
of the register contents in the exchange package. The existence of an Error Exit con-
dition resulting from execution of this instruction format may thus be deduced.

The use of this instruction in user program code for system calls, etc., may result

in erratic execution of the instruction (e.g. missed Error Exits).

011 Block Copy LCM to SCM (30 Bits)

Lo [n]ifi] K

29 27262423 2120 1817

oL

This is a two parcel instruction in which the lower order 18 bits are used as an
operand K. This instruction reads a sequence of 60-bit words from consecutive ad-
dresses in LCM and copies them into a block of consecutive addresses in SCM. The
block of words begins at relative address (X0) in the LCM field. The words are stored
in the SCM field beginning at relative address (A0). The number of words to be copied
is determined by the sum of K + (Bj). This quantity, (K + (Bj)) cannot exceed 1777g
words. If a quantity larger than this is used LCM truncates the quantity to the 10-bit
maximum. Thus a block count of 3000g words will transfer 10004 words. No error
indications are given when this occurs, unless the field length is exceeded causing a

Block Range Error.

This instruction is intended to move a quantity of data from the large core memory
into SCM as quickly as possible. All other activity in the CPU, with the exception of
I/O Word Requests, is stopped during this block transfer of data. All instructions,
which have issued prior to this instruction, are executed to completion. No further
instructions are issued until this block transfer is nearly completed. As a result of
these restrictions the data flow from LCM to SCM can proceed at the rate of one

60258200 C 3-3

60-bit word each clock period. When an I/O Multiplexer Word Request for SCM
occurs during this transfer, the data flow is interrupted for one clock period. The
I/0 word address is inserted in the stream of addresses to the SAS, and the addresses

for the block transfer are resumed with a one clock period delay.

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18-bit one's complement mode. The resul-
tant sum is treated as an 18-bit positive integer. This 18-bit quantity is truncated to
ten bits by LCM. A zero result will cause this instruction to be executed as a Pass

instruction.

Three of the parameters for this instruction reside in operating registers (A0, X0, Bj).

The contents of these registers are not altered by the execution of this instruction.

The lowest order 19 bits of (X0) are used to determine the initial address in the LCM
field for the block copy. The higher order bits are ignored. If (X0) is negative the
lowest order 19 bits are masked out and treated as a positive integer.

LCM OUT OF RANGE

A test against LCM field length is made at the beginning of the block copy sequence.
The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to the lowest order 19 bits of (X0), also treated as a positive integer.
The resulting sum is compared with (FLL). If the resulting sum is greater than (FLL)
indicating that the block copy will go beyond the assigned LCM field, the block copy is
not executed. Inthis case the LCM Block Range Condition flag is set in the PSD regis-
ter, and the block copy instruction is issued as a Pass. The exchange jump to (EEA)
resulting from setting the LCM Block Range Condition flag will occur before execution

of the next program instruction word.

3-4 60258200 C

SCM OUT OF RANGE

A test against SCM field length is made at the beginning of the block copy sequence.
The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to (A0), also treated as an 18-bit positive integer. The resulting sum
is compared with (FLS). If the resulting sum is greater than (FLS), indicating that
the block copy will go beyond the assigned SCM field, the block copy is not executed.
In this case the SCM Block Range Condition flag is set in the PSD register, and the
block copy instruction is issued as a Pass. The exchange jump to (EEA) resulting
from setting the SCM Block Range Condition flag will occur before execution of the
next program instruction word.

BLOCK LENGTH NEGATIVE

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. The addition is performed in an 18-bit ones complement
mode. The resultant sum is treated as an 18-bit positive integer. A negative result
will therefore appear as a large positive integer. In this case the SCM Block Range
Condition flag, and possibly the LCM Block Range Condition flag, will set in the PSD
register, indicating too large a block for the assigned fields. The block copy instruc-
tion will issue as a Pass. The exchange jump to (EEA) resulting from setting the
SCM Block Range Condition flag will occur before execution of the next program in-

struction word.

BLOCK LENGTH ZERO

A zero block length is treated as a normal situation. No error flags are set. The

block copy instruction is executed as a Pass.

LCM WORDS ALREADY IN BANK OPERAND REGISTER

The LCM words required for the block copy instruction may already be in one of the
LCM bank operand registers from the execution of a previous instruction. This
situation is not sensed. The words in the LLCM bank operand register are discarded

and are reread from the LLCM bank.

60258200 C 3-5

LAST PARCEL

The block copy instruction requires two parcels of an instruction word for normal
use. If this instruction begins in the first, second, or third parcel of an instruction
word the following parcel completes the instruction. If a block copy instruction
begins in the last parcel of an instruction word it will not be continued in the following
word. In this case the instruction will be executed as if there were a fifth parcel in
the instruction word and this parcel contained all zeros.

ERROR CONDITION DURING EXECUTION

A LCM or SCM parity .error may occur during the execution of a block copy instruction.
An arithmetic error from a previous instruction may also occur during the beginning

of the block copy sequence. If any error conditions occur, the proper flags are set in
the PSD register and the block copy instruction is executed to completion. There are

no error conditions which will interrupt the instruction before completion.

I/O INTERRUPT DURING EXECUTION

An I/O multiplexer interrupt request may occur during the execution of a block copy
instruction. In this case the interrupt request is not honored until the block copy
instruction has been completed and any subsequent instructions in the current instruc-
tion word have been completed.

012 Block Copy SCM to LCM (30 Bits)

Lo [n] ifi] K

29 27262423 2120 1817

ol

3-6 60258200 C

This is a two parcel instruction in which the lower order 18 bits are used as an
operand K. This instruction reads a sequence of 60-bit words from consecutive
addresses in SCM and copies them into a block of consecutive addresses in LCM.
The block of words begins at relative address (A0) in the SCM field. The words are
stored in the LCM field beginning at relative address (X0). The number of words to
be copied is determined by the sum of K + (Bj). This quantity, (K+Bj)) cannot exceed
1777g words. If a quantity larger than this is used LCM truncates the quantity to the
10-bit maximum. Thus a block count of 3000g words will transfer 1000g words. No
error indications are given when this occurs, unless the field length is exceeded

causing a Block Range Error.

This instruction is intended to move a quantity of data from SCM into the LCM as
quickly as possible. All other activity in the CPU, with the exception of I/O word
requests, is stopped during this block transfer of data. All instructions which have
issued prior to this instruction are executed to completion. No further instructions
are issued until this block transfer is nearly completed. As a result of these restric-
tions the data flow from SCM to LCM can proceed at the rate of one 60-bit word each
clock period. When an I/O multiplexer request for SCM occurs during this transfer,
the data flow is interrupted for one clock period. The I/O word address is inserted in
the stream of addresses to the Storage Address Stack, and the addresses for the block

transfer are resumed with a one clock period delay.

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18-bit ones complement mode. The resul-
tant sum is treated as an 18-bit positive integer. This 18-bit quantity is truncated to
a 10-bit quantity by LCM. A zero result will cause this instruction to be executed as

a Pass instruction.

Three of the parameters for this instruction reside in operating registers (A0, X0, Bj).

The contents of these registers are not altered by the execution of this instruction.
The lowest order 19 bits of (X0) are used to determine the initial address in the LCM

field for the block copy. The higher order bits are ignored. If (X0) is negative the
lowest order 19 bits are masked out and treated as a positive integer.

60258200 C 3-7

For treatment of special situations, refer to instruction 011 Block Copy LCM to SCM.

01300 Exchange Exit to NEA (15 Bits)
(Exit mode flag cleared)

Lo [» | Vi

149 12 9 8 6 5 3 2 0

An Exchange Exit instruction, executed with the Exit Mode flag cleared, causes the
current program sequence to terminate with an exchange jump to address (NEA). This
is an absolute address in SCM and is generally not in the SCM field for the current
program. The j and k designators in the instruction are ignored.

This instruction is intended for use in calling a system monitor program of input/
output requests, library calls etc. All operating register values, program address,
and mode selections are preserved in the exchange package for the object program in
order that the object program may be continued at a later time. The program address
in the object program exchange package will be advanced one count from the address
of the instruction word containing the exchange exit instruction. The monitor program

will normally resume the object program at this address.

This instruction has priority over all other types of exchange jump requests. If an
I/0O interrupt request or an error exit request has occurred prior to the execution of
this instruction, it is denied and the exchange jump specified by this instruction is
executed. The rejected interrupt request is not lost, however, as the conditions that
caused it will be reinstated when the exchange package enters its next execution inter-

val.
The current contents of the instruction word stack are voided by the execution of this

instruction and the remaining instructions, if any, in the current instruction word will
not be executed,

3-8 60258200 C

There are no protective tests made on the exchange jump address for this instruction.
The assignment of (NEA) is a responsibility of the system monitor program. If (NEA)
has more than 16 bits of significance, the upper bits are discarded and the lower 18
bits used as the absolute address in SCM for the exchange jump.

Exchange Exit to (Bj) + K
013 (Exit mode flag set) (30 Bits)
Lolh|if[il] K
2927262423 21201817 0

If the Exit Mode flag is set, this instruction causes the current program sequence to
terminate with an exchange jump to an address in the SCM field for the current pro-
gram. The exchange package is located at relative address (Bj) + K.

This form of the exchange exit instruction is intended to be privileged to a monitor

program.

This instruction has priority over all other types of exchange jump requests. If an
I/O interrupt request or an error exit request has occurred prior to the execution of
this instruction, it is denied and the exchange jump specified by this instruction is
executed. The rejected interrupt request is not lost, however, as the conditions that
caused it will be reinstated when the exchange package enters its next execution inter-
val.

The current contents of the instruction word stack are voided by the execution of this
instruction, and the remaining instructions in the current program instruction word

will not be executed,

There are no protective tests made on the exchange jump address for this instruction.

60258200 C 3-9

014 Read LCM from (Xk) to Xj (15 Bits)

14 12 11l 9 8 6 5 3 2 0

This instruction reads one word from the LCM and enters this word in an X register.
The word is read from the LCM field at relative address (Xk) and is then entered in

register Xj. The SCM is not involved in this process.

This instruction is intended for direct addressing of the LCM for individual words. It
may also be used to advantage in addressing a string of words in consecutive storage
locations. This is particularly true if a string of words is to be read, modified, and
written back into the same storage locations. The process of reading and writing will
proceed in this case without a LCM read/write cycle delay until the addressing
crosses a LCM bank boundary, with the exception of the first read.

The lowest order 19 bits of (Xk) are used to determine the address in the LCM field.
The higher order bits are ignored. If (Xk) is negative the lowest order 19 bits are
masked out and treated as a positive integer. No error flags are set for these condi-

tions unless the resulting address is out of range.

The X0 register may be used for either Xj or Xk in this instruction. The j and k
designators may have the same value, in which case the requested address is lost
when the word arrives at the Xj register.

ADDRESS OUT OF RANGE

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested
address is in the assigned LCM field. If the requested address is greater than, or
equal to, (FLL) the LCM Direct Range Condition flag is set in the PSD register. This
flag will cause an error exit request to interrupt the program with an exchange jump

to address (EEA). The instruction will be executed in this case with a LLCM read
reference beyond the assigned field, and a word will be entered in the Xj register

3-10 60258200 C

from this location. The absolute address in LCM for this reference will be the lowest
order 19 bits in the sum resulting from adding (RAL) to the lowest order 19 bits of
(Xk). The exchange jump resulting from the error exit request generally will not
occur before one or more subsequent instructions have been executed.

015 Write Xj into LCM at (Xk) (15 Bits;

9 | I N

14 12 11 9 8 6 5 3 2 o

This instruction writes one word directly into LCM from an X register. The word is
read from register Xj and is written into the LCM field at relative address (Xk). The
SCM is not involved in this process.

This instruction is intended for direct addressing of the LCM for individual words. It
may also be used to advantage in addressing a string of words in consecutive storage
locations. This is particularly true if a string of words is to be read, modified, and
written back into the same storage locations. The process of reading and writing will
proceed in this case without a LCM bank read/write cycle delay until the addressing
crosses a LCM bank boundary, with the exception of the first read.

The lowest order 19 bits of (Xk) are used to determine the address in the LLCM field.
The higher order bits are ignored. If (Xk) is negative the lowest order 19 bits are
masked out and treated as a positive integer. No error flags are set for these con-
ditions unless the resulting address is out of range. The j or k designators may be
zero or both may be the same value.

No X register reservations are made for this instruction. The following instruction
may issue in the next clock period and may use either of the X registers designated

in this instruction. If the word cannot be entered immediately in the proper LCM
bank operand register it is held in the LCM write register until the LCM bank operand

register is free.

60258200 C 3-11

ADDRESS OUT OF RANGE

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested
address is in the assigned LCM field. If the requested address is greater than, or
equal to, (FLL) the LCM Direct Range Condition flag is set in the PSD register. This
flag will cause an error exit request to interrupt the program with an exchange jump

to address (EEA). In this case the word will not be written into LCM. The exchange
jump resulting from the error exit condition generally will not occur before one or

more subsequent instructions have been executed.

Reset Input Channel (Bk) Buffer: .
0160 j=0 (15 Bits)

14 12 11 9 8 6 5 3 2

This instruction prepares the (Bk) input channel buffer for a new record transmission
from a PPU to SCM. The instruction clears the input channel buffer address and

resets the input channel assembly counter to the first 12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine; that is, one that

terminates a record of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this
instruction to prepare the buffer for the next incoming record. This instruction is
effective only if the Monitor Mode flag is set in the Program Status register. If the
Monitor Mode flag is cleared this instruction becomes a Pass instruction. When this
instruction issues it will execute the required channel functions without regard to the

current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number. If (Bk) = 0 or is for a nonexistent chan-

nel, this instruction becomes a Pass instruction.

3-12 60258200 C

Two or more Reset Input Channel Buffer instructions may occur in consecutive pro-
gram instruction locations referencing different channels. These instructions may
issue in consecutive clock periods, and no interference will result in the multiplexer.

Two or more Reset Input Channel Buffer instructions may occur in consecutive pro-
gram instruction locations referencing the same channel. These instructions will issue
in consecutive clock periods and repeatedly perform the same functions. No interfer-
ence will occur other than the obvious repetitive functions.)

Read Input Channel (Bk) status
016 to Bj: j # 0 (Read Real time clock: (15 Bits)
(Bk)=0)

14 12 1 9 8 6 5 3 2 0

This instruction reads the current value of the input channel (Bk) buffer address regis-

ter contents to register Bj. The status of the input channel (Bk) buffer address is not
altered.

This instruction is intended for use in monitoring the progress of input to the input
channel buffer in SCM. The input channel buffer area is divided into fields by the
threshold testing mechanism. The first half of the buffer area constitutes one field
and the last half of the buffer area the other field. AnI/O multiplexer interrupt re-
quest is generated by the threshold testing mechanism whenever the input channel
buffer address is advanced across a field boundary. This will occur at the center of
the buffer area and at the end of the buffer area.

This instruction is the only vehicle for a program to determine whether an I/O multi-
plexer interrupt request was generated by a buffer threshold test or by a Record flag.
The program must retain the input channel buffer address from one interrupt period
to the next. If the buffer address is in the same field as for the previous interrupt,

frarm n Raonnrd
1L VIl a NnCluil

flao Tf +h
iiag. i

a hiiffan Addwvraa
i1 1€ CUlllY QQY

Ial a in
[SISINSS Ry e

field from the previous interrupt, the interrupt request was from a threshold test.

For systems using less than the full complement of I/O channels, this instruction can
be used to determine whether an input channel exists. Execution of this instruction to
a nonexistent input channel causes a status word of 400000 to be entered into Bj.

60258200 C 3-13

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number. If (Bk) = 0, this instruction reads the
contents of the CPU clock period counter.

Two or more Read Input Channel Status instructions may occur in consecutive program
instruction locations referencing the same or different channels. These instructions
may issue in consecutive clock periods providing the Bj register reservations do not

cause a delay. No interference will result in the multiplexer in these situations.

If correct results are to be obtained, a Read Input Channel Status instruction must
not immediately follow a Reset Input Channel Buffer instruction. A delay of one clock
period is sufficient.

REAL TIME CLOCK

This instruction has a special use if the channel number (Bk) is zero. There are no
buffer areas for the MCU which use the I/O multiplexer channel zero access position.
In this case the current contents of the CPU clock period counter are read into the Bj
register., This is a 17~bit counter which is advanced one count in a two's complement
mode each clock period. This count is intended for timing measurements in the CPU
program. Timing considerations for this special use are the same as the normal tim-
ing for a channel input buffer address.

0170 Reset Output Channel (Bk) Buffer: j = O (15 Bits)

14 12 11 9 8 6 5 3 2 0]

This instruction initiates a new record transmission from SCM to a PPU. It clears
the output channel (Bk) buffer address and disassembly counter, initiates a SCM
reference for the first word to be output, and transmits a Record Pulse over the out-
put channel data path to the PPU.

3-14 60258200 C

This instruction is intended for execution in an output routine to initiate a new record
transmission over an output channel data path. The output channel buffer is normally
inactive when this instruction is executed. The output channel buffer is loaded with
the data for the next record, and this instruction is executed to initiate the transmis-
sion. A Record pulse and a Word pulse are transmitted as soon as the SCM word is
entered in the output channel disassembly register.

This instruction is effective only if the Monitor Mode flag is set in the Program Status
register. If the Monitor Mode flag is cleared this instruction becomes a Pass instruc-
tion. When this instruction issues it will execute the required channel functions with-

out regard to the current status or activity at the output channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number, If (Bk) = 0 or is for a nonexistent chan-

nel, this instruction becomes a Pass instruction.

The output program should check for completion of the previous record before execut-
ing this instruction. There are two methods that a program can use to detect end of
record. One method is to read the output channel buffer address and compare it with
a known record length. The other is to receive a positive response fromthe periph-
eral unit over the corresponding input channel data path. If for some reason the out-
put channel buffer is actively moving data over the output channel data path at the time
this instruction is executed, conflicting commands may be sent to the multiplexer. In
this case the commands associated with this instruction have priority, and the result
is a loss of data in the previous record.

Two or more Reset Output Channel Buffer instructions may occur in consecutive pro-
gram instruction locations referencing different channels., These instructions may
issue in consecutive clock periods and no interference will result in the multiplexer

control.

Two or more Reset OQutput Channel Buffer instructions may occur in consecutive pro-
gram instruction locations referencing the same channel. These instructions will
issue in consecutive clock periods and repeatedly perform the same functions. A
Record pulse will be transmitted over the channel output data path for each instruction

60258200 C 3-15

execution. The output channel buffer will be repeatedly restarted, and a data word may,
or may not, be transmitted over the output channel data path depending on the timing
of the instructions and the conflicts that occur.

017 Read Output channel (Bk) status to Bj: (15 Bits)
j#0

o [on | T i T«]

14 12 N 9 8 6 5 3 2 o)

This instruction reads the current value of the output channel (Bk) buffer address regis-
ter contents to register Bj. The status of the output channel (Bk) buffer address is not
altered.

This instruction is intended for use in monitoring the progress of output from the out-
put channel buffer. The output channel buffer area is divided into two fields by the
threshold testing mechanism. The first half of the buffer area constitutes one field
and the last half of the buffer area the other field. An I/O multiplexer interrupt re-
quest is generated by the threshold testing mechanism whenever the channel output
buffer address is advanced across a field boundary. This will occur at the center of
the buffer area and at the end of the buffer area.

For systems using less than the full complement of I/O channels, this instruction can
be used to determine whether an output channel exists. Execution of this instruction to
a nonexistent output channel causes a status word of 000000 to be entered into Bj.

er four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number. If (Bk) = 0, this instruction reads all
zeros into Bj.

Two or more Read Output Channel Status instructions may occur in consecutive pro-
gram instruction locations referencing the same or different channels. These instruc-
tions may issue in consecutive clock periods providing the Bj register reservations do
not cause a delay. No interference will result in the multiplexer in these situations.

If correct results are to be obtained, a Read Output Channel Status instruction must

not immediately follow a Reset Output Channel Buffer instruction. A delay of one clock
period is sufficient.

3-16 60258200 C

BRANCH

010 Return jump to K (30 Bits)

s [W] i T K]

29 27262423 21201817 0

This instruction stores an 04 unconditional jump and the current address plus one

(P) + 1 in the upper half of relative address K in SCM, then branches to K + 1 for the
next instruction. The lower half of the stored word is all zeros. This instruction
always branches out of the instruction stack and voids all instructions presently in the
instruction stack.

The octal word at K after the instruction appears as follows:

UNCOI}DI TIONAL

UMP P+l
— / A \
kK| o4 o0 o0 XXXXXX [ooo &/ o
59 30 29 0

This instruction is intended for executing a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the
Return Jump instruction in the current instruction word will not be executed. The
called subroutine entrance address must be K + 1 in SCM. The called subroutine must
exit at address K in SCM. A jump to address K of the branch routine returns the pro-
gram to the original sequence.

60258200 C 3-17

SPECIAL SITUATIONS

If the value of K in a Return Jump instruction is greater than the SCM field length, the
instruction is executed with the store of the exit word in SCM inhibited. The program
address is altered to the value K and advanced by one count in a normal manner. The
SCM Direct Range Condition flag is set in the PSD register to indicate the jump is out
of range. The program sequence is then terminated with an exchange jump to (EEA).
The resulting exchange package will contain a program address equalto K + 1, and a

bit set in the PSD area corresponding to the Program Condition flag.

If the value of K in the Return Jump instruction is zero, the instruction is executed in
a normal manner, and the exit word is stored at address zero in the SCM field. In the
process of executing the instruction (P) is momentarily set to zero. This is sensed as
an error condition, and the Program Range Condition flag is set in the PSD register.
As a result, the program sequence will be terminated at the completion of the Return
Jump instruction with an exchange jump to (EEA). The Return Jump instruction will
have advanced the program address one count so that the exchange package will indi-
cate a program address of one rather than zero.

If the value of K in the Return Jump instruction is equal to (BPA), in the process of
executing the instruction (P) will momentarily be set equal to (BPA). This will be
detected as a breakpoint condition, and the Breakpoint Condition flag will set in the
PSD register. The Return Jump instruction will advance (P) one count in the process
of completing execution. This final value of (P) will appear in the exchange package
when the breakpoint interrupt occurs.

An I/0O multiplexer interrupt request may occur during the execution of a return jump
sequence. In such a case the return jump instruction is completed, and an exchange
jump to the proper I/O channel exchange package occurs with the program address
equal to K + 1 from the return jump instruction,

3-18 60258200 C

02 Jump to (Bi)+ K (30 Bits)

Lol h]i VZ K |

2927262423 21201817 0

This instruction adds the contents of index register Bi to K and branches to the rela-
tive SCM address specified by the sum. The remaining instructions, if any, in the

current instruction word will not be executed. The branch address is K when i = 0.

Addition is performed in an 18-bit ones complement mode. The instruction word stack
is not altered by execution of this instruction. The instruction is intended to allow
computed branch point destinations, It is the only CPU instruction in which a com-
puted parameter can specify a program branch destination address. All other jump
instructions have preassigned destination addresses. Program modification to imple-
ment changes in a branch point destination address is not recommended in general

because of complications associated with the instruction stack.

SPECIAL SITUATIONS

If an I/O interrupt request or an error exit request exists at the time this instruction

is executed, the instruction is executed to completion before the interrupt occurs.

If the branch point destination address is greater than the SCM field length, the SCM
Direct Range Condition flag is set in the PSD register. The instruction will execute to
completion, but the first instruction word for the next program sequence will not read
from the IWS to the CIW register, At this point an Error interrupt will occur as a
result of the SCM Direct Range Condition flag, and an exchange jump will occur to
address (EEA) in the SCM. The terminating exchange package will contain the out-of-
range address in the program address field.

60258200 C 3-19

A jump to relative address zero in the SCM field causes the Program Range condition
flag to set in the PSD register, The program will be terminated with an error exit to
address (EEA). The terminating exchange package will contain a zero quantity in the
program address field.

A jump to address (BPA) will set the Breakpoint Condition flag in the PSD register.
The instruction will be executed to completion, and the exchange jump to address
(EEA) will occur before the first instruction is executed at the branch point destination

address.
030 Branch to K if (Xj) =0 (30 Bits)
031 Branch to K if (Xj) # 0 (30 Bits)
032 Branch to K if (Xj) positive (30 Bits)
033 Branch to K if (Xj) negative (30 Bits)
034 Branch to K if (Xj) in range (30 Bits)
035 Branch to K if (Xj) out of range (30 Bits)
036 Branch to K if (Xj) definite (30 Bits)
037 Branch to K if (Xj) indefinite (30 Bits)

Lolhnf[ifil K |
0

29 27262423 2120 1817

These instructions cause the program sequence to branch to K or to continue -with the
current program sequence depending on the contents of operand register Xj. The
decision will not be made until the Xj register is free.

The following applies to tests made in this instruction group:

1. The 030 and 031 operations test the full 60-bit word in Xj. The words
00..... 00 and 77,....77 are treated as zero. All other words are non-zero.
Thus, these instructions are not a valid test for floating point zero coefficients.

However, they can be used to test for underflow of floating point quantities.

2. The 032 and 033 operations examine only the sign bit (299) of Xj. If the sign
bit is zero, the word is positive; if the sign bit is one, the word is negative.
Thus, the sign test is valid for fixed point words or for coefficients in floating
point words.

3-20 60258200 C

3. The 034 and 035 operations examine the upper-order 12 bits of Xj. The
following quantities are detected as being out of range:

3777 X..... X (Positive Overflow)
4000 X.....X (Negative Overflow)
1777 X, ..., X (Positive Indefinite)

6000 X.....X (Negative Indefinite)

All other words are in range. An underflow quantity is considered in range,
The value of the coefficient is ignored in making this test.

4. The 036 and 037 operations examine the upper-order 12 bits of Xj. Both
positive and negative indefinite forms are detected:

1777 X.....X and 6000 X,.... X are indefinite.

All other words are definite. The value of the coefficient is ignored in making
this test.

For special situations, refer to the 02 Jump instruction.

04 Branch to K if (Bi) = (Bj) (30 Bits)
05 Branch to K if (Bi) # (B]) (30 Bits)
06 Branch to K if (Bi) = (Bj) (30 Bits)
07 Branch to K if (Bi) < (Bj) (30 Bits)

loln]ilil K

29 27262423 21201817 0

These instructions test an 18-bit word from register Bi against an 18-bit word from
register Bj for the condition specified and branch to address K on a successful test.
Otherwise, the program sequence continues. All tests against zero (all zeros) can be
made by setting Bj = BO. The decision is not made until both B registers are free.

The following rules apply in the tests made by these instructions:

1. Positive zero is recognized as unequal to negative zero, and

60258200 C 3-21

2. Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The
tests are made in a 19-bit ones complement mode. The quantity (Bi) and the quantity
(Bj) are sign extended one bit to prevent an erroneous result caused by exceeding the
modulus of the comparison device. The quantity (Bj) is then subtracted from the
quantity (Bi). The branch decision is based on the sign bit in the 19-bit result.

For special situations, refer to the 02 Jump instruction.

BOOLEAN UNIT

10 Transmit (Xj) to Xi (15 Bits)

o [n [i T i Wis

14 12 11l 9 8 6 5 3 2 ¢

This instruction transfers a 60-bit word from operand register Xj to operand register
Xi. It is intended for moving data from one X register to another X register as rapidly
as possible. No logical function is performedon the data.

11 Logical Product of (Xj) and (Xk) to Xi (15 Bits)

14 12 1l 9 8 6 5 3 2 o

This instruction forms the logical product (AND function) of 60-bit words from operand
registers Xj and Xk and places the product in operand register Xi. Bits of register Xi
are set to ""1'" when the corresponding bits of the Xj and Xk registers are ''1" as in

the following example:

3-22 60258200 C

(Xj) = 0101
(Xk) = 1100
(Xi) = 0100

This instruction is intended for extracting portions of a 60-bit word during data pro-
cessing. If the j and k designators have the same value, the instruction degenerates

into a Transmit instruction.

12 Logical sum of (Xj) and (Xk) to Xi (15 Bits)

14 12 1 9 8 6 5 3 2 o

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand
registers Xj and Xk and places the sum in operand register Xi. Bits of register Xi
are set to '"1" if the corresponding bit of the Xj or Xk register is a ''1" as in the fol-

lowing example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1101

This instruction is intended for merging portions of a 60-bit word into a composite
word during data processing. If the j and k designators have the same value, the in-

struction degenerates into a Transmit instruction.

60258200 C 3-23

13 Logical difference of (Xj) and (Xk) to Xi (15 Bits)

14 121 98 65 32 o0

This instruction forms the logical difference (exclusive OR) of 60-bit words from
operand registers Xj and Xk and places the difference in operand register Xi. Bits of

register Xi are set to "1" if the corresponding bits in the Xj and Xk registers are un-

like as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

This instruction is intended for comparing bit patterns or for complementing bit pat-
terns during data processing. If the j and k designators have the same value the result

will be a word of all zeros written into register Xi.

14 Transmit complement of (Xk) to Xi (15 Bits)

Lo [v [i VA « |

14 12 1l 9 8 6 5 3 2 o

This instruction extracts the 60-bit word from operand register Xk, complements it,
and transmits this complemented quantity to operand register Xi. It is intended for
changing the sign of a fixed point or floating point quantity as quickly as possible.

3-24 60258200 C

15 Logical product of (Xj) and complement of (XK) to Xi (15 Bits)

4 12 11 9 8 6 5 3 2 o

This instruction forms the logical product (AND function) of the 60-bit quantity from
operand register Xj and the complement of the 60-bit quantity from operand register
Xk, and places the result in operand register Xi. Thus, bits of Xi are set to ''1" where"
the corresponding bits of the Xj register and the complement of the Xk register are

'""1'" as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011
(Xj) = 0001

This instruction is intended for extracting portions of a 60-bit word during data pro-
cessing. If the j and k designators have the same value, a logical product is formed
between two complementary quantities. The result will be a word of all zeros.

16 Logical sum of (Xj) and complement of (Xk) to Xi (15 Bits)

14 12 1 9 8 6 5 3 2 o

This instruction forms the logical sum (inclusive OR) of the 60-~bit quantity from
operand register Xj and the complement of the 60-bit word from operand register Xk,
and places the result in operand register Xi. Thus, bits of Xi are set to ""1" if the
corresponding bit of the Xj register or complement of the Xk register is a '"1" as in

the following example:

60258200 C 3-25

(Xj) =0101
Complemented (Xk) = 0011
(Xj) =0111

This instruction is intended for merging portions of a 60-bit word into a composite
word during data processing. If the j and k designators have the same value the

result will be a word of all ones,

17 Logical difference of (Xj) and complement of (Xk) to Xi (15 Bits)
s [n T 7 T 3 T «]
14 12 11 9 8 6 5 3 2 o

This instruction forms the logical difference (exclusive OR) of the quantity from
operand register Xj and the complement of the 60-bit word from operand register Xk,
and places the result in operand register Xi. Thus, bits of Xi are set to "'1" if the
corresponding bits of Xj and the complement of register Xk are unlike as in the follow-

ing example:

(Xj) =0101
Complemented (Xk) = 0011
(Xi) = 0110

This instruction is intended for comparing bit patterns or for complementing bit pat-
terns during data processing. If the j and k designators have the same value, a logical
difference is formed between two complementary quantities. The result is a word of

all ones.

3-26 60258200 C

26 Unpack (Xk) to Xi and Bj (15 Bits)

14 12 1l 9 8 6 5 3 2 o)

This instruction unpacks the floating point quantity from operand register Xk and sends
the 48-bit coefficient to operand register Xi and the 11-bit exponent to index register
Bj. The exponent bias is removed during Unpack so that the quantity in Bj is the true

one's complement representation of the exponent,

The exponent and coefficient are sent to the low-order bits of the respective registers

as shown below:

SIGN__BIASED EXPONENT COEFF ICIENT
PACKED QUANTITY | 1 | I 48 | xk
59 58 48 47 0
UNBIASED
EXPONENT
EXPONENT_SIGN COEFFICIENT
EXTENDED SIGN EXTENDED
UNPACKED B (/77//////] | Vi | xi
17 109 0 59 48 47 0

Special operand formats are treated in the same manner as normal operands. No flags

are set in the PSD register by this instruction.

60258200 C 3-217

27 Pack (Xk) and (Bj) to Xi (15 Bits)

This instruction packs a floating point number in operand register Xi., The coefficient
of the number is obtained from operand register Xk and the exponent from index regis-
ter Bj. Bias is added to the exponent during the Pack operation. The instruction

does not normalize the coefficient.

This instruction obtains the exponent and coefficient from the proper low-order bits
of the respective registers and packs them as shown for the packed quantity in the
illustration for the Unpack (26) instruction. Thus, bits 48 to 58 of Xk and bits 11 to
17 of Bj are ignored. There is no test for overflow or underflow. No flags are set
in the PSD register by this instruction.

Note that if (Xk) is positive, the packed exponent occupying positions 48 to 58 of Xi is
obtained from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is

not complemented but bits 0 to 9 are.

The j designator may be set to zero in this instruction to pack a fixed point integer
into floating point format (exponent = 0) without using one of the active B registers.

3-28 60258200 C

SHIFT UNIT

20 Left shift (Xi) by jk (15 Bits)

Lo [n | i k]

14 12 1l 9 8 6 5 o

This instruction shifts the 60-bit word in operand register Xi left circular jk places.
Bits shifted off the left end of operand register Xi replace those shifted from the right

end,

The 6-bit shift count jk allows a complete circular shift of register Xi.

In the example below the j designator has a value of 1 and the k designator a value of
2. These octal quantities are treated as a shift count of 12 octal or 10 decimal.

]

Example: Initial (Xi) = 2323 6600 0000 0000 0111
jk = 12
Final (Xi) = 7540 0000 0000 0022 2464

If the shift count is greater than the 60-bit register length the shift is performed
modulo 60. For example, if the shift count is 63 (decimal) the result is a three bit

position left shift.

21 Right shift (Xi) by jk (15 Bits)

14 12 11 9 8 6 5 (0]

60258200 C 3-29

This instruction shifts the 60-bit word in operand register Xi right jk places. The

rightmost bits of Xi are discarded and the sign bit is extended.

Example: Initial (Xi) = 2004 7655 0002 3400 0004
ik = 30
Final (Xi) = 0000 0000 2004 7655 0002

u

If the shift count is greater than 60-bit register length the result will contain 60
copies of the sign bit. If the operand were positive, a positive zero word will result.

If the operand was negative, a negative zero word will result.

22 Left shift (Xk) nominally (Bj) places to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 o

This instruction shifts the 60-bit quantity from operand register Xk the number of
places specified by the quantity in index register Bj and places the result in operand

register Xi.

1. If Bj is positive (i.e., bit 17 of Bj = 0), the guantity from Xk is shifted left-
circular. The lower order six bits of Bj specify the shift count. The higher

order bits are ignored.

2. If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from Xk is shifted right
(end off with sign extension). The one's complement of the lower order 12
bits of Bj specify the shift count. The higher order bits are ignored. If the
shift count is greater than 60 (decimal) the result stored in the Xi register
will consist of 60 copies of the operand sign bit.

The contents of Bj might be the result of an unpack operation; in which case it is the
unbiased exponent and (Xi) is the coefficient. This instruction is used for shifting a
coefficient from a floating point number to the integer position after an unpack opera-
tion.

3-30 60258200 C

23 Right shift (Xk) nominally (Bj) places to Xi (15 Bits)

4 12 11 9 8 6 5 3 2 o

This instruction shifts the 60-bit quantity from operand register Xk the number of

places specified by the quantity in index register Bj and places the result in operand
register Xi.

1. If Bj is positive (i. e., bit 17 of Bj = 0), the quantity from register Xk is
shifted right (end off with sign extension). The lower order 12 bits of Bj
specify the shift count. The higher order bits are ignored. If the shift count
is greater than 60 (decimal) the result stored in the Xi register will consist
of 60 copies of the operand sign bit.

2. If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is
shifted left circular., The complement of the lower order six bits of Bj
specify the shift count. The higher order bits are ignored.

This instruction is intended for use in data processing where the amount of shift is

derived in the computation. This instruction is also useful for adjusting the coefficient

of a floating point number while it is in its unpacked form.

60258200 C 3-31

43 Form mask of jk bits to Xi (15 Bits)

14 12 11 9 8 6 5 o

The instruction forms a mask in operand register Xi. The 6-bit quantity jk defines
the number of "'1's" in the mask as counted in octal from the highest order bit in Xi.
The completed masking word consists of "'1's" in the high order bit positions of the

word and "'0's" in the remainder of the word.

Example: j=2
k=4
(Xi) = 7777 7760 0000 0000 0000

The contents of operand register Xi = 0 when jk = 0. The contents of operand register
Xi are all "1's" when jk is 60 (decimal) or greater.

This instruction is intended for generating variable width masks for logical operations.

Used with the shift instruction, this instruction may create an arbitrary field mask

faster than by reading a pre-generated mask from storage.

NORMALIZE UNIT

24 Normalize (Xk) to Xi and Bj (15 Bits)

4 12 11 9 8 6 5 3 2 0

3-32 60258200 C

This instruction normalizes the floating point quantity from operand register Xk and
places it in operand register Xi. Normalizing consists of left shifting the coefficient
the minimum number of positions required to make bit 47 different from bit 59. This
places the most significant bit of the coefficient in the highest order position of the
coefficient portion of the word. The exponent portion of the word is then decreased

by the number of bit positions shifted. The number of left shifts necessary to normal-
ize the quantity is entered in index register Bj.

If a complete underflow occurs (i.e., the unpacked exponent is more negative than
-1777), a zero word is delivered to the Xi register. The sign of the operand is pre-
served and (Xi) is either all zero bits or all one bits, depending on the sign of the
original operand. The shift count delivered to the Bj register is a result of consider-
ing the coefficient field of (Xk) without regard to the exponent. This quantity is there-
fore the value that would be appropriate for normalizing the operand if the exponent

were in range,

If a partial underflow occurs (i.e., the unpacked exponent equals -1777), the result is
delivered to the Xi register and the Bj register as for a normal case even though sub-

sequent computation may detect this operand as an underflow case.

Normalizing either a plus or minus zero coefficient sets the shift count (Bj) to 48 and
clears Xi to all zeros. The sign of the operand is preserved and (Xi) is either all
zero bits or all one bits.

If Xk contains an infinite quantity (3777X....X or 4000X....X) or an indefinite quantity
(1777X....X or 6000X....X) no shift takes place. The contents of Xk are copied into
Xi and Bj is set equal to zero. No flags are set in the PSD register by the Normalize

unit.

25 Round and normalize (Xk) to Xi and Bj (15 Bits)

14 12 1 9 8 6 5 3 2 0

60258200 C 3-33

This instruction performs the same operation as instruction 24 except that the quantity
from the operand register Xk is rounded before it is normalized. Rounding is accom-
plished by placing a ''1" round bit immediately to the right of the least significant co-
efficient bit., The resulting coefficient is increased by one-half the value of the least
significant bit. Normalizing a zero coefficient places the round bit in bit 47 and
reduces the exponent by 48, Note that the same rules apply for underflow, overflow,

infinite and indefinite results as for instruction 24.

FLOATING POINT ADD UNIT

30 Floating sum of (Xj) and (Xk) to Xi (15 Bits)
¢ [[T] 7] «
14 12 11 9 8 6 5 3 2 (0]

This instruction forms the sum of the floating point quantities from operand registers
Xj and Xk and packs the result in operand register Xi. The packed result is the
upper half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the
smaller exponent is entered into the upper half of a 99-bit accumulator. The coefficient
is shifted right by the difference of the exponents. The other coefficient is then added
into the upper half of the accumulator. If overflow occurs, the sum is right-shifted

one place and the exponent of the result increased by one. The upper half of the accu-
mulator holds the coefficient of the sum, which is not necessarily in normalized form.

The exponent and upper coefficient are then repacked in operand register Xi.

SPECIAL SITUATIONS

If the two operands are of equal magnitude and opposite sign the resulting sum will
have a zero coefficient. The exponent delivered to the Xi register will be the same as
the exponent for the operands even though the coefficient is zero. The sign of the
result will be positive.

3-34 60258200 C

If the exponents of both operands are zero and no overflow occurs, the instruction
effects an ordinary integer addition of the coefficients.

If the exponents of the two operands differ by 48, or more, the result of the floating
add operation will be a copy of the operand with the larger exponent.

If either or both operands are indefinite, the result will be indefinite. The operand
coefficients are ignored and the resulting word delivered to the Xi register is a
positive indefinite exponent with a zero coefficient. The Indefinite Condition flag is
set in the PSD register for this case.

If one of the operands is at the upper limit of the floating point range, the resulting
sum may be exactly +1777 unbiased. In this case the resulting exponent will indicate
the overflow condition, but the coefficient will be processed in a normal manner. No
error indication is made for this case and no condition flags will be set in the PSD
register. Subsequent use ofthis number as an operand in a floating point unit Will,

however, result in overflow detection.

If both operands have overflow exponents and the operand coefficients have different
signs, the resulting word delivered to the Xi register is a positive indefinite exponent
with a zero coefficient. The Indefinite Condition flag is set in the PSD register for
this case.

If either or both operands have an overflow exponent and the coefficient signs agree,
the result is an overflow word. In this case, the operand coefficients are ignored,
and the word delivered to the Xi register is a complete overflow exponent with a zero
coefficient. The sign of the resulting word is the same as the sign of the operand with
the overflow exponent. The Overflow Condition flag is set in the PSD register for this
case.

An operand with an underflow exponent is treated as a normal operand in this instruc-

tion, No special condition flags are set in the PSD register.

60258200 C 3-35

31 Fioating difference (Xj) minus (Xk) to Xi (15 Bits)

Lo [n | i i] ok |

14 12 11 9 8 6 5 3 2 o

This instruction forms the difference of the floating point quantities from operand
registers Xj and Xk and packs the result in operand register Xi. Alignment and over-
flow operations are similar to the Floating Sum (30) instruction, and the difference is
not necessarily normalized. The packed result is the upper half of a double precision
difference.

If the two operands are identical the resulting difference will have a zero coefficient,
The exponent delivered to the Xi register will be the same as the exponent for the
operands. The sign of the result will be positive,

When the exponents of both operands are zero and no overflow occurs, an ordinary
integer subtraction of the coefficients is performed.

32 Floating DP sum of (Xj} and (Xk) to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction forms the sum of two floating point numbers as in the Floating Sum
(30) instruction, but packs the lower half of the double precision sum with an exponent
48 less than that for the upper sum. The result is not necessarily normalized. Ex-
cept for the conditions noted, special situations are the same as for instruction 30,
Floating Sum.

3-36 60258200 C

SPECIAL SITUATIONS

If one operand is at the upper limit of the floating point range, the resulting double
precision sum may overflow and cause the exponent for the upper half to go out of
range. Since the exponent for the lower half of the double precision sum is 48 less
than this overflow value, the result delivered to the Xi register is processed as a

normal floating point result and no error condition flags are set in the PSD register.

If the two operands are near the lower limit of the floating point range, the exponent
for the lower half of the double precision sum may be exactly -1777 unbiased. This
result is processed as a normal floating point number and no error condition flags are
set in the PSD register. Subsequent use of this number as an operand in a floating

point unit may, however, result in underflow detection.

If the exponent for the lower half of the double precision sum is less than -1777 un-
biased, the result delivered to the Xi register is a complete underflow word with a
zero coefficient. The sign of the result will be the same as the sign of the operand
with the larger exponent. If the two operands have identical exponents the sign of the
result is the same as the sign of (Xk). The Underflow Condition flag is set in the
PSD register for this case.

33 Floating DP difference of (Xj) minus (Xk) to Xi (15 Bits)

14 12 1 9 8 6 5 3 2 o

This instruction forms the difference of two floating point numbers as in the Floating
Difference (31) instruction, but packs the lower half of the double precision difference
with an exponent of 48 less than the upper difference. The result is not necessarily

normalized.

If the two operands are identical the resulting double precision coefficient difference
will be zero. This condition is not sensed as a special case and the exponent will be
the same value as for a nonzero coefficient. The sign of the resulting zero coefficient

will be positive,

60258200 C 3-37

If the exponent for the lower half of the double precision sum is less than -1777 un-
biased, the result delivered to the Xi register is a complete underflow word with a
zero coefficient. The sign of the result will be the same as the sign of the (Xj) if Xj
has the larger exponent. The sign of the result will be the complement of the coeffi-

cient of the sign of (Xk) if Xk has the larger exponent or if the exponents are identical.

For treatment of other special situations and operands refer to the description of
instruction 32 Floating DP Sum.

34 Round floating sum of (Xj) and (Xk) to Xi (15 Bits,

o [h | i | i | w]

14 2 1l 9 8 6 5 3 2 0

This instruction forms the round sum of the floating point quantities from operand
registers Xj and Xk and packs the upper sum of the double precision result in operand
register Xi., This instruction is intended for use in floating point calculations involving

single precision accuracy. The result is not necessarily normalized.

Rounding of the operand coefficients occurs just prior to the double precision add
operation., At this time the two 48-bit coefficients are positioned in the 99-bit ones
complement adder with an offset corresponding to the difference of the exponents. A
round bit is always added to the coefficient corresponding to the larger exponent. If
the exponents are equal the round bit is added to the coefficient for (Xk). The round

of the lowest order bit in the coefficient. This has the effect of increasing the magni-
tude of the coefficient by one-half of the least significant bit. A second round bit is
added in a corresponding manner to the other coefficient if both operands were normal-

ized, or if the operands had unlike signs.

For treatment of special situations, refer to instruction 30 Floating Sum.

3-38 60258200 C

35 Round floating difference of (Xj) minus (Xk) to Xi (15 Bits)

9 [h [i i] x|
4 1211 98 65 32 0

This instruction forms the round difference of the floating point quantities from
operand registers Xj and Xk and packs the upper difference of the double precision
result in operand register Xi. This instruction is intended for use in floating point
calculations involving single precision accuracy. The result is not necessarily

normalized.

Rounding of the operand coefficients occurs just prior to the double precision subtract
operation, At this time the two 48-bit coefficients are positioned in the 99-bit ones
complement adder with an offset corresponding to the difference of the exponents. A
round bit is always added to the coefficient corresponding to the larger exponent, If
the exponents are equal the round bit is added to the coefficient for (Xk). The round
bit is equal to the complement of the sign bit and is inserted immediately to the right
of the lowest order bit in the coefficient. This has the effect of increasing the magni-
tude of the coefficient by one-half of the least significant bit. A second round bit is
added in a corresponding manner to the other coefficient if both operands were normal-
ized, or if the operands had like signs.

For treatment of special situations, refer to instruction 31, Floating Difference,

LONG ADD UNIT

36 Integer sum of (Xj) and (Xk) to Xi (156 Bits)

_

(S

Lx
4 1211l 98 65 32 0

This instruction forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow con-

dition is ignored.

60258200 C 3-39

This instruction is intended for addition of integers too large for handling in the incre-
ment unit, It is also useful for merging and comparing data fields during data pro-

cessing.

If both operands are zero the result is zero. If either zero operand is positive the

result is positive zero. If both operands are negative zero the result is negative zero.

37 Integer difference of (Xj) minus (Xk) to Xi (15 Bits)

I 9 | n i | k
14 12 11 9 8 6 5 32 O

This instruction forms the 60-bit one's complement difference of the quantities from
operand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand

register Xi. An overflow condition is ignored.

This instruction is intended for subtraction of integers too large for handling in the
increment unit. This instruction is also useful in comparing data fields during data
processing.

If (Xj) is a negative zero quantity, and (XKk) is a positive zero quantity, the result is a

negative zero quantity. The other three combinations of positive and negative zero

operands result in a positive zero quantity.

FLOATING POINT MULTIPLY UNIT

40 Floating product of (Xj) and (Xk) to Xi (15 Bits)

Le [n [& J i | « |

4 12 1t 9 8 6 5 3 2 o

This instruction multiplies two floating point quantities obtained from operand regis-
ters Xj (multiplier) and Xk (multiplicand) and packs the upper product result in

operand register Xi.

3-40 60258200 C

In this operation, the exponents of the two operands are unpacked from the floating
point format and are added with a correction factor of 48 to form the exponent for the
result. The coefficients are multiplied as signed integers to form a 96-bit integer
product. The upper half of this product is then extracted to form the coefficient of
the result.

The result is a normalized quantity only when both operands were normalized; the
exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

SPECIAL SITUATIONS

If the two operands are not both normalized the upper half of the double precision
product may be all zeros. This situation is not sensed, and the exponent for the re-
sult will be processed without regard to the zero coefficient. This will result in a
zero coefficient and a nonzero exponent. No error flags are set in the PSD register
for this case.

A partial overflow occurs for this instruction whenever the exponent computation
results in exactly +1777 octal and the result coefficient is taken from the upper half

of the 96-bit double precision product. There are no error condition flags set in the
PSD register for this case, and the result is delivered to the Xi register in a normal
manner. Subsequent use of this result as an operand in a floating point unit will, how-
ever, result in overflow detection. However, if the coefficient is shifted one position
to normalize it, the exponent delivered to the Xi register will be reduced one count

and the result will be in floating point range.

A complete overflow occurs for this instruction whenever the exponent computation

results in an exponent greater than +1777 octal. This situation is sensed as a special

case, and a complete overflow word with proper sign, overflow exponent, and zero
fFfininnt 1 dAali i

~ o
LT ATIiv 1S

coe ent calculation ig ignored for

this case, and the Overflow Condition flag is set in the PSD register regardless of
whether a subsequent left shift causes the result to be only partial overflow.

A partial undertlow occurs for this instruction whenever the exponent computation

results in exactly -1776 octal and the result coefficient is shifted one position to

60258200 C 3-41

normalize it, The exponent delivered to the Xi register is reduced one count, creating
an underflow exponent with a valid coefficient. There are no condition flags set in the
PSD register for this case. Subsequent use of this result in a floating point unit may,
however, result in underflow detection.

A complete underflow occurs for this instruction whenever the exponent computation
results in less than -1776 octal. This situation is sensed as a special case, and a
complete zero word with proper sign is delivered to the Xi register. The coefficient
calculation is ignored in this case, and the Underflow Condition flag is set in the PSD
register.

If either operand is zero, the Underflow Condition flag will set in the PSD register.

41 Round floating product of (Xj) and (Xk) to Xi (15 Bits)
g h | i] k|
14 12 1 9 8 6 5 3 2 0]

This instruction multiplies the floating point number from operand register Xk (multi-
plicand), by the floating point number from operand register Xj. The upper product
result is packed in operand register Xi. (No lower product is available.) The multi-
ply operation is identical to that of instruction 40 except that a rounding bit is then ex-
tracted to form the coefficient for the result. An alternate output path is provided with
a left shift of one-bit position to normalize the result coefficient if the original operands
were normalized and the double precision product has only 95 bits of significance.

The exponent for the result is decremented by one count in this case. The following
rounded result is the net effect of this action:

for products > 295, round is by one-fourth
for all other products, round is by one-half

The result is a normalized quantity only when both operands are normalized; the ex-
ponent in this case is the sum of the exponents plus 47 (or 48).

The result is not normalized when either or both operands are not normalized. For
treatment of special situations and operands, refer to instruction 40, Floating Product.

3-42 60258200 C

42 Floating DP product of (Xj) and (Xk) to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand registers
Xj and Xk and packs the lower product in operand register Xi. The two 48-bit coeffi-
cients are multiplied together to form a 96-bit product. The lower-order 48 bits of
this product (bits 47-00) are then packed together with the resulting exponent. The
result is not necessarily a normalized quantity. The exponent of this result is 48 less

than the exponent resulting from a 40 instruction using the same operands.

This instruction is intended for use in multiple precision floating point calculations.
It may also be used to form the product of two integers providing the resulting product
will not exceed 48 bits of significance. The operands must be packed in floating point
format before executing this instruction. The result must be unpacked to obtain the

integer product.

For treatment of special situations and operands, refer to instruction 40 Floating
Product.

FLOATING POINT DIVIDE UNIT

44 Floating divide (Xj) by (Xk) to Xi (15 Bits)

o [n [+ [7 1 %]

14 12 1l S 8 6 5 2 o

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi,

The exponent of the result in a no-overflow case is the difference of the dividend and

divisor exponents minus 48.

60258200 C 3-43

A one-bit overflow is compensated for by adding one to the exponent and right shifting
the quotient one place. In this case the exponent is the difference of the dividend and
divisor exponents minus 47. The result is a normalized quantity when both the divi-

dend and divisor are normalized.

SPECIAL SITUATIONS

If the divisor is not normalized and the dividend coefficient is larger than the divisor
by a factor of two or more, the quotient coefficient will be incorrect. The quotient is
disregarded in this case, and the word delivered to the Xi register is positive indefinite
with a zero coefficient if an Overflow or Underflow Condition does not exist. The

Indefinite Condition flag is set in the PSD register.

A partial overflow occurs for this instruction whenever the exponent computation re-
sults in exactly +1777 octal. There are no error condition flags set in the PSD regis-
ter for this case, and the result is delivered to the Xi register in a normal manner,
Subsequent use of this result as an operand in a floating point unit may, however,

result in overflow detection.

A complete overflow occurs for this instruction whenever the exponent computation
results in an exponent greater than +1777 octal. This situation is sensed as a special
case, and a complete overflow word with proper sign, overflow exponent, and zero
coefficient is delivered to the Xi register. The coefficient calculation is ignored for
this case, and the Overflow Condition flag is set in the PSD register.

A partial underflow occurs for this instruction whenever the exponent computation
results in exactly -1777 octal. There are no error condition flags set in the PSD
register for this case, and the result is delivered to the Xi register in a normal man-
ner. Subsequent use of this result as an operand in a floating point unit may, however,

result in underflow detection.

A complete underflow occurs for this instruction whenever the exponent computation
results in an exponent less than -1777 octal. This situation is sensed as a special
case, and a complete zero word with proper sign is delivered to the Xi register. The
coefficient calculation is ignored in this case, and the Underflow Condition flag is set
in the PSD register.

3-44 60258200 C

45 Round floating divide (Xj) by (Xk) to Xi (15 Bits)

g | v | i | i [«x]

14 12 1 9 8 6 5 3 2 o

This instruction divides the floating quantity from operand register Xj (dividend) by
the floating point quantity from operand registers Xk (divisor) and packs the rounded
guotient in operand register Xi, The operation is the same as for a Floating Divide
except that a round bit is added just below the lowest order bit of the coefficient from
Xj. This round bit has the effect of increasing the magnitude of the dividend by one-
half the value of the least significant bit.

The result is a normalized quantity when both the dividend and the divisor are normal-
ized,

The result exponent in a no-overflow case is the difference of the dividend and divisor
exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place; in this case the exponent is the difference of the dividend and

divisor exponents minus 47,

For treatment of special situations and operands, refer to instruction 44 Floating
Divide.

PASS INSTRUCTION

46 No operation (Pass) (15 Bits)

I RN 7/

14 12 1 9 8 o

60258200 C 3-45

This instruction is a ""do-nothing' instruction that is typically used to pad the program

between certain program steps.

EXAMPLE:

59 0
P 30-BIT INST. 15-BIT INST, PASS
P+l 30-BIT INST. 30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word at P.
Since the next instruction is 30 bits, it cannot fit in P and must be placed in P + 1.

POPULATION COUNT UNIT

47 Population count of (Xk) to Xi (15 Bits)

Le I v T 7 V777l «]
6

14 12 1 9 8 5 3 2 o
This instruction counts the number of "1 bits' in operand register Xk and stores the
count in the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared

to zero.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register,
If Xk is a word of all zeros, a zero word is delivered to the Xi register,

3-46 60258200 C

INCREMENT UNIT

50 Set Ai to (Aj)+ K (30 Bits)
51 Set Ai to (Bj) + K (30 Bits)
52 Set Ai to (Xj) + K (30 Bits)
Lafnrlifil] K]
29 27262423 2120 1817 0
53 Set Ai to (Xj) + (B k) (15 Bits)
54 Set Ai to (Aj) + (Bk) (15 Bits)
55 Set Ai to (Aj) — (Bk) (15 Bits)
56 Set Ai to (Bj) + (Bk) (15 Bits)
57 Set Ai to (Bj) — (Bk) (15 Bits)

9

14

12

9 8 6 5

These instructions perform one's complement addition and subtraction of 18-bit
operands and store an 18-bit result in address register Ai. Operands are obtained
from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit signed constant). Operands obtained from an Xj operand register
are the truncated lower 18 bits of the 60-bit word. The highest order bits are ignored.
These instructions are intended for fetching operands from storage for computation
and for delivering results back into storage. If the i designator is non-zero, a storage
reference is made to SCM using the lower 16 bits of the resulting sum or difference

as the relative storage address. The upper two bits are ignored. The type of storage

reference is a function of the i designator value.

i = 0; no storage reference

i

i

1]

1, 2, 3, 4, 5; read from SCM to register Xi

6, 7; write into SCM from register Xi

If this instruction makes a storage reference to SCM the address is compared with

(FLS) to determine if the reference is within the assigned SCM field.

60258200 C

If the address

3-417

is out of range the SCM Direct Range Condition flag is set in the PSD register. This
flag will cause the current program sequence to terminate with an exchange jump to
(EEA). If the reference involved reading to an X register, the out of range word
addressed will be read to the X register before the interrupt occurs If the reference
involved writing into SCM the memory sequence will be aborted to avoid altering the
designated storage quantity. If the quantity placed in A is larger than 16 bits, only
the lower 16 bits will be sent to SCM.

60 Set Bi to (Aj) + K (30 Bits)
61 Set Bi to (Bj) + K (30 Bits)
62 Set Bi to (Xj) + K (30 Bits)

[olh]i]i] K |

29 27262423 2120 1817 0
63 Set Bi to (Xj)+ (B k) (15 Bits)
64 Set Bi to (Aj) + (Bk) (15 Bits)
65 Set Bi to (Aj) — (Bk) (15 Bits)
66 Set Bi to (Bj) + (Bk) (15 Bits)
67 Set Bi to (Bj) — (Bk) (15 Bits)

(o [» T 7 [7]«

14 12 N 9 8 6 5 3 2 o

These instructions perform one's complement addition and subtraction of 18-bit
operands and store an 18-bit result in index register Bi. An overflow condition is
ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an
Xj operand register are the truncated lower 18 bits of the 60~-bit word. The highest
order bits are ignored. If the designator i is a zero, these instructions becomes Pass

instructions.

* See Note 8 of Appendix D, 6000/7000 Result Differences.

3-48 60258200 C

70
71
72

73
74
75
76
77

Set Xi to (Ai) + K
Set Xi to (Bj) + K
Set Xi to (Xj) + K

lolh]ifil K

29 27262423 21201817

ol

Set Xi to (Xj) + (Bk)
Set Xi to (Aj) + (Bk)
Set Xi to (Aj) — (Bk)
Set Xi to (Bj) + (Bk)
Set Xi to (Bj) — (BK)

14 12 1 9 8 & 5 3 2 0

(30 Bits)
(30 Bits)
(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit oper-
ands and store an 18-bit result into the lower 18 bits of operand register Xi. The

sign of the result is extended to the upper 42 bits of operand register Xi. An overflow
condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant).

Operands obtained from an

Xj operand register are the truncated lower 18 bits of the 60-bit word. The highest
order bits are ignored.

60258200 C

3-49

CENTRAL PROCESSOR MEMORY 4

B

INTRODUCTION

The Central Processor Unit contains two memories: Large Core Memory (LCM) and
Small Core Memory (SCM). In the following descriptions the term Central Processor
Unit (CPU) refers to that part of the Central Processor hardware which does not con-

tain the memory or its directly associated hardware.

MEMORY PROTECTION

All Central Processor Unit references to either SCM or LCM are made relative to a
reference address (Figure 4-1). The reference address defines the lower limit of

the program and/or data. The upper limit is defined by the program field length added
to the reference address. The field length is the number of 60-bit words comprising
the program and it is established by the operating system prior to program execution.
All references to memory from the program must lie within this field length.

During an Exchange Jump, the reference addresses and the field lengths are loaded
from the exchange jump package into the respective registers to define the limits of
the program.

When the program specifies a read or write address, it is automatically checked to
see if it lies within the field length of the program. If it does, the program proceeds
normally; if it does not, an unconditional exit is made and the program is terminated.
These constraints are applied to both SCM and LCM addresses. Therefore, two
reference address (RAS and RAL) and two field lengths (FLS and FLL) are required;
one for each memory.

Two error conditions are noted in the Program Status Designator register for each
memory; Direct Range Condition and Block Range Condition. A Direct Range Condition
flag will be set if a single requested address is outside the limits of the program. A
Block Range Condition flag will be set if a block tansfer between SCM and LCM will

cause a reference to an address outside the limits of the program.

60258200 C 4-1

SCM

MEMORY
177 777
A AN
ABSOLUTE RELATIVE LAST LOCATION + 1
MEMORY MEMORY IN PROGRAM AREA
ADDRESS ADDRESS /
RA+ P P=FL S s RN
PROGRAM AREA
RA + P P<FL - AAAARANR (FIELD LENGTH)
RA P=0 SSSSS
SOME ARBITRARY
LOCATION IN
PROGRAM AREA
FIRST LOCATION
IN PROGRAM AREA
000 000
Figure 4-1. Memory Map

SMALL CORE MEMORY

Small Core Memory (SCM) is organized into 32, 768 or 65,536 60-bit words, (plus
5 parity bits, odd parity) in 16 or 32 banks of 2, 048 words each. The banks are
logically independent and consecutive addresses go to different banks. Banks may be
phased into operation at clock period intervals, resulting in very high operating speed.
Up to 10 banks may be in operation at one time. Each bank is divided into an odd and
an even stack, each containing 1, 024 words. The SCM address and data control permit
a word to move to or from SCM every clock period. A parity error in SCM sets a flag

in the Program Status register.

60258200 C

ADDRESS FORMAT

The location of each word in SCM is identified by a 16-bit address. The address for-
mat is shown in Figure 4-2. Within the address format, the lowest four or five bits
specify one of 16 or 32 banks. The next bit of this address specifies which stack in a
bank (odd or even) is to be referenced. The 11-bit address defines one of 2048 sep-
arate locations within the specified bank., Addresses that are numerically consecu-

tive reference consecutive banks and hence make efficient use of the bank phasing.

i ADDRESS [BANK SEL |

5 14 4 3 0
16 BANKS
L ADDRESS BANK SELECTJ
15 5 4 o
32 BANKS

Figure 4-2. SCM Address Format

PARITY CONDITIONS

SCM parity is checked during each SCM read/write cycle. When a SCM parity error
is detected, the SCM Parity Condition flag is set in the PSD register and the 16-bit
address of the failing word and five SCM Section Parity Error bits are sent to the

Maintenance Control Unit.
If a parity error occurs during a block copy operation, the block copy is executed to

completion and the execution interval for the exchange package is terminated at the

end of the current program instruction word.

DUTY CYCLE INTEGRATOR
Each odd and even stack in a bank of SCM includes a duty cycle integrator circuit that,

when activated, prevents continued repetitive referencing of a stack at the maximum

rate of once every 10 clock periods.

60258200 C 4-3

When active, the duty cycle integrator circuit slows references for the entire bank to
a read/write cycle time of 880 nanoseconds or 32 clock periods. The duty cycle

integrator will remain active for 1 millisecond after all references to a bank cease.

The duty cycle integrator is activated by repeated references to a stack oftener than
once every 20 clock periods more than approximately 800 times. To prevent activat-
ing the duty cycle integrator, programmers should not use SCM locations for counters
or tables requiring repeated references that exceed this rate.

It would be extremely unusual for normal user's programs to activate the duty cycle
integrator.

It is not possible to activate the duty cycle integrator from the I/O channels. Only
very unusual programs written for the CPU can cause the integrator to activate.

Examples of such programs are:

1. Counting in a tight loop by loading the count in an X register, adding to the
count, storing the new count, and then branching back to reload the count.

These instructions execute entirely within the instruction stack,

A suggested way of doing this type of program (that also decreases the pro-
gram execution time) is to load the count in an X register and keep it there
until just prior to exiting from the routine. Then and only then, store the
final updated count into SCM. Certain benchmark programs have used this
type of routine.

2. Idle loops, which are merely waiting for an I/O interrupt, should attempt to
do all activities within the instruction stack using the X and B registers.
This will prevent a situation in which one memory bank will receive an extra-

ordinary number of consecutive references from the CPU.

SMALL CORE MEMORY ACCESS

Small Core Memory transmits data to and receives data from the PPU, CPU, LCM,
and the MCU. Thus, SCM can be considered to be the center of the Computer System.

As the PPU's write or read the buffer data, a CPU I/O program empties the input
buffers or fills the output buffers. An I/O interrupt to this CPU program occurs at

4-4 60258200 C

threshold and upon receipt of a Record Pulse from a PPU. A separate I/O exchange
package for the I/O program exists for each input and output channel. The I/0
exchange packages are permanently assigned in the lower order addresses of SCM.
These areas are arranged as shown in Figure 4-3.

PPU ACCESS

PPU access is limited to certain buffer areas in the low order addresses of SCM.
These areas are used for data transfers and for PPU-CPU communication. The PPU
can normally read the output data buffer areas at any time but to avoid loss of data
should do so only when directed to by the CPU. The PPU can write into the input
buffer areas at any time, but to avoid loss of data should do so only when directed to

by the CPU program.
1000

CHANNEL 16 CHANNEL 16 CHANNEL I7 CHANNEL 17
INPUT PACKAGE |OUTPUT PACKAGE|INPUT PACKAGE |OUTPUT PACKAGE
7o CHANNEL 14 CHANNEL 4 CHANNEL I5 CHANNEL IS5
INPUT PACKAGE |OUTPUT PACKAGE|INPUT PACKAGE |OUTPUT PACKAGE
600 CHANNEL 12 CHANNEL 12 CHANNEL 13 CHANNEL 13
INPUT PACKAGE [OUTPUT PACKAGE|INPUT PACKAGE [OUTPUT PACKAGE
500 CHANNEL 10 CHANNEL 10 CHANNEL 11 CHANNEL 11
00 INPUT PACKAGE {OUTPUT PACKAGE |INPUT PACKAGE |OUTPUT PACKAGE
¢ CHANNEL 6 CHANNEL 6 CHANNEL 7 CHANNEL 7
INPUT PACKAGE [OUTPUT PACKAGE |INPUT PACKAGE [OUTPUT PACKAGE
300 CHANNEL 4 CHANNEL 4 CHANNEL § CHANNEL §
200 INPUT PACKAGE |OUTPUT PACKAGE |INPUT PACKAGE |OUTPUT PACKAGE
CHANNEL 2 CHANNEL 2 CHANNEL 3 CHANNEL 3
100 INPUT PACKAGE |OUTPUT PACKAGE | INPUT PACKAGE JOUTPUT PACKAGE
MCuU REAL TIME CHANNEL 1 CHANNEL |
o PACKAGE PACKAGE INPUT PACKAGE |OUTPUT PACKAGE
(o] 20 40 60 100

{ OCTAL ADDRESSES)
Figure 4-3. I1/O Exchange Package Areas
An I/O Multiplexer (MUX) establishes I1/O priorities for the PPU's, assembles in-
coming 12-bit PPU words into 60-bit SCM words, and disassembles the 60-bit out-

going SCM words into 12-bit PPU words. The I/O Multiplexer is described in more
detail later in this section.

60258200 C 4-5

CPU ACCESS

Increment instructions (51-57) are used by a CPU program for referencing single
SCM words. The A registers used by the increment instructions are divided into five
read address registers (Al - A5) and two write address registers (A6, AT). Placing
a quantity into an A register causes a reference to that SCM location. If the A regis-
ter is A6 or A7, the contents of the corresponding X register are stored in SCM. If
the A register is Al - A5, the corresponding X register is loaded with the contents
of that memory location. If the referenced SCM address is outside the field length of
the currently executing CPU program, the SCM Direct Range flag is set in the PSD
register,

The CPU also references SCM when the Instruction Word Stack (IWS) requires another
SCM word because the stack advanced or because of a branch out of the stack. The
word will be read from SCM to the IWS even though it might be outside the field length
of the currently executing program. However, it will produce a SCM Direct Range
flag in the PSD register when the P register advances to or is set to the out-of-range
address.

The CPU accesses SCM in a third way when it executes an exchange sequence. An
exchange sequence involves reading the exchange package from SCM for the initiating
program and storing the exchange package into SCM for the terminating program.,
Since the exchange package is not usually within the field length of the currently exe-
cuting program, no field length checks are made.

LCM ACCESS

The Block Copy instructions (011 and 012) transfer large blocks of LCM data to or
from SCM. The portions of SCM used for block copies must lie within the SCM field
length of the CPU program initiating the transfer.

MCU ACCESS

The Maintenance Control Unit (MCU) has access to any part of SCM. Each SCM word
is referenced separately by a 16-bit absolute address. The MCU accesses SCM
through a special control unit in the I/O Multiplexer.

4-6 60258200 C

MEMORY REFERENCE

When a SCM storage reference is initiated the address is sent to all banks in the
memory, and the correct bank, if free, accepts the address. If the bank is busy the
request waits in a Storage Address Stack (SAS) until that bank is free. Instruction
issue stops when a second address is sent to SCM and the previous address has not
been accepted. At this time there may be a third address in process in the increment
unit that cannot be stopped. This address will also be held in the SAS. Thus, requests
for three addresses may be waiting for SCM in the SAS at the same time. Instruction
issue does not start again until all unaccepted addresses have been accepted by SCM

(up to three addresses).

It is possible to abort a valid SCM memory write when it is followed by an SCM

write out of range. The following sequence of instructions could produce this situa-
tion: write SCM bank X, write SCM bank X, write SCM out of range. The first valid
write will be accepted by the bank. The second write to bank X is held up in the SAS
because it is going to the same bank. While the second write is waiting, the range
check for the out-of-range write is being performed. This will cause the SCM Direct
Range flag to be set in the PSD register before the second write to bank X can be
initiated. Since the SCM Direct Range flag stops any write into SCM, both the second
write to bank X, which is valid, and the write out of range will be aborted.

All addresses presented to SCM are processed in the order in which they are received,
SCM requests received simultaneously from various parts of the computer are given

a priority that determines which address shall be allowed access first. These prior-

ities are:
1. Ezxchange Sequence Request 4, 1I/O Multiplexer Request
2. Increment Unit Request 5. Read Next Instruction Request
3. Return Jump Exit Request 6. LCM Block Copy Request

ATV e

All memory re appear the same to SCM, The hardware provides tags that

erence

identify the source or destination of any SCM word referenced.

60258200 C 4-1

I/O MULTIPLEXER

The I/O Multiplexer (MUX) supervises the transfer of data to or from the SCM and
the directly connected PPU's. The PPU's connected with the CPU communicate over
12-bit bi-directional channels. In the I/O Multiplexer, each channel has a channel
control unit that translates I/O control signals going to or coming from the PPU. The
channel control unit includes assembly and disassembly registers for converting the
12-bit channel data to 60-bit CPU words, and vice versa.

There may be a total of 16 channels in the Multiplexer. Fifteen channels, numbered
1to 178 can connect to PPU's. A sixteenth channel, channel 0, connects to the MCU
but operates differently. It is not included in the following description of the I1/0O
Multiplexer.

Priority for SCM access and I/O interrupts is assigned in order by channel number
with the lowest order channels having the highest priority; input has priority over

output.

Each channel normally has a SCM buffer area for incoming cata and a separate SCM
buffer for outgoing data. Each buffer is divided into two fields, a lower field and

an upper field. Data is entered (or removed) for the buffer area in a circular mode.
The last word in the lower field is followed by the first word in the upper field. The
last word in the upper field is followed by the first word in the lower field. Whenever
a PPU fills or empties a buffer area to the point where a field boundary is crossed,
the CPU is interrupted and an exchange sequence is performed to initiate a CPU I/O
program to process the buffer data. The PPU continues to fill (or empty) the other
buffer field while the CPU is processing buffer data in the first buffer field.

The I/O Multiplexer buffer areas are assigned positions in SCM. A typical arrange-
ment for the buffer areas is shown in Figure 4-4. 1I/O Multiplexer space in SCM can-
not exceed absolute address 10, 0008. Note that Channel 2 input and output share a
buffer area with Channel 3 input and output. This is also true of Channels 4 and 5,
and Channels 6 and 7. These six channels are High Speed Channels as opposed to
Normal Channels, which use the smaller buffers. The maximum speeds of Normal

and High Speed Channels are listed on page 1-7.

4-8 60258200 C

The basic 7-channel configuration includes High Speed Channels 4, 5, 6 and 7 with the

larger buffers and Normal Channels 10, 11, and 12 with the small buffers.

Two 1/O

Multiplexer Channel Increments of four channels each would upgrade the system to

include the full complement of 15 I/O MUX channels.

200 400 600 1000
10000
CHN 16 CHN 16 CHN 17 CHN 17
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
7000
CHN 14 CHN 14 ~ CHN IS CHN 15
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
6000
CHN 12 CHN 12 CHN 13 CHN 13
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
5000
CHN 10 CHN 10 CHN 1 CHN 11
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
4000
HIGH SPEED HIGH SPEED
CHNS 485 CHNS 687
1/0 BUFFER 1/0 BUFFER
3000
HIGH SPEED
CHN 1 CHN 1 CHNS 283
INPUT BUFFER OUTPUT BUFFER I/0 BUFFER
2000
AVAILABLE FOR A MONITOR PROGRAM
1000
INPUT-OUTPUT SECTION EXCH PACKAGES
o T T T
200 400 600 1000

(OCTAL ADDRESSES)

Figure 4-4. Typical Buffer Area Arrangements

NORMAL PPU TO SCM DATA TRANSFER

The following description lists the events in a normal PPU to SCM input record se-
quence. The sequence begins with a CPU Reset Input Channel Buffer instruction that
resets the input channel buffer for receipt of a new record. This sets the input assem-
bly counter and the input buffer address to zero. The CPU then notifies the PPU that
it is ready to receive data. It does this by transmitting a message to the PPU over
the associated output channel. The content and format of the message depend upon the

communication scheme, which is determined by the software.

Upon receipt of this message, the PPU enters the first 12-bit word into its output regis-
ter. This entry causes the transmission of a Word Pulse and 12 data bits to the

channel control unit for this channel in the I/O Multiplexer. The I/O MUX samples

the 12-bit word and assembles it in the upper 12 bits of the 60-bit assembly register.

60258200 C 4-9

Then it sends a Resume Pulse to the PPU and advances the assembly counter. The
Resume Pulse clears the Output Word Flag at the PPU and the second 12-bit word
enters the PPU output register. The sequence of Word Pulse, input assembly, and
Resume Pulse is repeated for each 12-bit word transmitted over the data path. When
five 12-bit words have been assembled into a 60-bit word, a Resume Pulse is sent

to the PPU and a Word Request is made for SCM access. The I/O MUX will not sam-
ple the next 12-bit word, however, until the request for SCM access has been ac-
cepted by the SCM. This may be only a few clock periods, or many clock periods,
depending upon the SCM bank conflicts. Once the Word Request has been accepted

by SCM, the buffer address is advanced, the assembly counter is reset to zero, and
the transmit and assembly procedure is repeated for the next 60-bit word.

When the PPU has transmitted enough words to half fill its assigned buffer area, the
I/O MUX sends an I/O Interrupt Request to the CPU. The I/O Interrupt Request,

when accepted by the CPU, causes a CPU exchange sequence to the CPU I/O program
that processes the data in the first half of the input buffer. Meanwhile, the PPU con-
tinues to transmit 12-bit words, which the I/O MUX assembles into 60-bit words and
stores in the upper half of the input buffer. When the upper half of the buffer area be-
comes full, the I/O MUX will send another I/O Interrupt Request to the CPU provided
that the I/O program from the first interrupt has completed processing the lower half
of the input buffer and has performed an exchange exit. Otherwise, if the I/O program
is still processing the lower half, the I/O Interrupt Request will not be sent to the CPU
and further input from the PPU will be locked out until the exchange exit is executed.

NOTE

Should an error condition occur which causes the I/O

program to exit to EEA, the EEA program could in

returning to the I/O program, inadvertently release

the Interrupt Lockout condition prematurely by per-

forming an Exchange Exit instruction. There are

no hardware checks to prevent this situation from

occurring.
When the I/O Interrupt Request has been sent, the PPU begins to enter data into the
lower half of the buffer while the CPU I/O program processes data in the upper half.
Thus, the buffer in SCM operates in a circular mode with I/O interrupts at the center

and at the end of the buffer area.

An input record may contain any amount of data. The transmitting PPU terminates
the record by sending a Record Pulse to the I/O MUX. Before sending the Record

Pulse, the PPU should first check to see that the last 12-bit word was accepted by

MUX. (If the PPU Output Word Flag is clear, MUX has accepted the last word.)

4-10 60258200 C

Upon receipt of the Record Pulse, the I/O MUX sends an I/O Interrupt Request to
the CPU. If the PPU has not transmitted enough 12-bit words to form a complete
60-bit word, the remainder of the word is filled with zeros. Other than this, the
CPU hardware handles this I/O Interrupt Request the same as an interrupt request
caused by a threshold condition and initiates an exchange sequence to the CPU I/O
program. The CPU I/O program determines whether the interrupt was caused by a
buffer threshold or a Record Pulse. It does this by reading the SCM address (Read
Input Channel Status instruction) to determine whether a threshold has been crossed
since the last interrupt. The CPU 1/O program processes the input data according

to the situation sensed.

The PPU must not begin transmitting a new record of input data before the CPU has
completed processing the data in the input buffer. There is no hardware provision

to prevent the PPU from doing this. Therefore, the PPU program must not enter
new data until directed to do so by the CPU program. Should the PPU proceed before
the CPU has reset the input buffer, the incoming data for the new record may be
partially lost. The incoming record will continue to be input with no indication of

error except that the record will be shortened by the lost data.

NORMAL SCM TO PPU DATA TRANSFER

The following description lists the events in a normal SCM to PPU output record
sequence. The CPU I/O program has already loaded the output buffer with some data.
The output sequence begins with a CPU Reset Output Buffer instruction that sets

the output buffer address to zero and sends an 1/O Word Request to SCM to read the
first word from the output buffer to the 60-bit disassembly register. When SCM
delivers the 60-bit word to the output disassembly register, channel control for this
output channel clears the disassembly counter and outputs a Record Pulse and a

Word Pulse to the PPU to indicate transmission of a new record is starting.

The output channel control also places the upper 12 bits of the data in the disassembly
register on the output channel for the PPU. When the PPU program senses the
Record Pulse on its input channel, it reads the 12 bits of data, and sends a Resume
Pulse to the I/O MUX. The output data remains static on the output channel until the
PPU samples it.

60258200 C 4-11

When the Resume Pulse arrives from the PPU, the I/O MUX advances the disassem -
bly register to the next 12 bits of the 60-bit word and sends another Word Pulse to the
PPU. The output buffer address also advances to the next address at this time so

that a CPU program monitoring this channel could determine that the PPU has accepted
the first 12-bits of a new 60-bit word. The sequence of output disassembly, Word
Pulse, PPU input, and Resume Pulse continues until the entire 60-bit word has been
sent by the I/O MUX. At this time I/O MUX sends another I/O Word Request to SCM
for the next word in the output buffer. When this word arrives in the disassembly
register, the upper 12 bits and a Word Pulse are sent to the PPU and the process of
delivering a new 60-bit word is repeated.

When the PPU has half emptied its assigned buffer area, the I/O MUX sends an 1/O
Interrupt Request to the CPU. The I/O Interrupt Request, when accepted by the CPU,
causes a CPU exchange sequence to the CPU I/O program that refills the portion of
the output buffer that has just been emptied. This operation is similar to that per-
formed for a PPU to SCM transfer and output to the PPU continues from the upper
half of the buffer while the lower half is being refilled.

When the upper half of the buffer area becomes empty, the I/O MUX will send another
1/0O Interrupt Request to the CPU provided that the I/O program from the first inter-
rupt has completed processing the lower half of the input buffer and has performed

an exchange exit. Otherwise, if the I/O program is still processing the lower half,
the I/O Interrupt Request will not be sent to the CPU and further output to the PPU
will be locked out until the exchange exit is executed.

NOTE

Should an error condition occur which causes the I/O

program to exit to EEA, the EEA program could in

returning to the I/O program, inadvertently release

the Interrupt Lockout condition prematurely by per-

forming an Exchange Exit instruction. There are no

hardware checks to prevent this situation from occurring.
Using a software determined communication scheme, the CPU has notified the PPU of
the length of the record. When the PPU has received the expected amount of data, it
simply stops reading data from the PPU input channel. This stops further transmission

on the part of the I/O MUX.

HIGH SPEED PPU TO SCM DATA TRANSFER

The following description lists the events in a high speed input record sequence. The
sequence for a high speed channel is basically the same as for a normal channel except
that the Word and Record pulses from the PPU are not synchronized by the I/O Multi-
plexer.

4-12 60258200 C

The sequence begins with a CPU Reset Input Channel instruction that resets the input
channel buffer for receipt of a new record. This sets the input assembly counter to

zero and the input buffer address to the starting address of the buffer for the selected

channel.

Next, the PPU enters the first 12-bit word into its output register. This causes the
transmission of a Word Pulse and 12 data bits to the channel control unit for this
channel in the I/O Multiplexer. The I/O MUX samples the 12-bit word and assembles
it in the upper 12 bits of the 60-bit assembly register.

A static High Speed Resume is sent to the PPU during this time. The High Speed
Resume clears the Word flag in the PPU immediately after it is set. The second 12-
bit word may now be entered in the PPU output register. This sequence continues as

each 12-bit word is transmitted over the data path.

When five 12-bit words have been assembled into a 60-bit word, the I1/O MUX sets the
Input Word Request flag for SCM access. This blocks the High Speed Resume signal
to the PPU, and clears the input assembly counter in preparation for the arrival of
the next PPU word. It also blocks the processing of a new 12-bit word should one
arrive before the request for SCM access has been accepted by SCM. This may be
only a few clock periods, or many clock periods, depending upon SCM bank conflicts
and channel priority. Once the Word Request has been accepted by SCM, the buffer
address is advanced, the Input Word Request flag is cleared, and the High Speed
Resume signal is again sent to the PPU. The transmit and assembly procedure is

then repeated for the next 60-bit word.

The descriptions of the Input Interrupt Request and the Record Pulse from the PPU

are the same as for the normal PPU to SCM data transfer.

HIGH SPEED SCM TO PPU DATA TRANSFER

The following description lists the ever

oy

The sequence for a high speed channel is basically the same as for a normal channel
except that the Resume pulse is not resynchronized by the 1/O Multiplexer and the out-
put data path includes a series of three output data buffer registers. The High Speed
channel output control also includes additional circuitry for controlling the flow of

data from the disassembly register through these output data buffers to the PPU.

60258200 C 4-13

The output sequence begins with a CPU Reset Output Buffer instruction that sets the
output buffer address to the starting address of the buffer. At this time, the I/O
MUX also sends an Output Word Request to SCM to read the first word from the output
buffer to the 60-bit disassembly register. When the 60-bit word has been delivered
to the output disassembly register, the I/O MUX clears the disassembly counter and
sends a Word Pulse and a Record Pulse to the high speed control circuitry. Concur-
rently, the upper byte of the disassembly register is transmitted to the Rank A of the
high speed output buffer,

Upon receipt of the Record Pulse from the output channel control unit, the high speed
buffer control transmits a Record Pulse to the PPU. This sets the Input Record flag
at the PPU.

Upon receipt of the Word Pulse from the output channel control unit, the high speed
buffer control enters the 12 bits of data from the output disassembly register into
the Rank A of the high speed output buffer. Then it outputs the Word Pulse to the
PPU, thereby setting the PPU Input Word flag at the PPU. The Word Pulse will not
be sent to the PPU if an Interrupt Lockout condition exists in the output channel con-
trol unit,

In consecutive clock periods the data will move from the Rank A to Rank B and then
to the Rank C of the high speed buffer registers. The data in the Rank C is trans-
mitted to the PPU and remains static on the lines until the PPU transmits a Resume
Pulse to the high speed control circuitry.

The High speed control circuitry does not wait for the Resume from the PPU, however,
before sending a Resume Pulse to the output channel control unit. The channel con-
trol unit increments the output disassembly count and transmits the second 12-bit byte
to the high speed output buffer over the output data path. At this time, channél control
advances the content of the output address register to the next address in the SCM
buffer, and sends a one clock period wide Word Pulse to the high speed control cir-
cuitry. Upon receipt of this second Word Pulse, the Rank A of the output buffer is
cleared and entered with the second 12-bit byte and the Resume Pulse is again sent to
the output channel control unit. In the following clock period, the data in the Rank A

moves into the Rank B of the high speed output buffer.

4-14 60258200 C

The process is repeated for the third 12-bit byte. When the output channel control
sends the third byte to the Rank A of the high speed output buffer, however, it does

not send the Resume Pulse to the output channel control unit.

At this point all action stops until the PPU samples the 12 data lines and transmits
a Resume Pulse to the high speed buffer control circuitry. When a Resume Pulse
arrives from the PPU, the Rank C is cleared and entered with 12 bits from the Rank

B, and a Resume Pulse is again sent to the output channel control unit.

The sequence continues until the entire 60-bit word has been sent to the high speed
output buffer by the output channel control unit. At this time, the channel control
unit sends another Output Word Request for the next word buffer.

At the time the Output Word Request flag sets, the last two bytes of data are in the
Ranks B and C of the high speed output buffer. The PPU samples the data and trans-
mits a Resume Pulse to the high speed buffer control, The Rank C is then cleared
and entered with data from the Rank B. When this data has been delivered to the
PPU, action halts until the requested word is delivered to the disassembly register
from the SCM.

Some number of clock periods later, the word is delivered to the disassembly regis-
ter and the process of delivering a new 60-bit word to the PPU begins.

The descriptions of the Output Interrupt Request and the Record Pulse from the PPU
are the same as for the normal PPU to SCM data transfer.

LARGE CORE MEMORY

Large Core Memory is a 2-wire, word organized memory with a 1,76 usec cycle
time. Parity checking is provided with one parity bit for each 15 data bits (odd
parity). LCM is designed to provide a large amount of 5 i

block transfer of data.
LCM has a capacity of 256, 000 or 512, 000 60-bit words arranged in four or eight
banks of 64, 000 words each, Within a bank, eight consecutive 60-bit words are

grouped into one LCM word with a parity bit for each 15 bits. The next consecutive

60258200 C 4-15

words are grouped into an LCM word that is stored in the next bank, etc, A memory
reference to a location not previously read into a register reads all eight 60-bit
words and parity bits from one LCM word simultaneously and stores them into a 512
bit bank operand register. As a 60-bit word enters or leaves the bank operand reg-
ister for various destinations, parity is checked. A parity error will set a bit in the
PSD register.

ADDRESS FORMAT

The location of each word in LCM is identified by a 19-bit address. The address
format is shown in Figure 4-5, Within the address format, the lowest three bits
specify one of eight 60-bit words within an LCM word. The next lower two or three
bits specify one of four or eight LCM banks. The 13-bit address defines the location
within the specified bank., For numerically consecutive addresses, consecutive

banks are referenced at every eighth address for systems using all eight banks.

vV ADDRESS BANK SEL [WORD SEL |
I8 17 5 4 3 2 0
FOUR BANKS
| ADDRESS | BANK SEL | woRD SEL |
18 65 32 0
EIGHT BANKS

Figure 4-5. LCM Address Format

PARITY CONDITIONS

LCM parity is checked during every time a 60-bit word is read from LCM. When a
LCM parity error is detected, the LCM Parity Condition flag is set in the PSD
register and the 19-bit address of the failing word and four LLCM Section Parity

Error bits are sent to the Maintenance Control Unit.

If a parity error occurs during a block copy operation, the block copy completes
execution and the execution interval for the exchange package terminates at the

end of the current program instruction word.

60258200 C

LARGE CORE MEMORY ACCESS

LCM can be accessed in two ways: by block copies between LCM and SCM and by
single word transfers between LCM and the X registers.

BLOCK COPIES

Block copy instructions move quantities of data between LCM and SCM as quickly

as possible. All other activity in the CPU, except for I/O Word Requests, is stopped
during a block copy operation. All instructions issued prior to this instruction are
executed to completion and no further instructions issue until the block copy is nearly
completed. As a result of these restrictions the data flow between LLCM and SCM can
proceed at the rate of one 60-bit word each clock period. When an I/O Multiplexer
Word Request for SCM occurs during this transfer, the data flow is interrupted for one
clock period. The I/O word address is inserted in the stream of addresses to the
SAS, and the addresses for the block copy are resumed with a minimum of a one
clock period delay. An additional delay will occur if the 1/0 reference causes a bank
conflict in SCM.

DIRECT SINGLE-WORD TRANSFERS

A direct single-word transfer either reads one 60-bit word from LLCM and enters this

word into an X register or writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on
whether the requested word already resides in one of the bank operand registers. A
Read LCM instruction for a word not currently residing in a bank operand register
will require 17 clock periods for delivering a field of eight 60-bit words to the desig-
nated X register. A Read LCM instruction for a word already residing in a LCM
bank operand register as a result of a previous instruction will require three clock
periods to deliver the requested word to the designated X register. Thus, although
the first 60-bit word will require 16 clock periods, the second through eighth words
in the same LCM word require three clock periods each. This means that consecu-
tive LCM operands are available, on an average, every five clock periods as opposed

to SCM operands at eight clock periods.

60258200 C 4-17

The execution time for writing a word into LCM from an X register normally requires
three clock periods. A delay will occur if the required LCM bank is busy completing
a bank read/write cycle for a different block of eight words than that required for

this instruction. In this case the word will be held in the LCM write register until

the LLCM bank is free.

4-18 60258200 C

PERIPHERAL PROCESSOR UNIT S

ORGANIZATION

Each Peripheral Processor Unit (PPU) is a completely independent and self-contained
computer. Therefore, each PPU may be executing a different program at the same
time. A PPU's primary function is to perform I/O tasks at the request of the Central
Processor Unit. The standard system configuration has seven peripheral processor
units. One of these seven is designated the Maintenance Control Unit (MCU). It is
identical to the other PPUs except it has specific, invariant channel connections.
These channel connections may be made to other PPU's and to the CPU to dead start

them or to monitor error conditions. (see MCU, Manual Control, page 7-1)

Operation of the PPU is controlled by a stored program that is sequentially executed
in a one-address mode. All manipulative operations are performed in an 18-bit
arithmetic (A) register. Arithmetic is binary in a ones complement mode. The
program instructions make use of specially assigned locations in the lowest order
6410 words of PPU memory. Address arithmetic involving these words is performed
in a separate address arithmetic unit that adds two addresses in a 12-bit ones com -

plement mode,

The PPU may also directly control peripheral equipment devices with a minimum of
intervening circuits. A modest amount of character conversion and formatting of

data may be performed in the PPU before data is transmitted to the CPU. In addition,
the PPU may be programmed to perform the synchronizing function required in inter-
facing an electro-mechanical device to the CPU. In this mode the PPU is generally
dedicated to one or a small number of specific devices such as printers, card readers,

tape units, disk files, etc.

The computation, memory, and I/O sections of the PPU are described in greater

detail in the foliowing paragraphs.

60258200 C 5-1

COMPUTATION SECTION

The computation section of a PPU performs the arithmetic operations associated
with manipulating operands and with indirect addressing. These arithmetic opera-
tions involve seven registers: A, P, Q, Z, Sk, fd, and k. Only the A register is
used directly by a programmer,

A REGISTER (18 BITS)

The arithmetic or A register is the principal operand register. In an arithmetic
operation the A register always holds one of the operands and always receives the
arithmetic result. The contents of A are treated as signed operands. If bit 17 is
set the operand is negative. Overflows are ignored although an end-around carry
may show in the registel at the end of an instruction execution. No sign extension is
provided for 6-bit or 12-bit quantities entered in the low order bits. However, the
unused upper bits are cleared to zero. Zero is represented by all zeros. The A
register is used in the shift, logical arithmetic, and four I/O instructions.

The A register counts the length of the block for block input or output instructions.

As each word is transmitted, the A register is entered with the new count.

The A register receives the input data word (12 bits) for the Input to A instruction
and holds the output data word (12 bits) for the Output from A instruction.

P REGISTER (12 BITS)

The Program Address register or P register holds the address of the current instruc-
tion. During the execution of the current instruction the contents of P are advanced
by 1 or 2 to provide the address of the next instruction in the program for 12- or 24~

bit instructions. If a jump is called for, the Jump address is entered in P.

Q REGISTER (12 BITS)

The Q register has two major functions. It is primarily used for holding the address
of an operand during instruction execution, The secondary purpose is to hold the

5-2 60258200 C

upper 6 bits of an 18-bit operand in the lower 6 bits of the register during operand
arithmetic.

X REGISTER (13 BITS)

This register holds all data read from memory. It also is used during 18-bit arithme-
tic operations in the A register. It holds the lower 12 bits of the operand during these

instructions.

Sk REGISTER (6 BITS)

The Sk register contains a shift count during execution of shift instructions. The
lowest order five bits contain the number of bit positions by which the content of the
A register is to be shifted. The highest order bit determines whether the shift is

left circular or right open-ended.

fd REGISTER (12 BITS)

The fd register holds the current instruction word for translation. The upper six

bits are the f and the lower six bits the d designator from the instruction.

k REGISTER (3 BITS)

The k register is the instruction cycle counter and is used to count the number of

memory references required during execution.

MEMORY

NOTE

Program loops in the PPU should be four executable
words or longer to avoid reducing memory margins.
A Pass instruction is an executable instruction.

Each processor has its own 12-bit, 4, 096-word, magnetic core, random access mem-
ory with a read/write cycle time of 275 nanoseconds. Each 12-bit word has a parity
bit attached.

60258200 C 5-3

The memory is organized into two banks and consecutive addresses alternate between
these banks to increase processing speed. The memory consists of four 12-bit mem-
ory modules, each of 1,024 words. Two of these modules form one memory bank.
Associated with each bank is an S register which holds the address of the operand in
storage, a Z register which holds operands to be stored and the X register which
receives operands read from either bank. There are, therefore, two Z and two S
registers for each PPU. Associated with each Z register is a parity generating cir-
cuit that generates an odd parity bit and this is stored in the memory with the operand.
Parity is checked on reading operands from memory. Inthe event of a parity error,

the PPU sends a parity error signal to the Maintenance Control Unit (MCU).

INPUT/OUTPUT

The PPU's communicaté with the CPU and with other devices over bi-directional
channels. Information may be transmitted from the PPU to a particular device at
the same time that information is being sent to the PPU from that device. Each bi-
directional channel consists of an input data path and an output data path plus the
associated control lines for each path. The channel consists of two physical cables.
Each cable handles data moving in one direction and contains the control lines asso-

ciated with that data. The two cables are completely symmetrical.

CONTROL SIGNALS

The three control lines associated with each path carry control signals for directing
data flow between a PPU and another device. These signals are: the Word Pulse,
Record Pulse, and Resume Pulse.

WORD PULSE

A Word Pulse is normally a one clock period pulse transmitted over a cable to notify
the receiving device that the 12 data lines contain new information that is ready to be
sampled. In special situations the Word Pulse is forced to a continuously set condi-
tion. In this case the data may be sampled by the receiving device at any time. There
is no coordination between the transmitter and receiver in this case and the receiver

must interpret the data to extract information on time changes.

5-4 60258200 C

RECORD PULSE

A Record Pulse is normally a one clock period pulse transmitted over a cable to no-
tify the receiving device that a record of data transmission has been completed. In
an SCM to PPU data transfer, however, (see page 4-11)the Record Pulse precedes the
data and indicates to the PPU that transmission of a new record is about to start. In

cases where the Word Pulse is continuously set the Record Pulse is not used.

RESUME PULSE

A Resume Pulse is normally a one clock period pulse transmitted from the data
receiving device back to the data transmitting device to indicate that the data on the
cable has been sampled and the next data may be placed on the lines. In special
situations the Resume may be forced to a continuously set condition. In this case the
data transmitting device may send a new data at its own rate. There is no coordina-
tion between transmitter and receiver in this case, and the receiver must be ready

to accept each 12-bit data word as transmitted.

INPUT CHANNEL CONTROL

There are provisions for eight input cables in each PPU. Each input cable provides
12 bits of incoming data and the associated control lines for that data. The PPU may
sample the data on any one of these eight input cables at any one time. The channel
selection is determined by the lowest order three bits in the d register. The input
channels are numbered zero through seven to correspond with the value of the lowest

order three bits and in the d portion of the fd register.
An input channel is controlled by the setting and clearing of control flags within the

PPU. The flags are directly associated with the control signals transmitted or

received over the input channel.

INPUT WORD FLAG

This flag is set when a Word Pulse is received over the input cable by the PPU. The

flag is cleared when the PPU has sampled the data on the cable and sends a Resume

60258200 C 5-5

Pulse to the transmitting device at the other end of the cable. This flag is forced to
a cleared state during a Dead Start condition. A PPU senses the status of this flag

by executing 1/O jump instruction 60 or 61.

INPUT RECORD FLAG

This flag is set when a Record Pulse is received over the input cable by this PPU.
The flag is cleared when the PPU has sampled the next following input data word and
sends a Resume Pulse to the data transmitter at the other end of the cable., This
flag is forced to a cleared state during a Dead Start condition. A PPU senses the

status of this flag by executing I/O jump instruction 62 or 63.

INPUT RESUME FLAG

This flag is set for one clock period when the PPU has sampled the input data and is
ready for the next word to be transmitted. This flag is also set during a Dead Start
condition. A Resume Pulse is transmitted by this PPU over the input cable during the
time in which this flag is set. The Resume Flag cannot be sensed directly by the
PPU.

OUTPUT CHANNEL CONTROL

There are provisions for eight output cables in each PPU. Each output cable provides
a path for 12 bits of outgoing data plus the associated control lines for that data. The
PPU may enter data on any one of these eight output cables at any one time. The
selection of which of the eight cables is determined by the lowest order three bits in
the d register. The output channels are numbered zero through seven to correspond
with the value of the lowest order three bits in the d register. Data is transmitted
statically over the output and remains on the cable until changed by the transmitting
PPU.

An output channel is controlled by the setting and clearing of control flags within the

PPU. The flags are directly associated with the control signals transmitted or re-

ceived over the output channel.

5-6 60258200 C

OUTPUT WORD FLAG

The flag is set when the PPU transmits a one clock period wide Word Pulse over the
associated output cable. The flag is cleared when a Resume Pulse is received by

the PPU over this output cable. This flag is forced to a cleared position during a
Dead Start condition. A one clock period wide Word Pulse is formed for transmission
over an input cable. A PPU senses the status of this flag by executing 1/O jump in-

struction 64 or 65.

OUTPUT RECORD FLAG

This flag is set when the PPU transmits a one clock period wide Record Pulse over
the associated output cable. The flag is cleared when a Resume Pulse is received
over this output cable. This flag is also forced to a cleared position during a Dead
Start condition. A PPU senses the status of this flag by executing I/O jump instruc-
tion 66 or 67.

PPU TO PPU DATA TRANSFERS

Figure 5-1 illustrates two PPUs with an interconnecting channel. Assume that a
series of one-word transfers is required and that PPU A is the output and PPU B is
the input PPU. The following sequences describes one method by which a one-word

data transfer between the two PPUs can be accomplished:

1. PPU A executes an OQutput From A instruction (72). The instruction places
12 bits of data from the A register on the output channel, sets the Output
Word Flag, and sends a Word Pulse to PPU B.

2. PPU B is periodically executing a Jump on Input Word Flag instruction (60).
Upon receipt of the Word Pulse from PPU A, the Input Word Flag sets and
PPU B jumps to an input program and executes an Input to A instruction (70).
This instruction samples the 12 bits on the input channel, clears the Input
Word Flag, and sends a Resume Pulse to PPU A,

3. At PPU A, the Resume Pulse clears the Output Data Flag and the Output
Record Flag, if it is set. After executing the Output From A instruction
(Step 1) PPU A repeatedly executes a Jump on No Output Word Flag instruc-
tion (65). If PPU B has not yet accepted the output word, the Output Word

60258200 C

(12}
1
-1

OOGH®O

PPU A PPU B
‘%LEUT @ WORD PULSE @ wg:g
FLAG FLAG
@ DATA BITS
\/
RESUME PULSE INPUT
OUTPUT @ RESUME | INPUT
QUTPUT Cc D LSE INPUT
RECORD RECOR PULS (:) RECORD
FLAG FLAG
wg’;g @ WORD PULSE @ %TRFI;UT
FLAG FLAG
DATA BITS 42\
INPUT ~ N\ OUTPUT
INPUT ESUME PULSE
RESUME @ R M
INPUT RECORD PULSE OUTPUT
RECORD @ RECORD
FLAG FLAG

SET

SET

SET

5-8

BY ANY OUTPUT DATA INSTRUCTION (72, 73)
BY A WORD PULSE

BY ANY INPUT DATA INSTRUCTION (70, 71)
BY OUTPUT RECORD FLAG INSTRUCTION (74)

BY OUTPUT RECORD PULSE

CLEARED BY A RESUME PULSE

CLEARED BY RESUME PULSE

CLEARED AFTER ONE CLOCK PERIOD

CLEARED BY A RESUME PULSE

CLEARED BY RESUME PULSE

Figure 5-1. Signals for One PPU Bi-Directional Channel

60258200 C

Flag will still be set. Otherwise, when PPU B has accepted the word, the
Resume Pulse has cleared the Output Word Flag, and PPU A proceeds to

the next instruction.

Note that in this example, PPU A notified PPU B that it was transmitting a word by
sending a Word Pulse. PPU A could also have accomplished this by executing an
Output Record Flag instruction that sends a Record Pulse to PPU B. In this case,
PPU B would periodically monitor the status of the Record Flag instead of the Word
Flag. Then, when the Record Flag sets upon receipt of the Record Pulse, PPU B

would go to a data transfer sequence.

For block transfers, some of the flag monitoring functions are performed automatic-
ally by the block output and block input hardware. The following sequence illustrates
one method by which a block transfer between two PPUs can be accomplished:

1. PPU A prepares for the block transfer by placing the length of the block to
be transferred in the A register. It then executes a block output instruction
(73). This instruction sets the Output Word Flag and sends 12 bits and a
Word Pulse to PPU B.

2. Assuming that PPU B has been notified of the length of the block through a
software determined communication scheme, PPU B prepares for an input
by placing the length of the expected block in its A register. Then it

repeatedly executes a Jump on Input Word Flag instruction (60).

3. The Word Pulse from PPU A sets the Input Word Flag at PPU B and PPU B
proceeds to execute the Block Input instruction (71). This instruction sam-
ples the 12 bits, clears the Input Word Flag and Input Record Flag, if set,

and sends a Resume Pulse to PPU A.

4, At PPU A, the Resume Pulse clears the Output Word Flag and the Output
Record Flag, if set. The block output hardware automatically decrements
the output count in the A register and sends the next 12 bits and another
Word Pulse to PPU B.

5. Similarly, at PPU B, the block input hardware decrements the input count
in the A register and samples the next 12 bits. The sequence repeats until
the A register in PPU A becomes zero and PPU A sends a Record Pulse to
PPU B.

60258200 C 5-9

Note that if the two counts in the A registers are unequal, the PPU with the larger
count will hang up waiting for the proper response from the other PPU, which has
already terminated its block transfer operation. Normally, however, if PPU A
terminates first it would send a Record Pulse to PPU B, which will terminate input
to PPU B. If PPU B terminates first, PPU A will hang up and remain hung up until
PPU B inputs enough additional words to decrease the output count in PPU A to zero,
or until PPU A is Dead Started.

PPU TO PERIPHERAL DEVICE

A direct-driven peripheral device requires two PPU channels. One channel is
assigned to control and status and the other is used for data transfers. Depending
upon the peripheral device, the associated control signals are terminated, set to
logical one or zero, or assigned functions. Figure 5-2 shows one configuration that

might be used for a card punch controller.

For detailed information on data transfers between a PPU and a peripheral device,

refer to the documentation on the specific peripheral device.

5-10 60258200 C

PERIPHERAL
PPU CONTROLLER

STATUS BITS

WORD PULSE
< R A{LOGICAL |]
I NPUT
RECORD PULSE
STATUS j‘ LOGICAL O |
RESUME PULSE
>{ TERMN |

(o)
@

CHANNEL A |— — — — —
CONTROL BITS A
12—
WORD PULSE
~[TERMN |
OUTPUT
RECORD PULSE
CONTROL [TerRmN |
RESUME PULSE
PUNCH
CONTROL
UNIT
DATA BITS ~
il 2
WORD PULSE
INPUT
ECORD PULSE
R P —{LocicaL o]
RESUME PULSE
'CHANNEL B — — — — DATA BITS

WORD PULSE

EC ULSE
RECORD PULSE _————r

(AR SEe A TR L =i p U Wt ol

OUTPUT

Figure 5-2, PPU/Controller Communications

60258200 C 5-11

PERIPHERAL PROCESSOR INSTRUCTIONS 6

—

INSTRUCTION FORMATS

An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d.

-
OPERAEON DIRECT MODE:
A d=MEMORY ADDRESS OF OPERAND
d : INDIRECT MODE:
(P | f [d < d=MEMORY ADDRESS OF THE

m 65 0 ADDRESS OF THE OPERAND

NO ADDRESS MODE:
d=6-BIT OPERAND OR SHIFT COUNT

Figure 6~1. PPU 12-bit Instruction Format

The 24-bit format uses the 12-bit quantity m, which is the contents of the next pro-

gram address (P + 1), with d or the contents of d to form an 18-bit operand or a 12-
bit operand address.

OPERATION
CODE _
f— \ INDEXED MODE:
4 =ADDRESS OF THE INDEX FOR MODIFYING
P f | d B THE ADDRESS OF THE OPERAND
" 65 0) m=BASE ADDRESS OF THE OPERAND
(d) + m = ADDRESS OF OPERAND
P+ m | | CONSTANT MODE:
" 0 dm = 18-BIT OPERAND

—~

Figure 6-2, PPU 24-bit Instruction Format

ADDRESS MODES

Program indexing is accomplished and operands manipulated in several modes. The
12-bit and 24-bit instruction formats provide for 6-bit, 12-bit or 18-bit operands and
6-bit or 12-bit addresses. Table 6-1 summarizes the addressing modes used for the

various Peripheral Processor instructions.

60258200 C 6-1

D 00286209

TABLE 6-1. ADDRESSING MODES FOR PERIPHERAL
PROCESSOR INSTRUCTIONS
Instruction ADDRESSING MODE
Type Direct Indirect Indexed No Address Constant

Load 30 40 50 14 20
Add 31 41 51 16 21
Subtract 32 42 52 17

Logical Difference 33 43 53 11 23
Store 34 44 54

Replace Add 35 45 55

Replace Add One 36 46 56

Replace Subtract One 37 47 57

Long Jump 01

Return Jump 02

Unconditional Jump 03

Zero Jump 04

Non-Zero Jump 05

Plus Jump 06

Minus Jump 07

Shift 10

Logical Product 12 22
Selective Clear 13

Load Complement 15

NO ADDRESS MODE

In this mode d is taken directly as an operand. This mode eliminates the need for
storing many constants in storage. The d quantity is considered as a 6-bit operand
or shift count.

CONSTANT MODE

In this mode dm is taken directly as an operand. This mode also eliminates the need
for storing many constants in storage. The dm quantity uses d as the upper six bits
and m as the lower 12 bits of an 18-bit constant,

DIRECT ADDRESS MODE

In this mode, d is used as the address of the operand. The d quantity specifies one
of the first 64 addresses in memory (0000 - 00778).

INDEXED DIRECT ADDRESS MODE
In this mode, m + (d) is used as the address of the operand. The d quantity specifies

g) Them
quantity is a base address that is added to the contents of d to form a 12-bit address

the contents of one of the first 64 addresses in memory (0000 - 0077

for referencing all possible memory locations but one (0000 - 7776g). It is not
possible to reference address 77778. If d is nonzero, the content of address d is
added to m to produce a 12-bit operand address (indexed addressing). If d is zero,
m is taken as the operand address.

INDIRECT ADDRESS MODE

In this mode, d specifies an address the content of which is the address of the desired
operand. Thus, d specifies the operand address indirectly. Indirect addressing and

indexed addressing require an additional memory reference over direct addressing.

60258200 C 6-3

Examples of Address Modes

Given: d =25
m =100
contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234

Then:
MODE INSTRUCTION A REGISTER

No Address (6-bit Operand) 1425 000025
Constant (18-bit Operand) 2025 250100

- 0100
Direct Address ' 3025 000150
Indexed Direct Address 5025 001234

0100
Indirect Address 4025 007776

DESCRIPTION OF PERIPHERAL INSTRUCTIONS

This section describes the Peripheral Processor instructions. Table 6-2 lists desig~

nators used throughout the section.

TABLE 6-2. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use
A The A register,
d A 6-bit operand or operand address.
f A 6-bit instruction code.
m A 12-bit quantity used with d or (d) to form an
18-bit operand or 12-bit operand address.
P The Program Address register.
Q The Q register,
() Contents of a register or location.
Q0) Refers to indirect addressing.

6-4 60258200 C

Preceding the description of each instruction is the octal code, the instruction name
and instruction length.

EXAMPLE:
52 Subtract (m + (d)) (24 Bits)
— . — J —_—
Octal Instruction Instruction
Code Name Length

Instruction formats are also given; hashed lines within a format indicate these bits are

not used in the operation.

NOTE

Program loops in the PPU should be four executable
instruction words or longer to avoid reducing memory
margins. A Pass instruction is an executable instruc-

tion,
ERROR STOP
00 Error Stop (12 Bits)
77 Error Stop (12 Bits)

These instructions cause the peripheral processor program to stop and to indicate a
program error condition to the Maintenance Control Unit. The Peripheral Processor

Unit can be restarted only by a dead start sequence from the Maintenance Control Unit.

NO OPERATION

24 Pass {12 Bits)
25 Pass (12 Bits)
26 Pass (12 Bits)
27 Pass (12 Bits)
75 Pass (12 Bits)
76 Pass (12 Bits)

1 6 5 (o)

These instructions specify that no operation be performed. They provide a means of

padding out a program.

60258200 C 6-5

BRANCH

01 Long jump to m + (d) (24 Bits)
f d m
\23 I8 17 12| ! 0,
Vo \2
(P) (P+1)

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0, then m is not modified.

02 Return jump to m + (d) (24 Bits)
[f d m
\23 18 I7 12,\ n OI
' \4
(P) (P+1)

This instruction jumps to the sequence beginning at the address given by m + (d). If
d = 0 then m is not modified. The current program address (P) plus two is stored at
the jump address. The new program commences at the jump address plus one. This
program should end with a long jump to, or normal sequencing into, the jump address
minus one, which should in turn contain a long jump, 0100. The latter returns the

original program address plus two to the P register.

03 Unconditional jump d (12 Bits)

1 6 5 o

This instruction provides an unconditional jump to any instruction up to 31 steps for-
ward or backward from the current program address. The value of d is added to the
current program address. If d is positive (01 - 378), then 0001 (+1) - 00378 (+31) is
added and the jump is forward. If d is negative (408 - 768) then 77408 (-31) -

77764 (-1) is added and the jump is backward. The value of d must not equal 00 or

17g. Either of these values cause the PPU to hang in a loop on the 03 instruction.

6-6 60258200 C

This will violate the restriction on program loops. Note that the MCU cannot moni-
tor this looping. Should the PPU be hung in such a loop a Dead Start is necessary to
restart the PPU.

04 Zero jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
zero, the jump is taken. If the content of A is nonzero, the next instruction is exe-
cuted. Negative zero (777777g) is treated as nonzero. For interpretation of d see

instruction 03.

05 Nonzero jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
nonzero, the jump is taken., If A is zero, the next instruction is executed. Negative

Zero (7777778) is treated as nonzero. For interpretation of d see instruction 03.

06 Plus jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is

positive, the jump is taken. If A is negative, the next instruction is executed.

60258200 C 6-7

Positive zero is treated as a positive quantity; negative zero is treated as a negative

quantity. For interpretation of d see instruction 03.

07 Minus jump d (12 Bits)

] 6 5 o

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
negative, the jump is taken. If A is positive, the next instruction is executed. Posi-
tive zero is treated as a positive quantity; negative zero is treated as a negative

quantity. For interpretation of d see instruction 03.

NO ADDRESS

10 Shift (A) by d (12 Bits)

This instruction shifts the contents of A right or left d places. If d is positive (00-37g)
the shift is left circular; if d is negative (40-77g) A is shifted right (end off with no
sign extension) by the complemented d amount. Thus, d = 06 requires; a left shift of
six places. A right shift of six places results when d = 718.

11 Logical difference (A) and d (12 Bits)

" 6 5 o

6-8 60258200 C

This instruction forms in A the bit-by-bit logical difference of d and the lower six
bits of A. This is equivalent to complementing individual bits of A that correspond
to bits of d that are one. The upper 12 bits of A are not altered.

12 Logical product (A) and d (12 Bits)

i 6 5 (o]

This instruction forms the bit-by-bit logical product of d and the lower six bits of the
A register, and leaves this quantity in the lower 6 bits of A, The upper 12 bits of A
are zero.

13 Selective clear (A) (12 Bits)

This instruction clears any of the lower six bits of the A register where there are

corresponding bits of d that are one. The upper 12 bits of A are not altered.

14 Load d (12 Bits)

This instruction clears the A register and then loads it with d. The upper 12 bits of

A are zero,

60258200 C 6-9

15 Load Complement d (12 Bits)

H 6 5 0o

This instruction clears the A register and loads the complement of d. The upper 12

bits of A are set to one.

16 Add (A)+d (12 Bits)

This instruction adds d (treated as a 6-bit positive quantity) to the content of the A

register.

17 Subtract (A)—d (12 Bits)

1 6 5 0

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of

the A register.

CONSTANT
20 Load dm (24 Bits)
f d m
23 18 17 12 11 0
\ I\ /
A\ 4 v
(P) (P+1)

6-10 60258200 C

This instruction clears the A register and loads an 18-bit quantity consisting of d as
the higher six bits and m as the lower 12 bits. The contents of the location following
the present program address are read out to provide m.

21 Add (A) +dm (24 Bits)

f d m
\23 18 17 IZ’\II (o]

\ \4
(P) (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as the
higher six bits and m as the lower 12 bits, The contents of the location following

the present program address are read out to provide m.

22 Logical product (A) and dm (24 Bits)
f d m
\23 18 I7 IZJ\I | 0,
\'4 \ 2B
(P) P+1)

This instruction forms in the A register the bit-by-bit logical product of the contents
of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following the present program address.

23 Logical difference (A) and dm (24 Bits)
f d m
\23 18 17 IZILII Ol
4 ¥
(P) (P+1)

60258200 C 6-11

This instruction forms in A the bit-by-bit logical difference of the contents of A and
the 18-bit quantity dm. This is equivalent to complementing individual bits of A which
correspond to bits of dm that are one. The upper six bits of the quantity consist of d,
and the lower 12 bits are the content of the location following the present program
address.

DIRECT ADDRESS

30 Load (d) (12 Bits)

i f 4
H 6 5 0

This instruction clears the A register and loads the contents of location d. The upper
six bits of A are zero.

31 Add (d) + (A) (12 Bits)

This instruction adds to the A register the contents of location d (treated as a 12-bit
positive quantity).

32 Subtract (A) — (d) (12 Bits)

6-12 60258200 C

This instruction subtracts from the A register the contents of location d (treated as a
12-bit positive quantity).

33 Logical difference (A) and (d) (12 Bits)

L f | -d |

11 6 5 o

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the contents of location d. This is equivalent to complementing individual bits of

A which correspond to bits of (d) that are one. The upper six bits of A are not altered.

34 Store (A) at d {12 Bits)

This instruction stores the lower 12 bits of A in location d.

35 Replace Add (A) + (d) (12 Bits)

[f d

1 6 5 0

This instruction adds the quantity in location d to the contents of A and stores the
lower 12 bits of the result at location d. The resultant sum is left in A at the end of

the operation and the original contents of A are destroyed.

60258200 C 6-13

36 ' Replace Add one (d) (12 Bits)

The quantity in location d is replaced by its original value plus one. The resultant
sum is left in A at the end of the operation, and the original contents of A are de-

stroyed.

37 Replace subtract one (d) (12 Bits)

I 6 5 0o

The quantity in location d is replaced by its original value minus one. The resultant
difference is left in A at the end of the operation, and the original contents of A are
destroyed.

6-14 60258200 C

INDIRECT ADDRESS

40 Load ((d)) (12 Bits)

This instruction clears the A register and loads a 12-bit quantity that is obtained by
indirect addressing. The upper six bits of A are zero. Location d is read out of

memory, and the word obtained is used as the operand address.

41 Add (A)+((d)) (12 Bits)

" 6 5 0

This instruction adds to the content of A a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

42 Subtract (A)—((d)) (12 Bits)

i1 6 5 0
This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

60258200 C 6-15

43 Logical difference (A) and ((d)) (12 Bits)

" ¢ S o

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the 12-bit operand obtained by indirect addressing. Location d is read out of
memory, and the word obtained is used as the operand address. The upper six bits
of A are not altered.

44 Store (A) at (d) (12 Bits)

] 6 5 o

This instruction stores the lower 12 bits of A in the location specified by the contents
of location d.

45 Replace add (A) +((d)) (12 8Bits)

1 6 5 o}

The operand which is obtained from the location specified by the contents of location
d, is added to the contents of A, and the lower 12 bits of the sum replace the original
operand. The resultant sum is also left in A at the end of the operation.

6-16 60258200 C

46 Replace add one ((d)) (12 Bits)

The operand, which is obtained from the location specified by the contents of location
d, is replaced by its original value plus one. The resultant sum is also left in A at

the end of the operation, and the original contents of A are destroyed.

47 Replace subtract one ((d)) (12 Bits)

i 6 5 o

The operand, which is obtained from the location specified by the contents of location
d, is replaced by its original value minus one. The resultant difference is also left
in A at the end of the operation, and the original contents of A are destroyed.

INDEXED DIRECT ADDRESS

50 Load (m +(d)) (24 Bits)
7F [4 m
23 18 17 12 i o}
— J /
—V \'4
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper six bits
of A are zero. The 12-bit operand is obtained by indexed direct addressing. The
quantity '""m', read out of memory location P +1 serves as the base operand address
to which (d) is added. If d = 0, the operand address is simply m, but if d # 0, then

60258200 C 6-17

m + (d) is the operand address.

Thus location d may be used for an index quantity to
modify operand addresses.

51 Add (A)+(m +(d)) (24 Bits)
f d m
23 .IT 12 0,
v v
(P) (P+1)

This instruction adds to the content of A a 12-bit operand (treated as a positive
quantity) obtained by indexed direct addressing (see instruction 50).

52 Subtract (A) — (m + (d)) (24 Bits)
f [d m
23 1817 12,1 0,
B 4 \ 4
(P) (P+1)

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indexed direct addressing (see instruction 50),
53

Logical difference (A) and (m + (d)) (24 Bits)

23 1817 12,11 0

—V]

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A

and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A
are not altered.

6-18 60258200 C

54 Store (A) at m + (d) (24 Bits)

[f d m
23 1817 12 11 0
AW /\ /
v v
(P) (P+1)

This instruction stores the lower 12 bits of A in the location determined by indexed

addressing (see instruction 50).

55 Replace add (A) + (m + (d)) (24 Bits)
f d m
23 18 17 12 11 o]
\ J\ /]
Vv \'8
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct ad-
dressing, is added to the contents of A, and the lower 12 bits of the sum replace the
original operand in memory. The resultant sum is also left in A at the end of the

operation, and the original contents of A are destroyed.

56 Replace add one (m + (d)) (24 Bits)
f d m
LZ3 1817 12 All (o] ,
hd v
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct ad-
dressing, is replaced by its original value plus one (see instruction 50, for explana-
tion of addressing). The resultant sum is also left in A at the end of the operation,

and the original contents of A are destroyed.

60258200 C 6-19

57 Replace subtract one (m + (d)) (24 Bits)

d m

23 18I 12 i 0,

v \4
(e) (P+1)

The operand, which is obtained from the location determined by indexed direct ad-
dressing, is replaced by its original value minus one (see instruction 50, for expla-
nation of addressing). The resultant difference is also left in A at the end of the

operation, and the original contents of A are destroyed.

INPUT/OUTPUT
60 Jump to m; input word flag on channel d (24 Bits)
64 Jump to m; output word flag on channel d (24 Bits)

l f [d m
23 1817 12 11 o}
\ A /
¥ \'A
(P) (P+1)

These instructions are conditional jumps. The current program sequence is con-
tinued if the flag on channel d is clear. If the flag on channel d is set a new program

sequence is begun at address m.

61 Jump to m; input word flag on channel d (24 Bits)
65 Jump to m; no output word flag on channel d (24 Bits)
f T d m
23 18 17 12 N 0]
— /\ /
—V \Z
(P) (P+1)

6-20 60258200 C

These instructions are identical to the 60 and 64 instructions except that the jump

occurs if the flag is clear.

62 Jump to m; input record flag on channel d (24 Bits)
66 Jump to m; output record flag on channel d (24 Bits)
[¢ | 4 m
23 18 17 12 11 0
- J\ /
vV \4
(P) (P+1)

These instructions are identical to the 60 and 64 instructions except that the jump is
conditioned by the status of the Record flag.

63 Jump to m; no input record flag on channel d (24 Bits)
67 Jump to m; no output record flag on channel d (24 Bits)
f d m
23 18 17 12 1} 0
\ /\ /
\4 \4
(P) (P+1)

These instructions are identical to the 61 and 65 instructions except that the jump is
conditioned by the status of the Record flag.

70 Input to A from channel d (12 Bits)

This instruction reads one word from input channel d and enters the word in the A
register. This instruction will not be executed until the Input Channel d Word flag is
set. If the flag is not set at the time the instruction is read from storage the PPU
program will stop with the instruction in the f and d registers and wait until the flag

is set by an external signal. The Input Channel d Record flag does not affect execution

60258200 C 6-21

of this instruction. This instruction clears the Input Channel d Wo rd flag and Record
flag and transmits a Resume signal over the input cable after the word has been read
into the A register. The upper six bits of A remain clear,

71 Input (A) words to m from channel d (24 Bits)
f d m
23 18 17 12 11 (0]
\ /\ /
\4 V
(P) (P+1)

This instruction reads a block of data arriving on input channel d and stores the data
in consecutive address locations in memory. The initial storage location for the block
is specified by the m designator. The length of the block is specified by the initial
contents of the A register or by the setting of the Record flag onthe input channel
during a data transfer,

The starting address, m, is obtained from address P + 1 and is entered in the @
register, which therefore contains the address for the first word of the data block.
The d register contains the channel number, and the A register contains a word count
for the block. If (A) is zero at this time the instruction sequence is terminated and

the next instruction word is read from storage.

The Input Channel d Word flag must be set before the first word of the block can be
entered in storage. If this flag is not set when the instruction is initiated the PPU
program will stop with the instruction in the f and d registers and wait until the flag
is set by an external signal. The presence of an Input Channel d Record flag is

ignored for the first word of the block.

When the Input Channel d Word flag is set the word on the input channel data lines is
read into PPU storage at location (Q). The content of the A register is reduced by
one count. The content of the Q register is increased by one count in a 12-bit ones
complement mode. The Input Channel d Word flag and Input Channel d Record flag

are cleared, and a Resume pulse is transmitted over the input cable. If the content

of the A register is now zero the instruction sequence is terminated and the next in-
struction word is read from storage. If (A) is not zero the PPU program waits for the
setting of the Input Channel d Word flag for the next word of the block.

6-22 60258200 C

71 INPUT (A) WORDS TO m FROM CHANNEL d

YES
EXIT

NO

SET BY AN
Z/ INPUT WORD PULSE

SEND WORD TO STORAGE
A—=1—>A; INCREMENT STORAGE
LOCATION; CLEAR INPUT
WORD AND RECORD FLAGS;
SEND RESUME PULSE.

EXIT

NO

SET BY AN INPUT
7/ RECORD PULSE

ENTER "NOISE"
WORD IN

STORAGE

CHANNEL d
INPUT WORD FLAG
SET?

YES

SEND WORD TO STORAGE \
A—! —=A; INCREMENT STORAGE
LOCATION; CLEAR INPUT
WORD AND RECORD FLAGS;
SEND RESUME PULSE.

Figure 6-3. 71 Flow Chart

60258200 C 6-23

The setting of the Input Channel d Record flag terminates the block input at any word
after the first word. In this case the sequence is terminated with (A) decremented by
the number of words actually transmitted over the input channel. A ''noise' word is
entered in the next sequential storage location in the PPU block input storage area,
The remaining locations in the PPU storage area are unaltered. Note that Q may be
incremented through location 7776g to 0000g, which may destroy existing data or a

program.

72 Output from A on channel d (12 Bits)

This instruction transmits one word over output channel d from the lower 12 bits of
A. The A register content is not altered, This instruction will not be executed while
the OQutput Channel d Word flag is set. If the flag is set from a previous output in-
struction the PPU program will stop with this instruction in the f and d registers and
wait for an external Resume signal to clear the Output Channel d Word flag. When
this instruction is executed the Output Channel d Word flag is set and a Word pulse is

transmitted over the output channel d cable.

73 Output (A) words from m on channel d (24 Bits)
l f d m
23 18 17 12 11 0
\ g\ J
\4 —V
(P) (P+1)

This instruction transmits a block of data over output channel d from consecutive
storage locations beginning at address m. The length of the block is specified by the
initial contents of the A register. A zero length will cause the instruction to be exe-

cuted as a pass instruction.

6-24 60258200 C

73 OUTPUT (A) WORDS FROM m ON CHANNEL d

EXIT

CLEARED BY
——O0UTPUT RESUME PULSE

IS
CHANNEL d
OUTPUT WORD
FLAG SET

| YES

SEND DATA & HOLD

SET OUTPUT WORD FLAG

SEND OUTKUT WIC:RD PULSE

NOTE THAT THE OUTPUT CHANNEL d RECORD FLAG
IS IGNORED BY THIS INSTRUCTION.

Figure 6-4. 73 Flow Chart

60258200 C 6-25

The starting address, m, is obtained from the location P + 1 and is entered in the Q
register. The Q register now contains the address for the first word of the data

block. The d register contains the channel number, and the A register contains the
word count for the block. If (A) is zero at this time the instruction sequence is ter-

minated and the next instruction word is read from storage.

The Output Channel d Word flag must be cleared before the first word of the block can
be transmitted over the channel. If this flag is set when the instruction is initiated
the PPU program will stop with the instruction inthe f and d registers and wait until
the flag is cleared by a Resume pulse over the output channel d cable, The presence
of an Output Channel d Record flag has no effect on the execution of this instruction.

When the Output Channel d Word flag is cleared a word is read from storage location
(Q) and is entered in the channel d output register. The Output Channel d Word flag
is set, and a Word pulse is transmitted over the output cable. The content of the A
register is reduced by one count. The content of the Q register is increased by one
count in a 12-bit ones complement mode. If the content of the A register is now zero
the instruction is terminated and the next instruction is read from storage. If (A) is
not zero the PPU program waits for the Output Channel d Word flag to clear and re-
peats the sequence for the next word of the block.

74 Send record flag on channel d (12 Bits)

This instruction sets the Output Channel d Record flag and transmits a Record pulse
over the output channel d cable. The previous status of the output channel d flag is
ignored in this process. The instruction will be executed and a Record pulse trans-
mitted even though the Output Channel d Record flag was already set.

6-26 60258200 C

MANUAL CONTROL 7

e

INTRODUCTION

Manual control is provided by the Maintenance Control Unit (MCU) and the console
keyboard. The MCU is a PPU that is dedicated to system maintenance. The MCU
enables the entering of programs into the system with no prior program in the system
(Dead Start). It has secondary functions of monitoring memory parity errors, pro-

gram errors and of generating dead dumps.

MAINTENANCE CONTROL UNIT

The MCU is a stored prqgram computer for monitoring mainframe hardware perfor-
mance. Although internr;tlly it is identical to other PPU's in the system, the external
connections to I/O channels differentiate it from other PPU's. Because of these
special data channel connections, the MCU is capable of reading or writing any word
in SCM, recording SCM and LCM parity errors, dead starting the CPU and all first
level PPU's, dead dumping all first level PPU's, and loading initial programs from
a card reader. Figure 7-1 illustrates the MCU channel configuration.

The MCU, like the other PPU's, possesses eight bi-directional data channels. It
gains its additional capability through a device called the scanner, which connects
the MCU with up to 13 PPU's.

MCU SCANNER

The MCU scanner selects incoming data for the MCU from one of 17g scanner input
channels and distributes MCU output to one of 164 scanner output channels. Scanner

channels 1 through 158 connect to channel 0 of PPU's 1 through 158. Scanner input
i a

Arhannel 168
Ciaiiiits 2Yg

LCM parity error address bits to the MCU. Scanner output channel 164 connects the

[lp]
AV}
=
3
=
D
n
3

ity error address bits and scanner input channel 174 carries

MCU to a Reference Voltage Scanner for testing marginal operation of mainframe
modules. The scanner also connects directly to the PPU's for transmission of PPU
Dead Start, Dead Dump, and Clear Parity Error signals and for receipt of PPU pro-

gram error and PPU stack parity error bits.

60258200 C 7-1

¢-L

O 00285209

CARD
READER

DATA,STATUS |

CONTROL 0

MCU DEAD START

CONSGLE

MCU CLEAR
PARITY

MCU PROGRAM
ERROR, MCU
STACK PARITY
ERRORS 3

DISPLAY DATA !

KEYBOARD 2
DATA, CONTROL

CONTROL 3

MCU

CHAN SELECT,

PPU DEAD START, PROGRAM ERROR,
PPU DEAD DUMP, STACK PARITY
O PPU CLR PARITY ERRORS
DEAD START, PPU
Mcu DEAD DUMP
3 DATA CLR PARITY |
SCANNER
! DATA 0
7 DATA }
' T
]
= n 5 | ADDITIONAL
LCM 8 8 8 '
PARITY SCM lPPUS
ADDR PARITY |
LCM PARITY INFO AND ADDR |
PARITY ADDR BIT 18_| | . \
MODULE 0
SELECT PPU
5 SCM PARITY INFO SCM 154
SCM DATA, CPU CLEAR
SCM ADDRESS PARITY REF
VOLTAGE
6 SCM DATA SCANNER
45 SCM ADDRESS 1/0
CPU DEAD START, MUX
o gpﬂ %LEﬁR I/0, MASTER CLEAR cPU
PU CLEAR PARITY
(DEAD START)

Figure 7-1.

MCU Configuration

In operation, the MCU selects one of the scanner channels and communicates through
that channel as if it were its own. The MCU program selects the desired channel by
outputting the channel select code (1 to 178) as bits 8-11 on MCU channel 0, Then,
when the MCU outputs data on channel 7, the data goes to the destination PPU or to
the Reference Voltage Scanner via the selected scanner channel. Input to the MCU
comes from the selected scanner channel and is received as data through MCU

channels 3 and 7.

MCU DEAD START

The MCU is dead started by the card reader. A switch on the card reader generates
the Dead Start signal that sets the MCU registers to the following values:

(A) = 007777
(P) = 0000
(X) = 0000
(f) =171

(d) =00

(k) =1

The card reader will then input a program to the MCU over channel 0 until the A
register count has decremented to zero (memory full) or until the End of File switch
on the card reader is manually depressed generating a Record Flag. After reading
the card deck, the MCU initiates execution of the program that was input at address
0001.

PPU DEAD START

To Dead Start a PPU, the MCU f{irst selects the Scanner channel connected to the
PPU and then outputs the Dead Start Signal as bit 2 on MCU output channel 0. At the
selected PPU, this signal sets the PPU registers to the values described for the
MCU Dead Start. Also, the PPU flags for the input and output channel control are
all forced to a cleared condition and a continuous Resume signal is sent over all
input cables while the Dead Start signal is up. Dropping the Dead Start signal allows
a program to be loaded from the MCU into the PPU over input channel 0. PPU

loading, if not terminated at some point by a Record flag, terminates when the A

60258200 C 7-3

register has decremented to zero (7777 octal words). The PPU then begins execution
of the program at address 0001.

CPU DEAD START

Under control of the MCU program, the MCU outputs the CPU Dead Start and Clear
1/0 signals. (Bits 5 and 4, respectively, of MCU output channel 0.) The Clear I/O
signal clears the I/O MUX of all current I/O requests. The MCU then drops the
Clear I/O signal and holds the Dead Start signal up while it writes into SCM. Since
the MCU has access to any part of SCM, each word sent to SCM is given a specific
address. When the MCU drops the Dead Start signal, the CPU executes an exchange
jump using an exchange package starting at absolute SCM location 0. The MCU must
have written the exchange package and a program into SCM. How the CPU loads the

system programs is software determined.

PPU DEAD DUMP

One of the control signals sent by the MCU to a PPU (through Scanner selection) is
the Dead Dump signal. The MCU sends this signal, under control of the MCU pro-
gram, when the PPU program has failed and a dump of PPU memory is desired to
analyze the cause of failure.

To Dead Dump a PPU, the MCU program first outputs a Dead Start signal to set up
the PPU registers. Then it outputs the Dead Dump signal as bit 1 on MCU output
channel 0. At the selected PPU, the Dead Dump signal changes the 71 input code in
the f register (set by the Dead Start signal) to a 73 output code. This output code
causes the PPU to begin transmission of the entire PPU storage over PPU output
channel 0. The transmission starts at PPU address 0 and terminates at PPU address
77768. Input of this data at the MCU is under control of the MCU program.

PPU AND MCU PARITY ERRORS
The MCU and each PPU contains hardware for detecting parity errors during memory

read cycles. The storage stack that has failed is indicated by setting a stack parity
error bit in a 4-bit register.

7-4 60258200 C

The MCU is able to sense the contents of a PPU parity error register by selecting
the PPU via the Scanner and inputting the PPU Stack 0 - 3 Parity Error bits as

bits 0 - 4 on MCU input channel 3. The MCU clears the PPU Parity Error register
by selecting the scanner channel for that PPU and outputting the PPU Clear Parity
Error signal as bit 0 on MCU output channel 0.

The MCU senses the contents of its own parity error register by reading bits 6-9
of MCU input channel 3. The MCU clears its parity errors by outputting the MCU
Clear Parity Error signal as bit 6 on MCU output channel 0.

SCM AND LCM PARITY ERRORS

The MCU is also able to monitor the SCM and LCM Section Parity Errors and read
the SCM or LCM address of the failing word.

Under MCU program control, the MCU inputs the SCM Section 0 - 4 Parity Error
bits as bits 0 - 4 on MCU input channel 5. When set, the SCM Parity Error bits
indicate bad parity for the following portions of the SCM word:

Error Bit 4 SCM Section 4 (bits 48 - 59)
3 SCM Section 3 (bits 36 - 47)
2 SCM Section 2 (bits 24 - 35)
1 SCM Section 1 (bits 12 - 23)
0 SCM Section 0 (bits 0 - 11)

The MCU program reads the SCM parity error address by selecting Scanner channel
16g and inputting address bits 0 - 11 on MCU input channel 7 and address bits 12 - 16
on MCU input channel 3 (bits 0 - 4).

Under MCU program control, the MCU inputs the IL.CM Section 0 - 3 Parity Error
bits as bits 1 - 4 on MCU input channel 4. When set, the LCM Section Parity Error
bits indicate bad parity for the following portions of the LCM word;

Error bit 3 LCM Section 3 (bits 45 - 59)

2 I.CM Section 2 (bits 30 - 44)

60258200 C 7-5

Error bit 1 LCM Section 1 (bits 15 - 29)

0 LCM Section 0 (bits 0 - 14)

The MCU program reads bits 0 - 17 of the LCM parity errror address by selecting
Scanner channel 17g and inputting address bits 0 - 11 on MCU input channel 7 and
address bits 12 - 17 on MCU input channel 3 (bits 0 - 5). LCM address bit 18 by-
passes the Scanner and is input as bit 0 on input channel 4.

The MCU clears both the SCM and the LCM parity error bits by outputting the CPU
Clear Parity Error signal as bit 3 on output channel 0,

PPU PROGRAM ERROR

PPU instructions 00 and 77 cause the PPU program to stop and to indicate a program
error condition. The MCU is able to sense this PPU program error by selecting the
PPU via the Scanner and reading the PPU Program Error bit as bit 4 on MCU input
channel 3. The PPU can be restarted only by Dead Start signal from the MCU.

CONSOLE

The display console (Figure 7-2) consists of a cathode ray tube display and an alpha-
numeric keyboard. A system may include several display consoles for monitoring

or controlling various areas of system activity.

ALPHANUMERIC KEYBOARD
The alphanumeric keyboard provides coded binary signals to the computer. Depres-

sion of each key generates a unique 6-bit octal code. Assembly and display of key-

board entries is a function of the system software.

7-6 60258200 C

DISPLAY

Control signals from the computer generate alphanumeric display images within a
10-inch by 10-inch display area on the 21-inch crt.

An electron beam at the crt produces a visible display when it strikes the phosphor
coated crt screen, causing that portion of the phosphor to glow briefly. Normally,
the glow fades within a fraction of a second, too soon for the human eye to perceive
and identify the image. For this reason the display image must be refreshed at a
rate that makes the display appear steady and of uniform intensity to the observer,
Display refresh is under computer program control. To prevent damaging the crt
phosphor, the program must not refresh the display image more than once every 20

milliseconds.

60258200 C -7

Figure 7-2. Display Console

7-8 60258200 C

APPENDIX A

TIMING NOTES

TIMING NOTES
CENTRAL PROCESSOR UNIT

1. Times given include clock periods known to occur before instruction issue, but

do not consider register conflict conditions that might delay issue.

Except for the multiply and divide units, all functional units permit new instruc-
tions to enter them every clock period. A new instruction may enter the multiply
unit in any clock period, provided there was no multiply operation initiated in

the preceding clock period. A new instruction can enter the divide unit two clock
periods prior to completion of a previous divide operation. Once an instruction
issues to a functional unit, it is executed in a fixed amount of time. No delays

are possible,

Times given for instructions 01 to 07 and 50 to 57 do not consider memory con-
flict conditions or SAS backup conditions caused by bank conflicts.

2. Execution of Block Copy instructions (011 and 012) will be delayed until the
following conditions are satisfied;

a. All operating registers are free,
b. No SCM bank conflicts exist.
c. LCM is not busy.

d. All LCM banks have completed previous initiated read/write cycles.

3. A delay will occur during instructions 011 and 012 when an 1/O multiplexer
word request is made. A minimum delay of one clock period is required to enter
the I/O word address in the address stream to the SAS. An additional delay will
occur if the I/O reference causes a bank conflict in SCM.

4. A delay will occur in the execution of the Exchange Exit instruction (013) until
three conditions are satsified:

a. All operating registers are free,
b. No SCM bank conflicts exist.
c. All previous instruction fetches completed.

d. LCM is not busy.

60258200 C A-1

10,

11,

The Read LLCM and Write LCM instructions (014 and 015) will not issue until
three conditions are satisfied:

a. LCM is not busy.
b. Xj register is free.

c. Xk register is free.

A Read LCM instruction (014) for a word already residing in an LCM bank
operand register as a result of a previous instruction will require three clock
periods, For a word not currently residing in one of the LCM bank operand regis-
ters, the instruction requires 17 clock periods.

The Reset Buffer instructions and Read Channel Status instructions (016 and 017)

will not issue and begin execution until the required B registers are free.

Jump instruction 02i0K will not begin execution until the Bi register is free. In-

struction execution will also be delayed if an instruction fetch is in process.

The execution of a branch instruction (030 to 037, 04ijk, 05ijk, 06ijk, and 07ijk)
may be delayed if an instruction fetch is in process.

Instructions 10 to 47 and 60 to 77 will not issue until the following conditions are

satisfied:

a. The required A, B, and X registers are free.

b. X and B register input paths will be free during the required clock period.
c. No SAS backup condition exists.

d. The multiply unit is free (instructions 40, 41, and 42 only).

e. The divide unit is free (instructions 44 and 45 only).

Instructions 50 to 57 will not issue until the following conditions are satisfied:
a. The required A, B, and X registers are free.

b. No SAS backup condition exists.

60258200 C

12, A delay may occur in the execution of the Return Jump instruction (0100K) if the
instruction stack control has requested one or more instruction words that have
not arrived at the instruction stack (likely to occur in straight line coding).
Average execution time is 18 clock periods.

13. A register is reserved if it is the destination of an instruction that has been ini-

tiated but has not been completed. A register is free in the clock period follow-
ing the store into it.

60258200 C A-3

INSTRUCTION

CODE

00000
0100K
011jK

012jK

01300

013jK¥

014jk
015jk
0160k

016jk
0170kT
017jk
02i0K

030K

CENTRAL PROCESSOR INSTRUCTIONS

NAME

Error exit to EEA
Return jump to K

Block copy K + (Bj) words
from LCM to SCM

Block copy K + (Bj) words
from SCM to LCM

Exchange exit to NEA if exit
flag clear

Exchange exit to K + (Bj) if
exit flag pet
]

Read LCM at (Xk) to Xj
Write (Xj) into LCM at (Xk)

Reset input channel (Bk)
buffer if j = 0

Read input channel (Bk)
status to Bj if j = 0

Reset output channel (Bk)
buffer if j = 0

Read output channel (BKk)
status to Bj if j # 0

Jump to K + (Bi)

Branch to K if (Xj) = 0

** Refer to Timing Notes,

2%t 1= N N = Number of words in the block.

1 Privileged to programs in monitor mode.

EXECUTION TIME FUNCTIONAL
(CLOCK PERIODS) UNIT
Min ;3* :
Min = N + 16°%* -
Min = N + 12%* -
Min = 28 -
Min = 28 -
3, 17 _ -
3 -
4 -
3 -
16 -
3 -

Min 3 (in stack jump) -
Min 11 (out of stack jump)

Min 2 (branch fall through) -
Min 3 (branch in stack)
Min 11 (branch out of stack)

(4 clock periods if N=0)

60258200 C

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION EXECUTION TIME FUNCTIONAL
CODE NAME (CLOCK PERIODS) UNIT
031jK Branch to K if (Xj) # 0 B -
032jK Branch to K if (Xj) positive -
033jK Branch to K if (Xj) negative -
034jK Branch to K if (Xj) in range ~—Same as above -
035jK Branch to K if (Xj) out of

range -
036jK Branch to K if (Xj) definite -
037jK Branch to K if (Xj) indefinite/ -
04ijK Branch to K if (Bi) = (Bj) Min 2 (branch fall through) -

Min 3 (branch in stack)
Min 11 (branch out of stack)

05ijK Branch to K if (Bi) = (Bj) -
06ijK Branch to K if (Bi) = (Bj) Same as above -
07ijK Branch to K if (Bi) < (Bj) -
10ij0 Transmit (Xj) to Xi 2 Boolean
11ijk Logical product of (Xj)

and (Xk) to Xi 2 Boolean
12ijk Logical sum of (Xj) and

(Xk) to Xi 2 Boolean
13ijk Logical difference of (Xj)

and (Xk) to Xi 2 Boolean
14i0k Transmit complement of

(Xk) to Xi 2 Boolean
15ijk Logical product of (Xj)

and comp (Xk) to Xi 2 Boolean
16ijk Logical sum (Xj) and

comp (Xk) to Xi 2 Boolean
17ijk Logical difference of (Xj)

and comp (Xk) to Xi 2 Boolean
20ijk Left shift (Xi) by jk 2 Shift
21ijk Right shift (Xi) by jk 2 Shift

60258200 C A-5

INSTRUCTION
CODE

22ijk
23ijk
24ijk
25ijk
261jk
27ijk
30ijk
31ijk
32ijk
33ijk
34ijk
35ijk
36ijk
37ijk
40ijk
41ijk
42ijk

43ijk
44ijk

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

NAME

Left shift (Xk) by Bj) to Xi

Right shift (Xk) by (Bj) to Xi

Normalizeé (Xk) to Xi and Bj

Round and normalize (Xk)
to Xi and Bj

Unpack (Xk) to Xi and Bj
Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) and
(Xk) to Xi

Floating difference of (Xj)
and (343 o Xi

Floating DP sum of (Xj) and
(Xk) to Xi

Floating DP difference of (Xj)

and (Xk) to Xi

Round floating sum of (Xj)
and (Xk) to Xi

Round floating difference of
(Xj) and (Xk) to Xi

Integer sum of (Xj) and (Xk)
to Xi

Integer difference of (Xj)
and (Xk) to Xi

Floating product of (Xj)
times (Xk) to Xi

Round floating produce of
(Xj) times (Xk) to Xi

Floating DP produce of (Xj)
times (Xk) to Xi

Form mask of jk bits to Xi

Floating divide (Xj) by Xk)
to Xi

EXECUTION TIME
(CLOCK PERIODS)

20

FUNCTIONAL

UNIT

Shift
Shift

Normalize

Normalize
Boolean
Boolean

Floating Add
Floating Add
Floating Add
Floating Add
Floating Add
Floating Add
Long Add

Long Add

Floating Multiply
Floating Multiply

Floating Multiply

Shift

Floating Divide

60258200 C

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION EXECUTION TIME FUNCTIONAL
CODE NAME (CLOCK PERIODS) UNIT
45ijk Round floating divide (Xj) by

(Xk) to Xi 20 Floating Divide
46000 Pass 1
47i0k Population count of (Xk) to Xi 2 Population Count
50ijK Increment (Aj) plus K to Ai 2 (Set Aj) Increment

Min 8 (Read to Xi)
2 (Store from Xi)

51ijK Increment (Bj) plus K to Ai Increment
52ijK Increment (Xj) plus K to Ai Same as above Increment
53ijk Increment (Xj) plus (BKk) to

Ai Increment
54ijk Increment (Aj) plus (BKk) 2 Set (Aj)

to Al Min 8 (Read to Xi) Increment

2 (Store from Xi)

55ijk Increment (Aj) minus (Bk)

to Ai Increment
56ijk Increment (Bj) plus (Bk) Same as above

to Ai Increment
57ijk Increment (Bj) minus (Bk)

to Ai Increment
60ijK Increment (Aj) plus K to Bi 2 Increment
61ijK Increment (Bj) plus K to Bi 2 Increment
62ijK Increment (Xj) plus K to Bi 2 Increment
63ijk Increment (Xj) plus (Bk)

to Bi 2 Increment
64ijk Increment (Aj) plus (Bk)

to Bi 2 Increment
65ijk Increment (Aj) minus (BKk)

to Bi 2 Increment
66ijk Increment (Bj) plus (Bk)

to Bi 2 Increment

60258200 C A-7

INSTRUCTION

CODE

67ijk
70ijk
71ijk
72ijk
73ijk
74ijk
75ijk
76ijk

77ijk

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

NAME

Increment (Bj) minus (Bk)
to Bi

Increment (Aj) plus K to Xi
Increment (Bj) plus K to Xi
Increment (Xj) plus K to Xi

Increment (Xj) plus (Bk) to
Xi

Increment (Aj) plus (Bk) to
Xi

Increment (Aj) minus (Bk)
to Xi 1

Increment (Bj) plus (Bk) to
Xi

Increment (Bj) minus (Bk)
to Xi

EXECUTION TIME
(CLOCK PERIODS)

NN NN

FUNCTIONAL
UNIT

Increment
Increment
Increment

Increment

Increment

Increment

Increment

Increment

Increment

60258200 C

PERIPHERAL PROCESSOR INSTRUCTIONS

INSTRUCTION CODE EXECUTION TIME
(OCTAL) NAME (CLOCK PERIODS)
00 Error stop T
0100 Long jump to m 10 or 15
01XX Long jump to m + (d) 15, 20, 25
0200 Return jump to m 15 or 20
02XX Return jump to m + (d) 20, 25, 30
03 Unconditional jump d 7,10
04 Zero jump d* 5
05 Nonzero jump d 5
06 Positive jump d 5
07 Negative jump d 5
10 Shift d Minimum 6, Maximum 34
11 Logical difference d 5
12 Logical product d 5
13 Selective clear d 5
14 Load d 5
15 Load complement d 5
16 Add d 5
17 Subtract d 5
20 Load dm 10
21 Add dm 10
22 Logical product dm 10
NOTES:

1. Where more than one time is given, the shorter time is obtained when full use
of bank phasing {(back-to-back storage references to alternate banks) is made.
2. Conditional jump instructions list times for the '"jump not taken'' case. Add
2 or 5 clock periods for the "jump taken'' case, depending on the value of d.

3. For the 10 (shift) instruction: Minimum time is required if the shift count
< 3; for shift counts >3, add 1 clock period per shift beyond 3 to the
minimum time.

60258200 C A-9

INSTRUCTION CODE

(OCTAL)

23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
5000

50XX
5100
51XX
5200
52XX
5300
53XX

NAME

Logical difference dm
Pass

Pass

Pass

Pass

Load (d)

Add (d)

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)
Replace add one (d)
Replace subtract one (d)
Load ((d))

Add ((d))

Subtract ((d))

Logical difference ((d))
Store ((d))

Replace add ((d))
Replace add one ((d))

Replace subtract one ((d))

Load (m)

Load (m + (d))
Add (m)

Add (m + (d))
Subtract (m)
Subtract (m + (d))

Logical difference (m)

Logical difference (m + (d))

PERIPHERAL PROCESSOR INSTRUCTIONS (Cont'd)

EXECUTION TIME
(CLOCK PERIODS)

10

15
15
15
15
15
25
25
25

15, 25

15, 25

15, 25

15, 25

15, 25

25, 35

25, 35

25, 35
20

20, 30
20

20, 30
20

20, 30
20

20, 30

60258200 C

PERIPHERAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION CODE EXECUTION TIME
(OCTAL) NAME (CLOCK PERIODS)

5400 Store (m) 20
54XX Store (m + (d)) 20, 30
5500 Replace add (m) 30
55XX Replace add (m + (d)) 30, 40
5600 Replace add one (m) 30
56XX Replace add one (m + (d)) 30,40
5700 Replace subtract one (m) 30
57XX Replace subtract one (m + (d)) 30, 40
60 Jump on input word flag 10
61 Jump if no input word flag 10
62 Jump on input record flag 10
63 Jump if no input record flag 10
64 Jump on output word flag 10
65 Jump if no output word flag 10
66 Jump on output record flag 10
67 Jump if no output record flag 10
70 Input to A from channel d 9k
71 Input (A) words to m from channel d +
72 Output from A on channel d 9++
73 Output (A) words from m on channel d +

* Jump instruction times are for the ''jump not taken'' case. The "jump taken'
execution time is identical if the jump is to an alternate bank. If the jump is taken
to the same bank, add 5 clock periods.

*% Assume input channel d word flag is set; if not set, add the time waiting for flag to
set.

+ Assumes output channel d word flag is clear; if not clear, add the time waiting for
flag to clear,

*t+ Timing for these instructions are sample times only for various cases. Assump-
tions for each case are stated on the following page.

60258200 C A-11

PERIPHERAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION CODE

EXECUTION TIME

(OCTAL) NAME (CLOCK PERIODS)
74 Output record flag on channel d 5
75 Pass 5
76 Pass 5
77 Error Stop -

71 Instruction:

Case 1: Assume - a,

e.

(restart only by a
Dead Start)

a block input terminated by a record flag rather than by
decrementing (A) to zero.

a 2-clock period response time between the resume and
the word flag.

a 3-word block followed by a record flag.

the channel d input word flag is set at instruction
initiation, and

the first data reference is to the alternate storage bank.

Execution Time = 42 Clock Periods

Case 2: Assume - a.

b.

C.

d.

a block input terminated by reducing (A) to zero.
same response as in Item b, Case 1.
a count of 2 in the A register, and

items d and e in Case 1 are true.

Execution Time = 24 Clock Periods

60258200 C

Case 3: Assume - a. a block input initiated with (A) = zero.

Execution Time = 10 Clock Periods

73 Instruction:

Case 1: Assume - a. a count of 3 in the A register.

b. the device has a 2-clock period response time from
receipt of word pulse to transmission of resume pulse.

c. the output channel d word flag is clear, and

d. the first word of the block is read from the alternate
storage bank,

Execution Time = 34 Clock Periods

Case 2: Assume - a. a block output initiated with (A) = zero.

Execution Time = 10 Clock Periods

60258200 C A-13

APPENDIX B

FLOATING POINT ARITHMETIC

FLOATING POINT ARITHMETIC
FORMAT

Floating point arithmetic takes advantage of the ability to express a number with the
general expression kB®, where:

k = coefficient
B = base number
n = exponent, or power to which the base number is raised

The base number (B) is assumed to be 2 for binary-coded quantities. In the 60-bit
floating-point format shown below, the binary point is considered to be to the right of
the coefficient. The lower 48 bits express the integer coefficient, which is the equiv-
alent of about 15 decimal'digits. The sign of the coefficient is separated from the
rest of the coefficient and appears in the highest order bit of the packed word. Nega-

tive numbers are represented in one's complement notation.

COEFFICIENT
SIGN INTEGER BINARY
l BIAS EXPONENT COEFFICIENT POINT
{1]] 10 48]
59 58 28 47 0

The exponent portion of the floating point format is biased by complementing the
exponent sign bit. This particular format for floating point numbers is chosen so that
the packed form may be treated as a 60-bit integer for sign, threshold, equality, and

zero tests.

The following table (B-1) summarizes the configurations of bits 298 and 299 and the

implications, regarding signs, of the possible combinations.

TABLE B-1. BIT 298 AND 259 CONFIGURATIONS

299 258 Coefficient Sign Exponent Sign
0 1 Positive Positive
0 0 Positive Negative
1 0 Negative Positive
1 1 Negative Negative

60258200 C B-1

PACKING

Packing refers to the conversion of numbers in the form kB to floating point format.
A short-cut method of packing exponents can be derived by considering the represen-
tation of negative and positive zero exponents. Assuming a positive coefficient, zero

exponents are packed as follows:
Positive zero exponent = 2000X-------- X

Negative zero exponent = 1777X-~~~~--- X

Since positive exponents are expressed in true form, start with a "bias' of 2000
(positive zero) and add the magnitude of the exponent. The range of positive exponents
is:

0000 through 1777
Or, in packed form:

2000 through 3777,

When the coefficient is negative, the packed positive exponent is complemented to

become:
5777 through 4000.

Negative exponents are expressed in complement form. Hence, start with a bias of
1777 (negative zero) and subtract the magnitude of the exponent. The range of nega-

tive exponents is:
-0000 through -1777
Or, in packed form:
1777 through 0000,

When the coefficient is negative, the packed negative exponent is complemented to

become:

6000 through 7777,

Some examples of packed and unpacked floating point numbers are shown below in
octal notation to illustrate the packing process. The first two examples are different
forms of the integer +1. The third example is +100 decimal and the fourth example is

-100 decimal. The last two examples are of very large and very small positive

B-2 60258200 C

numbers. The unpacked values are shown as they might appear in X and B registers

prior to a pack operation.

Note that the packed negative zero exponent is not used for normal operation in the
machine. Instead, the value 1777 is used to indicate the special error condition of

indefinite,

1. unpacked coefficient = 0000 0000 0000 0000 0001
unpacked exponent = 00 0000
packed format = 2000 0000 0000 0000 0001

2. unpacked coefficient = 0000 4000 0000 0000 0000
unpacked exponent = 77 7720
packed format = 1720 4000 0000 0000 0000

3. unpacked coefficient = 0000 6200 0000 0000 0000
unpacked exponent = 77 7726
packed format = 1726 6200 0000 0000 0000

4. unpacked coefficient = 7777 1577 7777 1777 1777
unpacked exponent = 77 7726
packed format = 6051 .1577 7777 1777 1177

5. unpacked coefficient = 0000 4771 3000 0044 7021
unpacked exponent = 00 1363
packed format = 3363 4771 3000 0044 7021

6. unpacked coefficient = 0000 6301 0277 4315 6033
unpacked exponent = 77 6210
packed format = 0210 6301 0277 4315 6033

OVERFLOW

Overflow of the floating point range is indicated by an exponent value of +1777 octal
(3777 or 4000 in packed form). This is the largest exponent value that can be repre-
sented in the floating point format (see Table B-2). This exponent value may result
from the calculation in a floating point unit in which this exponent value, together with
the computed coefficient value, is a correct representation of the result. This situ-
ation is called a "partial overflow' in this manual. An Overflow Error condition is
not indicated by the functional unit generating this result. However, further compu-

tation in floating point functional units using this result will generate an overflow,

60258200 C B-3

TABLE B-2. FLOATING POINT REPRESENTATION

Positive Coefficient Negative Coefficient
OVERFLOW | Complete Overflow = 3777 Owmemmn 0 Complete Overflow = 4000 7----7
Partial Overflow = 3777 Xeeemm X Partial Overflow = 4000 X---X
INTEGERS Largest: e *Largest: o
SR 7. x 21778 — 397 7 _____ 7 i 7. x 2¥1778 - 4001 0----0
Smallest: *Smallest;
1. x 20 © = 2000 0----- o1 | -1.x2° = 5777 7---76
ZERO Positive Zero = 2000 0------ 0 | Negative Zero = 5777 7----17
INDEFINITE | Indefinite Operand = 1777 O0------ 0 #*Indefinite Operand = 6000 7----7

OPERANDS

FRACTIONS | Largest: 60 *Largest: 60
ey 7. x 27 = 1717 T-=m=== 7 [y U 7. x 27 = 6060 0----0
Smallest: *Smallest:
1. x 2~ 1777 = 0000 0--—-- 01 -1, x 2-1777 = 7717 7T---16
UNDER- Complete Underflow = 0000 0-=---- 0 Complete Underflow = 7777 T---=17
FLOW
Partial Underflow = 0000 X-uo--- X Partial Underflow = 7777 X---X

* In absolute value.

*% An indefinite operand with a negative sign can only occur from packing or Boolean
operations.

B-4 60258200 C

A "complete overflow" occurs whenever a floating point functional unit computes a
result that requires an exponent larger than +1777 octal. In this case the functional
unit indicates an Overflow Error condition and packs a ''complete overflow" value for
the result. This result has a +1777 exponent and a zero coefficient. The sign of the
coefficient will be the same as that which would have been generated if the result had

not overflowed the floating point range.

UNDERFLOW

Underflow of the floating point range is indicated by an exponent value of -1777 octal
(0000 or 7777 in packed form). This is the smallest exponent value that can be repre-
sented in the floating point format. This exponent value may result from the calcula-
tion in a floating point unit in which this exponent value, together with the computed
coefficient value, is a coyrect representation of the result. This situation is called

a ''partial underflow' in this manual. An Underflow Error condition is not indicated
by the functional unit generating this result. However, further computation in floating

point functional units using this result may be detected as an underflow.

A "complete underflow' occurs whenever a floating point functional unit computes a

result that requires an exponent smaller than -1777 octal. In this case the functional
unit indicates an underflow error condition and packs a ''complete underflow" value

for the result. This result has a -1777 exponent and a zero coefficient. The sign of
the coefficient will be the same as that which would have been generated if the result
had not underflowed the floating point range. Thus, the complete underflow indicator
is a word of all zero bits, or all one bits, depending on the sign. It is the same as a

zero word in integer format,

INDEFINITE RESULT

An indefinite result indicator is generated by a floating point functional unit whenever

ihe calculaiion cannot be resolved, This is the case in division when the divisor is

a

zero and the dividend is also zero. It is also the case in multiplication of an overflow
number times an underflow number. The indefinite result indicator is a value that
cannot occur in normal floating point calculations. This indicator corresponds to a
minus zero exponent and a zero coefficient (177770------ 0 in packed form). An

Indefinite Error condition is indicated by the functional unit generating this result.

60258200 C B-5

Any floating point functional unit receiving an indefinite indicator as an operand will
generate an indefinite result no matter what the other operand value. Although indefi-
nite indicators are always generated with a positive sign by the floating arithmetic
units, they may occur as operands with negative sign because of complementation in

the Boolean unit.

NON-STANDARD FLOATING POINT ARITHMETIC

In summary, the special operand forms in octal are:

positive overflow (+ o) = 37T X === X
negative overflow (-) = 4000X~-=--~-- X
positive indefinite (+IND) = 1777X------ X
negative indefinite (-IND) = 6000X------ X
positive underflow (+0) = 0000X-----~ X
negative underflow (-0) = 711X = ==~ X

When a floating point arithmetic unit uses one of these six special forms as an operand
only the following octal words can occur as results and the associated flag is set in
the Program Status Designation (PSD).

positive overflow (+ @) = 37770------ 0 Overflow condition flag
negative overflow (- o) = 40007------ 7 Overflow condition flag
positive indefinite (+IND) = 17770~~--~- 0 Indefinite condition flag
positive underflow (+0) = 00000------ 0 Underflow condition flag
negative underflow (-0) =777 7---~=~- 7 Underflow condition flag

The following tabulations show the Add, Subtract, Multiply and Divide operations using
various combinations of underflow, indefinite, and overflow quantities as operands.

In the tabulations the designations W and N are defined as follows:
W = Any word except + o, *IND

N = Any word except + o, xIND, or 0,

B-6 60258200 C

ADD
Xi=Xj+Xk
(Instructions 30, 32, 34)

Xk
W +m - +IND
W - + 00 - IND
+ + @ + @ IND IND
X
- -® IND -® IND
+ IND IND IND IND IND
SUBTRACT
Xi=Xj-Xk
(Instructions 31, 33, 35)
Xk
W +® -® +IND
W - - @ + @ IND
+ @ + IND + @ IND
X
- - - IND IND
+IND IND IND IND IND

60258200 C

(Instructions 40, 41, 42)

MULTIPLY
Xi=Xj*Xk

Xk
+N -N +0 -0 + - +IND
+N - - +0 -0 +® -© IND
N - - -0 +0 -® + @ IND
+0 +0 -0 +0 -0 IND IND IND
Xj -0 -0 +0 -0 +0 IND IND IND
+ @ + @ - IND IND + @ - IND
- -0 + IND IND - + 0 IND
+ IND IND IND IND IND IND IND IND

DIVIDE
Xi=Xj/ Xk

(Instructions 44, 45)

Xk
+N -N +0 -0 + 0 - *IND
+N - - + @ - +0 -0 IND
_N ; - - ® + o -0 +0 IND
+0 +0 -0 IND IND +0 -0 IND
Xj -0 -0 +0 IND IND -0 +0 IND
+ @ + - @ ro -® IND IND IND
- - + 0 - + IND IND IND
+IND IND IND IND IND IND IND IND

60258200 C

NORMALIZED FLOATING POINT

A floating point number in packed format is normalized if the coefficient sign bit is
different from bit 47. This condition implies that the coefficient has been shifted to
the left as far as possible, and therefore the floating point number has no leading
zeros in the coefficient.

The normalize unit performs this function. The floating muitiply and floating divide
units deliver normalized results when provided with normalized operands. The
floating add unit may deliver un-normalized results even when both operands are
normalized. It is therefore necessary to perform the normalize operation in the
normalize unit after each sequence of floating add or subtract operations if the result
is to be kept in a normalized form.

ROUNDED COMPUTATION

Optional floating point instructions are provided to round the results in single pre-
cision computation. These instructions are executed in the same amount of time as
the unrounded versions. The operands are modified in the functional units to accom-
plish the rounding function. The amount of bias introduced by the rounding operation
varies from unit to unit and is affected by the coefficient value in the operands. The
descriptions of the round instructions in Section 3 define the effects of rounding, in
detail.

DOUBLE PRECISION

The floating point arithmetic instructions generate double-precision results. Use of
unrounded instructions allows separate recovery of upper and lower half results with
proper exponents; rounded instructions allow only upper half results to be obtained.
The position of the binary point and the exponent of the double precision result depend
upon the arithmetic operation chosen. Two instructions, one single precision and

one double precision, are required to retrieve an entire double precision result.

To add or subtract two floating point numbers, the floating point Add unit enters the
coefficient having the smaller exponent into the upper half of an accumulator and
shifts it right by the difference of the exponents. Then it adds the other coefficient

60258200 C B-9

into the upper half of the accumulator. The result is a double length register with
the following format:

| MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS |
\95 v 4%’\47 v 401
UPPER HALF RESULT BINARY POINT | owER HALF RESULT

If single precision is selected, the upper 48 bits of the 96-bit result and the larger
exponent is the result. Selecting double precision causes only the lower 48 bits of the
96-bit result and the larger exponent minus 608 to be returned as the result. The
subtraction of 60g is necessary because the binary point is effectively moved from
the right of bit 48 to the right of bit 0.

The Multiply units generate 96-bit products from two 48-bit coefficients. The result
of a multiply is a double length register with the following format:

[MOST SIGNIFICANT BITS [LEAST SIGNIFICANT BITS
95 . 48 47])
UPPER HALF RESULT LOWER HALF REsuLT ~ DINARY POINT

If single precision is selected, the upper 48 bits of the product and the sum of the
exponents plus 60g are returned as the result. Theaddition of 60g is necessary
because the binary point is effectively moved from the right of bit 0 to the right of
bit 48 when the upper half of the 96-bit result is selected. If double precision is
selected, only the lower 48 bits of the product and the sum of the exponents is the
result.

INTEGER ARITHMETIC

There are no CPU integer multiply or divide instructions. Integer multiplication and
division must be performed in the floating multiply and divide units. Integer arithme-
tic is accomplished by packing the integers into floating point format using the pack

instruction with a zero exponent value,

B-10 60258200 C

In integer multiplication, a product can be formed for small integers without normal-
izing the operands by using the double precision multiply instruction. The result
does not need to be unpacked if the destination is an A or a B register because the
increment unit extracts only the lowest order 18 bits of the 60-bit word.

In integer division the divisor must be normalized with a Normalize instruction but
the dividend need not be normalized. The resulting quotient must be unpacked and
the coefficient shifted by the amount of the unpacked exponent using the Left Shift
Nominally instruction to obtain the integer quotient.

60258200 C B-11

APPENDIX C

MNEMONIC CODES

ES 00000
RJ 0100K
RL 011jK
WL 012jK
MJ 01300
MJ 013jK
RX 014jk
WX 015jk
RI 0160k
IB 016jk
TB 016;0
RO 0170k
OB 017jk
JP 02i0K
ZR 030K
NZ 031jK
PL 032K
NG 033jK
IR 034K
OR 035;K
DF 036jK
ID 037jK
60258200 C

COMPASS
MNEMONIC CODES

CENTRAL PROCESSOR INSTRUCTIONS

Error exit to EEA

Return jump to K

Block copy K + (Bj) words from LCM to SCM
Block copy K + (Bj) words from SCM to LCM
Exchange exit to NEA if exit flag clear
Exchange exit to K + (Bj) if exit flag set
Read LCM at (Xk) to Xj

Write (Xj) into LCM at Xk

Reset input channel (Bk) buffer if j=0

Read input channel (Bk) status to Bj if j=0
Read real time clock to Bj if (Bk)=0

Reset output channel (Bk) buffer if j=0

Read output channel (Bk) status to Bj if j=0

Jump to K + (Bi)

Branch to K if (Xj)=0

Branch to K if (Xj)=0

Branch to K if (Xj) positive
Branch to K if (Xj) negative
Branch to K if (Xj) in range
Branch to K if (Xj) out of range
Branch to K if (Xj) definite
Branch to K if (Xj) indefinite

15 bits

30 bits
30 bits
30 bits
15 bits
30 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits

30 bits

30 bits
30 bits
30 bits
30 bits
30 bits
30 bits
30 bits

30 bits

EQ
NE
GE
LT

BX
BX
BX
BX
BX

BX
BX

LX
AX
LX
AX
NX
zX
UX
PX

FX
FX
DX
DX
RX
RX
IX

X

04ijK
05ijK
06ijK
07ijK

10ij0
11ijk
12ijk
13ijk
14i0k
15ijk
16ijk
17ijk

20ijk
21ijk
22ijk
23ijk
24ijk
25ijk
26ijk
27ijk

30ijk
31ijk
32ijk
33ijk
34ijk
35ijk
36ijk
37ijk

Branch to K if (Bi)=(Bj)
Branch to K if (Bi)=(Bj)
Branch to K if (Bi)=(Bj)
Branch to K if (Bi)<(Bj)

Transmit (Xj) to Xi

Logical product of (Xj) and (Xk) to Xi

Logical sum of (Xj) and (Xk) to Xi

Logical difference of (Xj) and (Xk) to Xi
Transmit complement of (Xk) to Xi

Logical product of (Xj) and comp (Xk) to Xi
Logical sum (Xj) and comp (Xk) to Xi

Logical difference of (Xj) and comp (Xk) to Xi

Left shift (Xi) by jk

Right shift (Xi) by jk

Left shift (Xk) by (Bj) to Xi

Right shift (Xk) by (Bj) to Xi
Normalize (Xk) to Xi and Bj

Round and normalize (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bj

Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) and (Xk) to Xi

Floating difference of (Xj) minus (Xk) to Xi
Floating DP sum of (Xj) and (Xk) to Xi

Floating DP difference of (Xj) minus (Xk) to Xi
Round floating sum of (Xj) and (Xk) to Xi

Round floating difference of (Xj) minus (Xk) to Xi
Integer sum of (Xj) and (Xk) to Xi

Integer difference of (Xj) minus (Xk) to Xi

30 bits
30 bits
30 bits
30 bits

15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits

15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits

15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits

60258200 C

FX
RX
DX
MX
FX
RX
NO
CX

SA
SA
SA
SA
SA
SA
SA
SA

SB
SB
SB
SB
SB
SB
SB
SB

40ijk
41ijk
42ijk
43ijk
44ijk
45ijk
46000
47i0k

50ijK
511jK
52ijK
53ijk
54ijk
55ijk
56ijk
57ijk

60ijK
61ijK
62ijK
63ijk
64ijk
65ijk
66ijk
67ijk

60258200 C

Floating product of (Xj) and (Xk) to Xi
Round floating product of (Xj) and (Xk) to Xi
Floating DP product of (Xj) and (Xk) to Xi
Form mask of jk bits to Xi

Floating divide (Xj) by (Xk) to Xi

Round floating divide (Xj) by (Xk) to Xi

Pass

Population count of (Xk) to Xi

Set Ai to (Aj) plus K

Set Ai to (Bj) plus K

Set Ai to (Xj) plus K

Set Ai to (Xj) plus (Bk)
Set Ai to (Aj) plus (Bk)
Set Ai to (Aj) minus (BKk)
Set Ai to (Bj) plus (Bk)
Set Ai to (Bj) minus (Bk)

Set Bi to (Aj) plus K

Set Bi to (Bj) plus K

Set Bi to (Xj) plus K

Set Bi to (Xj) plus (BKk)
Set Bi to (Aj) plus (Bk)
Set Bi to (Aj) minus (Bk)
Set Bi to (Bj) plus (Bk)
Set Bi to (Bj) minus (BKk)

15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits
15 bits

30 bits
30 bits
30 bits
15 bits
15 bits
15 bits
15 bits
15 bits-

30 bits
30 bits
30 bits
15 bits
15 bits
15 bits
15 bits
15 bits

SX
SX
SX
SX
SX
SX
SX
SX

70ijK
71ijK
72ijK
73ijk
74ijk
75ijk
76ijk
77ijk

Set Xi to (Aj) plus K

Set Xi to (Bj) plus K

Set Xi to (Xj) plus K

Set Xi to (Xj) plus (Bk)
Set Xi to (Aj) plus (Bk)
Set Xi to (Aj) minus (Bk)
Set Xi to (Bj) plus (Bk)
Set Xi to (Bj) minus (BKk)

30 bits
30 bits
30 bits
15 bits
15 bits
15 bits
15 bits
15 bits

60258200 C

ESN 00
LJM 01
RJM 02
UJN 03
ZJN 04
NJN 05
PJN 06
MJIN 07
SHN 10
LMN 11
LPN 12
SCN 13
LDN 14
LCN 15
ADN 16
SBN 17
LDC 20
ADC 21
LPC 22
LMC 23
PSN 24

25

26

27
60258200 C

PERIPHERAL PROCESSOR INSTRUCTIONS

Error Stop

Long jump to m + (d)
Return jump to m + (d)
Unconditional jump d
Zero jump d

Nonzero jump d

Plus jump d

Minus jump d

Shift (A) by d

Logical difference (A) and d
Logical product (A) and d
Selective clear (A)

Load d

Load complement d

Add d + (A)

Subtract (A) - d

Load dm

Add dm + (A)

Logical product dm and (A)
Logical difference dm and (A)
Pass

Pass

Pass

Pass

12 bits
24 bits
24 bits
12 bits
12 bits
12 bits
12 bits
12 bits

12 bits
12 bits
12 bits
12 hits
12 bits
12 bits
12 bits
12 bits

24 bits
24 bits
24 bits
24 bits
12 bits
12 bits
12 bits
12 bits

LDD
ADD
SBD
LMD
STD
RAD
AOD
SOD

LDI
ADI
SBI
LMI
STI
RAI
AO1
SO1

LDM
ADM
SBM
LMM
STM
RAM
AOM
SOM

30
31
32
33
34
35
36
37

40
41
42
43
44
45
46
47

50
51
52
53
54
55
o6
57

Load (d)

Add (d) + (A)

Subtract (A) - (d)

Logical difference (A) and (d)
Store (A) at d

Replace add (d) + (A)
Replace add one (d)

Replace subtract one (d)

Load ((d))

Add ((d)) + (Aa)

Subtract (A) - ((d))

Logical difference (A) - ((d))
Store (A) at (d)

Replace add ((d)) + (A)
Replace add one ((d))
Replace subtract one ((d))

Load (m+(d))

Add (m+(d)) + (A)

Subtract (A) - (m+(d))

Logical difference (A) and (m+(d))

Store (A) at m+(d)

Replace add (A) + (m+(d)) to m+(d)
Replace add one (m+(d)) + 1 to m+(d)
Replace subtract one (m+(d)) -1 to m+(d)

12 bits
12 bits
12 bits
12 bits
12 bits
12 bits
12 bits
12 bits

12 bits
12 kits
12 bits
12 bits
12 bits
12 bits
12 bits
12 bits

24 bits
24 bits
24 bits
24 bits
24 bits
24 bits
24 bits
24 bits

60258200 C

FIM 60
EIM 61
IRM 62
NIM 63
FOM 64
EOM 65
ORM 66
NOM 67
IAN 70
IAM 71
OAN 72
OAM 73
RFN 74
75
76
ESN 77
60258200 C

Jump to m;
Jump to m;
Jump to m;
Jump to m;
Jump to m;
Jump to m;
Jump to m;

Jump to m;

Input Word flag on channel d

no Input Word flag on channel d
Input Record flag on channel d
no Input Record flag on channel d
Output Word flag on channel d

no Output Word flag on channel d

Output Record flag on channel d
no Output Record flag on channel d

Input to A from channel d

Input (A) words to m from channel d

Output from A on channel d

Output (A) words from m on channel d

Send Record flag on channel d

Pass
Pass

Error stop

24 bits
24 bits
24 bits
24 bits
24 bits
24 bits
24 bits
24 bits

12 bits
24 bits
12 bits
24 bits
12 bits
12 bits
12 bits
12 bits

APPENDIX D

6000/7000 RESULT DIFFERENCES

APPENDIX D
6000/7000 RESULT DIFFERENCES

1. Whenever infinite, indefinite, or zero exponent results are generated by a floating
point unit, only the following octal words can occur as results:

6000 7000
positive overflow 371770--=--~- 0 37770------ 0
negative overflow 40000------ 0 40007------ 7
positive indefinite 17770------ 0 17770-=-=--- 0
positive underflow 00000-----~ 0 00000------ 0
negative underflow 00000------ 0 TN === 7

Example: 24012 or
25012

where: X2 = 7753 7777 7773 0000 0000

7000 Result: X0 = 7777 10T V77T 10T 1717

6000 Result: X0

0000 0000 0000 0000 0000

2. A difference exists in the way in which a round divide is handled on a 6000
machine and on a 7000 machine. The 6000 performs a 1/3 round on the divide
and the 7000 machine performs a 1/2 round. The 7000, therefore, can give a

different answer from the 6000 when using certain operands.

Example: 45012

Where: X1 = 2027 7223 2220 7175 5360

X2 = 1347 4255 6115 0364 7225
7000 Result: X0 = 2400 6557 3505 0613 2701
6000 Result: X0 = 2400 6557 3505 0613 2700

3. An Error Exit instruction (00XXX) in the 7000 machine causes an Exchange Jump
to the Error Exit Address (EEA) and does not halt the CPU. An Error Exit in-
struction in the 6000 machine causes the CPU to stop executing until a PPU
Exchange Jump causes the CPU to reinitiate.

60258200 C D-1

4.

A difference exists when an exponent overflow of a floating product occurs and

the coefficient result requires a left shift of one to give a normalized answer,

The 7000 tests for the overflow condition by checking for the exponent being
greater than +1777 before correction, if any, is made for a left shift of one. Thus,
even though the left shift of one may cause the exponent to equal exactly +1777
(partial overflow), this condition is treated as a complete overflow and the resuit
is the overflow exponent with a zero coefficient. The 6000 machine tests for the
overflow condition by checking for the exponent greater than +1777 after correc-
tion, if any, is made for a left shift of one. In this case, if the resulting exponent
is equal to exactly +1777 (partial overflow), the result is the overflow exponent
with the computed coefficient.

Example: 40012

Where: X1 = 3700 4000 0000 0000 0000

X2 = 2020 4000 0000 0000 0000
7000 Result: X0 = 3777 0000 0000 0000 0000
6000 Result: X0 = 3777 4000 0000 0000 0000

A similar situation exists when an exponent underflow of a floating product occurs
and the coefficient result does not require a left shift of one to give a normalized
answer. The 7000 tests for the underflow condition by checking for the exponent
being less than -1776 before correction, if any is made for a left shift of one.
Thus, although no left shift of one is performed, an exponent of -1777 (partial
underflow) is treated as a complete underflow and the result is the underflow ex-
ponent with a zero coefficient. The 6000 machine tests for the underflow condi-
tion by checking for the exponent less than -1777 after correction, if any, is
made for a left shift of one. In this case, if the resulting exponent is equal to
exactly -1777 (partial underflow), the result is the underflow exponent with the
computed coefficient.

Example: 40012

Where: X1 =0647 7777 1777 7777 1776

X2 = 1050 4444 4444 4444 4444
7000 Result: X0 = 0000 0000 0000 0000 0000
6000 Result: X0 = 0000 4444 4444 4444 4442

60258200 C

5. A difference exists when an exponent underflow of a floating double precision sum
occurs and the coefficient result requires a right shift of one because coefficient
overflow occurred. The 7000 tests for the underflow condition by checking for
the exponent being less than -1777 before correction, if any, is made for a right
shift of one. Thus, even though the right shift of one may cause the exponent to
equal exactly -1777 (partial underflow), this condition is treated as a complete
underflow and the result is the underflow exponent with a zero coefficient. The
6000 machine tests for the exponent underflow condition by checking for the ex-
ponent less than -1777 after correction, if any, is made for a right shift of one.
In this case, if the resulting exponent is equal to exactly -1777 (partial underflow)
the result is the underflow exponent with the computed coefficient.

Example: 32012

Where: X1 0057 4000 0000 0000 0001

X2 = 0057 4000 0000 0000 0000
7000 Result: X0 = 0000 0000 0000 0000 0000
6000 Result: X0 = 0000 4000 0000 0000 0000

6. When instruction 22 or 23 is used for a right shift, the 7000 checks bits 26 - 911
- 216. For these

instructions, the 6000 checks bits 26 - 210 and ignores bits 211 - 216.

for a shift greater than or equal to 64; and ignores bits 212

7. A difference exists between the 6000 and 7000 in signaling a Divide Fault condi-
tion on a floating divide instruction. If a Divide Fault is sensed in the 7000, an
Indefinite Condition is indicated only if no Overflow or Underflow Condition also
exists., If an Overflow or Underflow Condition exists, the Divide Fault situation
is ignored. If a Divide Fault is sensed in the 6000, it is always identified as an

Indefinite Condition.

Example: 44012

Where: X1 3700 0222 0000 0000 0000

X2 = 1600 0022 0000 0000 0000
7000 Result: X0 = 3777 0000 0000 0000 0000 (Overflow Condition)
6000 Result: X0 = 1777 0000 0000 0000 0000 (Indefinite Condition)

60258200 C D-3

8.

A difference exists between the 6000 and 7000 when an increment instruction
makes a read reference to SCM and the address is out of range. Inthe 7000,
when the reference involves reading to an X register, the out of range word ad-
dressed is read to the X register. The 6000 machine aborts the read and gates
zeros to the X register. In both cases, an address out of range indication is

given and the error exit sequence is performed.

Example: 51100 00100

Where: FL is set at 50
RA =0

(100) = 5252 5252 5252 5252 5252

7000 Result: Al =100

X1 = 5252 5252 5252 5252 5252
6000 Result: Al =100

X1 = 0000 0000 0000 0000 0000

Future plans are to FCO the 7000 to make it agree with the 6000 by late 1971,

The 7000 Floating Add Unit may generate a different result from the 6000 Floating
Add Unit when at least one operand has a zero coefficient and the difference be-
tween the exponents is greater than or equal to 128 10°

Example: 30012 Floating Add

Where: X1

4277 177 1707 100 1117

X2 = 5277 5555 5555 5555 5555
7000 Result: X0 = 3500 0000 0000 0000 0000
6000 Result: X0 =4277 707 1777 1777 107

Reversing the operands (30021) gives the same results as shown above,

Example: 31012 Floating Difference

Where: X1 4277 77T 1707 110 1177

X2 = 2500 2222 2222 2222 2222
7000 Result: X0 = 3500 0000 0000 0000 0000
6000 Result; X0 = 4277 7777 1777 700 1977

60258200 C

Example: 31012 Floating Difference
Where: X1 = 5277 5555 5555 5555 5555

X2 = 3500 0000 0000 0000 0000

' 7000 Result: X0 = 3500 0000 0000 0000 0000

6000 Result: X0 = 4277 1777 1777 7007 1777

Reversing the operands (31021) on either of the examples for a Floating Difference
gives compatible results on the 6000 and 7000 machines. The result on both
machines is 3500 0000 0000 0000 0000.

60258200 C D-5

GLOSSARY

AO0-AT Address Registers-CPU
B0-B7 Index Registers-CPU

BPA Breakpoint Address

CIw Current Instruction Word Register
Clock Period 27.5 nanoseconds

CPU Central Processing Unit

EEA Error Exit Address

FLL Field Length-LCM

FLS Field Length-SCM

IAS Instruction Address Stack

IWS Instruction Word Stack

LCM Large Core Memory

LCMI Large Core Memory Increment
MCU Maintenance Control Unit
MUX 1/O Multiplexer

MUXI I/O Multiplexer Increment
NEA Normal Exit Address

P Program Address Register
PPU Peripheral Processing Unit
PSD Program Status Designator
RAL Reference Address-LCM

RAS Reference Address-SCM

SAS Storage Address Stack

SCM Small Core Memory

SCMI Small Core Memory Increment
SWS Storage Word Stack

X0-X17 Operand Registers-CPU

60258200 C Glossary 1

A register,
Central Processor, 2-3
Peripheral Processor, 5-2

Absolute memory address, 4-2

Access,
Large Core Memory, 4-17
Small Core Memory, 4-4

Address,
Absolute, 4-2
Error Exit, 2-12, 2-13
Large Core Memory, 4-16
Modes, 6-1
Reference, 4-1
Small Core Memory, 4-3

Address Out of Range, 3-10, 3-12

Arithmetic,
Floating point, B-1
Integer, B-11

Assembly counter, 3-12

Assembly register 1-6, 4-8

B register, Central Processor, 2-3
Block copy, 3-3, 3-6, 4-17

Block Range condition, 4-1

Boolean Unit, 3-22

Breakpoint Address register, 2-12, 2-14
Breakpoint Condition flag, 2-16, 2-19

Buffer,
Input/output, 4-5, 4-7, 4-8
Small Core Memory, 1-5, 1-10
Threshold, 3-13, 3-16

Central Processor, 1-1, 1-5, 2-1
A register, 2-3
B register, 2-3
Boolean Unit, 3-22
Branch instructions, 3-17
Characteristics, 1-1
Computation section, 1-1, 1-5, 2-1
Core memory, 1-95
Divide instructions, 3-43
Floating Point Add instructions 3-34
Functional units, 2-9

60258200 C

INDEX

Increment instructions, 3-47
Index registers, 2-3
Input/Output instructions, 3-2

Instruction designators, 2-4, 3-1

Instruction formats, 2-4, 2-5
Instruction stack, 1-5, 2-6
Instructions, 3-1

Large Core Memory, 1-2
LCM instructions, 3-2

Long Add instructions, 3-39
Mask instructions, 3-32
Memory, 4-1

Mnemonic codes, COMPASS, C-1

Monitor instructions, 3-2
Multiplexer, 1-2

Multiply instructions, 3-490
No Operation instruction, 3-45
Normalize instructions, 3-32
Operating registers, 1-1, 2-1
Operation code, 2-5

Pack instruction, 3-28

Pass instruction, 3-45
Population Count, 3-46

P register, 2-7

Shift instructions, 3-29

Small Core Memory, 1-2

Time, instruction execution, A-4

Unpack instruction, 3-27
X register, 2-1

Channel,
Bi-directional, 5-4
High Speed, 1-3, 1-6, 1-7, 4-8
Input, 3-13, 3-14
Normal, 1-3, 1-6, 1-7, 4-8
Output, 3-14, 3-13, 3-16

Clear Parity Error, 7-1
Clock period, 1-1

COMPASS, mnemonic codes
Central Processor, C-1
Peripheral Processor, C-5

Condensing Units, 1-8
lay, 7-8
Constant mode, 6-1, 6-3

Core Memory, 1-5

Index-1

Counter Indefinite, 3-21, B-5

Assembly, 3-12 Indefinite Condition flag, 2-16, 2-20
Clock Period, 2-14 Indefinite Mode flag, 2-16, 2-17
Disassembly, 3-14 Normalize, 3-33, B-9

Overflow, 3-21, B-3

Overflow Condition flag, 2-16, 2-20
Data Channel Unit, 1-3, 4-9 Overflow Mode flag, 2-16, 2-17
Packing, 3-28, B-2

Single precision, B-10

Underflow, B-5

Underflow Condition flag, 2-16, 2-20
Underflow Mode flag, 2-16, 2-17
Unpacking, 3-22

Floating Point Add Unit, 3-34
Floating Point Divide Unit, 3-43

Current Instruction Word Register, 2-1, 2-7

Data Transfer
PPU to Peripheral Device, 5-10
PPU to PPU, 5-7 .
PPU to SCM, 4-9, 4-12
SCM to PPU, 4-11, 4-13

Dead Dump, Peripheral Processor, 7-1, 7-4

Dead Start, 7-1
CPU, 7-1, 7-4

MCU, 7-3 Floating Point Multiply Unit, 3-40
Operator station, 1-10 F
PPU, 7-3 ormat,
Svstem . 1-7 Address, LCM, 4-16
= : Address, SCM, 4-3
Delay, execution, A-1 Floating point, B-1
Direct Address mode, 6-2, 6-3 Instruction, Central Processor, 2-3

Instruction, Peripheral Processor, 6-1

Direct Range condition, 4-1 Functional Units, Central Processor, 1-1,2-9

Disassembly Counter, 3-14 Boolean, 3-22

Floating Point Add, 3-34
Floating Point Divide, 3-44
Display Console, 7-6, 7-8 Floating Point Multiply, 3-40
Increment, 3-47

Long Add, 3-39

Disassembly register, 1-6, 4-8

Duty Cycle Integrator, 4-3

Error Exit, 2-12, 2-13, 3-2 Normalize, 3-32
Error Exit address, 2-12, 2-13, 2-14 ggg&l:ﬁg?ii?u;tﬁlog_%
Exchange Exit, 2-12, 3-8, 3-9 Shift, 3-29
Exchange Jump, 2-10 High Speed Channel, 1-3, 1-6, 1-7, 4-8
Exchange package, 1-6, 2-10, 2-11 Increment Unit, 3-47
iﬁ}g‘g{%“_"fu“ 4-5 Indefinite Condition flag, 2-16, 2-20
Real Time, 2-~14 Indefinite Mode flag, 2-16, 2-17
Execution interval, 2-12, 2-13 Indefinite result, B-5
Exit Mode flag, 2-12, 2-13, 3-8 Indexed Direct Address mode, 6-2, 6-3
Field length, 4-1 Indirect Address mode, 6-2, 6-3
First Level PPU, 1-7 Input/Output,
Floating point, Istractions, 3-2

S _ Interrupt, 2-14
ggg:t?rgi:llsmn, B-9 Peripheral Processor, 5-4

Index-2 60258200 C

Input Record flag, 5-6

Input Resume flag, 5-6

Input Word flag, 5-5
Instruction Address Stack, 2-6

Instruction designators,
Central Processor, 3-1
Peripheral Processor, 6-4

Instruction formats,
Central Processor, 2-5
Peripheral Processor, 6-1

Instruction issue, Central Processor, 2-7
Instruction Word Stack, 1-5, 2-6, 4-7

Instructions,
Central Processor, 3-1
Peripheral Processor, 6-1, 6-4

Integer arithmetic, B-11

Interrupt,
Input/output, 2-14, 3-8, 3-9, 3-13, 4-4
1/0 multiplexer, 3-6
Real Time, 2-14

Large Core Memory, 1-4, 4-1, 4-15
Access, 4-17
Address format, 4-16
Bank, 4-15
Bank Operand register, 4-16
Block copy,4-17
Block Range Condition flag, 2-16, 2-18
Direct Range Condition flag, 2-16, 2-18
Instructions, 3-2
Out of Range, 3-4
Parity, 4-16
Parity Condition flag, 2-16, 2-18
Parity Error, 4-16, 7-4
Read, 3-10
Single word transfer, 4-17
Write, 3-11

Long Add Unit, 3-39

Maintenance Control Unit, 1-7, 4-6, 5-1, 7-1
Clear Parity Error, 7-1, 7-4
Dead Dump, 7-1, 7-4
Dead Start, 7-1, 7-3
Scanner, 7-1

Manual Control, 7-1

60258200 C

Memory,
Central Processor, 4-1
Large Core Memory, 1-6, 4-1, 4-15
Peripheral Processor, 5-3
Small Core Memory, 1-5, 4-1, 4-2

Modes, Peripheral Processor, 6-1
Monitor instructions, 3-2

Monitor Mode flag, 2-15, 2-16
Multiplexer, 1-6, 4-5, 4-8

No Address mode, 6-1, 6-3
Normal Channel, 1-3, 1-6, 1-7, 4-8
Normalize Unit, 3-32

Operator Station, 1-8

Output Record flag, 5-7

Output Word flag, 5-3

Overflow, B-3

Overflow Condition flag, 2-16, 2-20
Overflow Mode flag, 2-16, 2-17

P register,
Central Processor, 2-7
Peripheral Processor, 5-2

Parcel, 2-4, 2-5

Parity, .
LCM Parity Condition flag, 2-16, 2-18
Peripheral Processor Memory, 5-3
SCM Parity Condition flag, 2-16, 2-18

Peripheral Processor, 1-1, 1-7, 5-1
A register, 5-2
Address modes, 6-1, 6-2
Branch instructions, 6-6
Characteristics, 1-4
Computation section, 1-3, 5-1
Constant instructions, 6- 10
Direct Address instructions, 6-12
Error Stop, 6-5
First Lievel PPU, 1-17
Indexed Direct Address instruction, 6-17
Indirect Address instructions, 6-15
I/O control, 5-3
I/O instructions, 6-20
Instruction designators, 6-4
Instructions, 6-4

Index-3

Memory, 1-3, 1-7 Scanner,

Mnemonic codes, COMPASS, C-5 Maintenance Control Unit, 7-1
Operating registers, 1-3 Reference Voltage, 7-1

No Address instructions, 6-8 . . _

No Operation instructions, 6-5 Shift Unit, 3-29
P register, 5-2 Sk register, Peripheral Processor, 5-3

Q register, 5-2 S
. _ mall Core Memory, 1-4, 4-1, 4-2
S register, 5-4 Access, 4-3

Sk register, 5-3
. . ’ . . Address format, 4-3
Time, instruction execution, A-9 Bank, 4-2

X register, 5-3, 5-4 "
: Y Block Range Condition flag, 2-16, 2-18
Z register, 5-4 Buffer, 1-6, 1-10
Population Count Unit, 3-46 Direct Range Condition flag, 2-16, 2-19

T _ Memory reference, 4-7
Power Distribution, 1-8 Out of Range, 3-4

Priority, SCM, 4-7 Parity, 4-3

Parity Condition flag, 2-16, 2-18
Parity Error, 7-4

Program Error, Peripheral Processor, 7-5 Priority, 4-17

Stack, 4-2

Program Status Designators, 2-15, 2-16 Step Condition flag, 2-16, 2-19
Condition flags, 2-18 Step mode, Central Processor, 2-16, 2-17

Mode flags, 2-15 Storage Address Stack, 4-7
Q register, Peripheral Processor, 5-2 Storage Module,

Real Time Clock, 3-14 Large Core Memory, 1-3
Small Core Memory, 1-3

Program Breakpoint, 2-14

Program Range Condition flag, 2-16, 2-19

Real Time Interrupt, 2-14
Record Pulse, 5-5 System communication, 1-10

System, computer,

Reference Address, 4-1 Characteristics, 1-1, 1-3

Reference Voltage Scanner, 7-1 Description, 1-3
Refrigeration System, 1-6 Threshold, buffer, 3-13, 3-15
Registers Time, instruction execution, A-1

Assembly, 1-6, 4-8 _
Breakpoint Address, 2-14 Underflow, B-5
Current Instruction Word, 2-1, 2-7 Underflow Condition flag, 2-16, 2-20

Disassembly, 1-6, 4-8 _
Operating, Central Processor, 1-1, 2-1 Underflow Mode flag, 2-16, 2-17
Operating, Peripheral Processor, 1-3,5-2 Warning System, 1-8

Program Status Designator, 2-15 Word Pulse, 5-4
Result difference, 6000/7000, D-1 .
X register,

Resume Pulse, 5-a Central Processor, 2-1

Rounded computation, B-9 Peripheral Processor, 5-2, 5-4

S register, Peripheral Processor, 5-4 Z register, Peripheral Processor, 5-4

Index-4 60258200 C

CUT ALONG LINE

— . — — — —— — — — > —— — —— — — —— — —— — — — — — ——— ——— — o— — — — — — — — — —— — — — — — — | S— — —— — — it

PRINTED IN USA

AA3419 REV. 11/69

COMMENT SHEET

manuaL TitLe_ CONTROL DATA 7600 COMPUTER SYSTEM

Reference Manual

pusLICATION No. 60258200 REVISION Cc

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

__ -
FIRST CLASS
PERMIT NO. 8241
MINNEAPOLIS, MINN.
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

-
o
-
(=}
-n
[e]
-
o

CUT ALONG LINE

INSTRUCTION INDEX

CENTRAL PROCESSOR
Error exit to EEA

Return jump to K

Block copy (Bj) + K words from LCM to SCM
Block copy (Bj) + K words from SCM to LCM
Exchange exit to NEA (Exit Mode flag cleared)
Exchange exit to (Bj) + K (Exit Mode Flag set)
Read LCM at (Xk) to Xj

Write Xj into LCM at (Xk)

Reset Input channel (Bk) buffer if j=0

Read Input channel (Bk) status to Bj, if j#0
Reset Output channel (Bk) buffer if j=0

Read Output channel (Bk) status to Bj if j#0

Jump to (Bi) + K

Branch to K if (Xj) = 0

Branch to K if (Xj) # 0

Branch to K if (Xj) positive
Branch to K if (Xj) negative
Branch to K if (Xj) in range
Branch to K if (Xj) out of range
Branch to K if (Xj) definite
Branch to K if (Xj) indefinite

Branch to K if (Bi) = (Bj)
Branch to K if (Bi) # (Bj)
Branch to K if (Bi) > (Bj)
Branch to K if (Bi) < (Bj)

Transmit (Xj) to Xi

Logical product of (Xj) and (Xk) to Xi

Logical sum of (Xj) and (Xk) to Xi

Logical difference of (Xj) and (Xk) to Xi
Transmit complement of (Xk) to Xi

Logical product of (Xj) and comp (Xk) to Xi
Logical sum (Xj) and comp (Xk) to Xi

Logical difference of (Xj) and comp (Xk) to Xi

Left shift (Xi) by jk

Right shift (Xi) by jk

Left shift (Xk) nominally (Bj) places to Xi
Right shift (Xk) nominally (Bj) places to Xi
Normalize (Xk) to Xi and Bj

Round and normalize (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bj

Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) and (Xk) to Xi

Floating difference of (Xj) minus (Xk) to Xi
Floating DP sum of (Xj) and (Xk) to Xi
Floating DP difference of (Xj) minus (Xk) to Xi
Round floating sum of (Xj) and (Xk) to Xi

Round floating difference of (Xj) minus (Xk) to Xi

Integer sum of (Xj) plus (Xk) to Xi
Integer difference of (Xj) minus (Xk) to Xi

Floating product of (Xj) and (Xk) to Xi
Round floating product of (Xj) and (Xk) to Xi
Floating DP product of (Xj) and (Xk) to Xi
Form mask of jk bits to Xi

Floating divide (Xj) by (Xk) to Xi

Round floating divide (Xj) by (Xk) to Xi

No operation (pass)

Population count of (Xk) to Xi

Set Ai to (Aj) + K
Set Ai to (Bj) + K
Set Ai to (Xj) + K
Set Ai to (Xj) + (Bk)
Set Ai to (Aj) + (Bk)
Set Ai to (Aj) - (Bk)
Set Ai to (Bj) + (Bk)
Set Ai to (Bj) - (Bk)

Set Bi to (4j) + K
Set Bi to (Bj) + K
Set Bi to (Xj) + K
Set Bi to (Xj) + (Bk)
Set Bi to (Aj) + (Bk)
Set Bi to (Aj) - (BKk)
Set Bi to (Bj) + (Bk)
Set Bi to (Bj) - (Bk)

3-48

701K
71ijK
72ijK
73ijk
74ijk
75ijk
76ijk
7715k

Set Xi to (Ai) + K
Set Xi to (Bj) + K
Set Xi to (Xj) + K
Set Xi to (Xj) + (Bk)
Set Xi to (Aj) + (Bk)
Set Xi to (Aj) - (Bk)
Set Xi to (Bj) + (Bk)
Set Xi to (Bj) - (Bk)

PERIPHERAL PROCESSORS

Error Stop

Long jump to m + (d)
Return jump to m + (d)
Unconditional jump d
Zero jump d

Nonzero jump d

Plus jump d

Minus jump d

Shift (A) by d

Logical difference (A) and d
Logical product (A) and d
Selective clear (A)

Load d

Load complement ¢

Add (A) +d

Subtract (A) - d

Load dm

Add (A) +dm

Logical product (A) and dm
Logical difference (A) and dm
Pass

Pass

Pass

Pass

Load (d)

Add (d) +(A)

Subtract (A) - (d)

Logical difference (A) and (d)
Store (A) at d

Replace add (A) + (d)
Replace add one (d)

Replace subtract one (d)

Load {((d))

Add (A) + ((d))

Subtract (A) - ((d))

Logical difference (A) and ((d))
Store (A) at (d)

Replace add (A) + ((d))
Replace add one ((d))

Replace subtract one ((d))

Load (m + (d))

Add (A) + (m + (d)

Subtract (A) - (m + (d))

Logical difference (A) and (m + (d))
Store (A) at m + (d)

Replace add (A) + (m + (d))
Replace add one (m + (d))

Replace subtract one (m + (d))

Jump on input word flag
Jump if no input word flag
Jump on input record flag
Jump if no input record flag
Jump on output word flag
Jump if no output word flag
Jump on output record flag
Jump if no output record flag

Input to A from channel d

Input (A) words to m from channel d
Output from A on channel d

Output (A) words from m on channel d
Output record flag on channel d

Pass

Pass

Error Stop

3-49
3-49
3-49
3-49
3-49
3-49
3-49
3-49

L T T R |

(I I I T I I |

DO D ?@QO’G)O}QQ
= s (O O WO O [-- S IS RN RN)

ary
(=R

CORPORATION

CONTROL DATA
[cosrorarion

CORPORATE HEADQUARTERS, 8100 34th AVE. SO.. MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

LITHO IN U.S.A.

	000a
	000b
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	Glossary-1
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBackA
	xBackB

