a

CDC® CYBER 200 MODEL 205
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL @ E

CONTROL

60256020



COMPUTER INSTRUCTION INDEX

Instruction Page Instruction Page Instruction Page Instruction Page Instruction Page
Code Number Code Number Code Number Code Number Code Number
00 4-155 34 4-35 62 4-38 8F T 4-73 BD 4-129
03 4-153 35 4-58 63 4-39 90 4-76 BE 4-33
04 4-153 36 4-58 64 4-38 91 4-76 BF 4-33
05 4-154 37 4-123 65 4-38 92 4-76 co 4-101
06 4-155 38 4-33 66 4-38 93 4-83 cl 4-101
08 4-156 39 4-124 67 4-39 94 4-86 c2 4-101
09 4-58 3A 4-124 68 4-38 95 4-86 c3 4-101
0A 4-159 3B 4=55 69 4-38 96 4-83 Ch 4-143
oc 4-157 3c 4-122 6B 4-38 97 4-83 c5 4-143
()] 4-157 3D 4-122 6C 4-38 98 4-76 c6 4-143

' OE 4-157 3E 4-32 6D 4-36 99 4-76 c7 4-143
OF 4-158 3F 4-32 6E 4-37 9A 4-76 c8 4=-144
10 4-42 40 4-38 6F 4-38 9B 4-81 c9 4-144
11 4-42 41 4-38 70 4-39 9C 4-83 CA 4-144
12 4-122 42 4-38 71 4-39 9D 4-81 CB 4144
13 4-122 44 4-38 72 4-39 AO T 4-93 cc 4-148
14 4-131 45 4-38 73 4-42 Al T 4-93 cD 4-33
15 4-133 46 4-38 74 4-47 a2t 4-93 CE 4-33
16 4-133 48 4-38 75 4-47 A4 T 4-93 CF t 4-126
1c 4-150 49 4-38 76 4-42 A5t 4-93 DO 4-109
1D 4-150 4B 4-38 77 4-42 A6t 4-93 D1 4-107
1E 4-151 4c 4-38 78 4-39 A8 T 4-97 D4 4-109
1F 4-153 4D 4-32 79 " 4-39 A9t 4-97 D5 4-107
20 4-50 4LE 4-32 7A 4-39 AB T 4-97 D8 t 4-149
21 4-50 4F 4-38 7B 4-42 Ac 4-97 p9 T 4-149
22 4-50 50 4-39 7c 4-42 AF T 4-97 DA 4-104
23 4-50 51 4-39 7D 4-123 BO 4-60,63 DB 4-105
24 4-50 52 4-39 7E 4-122 140,142 oo 4-116
25 4-50 53 4-42 7F 4-122 Bl ‘1’;8‘?122 DF 4-112
26 4-50 54 4-47 80 t 4-73 B2 4-60,63 FO 4-119
27 4-50 55 4-47 81t 4-73 140,142 F1 4-119
28 4-150 56 4-137 82t 4-73 B3 4-60,63 F2 4-119
24 4-50 58 4-39 83 4-74 140,142 oy 4-119
28 4-50 59 4-39 84 T 4-73 B4 ‘1’;8(”122 F4 4-119
2C 4-34 5A 4-39 85t 4-73 B5 4-60,63 F5 4-119
2D 4-34 5B 4-42 86 T 4-73 140,142 F6 4-119
2E 4-34 5C 4-42 87 4-74 B6 4-64 F7 4-119
2F 4-51 5D 4-42 88t 4-73 B7 4-114 F8 4-118
30 4-35 SE 4-122 89t 4-73 B8 4-110
31 4-58 5F 4-122 8A 4-75 BA 4-113
32 4-55 60 4-38 8Bt 4-73 BB 4-125
33 4-52 61 4-38 8ct 4-73 BC 4-125

TIhese instructions have sign control capability

60256020 B



a

CDC® CYBER 200 MODEL 205
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL @ E

CONTROL

60256020



REVISION RECORD

REVISION DESCRIPTION
01 Preliminary manual.
(09-29-80)
A Manual released. This edition obsoletes all previous editions.
(03-02-81)
B Manual revised to make miscellaneous technical and editorial changes.
(10-15-82)
C Manual revised to include the Series 600 computer system and to document metal-oxide semiconductor
(11-11-83) (MOS) memory.

60256020

Publication No.

REVISION LETTERS |, O, Q, S, X AND Z ARE NOT USED.

© 1980, 1981, 1982, 1983

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

by Control Data Corporation

All rights reserved
Printed in the United States of America

ii

or use Comment Sheet in the back of
this manual.




LIST OF EFFECTIVE PAGES

New teatures, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
Front Cover - 2-28 A 4=7 A 4-66 A 4=125 A
Inside Front 2-29 A 4-8 A 4-67 B 4-126 A

Cover B 2-30 A 4-9 B 4-68 A 4-127 B
Title Page - 2-31 A 4-10 A 4-69 B 4-128 A
i1 C 2-32 A 4-11 A 4=70 A 4-129 A
iii [ 2-33 A 4-12 A 4-71 A 4-130 A
iv C 2-34 A 4-13 A 4=72 A 4-131 A
v C 2-35 A 4-14 A 4=73 A 4-132 A
vi C 2-36 A 4-15 A 4=74 A 4-133 A
vii o 2-37 A 4-16 B 4=75 A 4=134 A
viii o 2-38 A 4=17 A 4=76 A 4=-135 A
ix c 2-39 A 4-18 A 4=77 A 4-136 A
b c 2-40 B 4-19 A 4-78 A 4-137 A
xi [ 2-4] A 4-20 A 4=79 A 4-138 A
x1i c 2-42 B 4-21 A 4-80 A 4-139 B
xiii c 2-43 C 4-22 A 4-81 A 4-140 A
xiv C 2-44 B 4-23 A 4-82 A 4-141 A
Divider - 2-45 A 4=24 A 4-83 A 4-142 A
1-1 C 2-46 B 4=25 B 4~84 A 4-143 A
1-2 c 2-47 C 4-26 A 4-85 A 4=144 A
1-3 C 2-48 c 4=27 B 4-86 A 4-145 A
1-4 C 2-49 c 4-28 A 4-87 A 4-146 A
1-5 c 2-50 (o 4-29 B 4-88 A 4-147 A
1-6 c 2-51 C 4-30 A 4-89 A 4-148 B
1-7 c 2=52 [ 4=31 A 4-90 A 4-149 A
1-8 ¢ 2-53 c 4=32 A 4=-91 A 4-150 B
1-9 c 2-54 c 4-33 A 4-92 A 4-151 A
1-10 c 2-55 c 4=34 A 4-93 A 4-152 A
1-11 c 2-56 c 4-35 B 4~94 A 4-153 A
1-12 c 2-57 c 4-36 A 4-95 A 4-154 B
1-13 c 2-58 o 4-37 A 4~96 A 4-155 B
Divider - 2-59 c 4-38 A 4-97 A 4-156 B
2-1 A 2-60 [ 4-39 A 4-98 A 4-157 A
2-2 A 2-61 c 4=40 A 4-99 A 4-158 A
2-3 A 2-62 C 4=41 A 4=100 B 4-159 A
2-4 A 2-63 c 4=42 A 4=-101 A Divider -
2-5 A 2-64 c 4-43 A 4-102 A 5-1 A
2-6 A 2-65 [« 4=44 A 4-103 A 5-2 A
2-7 c 2-66 [¢ 4=45 A 4=-104 A 5-3 A
2-8 A 2-67 C 4-46 A 4-105 A 5-4 A
2-9 A 2-68 4 4=47 B 4-106 A 5-5 A
2-10 A 2-69 C 4-48 A 4=-107 A 5-6 A
2-11 A 2-70 C 4-49 A 4-108 A 5-7 A
2-12 A 2-71 C 4-50 A 4-109 A 5-8 A
2-13 A 2-72 [ 4-51 A 4-110 A 5-9 A
2-14 B 2-73 [ 4-52 A 4-111 A 5-10 A
2-15 B Divider - 4-53 A 4-112 A 5-11 A
2-16 B 3-1 A 454 A 4-113 A 5-12 A
2-17 B 3-2 A 4-55 B 4=114 A 5-13 B
2-18 A 3-3 A 4=56 B 4-115 A 5-14 A
2-19 A 3-4 B 4-57 A 4=~116 A 5-15 A
2-20 A 3-5 A 4=58 A 4-117 A 5-16 B
2-21 A Divider - 4=-59 A 4=-118 A 5-17 A
2-22 A 4=1 A 4-60 A 4=-119 A 5-18 A
2-23 A 4-2 A 4-61 A 4-120 A 5~19 A
2-24 A 4-3 A 4-62 A 4=-121 A 5-20 A
2-25 A 4=4 A 4-63 A 4=-122 A 5-21 B
2-26 A 4-5 A 4-64 A 4=123 A 5-22 A
2-27 A 4-6 A 4-65 A 4=124 A 5-23 A

60256020 C iii



——
>
w
-4
w
(L]
<
o
>
w
[ 4
w
(L]
<
Q.
>
w
-4
w
(L]
<
a
>
_h << <l <<<<mm O
-
w Q
S “ 3
— N & PO
< o | L g oo
o o X X 0o
o U o m £
O = >—~ANNOIT Y Y 17213
LA 1111 g €&0 5]
ooAmpmm,AMAAHHD m
>
__-__‘._ Ml dddddd<dmadaddddaddadcd | A< <t <<<<IMI<AANLCI<LI< | <M< Ad LI LI
)
-
2 : : 3
N ONOANO A NNITINONODNO =M O - ANMIINOIN 8A9“m O NMNMINONDOANO — N A
22222233333333334444V1234567891111111111V1234567891111111111222V1234567
____________________.1_______.___________.1____._.____._________..1_______
M MMM NININININA<dl < << < << << << <LILLI<IAMMAMAMAMAMMAMAAMAMRMAMAAAMAADOODOLOLOLOO

60256020 C

iv



PREFACE

This manual contains hardware reference information for the CDC ® CYBER 200 Model 205
Computer System, Series 400 and Series 600,

RELATED PUBLICATIONS

Other manuals applicable to the CYBER 200 Model 205 Computer System and associated equipment
include the following:

Control Data Publication Publication Number
CYBER 200 Model 205 Maintenance Software System Reference Manual 60457200
CYBER 200 Model 205 General Physical Description Manual 60256120
CYBER 200 Model 205 Power and Temperature Protect Systems Manual 60433220
CYBER 200 Model 205 Refrigeration System Manual : 60329820
CYBER 200 Model 205 16K MOS Hardware Maintenance Manual 60430030
CYBER 200 Model 205 MOS Memory Cooling Hardware Maintenance Manual 60430050
CYBER 18 Computer Systems Overview Manual (section 3 contains a 60475000

list of applicable documents)

Programming Reference Aids Manual 60158600

These manuals are available from:

Control Data Corporation

Literature and Distribution Services
308 North Dale Street

St. Paul, MN 55103

(612) 292-2100

60256020 C



SYSTEM PUBLICATION INDEX

THE SYSTEM PUBLICATION INDEX PROVIDES A
LISTING OF THE RELATED CDC CYBER 200 MODEL 205
SERIES 400/600 HARDWARE MANUALS. THIS INDEX ALSO
INCLUDES CYBER 205 DIAGRAM BACKUP CHARTS.

CDC CYBER 200
MODEL 205

SERIES 400/600
HARDWARE MANUALS

[

I

PUB_NO.

HARDWARE MAINTENANCE MANUALS

DIAGRAMS BACKUP CHARTS
PART_NO.

HARDWARE MAINTENANCE MANUALS

SYSTEM MANUALS

SYSTEM MANUALS

SCALAR CONTROL (SCC)
2 VOLUMES

60430120 | 37103049

GENERAL FUNCTIONAL DESCRIPTION

SCALAR FLOATING POINT (SCF)

|

|

CYBER 18/ CYBER CHANNEL
INTERFACI C(HMM)ZOS

60457440

CYBER 200 MODEL 205

e

HARDWARE REFERENCE MANUAL

GENERAL PHYSICAL DESCRIPTION

A

CDC CYBER 18 COMPUTER SYSTEMS
OVERVIEW

NAD
HARDWARE REFERENCE MANUAL

l

VECTOR FLOATING POINT 1 (FP1)
60431120 ) 37103092

60430220 | 37103052 60475000 A 60458570
DDRESS Pl E (APL ATH NAD
VECTOR ADDRESS PIPELINE (APL) OPERATION A ECL 10,000 SERIES MICROCIRCUITS HARDWARE MAINTENANGE MANUAL
'
60430420 1 37103090 60417700 60438760
AM INPUTS (VST) TALLATION KOUT ATS NAD
YECTOR STRE (vsT) INSTALLATION AND CHEC GYBER 20Q SERIES ANSI CIRCUITS HARDWARE MAINTENANCE /
VoLUM | VOLUMI
60430520 1 37103074 60431420 60256150 REFERENCE MANUAL
|
|
VECTOR STREAM OUTPUTS (VSW) THEORY OF OPERATION SITE PREPARATION-GENERAL CYBER 200 MODEL 205 MAINTENANCE}
VECTOR STRING UNIT (VSS) (NOT AVAILABLE) SOFTWARE SYSTEM REFERENCE
60430620 37103050 60275100 60457200
VECTOR SETUP 8 RECOVERY MAINTENANCE SITE PREPARATION-CYBER 205 g;ainegog POWER AND
CONTROL (VSU) 2 VOLUMES Png;s .f slv’rsgrzu
60430720 | 37103053 60457220 60381620 60433320
VECTOR FLOATING POINT (FPL) MOS MEMORY MAINTENANCE " SITE PREPARATION-PERIPHERAL !fzkngg:#f.ggﬂv POWER AND
PROTECT SYSTEM
60431020 | 37103093 60430030 A\ 60275300 £591584 °*° A

SYSTEM CHANNEL
ADAPTER (SCA)?SYSTEM CHANNEL

VECTOR FLOATING POINT 2 (FP2)
60431220 1 37103091

l

EXPANDER (SCX
PART:!

60430040

S DATA
(SEE MAINTENANCE ,POWER AND
TEMP PROTECT SYSTEM, AND
REFRIGERATION SYSTEM MANUALS)|

60430320 | 37103048

MEMORY AND MEMORY INTERFACE (MEM)

I

I

WIRE LISTS
(COMPUTER LISTING)

SYSTEM CHANNEL ADAPTER (SCA
60430920 | 37103081

INPUT /OUTPUT & MAINTENANCE )(IW)

t AVAILABLE FROM:
ADVANCED DESIGN LABS
4290 FERNWOOD STREET
ST. PAUL , MINNESOTA 55112

11 CONTACT LITERATURE AND DISTRIBUTION SERVICES
FOR AVAILABILITY OF THIS MANUAL.

vi

Lmos MEMORY COOLING | "

60430050

MOTOR GENERATOR

(40kV)
|

REFRIGERATION SYSTEM

60329820

H
]

60454720

MOTOR GENERATOR
(80KvV)

60455810

B B>

00734

ES

CONTAINED IN CYBER 205 HARDWARE
REFERENCE MANUAL 60256020.

CONTAINED IN CYBER 205 HARDWARE
MAINTENANCE MANUAL 60457220.

APPLICABLE CYBER 18 DOCMENTATION
LIST IS CONTAINED IN SECTION 3 OF
THIS MANUAL .

APPLICABLE TO SERIES 600 ONLY.

REVISED 11/1/83

60256020 C



1. SYSTEM DESCRIPTION

Introduction
Series 400
Series 600
Physical Characteristics
Series 400
Series 600
Measurements and Weight
Power System
Cooling
Functional Characteristics
CPU Characteristics
Virtual Addressing Mechanism
Instruction Repertoire
Central Memory
I/0 Ports
Major System Component Description
CPU
Scalar Processor
Vector Processor
I1/0 Ports
Central Memory
MCU

2. FUNCTIONAL DESCRIPTIONS

General
CPU Description
Scalar Processor Description
Priority Unit
Bank Busy Checks

Memory Interface Buffer Checks

Memory Interface Signals
Absolute Bounds Address
Retry Unit
RNS/Branch Unit
Instruction Stack
Instruction Issue Unit
Associative Unit
Searching the Page Tables
Multiple-Match Fault
Load/Store Unit
Register File
Scalar Floating Point
Scalar Floating-Point Unit
Control Interface
Scalar Processor Microcode
Memories
Scalar Microcode Memories
(PMOO, PMO1)

60256020 C

CONTENTS

—
]
—

1
= WOWOOWOOWMOONNNNNESEPEDS -

1
N

]
o

,..._.._......_.._.._........._.T._.H...._...‘._.,_.._.._.._.
1
——
W w

1-13

2-1
2-1
2-2
2-2
2-3

2-4
2-5
2-5
2-6
2-6
2-6
2-8
2-9
2-12
2-12
2-12
2-13

2-13
2-15

2-15

Associative Microcode Memory

(HMOO)

Floating-Point and Divide
Microcode Memories (DMOO,
GMOO)

Vector Processor
Vector Setup and Recovery
Control (VSU)

Inputs to VSU

VSU Operation

Interrupt and Branch Control

Timers

Data Flag Register and Control

VSU Microcodes
Stream Addressing Pipeline (APL)
Stream Input Operation
Stream Output Operation
Vector Stream Input (VST)
VST SECDED ’
VST Expansion Networks
VST Scale Network
Field Length Registers
Register File Reads/Writes
Halts/Interrupts
Vector Floating-Point Pipeline
Pipeline Data Interchange
Add Unit
Multiply/Divide Unit
Shift Unit
Logical Unit
Delay Unit

Vector Floating-Point Control

Vector Stream Output (VSW)
Write One (Pipelines and
Register File)
Write Two (String, VSS)
Single Error Correction Double Error
Detection (SECDED)
CPU Word Address Bits (36
through 58)
SECDED Error Latching Hardware
SECDED Usage
Mode 1
Mode 2
Double Error Log (Mode 2A)
SECDED Faults
Block Write Enables
Input/Output
I1/0 Ports
System Channel Adapter
CYBER 205 Interface Lines
External Device Transmission
Sequence

2-16

2-17
2-18

2-18
2-20
2-21
2-22
2-23
2-24
2-26
2-26
2-28
2-28
2-29
2-29
2-29
2-29
2-30
2-30
2-30
2-31
2-33
2-33
2-34
2-35
2-35
2-35
2-37
2-37

2-37
2-38

2-40

2-40
2-41
2-41
2-41
2-41
2-41

2-42
2-42

2-45

vii



System Communication 2-45 4D Half-Word Enter (R) with

Storage and Maintenance Access 2-47 I (16 Bits) 4-32
I/0 Priority 2-47 4E Half-Word Increase (R)
Central Memory - Series 400 2-47 by I (16 Bits) 4-32
Central Memory - Series 600 2-48 CD Half-Word Enter (R) with
Memory Operation 2-48 I (24 Bits) 4-33
Memory Access and Control 2-52 CE Half-Word Increase (R)
Stack Request - Series 400 2-53 with I (24 Bits) 4-33
Stack Request - Series 600 2-53 BE Enter (R) with I (48 Bits) 4-33
Bank Address - Series 400 2-53 BF Increase (R) with I
Bank Address — Series 600 2-53 (48 Bits) 4-33
Absolute Address - Series 400 2-53 38 Transmit (R Bits 00-15)
Absolute Address - Series 600 2-53 to (T Bits 00-15) 4-33
Clock - Series 400 2-53 Register Instructions 4-34
Clock - Series 600 2-53 2C Logical Exclusive OR (R),
Write Control - Series 400 2-54 (S) to (T) 4-34
Write Control - Series 600 2-54 2D Logical AND (R), (S), to
Write Data 2-54 (T) 4-34
Sync - Series 400 2-54 2E Logical Inclusive OR (R),
Sync - Series 600 2-54 (S) to (T) 4-34
Master Clear - Series 400 2-54 30 shift (R) Per (S) to (T) 4-35
Master Clear - Series 600 2-54 34 Shift (R) Per (S) to (T) 4-35
Read Data 2-54 6D Insert Bits from (R) to
Memory Interface : 2-55 (T) Per (S) 4-36
Memory Degradation 2-55 6E Extract Bits from (R) to
Maintenance Control Unit 2-58 (T) Per (S 4-37
System Channel Interface (SCI) 2-58 40/60 Add U; (R) + (S) to (T) 4-38
Interfacing Between SCA and SCI 2-58 41/61 Add L; (R) + (S) to (T) 4-38
Control From A 2-60 42/62 Add N; (R) + (S) to (T) 4-38
Functions From B 2-61 44/64 Sub U; (R) - (S) to (T) 4-38
Status Words 2-62 45/65 Sub L; (R) - (S) to (T) 4-38
Function Word 2-63 46/66 Sub N; (R) - (S) to (T) 4-38
Maintenance Data Transfers 2-64 48/68 Mpy U; (R) e (S) to (T) 4-38
49/69 Mpy L; (R) e (S) to (T) 4-38
4B/6B Mpy S; (R) e (S) to (T) 4-38
4C/6C Div U; (R) / (S) to (T) 4-38
3. OPERATING INSTRUCTIONS 3-1 4F/6F Div S; (R) / (S) to (T) 4-38
63 Add Address (R) + (S) to
Controls and Indicators 3-1 (T) 4-39
Startup Procedures 3-1 67 Sub Address (R) - (S) to
Operating Procedures 3-4 (T) 4-39
System Stop (Normal) 3-4 58/78 Transmit (R) to (T) 4-39
Emergency Stop 3-5 59/79 Absolute (R) to (T) 4-39
51/71 Floor (R) to (T) 4-39
52/72 Ceiling (R) to (T) 4-39
5A/7A Exponent of (R) to (T) 4-39
4., TINSTRUCTION DESCRIPTIONS 4-1 50/70 Truncate (R) to (T) 4-39
5B/7B Pack (R), (S) to (T) 4=42
General 4-1 5C Extend 32 Bit (R) to 64
Instruction Word Formats 4-1 Bit (T) 4-42
Instruction Designators 4-1 5D Index Extend 32 Bit (R) to
Unused Bit Areas 4-1 64 Bit (T) 4-42
Instruction Types 4-9 76 Contract 64 Bit (R) to 32
Instruction Descriptions 4-31 Bit (T) 4=-42
Index Instructions 4-32 77 Rounded Contract 64 Bit
3E Enter (R) with I (16 Bits) 4-32 (R) to 32 Bit (T) 4-42
3F Increase (R) by I (16 Bits) 4-32 7C Length of (R) to (T) 4-42

viii 60256020 C



53/73 significant Square Root B5 Compare FP, Branch if (A)

of (R) to (T) 4=42 > (X) 4-63
10 Convert BCD to Binary B6 Branch to Immediate Address
Fixed Length 4=42 . (R) + I (48 Bits) 4=64
11 Convert Binary to BCD, Vector Instructions 4=64
Fixed Length 4=42 Instruction Formats 4-64
54/74 Adjust Significance of Subfunction Bits 4-66
(R) Per (S) to (T) 4=47 Field Lengths, Base Address,
55/75 Adjust Exponent of (R) and Offsets 4-68
Per (S) to (T) 4=47 Control Vector 4-69
2A Enter Length of (R) with Vector Instruction Termination 4-70
I (16 Bits) 4-50 Example of Vector Instruction
2B Add to Length Field 4-50 Operation 4=70
Branch Instructions 4-50 80 Add U; A + B—C 4=73
20/24 Branch if (R) ¥ (8) 81 Add L; A+ B—C 4-73
(32/64 Bit FP) 4-50 82 Add N; A+ B—C 4=73
21/25 Branch 1if (R) = (S) 84 Sub U; A - B—C 4-73
(32/64 Bit FP) 4=50 85 Sub L; A- B—C 4=73
22/26 Branch if (R) > (S) 86 Sub N; A - B—C 4=73
(32/64 Bit FP) 4=50 88 Mpy U; A e B—C 4-73
23/27 Branch 1f (R) < (S) 89 Mpy L; Ae B—C 4-73
(32/64 Bit FP) 4-50 8B Mpy S; A e B—C 4-73
2F Register Bit Branch and 8C Div U; A/B—C 473
Alter 4-51 8F Div S; A/B—C 473
33 Data Flag Register Bit 83 Add A; A+ B—C 4=74
Branch and Alter . 4=52 87 Sub A; A - B—C 4-74
3B Data Flag Register Load/ 8A Shift; A/B—C 4=75
Store . 4=55 98 Transmit A—-C 4-76
32 Bit Branch and Alter 4=55 99 Absolute A—C 4=76
36 Branch and Set (R) to 91 Floor A—C 4=76
Next Instruction 4-58 92 Ceiling A—C 4=76
31 Increase (R) and Branch if 9A Exponent of A—C 4=76
(R) ¥ 0 4-58 90 Truncate A—C 4-76
35 Decrease (R) and Branch if 9B Pack A, B—C ’ 4-81
(R) ¥ 0 4=58 9D Logical, A, B—C 4-81
09 Exit Force 4-58 9C Extend 32 Bit A—-64
BO Compare Integer, Branch if Bit C 4-83
(A) + (X) = (2) 4-60 96 Contract 64 Bit A— 32
Bl Compare Integer, Branch if Bit C 4-83
(A) + (X) % (2) 4~-60 97 Rounded Contract 64 Bit
B2 Compare Integer, Branch 1if A—32 Bit C 4-83
A) + (X) > (2) 4-60 93 significant Square Root of
B3 Compare Integer, Branch if . A—C 4-83
(A) + (X) < (2) 4-60 94 Adjust Significance of A
B4 Compare Integer, Branch if Per B—C 4-86
(A) + (X) £ (2) 4-60 95 Adjust Exponent of A Per
B5 Compare Integer, Branch if B—C 4-86
(A) + (X) > (2) 4-60 Sparse Vector Instructions 4-88
BO Compare FP, Branch if (A) Sparse Vector Instruction
= (X) 4=63 Format 4-91
Bl Compare FP, Branch if (A) Base Addresses and Field
¥ (X) 4-63 Lengths 4-92
B2 Compare FP, Branch if (A) Sparse Vector Instruction
2 (X) 4-63 Termination 4-92
B3 Compare FP, Branch if (A) Instructions A0 through AF 4-93
< (X) 4~63 A0 Add U; A+ B—C 4-93
B4 Compare FP, Branch if (A) Al Add L; A+ B—C 4-93
£ X 4-63 A2 Add N; A +B—C 4-93

60256020 C . 1x



Vect

A4 Sub U; A - B—C
A5 Sub L; A - B—C
A6 Sub N; A - B—C
A8 Mpy U; A e B—C
A9 Mpy L; A e B—C
AB Mpy S; A e B—C
AC Div U; A/B—C

AF Div S; A/B—C

or Macro Instructions

CO Select EQ; A = B, Item
Count to (C)

Cl Select NE; A # B, Item
Count to (C)

C2 Select GE; A > B, Item
Count to (C)

C3 Select LT; A < B, Item
Count to (C)

DA Sum (Ag + A} + A2 +
eee Ap) to (C) and (C + 1)

DB Product (A, A1, A2,
eee Ap) to C

D5 Delta [A(p+]1) - Ap)
—C

n

Dl Adj. Mean [A(p+1) + Apl/
2 —C,

DO Average (Ap + Bp)/
2—C,

D4 Ave. Diff (A, - Bn)/
2—C,

B8 Transmit Reverse A—C

DF Interval A Per B—C

BA Transmit Indexed List—C

B7 Transmit List — Indexed C

DC Vector Dot Product to (C)
and (C + 1)

String Instruction

Logi

Nont

F8 Move Bytes Left; A—C

cal String Instructions

FO Logical Exclusive OR A,
B—C

Fl Logical AND A, B—C

F2 Logical Inclusive OR A,
B—C

F3 Logical Stroke, A, B—C

F4 Logical Pierce A, B—C

F5 Logical Implication A,
B—C

F6 Logical Inhibit A, B—C

F7 Logical Equivalence A,
B—C

ypical Instructions

3D Index Multiply (R) e (S)
to (T)

3C Half-Word Index Multiply
(R) o (S) to (T)

SE/7E Load (T) Per (S), (R)

S5F/7F Store (T) Per (S), (R)

12/13 Load/Store Byte (T)
Per (S), (R)

4-93
4-93
4-93
4-97
4-97
4-97
4-97
4-97
4-101

4-101
4-101
4-101
4-101
4-104
4-105
4-107
4-107
4-109
4-109
4-110
4-112
4-113
4-114
4-116
4-118
4-118
4-119

4-119
4-119

4-119
4-119
4-119

4-119
4-119

4-119
4-122

4-122
4-122
4-122
4-122

4-122

37 Transmit Job Interval

Timer to (T) 4-123
7D Swap S—T, R—S 4-123
39 Transmit Real-Time Clock

to (T) 4-124
3A Transmit (R) to Job Inter-

val Timer 4-124
BB Mask A, B—C Per Z 4-125
BC Compress A—C Per Z 4-125
CF Arith. Compress A—C

Per B 4-126
BD Merge A, B—C; Per 2 4-129
14 Bit Compress 4-131
15 Bit Merge 4-133
14 Bit Mask 4-133
56 Select Link 4-137

Compare Instructions (BO through
B5) : 4-140
BO Compare Integer, Set Condi-

tion if (A) + (X) = (2) 4-140
Bl Compare Integer, Set Condi-

tion if (A) + (X) # (2) 4-140
B2 Compare Integer, Set Condi-

tion if (A) + (X) > (2) 4-140
B3 Compare Integer, Set Condi-

tion if (A) + (X) < (2) 4-140
B4 Compare Integer, Set Condi-

tion if (A) + (X) £ (2) 4-140
B5 Compare Integer, Set Condi-

tion if (A) + (X) > (Z) 4-140
BO Compare FP, Set Condition

if (A) = (X) 4-142
Bl Compare FP, Set Condition

if (A) # (X) 4-142
B2 Compare FP, Set Condition

if (A) > (X) 4-142
B3 Compare FP, Set Condition

if (A) < (X) 4-142
B4 Compare FP, Set Condition

if (A) < (X) 4-142
B5 Compare FP, Set Condition

if (A) > (X) 4-142

" C4 Compare EQ: A = B, Order

Vector —2 4-143
C5 Compare NE: A # B, Order

Vector —Z 4-143
C6 Compare GE: A > B, Order

Vector —2Z 4-143
C7 Compare LT: A < B, Order

Vector —2 4-143
C8 Search EQ; A = B, Index

List—C 4-144
C9 Search NE; A # B, Index

List—C 4-144
CA Search GE; A > B, Index

List—C - 4-144
CB Search LT; A < B, Index

List—C 4-144

60256020 C



CC Mask Binary Compare;
(A EQ/NE (B) Per (C)

D8 Max. of A to (C) Item
Count to (B)

D9 Min. of A to (C) Item
Count to (B)

28 Scan Equal

1C Form Repeated Bit Mask
with Leading Zeros

1D Form Repeated Bit Mask
with Leading Ones

1E Count Leading Equals R

1F Count Ones in Field R,
Count to T

03 Keypoint - Maintenance

04 Breakpoint - Maintenance

05 Void Stack and Branch

Monitor Instructions

00 Idle

06 Fault Test - Maintenance

08 Input/Output Per R

0C Store Associative Registers

0D Load Associative Registers

OE Translate External Inter-
rupt

OF Load Keys from (R), Trans-
late Address (S) to (T)

O0A Transmit (R) to Monitor
Interval Timer

5. PROGRAMMING INFORMATION

General
Monitor and Job Modes
Exchange from Monitor Mode to
Job Mode
Illegal Instruction in Monitor
Mode
Exchange from Job Mode to Monitor
Mode
Interrupts
Storage Access Interrupts
External Interrupts
1/0 Channel Interrupt Lines
Monitor Interval Timer Interrupt
Invisible Package
Addressing Modes
Virtual Addressing
Pages
Virtual Address Format
Associative Words
Page Table
Associative Registers
Space Table

60256020 C

4-148

4-149 -

4-149
4-150

4-150

4-150
4-151

4-153
4-153
4-153
4-154
4-155
4-155
4-155
4-156
4-157
4-157

4-157
4-158
4-159

5-13
5-13
5-14
5-16
5-19
5-19
5-19

Operation of Virtual
Addressing
Absolute Address
Real-time Counters
Free-Running Clock Counter
Monitor Interval Timer
Job Interval Timer
Register File
Register File Restrictions
Register 0 (Trace Register)
Restrictions
Register O Content Resulting
from an Exchange Operation
Register 0 Content Resulting
from a Swap (7D) Instruction
Register 0 when Referenced by
an Instruction Designator
Registers 1 and 2 (64-Bit),
2 through 5 (32-Bit)
Restrictions
Registers 0 through 7
(64-Bit), 0 through F
(32-Bit) Monitor Mode
Restrictions
Register 1 (32-Bit) Rightmost
Half of 64-Bit Register O
Common Register File for Monitor
and Job Modes
Data Flag Branch Register
Data Flags
Mask Bits
Product Bits
Dynamic Inclusive OR for Product
Bits
Scalar Divide, Square Root,
Convert Instruction Flag
Data Flag Branch Enable Bit
Free Data Flags
Data Flag Branch Operation
Data Flag Branch Timing
Considerations
General Definitions and Programming
Guides
Overlap of Operand and Result
Fields
Illegal Instructions
Instructions which Cause Undefined
Results or Operations
Item Count
Field Length and Offset
Index
Operand Size Definition
Restriction on Self-Modifying
Programs
Result Vector 64-Sword Look-Ahead

5-21
5-21
5=22
5-23
5-23
5-23
5-24
5-24

5-25
5-25
5-26
5-26

5-32

5-32
5-32

5-33
5-33
5-34
5-36
5-36

5=37

5-37
5-37
5-37
5-39

5-39
5-40

5-40
5-40

5-41
5-41
5-42
5-42
5-42

5-43
5-43



A. NUMBER SYSTEMS AND TABLES
B. FLOATING-POINT ARITHMETIC

2-8

2-9

2-10
2-11
2-12
2-13
2-14

2-15

2-16

xii

CYBER 205 Central Computer
(Series 400)

CYBER 205 Central Computer
(Series 600)

CYBER 205 Central Computer
Floor Plan (Series 400)
CYBER 205 Central Computer
Floor Plan (Series 600)

CYBER 205 Block Diagram

Scalar Processor Block Diagram

Simplified Diagram - Vector
Processor

' Functional Components of

Scalar Processor
Page Table Search Examples
Vector Processor
VSU Block Diagram
Floating-Point Pipeline Basic
Block Diagram
Add Unit Block Diagram
Multiply/Divide Unit Block
Diagram
Shift Unit Block Diagram
Logical Unit Block Diagram
Delay Unit Block Diagram
String Unit 0l1d Data
System Channel Adapter
I/0 Transmission Sequence
Section Configuration
(Series 400)
Section Configuration
(Series 600)
Two—-Sword, Sword, and Word
Configuration
Memory Interface Stack Connec—
tions (Series 400)
Memory Interface Module
Connections (Series 600)
Memory Interface Configuration
and Connections for a Two-
Pipeline Configuration
System Channel Interface (SCI)
Status Words 2 and 3
Instruction Formats
Instruction Listing Format
Example of Register Content
for an Insert Bits from (R)
to (T) Per (S) Instruction

APPENDIXES

A-1 C. G BITS AND TERMINATING CONDITIONS
B-1 - D. DATA FLAG APPLICATIONS TO
INSTRUCTIONS
FIGURES
4-4 Example of Register Content
1-2 for an Extract Bits from (R)
to (T) Per (S) Instruction
1-3 4-5 Example of Register Content
for a Ceiling (R) to (T)
1-5 Instruction
4-6 Example of Register Content
1-6 for a Truncate (R) to (T).
1-10 Instruction
1-11 4-7 Example of Register Content
for an Extend 32-Bit (R)
1-12 to 64-Bit (T) Instruction
4-8 Example of Register Content
2-3 for a Contract 64 Bit (R)
2-10 to 32 Bit (T) Instruction
2-19 4-9 Example of Register Content
2-20 for a Rounded Contract 64
Bit (R) to 32 Bit (T)
2-32 Instruction
2-33 4-10 Example of Register Content
for a Convert BCD to Binary,
2-34 Fixed-Length Instruction
2-35 4-11 Example of Register Content
2-36 for an Ad just Exponent of
2-36 (R) Per (S) to (T)
2-39 4-12 Example of Bit Branch and
2-43 Alter Instruction
2-45 4-13 General Vector Instruction
Format
2-49 4-14 Operand Field Length, Base
Address, and Offset Formats
2-50 4-15 Vector Field Address Format
4-16 Control Vector Base Address
2-51 Format (Z)
4-17 Vector Instruction Example of
2-52 Register Content and
Instruction Format
2-52 4-18 Vector Address Fields for

Vector Instruction Example
4-19 Example of an Add A; A+ B
5 — C Instruction
9 4-20 Example of Floor A—C In-
3 struction with Negative
Exponent
4-21 Example of a Ceiling A—C
Instruction with Negative
Exponent

4-37

4-40

4-41

4-43

444

4-71
4-72

4-75

4-77

4-79

60256020 C



4=-22

4-23
4-24
4=25

4-26
4-27

4-28
4-29
4-30

4-31

4-32

4-33

4-34
4-35

4-36
4=37 -

Example of Source and Result
Elements for a Truncate
A— C Instruction

Example of Pack A, B—C
Instruction

Example of Extend 32 Bit
A— 64 Bit C Instruction

Example of Vector Elements for
a Rounded Contract 64 Bit
A —-32 Bit C Instruction

Example of Adjust Exponent of
A Per B—C Operation

Example of Compressing Initial
Vector Field into Sparse
Vector Field

General Sparse Vector Instruc-
tion Format

Sparse Vector Field Length and

Base Address Formats

Example of an Add U; A+ B
—C Sparse Vector Instruc-
tion when G Bit 1 = 0 and G
Bit 2 = 1 (AND)

Example of an Add U; A+ B
— C Sparse Vector Instruc-
tion when G Bit 1 = 1 and G
Bit 2 = 0 (Exclusive OR)

Example of a Div or Mpy U
Sparse Vector Instruction
when G Bit 1 = 0 and G Bit
2 =1 (OR)

Example of Select EQ; A=B
Item Count to C

Example of Delta Instruction

Example of a Transmit Reverse
A—>C Instruction

Example of a Transmit Indexed
List —C Instruction

Example of General Format of
a Data String Field

2-1 Scalar/Vector Processor
Instruction Responsibility

2-2 Data Flag Register

2-3 Channel Flag Assignments

2-4  Memory Port Transfer Modes

2-5 Series 400 Memory Degradation
Bits (4K Chips)

2-6 Series 600 Memory Degradation
Bits

2-7 Control From A

2-8 Functions From B

2-9 Status Word 1 Bits and
Descriptions

60256020 C

4-38

4-80
: 4-39

4-82

4=40
4-84

4=41
4-86 4=42
4-88 4=43

4-44
4-90 4=45
4-91 4=-46
4-92 4=47

4-48
4-95

4-49

4-50
4-96 - 5-1

5=2
-4-100 5-3

5-4
4-103 5=5
4-108

5-6
4-111 5=7
4-115 5-8

5=9
4-118 5-10

TABLES

2-10
2-8
2-24 2-11
2-46 2-12
2-56 3-1

3-2
2-56 3-3

4-1
2-57 4=2
2-60
2-61 4-3
2-62 b=4

Example of Logical String In-
struction (Logical Exclusive
OR) 4-121

Example of Arithmetic Compress
A—C Per B Instruction

Examples of BD Merge Instruc-
tion

Example of Bit Compress In-
struction

Example of Bit Merge Instruc-
tion

Example of Bit Mask Instruc-
tion

Link Selection

Example of Compare GE; A > B;
Order Vector—2Z Instruction

Example of Search EQ; A = B, -
Index List —C

Example of Repeated Bit Mask
Data Format (Leading Zeros)

Example of Count Leading
Equals Data and Register
Format

Breakpoint Register Format

Register Formats for the OF
Instruction

Invisible Package Word
XX+ oXXE]g Format for
Access Interrupt

Invisible Package Format

Virtual Address Formats

Associative Word Formats

Virtual Address Key Register
Format

Page Table Format

Virtual Address to Absolute
Address

Register File

Virtual/Absolute Address Zero

DFB Register Format

Function Word Bits and
Descriptions

MCU to CPU Data

CPU to MCU Data

Startup Procedures

System Stop

Emergency Stop

Instruction Designators

Instruction List by Function
Code

Instruction List by Instruc-
tion Type

Bit Branching Conditions

4-128
4~130
4-132
4-134

4-136
4-138

4-145
4-147

4-151

4-152
4-153

4-158

5-4
5-7
5-15
5-16

5-18
5=20

5-22
5-24
5-25
5-33

2-63
2-65
2-71
3-1
3-4
3-5
4=5

4-10

4-21
4-51

xiii



4-13

4-15
4-16
4-17
4-18

4-19
4-20

4-21
4-22
4-23

4-24

l xiv

Bit Altering Conditioms

DFBR Bit Branch Conditions

DFBR Bit Altering Conditions

DFBR Branch Address Source
Conditions

Bit Branching Conditions

Bit Altering Conditions

Branch Address Source Condi-
tions

Index Branch Instruction
Designators

Integer Ranges

Index Branch Instruction
Designators

Vector Instruction Designators

Subfunction Bits

Sign Control Subfunction Bits

Sparse Vector Instruction
Designators

G Bit 1 and 2 Operations

Results of the Logical
Operations (AO through A6)

Results of the Logical
Operations (A8 through AB)

Results of the Logical
Operations (AC, AF)

Truth Table for Logical String
Instructions

DFB Conditions for FO through
F7 Instructions

4-52
4-53
4-53
4-54
4-56
4-56
4-56

4-62
4-62
4-63
4-65
4-66
4-67

4-91
4-93

4-94
4-98
4-99
4-119

4-120

4-25

4-26

4=-24
4-25
4-26
4-27
4-28

4-29

Destruction Used in a Link

Operation 4-138
Combinations of R, Gl, and G2

Bits 3 and 4 that can be

Selected 4-139
DFB Conditions for FO through

F7 Instructions 4-120
Instructions Used in a Link

Operation 4-138
Combinations of R, Gl and G2

Bits 3 and 4 that can be

Selected 4-139
Input Configurations 4-139
Search Iteration Starting

Designator Conditions 4-146
R Designator Bit Definitions 4-156
External Interrupt Lines 5-5
Page Size Specification 5-14
Associative Word Usage Codes 5-17
Lockout Codes 5-18
Page Table Restrictions and

Requirements 5-19
Results for Specified Register

Zero 5-27
Data Flag Register Bit Assign-

ments 5-34
Free Data Flag Bit Assignments  5-37

60256020 C



SYSTEM DESCRIPTION 1

S

INTRODUCTION

The CYBER 205 central computer is a large-scale, high-speed, arithmetic-computing system.
The basic central computer consists of the following components.

e Central processing unit (CPU)

e One million 64-bit words of central memory
e Eight input/output (I/0) ports

e Maintenance control unit (MCU)

The CPU is available in models with 1, 2, or 4 vector pipelines, and 8 I/0 ports that are
expandable to 16 I/0 ports.

Large-scale integrated (LSI) circuits are used in the CPU to provide high performance and
reliability. The CPU contains separate scalar and vector processors that operate on a
single instruction stream to provide sequential and parallel operations on single bits,
8-bit bytes, and 32-bit or 64-bit operands and vector elements. The central memory 1s a
high-performance semiconductor memory with single-error correction and double-error
detection (SECDED) on each 32-bit half-word for high-storage integrity. The CYBER 205 uses
a virtual addressing high-speed mapping technique to allow programs to appear logically
contiguous while not being physically contiguous in the storage system.

There are two series of the CYBER 205 computer: the Series 400 and the Series 600. Both
series share the same operating features; the main difference 1is in the physical
construction of the memories.

Figures 1-1 and 1-2 show the CYBER 205 Central Computer, Series 400 and Series 600,
respectively.

60256020 C 1-1



%

Figure 1-1. CYBER 205 Central Computer (Series 400)

1-2 ) 60256020 C



=

60256020 C

™|

\/\“{

Figure 1-2, CYBER 205 Central Computer (Series 600)

1-3



SERIES 400

The Series 400 central memory is composed of 4K bipolar random-access memory (RAM) chips.
The basic memory size is 1 million words. The memory is field-expandable to 2 million or 4
million words.

SERIES 600

The Series 600 central memory is composed of 16K metal-oxide semiconductor (MOS) RAM chips.
The basic memory size is 1 million words. The memory is field-expandable to 2, 4, or 8
million words.

Because of the similarities of the Series
400 and the Series 600 central computers,
hereafter when a feature is discussed that
is common to both series, a general heading
appears at the beginning of the paragraph.
However, when a feature is discussed that is
peculiar to only one series, the heading
Series 400 or Series 600 appears.

PHYSICAL CHARACTERISTICS

Figure 1-3 shows the physical layout of the CYBER 205 Series 400 central memory. Figure 1-4
shows the physical layout of the CYBER 205 Series 600 central computer only. The scalar and
vectors of the Series 400 and the Series 600 are identical.

SERIES 400

Central memory is contained in individual sections around the memory interface (sections J
and K). The basic 1 million, 64-bit words of central memory are contained in sections A and
He A l-million-word option is located in sections B and G, and a 2-million-word option is
located in sections C, F, D, and E.

The scalar processor is located in section L. The basic vector processor is located in
sections N, P, and R. Vector floating-point pipeline 2 (optional) is located in section R.
Section S contains optional vector floating-point pipelines 3 and 4. Sections T and U
contain the optional divide enhancements for vector floating-point pipelines 1 and 2, and 3
and 4, respectively.

SERIES 600

Central memory is contained in two or four individual cabinets located on either side of the
memory interface cabinets (section J and K). The basic 1 million, 64-bit words of central
memory are contained in two cabinets (sections A and H). The cabinets are field-expandable
to 2 million words. Four million and 8 million words of central memory are contained in
four cabinets; sections A, B, G, and H.

1-4 60256020 C



60256020 C

\

-\

I

i

-

-

I

I

9
/

” LS
T T
A, L Zal jSw N
’ N 122! 2r PN
| \
’ > 15 S &SI C A
<9< -y ISE o,
N =5l B! PARTS
SNV Ixul 087
NN ] 180, ISS
NG S o oA
SOONEE 171,V
Al T S S ’
\\ / \V/
~ MEMORY \
/ |&———— INTERFACE ——»|\
512K MEMORY 512K MEMORY
SECTION B SECI'ON SECE'ON SECTION G
N )
03 2
@“%V "’:*4,
S O %
$29 0%
N O
-l
c2
SCALAR <3
PROCESSOR 3E
QW
[7]
NOTE:

SCALAR AND VECTOR FLOORPLAN OF SERIES 400 IDENTICAL TO
FLOORPLAN OF SERIES 600.

Figure 1-3. CYBER 205 Central Computer Floor Plan (Series 400)




e 1-6

MEMORY
MEMORY
|__ INTERFACE —|
r MEMORY MEMORY i
| MEMORY | MEMORY | INTERFACE INTERFACE | MEMORY | MEMORY |
| SECTION | secTion | secTion SECTION | SecTION | SECTION | ~
| B A J K H G ] /N
1 7 ™G
U _———-d /S
rEL )
& 4
A /
Sv
- T
>
cz oL
SCALAR g0 SEA
PROCESSOR qF ¢ O Ve
aa Seds
MAINTENANCE @ < '*,3?&\0
CONTROL S&L8
UNIT OSTY
&8
g
1/0 & VECTOR SETUP AND VECTOR STREAM AND
RECOVERY STRING
SECTION N SECTION P
VECTOR
PROCESSOR
NOTES:

SECTIONS A AND H

— 1-MILLION WORDS AND
2-MILLION WORDS OPTION

SECTIONS A, B, G, AND H — 4-MILLION WORDS OPTION AND \D
8-MILLION WORDS OPTION

TMAINTENANCE CONTROL UNIT NOT DRAWN TO SCALE.
LOCATION OPTIONAL.

Figure 1-4.

CYBER 205 Central Computer Floor Plan (Series 600)

60256020 C



MEASUREMENTS AND WEIGHT

For a complete physical description of the CYBER 200 Model 205 central computer, refer to
the CYBER 205 General Physical Description manual listed in the preface.

POWER SYSTEM

For a description of the power system, refer to the CYBER 200 Model 205 Power and
Temperature Protect Systems manual listed in the preface.

COOLING

For a description of the cooling system, refer to the CYBER 200 Model 205 Refrigeration
System manual (Series 400) or the CYBER 200 Model 205 MOS Memory Cooling Hardware
Maintenance manual (Series 600) listed in the preface.

FUNCTIONAL CHARACTERISTICS

The functional characteristics of the CYBER 205 are summarized below. The functional
characteristics are described in detail in sections 2 and 4.

CPU CHARACTERISTICS

Synchronous }nternal logic with a 20-nanosecond clock period (minor cycle).
Two’s complement arithmetic.

One, two, or four parallel vector pipelines.

Hardware macro instructions.

Sequential stream processing.

Bit, byte, half-word, or 64-bit floating-point operations.

Independent scalar and vector instruction execution for no-conflict operatioms.

High-speed register file with 256 64-bit registers (2 reads and 1 write per clock
period).

Sixty-four 64-bit word instruction stack for the optimization of programmed scalar
loop iteration.

Monitor and job modes.

60256020 C 1-7



VIRTUAL ADDRESSING MECHANISM

Forty-eight-bit virtual address.
Program protection via lock and key.
Sixteen registers for simultaneous virtual to physical mapping.

Selectable page sizes - small page sizes of 512, 2048, and 8192 words and large page
size of 65 536 words.

INSTRUCTION REPERTOIRE

Thirty-two-bit and 64-bit floating-point arithmetic.

Vector and sparse vector.

Vector macros (for example, dot products, inner products, and so on).
Dot product.

Square root instructions.

Integer arithmetic.

CENTRAL MEMORY

e 80-nanosecond access time.
e SECDED for each 32 bits for high reliability.
® Memory sizes of 1, 2, and 4 million 64-bit words (Series 400).
e Memory sizes of 1, 2, 4, and 8 million 64-bit words (Series 600).
ob High memory bandwidth to support scalar, and simultaneous vector and I/0 operations.
e Data transferred to/from memory in 32-bit half-words, 64-bit words, 512-bit super
words (sword), or 1024-bit two-sword quantities.
I/O PORTS
e I/0 ports expandable to 16.
e Each port capable of 200 x 106 bits per second maximum transfer rate.
e Front-end computer for communications and job entry.
e One channel used for MCU.

1-8

60256020 C



MAJOR SYSTEM COMPONENT DESCRIPTION

The following are the CYBER 205 major system components.
the following paragraphs.

They are described in detail in

° CPU
e Central memory

e MCU
Figure 1-5 shows the CYBER 205 basic block diagram.

The CPU contains the scalar processor, vector processor, and I/0 ports.

60256020 C



CENTRAL PROCESSOR
UNIT
CENTRAL »| VECTOR |
MEMORY PROCESSOR
M"lJON ‘ Iiiﬁ!ﬂii
WORDS
MEMORY FeipELINE |
INTERFACE I [ Wil | l
r—9
1 [ i |
l MILLION l"' - — — —’l LPIPELINE | |
(woaos) |
OPTION —
L —J CeiPELINE ) I
-
—_— | (OPTION)
r= " —
MILLION
wonos) "— -
OPTION
L( | SCALAR
PROCESSOR
= 1
| MILLION L—
WORDS
(OPTION- & 7] EIGHT
SERIES 600 NPUT/OUTPUTje—
ONLY)
L ' 1 PORTS
EIGHT
rNPUT/OUTPUT
PORTS
(OPTION)
MAINTENANCE —
CONTROL
UNIT

Figure 1-5. CYBER 205 Block Diagram

Scalar

The scalar processor performs the primary system control functions of the CPU in addition to
providing the execution of scalar operations. Figure 1-6 shows the scalar processor block
diagram.

The scalar processdr contains a 64-word instruction stack segmented into 8 superwords

(swords). The instruction stack is capable of holding up to 128 32-bit instructions, 64
64-bit instructions, or a combination of both, and provides a 16-word instruction read ahead.

1-10 60256020 C



VECTOR PROCESSOR

A
INSTRUCTION > -ISSUE
STACK UNIT

MEMORY
MEMORY €——% conNTROL

FUNCTIONAL
UNITS

l LOAD/
STORE REGISTER

UNIT FILE

|

VECTOR PROCESSOR

Figure 1-6. Scalar Processor Block Diagram

The issue unit retrieves instructions from the instruction stack. The issue unit decodes
all instructions, initiates scalar operations with the appropriate functional unit, and
directs decoded vector/string instructions to the vector processor for execution. The issue
unit is capable of issuing instructions at the rate of one instruction every minor cycle.

The register file provides 256 64-bit registers for use in instruction and operand
addressing, indexing, field lengths, and as source and destination registers for the
functional unit operands and results. The register file is capable of two reads and one
write every minor cycle.

The scalar arithmetic unit contains independent functional units to attain high scalar
performance. These units are used for floating-point arithmetic and logical operations.
The functional units can accept a new pair of operands every minor cycle. The functional
units receive their operands from and transmit their results to the register file.

The load/store unit receives instructions from the issue unit. It controls data transfers
between central memory and the register file. It is capable of accepting one load request
every minor cycle or one store request every two minor cycles.

Included in the memory control area are the virtual memory addressing mechanism and the
priority unit. Virtual addressing converts a logical address to an absolute storage address
to allow programs to appear logically contiguous to the user while not being physically
contiguous in the storage system. The priority unit receives memory requests from various
sections of the system and resolves memory conflicts.

60256020 C 1-11



Vector Processor

The CYBER 205 vector processor is used to process arrays or strings of data. High
performance is achieved by specialized hardware operating in parallel to accomplish what
otherwise would require issuing a sequence of machine instructions. Thus, for example, two
sets of operands can be multiplied to produce a third set of results by issuing a single
instruction to the vector processor.

A simplified functional diagram of the vector processor is shown in figure 1-7. Vector
instructions are received from the issue unit of the scalar processor. These instructions
specify the operation to be performed and the addresses of the operands and results. The
vector processor uses buffers in the vector stream input and output units to position
operands and results for transmission between the processing elements and memory.

p:géé':s%g «—> VECTOR CONTROL UNIT

3

VECTOR
STREAM
INPUT

MEMORY

MEMORY <«——>»1 CONTROL

VECTOR
[ PIPELINES

STRING
UNIT

v

VECTOR
STREAM
UNIT

Figure 1-7. Simplified Diagram - Vector Processor

The vector processor has two types of processing elements. The first uses one, two, or four
vector pipelines, depending upon the model. When more than one vector pipeline is included,
these units operate in parallel on alternating data elements. With the exception of divide
and square root, these pipelines each accept a new pair of operands every minor cycle for
64-bit floating-point operations. For 32-bit floating-point operations, the rate is doubled.

The second type of processing element is the string unit. The string unit performs logical
operations on strings of data to allow bit operations on bit boundaries.

1-12 ‘ 60256020 C



1I/O Ports

The I/0 ports provide the control and data paths for communication between central memory
and the external devices. The standard configuration provides eight I/0 ports- with an
option for eight more. Each I/0 port has a maximum transfer rate of 200 megabits.

Channel interfaces for attachment of the MCU, peripherals, and front end computers are
accomplished by the use of SCA.

CENTRAL MEMORY

Central memory is a random—-access memory using bipolar, 1K-bit or 4K~bit integrated circuits
(Series 400) or 16K MOS circuits (Series 600)., The memory words are 78 bits providing a
64-bit data word with 7 bits of SECDED for each 32-bit half-word. The basic memory size is
1 million words with expansions to 2 and 4 million words (Series 400), and 2, 4, or 8
million words (Series 600 only).

MCu

The primary purpose of the MCU 1s to support the reliability, availability, and
maintainability of the system. MCU provides system autoload and system performance
monitoring capabilities. The MCU also provides the capability of loading, controlling, and
monitoring the central processing unit. It is connected to the CPU through a standard I/0
channel by the SCA.

60256020 C 1-13



FUNCTIONAL DESCRIPTIONS 2

GENERAL

This section provides a detailed description of the CYBER 205 major system components.

This section starts with a general description of the CPU and then gives a detailed
description of the scalar processor, the vector processor, SECDED, I/0 ports, central

memory, and the MCU.

~When reading this section, 1t should be noted that the following references appear
throughout the text.

Half-word 32 bits
Word 64 bits
Superword (sword) 512 bits (eight words)

Two-sword 1024 bits

CPU DESCRIPTION

The CPU contains all string and streaming instruction control, arithmetic units, storage
control, and I/0 communication control. The CPU consists of the following functional areas.

e Scalar processor

e Vector processor

e I/0 ports
The scalar processor is physically contained in a cabinet next to the central memory in
order to reduce transfer delays and gain performance. The scalar processor contains the
initial instruction decode, five independent arithmetic functional units, a semiconductor
register file, and the high performance load/store pipeline unit.
The vector processor performs multioperand instruction by streaming data through functional
units. The vector processor contains setup and recovery control, stream addressing
pipelines, stream inputs and outputs, input/output control, and one floating-point pipeline
with an option of one or three additional pipes.

The eight I/0 ports (with an option of eight additional ports) provide the CPU with the
physical connection to the external devices.

60256020 A 2-1



The scalar and vector processors each contain independent instruction controls. Therefore,
operating on a single instruction stream, the scalar processor can execute scalar
instructions in parallel with most vector instructions if there are no memory references to
load or store operands from the register file. There are two exceptions to the parallel
execution of vector and scalar instructions on a single instruction stream.

e The scalar processor cannot execute any scalar register file load or store
instructions in parallel with a vector operation requiring references to memory (OF,
12, 13, 5E, 5F, 7E, and 7F instructions).

e The scalar processor cannot issue any instruction while the vector processor
executes an instruction that actively uses the register file (7D, B7, or BA
instructions).

Register conflict within the register file always delays the issue of a vector or scalar
instruction.

SCALAR PROCESSOR DESCRIPTION

The scalar processor provides the central computer instruction control. The scalar
processor receives and decodes all instructions from central memory, directs decoded
vector/string instructions to the vector processor for execution, and provides orderly
buffering and execution of the load and store instructions.

Figure 2-1 shows the functional units of the scalar processor. Each functional unit is
described in this section.

PRIORITY UNIT

The priority unit receives memory requests from the various functional units of the
machine. After screening out nonvalid requests, the priority unit interprets the requests
and drives the memory interface to produce the proper memory activity. A memory request
consists of a request line and a set of control bits defining the amount of data to be
transferred and whether a read or write is to be performed.

The priority unit upon receiving a valid memory request, responds with an accept to the
requesting source to indicate that memory activity is initiated. If, due to a memory busy,
the request is not immediately honored, the source or the retry unit in priority repeats the
request.

If two requests arrive at the priority unit simultaneously, only one is processed, the other
request receives no accept. In all cases of simultaneous request, I/O initiates one of the
requests and is always given the accept. Because the I/0 request has the highest priority,
and is always honored immediately, an I/0 accept line is not needed.

When a request has passed the simultaneous request check, an accept 1is returned to the
source, provided the following two conditions are met.

1. The request has an absolute address or virtual address for which a match exists in
the associative register. (Refer to the associative unit description for the
requirements of a virtual address match.)

2. There is no bank busy conflict.

2-2 60256020 A



TO VECTOR PROCESSOR SCALAR FLOATING

J POINT

f ) ADD
UNIT
RNS/ INSTRUCTION INSTRUCTION
BRANCH STACK ISSUE
UNIT (64 WORDS) UNIT
7 T ¥ UNIT
-
_ PRIORITY (o] (
" MEMORY @==p{ UNIT
G LOGICAL
UNIT
e
SINGLE
CYCLE
UNIT
DIVIDE/
LOAD/ REGISTER
ol I R ) S, 8
UNIT (256 WORDS) ORIT

KEY: % I
«==fp DATA OR ADDRESS

CONTROL VECTOR PROCESSOR

Figure 2-1. Functional Components of Scalar Processor

Requests into the priority unit are either immediate issue or delayed issue. Immediate
issue requests consist of all read requests (except I/0 read) and short write requests
(half-word or word). Delayed issue requests are the long writes (sword or two-sword) which
issue out of the priority unit four minor cycles later than an immediate issue request.
This extra delay allows the data buffers in the memory interface to accumulate a full sword
or two-sword of data before cycling memory. The priority unit also delays I/0 read making
I/0 issue time independent of the read/write nature of the. request. The priority unit
immediately returns an accept, if necessary, even if it is delaying the issue of the request.

Bank Busy Checks

Because the memory busy time is four minor cycles, the priority unit issues a request to a
particular bank of memory at intervals of no less than four minor cycles.

The priority unit conducts two bank busy checks termed the preissue check and the postissue

check to prevent an immediate issue request from being honored if the request occurs during
a bank busy.

60256020 A 2-3



N

When the priority unit accepts a delayed issue request, the banks of memory to be activated
by that request are immediately reserved for three minor cycles. The preissue check
compares the banks required by immediate issue requests against the banks reserved by
pending delayed issue requests; a match prevents the immediate issue request from being
honored.

The postissue check detects requests of a particular issue type attempting to reference a
bank which has been referenced, within three minor cycles, by another request of the same
issue type. An immediate issue request to bank X will be checked against bank X reference
by other immediate issue requests within the preceding three minor cycles. Similarly, a
delayed issue request will have its bank compared against the banks of other delayed issue
requests arriving in the preceding three minor cycles. Detection by the postissue check of
a bank conflict prevents a request from being honored.

A third check performed by the bank busy hardware is actually an address bus busy test.
There is only one address bus from the priority unit to the memory interface, so if an
immediate issue request follows a delayed issue request by four minor cycles, the immediate
issue request will not be honored since it would require the address bus at the same time
that the delayed issue request is utilizing the bus.

A single request may activate more than one memory bank. Since each successive half-word
resides in a different bank, a word, sword, or two-sword request will activate 2, 16, or 32
banks of memory, respectively. If a write request specified a sword of data, then all 16 of
the referenced banks must be found clear for both the preissue and postissue busy checks.
Only those banks activated by a request are made busy, and only those banks required by a
request are checked for busy.

Load/store (L/S) operands must be processed in the correct sequence. Any L/S request

occurring in the three-minor cycle period following the initial request that was not
accepted will be ignored by the priority unit.

Memory Interface Buffer Checks
The memory interface contains three read buffers and two write buffers for assembling and
disassembling data. The scalar and vector processors control these read and write buffers.

However, because a conflict can exist at read buffer three, the priority unit checks all
read buffer three requests to ensure it will not be in conflict with a prior I/O request.

Memory Interface Signals °
After an accept signal is honored by the priority unit, appropriate control signals are sent
to the memory interface causing the requested data transfer to be performed. These control
signals are grouped as follows:

e Buffer control signals - Provide the data buffer in the memory interface with
information concerning the direction and quantity of data flow.

e Nine bank address bits - Define the lowest-numbered memory bank involved in the data
transfer.

e Cycle memory signal - Causes the preselected memory banks to cycle.

9-4 60256020 A



Absolute Bounds Address

The absolute bounds address unit notifies the MCU of a memory reference (read or write) to a
specified block of memory. The block of memory is specified by an upper bounds sword
address and a lower bounds sword address. The addresses are absolute sword addresses. The
bounds unit provides resolution to the sword level for a one or two-pipeline machine and
resolution to the two-sword level for a four-pipeline machine.

There are two classes referenced: read and/or write requests and CPU and/or I/O requests
(all non-I/0 requests are CPU requests). None of the requests are mutually exclusive.

The MCU transmits the false state of the upper bounds limit and the true state of the lower
bounds 1limit on two separate 24-bit trunks, DFW4 and DFW5 (refer to Maintenance Data
Transfers in this section for a listing of the channel bits). The 24 bits correspond to
address bits 35 through 58. Referring to the true state of both limits, bits 55 through 58
must always be zero. Also, bit 54 must be a zero if the CPU is configured for a
four-pipeline operation. .

An address 1s in bounds if it is greater than or equal to lower bounds, and less than upper
bounds. Any bounds hit 1s latched until the occurrence of a master clear or an error clear
from the MCU.

Retry Unit

All vector memory requests originate in the vector APL unit. When an APL request is not
honored (no accept returned), it is the function of the retry unit to automatically
reinitiate the request to the priority unit. The APL unit has seven separate requests which
it transmits to the priority unit. They are: Read 1, Read 2, Read 3, RNS, Look-ahead,
Write 1, and Write 2.

When an APL request is not honored, the retry unit immediately directs the APL unit to
terminate the request stream. Because as many as three additional requests may arrive
before the flow ceases, the retry unit contains a retry buffer with capacity to hold four
requests, along with their control bits and addresses. In order to prevent operands from
being processed in the wrong sequence, the retry unit directs the associative unit and
priority unit to ignore all APL requests received during the three minor cycles after the
initial unhonored request.

During the fourth minor cycle, the retry unit retransmits the initial request and bank
address (via the load/store unit) to the priority unit, and transmits (via the load/store
unit) the nonbank address to the associative unit. The remaining requests in the retry
buffer flow out to the priority unit and the associative unit in successive minor cycles,
unless the original request again receives no accept. In this case, the entire retry
sequence will be repeated.

When the initial request eventually receives an accept, the request stream hold to APL is
dropped, and the first new request arrives just after the last stored request is transmitted
from the retry buffer,

After the initial request is honored, any subsequent request, including those in the retry
buffer, may cause a retry sequence comprised of the request itself and any other requests
arriving in the next three minor cycles.

60256020 A 2-5



When a virtual APL request cannot be mapped into absolute memory by the associative unit, no
accept will be received and the retry sequence is initiated. Before the unhonored request
is retransmitted the associative unit may inform the retry unit that a space table search is
required. In this case, the retry sequence is suspended, and the address of the original
request is locked into a register which presents that address to the associative unit (via
the load/store unit) for the duration of the space table search. If a match is found in the
space table, the retry sequence is resumed.

If an end of table is encountered in the space table before a match is found, the
associative unit sends the retry unit an access interrupt signal, and terminates the space
table search. The retry sequence is resumed for write requests only; no read requests
residing in the retry buffer, or received later from APL, are processed. Also, if a B7
instruction is being executed, no write requests will be processed. This access interrupt
mode of processing continues until all of the buffer busy lines from APL drop, indicating
that the exchange operation is imminent.

RNS/BRANCH UNIT

The read next sword (RNS) portion of the RNS/BRANCH unit provides the control for loading
the instruction stack. To maintain the instruction issue rate, a two-sword look-ahead is
done by reading the two swords following the sword being executed. 1Issue of instructions is
not blocked if the swords following the look-ahead are not in the stack.

The branch portion performs branch condition testing and executes the branch instructions.
An address is maintained for each of the eight swords in the instruction stack, allowing
out-of-the-stack jumps to be taken without voiding the stack. For example, it is possible
to call a subroutine of up to three swords (48 instructions of 32 bits each) several times
from a three-sword instruction stream and never jump out of the stack.

INSTRUCTION STACK

The semiconductor instruction stack provides the buffering for eight virtually addressed
swords (512 bits), which can contain up to 128 32-bit instructions, 64 64-bit instructions
or a combination of each. The instruction stack can contain up to six nonadjacent swords
with two swords lookahead.

INSTRUCTION ISSUE UNIT

The instruction issue unit decodes all instructions and directs decoded vector/string
instructions to the vector processor for execution. The instruction issue unit knows the
length of scalar operations and schedules operands to and from the register file in the
scalar processor. This is accomplished over a three minor cycle pipelined period.

The instruction issue unit issues instructions at a rate of one instruction per minor cycle,
unless it is blocked by instruction or memory conflicts. The instruction issue pipe must
resolve three register file conflicts:

Source operand conflict An instruction requiring the result of a previous

instruction as an input operand must wait until the
operand is available in register file.

2-6 60256020 A



Output operand conflict An instruction result, destined for the same register
file location as a previously issued instruction must
wait until the previous instruction stores its result
into the register file, unless it also has a source
operand conflict; then it will go at the shortstop
time.

Register file write conflict An instruction result, arriving at the register file
at the same minor cycle as the result of a previously
issued but slower instruction, cannot issue.

To resolve these conflicts, 16 result address registers (RARs) hold the register file
addresses for the output operands of previously issued instructions. Before an instruction
is 1issued, its source operand addresses are simultaneously checked against all 16 RARs
(source operand conflict) and its output operand address is checked against the operand
result position timing chain (output operand and register file write conflicts) for possible
conflicts. If a conflict exists, the issue is blocked until the conflict is resolved.

The instruction issue unit allows parallel operation of scalar and most vector/string
instructions provided there are no register file reference conflicts and no central memory
references made by the scalar instruction.

The register instructions 7D and B7/BA with G bit 7 set do not permit parallel operation.
This parallel load operation requires two separate program address counters: one for
vector/string instructions and ome for scalar instructions. On interrupt, these counters
are stored in the invisible packageft along with the operation code and G bits designator of
the vector in process. The content of the scalar processor’s current instruction register
is also stored in the invisible package. This allows for program restart following an
interrupt.

The parallel operation of the scalar and vector processors is controlled by the instruction
issue unit as follows: when the instruction control unit in the scalar processor decodes a
vector instruction and the vector processor i1s not busy, the scalar processor immediately
supplies the vector processor with the decoded instruction function code and the contents of
all register file locations per the instruction descriptors. As soon as the vector
processor is not busy, it begins to process the vector instruction and releases the scalar
processor. The scalar processor reserves any register file locations that the vector
instruction may want to use as index, field length, and so forth, and continues with the
next instruction in the instruction control unit.

Table 2-1 indicates which instructions are executed in the scalar processor and which in the
vector processor.

fShortstop is defined in this section under scalar floating point.

The invisible package contains the address and control information necessary to begin a
new job or to continue a job interrupted during execution in job mode. Refer to section 5
for description.

60256020 C 2-7



TABLE 2-1. SCALAR/VECTOR PROCESSOR INSTRUCTION RESPONSIBILITY

First Digit of
Instruction Code Second Digit of Instruction Code
01 2 3 4 5 6 7 8 9 A B C D E F
0 S I I S S S s I Vv VviI S 8§ vV s
1 S 8§ S s Vv Vv i I I I I vV vvey
2 S 8§ 8 S§ S § S S§ vV I s 8§ S § § S8
3 S § s vV S 8§ sV s VVyv S S § S
4 S § § 1 S § S 1 S § I s S 8§ § S8
5 S S 8 S§ S 8§ s 1 S 8§ 8§ s S 8§ § s
6 S § § s S 8§ s s S 8§ I s S § 8§ S
7 S § s s S 8§ S S S S 8 8§ S vV § s
8 vV vvy vV Vv VvVvy v v vy vV I 1V
9 Vv vVvy vV Vv vy vV vvy vV v I I
A vV Vv VvVviI vV v VvVviI vV v Iy vV I 1V
B S 8§ 8 Ss S 8§ s vV vV IVvy vV vV s s
C vV v vy vV v vy vV v vy V s s vV
D vV Vv ITI1I vV Vv I I vV vvy vV I 1V
E I I I 1 I I I I I I 1 I I I I I
F vV v VvVvy Vv VvVvy VvV I I I I I I 1

S  Executed within the scalar processor. (Note that data flag information is
passed to the data flag register in the vector processor for appropriate
instructions.)

V  The scalar processor initiates the vector processor to execute portions (or
all) of the instructionms.

I Illegal instruction (processed by scalar in monitor mode, by vector in job
mode) .

ASSOCIATIVE UNIT

The associative unit provides the page table virtual addressing mechanism consisting of 16
associative address registers and a space table extension (located in a restricted area of
central memory). Virtual addressing converts a logical address to an absolute storage
address to allow programs to appear logically contiguous to the user while being physically
not contiguous in the storage system.

The page table is an ordered list of the assoclative words necessary to define the pages in
absolute memory. The page table uses a last used push down algorithm, thus the most
recently used associative words are at the top of the table. The space table is an
extension of the page table containing the associative words necessary to define pages in
memory that have not been in recent use. TIhe associative unit is capable of comparing the
associative registers in one minor cycle and the space table entries at the rate of two
entries every minor cycle.

2-8 60256020 A




For the user, the paging mechanism and the operating system software permit the most active
portions (pages) of a user program to reside in the central memory. These program portions
can reside in nonadjacent areas of the central memory. The virtual addressing facility,
through the page table, makes these areas of memory appear to be adjacent. The paging
mechanism ensures that a large number of users can have simultaneous access to the central
computer with minimum page swapping overhead.

Searching the Page Tables

The 16 associative registers (ARs), labeled 00 through 15, are each one word in length.
They are loaded from absolute bit addresses 4000)4 through 43FF;g (word addresses
100j¢ through 10F;¢) of memory by a load AR (OD) instruction. They can also be stored
into the same absolute addresses by a store AR (0C) instruction.

The associative words in the ARs are moved dynamically using the following scheme. Whenever
a virtual address is presented for association and a match (hit) is made, the content of the
AR containing the hit is moved to the top AR (AR0O). Simultaneously, the content of each
AR, from AROO to (but not including) the hit AR, is moved down one AR (for example, 00 to
01, 01 to 02, 02 to 03, and so on). Thus, the associative words in AROO through ARl5 are in
descending order of most recent use. If the end-of-table (END) is contained in the ARs and
no hit is made, the contents of the ARs remain unchanged and access interrupt is taken,
unless the request is for a read-ahead sword of instructions negated by the branch.
Whenever an address is presented with no hit made and no END is contained in the ARs, a
search through the space table is begun using a ripple method. Each AR from AROO through 14
is moved down one AR and ARl5 is placed in a buffer register. A NULL (vacant location, no
entry) is placed into AROO and then ARO0O through ARI5 are stored in memory locations
4000;¢ through 43FFj4. The content of the space table is rippled through the ARs. The
first associative word of the space table is read and examined; its spot in memory is filled
by the old content of the buffer register (AR15). If the first word read from the space
table is not a hit, the second word is read, 1s replaced in memory by the first word read,
and so on, until a hit is made or an end-of-table i1s reached.

When a hit is made, the content of the hit address 1s temporarily stored in the buffer
register and is replaced in memory by the associative word which precedes it in the space
table. The contents of locations 4000, through 43FF)¢ are loaded into the ARs, and the
content of the buffer register (content of the hit address) is transferred to AROO. Entries
in the space table beyond the hit address are not modified.

If an end-of-table is read before a hit is made, the entire space table, including the sword
containing the END, is pushed down by one word position, and a NULL is placed in AR00. If
the unsuccessful search was initiated by a memory reference in job mode, the NULL may be
pushed out of AROO before the exchange to monitor mode is performed. This unsuccessful
search condition and the cause bits are sent to the main control and an access interrupt
results.

If a NULL exists in the ARs and no hit is made in the ARs, the space table is not pushed
down. A read and compare takes place until a hit is made and the NULL replaces that word in
the space table.

If a hit is not made in the ARs and a NULL is encountered in the space table, the operation
changes from a ripple to a read only (no push down); if no hit is found, the NULL remains in
AROO, as before. If a hit 1s made deeper in the space table, the NULL replaces it. Only
one NULL need exist at any given time in the page table.

60256020 A 2-9



If the monitor sets up the page table with one NULL, and it does not add or delete a NULL,
the END remains at a fixed address for any given number of associative words in the page

table.

At the termination of an unsuccessful space table search, there is a NULL in AROO if the
unsuccessful search was initiated by a OF (load keys, translate address) instructiom.

Figure 2-2 is an example of a page table search.
entries in the space table are depicted as Pl, P2, and so on.

The contents of the ARs and the contiguous
NULL and END, where P1

represents the associative word for page 1, NULL is a NULL associative word, and END is an

end-of-table entry.

REFERENCE
MADE TO PAGE P3 PI8 P21 ~ P Pi6 (] F]]
ASSOCIATIVE |INITIAL|AFTER ||AFTER 2|AFTER 3|AFTER 4|AFTER 5|AFTER 6 |AFTER 7
REGISTER 00 Pl P3 P18 NULL P1 P16 P20 NULL

\\vc: \\\ ~\\\‘. \WC: ‘\\\E: \\\j’ \\x\‘
" ol sz PI\ Ps\ PI8 NULL Pl\ ™16 P20
N N
" 02 P3 \PZ\ o e [eie—Herie  [[*e P16
" 03 P4——>P4\ p2 pi— [p3 P3 PI8 PI
, N
[ ]
. N
. :L’: 2 v = o w5 9 T
N NN
" ~a Na
12 PI3—4>PI3 P12 Pl l—1>P| | PII P10 P9
" 13 P14 P14 P13 PI2 PI2 P12 PII PIO
" 14 PIS PIS PI4 PI3 PI3 P13 PI2 Pl
" 15 P16 P16 Pl5\ PI4 P14 Ple Pls\ PI2
ABSOLUTE N ‘\ N\
ADDRESS 4400 P17 PI7 P16 PIS PIS PIS P14 PI3
(SPACE TABLE) 16 \\ AN
N
. N i N
4440 PI8 P18 PIT7 PI6 P16 NULL PIS P14
" 4480 P19 Pl 9—>P 19 PI7 PI7—»PI7 >P17 P15
" 44co0 P20 P20 P20 P19 PI9 P19 P19 P17
" 4500 END END END P20 P20 on—] NULL PI9
" 4540 X X XX XX END END END END END
NOTE: |. PAGE TABLE IS MADE UP OF ASSOCIATIVE REGISTERS AND THE
SPACE TABLE.
3APSA
Figure 2-2. Page Table Search Examples
60256020 A

2-10



The example shows seven consecutive virtual address page references and the resulting page
table transfers. Assume that there are 21 associative words in the page table (16 in the
associative registers and 5 in the space table) and that no lockout bits are set; the last
entry is an end-of-table.

1.

2.

3.

The first reference is to page 3. P3 is in ARO2 and is moved to AROO; the content
of AROO through AROl is moved down one word. The space table is not altered.

The next reference 1s to page 18. No hit is made in the ARs so the ARs are pushed
down one and the content of AR5 (P16) is pushed down into the space table. Pl7 is
read and replaced with P16. Since P17 is not a hit, it is swapped with the next
entry in the space table, P18. P18 caused a hit so it is replaced by P17 and moved
to AROO.

The third reference is to P21, which is not in the page table. The result is that
the entire page table, including the END, is examined and pushed down, AROO is set
to a NULL, and an access interrupt is generated.

Assume that the access interrupt is properly handled by the monitor program and the
page table is not altered. The next storage reference in job mode is to Pl. Since
Pl is in ARO3 when the reference is made, it is moved to AROO, and AROl through AR02
are moved down one word.

The fifth reference is to P16 which is now the second entry of the space table.
This time there is a NULL in the ARs. The NULL 1s moved to AROO and AROO is moved
down one word. Pl4 1s not moved into the space table and the space table is not
pushed down. A read and compare takes place until the hit is found; the NULL then
replaces the selected associative word in the space table.

The next reference is to P20. Since there is no hit or NULL in the ARs, the page
table is pushed down until the NULL is encountered. Push down ceases and read and
compare takes place until P20 1is read, causing a hit. P20 is moved to AROO and is
replaced by a NULL.

The last reference is to P2l which is not in the page table. The page table is
pushed down until the NULL is encountered. Push down and searching cease when the
END is read.

AROO is set to a NULL and an access interrupt is generated.

For page table restrictions and requirements, refer to section 5.

60256020 A 2-11



Multiple-Match Fault

In the central computer, any given combination of lock and virtual page identifier in an
associated word may occur in only one associative word in the page table. Whenever a
violation of the rule is detected, a multiple-match fault occurs and the CPU is stopped.
When two keys are identical, their lockout bits must be the same (refer to section 5 for a
description of locks and keys). Otherwise, a reference to the differing lockout bits
generates a multiple-match fault, resulting in an undefined condition. There are two types
of multiple-match faults.

1. One virtual address, lock, and key matches more than one register in the associative
registers.

2. A virtual address makes a successful match with the associative registers, and at
least one additional match combination exists, but the reference is locked out by
the key lockout bits.

LOAD/STORE UNIT

The load/store (L/S) unit accepts addresses and transfers data between its registers and
main memory. The L/S unit provides orderly buffering and execution of the load and store
instructions; 12, 13, 32, 5E, 5F, 7E, and 7F. Six address registers in the L/S unit enable
requests to be stacked and executed in the proper order. The load instructions 12, 5E, and
7E require one register and can be executed (with no memory conflicts) at a rate of one load
per minor cycle. The store instructions S5F and 7F require two address registers and can be
executed at one store per two minor cycles. The 13 and 32 instructions require two address
registers which are busy for 17 minor cycles after selection.

The L/S is capable of streaming L/S instructions (other than 13 and 32) at one minor cycle
per load and two minor cycles per store assuming no memory busy, access interrupt, or
register file write bus busy conflicts exist. For example, a stream of n loads executes in
n+l4 minor cycles from the issue of the first load until the operand from the last load is
available in the register file. A stream of n stores executes in 2n +|2-1 minor cycles
from issue of the first store until issue of the last store. 3

REGISTER FILE

The register file of the central computer contains 256 64-bit words. This register file is
capable of accomplishing two read operations and one write operation every minor cycle.

A scalar result written into the register file can be used by subsequent scalar instructions
before the result is available in the register file when the read and write addresses are
equal. The scalar result bypass of the register file occurs at the same time the result is
written into the file.

The scalar arithmetic result for one scalar instruction is often used as an input operand
for the next scalar (arithmetic) instruction. A special data path (shortstop) between the
output and input areas of the scalar arithmetic unit permits immediate use of an arithmetic
result operand prior to it being written into the register file.

2-12 60256020 A



SCALAR FLOATING POINT

Scalar floating point performs all nonvector arithmetic and logical operations in the CYBER
205. Scalar floating point contains five arithmetic units. The following table lists each
unit and the time (in minor cycles) required to produce a 32- or 64-~bit result.

Unit Time (Minor Cycles)
Add/Subtract 5
Multiply 5
Logical 3
Single Cycle 1
Divide/Square Root/Convert 21-54

All times listed are shortstop times. Shortstopping saves time by making it unnecessary to

store a unit’s result in the register file before the result is used in the next arithmetic

operation. Instead, the result is returned directly to the input of any of the arithmetic
units (the result is also stored in the register file).

The first four units 1listed above are segmented, and each segment 18 independently
controlled by microcode. Microcode data bits are read out from the scalar floating-point
microcode memories and transmitted through timing chains in parallel with the movement of
the operands through the segments of the arithmetic unit. This allows one arithmetic unit
to accept a new pair of operands, and to issue a result of a previous pair of operands every
minor cycle. The divide/square root/convert unit is not segmented and can accept operands
only when it completes the previous operation.

Scalar Floating-Point Unit Control Interface
There are three input and two output trunks to the scalar floating-point unit. All input
operands are 64- or 32-bit floating-point quantities, except where otherwise specified. If

an indefinite or machine-zero floating-point operand is received, the coefficient is set
with zeros.

A-Input Trunk

This 64~bit trunk receives data bits from register location R in the following format.

64-BIT MODE
0 16 16 63
EXPONENT COEFFICIENT
32-BIT MODE
0 78 16 16 39 40 63
ZERO EXPONENT COEFFICIENT ZERO

60256020 A 2-13



B-Input Trunk

The B-input trunk, identical to the A trunk, receives data from register S.

Control Trunk

The control trunk carries the signals that control the scalar floating-point unit. It is
composed of the following signals.

Control Address - The control address bits select the set of internal control signals for
the floating-point instruction being executed. A set of unique codes exist for each
instruction (refer to table 3-4). Using the input data to the floating-point unit as a
reference, these control bits must arrive at the floating-point logic 1.5 cycles before the
data and must be valid for 20 nanoseconds.

Mode Controls - The mode controls are Mode 64 In, Mode 64 out, G-bit, and Divide. The Mode
64 and G-bit signals must lead the input data by one minor cycle and the Divide signal must
lead by 1.5 minor cycles.

Issue Controls - The issue controls are Shortstop, R-shortstop, S-clockgate, R-clockgate,
S-shortstop Enable, R-shortstop Enable, and Go. All these controls must be valid one minor
cycle before the data. Shortstop is the process by which a result from any arithmetic unit
may be returned directly to either input of any arithmetic unit. The shortstop enable
signals enable the setting or clearing of the shortstop control flip-flops. The clockgate
signals cause data to be clocked into the floating-point input registers. The Go signal
allows processing of operands in the input registers.

Output Trunk

The output trunk is 64 bits and transmits output data to the stream unit. Data remains on
this trunk for one minor cycle. The formats for the output trunk are as follows:

64—-BIT MODE
0 15 16 63
EXPONENT COEFFICIENT
32-BIT MODE
0 78 31 32 39 40 63
EXPONENT COEFFICIENT EXPONENT COEFFICIENT
(U /

v
COPY OF 0 THROUGH 31

Output Control Trunk

The output control trunk transmits control or fault bits associated with results generated
by the scalar floating—point unit. These signals come up with data and are held up for one
minor cycle. The following signals are transmitted on the output trunk.

2-14 60256020 B



Signal Meaning of a 1 on Signal Line

Branch Condition Met The operands meet the compare condition. This line
is zero when a compare is not being done.

Exit Condition Met The operands do not meet the compare condition.
This line 1s zero when a compare is not being done.

Divide Timing Pulse Divide operands follow this timing pulse by 14
cycles.

Divide Unit Busy The divide unit cannot accept new operands during

the time this signal is 1.
Data Flags 39, 41, 42, 43, 45, 46 Refer to appendix D.

Data Flag 58 A divide, square root, or convert operation
occurred and resulted in data flag 39, 41, 42, 43,
45, or 46 being set.

SCALAR PROCESSOR MICROCODf MEMORIES

The central computer uses microcode memories to start and control the execution of all
intructions. The scalar processor contains five microcode memories: scalar microcode
memories PMOO and PMOl; assoclative microcode memory HMOO; and floating-point and divide
microcode memories DMOO and GMOO. Each memory operates independently during CPU instruction
execution and is addressed simultaneously during writing or sweeping operations. The MCU
loads the microcode memories via a block transfer. All microcode memories operate at the
computer clock cycle rate.

Scalar Microcode Memories (PM0O, PMO1)

Scalar microcode (SMIC) is composed of two memories: PMOO and PMOl. Both memories operate
simultaneously, and each memory contains 256 120-bit words.

SMIC memory is a read-only memory; writing into SMIC 1is reserved for loading systems or
diagnostic microcode programs. SMIC provides the starting address for SMIC, FMIC, DMIC, and
AMIC during the load operation.

SMIC Operation

When the instruction stack has an instruction ready for execution, the function (F) code is
sent to the PMOO address register. If the issue unit 1s ready to execute an instruction,
the SMIC output is switched to PMOO and the execution 1is started.

If the instruction has one cycle of 1ssue, SMIC output remains switched to PMOO and the next
instruction begins execution (assuming the instruction stack has the next instruction
available).

If the instruction has multicycles of 1issue, SMIC output is switched to PMOl where the
remaining cycles of that instruction are executed. When the remaining cycles are completed,
SMIC output switches back to PMOO and the next instruction begins execution (assuming the
instruction stack has the next instruction available).

60256020 B 2-15



If the instruction has variable cycles of issue (for example, vector processor instructionms,
some of which execute in the associative unit, and so on), SMIC output is switched to PMO1,
and the remaining cycles of SMIC control are executed. When PMOl has completed its
functions, it waits for the conditions indicating the end of the operation and switches to
PMOO to execute the next instruction.

SMIC controls the flow of data from the instruction word to the functional unit. For
example, SMIC:

Selects designators to and from their points of use (register file read address,
register file write address, address adder inputs, and so on).

Selects register file data to functional areas, such as scalar pipeline and address
adder.

Selects register file data, such as address and field lengths, to the vector
processor.

SMIC also controls the operations performed by other functional units. For example, SMIC:

Provides starting addresses for scalar floating—point microcodes FMIC and DMIC.

Informs load/store unit which operation to perform.

SMIC Address Control

PMOO addresses are controlled by the instruction stack.

PMO1 addresses are controlled by SMIC bits. The next address to be used can be:

The next sequential address (via incrementer).
The address contained in the MOl field.

An address made from the MOl field (most significant 4 bits) and an index based on
sense condition status (least significant 4 bits).

SMIC Parity

SMIC has five parity bits forming odd parity.

Associative Microcode Memory (HM00)

The associative microcode (AMIC) is a 256-word by 96-bit memory.

AMIC Operation

AMIC is active during the following associative operations.

| 2-16

" Space table search.

Load associative registers (0D instruction).

Store associative registers (OC instruction).

60256020 B



The AMIC memory is initialized into an idle loop and waits for a load, store, space table
search, or an exchange operation. The memory supplies control to the associative registers
(ARs), branches on conditions from ARs, and returns to the idle loop upon completion of an
operation.

AMIC Address Control

AMIC bits control HMOO addresses. The next address to be used is one of the following:
e The starting address.
e The address from the ADl field.

o The address from the space table mode address register.

AMIC Parity

AMIC has two parity bits forming odd parity.

FIoating-PofM and Divide Microcode Memories (DM00, GMO0O)

The floating-point microcode (FMIC) and divide microcode (DMIC) control scalar floating-
point pipeline segment operations and iterative operations such as divide, square root, and
BCD/binary conversion.
The floating-point microcode memory (DMOO) and the divide microcode memory (GMOO) contain
256 48-bit memory words each. Both memories are read-only memories. Writing 1s reserved
for loading systems or diagnostic microprograms.
The main functions of FMIC and DMIC are as follows:

FMIC Selects data paths for operand processing.

Provides constants for exponent correction and coefficient shifting.

Enables hardware checks for end case conditions such as machine zero
operands, overflow conditions, and so on.

DMIC Selects data paths for operand processing.

Preconditions logic properly for divide, square root, and BCD/binary convert
algorithms.

Indicates that the divide unit is busy processing operands and enters the RAR
number into the result timing chain when results are available.

FMIC Operation

FMIC receives its address from an 8-bit field (MO2) in scalar microcode memory. If an
instruction requires the scalar floating-point unit, the issue unit causes one &48-bit
microinstruction word to be read from FMIC. This word controls the segments of the
floating-point pipeline as the operands are processed. Floating-point operations are
initiated only when result output bus conflicts cannot occur.

60256020 B 2-17



DMIC Operation

If the floating-point operation is divide, square root, or BCD/binary conversion, DMIC
microcode memory is used with FMIC to control the iterative segments of the pipeline that
perform these operations. The 8-bit field (M02) sent from SMIC to the floating-point unit
is used for the starting address. Each iterative operation controlled by DMIC requires the
execution of several microinstructions. There is a field in each DMIC microinstruction
(GMA) that points to the next microinstruction. This linkage continues until the last
microinstruction required is completed. The GMA field of the last microinstruction points
to location 0 of DMIC, a one instruction idle loop. DMIC remains in this idle loop until
the next divide, square root, or BCD/binary conversion instruction is received, at which
time a new starting address is received from SMIC.

VECTOR PROCESSOR

The vector processor executes most multioperand instructions in parallel with the scalar
processor and certain scalar operations. The vector processor processes data at the rate of
four words, two words, one word, one half-word, or 16 bits per minor cycle, depending on the
type of operation. The vector processor consists of the following sections (refer to figure
2-3).

VSU - Vector Setup and Recovery Control
APL - Stream Addressing Pipeline

VST - Vector Stream Inputs

VSW - Vector Stream Output

FPL - Floating-Point Pipeline

VSS - String

IOM - Input-Output Ports and Maintenance

VECTOR SETUP AND RECOVERY CONTROL (VSU)

The vector setup and recovery control unit controls the execution of all nonscalar processor
instructions including vector instructions, string instructions, data flag register
instructions, job and monitor interval timer instructions, and real-time clock
instructions. The VSU unit contains three microcode memories to control the VSU hardware.
They are the VSU microcode, the VEX microcode and the VSC microcode. For a description
refer to VSU microcodes later in this section.

The VSU unit is divided into two sections, setup and execute. Figure 2-4 shows the VSU
block diagram. The setup section calculates all starting addresses, extension field length
and an overall field length. As soon as the execute section is able to take on data for
another operation, a continue is sent back to the scalar processor which can now proceed to
the next instruction. When the execute section of VSU takes over an instruction, it is in
control until completion of the operation. The execute section sends out decode and control
information to the rest of the units in the vector processor. Along with starting address
and lengths being sent to the APL units, the overall length is transmitted to VST.

2-18 60256020 A



p :géé—:s%n ADDRESS TO
) CENTRAL
L"ﬁﬁr 35}-1. > MEMORY VIA
(FUNCTIONS) — SCALAR
ISSUE — > PROCESSOR
ALL VECTOR
PROCESSOR
UNITS
—_—
FPL
UNIT >
CENTRAL vsT
MEMORY —™] uNIT CENTRAL
VSW —
F UNIT MEMORY
vss
e E——
UNIT
TO ALL VECTOR
PROCESSOR UNITS
CENTRAL
INPUT - OUTPUT MAINTENANCE
SECTION <+ SECTION > R
UNIT
CONTROL >
DATA ———»

Figure 2-3. Vector Processor

60256020 A 2-19



CHANNEL FLAG

> TO IOM
A ADDRESS, FIELD LENGTH, EXTENSION
—d
REGISTER )
FILE N
DATA | __B ] T
FROM VECTOR g OUTPUT T0
SCALAR FNC CODE SETUP B SELECT FIELD LENGTH, ADDRESS __ [ VECTOR
A
VIN BIT ] DYNAMIC CONTROL A
VEX
MICROCODE INTERRUPT
COUNTERS
FOR
Vsu . )\(IECTOI:) N
ECUTI
MICROCODE REGISTER EXCHANGE _ _
vsc U,f,','fﬁ VSC MICROCODE
MICROCODE ouT
Ic
FROM UPDATE
VECTOR )
VECTOR
CONTROL N
FROM SCALAR RVR BIT AND RAR NUMBER ngc INVISIBLE PACKAGE LOAD o
crom CHANNEL INTERRUPT CONTROL DATA B
10M { STOP, RUN, ETC.

Figure 2-4. VSU Block Diagram

The VSU unit contains nine interrupt counters that are incremented/decremented during a
vector processor instruction execution. The counters contain the current field lengths,
addresses, and broadcast or extension data required to restart the instruction execution
after an interrupt.

Inputs to VSU

Upon translation of a vector processor type of instruction, the scalar processor
issue/decode unit immediately transmits the function code and required register contents
from the register file to the VSU hardware in the vector processor. Machine zero or all
zero extension data required by the instruction is included in the transfer. The
information is transmitted through two 64-bit buses from the register file fanout to two
sets of input registers in the VSU hardware. The register file data transfer occurs two
registers at a time for up to six cycles depending upon the type of instruction. If
broadcast is specified by the instruction, then the appropriate broadcast data is
transferred in lieu of the extension data. The VSU hardware forces normalized-one extension
when applicable. During an instruction execution, all broadcast data 1is treated as
extension data by the vector hardware.

2-20 60256020 A



The issue/decode unit controls the transfer of data into the VSU input registers by means of
the vector increment (VIN) control line. The VIN bit is sent for each cycle of register
data transfer to the VSU. The VIN bit controls the input register addressing and gates the
function code into the VSU function code register (SRFC) and, using the function code as a
starting address, instructs the VSU microcode to begin operation.

The format of registers transferred from the scalar processor to the vector processor Vsu
input registers 1is instruction dependent. Registers that are to be updated at the
completion of the instruction execution are all preread to assure their availability at
update time.

Depending upon the instruction, there may be one, two, three, five, or six cycles of
register transfer to the vector processor. A typical 80 instruction uses six cycles to
transfer all the required register file data with the broadcast or extension data transfer
occurring during the fifth and sixth cycle. In order to provide some standardization and to
minimize decode unit microcode requirements, the register transfers for some instructions
are padded out to five or six cycles. In the case of an FO instruction, registers C and 2
are transferred twice to permit use of a common routine.

The scalar processor issues instructions to the VSU unit without waiting for instructions
already in progress to be completed. It conflict checks, reads, and transmits register file
registers to the VSU unit at a rate of two every minor cycle until all descriptor data is
transmitted. The scalar processor sends function data and a timing bit (VIN), then waits
for a continue (release) from VSU.

VSU Operation

Most vector processor instructions process data using two data input streams, one control
vector input stream, and one data output stream. The instructions specify these streams in
terms of field lengths, base addresses, and offsets or indexes. All address and field
length calculations occur under VSU microcode control. All of the VSU microcode control
bits for one operation are read at the same time and applied through delay chains as
required.

Vector Setup

To generate the field length used for instruction execution, the offset is subtracted from
the field length. Field length calculations that produce negative results or results
greater than a 16-bit count are forced to zero. The correctly shifted offset or index, is
added to the base address to generate the address used for instruction execution. The field
length and address are combined and loaded into the selected output register.

The VSU microcode checks field lengths and addresses for instruction no-op or instruction
illegal. The VEX microcode takes appropriate action as required. The VSU microcode selects

the field length, base address, and offset for a calculation from the appropriate input
registers.

All field lengths and addresses that go to the APL, VSS, and VST units must pass through the
output registers. Multipass instructions and restart of a vector processor instruction
after an interrupt both require transfer of the interrupt counter register contents into the
output registers. A 64~bit data path from the interrupt counters is used for this transfer.

60256020 A 2-21



Vector Termination

The scalar processor, upon sending an instruction to the vector processor, waits to be
released by the vector processor. The vector processor sends a release code (REL) and a
full bit (SMIC-GO) to the scalar processor, and a signal to increment the current
instruction address register (CIAR).

Most vector processor instructions release the scalar processor for parallel operation as
soon as the instruction is interruptible. The 7D, B7, and BA instructions with G bit 7 set
release the scalar processor when instruction execution is complete. These instructions
actively use the register file during instruction execution; parallel operation is not
permitted.

Some vector processor instructions require the update of an index, or the storing of an
arithmetic result, in register file at the completion of an instruction. The scalar
processor, upon receiving the release code, reserves the appropriate register file
location(s) for the vector processor instruction. The vector processor records the RAR
number(s) for later transmission to the scalar processor result timing chain.

The release (REL) code sent by the vector processor to the scalar processor specifies which
instruction designators are to be used for reserving register file locations.

The termination of most vector instructions occurs in two steps: the data inputs go empty
and the output buffer goes empty. For most vector instructions, the VEX microcode status
becomes not busy when all input data is used. VEX microcode can begin processing the next
instruction as soon as it is not busy. However, the output for one vector instruction must
be complete through APL output deactive before VEX microcode initiates the output for the
next instruction.

Interrupt and Branch Control

The vector processor contains the hardware to recognize conditions that cause an interrupt
or branch. The vector processor sends the indicated GET code to the scalar processor which
responds accordingly.

An interrupt operation occurs in job mode while a branch operation can occur in either job
mode or the monitor mode.

A branch operation, once begun, yields only to a branch with a higher priority. Similarly,
an interrupt operation yields only to an interrupt of higher priority. The occurrence of a
simultaneous branch and interrupt results in an interrupt. An interrupt is always completed
regardless of the time delay. A branch, once recognized, is rejected after a 25-cycle
delay. The branch or an interrupt can then be recognized again.

2-22 60256020 A



Interrupt Counters

The vector processor contains interrupt counters to record current field lengths and
addresses of an executing vector processor instruction. Upon interrupt, the interrupt
" counter contents are stored in the invisible package for that job. The interrupted
instruction restarts from the point of interrupt using the interrupt counters when the job
is reloaded.

There are nine 64-bit interrupt counters in the vector processor (ICO through IC7 and ninth
IC). ICO through IC5 each have a 16-bit adder for field length update of bits 0 through 15
and a 48-bit adder for address update of bits 16 through 63. The IC update consists of an
update count and full bit from the VSS, VST, or VSW units. VEX microcode also can update
the ICs. The VSC microcode enables the increment/decrement control on each of the ICs per
the instructon requirements. IC6 and IC7 do not have update capability, but are used for
extension data or other instruction related constants. The ninth IC is used only for the
AX, CC, and C8 through CB instructions.

Timers

The monitor interval timer, job interval timer, and real time clock are located in the
vector processor., The VEX microcode is required to load or store any of these timers.

The three timers all operate at a 1-MHz rate, but each timer has its own 1-MHz timing
clock. The 1-MHz timing clock for the monitor interval timer is synchronized (set to zero)
when the OA instruction load occurs. The job interval timer operates similarly.

Real Time Clock

The real time clock is a 47-bit (with a positive sign bit for a total of 48 bits) counter
incremented at a 1-MHz rate. The clock runs continuously and cannot be cleared. The clock
time is sampled with the 39 instruction which stores it in the register file.

60256020 A 2-23



Monitor Interval Timer

The monitor interval timer is a 32-bit counter loaded from the register file by the OA
instruction in monitor mode. It is decremented at a 1-MHz rate, and causes an external
interrupt when counted down to zero. No interrupt occurs when it is loaded to zero.

Job Interval Timer

The job interval timer is a 32-bit counter loaded from the register file by the 3A
instruction in job mode, and stored into the register file by the 37 instruction. The
counter is decremented at a 1-MHz rate, and sets data flag bit 36 when counted down to
zero. The data flag bit does not set when the job interval timer is loaded to zero.

Data Flag Register and Control

The data flag register is a 48-bit register containing hardware status bits with associated
mask bits, free data flag bits, and miscellaneous bits. The data flag register is set,
stored, or swapped with a register file location(s) by the 3B instruction. The 33
instruction can set, clear, or toggle a selected data flag register bit or can cause a
conditional branch depending upon the state of a selected bit (or both). Both instructions
require the use of VEX microcode for instruction execution. VEX microcode releases the
scalar processor with either a branch or no-branch GET code for both instructions.

The data flag register can produce automatic branch operations, in both job and monitor
modes, when properly enabled.

Table 2-2 defines the bits in the data flag register.

TABLE 2-2. DATA FLAG REGISTER

Bit Assignment/Description

0-15 Product bits that are automatically set when the corresponding mask
and hardware status bits are both set. Example: Bit 4 is set when
both bits 20 and 36 are set.

16-31 Mask bits for bits 32 through 47 respectively.
32-34 Undefined bits. Must be set to zero.
35 Soft interrupt. The operating system can set this bit in the job’s

invisible package.

36 Set by the job interval timer counting down to zero.

37 Selected condition not met (CO through C3 and CC instructions).
38 Not used and must be set to zero.

39 The 10 instruction binary exceeds 48 bits.

2-24 60256020 A



TABLE 2-2. DATA FLAG REGISTER (Contd)

Bit Assignment/Description

40 Inclusive OR of bits 37, 38, and 39.

41 Floating-point divide fault.

42 Exponent overflow.

43 Machine zero result.

44 Inclusive OR of bits 41, 42, and 43.

45 Square root result imaginary.

46 Indefinite result.

47 Breakpoint compare occurred.

48-50 Undefined. Must be set to zero.

51 Dynamic exclusive OR of all the bits in the product field (bits O
through 15).

52 Enable bit for an automatic data flag branch (ADFB). An ADFB can
occur when both bits 51 and 52 are set. Bit 52 is cleared
automatically when an ADFB is processed.

53--55 Free data flags used by several instructions to indicate the result
of the instruction. Every instruction using these bits clears them
prior to selectively setting any of them. These bits are sampled
with the 33 instruction.

56 Not used and must be set to zero.

57 Not used and must be set to zero.

58 A scalar divide, square root, or convert fault occurred.

59 Vector processor floating-point divide fault.

60 Vector processor exponent overflow.

61 Vector processor machine zero result.

62 Vector processor square root result imaginary.

63 Vector processor indefinite result.

Data flag bits 41, 42, 43, 45, and 46 are set from both the scalar and vector

arithmetic units. Data flags 59-63 are corresponding bits set only from the

vector arithmetic unit.

60256020 A

2-25



VSU Microcodes
The VSU Unit contains three microcode memories to control the VSU hardware for address and

field length calculations, for instruction start and execution monitoring, and for function
decode purposes.

VSU Microcode

VSU microcode (Vector Setup) - Performs address and field length calculations. The VSU
microcode is 1024 addresses by 120 bits.

VEX Microcode

VEX microcode (Vector Execution) - Provides execution monitoring. The VEX microcode is 1024
addresses by 120 bits.

VSC Microcode

VSC microcode (Vector Static Control) - Provides microcoded function decode bits to all
vector units for vector instruction execution. The VSC microcode is 512 addresses by 96
bits.

STREAM ADDRESSING PIPELINE (APL)
The APL unit’s function is to manage the memory to maintain a maximum flow of data between
memory and the vector processor. The APL unit takes the address and length parameters and
redefines them on a sword or two sword basis, then along with control information (such as
starting quarter/half sword, element, and so forth) makes memory references via the priority
and associative units. The read data and control information is then transmitted to the VST
unit after the memory cycle. :
The APL unit is physically located in the vector processor. It schedules the memory and
register file for data used during the operation of the nonscalar instructions. A list of
these types of operations is as follows:

e A - vector, sword/two-sword input on read one.

e B - vector, sword/two-sword input on read two.

e C - vector, sword/two-sword output on write one.

° CS - string, sword output on write two.

e Z - string, sword input on read three (first request on R2).

° CSLA - small page, look-ahead for CS output.

e CLA - small page, look-ahead for C output.

2-26 60256020 A



e X ~ string, sword input on read three.
e Y - string, sword input on read three.
e Random load, word/half-word input on read one (BA instruction).
e Random store, word/half-word output on write one (B7 instruction).
e First/last old data, half-word input on read one.
e RNS, sword input on read three.
During the operation of a general vector/string instruction, all the above types of input,
outputs, and look-aheads are in operation together depending on instruction types. CSLA,
CLA, and the first/last old data operations occur only once or twice per instruction
execution where applicable.
The type of operations used by a particular instruction are determined by the VEX microcode
of the VSU unit. For each of the types of operations necessary in a particular instruction,
a unique control word is received by APL. The control word contains all the information
needed to define the operation of the particular type of input/output during the entire
instruction (or entire pass of multipass instructions). A control word contains the
following: '
e Virtual address - 48 bits.
o Termination field length - 22 bits.
o Extension field length - 22 bits.
® GO active code - 9 bits.
e Number of control lines:
- Request size.
- Operand size.
- Register file address (consecutive).
- Delta, field length, and address for random load/store.
= Field length equal zero or infinity.
= Right to left addressing.
= Override output before input.

- Override read lockout.

- Force abort.

60256020 A 2-27



Stream Input Operation

For each input setup, there is a buffer in the VST unit for the data to be entered.
Associated with each buffer is a counter in APL which counts quarter swords requested by
counting up from zero. It counts quarter swords used by counting down as quarter swords are
removed from the buffer for use. The size of the buffers are such that they can hold all
the data requested but not used. The APL unit starts entering requests for an input at a
maximum rate of one for every four cycles for sword/two-sword or one every cycle for
word/half-word. The maximum rate is reduced by competition for the same bank of memory and
by competition for the same request phase time. If the counter shows the buffer is full,
then the requests must wait.

Stream Output Operation

Similar to the inputs, each output setup has a buffer in VSW and a counter in APL. APL
sends a request for each sword/two-sword, word/half-word in the buffer/counter. Requests
run at a maximum of one for every four cycles for sword/two-sword, and one per each cycle
for word/half-word. The maximum rate is reduced by competition for memory banks and the
request phase time. The output is also reduced by the rate of data into the buffer.

The APL unit is designed to receive and start each input/output as an independent
operation. The requests of the separate operations avoid each other such that (except for a
short time after a successful space table search when I/0 may cause bank busies) no bank
busies are caused. A request of lower priority must look both before and after the request
time it wants to use to make sure there are no requests of higher priority to the same bank
within three cycles.

To accomplish this, a request of higher priority must pass through a timing chain before
being sent to memory. The chain must be seven cycles long; three cycles before, the one
cycle and three cycles after.

Some types of operations have requests of equal priority. They operate on a first come,
first served basis.

The chart below shows the priority (highest on top) of all the types of operations listed
earlier. 1I/0 is listed because, even though it does not originate in APL, it passes through
APL’s conflict timing chain because it is the top priority request.

e I/O.

® A-vector, B-vector.

o C-vector.

° CS-string.

° CSLA, CLA, X-string, Y-string, Z-string.

e Random load, FOD, LOD, RNS.

2-28 60256020 A



VECTOR STREAM INPUT (VST)
All input buffers write data immediately upon receiving data from the appropriate SECDED
nets. The input buffers read data only if their read/write address registers are not equal
and if there is a data request from the appropriate input alignment net. When the input
buffers read data, they generate a data full bit and send it to the input alignment networks
along with the data. The following list describes the buffers.

e Input data buffers are provided for all input (A,B,X,Y,Z) data streams.

e A and B buffers each are 48 addresses in length by 256 bits wide.

e X and Y buffers each are 12 addresses in length by 128 bits wide.

o The Z buffer is 48 addresses in length by 128 bits wide.

e The A and B buffers receive data directly from the Rl and R2 SECDED networks.

e The X and Y buffers receive data directly from the R3 SECDED network.

e The Z buffer receives data directly from either R2 or R3 SECDED networks.

VST SECDED

Read 1, Read 2, and Read 3 in VST use SECDED as described earlier in this section. The
characteristics of Rl, R2, and R3 are as follows:

e Rl, R2, and R3 are 128 bits wide (one- and two-pipeline machines).
e Rl, R2, and R3 are 256 bits wide (four-pipeline machine).

e RIl, R2, and R3 SECDED networks and error recording are physically located in VST.

VST Expansion Networks

The A and B data streams each contain an expansion network between the input shift network
and the transmission to the register file or pipelines.

Expansion is used for the 7D, BC, BD, and AX instructions, and on the exchange operation
with 1 million words of memory.

VST Scale Network

The scale network processes control vector and input order vector data. The scale network
provides the following:

e Control vector and order vector data, Wl size, W2 size (use count), and leading
zeros count to the backend (VSW).

e Shift and expansion data to the A and B data streams in VST.

60256020 A 2-29



e Wl size and W2 size to increment the W1 and W2 buffer size counters in VST.

e Element count to decrement field length counter 1 (in VST) for sparse vector
instructions.

e Interrupt count updates to the VSU unit, for all input data streams for nonstring
type instructions.

This network processes one, two, four, or eight control vector bits per minor cycle,
depending on the instruction and pipe size.

It processes from 1 to 16 input order vector bits per minor cycle, depending on instruction
type, pipeline size, and the population of one bits in the OR of the X/Y order vectors.

Field Length Registers

VST contains two 16-bit field length registers. These two registers are referred to as FL1
and FL2.

FL1 and FL2 are set up at the beginning of an instruction via VEX microcode. They always
contain an element length. They are decremented by VST at the time it sends data to any
functional unit. When they are decremented to zero, the VST unit stops sending data to the
functional units, clears all fulls in VST, sends an empty signal to VEX microcode in VSU,
and sends a terminate signal to VSW and APL.

FL1 and FL2 are used only for nonstring
instructions.

Register File Reads/Writes

VST contains a 9-bit register file read address register/incrementer. VST also contains an
8-bit register file write enable register.

All register file references for the 7D, B7, BA, and exchange operations use the VST
register file hardware.

Halts/Interrupts

Any halt caused by a vector memory reference is sent to VST by the associative unit. The
halt causes an immediate space table search by associative, and it stops VST from sending
any more data to the functional units.

If the space table search results in a find (hit), then the associative unit sends a clear

halt signal to VST. VST then resumes sending data to the functional units and data
processing continues.

2-30 60256020 A



If the space table search results in no find, an access interrupt occurs.

VST receives one interrupt line from VSU. This line includes all interrupts (access,
external, illegal, and so forth).

The VST unit stops sending data to the functional units upon receipt of an interrupt
signal. It then checks to see if a termination occurred prior to the interrupt. 1If a
termination occurred prior to the interrupt, then the VST unit ignores the interrupt.

If a termination has not occurred prior to the interrupt, then the interrupt forces a
termination and sends an interrupt signal to VSU, VSW, and APL. All data in the input
buffers is discarded, and VST prepares to receive the next instruction (an exchange is just
another instruction to VST).

Halts, interrupts, and termination are
handled by the VSS unit (not VST) for all
string instructions.

VECTOR FLOATING-POINT PIPELINE

The vector floating-point pipeline provides logical and arithmetic operand processing for
vector instructions. The vector floating-point pipelines have three configurations; one
pipeline, two pipelines, and four pipelines. The one-~ and two-pipeline configurations are
structured as shown in figure 2-5. The pipeline contains five operand processing units, a
data interchange to connect these units, and control logic.

The bus width for the A and B operands is 128 bits for the one-pipeline and two-pipeline
versions. The four-pipeline version is essentially two two-pipeline processors, thereby
providing a data path of 256 bits. The one-pipeline processor can process one 64-bit mode
operand for A and B or two 32-bit mode operands for A and B. The two-pipeline processor can
process two 64-bit mode operands for A and B or four 32-bit mode operands for A and B and

the four-pipeline processor can process four 64-bit mode operands for A and B or eight
32-bit mode operands for A and B at the same time.

The minimum interval required between operands supplied to the vector floating-point
pipeline is less than the time required to produce a result; therefore, at any given time,
the segmented operand processing logic can contain a number of operands in various stages of
processing. The amount of operand logic used depends on the type of vector instruction.
The required operand processing logic unit .is connected between the input and output of the
vector floating~point pipeline by selecting the appropriate data interchange path. More
complex instructions, such as the DC instruction which requires more arithmetic capabilities
than a single operand processing unit possesses, may pass through several operand processing
units from input to output.

The following descriptions of the components of the vector floating-point pipeline assume
the typical two-pipeline version.

60256020 A 2-31



A OPERAND

(128)—>

DATA
B OPERAND INTERCHANGE

(128) ———>

RESULT

(128)

ADD UNIT

MULTIPLY
UNIT

SHIFT
UNIT

LOGICAL
UNIT

DELAY
UNIT

CONTROL

2-32

>

Figure 2-5. Vector Floating-Point Pipeline Basic Block Diagram

60256020 A



Pipeline Data Interchange

For normal vector instructions, the data interchange is configured to connect the input and
output trunks to the appropriate processing unit. A 1link operation causes the data
interchange to connect the output of one unit to the input of a second unit. For the CF,
p8, D9, DA, DB, DC, and DF instructions, more complex connections are utilized and may be
switched dynamically.

Add Unit

The add unit receives operands from and delivers results to the data interchange over
128-bit data paths. A block diagram of the add unit is shown in figure 2-6.

DF INSTRUCTION

ADDER LOOP

A
OPERAND
_(128)'—" -

SIGN EX- ALIGN- NORMAL- | NORMAL- c?sg RESULT
COMPARE | SHIFT COUNT | SHIFT ETE,

B
OPERAND

(128)—

DA-DC INSTRUCTION ADD UNIT LOOP PATH

A
A

Figure 2-6. Add Unit Block Diagram

For instructions with sign control, the appropriate complementing is done in the sign
control segment. This segment also complements the B operand for subtract operations.

The A and B exponents are compared in the exponent compare segment. The difference between
the two exponents is used as a shift count which determines the amount the coefficient with
the smaller exponent is right shifted in the alignment shift segment.

A one-cycle adder loop path is provided around the add segment for the DF (interval)
instruction.

The normalize count segment produces a shift count which controls the normalize shift
segment and modifies the result exponent if normalization is required.

The end case detection segment determines if an end case has been encountered and forces the
result accordingly.

60256020 A 2-33



An eight-cycle add unit loop path is provided for use by the DA and DC instruction.

The 90, 91, and 92 (truncate, floor, and ceiling) instructions are implemented by forcing
the exponent of the B operand to zero.

Multiply/Divide Unit

The multiply/divide unit receives operands from and delivers results to the data interchange
over 128-bit data paths. A block diagram of the multiply/divide unit is shown in figure 2-7.

DB INSTRUCTION PIPELINE LOOP

OPERAND
(128)
PARTIAL SUM
RESULT
PARTIAL CARRY MERGE/ |SIGNIFICANCE
MULTIPLY COMPLEMENT|  SHIFT (128) —>
o
OPERAND
(128)
>
INPUT SIGNIFICANCE
COMPLEMENT| DIVIDE COUNT

Figure 2-7. Multiply/Divide Unit Block Diagram

The multiply segment performs the coefficient multiply for the 88, 89, 8B, A8, A9, AB, DB,
and DC instructions. It also serves as a pass through for the adjust significance (94) and
adjust exponent (95) instructions.

For divide and square root instructions (8C, 8F, 93, AC, AF), the operands are made positive
in the input complement segment. The coefficient divide or square root is performed in the
divide segment.

The merge/complement segment has two functions. It merges the partial sums and carries from
the multiply segment and selectively complements the result coefficient as required by the
input sign bits and the sign control specification in G bits 5, 6, and 7.

The significance shift segment adjusts the significance of the result coefficient and

modifies the result exponent for those operations specifying significant results. A
seven—-cycle short stop is provided for the DB instruction.

2-34 60256020 A



Shift Unit

The shift unit receives a 128-bit A operand and a l4-bit B operand (two 7-bit shift counts)
and returns 128 bits of result to the data interchange. A block diagram of the shift unit
is shown in figure 2-8.

A OPERAND RESULT
1ST RANK | REGISTER | 2ND RANK A
128) —>1  CgiFT SHIFT (128)

B OPERAND I
(128) . _J

Figure 2-8. Shift Unit Block Diagram

The low order 3 bits of the shift count control the shift in the first rank shift segment.
The next three higher order shift count bits control the shifting in the second rank shift
segment.

Logical Unit

The logical unit receives operands from and delivers results to the data interchange over
128-bit data paths. In addition, a 2-bit path is used for the result of the masked compare
(CC) instruction. A block diagram of the logical unit is shown in figure 2-9.

The 9A and 9B instructions are performed in the pack/unpack network. The vector logical
instruction (9D) 1is performed in the Boolean network. For the masked compare instruction
(CC), an exclusive OR operation is performed in the Boolean network and then combined with a
broadcast mask in the masked compare network. For certain other instructions, the logical
unit provides a pass through path.

Delay Unit

The delay unit receives operands from and delivers results to the data interchange over
132-bit data paths. The 132 bits consists of 128 bits of data and four control bits. A
block diagram of the delay unit is shown in figure 2-10.

The delay function is implemented by offsetting the read and write addresses of the buffer
memory by the required number of cycles of delay.

60256020 A 2-35



2-36

PACK/
UNPACK
—3
A OPERAND
(128)
RESULT
BOOLEAN (128) >
B OPERAND
(128)
MASK HIT
MASK MASKED
(128) —>1 REGISTER COMPARE 2) —>
Figure 2-9. Logical Unit Block Diagram
16-WORD RESULT
INPUT OPERAND 132-BIT |
(132) —» BUFFER (132) ——>
MEMORY
READ WRITE
ADDRESS OFFSET
COUNTER ADDER
DELAY AMOUNT
Figure 2-10. Delay Unit Block Diagram

60256020 A



Vector Floating-Point Control

The vector floating-point control contains the necessary logic to manage the operand
processing. This includes interconnection of operand processing units, unit startup,
interruption of processing operations, resumption of processing operations after
interruption, and processing operation shut down.

VECTOR STREAM OUTPUT (VSW)

The CYBER 205 has two output streams: write one (pipelines and register file output) and
write two (string output). The pipes and register file output stream accepts word/half-word
data from the functional units and aligns it on a 32-bit address for storage to memory. The
string output accepts bit data from the functional units and aligns and merges the data to
form a half-word for storing to memory.

Write One (Pipelines and Register File)

The pipes and register file output stream can process up to 256 bits of data per minor cycle
(four-pipeline machine) or 128 bits of data per minor cycle (one- or two-pipeline machine).
The function of the pipes and register file output is to accept data from the functional
units, compress out the unwanted data (sparse vector), align and buffer the data for storing
into memory. The pipes and register file output are separated into five subunits. They are
referred to as the output selection, compression, alignment, buffers, and SECDED.

Output Selection

The data for the pipes and register file output stream may be transmitted from three
functional units. They are the pipelines with up to 256 bits for a four-pipeline system,
register file output of 256 or 128 bits, and the vector setup unit output of 128 bits. The
pipeline bus is used for all pipeline type vector instructions creating a word or half-word
result. The register file bus will be used for the exchange operation and storing (in
memory) of a single register file read operand. The vector setup unit bus 1s used for the
storing of the invisible package information and instructions that create an index output.

Compression

The compress networks main purpose is to compress out unwanted data for the sparse vector
instructions. This 1s accomplished by examining the sparse vector instruction order
vector. Where a one appears in the sparse vector, the data is stored into central memory.
Where a zero is examined, the data 1is discarded. The register file input may use the
compress network to align the data starting at bit zero for a half-word, word and quarter
sword register file address.

60256020 A 2-37



Alignment

The alignment network consist of a 256-bit bus allowing alignment of any half-word of data
into any one of eight locations for storing into memory. A secondary purpose of the
alignment network is to broadcast a 32/64-bit quantity over the entire 256-bit bus during
one cycle.

Buffers

The pipes and register file output stream buffer is 264 bits by 64 words. The 256 bits are
used for data and 8 bits are for memory write enables. (The VST unit complements control
vector bits sent to the output when zeros are permissive.) Normal operation accumulates a
sword or two-sword quantity of data in the buffer before it is read and sent to the priority
unit for storing into central memory. During a space table search operation, the buffer
must accumulate the data that was in the pipelines when the space table search operation
started. This may be up to several swords/two-sword quantities depending on the pipeline
length.

Write Two (String, VSS)

The string output receives from O to 16 bits of data from the functional units, and aligns
and assembles the data into 32-bit groups for storage into the buffer. In the string
buffer, 128 bits are assembled for storage into central memory. The string output unit
consists of six subunits; old data, selection, alignment, merge, buffer, and SECDED.

01d Data

Data written into central memory must be in multiples of 32-bit quantities. The string unit
data can begin and end anywhere within 32-bit groups. The nonstring data within a 32-bit
group is referred to as old data.

The old data consists of FOD/IOD, (first old data/interrupt old data) and LOD (last old
data). FOD/IOD is used to assemble from the half-word address to the string output starting
address. LOD is used to fill out the half-word from the point where the string output data
ended (refer to figure 2-11). 10D is similar to FOD except that it refers to the partial
output data existing at the time an exchange occurs due to an interrupt.

Data Selection

The data selection subunit of the string output is used to select the data from the three
functional units, string, FOD/LOD and the front end. Each of these units can send from 0 to
16 bits per cycle.

2-38 60256020 A



STRING OUTPUT
STARTING ADDRESS

00 l 31

?//’}}%

STRING UNIT
DATA

JJ
L
JJ

{r

e/,
s

.
!

END OF STRING
DATA

Figure 2-11. String Unit Old Data

Alignment

The string alignment network shifts the string data to the correct bit address, allowing the
merge network to assemble 32 bits of data for storage.

Merge

The merge network receives from O to 16 bits of data from the alignment network and
assembles it into a 32-bit half-word for storage in the string output buffer.

Buffer

The string output buffer is 16 words by 132 bits, 128 bits of data and four memory write
enables. The buffer assembles 32-bit half-words into a sword of data for storage into
central memory. The buffer is also used to accumulate data when a space table search is in
progress.,

60256020 A 2-39



SINGLE ERROR CORRECTION DOUBLE ERROR DETECTION (SECDED)

" SECDED provides automatic correction of a single bit error in a memory word and optional
latching of the single bit error and multiple bit errors. SECDED checking and generating is
done in both the scalar processor and vector processor. SECDED generates seven check bits
for each 32 bits of data. These data and check bits are then transmitted to the scalar
priority unit for storing into central memory. When the data and check bits are read from
central memory, the check bits are used for error correction and detection.

There are eight SECDED units within the CPU; three write and five read units. The three
write or generate units are:

1. Write 1 vector

2. Write 2 vector

3. Write scalar
The five read or checker units are:

1. Read 1 vector

2. Read 2 vector

3. Read 3 vector

4. Read next sword (RNS) for next instruction

5. Read scalar
The SECDED error information is stored by the maintenance control unit (MCU). The stored
information is the syndrome word, single error or double error bits, read bus code, and CPU

physical address bits 36 through 58. The I/0 ports have no SECDED generators and checkers.
Equipment attached to the I/0 ports perform SECDED.

CPU WORD ADDRESS BITS (36 THROUGH 58)

The word address bits (bits 36 through 58) indicate the following:

.EEE Description

3637 Select 1 of 4 memory chip/bank
38-49 Select 1 or 4096 words/chip

50 2048K select

51 1024K select

52-54 Bank select

55-56 Quarter sword select

57-58 Half-word select

2-40 60256020 B



SECDED ERROR LATCHING HARDWARE

The SECDED error latching hardware has two modes of operation; mode 1 and mode 2. Mode
selection is accomplished through the MCU/CPU maintenance line called Select SECDED Error
Log Mode Two.

In modes 1 and 2 for simultaneous SECDED errors, the error latch information to be latched
is dependent on the relative priority of the data buses or half-words containing the
errors. It is possible to encounter a single and double error simultaneously and latch the
single error; the double error flag sets unconditionally. Therefore, if the double error
flag sets, the syndrome bits must be checked to determine if a single or double error was
latched.

SECDED USAGE

The SECDED mode best suited for a system is based on the error rate of the memory.

Mode 1

Mode 1 is normally used during system processing for a memory with a low error rate. All
error log information is correct, but mode 1 does not latch a double error if it follows a
single error within the cycle time of the MCU. The first error occurring after a master
clear or error clear has its error information latched. The information 1s correct
regardless of subsequent errors. If a double error follows a single error before an error
clear, the double error information is lost.

Mode 2

Mode 2 is used for a memory with a higher error rate. All single errors latched are
correct, and all double errors following a single error by more than eight minor cycles are
correct. A double error occurring before a single error is also latched correctly.

Double Error Log (Mode 2A)

Mode 2A should be used to locate defective storage after a high error rate has occurred.
This mode misses the double error only if there is a simultaneous single error with a higher
latching priority.

After a master clear or error clear, the MCU creates a single error using the maintenance
function to toggle a check bit. This single error is not cleared, and blocks detection of
all subsequent single errors. Therefore, when the MCU detects the double error flag, the
error log information is correct for that double error.

60256020 A 2-41



SECDED FAULTS

Executing an 06 instruction with bits 9 through 15 of the R designator selected, causes a
word or words to be written into memory with incorrect SECDED code. This allows checking
the SECDED networks on any or all read buses. All read bus SECDED networks are disabled by

setting bit 8.

Block Write Enables

The MCU can block write enable if a SECDED error occurs. Depending on the mode, there are
two options:

e Mode 1 - The write enable is blocked when SECDED receives its first single or double
error.

e Mode 2 - The write enable is blocked when SECDED receives its first double error.

INPUT/OUTPUT

The CPU provides data, function, maintenance, and status communication between the CPU and
other external system elements through I/O channels. A channel is made up of a number of
devices and networks and at least one 1/0 port. The I/0 port is physically located in the
CPU chassis. The device outside of the CPU and cabled directly to the I/0 port is referred
to as the system channel adapter.

1/O PORTS

There are eight bidirectional I/0 ports in the CPU. Another eight ports with identical
performance, timing, and equal priorities may be added as an option. Any port may be used
as a maintenance control channel by setting the maintenance line coming into that particular
port. This causes data transfers with the System Channel Adapter (SCA) to be made with the
IOM maintenance registers rather than with the CYBER 205 memory. The maintenance port can
disable the capability of any or all ports from making central memory transfers or sending
interrupts. The maintenance port does not disable the maintenance control channel operation.

A portion of the memory bandwidth is dedicated to the I/O ports and is unaffected by other
system activities. All other memory requests yield to I/0 requests. This bandwidth is
equally divided among the ports providing 200-megabit transfer rates on any or all ports
simultaneously. The transfer length limits are: minimum transfer length of one sword and a
maximum transfer of 4096 swords. All data transfers start and terminate on sword address
boundaries.

2-42 60256020 B



SYSTEM CHANNEL ADAPTER

The system channel adapters (SCA) are located in a stand-alone cabinet. This cabinet
contains a maximum of six SCAs. The minimum number of SCAs in a system is 6 and the maximum
number is 16 when the system has the optional 8 I/0 ports. Each SCA interfaces an I/0 port
with an external device for transfer of data and maintenance information. (Refer to figure
2-12.) Each SCA operates independently and consists of an A interface for transfer of
16-bit parallel data (with two parity bits) to/from the external device and a CYBER 205
interface for transfer of 32-bit parallel data to/from the CPU. Two internal buffer
memories allow simultaneous data transfers with the external device and CPU. Each memory
has a capacity of 128 data words (8 swords). Word size is 37 bits (32 data bits, 4 parity
bits, and 1 SECDED error bit). SECDED is provided and checkbits are generated and accompany
each 32-bit data word sent to the CPU, Checkbits received with each word are used for error
detection and correction. A loop mode feature allows testing of the buffer memories, by the
external device, without initiating a transfer request to the CPU.

EXTERNAL SYSTEM CHANNEL ADAPTER CPU
DEVICE CABINET

SCAt

16 BITS PARALLEL 32 BITS (+5 CHECK BITS)
DATA CYBER PARALLEL DATA

—a 206 -

INTERFACE

1/0
PORT

A
INTERFACE

{ SCA (OPTIONALIt A

el

tSIX SCA's PER CABINET MAXIMUM

Figure 2-12. System Channel Adapter

CYBER 205 Interface Lines
The interface lines from the SCA to the I/0 port (46 lines) are defined as follows:

e Write Enable (one line).

The corresponding half-word is written into the CPU memory or maintenance interface.

e Write Data (32 lines).

Write data is a group of 32 lines containing the starting memory address and the
field length for a read or write. Following the start address is the data in
half-words to be written into the CPU memory or maintenance interfaces.

e Write SECDED check bits (seven lines).

Write data check bits, with write data, for checking SECDED operation. The data and
check bits are written into the CPU memory where later reads of the same data and
check bits will exercise the SECDED hardware.

60256020 C 2-43



Write (one line).

This signal indicates a transfer of data from the I/0 port to the SCA if a logical 0
(read) or a transfer from the SCA to the I/0 port if a logical 1 (write).

SCA to the I1/0 port if a logical 1 (write).

Initiate (one line).

This signal is sent at the beginning of any data transfer to indicate that the sword
address, sword count, and the write and maintenance signals are available. Initlate
must remain a logical 1 until a data valid signal is returned.

Write Strobe (one line).

A timing pulse that strobes all other signals sent to the I/0 port. It is derived
from and synchronized with the read strobe.

Maintenance (one line).

A logical 1 indicates that data will be read from or written into the IOM
maintenance registers. A logical O indicates a data transfer with CPU memory.

Interrupt (one line).
This line signals an interrupt is being sent to the CPU. If the interrupt signal is
received during a write operation, it is not sent to the CPU until the write is

complete.

Master Clear (one line) not used.

The interface lines from the 1/0 port to the SCA (45 lines) are defined as follows:

Read Data (32 lines).

Read data is a group of 32 lines containing half-word read data being sent from the
CPU memory to the channel device.

Read SECDED check bits (seven lines).
Read data check bits used by SECDED to check read data and correct and record errors.
Data Valid (one line).

Notifies the SCA it can begin sending data during a write operation or that the I/0
port is sending data during a read operation.

Read Strobe (one line).

This is a timing pulse that strobes all other signals (except control function and
control function strobe) sent from the I/0 port to the channel device. It is also
used to synchronize the write strobe.

Control Function (two lines).

A 2-bit code used to indicate system control functionms.

60256020 B



e Control Function Strobe (one line).
Used as a timing pulse to strobe the control function.
e Inactive (one line).

Notifies the SCA that the I/0 port is not active and will not respond to any signals
sent by the SCA.

EXTERNAL DEVICE TRANSMISSION SEQUENCE

Data transfers from the external device occur in multiples of 32~bit words consisting of two
transfers of 16 bits each. Operations are initiated by the external device sending a 32-bit
address field accompanied by a function code. Data transfers occur in either direction as
determined by the function code.

The address field is transferred in two 16-bit words (figure 2-13). The upper portion of
the address 1is sent in the first 16-bit word and the lower portion is sent in the second
word. Data transfers occur in the same sequence with the upper half of a 32-bit word
appearing in the first 16-bit word and lower half in the second word.

00 0708 15 00 1112 15
ADDRESS FROM i i
EXTERNAL DEVICE ! .
\ 7 \
V— j\'\r'J
32-BIT
WORD
ADDRESS
- A \/ A \
00 112 1920 31
ADDRESS TO I' i
cPU A ;
\ N\ /
\/ A
SWORD COUNT SWORD ADDRESS

Figure 2-13. 1I/0 Transmission Sequence

SYSTEM COMMUNICATION

The CPU communicates with the SCA’s through two encoded control lines that specify channel
flag, external flag, and suspend functions.

These functions are defined as follows:
Channel Flag A channel flag is transmitted by the execution of a 08 instruction.

The 08 instruction designates which port the flag will be sent
through. Table 2-3 gives R designator to port correspondence.

60256020 A 2-45



2-46

Suspend

TABLE 2-3. CHANNEL FLAG ASSIGNMENTS

08 Instruction R

Designator Port
00 A NONE
01 Port 1
02 Port 2
03 Port 3
04 Port 4
05 Port 5
06 Port 6
07 Port 7
08 Port 8
09 Port 9
0A Port 10
0B Port 11
oc Port 12
0D Port 13
OE Port 14
OF Port 15
10 Port 16

11 through FF UNDEF INED

A suspend 1is transmitted by all ports when a master clear is

performed.

60256020 B



STORAGE AND MAINTENANCE ACCESS

The SCA sends the start address for a CPU memory reference to the I/0O port on the right 20
bits (bits 12 through 31) of the write data lines. The address is a sword address with the
capability of addressing up to 1 million swords of memory. All transfers are in sword
increments with half-word writes controlled by write enables.

The left 12 bits (bits 00-11)on the write data lines received at the I/0O port contain the
data transfer length in swords. The maximum data transfer size is 4096 swords specified by
a 12-bit data transfer length of zero. The actual usable maximum data transfer is
determined by the external peripheral devices. A data transfer with the maintenance
interface uses a length of one sword.

A write enable is sent on the write enable line with each 32 bits of write data. A logical
1 on the write enable line causes that half-word to be written into CPU memory or the
maintenance interface. A logical zero prevents a write.

An access function accompanies each start address. The access functions are defined as
follows:

Write/Read - Data is written into the CPU memory or maintenance interface if the write
line is a logical one. Data is read from the CPU memory or maintenance interface if the
write line is a logical zero.

Maintenance - Write or read the maintenance interface within the CPU through the I/0
port if the maintenance line is a logical one. Write or read the CPU memory if the
maintenance line is a logical zero.

For maintenance access the 20-bit sword address is not used, but the field length must be
set to one sword.

1/0O PRIORITY

The top memory access priority in the CPU is assigned to I/0 operations. All other memory
requests yield to I/0 requests.

The CPU I/0 control sequentially services all 8 or 16 I/0 ports for memory requests. The
I/0 control can maintain maximum data transfer rates on all I/O ports simultaneously with
vectors running in parallel on any CPU operation.

CENTRAL MEMORY - SERIES 400

Each 1 million words of central memory contains 16 memory stacks, each having 128K 39-bit
half-words (32 data bits plus 7 SECDED bits). Each 128K stack is arranged in eight phased
banks. Memory can assign sequential addresses to different banks by using bank phasing.
Because the banks are independent, a bank can begin a memory cycle before adjacent banks
have completed previously initiated cycles. In streaming mode, a reference is made
simultaneously to the same address in each of the 16 memory stacks obtaining a superword
(sword) of 512 data bits (one, two, or four pipelines) or 32 memory stacks obtaining a
two-sword quantity of 1024 data bits (four pipelines). Each 1 million words of memory
contains 128 phased half-word banks. Figure 2-14 shows the chassis configuration for 1
million words of memory.

60256020 C 2-47



CENTRAL MEMORY - SERIES 600

The basic 1 million words of the Series 600 central memory contain 16 memory modules. Each
module contains 128K 39-bit half-words (32 data bits plus 7 SECDED bits) called a rank. An
additional l-million word option can be added to the memory by installing one additional
rank to the 16 modules. Another 2 million words can be added by installing two additional
memory cabinets. The full complement of 8 million words is reached by adding two ranks to
the four cabinets of memory. Memory modules are divided into eight phased banks. A
1-million-word memory contains 128 phased half-word banks (16 modules times 8 banks).

Memory can assign sequential addresses to different banks by using bank phasing. Because
the banks are independent, a bank can begin a new memory cycle before adjacent banks have
completed a previously initiated cycle. In the streaming mode, a reference made
simultaneously to the same address in each of the 16 memory modules obtains a superword
(sword) of 512 data bits (1, 2, and 4 pipeline machines) or 32 memory modules obtaining a
two-sword quantity of 1024 data bits (four pipeline machines only). Figure 2-15 shows the
chassis configuration for 1 million words of memory.

MEMORY OPERATION

The memory request determines the amount of data that is transferred. A memory request can
be for a two-sword, a sword, a word, or a half-word quantity. One sword contains 8 words, 1
word contains 78 bits (68 data bits, 14 SECDED bits) addressed from left to right (refer to
figure 2-16).

When the memory interface performs a write/read operation in sword mode, it addresses a
half-word in each stack (Series 400) or a half-word in each of the modules (Series 600).
For a write/read operation in word mode, the memory interface addresses 2 of the stacks
(Series 400) or 2 of the 16 modules (Series 600), and in half-word mode only 1 stack or
module is addressed. In addition to the memory stack or module addresses, the memory
interface sends a bank address signal to select one of eight banks within a stack or module.

Depending upon the mode selected, all of the bits are transferred to and from central memory
even though not all the bits are used. For example: in sword mode, all 624 bits of one
sword are transferred to and from the central memory during each write and read operation
although only part of the sword may actually be stored or transferred. The memory interface
enables the proper control line for each half-word of the sword that is to be stored or
transferred.

® 2-48 60256020 C



60256020 C

SECTION A SECTION J SECTION K SECTION H
STACK STACK STACK STACK
0 4 2 (]
STACK STACK STACK STACK
8 12 10 14
STACK STACK STACK STACK
1 6 3 7
STACK STACK STACK STACK
9 13 1" 16

NOTES:

1. EACH SECTION HAS EIGHT STACKS.

2. TWO SECTIONS COMPRISE 1 MILLION WORDS OF MEMORY,

Figure 2~-14,

Section Configuration (Series 400)

2-49 o



MEMORY

® 2-50

1. EACH SECTION HAS EIGHT MODULES.

2. TWO SECTIONS CAN COMPRISE 1, 2, OR 4 MILLION WORDS OF MEMORY DEPENDING
UPON THE NUMBER OF RANKS INSTALLED.

Figure 2-15.

Section Configuration (Series 600)

INTERFACE
MEMORY MEMORY
SECTION A SECTION J SECTION K SECTION H
MODULE] |MODULE| IMODULE| |MODULE MODULE| |MODULE| |MODULE| |MODULE
0 4 8 12 2 6 10 14
|[MODULE| |MODULE| JMODULE| |MODULE |MODULE| |MODULE| [MODULE| |MODULE
1 5 9 13 3 7 1" 15
NOTES:

60256020 C



TWO-SWORD

00 ‘1247
SWQRD SWORD
~ ~ -
\ ~~
\ -~
~
\ SWORD \‘
\oo ' 623
WORD WORD WORD WORD WORD WORD WORD WORD
==
\ -
\ =
——
—
\ o
—
—
\ WORD \l
\ oo 7
HALF-WORD HALF-WORD
\ N
N
\ N
\ N
\ HALF-WORD N
\00 31 38
DATA SECDED
NOTES:

1. EACH TWO-SWORD QUANTITY CONTAINS 2 SWORDS.

2. EACH SWORD CONTAINS EIGHT WORDS OR 16 HALF-WORDS.

3. EACH WORD CONTAINS TWO HALF-WORDS. '

4. A HALF-WORD CONTAINS 39 BITS (32 DATA BITS AND 7 SECDED BITS).

6. MEMORY TRANSFERS MAY BE IN TWO-SWORD, SWORD, WORD, OR
HALF-WORD DATA QUANTITIES.
Figure 2-16. Two-Sword, Sword, and Word Configuration

60256020 C 2-51



MEMORY ACCESS AND CONTROL

Figure 2-17 shows the control signals sent to each memory stack. Figure 2-18 shogs the

control signals sent to each module.

interface to the stacks or modules.

interface.

All signals except read data are sent from the memory

STACK REQUEST

BANK ADDRESS

oC

» ABSOLUTE ADDRESS

¢

CLOCK

WRITE CONTROL

" WRITE DATA

SYNC

MASTER CLEAR

Y Y VY VY Y Y Y

0000 b

MEMORY
STACK
(SERIES 400)

The read data signal is sent back to the memory

Figure 2-17. Memory

READ DATA
A{EE}——lb-TO

MEMORY
INTERFACE

Interface Stack Connections (Series 400)

O1 STACK REQUEST

__@ BANK ADDRESS

__@ ABSOLUTE ADDRESS

Y

3 CLOCK

‘_@ WRITE CONTROL

WRITE DATA
- -

MEMORY
MODULE
(SERIES 600)

READ DATA TO

= MEMORY
INTERFACE

Figure 2-18. Memory Interface Module Connections (Series 600)

e 2-52

60256020 C



STACK REQUEST - SERIES 400

There are two stack request lines for each memory stack. This signal determines which stack
has been selected.

STACK REQUEST - SERIES 600

There is one stack request line for each memory module. This signal determines which module
to select.

BANK ADDRESS - SERIES 400

There are six (two sets of three) bank address lines for each memory stack. This signal
determines which bank of the eight banks within a stack has been selected.

BANK ADDRESS - SERIES 600

There are three bank address lines for each memory module. This signal determines which
bank with a module has been selected.

ABSOLUTE ADDRESS - SERIES 400

There are 14 bits that determine the absolute address; 2 bits determine which of the four
banks of memory chips has been selected and 12 bits determine the address in memory selected.

ABSOLUTE ADDRESS - SERIES 600

There are 16 bits that determine the absolute address; 2 bits determine which of the 4 ranks
of memory has been selected and 16 bits determine the address in memory selected.

CLOCK - SERIES 400

There are two identical clock lines for each memory stack. This signal synchronizes the
memory stack to the memory interface.

CLOCK - SERIES 600

There is one clock line for each memory module. This signal synchronizes the memory module
to the memory interface.

60256020 C 2-53



WRITE CONTROL - SERIES 400

There are two identical write control lines for each memory stack. This signal informs the
memory stack of a write memory cycle.

WRITE CONTROL - SERIES 600

There is one write control line for each memory module. This signal informs the memory
module of a write memory cycle.

WRITE DATA

There are 39 write data bit lines for each memory stack or module: 32 for data and 7 for
SECDED.

SYNC - SERIES 400

This signal provides a point of reference for maintenance purposes.

SYNC - SERIES 600

None.,

MASTER CLEAR - SERIES 400

There are two identical master clear lines for each memory stack. The memory interface
pulses the master clear signal continuously whenever a master clear is present in the CPU.

MASTER CLEAR - SERIES 600

None.

READ DATA

The 39 read data bits are obtained from the read data registers on the output, and the
information is sent back to the memory interface.

® 2-54 60256020 C



MEMORY INTERFACE

The memory interface provides ports for access to central memory. The scalar processor,
vector processor, and I/0 ports are connected to central memory through the memory interface
as shown in figure 2-19. Data transmissions are controlled by the priority unit in the
scalar processor. SECDED for each 32 bits of data on the memory ports is done in the scalar
or vector processor. SECDED for data through the I/0 ports is done externally to the
central computer. Data can be transferred to and from the memory ports in 32-bit half-word,
64-bit word, 512-bit sword, or 1024-bit two-sword quantities (refer to table 2-4).

Each memory port is connected to memory through a one sword/two-sword buffer located in the
memory interface. If a buffer is shared by multiple ports, the priority unit provides
proper port selection to the memory interface selection network. Data is transmitted
between the buffers and the processor in sword/two-sword quantities at a rate of one
half-word, word, or quarter-sword/half sword per minor cycle.

SECDED SCALAR

MEMORY NETWORK PROCESSOR

INTERFACE
1 SWORD A
BUFFERS

READ 1 >—

READ 2 >

MEMORY ¢ VECTOR
- SECDED
READ 3. NETWORK PROCESSOR

WRITE 1 < J

e 7 Jot—

il

L. 1/0

tEQUIPMENT ATTACHED TO 1/0 PORTSt
PORTS PROVIDES SECDED.

Figure 2-19. Memory Interface Configuration and Connections
for a Two-Pipeline Configuration

MEMORY DEGRADATION

If more than 1 million words of memory are present, degradation may be selected.
Degradation allows the amount of usable memory to be less than the total memory in the
system. The amount of usable memory is controlled by a degradation code from the MCU along
with a strobe bit. Tables 2-5 and 2-6 shows the memory degradation codes and their
descriptions for Series 400 and Series 600, respectively.

60256020 C 2-55



TABLE 2-4. MEMORY PORT TRANSFER MODES

Memory Interface Buffer

Memory Port

Transfer Mode

Read 1

Read 2

Read 3

Write 1

Write 2

Scalar processor

Vector processor

Vector processor

Read next sword (RNS) (scalar processor)
I/0 ports

Vector processor

Scalar processor

Vector processor

I/0 ports

Vector processor

Half-word, word,
sword, two-sword

Half-word, word,
sword, two-sword

Sword, two-sword
Sword
Sword
Sword

Half-word, word,
sword, two-sword

Half-word, word,
sword, two-sword

Sword

Sword

NOTE: Although the I/0 ports have a sword transfer mode, this mode is modified to
be synchronized with vector streams operating in two-sword mode (four
pipelines) with minimal effect to the I/0 transfer rates.

TABLE 2-5. SERIES 400 MEMORY DEGRADATION BITS (4K CHIPS)

Memory Sections Usedt Degradation Code Usable Memory
A, Hand B, G and C, F and D, E 6 4 million words
C, Fand D, E 5 2 million words
A, H and B, G 4 2 million words
D, E 3 1 million words
C, F 2 1 million words
B, G 1 1 million words
A, H 0 1 million words

tRefer to figure 1-2.

2-56

60256020 C




TABLE 2-6. SERIES 600 MEMORY DEGRADATION BITS

Ranks Used Degradation Sections A and H Sections A,H,B and G

Code Usable Memory Usable Memory
Rank O 0 1 million words 2 million words
Rank 1 1 1 million words 2 million words
Rank 2 2 1 million words 2 million words
Rank 3 3 1 million words 2 million words
Ranks 0,1 4 2 million words 4 million words
Ranks 2,3 5 2 million words 4 million words
Ranks 0,1,2,3 6 8 million words

60256020 C

2-57



MAINTENANCE CONTROL UNIT

The maintenance control wunit (MCU) provides system autoload and system performance
monitoring capabilities. The MCU also provides the capability of loading, controlling, and
monitoring the central processor unit (CPU) diagnostics. Connections from the MCU to the
central computer are made through I/O ports. Any I/O port may be used by setting the
maintenance line for that particular port. The interfaces allow the MCU to monitor CPU
status.

The primary purpose of the MCU is to support the reliability, availability, and
maintainability of the central computer. The MCU provides operators with the means of
autoloading the operating system and checking the CPU status.

The MCU operates in offline and online software modes.

e In an offline mode, the MCU loads CPU diagnostic routines and then controls and

monitors the diagnostic operations and furnishes the results of the operations to a
display unit or a line printer.

e During normal online site operation the CYBER 18 system used as the MCU on the CYBER
205 provides the operator with the means of autoloading the operating system and
checking CPU status.

® During periods of degraded or intermittent system operation, the primary purpose of
the MCU is to support the reliability, availability, and maintainability (RAM) CPU
standards. To minimize repair time during these periods, the customer engineers
supporting the site must be given top priority in using the MCU.

SYSTEM CHANNEL INTERFACE (SCI)

The System Channel Interface (SCI) provides the interface between the MCU and the SCA.
Refer to the section on Input/Output for a description of the SCA. The SCI occupies two
printed circuit board slots in the MCU chassis. Control logic and input/output buffering
are contained on one board and the receiving and transmitting circuits necessary to
interface with the SCA are contained on the second board.

INTERFACING BETWEEN SCA AND SCI

There are 51 lines, not counting the maintenance line, used to transfer the data and control
functions between the SCA (which contains an A interface) and the SCI (which contains a B
interface). Refer to figure 2-20. The interface lines from the SCA to the SCI (25 1lines)
are defined as follows: (References to A apply to the A interface and references to B apply
to the B interface.) The same lines and transfer sequences are used between the other SCAs
and other external devices except that there is no maintenance line.

| 2-s8 60256020 C



MCU SCA CPU

SCI
r aa—  ems
| B A CYocR o
INTERFACE INTERFACE INTERFACE POR
G em—

Figure 2-20. System Channel Interface (SCI)

e Data from A (DFA, 16 lines).

A group of 16 pulsed lines, DFAO through DFAl5, that transmit data to the SCI. DFAO
is the most significant.

e Data Parity from A (DPFA, two lines).

Two pulsed lines, DPFAO0 and DPFAl., DPFAO0 forms odd parity with DFAO through DFA7,
and DPFAl forms odd parity with DFA8 through DFA15. DPFA is transmitted with DFA.

e Request from A (RFA, one line).
Signals the subsequent presence of data and error information.
e Accept from A (AFA, one line).
Acknowledges the receipt of a request from B (RFB) and associated information and
also signals the subsequent presence of error information. On transmission of AFA,
A can accept a new RFB.
e Parity Error from A (PEFA, one line).
Indicates that one or more of the following errors has been detected.
=  SECDED error
= Buffer memory parity error
= Transmission parity error
- Function parity error
e Illegal from A (IFA, one line)
Indicates an illegal or invalid function code has been detected.
e Control Strobe from A (CSFA, one line).
Signals the subsequent presence of control information.

e Control from A (CFA, two lines).

Two pulsed lines, CFA0O and CFAl, that are coded to indicate control functions.
Refer to table 2-6 and Control From A in this section for codes.

60256020 C 2-59



The interface lines from the SCI to the SCA (26 lines) are defined as follows:

Data from B (DFB, 16 lines).

A group of 16 pulsed lines, DFBO through DFB15, that transmit data, address fields,
and function words to the SCA. DFBO is the most significant.

Data Parity from B (DPFB, two lines).

Two pulsed lines, DPFBO and DPFBl. DPFBO forms odd parity with DFBO through DFB7
and DPFBl forms odd parity with DFB8 through DFB15. DPFB is transmitted with DFB.

Request from B (RFB, one line).
Signals the subsequent presence of function, data, or address information.
Accept from B (AFB, one line).

Acknowledges the receipt of an RFA and associated information. On transmission of
AFB, B can accept a new RFA.

Function from B (FFB, three lines).

Three pulsed lines, FFBO through FFB2 that are coded to indicate the type of
operation to be performed. FFB is transmitted with DFB. Refer to function from B
in this section for further explanation.

Function Parity from B (FPFB, one line).

FPFB forms odd parity with FFBO through FFB8. FPFB is transmitted with FFB.
Interrupt from B (IFB, one line).

Single pulsed liné that is passed on to the CPU.

Master Clear from B (MCFB, one line).

Single pulsed line that master clears the SCA.

Control From A

Control from A (CFA) is generated by the CPU and is passed on to the SCI via the SCA along
with the CSFA signal. Table 2-7 lists CFA codes.

TABLE 2-7. CONTROL FROM At

CFAO CFAl Function
0 0 Control Flagtt
0 1 Channel Flag
1 0 External Flagtt
1 1 Suspend

TRefer to system communication (section 2 of this manual) for definition of
terms in Function<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>