88951000

@ CONTROL DATA
CORPORATION

CDC®HARDWARE FLOATING-POINT UNIT
BT221-A

HARDWARE MAINTENANCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
01 Preliminary released.
(11/77) ‘
02 Manual revised to conform to corporate format standards. Released by ECO DS18852.
(3/78)

Publication No.
88951000

REVISION LETTERS I, 0, @ AND X ARE NOT USED

© 1977, 1978
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4455 Eastgate Mall

La Jolla, California 92037

or use Comment Sheet in the back of
this manual.

MANUAL TO EQUIPMENT LEVEL CORRELATION SHEET

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in
the list below. Immediately to the right of the series number is an FCO number. If that number and all

of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual
accurately reflects the equipment.

EQUIPMENT TYPE SERIES WITH FCOs COMMENTS

BT221-A 01

88951000 02 iii/iv

P

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE

Cover
Title Page
ii
iii/iv
v/vi
vii/viii
1-1 thru
1-3
2~1 thru
2-33
3-1 thru
3-5
4~-1 thru
4-54
5-1 thru
5-55
6~1 thru
6-32
A-1
B-1 thru
B-11
C-1 thru
C-5
D-1 thru
D~16
E-1 thru
E-30
Comment
Sheet
Cover

REV

02

02

02

02

02
02

02

02

02

02

02

PAGE

AGE

REV | I PAGE

REV

PAGE

REV

RE\d FP

88951000 02

v/vi

P

 PREFACE

This manual describes the functional mechanical and operational characteristics

of the CDC® BT221-A Hardware Floating-Point Unit (HFPU) used with the CYBER
18-17 (SYSTEM 17) Computer System.

It is assumed that the reader is familiar with CYBER 18-17 hardware and software.
For additional information, the following manuals may be obtained from Literature

Distribution Services:

Title Publication No.

1781-1 Hardware Floating-Point Unit

Reference Manual 88951100
1784 Computer Reference Manual 89633400
1784 Computer Input/Output Specifications 89673100
CYBER 18-17 Installation Manual 88996000

88951000 02 vii/viii

CONTENTS

1 GENERAL DESCRIPTION 1-1
1.1 Physical Description 1-2
1.1.1 Components 1-2
1.1.2 Slot Assignments 1-2
1.2 Funetional Description 1-3
2 OPERATION AND PROGRAMMING 2-1
2.1 Equipment Definition 2-1
2.2 Characteristics 2-13
2.2.1 Command Deseription 2-19
2.2.1.1 Operand Addressing 2-21
2.2.1.2 Operand/FPAC Format 2-25
2.2.1.3 Rounding 2-26
2.2.1.4 Fix Float Number Conversions 2-27
2.2.1.5 HFPU Initialition Sequences 2-27
2.2.1.6 HFPU Stop/Restart Sequence 2-28
2.2.1.7 Function/Status Register Definitions 2-29
2.2.1.8 Hardware Execution Times 2-30
3 INSTALLATION 3-1
3.1 Logie Card Installation 3-1
3.1.1 Inspection 3-1
3.1.2 Installation of Jumpers 3-1
3.1.2.1 DSA Board 33-2
3.1.2.2 A/Q Board 3-3
3.1.2.3 SPALU Board 3-4
3.1.3 Board Installation 3-4
3.2 Mother-Board Installation and Removal 3-5
3.2.1 Preparation 3-5
3.2.1.1 The Backplane 3-5
3.2.1.2 The Mother Boards 3-5
3.2.2 Installation 3-5
3.2.3 Removal 3-5
4 THEORY OF OPERATION 4-1
4.1 - Hardware Organization 4-1
4.1.1 Device Structure 4-1
4.1.2 The Micro-Processor Concept 4-1
4.1.3 The Programmable Elements 4-9
4.1.4 The Miero-Instruction Set 4-14
4,2 Description of Algorithms 4-34
4.2.1 Introduction to Floweharts and Listings 4-34
4.2.2 The Algorithms , 4-34

ix 88951000 02

£ B0 DO PO DO BO DO
L] . * o . . L]
NN N M
- N3 R TN

HOQWR

B D DN DN NN
e o o o o o o o o o

MR- T I N R ORI TN

WWN NN
. o L] . . L]
DN = QO DN

.::-:bw
DN =W

OP-Code Fetch/Cold Start
The SPEC Group

Single Micro-Instruction Group
Floating Point Group

Index Register Group

The A/Q STOP Command
Restart

APPENDIXES

Glossary

Miero-Code Listings and Flow Charts

ROM Truth Tables and A/Q Decoding ROMS
Floating-Point A Code and Flow Charts
Master Control Micro-code and Flow Charts

FIGURES

HFPU Q-Register Function Format

FSR Bit Assignment

Addressing Examples

Execution Time Examples °

HFPU Data Paths

Floating Point Miero-Processor Block Diagram
Master Micro-Processor Block Diagram
Arithmetic Shifting

Master Micro-Processor Instruction Format
Floating-Point Micro-Processor Instruction Format
Flow Chart Conventions

TABLES

HFPU Board Summary

Function/Status Register Bit Assignment

Command-Code Definition

Execution Times (worst case operands)(44s Tac) (600ns cycle)

DSA Scanner Position Select Jumpers

A/Q Equipment Address, Protect Mode, and Single-Precision
Device Jumpers

Hexadecimal Code for Equipment Select

Master Micro-Processor Instruction Format

Floating Point Miero-Processor Instruction Format

88951000 02

4-34
4-34
4-37
4-38
4-50
4-51
4-53

A-1
B-1
C-1
D-1
E-1

2-3
2-4
2-22
2-33
4-2
4-6
4-7
4-12
4-15
4-16
4-35

4-17
4-25

GENERAL DESCRIPTION | ' - 1

This manual describes the functional, mechanical, and oper-
ational characteristics of the System 17 Hardware Floating
Point Unit, herein after referred as the HFPU. This device
is designed to provide improvement in the execution time of
. programs running under MSOS FORTRAN IV, It provides a
fully compatible replacement for the software Floating-
Point Interpreter packages, FLOT (single-precision) and
DFLOT (double-precision). The HFPU interprets and exe-
-cutes the same calling sequences as those used by the
software. Thus the software package can be replaced by a
small driver for the HFPU with no change in user written
programs.

All Floating Point arithmetic in MSOS FORTRAN is done
through an interpretive package of subroutines, This
package, FLOT or DFLOT, was designed to minimize the
amount of memory required for user written programs. In
order to do this, a calling sequence structure was esta-
blished. The calling sequence consists of a command word
which may contain up to 4 function commands followed by
address words which point to the locations in memory. of
the operands required for the function. This technique,
since it is basically an expansion of the instruction set
of the System 17, lends itself very nicely to the construc-
tion of a svecial purpose processor which executes the
floating-point calling sequence. .

.The HFPU is such a device. It consists of a fast,
floating-point arithmetic processor coupled to an efficient
command interpreter that is interfaced to the A/Q and DSA
channels of the System 17 CPU. The HFPU responds to a group
of A/Q commands which are used for initialization and diag-
nostic purposes. Once initialized, the HFPU utlizes the
DSA channel to fetch the calling sequence from memory and
to retrieve and store operands as required. Upon completion
of the execution of the calling sequence, the HFPU returns
, & pointer to the System 17 CPU via the A/Q channel which
indicates the next location in memory following the calling
sequence. This is done so that System 17 program can con-
tinue execution at the next executable instruction follow1ng
the calling sequence. '

The FLOT calling sequence command set has been expanded
for the HFPU to include program-control type commands (Jump
and conditional Branch). This opens up the possibility of
system software optimization by having the HFPU run in par-
- allel with the System 17 CPU.

As with the reentrant and non-reentrant versions of FLOT
and DFLOT, the HFPU has been provided with a reetrancy capability
in the form of STOP and RESTART commands. By using these
commands, the HFPU can be interrupted and then relntlallzed
without any loss of information.

88951000 02 ' : ’ ' 1-1

88951000

1.1 Physical Désériptibn r

1.1.1 Components. The unit consists of seven logic cards
and three backplane interconnect assemblies. Each interconnect
assembly consists of two printed circuit cards (mother-boards)
which are coupled via a short cable. Table 1.1 summarizes these
cards by name and PWA part number. All power is described from the
+5 V supply of the expansion chassis. o : ' :
1.1.2 Slot Assignments. The logic cards may be installed
in two different positions in the expansion chassis. The
cards must be in slots in the order detailed in Table 1.1 .
The major constraint is that the DSA card must be installed
in one of the Prewired DSA slots (slot 22 or 14).

The Mother Boards are pushed onto the backplane on the
side opposite from the slots occupied by the logic cards.

TABLE 1.1. HFPU BOARDEUMMARY v

Name PWA No, |[Standard | Alternate | Function
| ' |Slot No. | Slot No. :
ADDR 188953800 23 - 13 Address Preparation
DSA 88953700 22 14 DSA Interface &
: Master Control
A/Q 88953400 21 13 A/Q Interface &

, Master Control
DPALU(SP) |88953100 18 10 Master Control
DPALU(DP) |88954100 .18 10 Double Precision

‘ : v _ Extension & Master
Control :
SPALU 88952800 17 9 Single Precision -
A Mantissa Arithmetic
FPHMP 88952500 16 8 Floating Perint '
Micro-Processor
EXP&TIM 88952200 15 7 Exponent & Floating-
: Point Timing
NAME Mother Board Location
. PWA No. :
Pl 88954400 ‘ P1 Mother Board
P2 TOP 88954500 ' P2 pins 1 to 15 Mother Board
P2 BTM 88954600 : P2 pins 16 to 31 Mother Board
02

1.2 FUNCTIONAL DESCRIPTION

Functionally, the HFPU is provided with a look-ahead
feature which allows it to fetch the operand required for
a succeeding operation while a preceding floating-point operation
is in progress. Thus, although the worse case double-precision
FDIV time is approximately 16 micro-seconds, the effective time
may be 13 micro-seconds or even lower depending on number of
overlapped operations. This feature implies, for instance, that
a typical FORTRAN program utilizing single-subscripted variables
with execute floating-point operations in nearly the same time
as a program utilizing unsubscripted variables,

88951000 02

OPERATION AND PROGRAMMING 2
2.1 Equipment Definition.

The System 17 HFPU is an addressable I/O type of equip-
ment connected to the A/Q and DSA I/0O channels of the CPU.

It is activated and monitored via the A/Q I/O channel. and per-
forms floating-point calculations with data parameters obtained
via the DSA I/O channel.

The HFPU uses an operating format that is identical
to the FLOT subroutine format and executes all of the.

FLOT call-operations plus the additional call-operations
which are defined in paragraph 2.2,

Two modes of floating-point arithmetic capability
are available to the HFPU user. These modes are:

a) Single-Precision Arithmetic (32-bit operand)

b) Double-Precision Arithmetic (48-bit operand)

In addition to the two floating-point operation modes, the
HFPU has four types of operand-addressing modes. Thgse modes
are: .

a) Absolute (16-bit)

b) Relative (16 bits with bit 15 - sign)

¢) Indexed (1l6-bit)

d) Indexed un-multiplied (16-bit)

These operand addressing modes allow the user to access all
permissible memory locations within a 65K-word memory.

After the HFPU is activated by the appropriate A/Q channel
command, it obtains all Command-Code instructions and data
operands directly from the System 17 memory via DSA access.

It executes these Command-Code instructions and returns the
results of the operations to memory as directed. When the
HFPU is in Block or Hog Mode, it utilizes the "priority'" sig-
nal line to enhance the DSA speed for its access to memory.

The HFPU also incorporates an A/Q and DSA protect fear
ture. The A/Q portion of the protect feature consists of a
Jumper plug on the A/Q Interface board. Presence of a jumper
plug is defined as "Protected }ode." Absence of a jumper
plug is defined as "Unprotected Mode."

When the HFPU is set to "Protect Mode", it will set FSR
bit 4, accept only protected A/Q Write commands and will cause
an "External Reject" to the CPU for any unprotected A/Q Write
Commands it receives. When the HFPU is set to "Unprotected
Mode", it will acc¢ept all legal A/Q I/0 commands. Unpro-
tected STOP Commands and unprotected RE-START Commands are
defined as illegal.

The DSA protect mode feature is activated by setting
bit-4 in the HFPU Function Status Register (FSR). This bit is
set by four methods which are:

(1) A protected A/Q Write Command to Q—Statlon 0

' (A to FSR) with A-Register Bit-4 set.

(2) A protected A/Q Write Command to Q-Station 3 or 4

(Cold Start SP or DP).

188951000 02 2-1

(3) A protected A/Q Write Command to Q-Station A (STOP).
(4) Presence of the A/Q Protect jumper.
- NOTE: 'The above three A/Q Vrite Commands must be pro-
' tected to set FSR bit 4 regardless of the A/Q
Protect jumper position. '

When the DSA Protect’Mode is active, it will allow the HFPU
to Write data words or store Register contents into protected .
memory locations without incurring program protect errors.

FSR bit 4 stored in memory during the STOP Command will reflect
the DSA protect state of the HFPU prior to execution of the
STOP Command. '

When the DSA Protect Yode is active (FSR bit 4 set) all
unprotected A/Q Vrite Commands will be rejected.

The HFPU contains six functional registers that are acces-
sible through the A/Q I/0 channel. These registers are ad-
dressed by using the Q-register bits as defined in figure 2.1.
The six registers and their use are defined as follows:

a) TSR = Function/Status Register

This is the main control register for the HFPU and will
accept A/Q I/O commands at any time. If active, the HFPU ac-
cepts an A/Q VWrite Command to the FSR only if A-bit 00 (PCLR)
is set. Any other A-bits will be ignored. The functions of
the FSR bits are summarized in figure 2.2. ’

"b) CCR = Command Code Register

This register is normally loaded via the DSA channel and
contains the command code instruction word. It can be read
on the A/Q channel (see 2.2.1.6 for format) at any time but
can only be loaded by an A/Q channel write when the unit is

not active,

c) IR = Index Register

This register contains a 16-bit digital number that is
used during orerand address formation for floating-point cal-
culations. It is normally loaded via the DSA channel by an

"INDX command. It can be read at any time on an A/Q Read Com-

mand but can only be loaded by an A/Q Write command when the
unit is not active. The value loaded or written via the A/Q
Read and Write commands is always the raw, un-multlplled 16-
bit number.

d) PCR = Program Counter Register

This register contains a 15-bit digital number used as
the base address during operand address formation. It is nor-
mally loaded via the A/Q channel by a Cold Start Command and
incremented during floating-point operations. It is also loaded
via the A/Q channel by an A-Reg to PCR Command or via the DSA

_ channel on a Restart Command.

2-2

88951000 01

15 14 13 12 1110987654 32 1 0 Q-REGISTER BITS
(0.0 0 0 0[xXxXXxx'00 0]
;—V‘Jw

NI

0000 —) |(A-REG) =) FSR+ (FSR) —) A-REG
0001—) |(A-REG)—3CCR* .|(CCR)—) A-REG

0010—) |[(A-REG)—)IR # (IR) — A-REG
0011—) [(A-REG)—p PCR * (PCR)—) A-REG *
L) (Cold Start Ad- (Address Status)
dress) (Single (If not Active)

. fPrecision)

0100 —) |(A-REG)—) PCR * (PCR)—> A-REG *

Transfer Function
On A/Q WRITE

Transfer Function

On A/Q READ

(Cold Start Ad-
dress) (Double

(Address Status)

(If not Active)

Precision)
0101 -—ﬁ (A-REG)—) SSAR * (PCR)—) A-REC
(Restart Address) [(Address Status)
0110 —) [(A-REG)—FPAC * (FPAC)—)A-REG *
(FPAC BITS 00 - 15)|(FPAC BITS 00 = 15)
0111 —) |[(A-REG)—3FPAC * |(FPAC)-}A-REG *
_ (FPAC BITS 16 - 31)|(FPAC BITS 16 - 31)
1600 —) |(A-REG)—yFPAC * |(FPAC)-3A-REG #
(FPAC BITS 32 - 47){(FPAC BITS 32 - 47)
1001 —) [(A-REG)—) SSAR (SSAR)-) A-REG
(Stop Order, HFFU |(SSAR Status)
will stop and use
. contents of A-
register as first
address for saving
registers)
. HFPU Equlpment Code (0 é——§ Fie
7 A/Q CHANNEL
y W-Field must be set to zero before
/ HFPU will respond on A/Q CHANMEL.

#The HFPU returns an "EXTERNAL REJECT" to the CPU if an attempt is made to
address these registers while the HFPU is in an active state (in process of
calculation or bit 15 FSR set).

+The HFPU returns an "EXTERNAL REJECT" while it is in an ‘active state if A-vegister

Bit @ is not set.,

If A-Reg Bit @ is set the HFPU returns a "REPLY".

The HPPU will return an External Reject to the CPU on any other A/Q Read or Write

Command if the HFPU cannot regpond within 4 microseconds.

This condition can occur

if the Read or Write Command is issued at the time the HFPU is raising its DSA Need
signal for a series of address/operand retrievals in Priority mode and the DSA is
already active (HFPU must for scanner)}.

88951000 02

Figure 2.1 HFPU Q-Registér Function Format

1

13 12 11 10 21

5 14 9876543 0 A-REGISTER
A[O][D[U] O JR,IDJF [P[P] S [P
c|viv|n| P [E[NB|E|,|R|T| C|C

T|F|F|{ F| B |L|iDP|N| [O|F] A |L

vivclolnl c |vlshiip] |T|iT] u|®r

L—-PROGRAM MASTER CLEAR -

SCANNER ACCESS MODE

DSA PROTECT FAULT

DSA PROTECT MODE

NOT USED (ALWAYS ZERO)

FLOATING POINT EXECUTION
ENDED

DOUBLE PRECISION MODE

INDEX MULTIPLY DISABLE

RELATIVE ADDRESSING ‘ODE

OPERAND BYTE COUNT

—EXPONENT UNDERFLOW

DIVIDE FAULT

EXPONENT OVERFLOW

ACTIVE

' NOTE 1: Refer to table2.1 for detailed explanation of bit

assignments.

NOTE 2: Console Master Clear referred to in table 2.1 clears
all HFPU timing, resets the HFPU to an idle state, and clears
all registers with the exception of the PCR and the FPAC.
Console Master Clear enters the HFPU via a p1n on the A/Q
Channel bus.

Figure 2.2, FSR Bit Assignment

88951000 02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT

BIT
POSITION

BIT
MNEMONIC

BIT DEFINITION

15

14

88951000 02

ACTV

OVFL

Bit is set by A/Q Channel Write Command
to FSR with A-bit 15 set (HFPU must be
inactive) or by HFPU when it is in an
active state. When this bit is set, it
will cause the HFPU to reject all A/Q
channel Write Commands except A Reg to
FSR and Protected Stop (A Reg to SSAR).
Bit is cleared or reset by:

a) Inactive HFPU status.

b) Program Master Clear.
c) Console Master Clear.-

Inactive status does not necessarily indi-
cate that the HFPU has completed the FLOT
subroutine as the STOP Command sill clear
FSR bit 15 after storing all appropriate
Registers. FSR bit 15 stored at SSAR during
the STOP Command will reflect the condltlon
of the HFPU prior to the STOP Command.

WARNING: Setting this bit via an A/Q Write
Command to FSR will place the HFPU in a state
such that it will return an External Reject
to all A/Q commands except a Program Master
Clear (A/Q Write to FSR with A-bit 00 set).

EXPONENT OVERFLOW. Bit 1s set by:

a) HFPU arithmetic operation in which

the exponent of result was too large to

be represented by the eight binary bits.
When this bit is set as a result of an
arithmetic operation, the HFPU will force-

~set the FPAC to the largest floating-point

number expressible with the correct F.P.
sign.

b) A to FSR Command (HFPU inactive) from
CPU and A-bit 14 = 1 . This action sets
only this bit and does not affect the con-
tents of the FPAC.

Bit is reset by:

a) A to FSR Command (HFPU inactive) from
CPU and A-bit 14 = 0 .

'b) Program Master Clear.

¢) Console Master Clear.

2-5

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Cbntd)

88951000 02

BIT BIT
POSITION MNEMONIC BIT DEFINITION
13 DVFL DIVIDE FAULT. Bit is set by:

, a) HFPU when an attempt is made fo
divide by a zero or by an un-normalized
operand. When bit is set as a result
of an arithmetic operation, the HFPU
will force-set the FPAC to the largest
floating-point number e\pre851ble w1th
the sign of the Dividend.

b) A to FSR Command (HFPU inactive)
from CPU and A-bit 13 = 1 . This action
sets only this bit and does not affect
the contents of the FPAC.
Bit is reset by:'
a) A to FSR (HFPU inactive) Command
from CPU and A-bit 13 = 0 .
b) Program Master Clear.
c) Console Master Clear.

12 UNFL EXPONENT UNDERFLOW. Bit is set by:

a) HFPU arithmetic operation in which

. the exponent of the result was too small

to be represented by the.eight binary blts.
When this bit is set as a result of an
arithmetic operation, the HFPU w111 force-
set the FPAC to zero.

\

b) A to FSR Command (HFPU inactive)

.from CPU and A-bit 12 = 1 . This ac-

tion sets only the bit and does not affect
the contents of the FPAC.

Bit is reset by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 12 = 0 .,

b) Program Master Clear.

c) Console Master Clear.

2-6

TABLE 2.1.

FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

BIT
MNEMONIC

'BIT DEFINITION

11 and 10

2-7

OPBC

RELM

'OPERAND BYTE COUNT. Indicates which of

of the four bytes in the CCR is about
to be executed, It has the following
bit format:

Bit Bit
'11 10

Operand byte one.
Operand byte two.
Operand byte three.
Operand byte four.

0
0
-1
1

~OKO

These bits can be set to any initial
state by an A to FSR (HFPU inactive)
Command from the CPU and A-bits 11 and

- 10.

Bits are reset by:

a) A to FSR (HFPU inactive) Command from
CPU and‘A-bits 11l and 10 set to zero.

b) Cold Start Command.

c) Program Master Clear.

d) Console Master Clear.

NOTE: A/Q Write Command to Q-Station 1
(A Reg to CCR) does not affect the state
of FSR bits 11 and 10.

RELATIVE ADDRESSING MODE.

Bit is set or reset by:

a) The HFPU execution of a CHMD instruc-
tion. Refer. to paragraph 2.2.1 for
detalled explanation.

b) A to FSR (HFPU inactive) Command from
CPU and the state of A-bit 09

Bit Cleared By:-
a) Cold Start Command.
b) Program Master Clear.

c¢) Console Master Clear.

-

- 88951000

Cw e

02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT
POSITION | MNEMONIC | BIT DEFINITION

8 INDS INDEX MULTIPLY DISABLE.

This bit is used to inhibit the logic
that multiplies the Index Register Con-
tents by 2 or 3 during effective address
formation.

Bit is set by:

a) A to FSR (HFPU inactive) Command
from CPU and A-bit 08 set to 1 .

Bit is reset by:

a) A to FSR (HFPU inactive) Command from
CPU and A-bit 08 set to O

b) Program Master Clear.

¢c) Console Master Clea-~.

NOTE: A/Q Write Command to Q Station 2
(A-Reg to IR) does not affect the state of
FSR bit 08.

7 ‘DBPM DOUBLE PRECISION MODE

Bit is set by an A to FSR Command (HFPU in-
active) and A-bit 07 set or by a Cold Start
Command in Double Precision (Q station 4).
When bit is set, all floating-point calcu-
lations are performed in double-precision
mode (48 bits).

When bit is reset, all floating-point cal-
culations are performed in single-precision
mode (32 bits).

Bit is resét by:

a) Program Master Clear. .

b) Console Master Clear.

¢) Cold Start Command in Single Precision
(Q station 3).

6 FEND FLOATING POINT EXECUTION ENDED. Bit is set
: by: .

a) The HFPU execution of a FEND instruction.

b) An A to FSR (HFPU inactive) Command
from the’CPU and A-bit 06 set toa 1 .

88951000 02 ' 2-8

TABLE 2.1, FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT

POSITION MNEMONIC BIT DEFINITION
Bit is resetvby:
a) An A to FSR (HFPU inactive) Command
from the CPU and A-bit 06 set toa O .
b) Cold Start Command.
c) Program Master Clear.
d) Console Master Clear.

5 UNUSED Bit is always reset,

4 PROT 'PROTECT MODE
When bit is set it places the HFPU in a
protected device mode. This mode allows
the HFPU to write into protected memory
locations via the DSA channel,
Bit is set by a protected A-Reg to FSR
Command from the CPU and A-bit 04 set
to 1 , by a protected A/Q Cold Start
command, by a protected A/Q Stop Command,
or by the presence of the A/Q protect
jumper.
Bit is reset by:
a) An unprotected A Reg to FSR Command.
b) An unprotected A/Q Cold Start Command.
¢) Program Master Clear.
d) Console Master Clear.

_ FSR Bit 4 stored at SSAR during the STOP

Command will reflect the DSA protect mode
of the HFPU prior to the STOP Command.

3 PTFT PROTECT FAULT
When bit is set, it indicates that the
HFPU was not in protect mode and made a
write data access to a protected memory
location. Bit is also set or reset by an
A to FSR (HFPU inactive) Command from the
CPU and the state of A-bit 03. Bit is
also reset by:
a) Cold Start Command.
b). Program Master Clear.
c) Console Master Clear.

88951000

— -

02

TABLE 2.1. FUNCTION/STATUS REGISTER BIT ASSIGNMENT (Contd)

BIT
POSITION

BIT

| MYEMONIC

| BIT DEFINITION

"2.and 1

18951000 02

SCAM

 SCANNER ACCESS MODE

State of these bits selects or indicates
one of three modes of HFPU DSA Channel

accesses.
Bit Bit
2 1
0 0

1 0

These modes are:

Access Mode

BLOCK. The HFPU will stop the
scanner for up to five successive
memory cycles during a Command
code word fetch. The HFPU will
not release the scanner before
determining if the first command
yte of that word requires mem-
ory. If the first command re-
quires memory the HFPU will hold
the scanner and access momnry

to fetch the address-pointer word
and one, two, or three operands.
If the first command byte does
not require memory or is a Branch
Accumulator command and the FPAC
is active the HFPU will release
the scanner. 1In either case,

the second, third, and fourth
command bytes that require memory
must wait for the scanner to re-
turn to the HFPU. These bytes
can hold the scanner for up to
four memory cycles.

Block mode will activate (first
access) or maintain (second
through fifth access) the DSA
PRIORITY signal for all memory
accesses subject to restrictions
found elsewhere in this specifi-
cation. A

HOG., Once the HFPU is started
the scanner will be held until
the HFPU executes a FEND instruc-
tion. DSA PRIORITY signal will
be active from start to finish.

WORD, Scanner will be released
after every DSA data word access.
DSA PRIORITY signal will not be
active,

2-10

TASLE 2.1, FUNCTION/! ST_ATUS REGISTER BIT ASSIGNMENT (Contd)

BIT BIT - :

POSITION [MNEMONIC BIT DEFINITION
These bits are set by:

- - a)v An A to FSR (HFPU inactive) Command

from the CPU with A-bit 02 set to a 1
and/or A-bit 01 set toa 1.
These bits are reset by:
a) An A to FSR (HFPU inactive) Command
"from the CPU with A-bit 02 set to a "0
and/or A-bit 01 set toa O .
b) Progr:m Master Clear.
c) Console Master Clear.

o PCLR PROGRAM MASTER CLEAR

When HFPU receives A-bit 00 set and an

A to FSR Command, it will clear all timing,
reset the unit to an idle state and clear .
211 registers with the exception of the
PCR and the FPAC. The HFPU will ignore
any other A Qits that are set. Bit is

not used on an A/Q Read Command. The

PCLR function is identical in all respects
to a Console Master Clear.

2-11 88951000 02

The HFPU will Externally Reject any attempt to Read/
Write the PCR while the HFPU is active and QR-Station 3
or 4 is used. The HFPU will permit the PCR to be read at
any time with an A/Q Read Command to Q-Station 5. :

e) FPAC = Floating Point Accunmulator

'This register is the main arithmetic register in the
HFPU. It is 32-bits wide for single precision and 48-bits
wide for double precision. (See paragraph 2.,2,1.1, FPAC
format). The FPAC can be accessed via A/Q channel Writes
or Reads to Q-Station 6, 7, 8 or via the DSA by any of sev-
eral command codes. The HFPU will externally reject any
attempt to Write/Read the FPAC via the A/Q channel if the
HFPU is active.

f) SSAR = Stop Save Address Register

This register contains a 16-bit digital number used as
an absolute address for the starting location in memory of
where to save the HFPU registers when a Stor order is issued.
It is addressable only by the A/Q channel. The HFPU will
accept an SSAR write Command at any time if the SSAR Command
is protected. The HFPU will return an external reject to
the CPU if the SSAR write Command is not protected regardless
of the A/Q protect jumper setting.)

In addition to the accessible registers, the HFPU con-
tains several internal registers, the most important of which
is the Look-Ahead Buffer (LABF) which, combined with some
parallelism in the logic, is used to speed sequential oper-
ations. The LABF consists of three 16-bit registers which
are used to hold the. operand for the next floating-noint
‘calculation. This extra register allows operands to be
fetched from memory while a preceeding floating-point opera-
tion on the FPAC is still in process. Additionally, the logic
parallelism alluded to above allows certain HFPU operations
to execute to completion while an FPAC operation is in process.

The effects of this look-ahead feature are discussed fur-
ther in section 2.2.1.8.

88951000 02 | | | 2-12

2,2 Charactéristics

The HFPU recognizes 16 unique command-codes in its CCR.
Command-code 0 is recongnized as a special two-byte command--
code; that is, the next byte is the command to be executed.
This increases the number of available command-codes to 31,

of which 25 are used in the HFPU. These command codes are
listed in table 2.2, After the HFPU is activated, it responds
'to a FLOT calling sequence.

A basic FLOT calling sequence consists of an 1nstruct10n
word consisting of four commands, followed by the operand
addresses (Address Pointers). The left most 4-bit byte is
the first operation; the operand addresses, if they are re-
quired, follow in the same order as the operation bytes, one
word per byte. As many bytes may exist as desired, but the
terminating byte must be a 4, the operation FEND.

Example: ‘ 15 1211 817 413 0 ¢—CPU Bits
CPU P OoP1 op2 orP3 Op4
WORD P+1 AT
LOCATIONS P+2 A2
P+3 Ad
P+4 0P5 - OoP6 4(Fend) |} - - -
P+5 AD
P+6 A6

The OP's are the operation codes; the A's are their
operand addresses. Not all operations require memory access;
in the example, OP3 does not have a corresponding A3.

88951000 02 | o | 2-13

TABLE 2.2. COMMAND-CODE DEFINITION

CODE | 4-BIT . '
MNEMONIC| .= CODE DESCRIPTION

 FLOF 1 FLOAT TO FIXED

The contents of the FPAC are converted

to fixed point and the results stored at
the effective operand address. FPAC Bits
16-31 will contain the fixed-point number.
If positive overflow occurs, FPAC 16-31
will contain 7FFF. 1If negative overflow
occurs, FPAC 16-31 will contain 8000.

The raw, unmultiplied Index value will
be used in effective address formation
for FLOF. . :

FIXF 2 FIXED TO FLOAT

The contents of the effective operand

address are converted to floating point

and the result placed in the FPAC. The

raw, unmultiplied, index wvalue will be

used in effective address formation for
FIXF.

STRI 3 STORE INDEX

Stores the contents of the Index Register
at the effective operand address. Does not
alter the contents of the Index Register.
Indexed address information is inhibited
during the execution of this instruction.

FEND 4 END of calling sequence.

: This operation terminates the calling se-
‘lquence and causes the HFPU to return to an
idle state. Execution of this code sets
bit 6 and clears bit 15 in the FSR. No o-
perand address is needed for this code.

CHMD 5 CHANGE MODE

All operand addresses following this oper-
ation code in the calling sequence are made
relative if the preceding addresses were
absolute and absolute if preceding ad-
dresses were relative. Does not affect

the Index Register value. Sets bit 9 of
the FSR when relative mode address is in
effect. No operand address in needed for
this code.

9-14 88951000 02

TABLE 2.2, COMMAND-CODE DEFINITION (Contd)

CODE
MNEMONIC

Code

4-BIT -

DEFINITION

NIDX

FCOM

FSUB

FMPY

FDIV

FLDD

ADDI

FLST

FADD

88951000 02

6

16

16

16

16

16

NO INDEX :

Clears the Index Register which disables
the indexing of operand addresses. No
operand address is needed for this code.

FLOATING COMPLEMENT

Complements the contents of the FPAC.
NO operand address is needed for this
code.

FLOATING SUBTRACT

The contents found at the effective oper-
and address is subtracted from the con-
tents of the FPAC and the results are
then placed in the FPAC.

FLOATING MULTIPLY

The contents found at *Le effective
operand address is multiplied by the
contents of the FPAC and the results are
placed in the FPAC.

IFLOATING DIVIDE

The contents of the FPAC is divided by
the contents found at the effective oper-
and address and the results are placed

in the FDPAC. i

FLOATING LOAD

‘IThe contents found at the effective

operand address are loaded into the TFPAC.
This must be a normalized floating-point
number.

ADD TO INDEX

‘1Adds the contents of the effective

operand address to the contents of the
Index Register and places the result in
the Index Register. Indexed address
formation is inhibited during the exe-
cution of the instruction.

FLOATING STORE

The contents of the FPAC are stored

at the effective operand address. The
contents of the FPAC are not altered
by this operation.

FLOATING ADD

The contents found at the effective
operand addresses are added to the
contents of the FPAC and the results

are placed in the FPAC.
2-15

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

CODE
MNEMONIC

4-BIT
CODE

DEFINITION

. INDX:

SPEC

" *CACS

F

16

The contents found at the effective oper-
and address are loaded into the Index Re-

gister. The operand addresses of all sub=-

sequent FLOF, FLDD, FLST, FADD, FSUB, FMPY,
FDIV and FIXF operations will be affected
in the following manner:

a) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 2 when the unit is in single precision
mode and the effective operand address is
being formed. The contents of the Index
register will not be changed.

b) If FSR bit 8 is clear, the contents
of the Index Register will be multiplied
by 3 when the unit is in double precision
mode and the effective operand address is
being formed. The contents of the Index
Register will not be changed.

c) If FSR bit 8 is set, the raw IndekX Re-
gister contents will be added to the base

‘faddress when the effectlve address is

being formed.

d) For the functions FLOF and FIXF, the

raw Index value will always be used.

SPECIAL COIUAND CODE

This code causes the HFPU to recognize the
next byte as a code within the following
Branch (jump) command-code subset. If the
next byte is a "'0", a FEND will be executed.

CONTINUE ANOTHER CALLING SEQUENCE
Starts a new floating-point instruction se-
quence by loading the effective operand

Jaddress into the PCR and then loading the

contents of the effective operand address
into the Command-Code Register (CCR). The
new code execution will start at OP byte
one. Indexed address formation is inhibited
during the execution of this instruction.

2-16

*These command-codes are executed only if the precedlng byte is
a SPEC code.

88951000

02

TABLE 2.2, COMMAND-CODE DEFINITION (Contd)

" CODE 4-BIT - |
MNEMONIC | CODE | DEFINITION

. ®*BRAM 12 ..] BRANCH ACCUMULATOR MINUS

) If the condition is satisfied (FPAC
Negative), the HFPU continues execu-
tion by loading the effective operand
address into the PCR and then loading
the contents of the effective operand
address into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc-
tion. If the condition is not satis-
fied, the Program Count Register will
o be incremented by (+1) before the next
. . ' command code is executed.

*BRAZ 3 BRANCH ACCUMULATOR ZERO
- ' If the condition is statisfied (FPAC

. Zero), the HFPU continues execution
by loading the effective operand ad-
dress into the PCR and then loading
the contents of the effective operand
address into the CCR. The new code
execution will start at OP byte one.
Indexed address formation is inhibited
during the execution of this instruc-
tion, If the condition is not satis-
fied, the PCR will be incremented by
(+1) before the next command is exe-
cuted.

BRAN 4 BRANCH ACCUMULATOR NON-ZERO
) If the condition is satisfied (FPAC non-

zero), the HFPU continues execution by
loading the effective operand address
into the PCR and then loading the con-
tents of the effective operand address
into the CCR. The new code execution
‘ will start at OP byte one. Indexed
- address formation is inhibited during
. the execution of this instruction. If

. : the condition is not satisfied, the
.) o PCR will be incremented by (+1) before

. . the next command is executed.

- *BRAP 5 ’ BRANCH ACCUMULATOR POSITIVE

' If the condition is satisfied (FPAC POSI-
TIVE including POSITIVE ZERO), the HFPU
continues execution by loading the effec-
tive operand address into the PCR and
.then loading the contents of the effec-
tive operand address into the CCR. The
new code exccution will start at OP byte
one, Indexed address formation is in-
hibited during the execution of this in-
struction. If the condition is not satis-
ficd, the PCR will be incremented by (+1)
before the next command is executed.

*These command-codes are executed only if the preceding byte is a SPEC. NOTE: Codes
A-F, when preceded by a SPEC code, will be exccuted as FEND,

88951000 02 _ , 2-17

.

e

TABLE 2.2. COMMAND-CODE DEFINITION (Contd)

v

CODE 4-BIT

MNEMON IC | conE DESCRIPTION
*BRIM s BRANCH INDEX REGISTER MINUS

If the condition is satisfied (IR NEGA-
TIVE), the HFPU continues execution by
. : loading the effective operand address
- into the PCR and then loading the con-
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad-
dress formation is inhibited during the
execution of this instruction. If the
condition is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

*BRIZ 7 BRANCH INDEX REGISTER ZERO
If the condition is satisfied (IR ZERO),
the HFPU continues execution by loading
the effective operand address into the
PCR and then loading the contents of the
effective operand address irto the CCR.
The new code execution will start at OP
byte one. Indexed address formation is
.inhibited during the execution of this
instruction. If the condition is not
satisfied, the PCR will be incremented oo
by (+1) before the next command is exe- '
cuted. ' 9
*BRIN 8 .BRANCH INDEX REGISTER NON-ZERO '
. If the condition is satisfied (IR NON-
ZERO) the HFPU continues execution by
loading the effective operand address
into the PCR and.then loading the con-
tents of the effective operand address
into the CCR. The new code execution
will start at OP byte one. Indexed ad-
dress formation is inhibited during the
execution of this instriction. If the
condition is not satisfied, the PCR will
be incremented by (+1) before the next
command is executed.

BRIP 9 ‘§ BRANCH INDEX REGISTER POSITIVE

If the condition is satisfied (IR POSI-
TIVE), the HFPU continues execution by
loading the effective operand address

into the PCR and then loading the contents
of the effective operand address into

! . the CCR. The new code execution will
start at OP byte one. Indexed address
formation is inhibited during the execu- °
tion of this instruction. If the condi-

tion is not satisfied, the PCR will be
incremented by (+1) before the next com-
mand is executed.

*These command-codes are executed only if the preceding byte is a SPEC, NOTE: Codes
A-F, when preceded by a SPEC code, will be executed as FEND,

2-18 . : N 88951000 02

2.2.1 Command Description

Code 4-bit Brief Description Indexed

Mnemonic Code Addressing
SPEC 0 "Special" (2-byte) command Code N/A
FLOF -1 FLOAT to FIXED conversion X1
FIXF 2 FIXED to Floating Conversion . X1
STRI 3 STORE Index value - NO
FEND 4 END of calling sequence ' : N/A
CHMD 5 Change Relative Address Mode - N/A
NIDX 6 No Index | N/A
FCOM 7 Floating Complement N/A
FSUB 8 Floating Subtract . X1,2,3
FMPY 9 Floating Multiply ' X1,2,3
FDIV A Floating Divide X1,2,3
- FLDD B Floating Load X1,2,3
ADDI C Add to Index : NO
FLST D Floating Store x1,2,3
FADD E Floating Add ' X1,2,3
INDX F Load Index value NO
*FEND # End of Calling Sequence T N/A
*CACS 1 Continue Another Calling Sequence _ANO
*BRAM 2 Branch if Accumulator Minus . ' NO
*BRAZ 3 Branch if Accumulator Zero . NO
*BRAN 4 Branch if Accumulator Non-zero NO
*BRAP 5 Branch if Accumulator Positive. NO
*BRIM 6 Branch if Index Minus NO
*BRIZ 7 Branch if Index Zero . NO
*BRIN 8 Branch if Index Non-zero ~ NO
*BRIP 9 Brénch if Index Positive NO
*FEND A-F End of Calling Sequences N/A

*These command codes are executed only if the preceding byte is
a SPEC code.

~

The Operation codes listed above which do not require an

address have N/A in the indexed addressing column. All
other operation codes require the presence of an address word.

88951000 02 2-19

For the special command code operations, the effective address
itself is the argument for the function (the effective address
is loaded into the PCR). For all other functions, including
INDX, ADDI and STRI, the effective address points to a
memory_ location (or locations) which contains or will
contain the argument.
The address for all functions can be either absolute
or relative as determined by the state of the Relative ‘lode
bit (bit 9) in the FSR. 1If bit 9 is clear, addresses are
absolute. If bit 9 is set, addresses are Relative to the
location in which the address-pointer word resides (to the
PCR). 1If relative, the PCR will be added to the Address
‘Pointer word in the process of forming the effective address.
For the functions which specify "X1" or '"X1,2,3" in the
indexed addressing column, the index value will also be added
to the address-pointer word in forming the effective address.
The index value may be multiplied by 1,2 or 3 before the
addition depending on the state of the double-precision bit in
the FSR (bit 7) for the functions with "X1,2,3". For the func-
tions with "X1" in the indexed addressing column, the index times
one is always used.

2-20
88951000 01

2.2.1.1 Operand Addressing. All operand addresses used
within the HFPU will conform to one of the following methods:

a) Absolute (16-bits)

b) Relative (16-bits with Bit 15 = Sign)

c) Indexed (16-bits)
Value in Index register will be multiplied by 2 for
single-precision operations and by 3 for double pre-
cision operation if FSR bit 8 is clear.

d) Relative Indexed. (2 x Index or 3 x Index;
-1 x Index if FSR bit 8 is set)

Figure 2.3 depicts the address methods.

All address arithmetic is 16-bit, ones-complement arithmetic.
It is identical with the 16-bit arlthmetlc of the System 17
CPU.

OPERATION NOTES:

If FSR bit 9 is set, relative-addressing mode is in effect.

If FSR bit 9 is clear, absolute addressing is in effect. Absolute
addressing means that the pointer word is in an absolute address;
conversely, relative-addressing means that the pointer word is a
16-bit signed displacement from the current PCR.

If FSR bit 8 is clear, the contents of the index register will
be multiplied by 2 or by 3 and added to the argument address
(pointer word) to obtain the final address. If FSR bit 8 is
set, the contents of the index register will be added to the
argument address to obtain the final address.

88951000 02 ' 2-21

Abbreviations

1. ABSOLUTE
LOCATION

010016

QlOl16

020016

020116

020216

2. RELATIVE

010016

010116

030116

030216‘

030216
‘3. INDEXED

010016

0101}6

040016

040116

2-22

-

EA
(PCR)
(IR)
PA
(IR)

0

CONTENTS

B44416

020016

16

XXXX16

16

(IR) =

B44416

020016

XXXX
XXXX, o

XXXX16

where (IR) =

Figure 2. 3.

844416

020016

16
XXXX16

100, S

Effective address :
Program Counter Register contents
Index Register Contents

Pointer Address

- Command-Code (FLDD

FEND., . . .)

Pointer Address (ABS)
Effective Address = PA

= 20016

Operand

Operand

‘Operand (D.P. Only)

Command-Code (FLDD,
FEND. . . .)

Pointer Address (Rel)
EA = PA + (PCR) =
200 + 101 = 30116
Operand

Operand

Operand (D.P. Only)

.P. mode and FSR Bit 8 clear

Command-Code (FLDD,
FEND)

Pointer Address
EA = PA +2%(IR) =
200 + 200 = 400

16
Operand

Operand

Addressing Examples (Sheet 1 of 3)

88951000 01

7. Indexed where (IR) = 100 and Command Code is FLOF or FIXF
FSR bit 8 set or clear.

100 . = 1444 = 'Command Code (FLOF,
16 _ 16 FEND e o)
10116 ’ = 20016 = Pointer address

EA = PA + (IR) =
200 + 100 = 300

300.,. - XXXX

16 FLOF Result will be

stored here.

16

8. Indexed where (IR) = 100, and FSR bit 8 is set (compare with
#3 and #4 above))

(FIDD, FEND . . .)

10016 = 344416 =
101 = 0200 = Pointer address
16 16 EA = PA + (IR) =
200 + 100 = 30016
"30016 =_ XXXX16 = Operand
XXXX16 = Operand

9. Relative Indexed where (IR) = 100 and FSR bit 8 is set
(compare with #5 and #6 above) :

100 ' = B444 = (FLDD, FEND . . .)

16 16
10116 = 020016 = Pointer Address
- EA = PA + (PCR) + (IR)
' : = 200+101+100 = 401
16
4OZ'L16 | =_ XXXXIG- = Operand
40216 f .XXXXIG = Operand
40316 : = -XXXX16 = Operand

10. Special Command Code, Relative mode

100, o 0100, = (SPEC, CACS . . .)
10116 ’ .020016 = Pointer Address
| : EA = PA + (PCR) = 200 +
: 101 = 301
301 = " XXXX = Next command Code word.

16 : ‘ 16 Beginning of next

calling scquence.
Figure 2.3. Addressing Examples (Sheet 2 of 3)

88951000 02 2-23

12. _Index command (ABS)

10016 = F40016 = (INDX, FEND'. « o)
101 o= 0200 = Pointer Address

16 | 16 EA = DA
.20016_ = XXXX, 6 = Operand to be loaded

into the IR

13. Index command (REL)

_10016 . = F40016 = (INDX, FEND . . .)
10116 = FFFD = Pointer Address
. EA = PA + (PCR;
: ' = FFFD + 101 = OOFF
. 16
QOFF16 = XXXXl6 = Operand to be loaded
. . : ' into the 1IR.

NOTE: This last example demonstrates the effect of the memory
wrap-around in a "backwards'" relative pointer address.
It is simply a case of an end-around carry resulting
from the use of one's complement arithmetic.

Figure 2.3. Addressing Examples (Sheet 3 of 3)

2-24 ' 88951000 02

2.2.1.2 Operand/FPAc Format. Floating-point numbers used in
the arithmetic operations have the following format. '

' : Normalization Point
- 15 14 7l6 0¢CPU Bits

High Segment S EB EXP Mantissa High

(Final Op. '

_ ‘ADR) _ 0 1 8 9 . 15¢FPAC Bits

15 0&CPU Bits

Low Segment i Mantissa Low

(Final OP

ADR+1) 16 . : 31 FPAC Bits
15 0&CPU Bits

Extended Low | Mantissa Extended Low ‘ GUARD |

Segment -

32 47 48 S51¢FPAC

(Final Op Bits

ADR+2) .
Where:

S = Sign bit of the entire floating-point number. When the
Sign bit = 0 , the floating-point number is positive.
When the Sign bit = 1 , the floating-point number is
negative.

EB = Exponent Sign Bit which is biased by an exclusive OR
with 8016‘- 4

Seven binary bits which represent the magnitude of
the exponent. (-127 <EXP <127).

EXP

Mantissa = Normalized magnitude of the floating-point number
which is a fractional coefficient. - A normalized positive
coefficient has the form (.IXXX...X&'V) where S = 0 .

A normalized negative coefficient h 8%the form
(.OXXXX...XLOW) where S = "1",

NOTES: 1) A single-precision number has the expressable number
range: _ _

_2127(1_2 23)'i X 52127 (1-2 23)

2) A double-precision number has the expressable number

range: _ _
2127 (1.5739) x (2127(15-39)

88951000 02 | 2-25

' 2-26

3) When the floating-point number is negatlve the
entire FPAC including the Exponent is in ONE'S
complement form,

- 4) A floating-point zero is represented as all bits
set to 0 . It is the only legal unnormalized
, number, :

5) The floating-point number should always be nor-
malized for any floating-point arlthmetlc opera-
tion including FLST and FLDD.

The use of unnormalized numbers as inputs to any
floating-point operation except (FIXF) will gen-
erally result in incorrect answers. Teh result of
FADD, FSUB, FMPY, FDIV and FIXF will always be a
normallzed number or zero.

6) The extended low segment of the operand is used for
double-precision mode.

7) If the exponent of the result of a FADD, FSUB, FMPY
or FDIV is larger than 127, exponent overflow has
occurred and the answer is set to the largest value
having the same sign as the actual result (7FFF,FFFF,
FFFF or 8000, 0000, 0000 in D.P.; 7FFF, FFFF or
8000, 0000 in S.P.). If the exponent of the result
is less than -127, exponent underflow has cccurred
and the result is set to floating-point zero. -~

8) If the divisor for an FDIV is unnormalized or equal
to zero, a divide fault has occurred and the result
is set to the largest value hav1ng the same sign as
the dividend.

2.2.1.3 Rounding. Internally, the FPAC has four extra bits

as shown in the diagram of the preceding section. These extra
bits on the least significant end (FPAC bits 48 to 51) are
referred to as a guard digit and are used to increase the accuracy
of the calculations by providing an arithmetic residue which is
used to round the final result.

The rounding algorithm used is of the non-convergent,
away-from-zero type. That is, if the number is positive and the
residue is greater than or equal to one-half the value of the
least significant bit (1lsb), then one 1lsb is added to the result.
If the number is negative and the residue is less than one-half
the 1lsb, then one 1lsb is subtracted from the result (one's comple-
ment arithmetic assumed).

After rounding, the bits of the guard digit are set equal
to the sign bit i.e., equal to zero ‘in one's complement arithmetic.

Note that in single precision, bits 32 to 51 of the FPAC
act as the guard digit. : :

88951000 02

2.2.1.4 Fix Float Number Conversions. The integer (fixed)
number-ermat is: .

1514 0 A-Reg Bits

Bl Magnitude 4]

’t—sSign of integer number

Where: S=0 positive number

S=1

negative number with the magnitude in ONE's
complement form.

The Float-to-Fixed operation is performed by executing
command code 1 which converts the floating-point number in the
FPAC register to an integer and transfers the integer to the
effective operand address. FPAC 31-16 will also contain the
result. .
The Fixed-to-Float operation is performed by executing
command-code 2 which loads an integer number into the HFPU, begins
a cocnversion process, and upon completion, places the floating-
point number into the FPAC. This number may be retrieved in
one of two ways.

1) A status of the HFPU FPAC register by succe351ve A/Q Read
Comnands to Q-stations 7,8 and 9.

2) Executing a FLST instruction to a specified memory location.

2.2.1.5 HFPU Initialition Sequences. There are three methods
used to initialize the HFPU. These methods are:
1) Cold Start - Single precision (S.P.) :

2) Cold Start - Double precision (D.P.)
3) Protected Re-Start - Single or Double precision.

A Cold Start (S.P.) Command is used when first entering
the FLOT subroutine, and a Cold Start (D.P.) Command is used
when first entering the DFLOT subroutine, Each type of Cold
Start uses a unique Q-Station Address. . A Re-Start Command is
‘used when re-entering either the FLOT or DFLOT subroutine after
the HFPU has been interrupted by a stop order command for service
of a higher priority routine. Refer to figure 2-1 as an aid for
the following description of events:

A Cold Start Sequence is initiated by the following
sequence of events:

a) The FSR is loaded from the CPU A-register by an A/Q Write
Command to Q-station O if a special set-up such as a change
in scanner access mode is desired. The format used for the
FSR is depicted in figure 2.2 and the FSR bit definition is
listed in table 2.1, . If no special set-up is required,

the starting point for a Cold Start.

88951000 02 : . 2-27

b) The PCR is loaded from the CPU A-register by an A/Q
V¥rite Command to Q-Station 3 or 4, If the A/Q Write Command
is to Q-Station 3, the unit will start in single-precision
mode and will clear bit 7 in the FSR, If the A/Q Write
Commnand is to Q-Station 4, the unit will start in double-~
precision mode and will set bit 7 in the ¥SR. Either Cold
Start Command will clear the Index Register and clear FSR
bits 3, 6, 9, 10, and 11. The address transferred to the

PCR is the address of the first command-code instruction
word, When the HFPU accepts the starting address word, it goes
into an active state (Bit 15 of the FSR is set) and loads the
CCR via the DSA channel. The unit will remain in an active
state until it either executes a FEND instruction, receives
the Stop order command described in §.2.1.6, or receives an
A/Q Write Command to Q-Station O with A-Bit 00 = 1 (PCLR).

. 2,2,1.6 HFPU Stop/Restart Sequence. A Protected Stop order
may be issued at any time while the HFPU is in an active or
inactive state. The HFPU will reject an unprotected Stop
Command regardless of the setting of the HFPU A/Q Protect Bit
-Jumper plug. A Stop Order is accomplished by the following
sequence of events. '

a) An A/Q VWrite Command to Q-Station 9 where the CPU A-regi-
ster is transferred to the SSAR as the Stop and Save address.

b) As soon as the HFPU completes its present arithmetic
operation, it will use the contents of the SSAR as the ABSOLUTE
address in CPU memory of where to start storing the contents

of the following registers.
SSAR = (FSR)

SSAR+1

i

(CCR)*
SSAR+2 = (IR) : .
SSAR+3 = (PCR)

SSAR+4 = (FPAC, BITS00 - 15)
SSAR+5 = (FPAC, BITS16 - 31)
SSAR+6 = (FPAC, BlTS32 - 47)

~ %*The CCR format will reflect the current status of the Command
Code Word, that is, bits 15 - 12 will contain the next command
code to be executed. Example:

1) CCR read from CPU [OP1 | OP2 | 03 | OP4 |

2) 'CCR stored on STOP command |OP2 | OP3 | OP4 | opr1]

¢) When the HFPU has completed the storing of the last register,
it will go inactive and clear bit 15 of the FSR.

NOTE: A Stop Order issued while ‘the HrPU is inactive will cause
the lIFPU to go active (Bit 15 of FSR set) for the time rcquich
to store the six registers. The HFPU will rgturn to the inactive

2-28 . 88951000 02

state (Bit 15 of FSR'clear) upon completion. The stored FSR

will reflect the state of the HFPU when the stop order was
issued (Bit 15 clear), .

After a Stop Order is issued, the HFPU may be restart-
.ed from the point of interruption by a protected RE-start
command. The HFPU will reject an unprotected Re-start
command regardless of the setting of the HFPU A/Q Protect
Bit jumper plug. A Re-start command is an A/Q Write com-
mand to Q-station 5 where the contents of the CPU A-register
is transferred to the SSAR and the following events take place:

a) The HFPU goes to an active state and bit 15 of the FSR
is set,. ’

b) The HFPU uses the SSAR contents as an absolute starting
address of where to start the retrieval of the registers

saved on the receipt of the Stop order in the following manner.

SSAR Restore FSR

SSAR+1 Restore CCR
SSAR+2 Restore IR
SSAR+3 Restore PCR
SSAR+4 Restore FPAC (Bits 00-15)
SSAR+5 Restore FPAC (bits 16-31)
SSAR+6 Restore FPAC (Bits 32-47)

c) When the HFPU registers are restored, the unit will pick-

up where it left off and continue to execute command-codes
if the active bit in the restored FSR (Bit 13) is set, 1If.

this bit is not set, the HFPU will go to a not active or idle

state,.

2.2.1.7 Function/Status Register Definitions

The function/status register definitions are shown in figure 2.2 and detailed in table 2.1.

88951000 02

2-29

2.2.1.8. Hardware Execution Times. Table 2.3 lists the worst
case execution times for the functions performed by the

HFPU. This table also displays the improvement in execution
times that can be expected in "typical" usage due to the pre-
sence of the hardware look-ahead feature. This feature allows
parallelism to take place within the HFPU. This parallelism
can occur because of the ability of the HFPU to perform non-
FPAC operations (Fetch of Command-Code words, Index Register
operations, Fetch of operands to Look-Ahead-Buffer etc.) while
an operation involving the FPAC is in process (FADD, FSUB,
FMPY, FDIV, FLDD, FIXF, or FCOM).

Three columns in table 2.3 illustrate the effects of
this overlap. The column labeled "Overlappable Component"
shows the portion of the FPAC functions that can operate in
parallel with other non-FPAC functions. The next column, labeled
"Irreducible Component'’, shows the portion of the execution
time that cannot execute in parallel with any other functions.
For the FPAC functions, this is the time required to transfer
the Look-Ahead-Buffer contents into the Floating Point Arith-
metic unit and to start the FPAC portion of the function. For
the functions which require the contents of the FPAC (FIXF, FLST,

- BRAM BRAZ, BRAN, BRAF, FEND), this is typically the total execu-
tion time for that function, since it must wait for the FPAC
portion of the preceding function to complete before it can
begin. The Irreducible portion of the FLST function consists
only of the time required to store the FPAC since it can
overlap the. fetch of the address with the preceding FPAC
function. The next column, labeled "Overlapping Component",
shows the portion of any function that can operate in
parallel with the FPAC protion of the preceding function. For
the non-FPAC functions (Command-Code Fetch, SPEC, STRI, CH'D,
NIDX, ADDI, INDX, CACS, BRIM, BRIZ, BRIN, and BRIP) this is
the total execution time for that function. For the FPAC func-
tions this is the time required to fetch the argument address
and to transfer the argument from memory to the Look-Ahead-Buffer.

The next three columns of the table show the amount
of DSA channel activity that will occur during any given func-
tion. The latency columns show the amount of added time that
will be incurred due to delays in obtaining DSA channel access.

v -In most cases these latencies are incurred during the
overlapping component of the function and thus will not add
appreciably to the overall execution time of a given calling
sequence.

. The final two columns show the typical effective execu-
tion time that can be achieved if full advantage is taken of
the overlap. These times are generally the sum of the overlappable
component plus the irreducible component. The two exceptions
are FLDD and FIXF where the apparent time is shown equal to the
total time. These two functions ignore the previous contents of
the FPAC and thus it is unlikely that they would be overlapped
with a preceding FPAC function.

Figure 2.4 shows several example execution time compu-
tations. The execution time for a given function equals the irre-
ducible component plus the overlappable component plus that por-
tion of the overlapping component that is not overlapped.

2-30 ~ ' 88951000 02

%0 00015688

- 1€-¢

TABLE 2.3. EXECUTION TIMES (worst case operands) (440ns Tac) (600ns‘cycle)

JApparent Time with|

FUNCTION Total 900ns Overlappable | Irreducible | Overlapping DSA Latencies
Time. Add Component Component Component CYCLES |Word Block “typical" overlap
(Hog Mode) Mode Mode (600ns) (900ns)
Command- 1.25usec .30usec Ousec Ousec 1.25usec 1 1 1 Ousec 0
Code fetch -
SPEC .20 0 0 -0 .20 0 0 0 0 .0
FLOF 4.84 .30 0 4.84 0 2 1 1 4.84 5.14
FIXF 6.77 .60 4.47 .20 2,11 2 2 1* 6.77 7.37
STRI 2.11 .60 0 -0 2.11 2 2 1+ 0 0
FEN .20 0 0 .20 (1] 0 0 0 .20 .29
CIrip . .20 0 0 © 0 .20 0 0 0 0 0
NIDX .20 0 o 0 .20 ‘ 0 0 0 0 n
FCO .71 0 .51 .20 0 0 0 0 .71 .71
FSUB(SP) 8.76 .90 5.46 .59 2.7 3 3 1+ 6.05 6.05
. | FSUB(DP) 11.12 1.20 7.22 .59 3.31 4 4 1* 7.81 ©7.81
FUPY(SP) 11.62 .90 8.32 .59 2.71 - 3 3 1* 8.91 8.91
1 ELPY(DP) 15.74 1.20 11.84 .59 3.31 4 4 1* 12.43 12.43
FDIV(SP) 12.06 .90 8.76 .59 2.71 3 3 1¢ 9.35 9.35
FDIV(DP) 16.18 1.20 12.28 .59 3.31 4 4 1* 12.87 12.87
FLDD(SP)~ 4.03 .90 .73 .59 2.7 3 3 1 4.03 4.93
FLDD(DP) 4.63 1.20 .73 .59 3.31 4 4 1+ 4.63 5.83
ALDI 2.11 .60 0 0 2.11 2 2 1* 0 0
FLST(SP) 2.71 .90 (1] 1.65 1.06 3 3 1* 1.65 2.25
FLST(DP) 3.31 1.20 0 2.25 1.06 4 4 2% 2.25 3.15
FADD(SP) 8.76 .90 6.46 .59 2.71 3 3 2¢ 6.05 6.05
FADD(DP) - 11.12 1.20 7.22 .59 3.31 4 4 1* 7.81 7.81
1DX 2.11 .60 0 0 2.11 2 2 1+* 0 (]
CACS 1.06 .30 o . 0 1.06 1 1 1 0 n
BRAM 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
BRAZ 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
BRAN 1.45 .30 0 1.45 (1] 1 1 1 1.45 1.45
BRAP 1.45 .30 0 1.45 0 1 1 1 1.45 1.45
RRIM 1.45 .30 0 0 - 11.45 1 1 1+ o - 0o .
BRIZ 1.45 .30 0 0 1.45 1 1l 1# 0 9
BRIN 1.45 .30) 0 1.45 1 1 1+ 0 b
BRIP 1.45 .30 "0 0 1.45 1 1 1* 0 0
BRAx(false) .39 0 0 .39 0 .0 0o 0 .39 .39
BRIx(false) .39 0 0 0 .39 o 0 0 0 2
STOP . 5.24 2.10 0 5.24 0 7 7 1 5.24 7.34
RESTART 6.35 2.10 0 6.35 0 7 7 1 6.35 8.45

*one fewer latency required if first command in a newly fetched Command-Code word.

Latency

Latency figures include typicsl scanner delay (300ns) plus observed*rac degrudation

= .74 to 1.32usec (600ns)

(no Refresh)’

= .85 to 1.G8usec (900ns) (no Refresh)

duo to DSA TTL expander (220ns).

Single Precision assumed (600ns) BLOCK mode

a) fORTRAN expression =B+C*D

Calling Sequence

BY9ED (FLDD, FMPY, FADD, FLST)
D Address of D
<C> Address of C
 Address of B
<A> Address of A
4000 (FEND, - - - =)
Function Time Latencies Comments
Fetch Command Code 1.25 1 Total time no overlap
FLDD 4.63 0 "I Total time no overlap
FMPY 10.89 1 Tot~1l less the over-
' lappable of FLDD
FADD 6.05 0* Total less the over-
" lapping of FADD
FLST 2.25 1 Irreducible Component
Fetch C.C. 1.25 1 No overlap
FEND : .20 0 No overlap
26 .52usec 1 latencies
*L,atency overlaps preceding function

b) ~FORTRAN Expression A(I) = B(J)+C(K)*D(L)

Calling Sequence

FBF9 (INDX, FLDD, INDX, FMPY)
<L> address of L
" <D> address of array D
_ <K> ‘address of K
<C> address of array C
FE¥D (INDX, FADD, INDX, FLST)
<J> address of J
’ address of array B
<A>. address of array A

4000 (FEND)

Figure 2.4. Execution Time Examples (Sheet 1 of 2)

2-32

88951000 02

[Function Time Latencies Comments
Fetch CC 1.25 1 No overlap
INDX 2.11 o No overlap
FLDD 4.63 1 No overlap .
INDX 1,38 1 Total-overlappable of
FLDD
FMPY 11.62 1 FLDD overlappable used up
Fetch CC 0 0% overlapped, 2.57 used’
' 5.75 left
INDX 0o o overlapped, 2.11 used
‘ 3.64 left
FADD 6.44 ox* partially overlapped 4.03
N used* -0.39 1eft
FMPY overlappable used up
.39 added to FADD
INDX 0 o* overlapped 3.43 used™t
, 2.03 left
FLST 2.60 ct partially overlapped 2.38
. usedt -.35 left
FADD overlappable used up
Fetch CC 1.25 1 .35 added to FLST
FEND .20 0
31.48 usec 5 latencies

*latency oveflapped

plus the latency (1.32usec).

+ used time includes the overlapping component of the function
It is the amount of the preced-
ing functions overlappable component used up by the current

function. o

88951000 02

Figure 2.4. Execution Time Examples (Sheet 2 of 2)

2-33.

INSTALLATION | 3
e

3.1 LOGIC CARD INSTALLATION

3.1.1 Inspection. Examine the cards closely for evidence
of damage in shipping, broken or missing components, gouges
in board coating, etc. Record all discrepancies.

3.1.2 Installation of Jumpers. A rectangular coordinate
system is used for locating components on the logic cards.
Facing the card from the component side with the backplane
connector at the bottom, the integrated circuits appear to be
laid out in four horizontal rows with 16 chips in each row.
These rows are labeled A, B, C and D going from top to bottom.
The columns of integrated circuits are labeled from 1 to 16
going from left to right. Labels on the rows and columns
appear at the left and top edges of the board, respectively.
Thus the chip at the upper left-hand corner is labeled Al

and the chip at the lower right-hand corner is labeled D16.

88951000 02 3-1

Passive components are given unique locating labels with
respect to this grid. Components which lie to the left
and/or above an integrated circuit grid position are given
a designator that consists of that grid position, a letter
(R = resistor, C = capacitor, S = strap or Jumper)‘and,a'
consecutive numbér (if there is more than one component of
the same type within a given grid position). The consecu-
.tive numbers are assigned in the order: top, left to right;
side, left to right. For the purposes of labeling passive
components near the bottom edge of the board, the E row
'0of chips is assumed to exist.

Example.
o o ¢
HNO;)
C3 C4V{,U'Jm C5
0 v v
O O 0O O)
S © o O o
D5C-1 - %
=
D3 1* q D4 q: I:E'
e 9] o
< 0 n
A A a (=]
E4R E5C

All components are identified relative to this grid in the

schematics and parts lists so that direct references to the
physical boards can be made without the need to refer to a

topology or illustrated parts list.

3.1.2.1 DSA.Board. There are five jumper (strap) locations
on the DSA board. A single jumper in one of these locations
is used to determine the position of HFPU in the DSA scanner
chain. The jumper locations and their functions are given in
table 3.1 : :

TABLE 3.1, DSA Scanner Position Select Jumpers

Jumper Location
Scanner Position on DSA Board
Middle - . Cl1s-2 -
First . , C12s-2
Last Cl1is-1
Only : ., Cl2s8-1
Out Cl1s-3

For correct operation of the DSA scanner, one jumper should be
installed in one of the locations specified above in order to
select the desired DSA Scanner position for the HFPU.

3-2’ ' ' - 88951000 02

3.1.2.,2 A/Q Board. Jumpers are provided on the A/Q
board to select the HFPU equipment address and to place

. the HFPU in the Protected Mode . An Additional jumper

has been provided for use with HFPU units which do not

have the double-precision option. This jumper forces the
HFPU to respond to all commands as if they were single-
precision commands. Table 3.2 summarizes the jumpers on the A/Q Board.

TABLE 3.2. A/Q EQUIPMENT ADDRESS, PROTECT MODE, AND
SINGLE-PRECISION DEVICE JUMPERS

Function
Mnemonic Location |Function Description
Ql0 El14S-1 MSB of equipment address
select. Install jumper
for a "1" in the Address.
Q9 ' E14S-2 Next MSB of equipment
address. .
Q8 E14S-3 Next MSB of equipment
address.
Q7 E13S LSB of equipment address.
PTCT B12S Protected Mode jumber.
- Install for Protected Mode -
Remove for Unprotected
‘ Mode .
SPDEV B13S Single-Precision Device.
Install if single precision;
i.e., if double-precision
option is not present.

88951000 02 | o 3-3

TABLE 3.3. HEXADECIMAL CODE FOR EQUIPMENT SELECT

Jumper Location [E14S-1 | E14S-2 | E14S-3 | E13S
Hexadecimal 0 0 0 0 0
Code™ (Q10-Q 1 0 0 0] 1 Note:
2 0 0 1 0. a 1 1in the
3 0 0 1 .1 binary code
4 0o 1l 0 0O 1indicates the
5 0 1 -0 1 Dpresence of a
6 o 1l 1l 0 Jjumper.
7 (o} 1l 1l 1
8 1l 0 0 o
9 1l 0 0 1l
A 1 0o 1 0]
B 1l o} 1 1
C 1l 1 0o o
D 1 1 0 1l
E 1 1l 1 0
F 1l 1 1 1
3.1.2.3 SPALU Board. One jumper is provided on this board
to accommodate the double-precision option. Its function is

to insure the correct propogation of carry through the man-
tissa arithmetic logic when the double-precision option is not
selected. A second jumper is provided fcr end-around shifting
when the double-precision option is not installed,

Jumper Location Function

D9S, El4S . _ These jumpers must be
‘ installed if the double-
precision option is not
present. If the double-
precision option is
installed, remove these
Jumpers. \

3.1.3 Board Installation. The boards should be inserted in
the standard or alternate slots as indicated in table 1.1.
The power in the CPU and the expansion chassis should be off.

Examine the expansion chassis backplane for possible
bent pins and straighten them. -Insert and remove each card
in sequence checking the backplane for bent pins afterwards.

- Carefully straighten any resulting bent pins and
insert all the cards.

88951000 02

3.2 Mother-Board Installation and Removal.
3.2.1 Preparation.

3.2,1.1 The Backplane, Visually inspect the area of the
.backplane opposite to the slots used for the HFPU logic
cards for bent pins., A pin misalignment of approximately
the width of the backplane pin itself (25 mils) can be
tolerated by the vertical receptacles on the mother board..

3.2.1.2 The Mother Boards. Viewing each mother board from
the side and top edge, sight down the rows of receptacles
looking for ones that may have been bent out of alignment.
A receptacle misalignment of approximately one-half the
width of the opening at the top of the receptacle (25 mils)
can be tolerated. The receptacles can be straightened u51ng
a needle-nosed pliers.

The examination and straightening (as required)
should be carried out for all rows as viewed from both
the side and the top edge of each mother-board card.

3.2.2 Installation. Begin with the boards that cover the
high numbered pins on the P2 (bottom) row of connectors.
Orient each board with the lc¢ttering up and the receptacles
pointing towards the backplane (away from you). Carefully a-
lign two corner receptacles with the backplane pins on
the slot chosen for one of the outside logic cards (ADDR, slot
23, or EXP & TIM, slot 15 in the standard configuration).
Start the receptacles onto the backplane pins alcng the
chosen column to a depth of about 1/32 inch. Gently push
‘against and oscillate the board until it drops down onto
all of the pins.

Once the board haSInMEdwnhauthepmshtwﬂl
be parallel to the backplane and the pins will have entered
approximately 1/16 inch into the receptacles), it needs to be
pushed down .onto the pins to make electrical contact. The
fibre-glass epoxy board will flex slightly so that it is not
necessary to overcome the insertion force of all the recep-
tacles at once. Holding the board in place with one hand,
force one corner down about 1/32". Work around the board
forcing each corner down a little further until the pins can
Just be seen through the holes in the bottom of the recep-
tacles. Proper mating can be checked at this point by exam-
ining each receptacle to see the backplane pin within it.

After installing the bottom boards proceed to the
next pair of boards (P2 low numbered plns) and then to the
Pl Boards. .

3.2&3‘ Removal. Attach the removal tool to the vertical edges
of the mother board to be removed, Alternately 1ift the right
side and then the left side of the board and slowly "walk'" the
mother-board off of the backplane pins. The Pl boards may re-
quire some manual assistance in order to get the top and bottom
rows of pins started moving. CAUTION: Use one hand on the tool
and the other hand to restrict movement, so that the last step-
does not result in an abrupt, large movement, since this will
sometimes cause bent plus if one end (or side) releases before
the other, -

88951000 02 - 35

THEORY OF OPERATION 4
4.1 HARDVARE ORGANIZATION. -

4.1.1 Device Structure. The Hardware Floating-Point Unit
is structured into two semi-independent sections. The first,
the interface and Master Control, handles the communication
with the System 17 CPU and the interpretation of the wvarious
op-codes and interface commands. Additionally, it issues
commands to the second section within the HFPU, the Hardware
Floating-Point section. This Floating-Point section performs
all of the arithmetic operations on the FPAC. The Master
Control section is contained primarily on three boards, the
ADDR, CSA, and A/Q boards. A small portion of the master -
control section is contained on the DPALU board. The second
section of the unit, the hardware floating-point device is
contained on four boards, the DPALU, SPALU, FPHMP, and EXP
and TIMING. Each of these two independent sections, the
Master Control and Floating Point, is controlled by its own
independent Micro-Processor. The structure of the micro-
processcrs is described more fully in section 4.1.2,

Figure 4.1 shows in more detail the internal structure
of the elements that make up the HFPU and the data paths that
interconnect them. The "backbone" of the device is a single,
16-bit, bidirectional bus (DATA O to 15). This bus is inter-
faced via a transceiver on the DSA and A/Q boards to the re-
spective I/0 busses of the System 17 CPU. All data transfers
within the HFPU take place in 16-bit words on this bus. The
structure of each of the boards that makes up the HFPU is
described more fully in section 4.1.3.

4,1,2 The Micro-Processor concept. As was mentioned above
the HFPU contains two micro-processors. The first of these
the Master Micro-Processor, is shown as three blocks labeled
Master Control A, Master Control B, and Micro-Processor
Address, on the DSA, A/Q, and DPALU boards in figure 6.1.

The second micro-processor, the Floating-Point Micro-Processor,
is shown as the block labeled FPH-CONTROL on the FPHMP board
in figure 6.1. The function of these micro-processors is to
control the sequence in which data transfers take place within
the HFPU. The heart of a micro-processor is its control store,
in this case READ ONLY MEMORY (ROM). The outputs of the

ROM are applied via instruction register to the data path
controllers within the device and also to the clocks that are
used to enter data into the device registers. For each step
of an algorithm the bits in the ROM are programmed to gener-
ate the desired data transfer that is required by the algor-
ithm. Sequence control is achieved by utilizing a group

of bits in the ROM to specify the next ROM address that is to
be accessed. This allows the micro-processor to execute es-
sentially random sequences of micro instructions, which allows
it to perform the sequences required by the algorithms. It
also gives the micro-processor a great deal of flexibility

in that the changing of an algorithm will require only the
change in a few locations in the READ ONLY MEMORY. Additional
_power is given to the micro-processor sequencing by providing

:
8951000 02 4-1

4

1'% oamS1g

syied ®led NdAH

60 000TS688

[SSAR, LABF

4X16 lfem

ADDRESS | DSA A/Q
Preparation z l
DATA 9 to 15 ! .l
<) : i
¥ ¥ ¥) A
TAR PCR IR]
Counter | |Counter! |Counter l Y <«
/
N lv
N 7 v
& ' : l FSR
IR*1,2,3 T [Fse_] 't BITS 0,
IRALU BITS 1, | 4,7,10
. TRANSCEIVER | DITS 1. irransceiver |7:7:20:
—t 1 [51 YZ———__J l 8,9
TDMUX PIMUX
‘ | MASTER |[SYSTEM
: : CONTROL " Bl| TIMING
R A MASTER
- CONTROL A
[CATE JIALU (A+B,A) § g
!
AN pe o >
B
) l ; %
/N
| &Roe |
N
a
RS \(

ssEyaayv

¢0 000T<688

*1°% oandig

syped v NdAH (penuijuoo)

g-¥

DPALU

SPALU
!
DATA @ to 15 N . i
t Yy
A \I DATA § to 12 EE;% { % .EfxE
- — l 1 T L ! h <
(_BDREG ' BREG | FPAC i MDREG BREG FPAC
ngegister SHFT REG SHFT REG ' Register SHFT REG ‘SHFT REG
| |
h% I l { l
‘ 2:1 Rounding { 2:1 MAX
MBMUX Constants (MBMUX Constants
= L
_ —e | L
CCR B A B A
A, MALU MALU
| |
L

Micro-Processor
Address

Bits 35 to 51 of the Mantissa

Bits ¢ and 9 to 34 of the Mantissa

TPHMP I EXP and TIMING

DATA § to 15 S DATA 7 to 14

syed B1ed NdJH (penunuoo) [y oansii

¢0 000TS688

| Thata 150 |
l ’ &oé} r'“"“"“
. N
: , C MDREG constants FPAC '
I ‘ ' Register Register
FPH . FSR [FPH
CONTROL . {[TIMING A ‘ ’
BITS 5,12,13,14l I .
B A
' EALU -
| ammmiol_.L
| i @ |
| 0
l Bits 1 to 8 of the
" Exponent
l MAGNITUDE SHIFT
Comparator COUNTER

. : | . :
it with the ability to modify next instruction address
based on external conditions. This allows the micro-
processor to execute algorithms containing conditional
steps. , : o

. Figures 4.2 and 4.3 are block diagrams of the two micro-
processors in the HFPU. Refer to section 4.1.4 for detailec
description of the micro-instruction formats for each of the
micro-processors. _ . ,

The Floating-Point Micro-Processor, shown on figure
4,2, utilizes a Read Only Memory consisting of 32 words of
forty bits. The outputs of the Read Only Memory are applied
to the inputs of the instruction register. Data is entered
into the instruction register on the trailing edge of a clock
signal INSCLK. For the Floating-Point Micro-Processor this
clock signal has a period of 220 nanoseconds, thus this micro-
processor is capable of executing one micro-instruction every
220 nanoseconds. The instruction register helps to speed the
operation of the !icro-processor by holding the current micro-

~instruction while the next instruction is being fetched from
the Read Only Memory. The Floating-Point Micro-Processor is
started in a two step process by the master processor. Wi.en
the Floating-Point !Micro-Processor is stopped, the Next In-
struction Address out of its instruction register is disabled.
The Master Micro-Processor then can force the address of the
first micro-instruction onto the Next Instruction Address Bus.
This allows the first micro-instruction to come out of the
Read Only Memory. The Master then forces an INSCLK which loads
this instruction into the instruction register and starts the
timing of the Floating-Point Micro-Processor running to gen
erate its own clock signals to advance it from instruction to
instruction. As was mentioned above the outputs of the micro-
processor (outputs of the instructure register) fall into two
classes. The first class consists of essentially unbuffered
outputs which are used to control the gating in the data paths.
In the Floating-Point Micro-Processor the main function of
these signals is to control the data multiplexers and the
function performed by the ALU. The second important class

of instruction register outputs consists of clock signals
to the various registers within the floating-point arithmetic
section. As the diagram shows, these clocks are conditioned
by INSCLK so that they occur in coincidence with the entry
of new micro-instructions into the instruction register. The
phasing of these clocks is arranged so that the entry of the
data occurs on the same edge as entry of the new instruction
into the instruction register. "Thus in effect, each INSCLK

, enters a new micro-instruction to the instruction register and
and completes the execution (by entering data to destination
registers) of the preceding micro-instruction.

The Floating-Point Micro-Processor has one additional
class of instruction register outputs which are used to control
he operation of its hard-wired algorithms., Certain of the
operations performed by the Floating-Point Micro-Processor are
too fast to be controlled directly by the micro-processor with
its cycle time of 220 nanoseconds. These operations, mantissa

~multiply, divide, shift and normalize, are controlled by the
floating-point hardware timing which resides on the EXP and

88951000 02

4-5

Y

STARTING ADDRESS
from Master
Micro-Processor
39 _ 0
9 READ ONLY MEMCRY Y
) L, ,
31 32X40 4 AppR <
~— /\
.JUMP . ADDER
DECODE
\INSCLK CK INSTRUCTION
7 1 REGISTER
NEXT
INSTRUCTION
ADDRESS
4 VA
Clocks to ‘Data Path Commands to
Expand Controls to Fast Eardwired
Mantissa ALU Logic Algorithms’
Registers .
Figure 4.2. Floating Point Micro-processor Block Diagram
4-6

\ ‘ 88951000 02

v

MIRCK:

Initialization Address-
from A/Q Interface
SPEC’
Flip/Flop
39 0 N J
Read Only Memory < M ENB
64 X 40 » SAR < CCR
6 Addr
A |L32xs |
N
V4 <)
Jump 1.SB ~
Decode
Y
FPMP
Start Address
CK Instruction Register A .
)\ v
To Floating-
- A Point Micro-Processor
9 . .
2 w}] 2 Next
= s : .- Instruc-
K 5 Q tion
(<] Qe + (&)
E j-_; = g o Address
= ad 3] 7
<8 v S B Execute
2] o o I Next
a N Vv 0 B -
:E. 7] v
-
g <
<
<
~
:
Figure 4,3, Master Micro-processor Block Diagram

88951000 02

TIMING board.. When the micro-processor detects a command

to one of the hard-wired algorthms, it stops its INSCLK

and allows the hardware timing to ‘execute the algorithm to
completion. When the hardware timing is finished it restarts
the micro-processor INSCLK so that micro-program etecutlon

may preceed.

‘ F1na11y the instruction register contains a HALT

bit which is used to stop micro-processor action when the end
of the algorithm is reached. When the Floating Point Micro-
processor stops its timing, it informs the Master Micro-
Processor that it is avallable to perform a new floating-point
function and disables its Next Instruction Address so that the
Master Micro-Processor can start it executing another algorithm.

Figure 4.3 is a block diagram of the Master Micro~

Processor. This micro- processor is similar in structure to
the Floating-Point Micro-Processor. Its ROM consists of

64 words of 40 bits each. Its instruction register clock is
called MIRCLK and has a period of approximately 200 nanoseconds.
The outputs of the Master Micro-Processor instruction register
can also be broken into basically two classes of signals’;, those
which control data paths, and those which clock data into
destination registers. The Master Micro-Processor instruction
register provides control and clock signals to the DSA inter-
face, the Look Ahead Buffer and Address Preparation ALU, the
FSR and CCR and to the Floating-Point input register and output
gating. The Next Instruction Address logic of this micro-
processor is some what more complicated than that of the
Floating-Point Micro-Processor. The next instruction address
can come from one of three sources. There is an external
starting ocddress source which comes from the A/Q interface and
allows the System 17 CPU to start the Master Micro-Processor
executing on one of four functions (COLD START, STOP, RESTART
and A/Q LOAD FPAC). Secondly there is the normal internal
source of next instruction addresses which comes from the ROM.
Thirdly, there is a source of next instruction addresses

which allows the Master Micro-Processor to interpret the Op-
Codes contained in the CURRENT COMMAND REGISTER (CCR). The
output of the CCR is applied to the address input-of a small
ROM. This ROM is referred to as the STARTING ADDRESS ROM (SAR).
. When the micro-program is ready to begin execution of a Command-
Code in the CCR, it turns on the Execute.Next bit in its in--
.Struction register. This bit disables the next instruction
address output of the instruction register and enables the out-
put of the SAR onto the Next Instruction Address Bus. This
causes the Master Micro-Processor to begin execution of the
micro-instruction sequence corresponding to the new Command-Code.
When the SAR is enabled, five bits of the Next Instruction
Address Bus are recorded in the FPMP Starting Address Buffer
so that they may be used by the Master Micro-Processor to start
the Floating Point Micro-Processor running. Thus the starting
addresses for both micro-processors for each Command-Code are
interlocked, and the micro-programmer must write the micro-
code carefully to insure that the two micro-processors will

be correctly started. The Master Micro-Processor uses the

4-8 , | 88951000

02

Floating Point Micro-Processor starting address to start the
-Floating Point Micro-Processor running at the appropriate

point in Master Micro-Proccessors sequence. As with the
Floating Point Micro-Processor, there are several circumstances
in which the Master Micro-Processor will stop its MIRCLK in order
to wait for completion of some external event. When a DSA
memory cycle is requested by the DSA interface control outputs
of the Master Micro-Processor instruction register, the Master
Micro-Processor timing will stop and wait for the receipt of
the DSA RESUME signal. RESUME forces MIRCLK which restarts

the micro-processor timing. The Master !Micro-Processor will
also stop its timing when it is ready to start a new Floating-
Point Processor operation and the Floating-Point Micro-Pro-
cessor is still in the process of executing a preceding command.
As with the Floating-Point Micro-Processor the Master Micro-
Processor also has a HALT bit. This bit is used to stop
Master Micro-Processor execution upon decode of FEND Command-
Code and also upon completion of a STOP A/Q command execution.

4.1.3 The programmable elements. Fundamental to the under-
standing of the operation of a micro-processor is a detailed
knowledge of the elements that it controls. This section gives
an overview of these elements within the HFPU on a board-by-
board basis in order to give the background necessary for the under-
standing of the detailed description of the micro-instruction
set which is follows in section 4.1.4.

a. Address Preparation. This board contains the basic
arithmetic for all of the address operations performed by the
HFPU. It contains the externally accessable registers, the
PCR and the IR. 1In addition, it also contains a TEMNPORARV
ADDRESS REGISTER (TAR) which is used for holding the address
of memory arguments. The Master Micro-Processor has the ability
to load and increment TAR and PCR and to load and clear the IR.
The ARITHMETIC LOGIC. UNIT (ALU) labeled IR*1,2,3 in figure 4.1
is used to perform multiplication of the index times 1, 2 or 3.
The output of the IR is applied directly to the A input of the
IRALU and is rotated left one position (multiplied by 2) before
being applied to the B input to the IRALU. To multiply the IR
by 1, the Master Micro-Processor sets this ALU to gate the A
input through to its output. To multiply the IR by 2 the
Master Micro-Processor sets this ALU to select the B input to
its output. To multiply the IR by 3, the Master Micro-Processor
sets this ALU to add the A and B inputs together and apply the
result to its outputs. The outputs of the PCR and IRALU are
applied to a 2:1 multiplexer called the PIMUX. This multiplexer
performs two functions. It is used to select the register to be
read, whether PCR or IR, in an A/Q READ operation. Secondly,
it selects the register that is to be added to argument address
through the main ALU of the address arithmetic section. A
second 2:1 multiplexer, the TDMUX, is.used to select the source
of the input to the A side of the main ALU. To load an absolute
address into one of the three registers of the address logic,:

. the TDMUX is set to select the DATA 29 to 15 innut and the main
ALU is set to gate its A input to its output. To load a reclative
address into TAR, the TDMUX is set to select the DATA 0 to 15

~input, the PIMUX is set to select its PCR input and to apply

. that to the B input of the main ALU, and the main ALU is sect

to add its A and B inputs together apply that to its output.
88951000 02 . . 4-9

To utilize an absolute or relative address that has been
loaded into TAR, the TDMUX is set to select its TAR input,
the PIMUX is set to select its IRALU input, the main ALU
is set to add its A and B inputs and apply that to its
outputs, and the output of the main ALU is driven to the

-DSA address bus via the ADDR GATE. If the address re-

quired is not to be indexed, the main ALU will be set to

select its A input. To advance the address through se-

quential locations, the TAR counter is 1ncremented by the
Master “1cro’Processor

The Address Preparation Board also contalns the STOP
and SAVE ADDRESS REGISTER (SSAR) and the LOOK AHEAD BUFFER
(LABF). These registers are contained in a single 4-word
by 16-bit memory. he SSAR occupies location O in this memory
and the portions of the LABF corresponding to FPAC bits O to

15, 16 to 31, and 32 to 47 reside in words 1,2 and 3 respectively.'

The Master Micro-Processor has the ability to read, and write
the locations within this memory.

b. DSA BOARD. The elements under the control of the
Master Micro-Processor on the DSA board are bits 1,2, 3, 6, 8,
and 9 of the FSR and the DSA interface. The micro-processor
can load the FSR from DATA C to 15 and read the FSR onto the
DATA 0 to 15. Addtionally, it has the ability to set FSR bit
6, the FEND bit. The micro-processor controls the DSA interface
by requesting memory cycles as required and controlling the
direction of transfer, whether read or write. Additionally,
it has the ability to request consecutive memory cycles and to
control the release of the DSA scanner in BLOCK MODE. The DSA
interface itself controls the operation of the DSA transceiver |
which passes data between the DSA data bus and the HFPU internal
DATA 0 to 15 lines. ;

c. A/Q BOARD. On this board the only element under the
direct contrel of the Master Micro-Processor is the FSR (bits O
4, 7, 10, 11 and 15). The micro-processor has the ability to
set bits 4,7 and 15 (DBPM, PROTECT, ACTIVE) and to clear bit
15, the ACTIVE BIT. Additionally, the micro-processor controls
the incrementing and clearing of bits 10 and 11, the Operand
Byte Count (OPBC).

The A transceiver is under the control of the A/Q inter-

‘face which also resides on this board. The A/Q interface

essentially controls the Master Micro-Processor by supplying it
with starting micro-program addresses when A/Q commands which
require Master Micro-Processor action are received.

d. DPALU BOARD. The major function of this board is
to provide the double precision extension to the mantissa arith-
metic for floating-point operations. It does contain the CUR-
RENT COMMAND REGISTER which is under the control of Master Micro-
Processor. The Master Micro-Processor has the ability to load
this register from DATA O to 15, to shift it left by 4 places
as each command code is executed and to read the -contents-
back onto DATA O to 15 for transm1581on back to the System 17
memory in a STOP command.

Note that the structure of the mantissa arlthmetlc sec-
tion contained on the DPALU board and the SPALU board are es-
sentially identical.

4-10 ‘ ' 88951000

02

. The input to the mantissa arithmetic section is called
the MULTIPLICAND/DIVISOR REGISTER (MDREG). This register
can be loaded in three sections, corrcsponding to FPAC
bits 0 to 15, 16 to 31, and 32 to 47, by the master micro-
processor. The Floating Point Micro-Processor controls the-
2:1 multiplexer (MDMUX) to select either the MDREG or the
BREG to the B input .to the MANTISSA ARITHMETIC LOGIC UNIT
(MALU). The FPAC is applied directly to the A input of the
MALU. The Floating-Point Micro-Processor has the ability to
direct the MALU to perform 8 different functions, A (ARITHME-
TIC), A-1, A(logical), A complement, A+B, A-B, B, and B com-
plement. The bulk of these functions are self-explanatory
with two exceptions. The A (logical) function simply passes
the A input of the MALU to its outputs. The A(ARITHMETIC)
function checks the A input to the MALU for negative Q
before passing it to the outputs. If the input is negative
P it will be converted into positive §. The FPAC and the
BREG are universal shift registers. The Floating-Point Micro-
Processor has the ability to load these registers, shift them
left, or shift them right. To perform an FLDD function for
example, the Master Micro-Processor would load the argument
fetched from memory into the MDREG. The Floating Point Micro-
Processor would then set the MDMUX to select the MDREG to the
B input of the MALU, it would set the MALU to the "B" mode and
would load the output of the MALU into the FPAC. To eliminate
negative @, the Floating-Point Micro-Processor then sets the
MALU to the A (arithmetic) mode and again loads the outputs of
the MALU into the FPAC. When the Floating-Point Micro-Processor:
is stopped, the MALU is left in the A (arithmetic) mode: Thus
the output of the FPAC is being applied to the GATE which is
used by the Master Micro-Processor to read the FPAC, onto the
DATA O to 15 lines. :

e. SPALU BOARD. This board consists almost entirely
of mantissa arithmetic logic that is essentially identical in
structure to that described above with respect to the DPALU
board. The SPALU board contains bits 0 and bits 9 to 34 of the
mantissa. Thus it contains the entire single-precision mantissa
pPlus 4 bits of the double-precision extension. When used in
single precision, these 4 bits behave as a guard digit. The
DPALU board contains the low 12 bits of the double-precision
.eXtension of the mantissa plus 4 extra bits of guard digit.
Figure 4.4 shows schematically the arrangement of these bits
within the mantissa logic. Note that in single precision bits
32 to 51 are loaded with sign bits thus effectively filling
them with true O's (l's complement arithmetic). In double
precision only bits 48 to 51 of the mantissa are set equal to
the sign. Figure 4.4 also illustrates shift conventions that
apply within the mantissa arithmetic section. Note that with
one exceptions all right shifting of both of the FPAC and the
BREG is arithmetic i.e., the sign bit is shifted from bit O to
9 and also into bit O on a right shift. The one exception is
that during the mantissa multiply portion of FMPY, the output
of the special sign holding latch (SFAN) is shifted into Bit 9
of the FPAC, The FPAC is also shifted left arithmetically. It
is rotated left with the sign bit going into the least significant
bit. In'an HFPU that is not equipped with the double-precision
option, the sign bit of the FPAC is routed by a jumper into
bit position 35 instead of bit position 51. The FPAC is shifted
right during the exponent alignment portion of FADD and FSUB

88951000 02 4-11

FPAC Mantissa

-

09

31

3235 36 _47 47 51
:) - |+DP
: — 4SSSS |¢sp
S SSSS |-¢- |SSSS SSSS SsSsS3
Mul- '
atigly%:l > ST
prUx v On SPALU Board F On DPALU Board
m .
> : 3
SFA?
FPAC Exponent
-2-1 1 8
S{ Si8
On EXP & Timing Board
BREG MANTISSA
09 31 32 35 36 47 48 51
: SSSS DI
S ¢ — s
sSsss SSSS SSSS SSSS| SSSSi<%
On SPALU Board On DPALU Board
. ' SFAN
.
N N
' Serial Quotient Bit
Figure 4.4, Arithmetic Shifting h
4-12 88951000 02

and during the mantissa multiply portion of FMPY. It is shiftcd
left during normalization and during the mantissa divide portion
of FDIV, The FPAC holds the product in multiply and the divi-
dend in divide. The BREG is shifted right during the exponent
alignment portions of FADD and FSUB and during the mantissa
multiply portion of FMPY where it holds the multiplier. It is
shifted left only during the mantissa division portion of FDTV
where it is used to assemble the quotient of the result. 1In
double precision, the quotient bits are shifted into the BREG

at bit position 51. 1In single precision they are input at

bit position 35 and the output of a special sign holding

latch called SFAN is input at bit 51 to insure that a true 51ng1e-
precision result is generated.

One additional controllable feature of the SPALU is
the block in figure 4.1 1labeled MAX constants. The Floating
Point Micro-Processor has the ability to drive several numer-
ical constants to the B input of the MALU. These constants
are used in the rounding algorithm and also to force the
mantissa of the result in the case of exponent overflow and
FLOF overflow.

f. FPHMP BOARD. This contains the Floating Point
Micro-Processor which is labeled FPH CONTROL i. figure 4.1.

The only programmable element on this board is the FSR (bits
S5, 12, 13 and 14). The Floating Point Micro-Processor has

the ability set bits 12, 13 and 14 (UNFL, DVFL, OVFL) if one
of these conditions occurred in the course of a floating-point
alculation. The Master Micro-Processor has the ability to
read and load the FSR from the DATA 0 to 15 lines.

g. EXP and TIMING. This board contains the basic
timing for the Floating Point icro-Processor and its hard-
wired functions. The programmable elements on this board
constitute the exponent arithmetic of the HFPU. As in the
mantissa ALU sections the MDREG is the input register to the
exponent ALU. This register is loaded by the Master Micro-
Processor. The Exclusive OR (EOR) gates on the input to the
MDREG are used to remove the effects of the mantissa sign on
the exponent of the floating-point number. If DATA bit 15
is true, high, then DATA bits 7 to 14 will be inverted before
being load into MDREG. If DATA 15 is false, low, then DATA
bits 7 to 14 will be applied uninverted to the inputs of MDREG,
The output of the MDREG is under the control of the Floating
Point Micro-Processor so that either the contents of the
MDREG may be applied to the B input of the EALU or if the regis-
ter is disabled, a 0 can be applied to the B input of the EALU,.
The FPAC exponent register is applied directly to the A input
of the EALU. The EALU can perform a total of 4 functions, A
(arithmetic), A-B,A+B,B. The output of the EALU is applied to
a second EOR gate which is used to perform two functions. When
the Floating Point Micro-Processor is stopped and the master
Micro-Processor wishes to read the contents of the FPAC exponent,
the sign of the mantissa is applied to this EOR function so
that the exponent can be complemented accordingly. For internal

. exponent operations which require the magnitude of the dif-
ference between two exponents, the Floating Point Micro-Pro-
cessor can use the sign bit out of the EALU to control this EOR
function, thus applying the magnitude of the EALU output to the
input of the Shift Counter. The Shift Counter is used during

88951000 02 : v _ 4-13

the exponent alignment portions of FADD and FSUB, The Mag-
nitude Comparator is used in the same function and also in
FLOF to inhibit shifting when the number of positions to be
shifted as represented by the contents of the Shift Counter
is larger than the length of the mantissa registers. The box
labeled constants in figure 4.1 is used to supply a source
of the maximum positive and maximum negative exponent for
overflow and underflow and also to supply several exponent
values required during FLOF and FIXF.

4,1.4 The Micro-Instruction Set. This section describes

in detail the functions performed by the two micro-processors
in the HFPU. The instruction format for the Master Micro-
"Processor appears in Figure 4.5 and the format for the
Floating Point Micro-Processor appears in Figure 4.6. These
figures display in a schematic form the functions performed
by each bit of the READ ONLY MEMORIES of the two micro-pro-
cessors. Tables 4.1 and 4.2 define in greater detail the mnemonics used in

figui'es 4.5 and 4.6, respectively.

4-14 o 88951000 02

20 00016688

ST-¥

Figure 4.5.

Master Micro Processor Instruction Format

39° 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24
S SCNR'| ADDR | 1/P [ADDR | T/D LOAD ARCLK |PCRCLK [SA [INDX | BUFFER
DSA CLR | BENB AElB PCR, TAR, IR
- V ! — \—_\/\—/
— @=PCR p=DATA v .
000 = nul 1=IR 1=TAR 00 = nul, 000 = nul
000 = READ 01 = PCRL 001 = W FPAC1
010 = READ;REL (Disable ADDR BENB if not 10 = TARL 010 = W FPAC2
) } REL at Resume) 1 = IRCLK 011 = W FPAC3
011 = WRITE &-(::::;;(rorce ADDR AENB=1 and 100 = R SSAR
100 = RD, SHLT,CC : T/D=p at Resume) 101 = R FPAC1
101 = RD,SHLT, 110 = R FPAC2
110 = RD, SHLT,REL 111 = R FPAC3
111 = WR,SHLT,CC
123 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
BUFFER [GROUP 1 FSR GROUP FPH FPII GROUP |- CTRL FPH | SPINH EXEC
‘ : GROUP WAIT
- A N ——e TSN ——— i T — v ~—.
000N= IT> " 000 = nul " 000 = nul~ 00 = nul .inhibit _ 00 = nul
001 = ADATA 001 = SET A (FSR 15) 001 = CLK1l, 01 = FSTART SCNHLT 01 = EXECNXT
010 = FSRRD 010 = SET P (FSR 4) - 2,3 10 = SPEC cc IF SP
011 = CCRRD 011 = SET A&P 010 = CLK2 11 = TRUE ' CLK3 10 = HALT
100 = CHMD (comp FSR9) 100 = SET DBPM (FSR7) 0l1 = CLK3 inhibit of : 11 = EXECNXT
101 = IRCLR 101 = CLR A 100 = DOUT1 PCRCLKSCNRCLR
110 = FSRCLK 110 = SET F (FSR6),SET 101 = DOUT2 and EXEC
: DBPM 110 = DOUT3 '
111 = CCRCLK(CLR 111 = SET F,CLR A 111 = nul
OPCNT)
7 6 5 4_3 2 1 0
Pump Condition | Address of Next Instruction]
- SAR7 SAR6 SARp _ Condition
v 0 0 0 T BRAM
00 = nul 0 1 0 | BRAZ
01 = INACTV 1 0 0 | DRAP
10 = SP N 1 1 0 | BRAN
11 .= CONDENB > 0) 1 | BRIM
0 1 1 | BRIZ
' 1 0 1 | BRIP
1 1 1 | BRIN

9T-%

60 000TS688

g llDEL?“A'I .

JUMP Displacement

Address of Next Instruction
”ADDR'I

L

1
i

13

Figure 4.6, Floating-Point Micro Processor Instruction Format

39 |, 38 37 36 - 35 34 33 32 31 30 29 28 27 26 25 24
Mantissa ALU MANT.TALU FSUB EXPONENT IBCLK [ACLK1[ACLK2 ACLK3,4| Mantissa [EACLX |HALT
. Invert Invert | ALD | Mode Cont].
“000 = A,Arithmetic = nul 00 = A,Arithmetic 00 = nul
-001 = A-1- 01 = MACgH 01 = A-B - 01 = RIGHT
010 = A,Logical 10 = MD@H 10 = A+B 10 = LEFT
=011 = A 11 = MB@H 11 =B 11 = LOAD
100 = A+B .
=101 = A-B
“110 = B-
-111 = B
-~ 23 22 21 20 19 18 17 16 15 .14 13 , 12 11 10, 9 8
Mantissa B Side | Expohent | EBENB | Load |Pick |-|{Inhibits | Jump'Condition Hardware '
B Side Shift|Enable
- ! Count L . i . 1
S——— — N —— A~ ———— S)
000 = ZERO 00 = ZERO Switch 00 = nul 000 = nul - 000 = nul
001 = M/DENB 01l =1 Clocks . 01 = DP In- 001 = ETB 001 = MPY
010 = BLNB 10 = F from hibit 010 = UNF/OUF 010 = DIV
011 = FXMAX 11 = 17 A to B ACLK3 011 = MA=B 011 = SHIFT.
100 = FLMAX) NRM'D NRM'D=1 if pick 10 = PICK SET . 100 = ZOUND 100 = NORM
101 = ROUND———) _/ SP |SB32 | SB33_ F/F set Inhibit 101 = EGT 101 = nul
110 = FIX DP [SB48 | SB49 . EACLK 110 = nul 110 = nul
111 = FLZERO 11.= NRMD Irn- 111 = nul 111 = nul
. hibit ’
, ACLK1-3 &
EACLK
7 6 S 4 3 2 . 1 0

TABLE 4.1.

MASTER MICRO-PROCESSOR INSTRUCTION FORMAT

BIT
POSITIONS

VALUE

MNEMONIC

DESCRIPTION

| 39,38,37

88951000 02

001

010

011

DSA

READ

READ, REL

WRITE

These bits, if not equal to 0, are
used to command the DSA interface
to perform DSA memory acceSs cycles.
Seven different types of cycles can
be performed.

Commands DSA Interface to perform
a single read-from-memory cycle.

Commands. the DSA Interface to perform
a read-from-memory cycle and controls
the address preparation board to per-
form the addition of PCR to the in-
coming address before it is loaded
into TAR. To function correctly bits

1 35,34 (described below) must be a

0 and a 1 respectively, thus se-
lecting the PIMUX to the PCR and en-
abling its output to the B side of
the main ALU on the address prepara-
tion board. This micro-instruction
code actually functions by disabling
bit 35 (ADDR BEND) while the DSA RE-
SUME signal.is true if the RELATIVE
MODE bit mode in the FSR is not set.
Thus, if Relative Mode is not set,
the DSA data will pass through the
address ALU into TAR. If the RELA-
TIVE Mode bit is set, the DSA data
will be added to the contents of
the PCR before being loaded into TAR.

This code directs the DSA Interface

to perform a single memory write
cycle to System 17 memory.

4-17

4-18

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT

POSITIONS

VALUE

MNEMONIC

"DESCRIPTION

39.38,37
(Contd)

36

35

34

33

32

100

101

110

111

'RD, SHLT, CC

READ, SHLT

RD, SHLT,
REL

WR,SHLT
cC

SCNRCLR

ADDR BENB

11/P

ADDR AENB

T/D

IPCR to be selected.

This code directs the DSA Interface to
perform consecutive memory read cvcles.
In this mode the DSA Interface will
generate a second DSA REQUEST sic..al
upon the receipt of the DSA RESUME
signal, thus causing the interface

to steal consecutive memory cvcles.
The CC mnemonic indicates the request
for consecutive cycles., The ‘HOST
mnemonic indicates that the scanner
will remain halted for the duration of
of the consecutive cycles.

This code requests a DSA read from mem-
ory cycle and directs the DSA .inter-
face to keep the scanner halted
following the cycle.

This code requests a DSA read from
memory cycle and allows the relative
addressing calculations to take place
as was described above for code 010
(READ,REL). The scanner remains
halted following the memory cycle.

This code recuests consscutive DSA
Write memory cycles. The scanner
remains halted during the memory
cycles.

A 1 in this bit position directs
DSA Interface to release the scanner.

A 1 in this bit position enables
the PIMUX output to the B input of
the main ALU. Note that this bit
can be disabled during DSA Resume
if the code in bits 37, 38, and 39
is 010 (READ, REL) or 110 (RD, SHLT,
REL).

This bit drives the select control on
the PIMUX. A O in this bit causes the
A 1 in this bit
causes the IR to be selected.

A 1 in this bit position causes the
output of the TDMUX to be applied to
the A input of the main ALU on the
address preparation board.

This drives the select control on the
TDMUX. A O in this bit selects the

DATA O to 15 input and a 1 in this bit

selects the TAR input,. 88951000 02

TABLE 4.1, MASTER MICRO—PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE DESCRIPTIOV
POSITIOVS)
131,30 . LOAD The two bits in this field are used

_ to. select 1 of the thrée address re-
- _ gisters on the address board for

: loading., If one of the registers is
selected, then bit 33 (ADDR AENB)
will be forced to a 1 and bit 32 .
(T/D) will be forced to a O during
the DSA Resume signal. This. combi-
nation has the effect of enabling
DATA 0 'to 15 into the A side of the
main ALU thus allowing the informa-
tion on the DATA bus to pass through
the ALU to the selected destlnatlon

register.
0l PCRL This code enables the PCR load con-
trol. ’
01 TARL Tar Load enable.
11 IRCLK Load the IR. Causes a clock signal
: to the IR.
29 - TARCLK A 1 in this bit causes a clock sig-

nal to be sent to TAR during MIRCLX,.
If bits 31 and 30 are not equal to
10 then this clock will cause TAR
to be incremented. If bits 31 and
30 are equal to 10 then this clock
will cause TAR to be loaded from
the output of the main ALU on the
address board.

28 PCRCLK A 1 in this bit position causes a

' ’ clock to be sent to the PCR. 1If
bits 31 and 30 are not equal to Ol
then PCR will be incremented. If
bits 31 and 30 are equal to 01 then
the PCR will be loaded from the out-
'put of the main ALU.

27 SA Select A . A1l in this bit causes
the main ALU on the address board

to select its A input for presenta-
tion to its output. A O in this bit
directs the main ALU to add its A
and B inputs together for presenta-
tion to its output. This bit allows
data on the A side of the ALU to pass
through to the inputs to the regis-
ters or to the DSA Address bus with-
out regard to the data that may be
present on the 3 input to the ALU.

88951000 02 -~ . | 4-19

TABLE 4.1.

MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT
POSITION

VALUE

‘.INE\IO NIC

DESCRIPTION

26

25,24,23

22,21,20

001

010
011

100
101
110

111

001

010

INDX

BUFFER

WFPAC1

WFPAC2
WFPAC3

RSSAR
RFPAC1

RFPAC2

JRFPAC3

GROUP 1
ADATA

FSRRD

A 1 in this bit enables the mu1t1p11-
cation of the IR by 2 in single pre-
cision or by 3 in double precision.
This is performed by setting the IRALU
to gate its B input to its outnut in
single precision and by setting it to
add its A and B inputs together in
double precision. If the INDX bit is
equal to O then the IRALU is set to
select the A input, thus passing the
IR through without multiplication.

Codes on these three bits are used to
read and write the locations within the
4-word by 16-bit memory (the Look Ahead
Buffer and the SSAR) on the address
board.

Write ihe contents of DATA O to 15
into word number 1 of the memory, the
portion of the LABF that corresponds
to FPAC bits 0 to 15.

Write into word 2 of the memory, the
portion of the LABF that correspocnd
to FPAC bits 16 to 31.

Write into memory word 3, the portion
of the LABF that correspond to FPAC
bits 32 to 47.

Read word 0 of the memory, the SSAR,
onto DATA O to 15.

Read word 1 of memory, LABT bits 0
to 15.

Read word 2 of the memory, LABF bits
15 to 31.

Read word 3 of the memory, LABF bits
32 to 47.

\

Enables the output of the PIMUX on the
address board onto DATA 9 to 15. This
code is used for storing IR and PCR
during a STOP operation.

FSR READ ., Read the contents of
FSR onto DATA 0 to 15.

! 88951000 02

-~

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

DESCRIPTION

4-21

BIT VALUE | MNEMONIC
POSITIONS ' ‘
22,21, 20 {011 CCRRD Read the contents of the CCR onto
(Contd) : DATA O to 15.

100 CIMD This code is used in the execution

- ' of the CHMD command code. It com-

plements FSR bit 9, the Relative
p ‘| Mode bit. :

101 IRCLR This code is used in the execution
of the NIDX command code, It clears
the IR.

110 FSRCLK Load the FSR from DATA O to 15.-

111 CCRCLK Load the CCR from DATA O to 15 and
clear the operand byte count, OPBC,
bits 10 and 11 of the FSR.

19,18,17 FSR GROUP | These codes are used to set and
clear selected bits in the FSR,

001 SET A Set the Active bit, FSR bit 15.

010 SET P Set FSR bit 4, the Protect Mode
bit.

011 SET A&P Set the Active and the I'rotect bits

' in the FSR.
100 SET DBPM Set.the double-precision mode bit
S in the FSR, bit 7.
101 CLR A Clear the active bit in the FSR.
110 SET F,SET |Set the FIEND bit and the DBPM bit
DBP:i in the FSR.
111 SET F,CLR |Set the FEND bit and clear Active
. A bit in the FSR.
16,15,14 FPH GROUP | The codes in this group are used
to load the input register to the
Floating Point Hardware portion eof
the HFPU and to read the output of
the FPAC.
011 ClIX 1,2,3 | Load the contents of DATA O to 15

into all three sections of the
floating point input register, the
MDREG, simultaneously. This code is
used to load the high word out of the
Look Ahead Buffer into the high and
middlc word of the MDREG and to load
the sign of this word, the sign of

the floating-point number, into the
low word of the MDREG (sign-extension)
if in single-precision mode.

88951000 02

TABLE 4,1, MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE | MNENONIC | DESCRIPTION
POSITION | '

16,15,14|011 CLK 3 Load the low word of the MDREG.

(Contd) L

1100 DOUT1 .| Read the contents of the high word of
- the FPAC (bits 0 to 15) onto DATA

: 1 0 to 15.

101 | DOUT2 Read the middle word of the FPAC.
110 | DOUT3 Read the low word of the FPAC.:
111 NUL Undefined.

13,12 CTRL The codes in this field are used for
~special micro-processor control func-
tions,

01 FSTART This code is used to start the Floating
' Point Micro-Processor running. The
starting address for the Floating Point
Micro-Processor was saved in the FPMP
Start Address Register on the DPALU
board at the time when the Master Micro-
Processor began execution of the

current Command-Code.

10 SPEC This bit is used in the execution of the
SPEC Command-Code. It sets the SPEC
Flip/Flop that appears in figure 4.3.
The output of this flip/flop drives
the most significant bit of the input
address to the SAR. This causes the
starting address for the next Command-
Code to come from locations 16 to 31
within the SAR. The SPEC Flip/Flop is
cleared automatically by the execution
of the next Command-Code.

11 TRUE If the jump condition was specified by
bits 6 and 7 is true, the action of

the following micro-proccesor outpnut bits
will be inhibited; bit 36, SCNRCLR; bit
28, PCRCLK; bits 9 and 8, EXEC. This
bit is used in the execution of the
“branch Command-Codes to allow the incre-
ment of PCR, the release of the scanner
and the execution of the next Command-
Code if the branch condition is false.
It is false used to allow the micro-
processor to jump to the code that
executes a CACS if the jump condition

is true.

4-22 88951000 02

|BIT
POSITIONS

VALUE 'MNEMONIC

DESCRIPTION

11

10

9,8

4-23

01

FPH WAIT

SPINH

EXEC

EXEC NXT
IF SP

be used in either single or double

HFPU is in Single Precision mode.

ROM (SAR).

ing Address Register to form a start-

If this bit i1s set the Master Micro-
Processor will stop the execution
of micro-instructions to wait for
the Floating Point Micro-Processor
to complete its execution. This
bit is used whenever the Master
Micro-Processor needs to start the
Floating Point Micro-Processor run-
ning or when it needs .the result

of a Floating Point Micro-Processor
operation. ’

If this bit is set and the FHPU

is in single-precision mode then
code 011 in bits 16,15 and 14 (CLK3),
and the scanner halt and consecu-
tive cycle portions of bits 39,38
and 37, will be inhibited. This
bit allows the same micro instruc-
tion, the one that fetches the se-
cond word of the argument or the
one that locads the third word of
the argument into the MDREG, to

precision.

The codes in this field are used
for executing the next Ccmmand-Code
and for stopping micro-processor
action.

Execute Next Command-Code if the

The Execute Next function of the
Master Micro-Processor needs some
discussion. When the Execute Next
function comes true, the Master
Micro-Processor inhibits the next
instruction address output of its
instruction register and enables
the output of the Starting Address
The SAR is a ROM that
contains 32 words of 8-bits each.
The least significant four bits

of the input address to this ROl
are the actual Command-Code that

is to be executed. The most sig-
nificant bit of the input address
comes from the SPEC Flip/Flop.

The SAR translates the Current Com-
mand-Code into a starting ROM ad-
dress for the Master Micro-Processor.
The three least-significant bits
cut of the SAR are concatenated
with the two most-significant bits
out of the SAR and loaded into the
Floating Point Micro-Processor Start-

88951000 02

BIT
POSITION

VALUE

LUNEMONIC

DESCRIPTION

9,8
(Contd)

7,6

01

10

01

10

11

88951000 02

EXEC NXT
IF SP

HALT

EXEC INEXT

JUMP CON-
DITION

INACTV

Sp

COND ENB

ing address for the Floating
Point Micro-Processor which can

Ibe used at . a later time by the

Master Micro-Processor.)

This technique allows the starting
address for the next micro-instruction
sequence be applied to the ROY while
the last instruction of the. currcat
sequence is completing execution. Thus
no micro-processor overhead is incurred
in the process of changing from one
micro-instruction sequence to the next.

Master micro-processor halt. Upon
completion of the execution of the
current micro-instruction, the master
micro-processor clock is stopped.
This code is used to stop the micro-
processor after the detection of a
FEND Command-Code and at the comple-
tion of the STOP sequence.

Unconditional Execute Next function.
See EXEC NXT IF SP above.

The codes in this group specify the
type of condition that is to be tested
for a micro-processor skip. If the
condition is found to be true, the
least-significant bi%t of the next in-
struction address will be forced to 1,
thus causing a skip if the next in-
struction address is even. If the jump
condition is false the next instruction
address will not be modified.

In the execution of a RESTART A/OQ Command
this jump condition is used to test the
state of the T'SR that was fetched from
memory. It is used to cause the micro-
processor to execute the next sequential
micro-instruction which is a HALT in-
struction instead of proceeding to
execute the next Command-Code sequence,

This command code causes a skip if the
HFPU is in single-precision mode.

This jump condition is used in the
execution of the BRANCH Command-Codes.
The actual condition to be tested is
determined by bits 7,6 and 0 of the
micrc-processor starting address of
the current Comnand-Code sequence as
saved in the FPMP Starting Address
Repgister. The table on figure 4.5
illustrates the relationship between
these bits and the condition being
tested. g

4-24

TABLE 4.1. MASTER MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE
POSITIONS

MNEMONIC

DESCRIPTION

5,4,3,2,

ADDR

These last six bits of the Master
Micro-Processor instruction contain
the address -f the next instruction
to be executed. As was described
above this address can be modified
in two ways. If the jump condition
is true, then the least-signi-
ficant bit of this address, bit O,
will be forced true. If the execute
next Command Code field is true, this
address will be ignored and will be

replaced by the output of the Starting
Address RO\ :

TABLE 4.2, FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT

BIT JVALUE
POSITIOXN

MNEMONIC

DESCRIPTION

39,38,37
oo
001
010
D11

100

101

110

111

88951000 02

SO

Mantissa
ALU

A,Arith-
metic

A,Logical

A+B

-output in logical mode.

The complement of the B input is

P v

The codes in the field are used
to control the mode of operation
of the Arithmetic Logic Units on
the DPALU and the SPALU boards.

The ALU passes its A input to
its outputs in the arithmetic
mode. Negative O will be con-
verted to positive 0.

The A input minus the least-sig-
nificant bit of the guard digit is
transferred to the output in
arithmetic mode.

The A inpﬁt is transferred to the
output in logical mode. Negative
0 is left as negative O.

The'complement of the A input is
transferred to the output in
logical mode.

The arithmetic sum of the A input
and B input is transferred to the
output.

The arithmétic difference of A and
B is transferred to the output.

The B input is transferred to the

transferred to the output.
4-25

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE | MNEMONIC DESCRIPTION
POSITIONS K
36,35 ' Mant., The codes in this field are used
’ ALU In-- to perform various types of condi-
vert) tional negation of the operand

passing through the mantissa ALU. .
Note that in figure 4.6 the codes

/ in the Mantissa ALU field are
grouped into pairs with small
brackets on the left hand margin.
The codes in this the Mantissa ALU
Invert field are used to modify

the Mantissa ALU field depending
upon some external condition. They
have the ability to switch the Man-
tissa ALU field between the pairs
of codes within the brackets in
figure 4.6. Thus, for example, if
the Mantissa ALU field specifies
code 100, A+B, and the condition
specified by the Mantissa ALU In-
vert field is true then the actual
micro-processor output will corre-
spond to code 101, A-B. 1If the
code specified in the Mantissa ALU
field were a 101, then the Mantissa
ALU Invert field could switch it

to a 100 code, A+B. An examination
of the codes the Mantissa ALU field
will show that this interchange of
codes is caused simply by invert-
ing micro-processor bit 37.

01 MACOH Invert micro-processor bit 37 if
mantissa accumulator bit 0 is true
i.e., if the contents of FPAC is a
negative number.

10 MDOH If the Hardware field (Bits 10,9,8)
is an MPY, then micro-processor bit
37 will be inverted if the sign of
the FPAC and that of the MDREG are
different. If the Hardware field
is DIV, then micro-processor bit
37 will be inverted if the sign
bit of the MDREG is set.

11 MBOH Invert micro-processor bit 37 if

the sign bit of. the BREG is set.

34 FSUB In- Invert micro-proéessor'bit 37 if
vert the current micro-code sequence

is that for Command-Code FSUB.

4-26 : 88951000 02

TABLE 4.2, FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

88951000 02

BIT VALUE | MNEMONIC DESCRIPTION
POSITIONS
33,32 Exponent | The codes in this_field determine
, ALU the function performed by the
Arithmetic Lozic Units in the
exponent arithmetic section.
00 A,Arith- The EALU passes its A input to its
metic output in arithmetic mode. Negative
' 0 is converted to positive O.
01 A-B The B input is subtracted from the
A input and passed to the output
of the EALU.
10 A+B The sum of the A and B inputs is
passed to the output of the EALU.
11 B The B input ‘is passed to output of
the EALU.
31 BCLK If this bit is a 1 a clock signal
will be sent to the BREG on the
INSCLK that enters the next micro-
instruction.
30 ACIK1 Send a clock to FPAC bits O and 9
to 15.
29 - ACLK2 Send a clock to FPAC bits 16 to 31.
28 ACIK3,4 Send a clock to FPAC bits 32 to 47
and bits 48 to 51.
27,26 Mantissa The codes in this field control
o Mode Con-| the type of operation performed
- trol by the shift registers which -con-
stitute the BREG and FPAC.
01 RIGHT Select the shift registers to the
shift-right mode. | -
10 .LEFT Select the shift registérs to the
shift-left mode.
11 LOAD Select the shift registers to the
Load mode. In this mode, if a
clock specified in bits 28 to 31,
the register will be loaded from
the output of the ALU.
25 -EACLK Send a clock to Bits -2,-1 and bits

1 to 8 of the FPAC, the exponent.

4-27

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT

POSITIONS

VALUE

MNEMONIC.

DESCRIPTION

24

23,22,21

4-28

000

001

010

011

100

HALT

Mantissa

B Side

ZERO

M/DENB

BENB

FXMAX

FLMAX

This is the stop control for the
Floating Point Micro-Processor.

- If this bit is set the micro-

processor will stop action on
completion of the current micro-
instruction and drop its busy
signal to the Master Micro~Pro-
cessor.

The codes in this field determine
the source of data to be applied
to the B input to the Mantissa
ALU and in some cases also to the
B input of the Exponent ALU.

All zero's are applied to the B
input of the Mantissa ALU (bits O
and 9 to 51).

The MDMUX is enabled and the MDREG
input is selected. '

The MDMUX is enabled and the BREG
input is selected.

The maximum negative integer (8000
is applied to bits 16 to 31. This
constant is used for forcing the
maximum integer result in the FLOF
function if the floating-point num-
ber was to large to represent as a
16-bit integer.

16.

A constant of 127,,, FF;¢ is applied
to the B side of the Exponent ALU
and the maximum negative mantissa
value, bit 0 = 1 and bits 9 to 51

= 0, is applied to the B side of
Mantissa ALU.

88951000 02

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT
POSTITIONS

ALUE.

MNEMONIC

DESCRIPTION

23,22,21
(Contd)

20,19 -

WOO

101

110

111

lo1

88951000 02

‘RAOUND

FIX

FLZERO

Exponent
B Side

ZERO

. This code is used to force a true

This code is used to effect the
rounding of floating-point results.
The truth table in figure 6.5 shows
the input bit to the Mantissa ALU
that will be driven in single ,
precision and double precison de-
pending on whether the mantissa

is normalized (NRM'D) or one po-
sition short of being normalized
(NRM'D-1). This bit is effectively
the most-significant bit of the
true guard digit. If the number

to be rounded is positive, the
selected bit will be added to

it. If the number to be rounded

is negative, the selected bit

will be subtracted from it.

This code is used to control the
comparison value input to the Magni-
tude Comparitor shown in figure 4.1
on the EXP and TIMING board.

This special comparison value of
22109 is used to avoid excessive
shifting of numbers which are
smaller in magnitude than 1.9 and
to result in their being correctly
converted to integer O.

floating-point zero result. It
applies an exponent value of -127,,
to the B side of the EALU and a
value of 0 to the 3 side of the
EALU. ’

The codes in this field are used
to apply selected constants to
the B side of the EALU.

Zero's are applied to the B input
to the EALU.

A value of 1 corresponding to a
1 in bit position 8 of the FPAC
is applied to the B side of the
EALU. This constant is used to
increment the contents of the
FPAC exponent. o

4-29

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT

VALUE

MNEMONIC

DESCRIPTION

POSITIONS

20,19
(Contd) -

18

17

16

15,14

4-30 -

01.

10

11

1

17

EBENB

Load
Shift
Count

PICK
Enable

Inhibits

A value of 1 corresponding to a
1 in bit position 8 of the FPAC
is applied to the B side of the
EALU. This constant is used ‘to
increment the contents of the
FPAC exponent.

A value of 15,, is applied to the

B side of the EALU. This constant
is used as a comparison value to
check to see if a floating-point
number is too large to be converted
to a integer in the FLOF function.

A value of 23,, is applied to the
B side of the EALU. This value is
used to generate the shift count
in the FIOF function.

This bit, if a 1, enables the out-
put of the MDREG to the B side of
the EALU. .
This bit is used to load the mag-
nitude of the output of the EALU
into the shift counter. This bit
causes the Sign Control for the

EOR function on the outputs of

the EALU to be driven from the

sign (bit -2) output of the EALU

so that the EALU outputs will be
inverted if negative. Additionally,
this micro-processor function loads
the sign of the EALU output into
the PICK flip/flop. The PICK F/F
will be set if the EALU sign is
positive and it will clear if the
EALU sign is negative.

If the PICK F/F is set, bits
30 to 28 (ACIK1,ACIK2, ACLK3,4)
will be inhibited and bit 31
(BCLK) will be forced.

The codes in this field are. used
to inhibit other micro-processor
instruction fields in the presence
of certain conditions.

88951000 02

TABLE 4.2. FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT VALUE | MNENONIC |DESCRIPTION

POSITIONS| - : ‘ -

15,14 01 DPInhibit |The ACLK3 portion of micro-pro-
(Contd) . ACLK3 cessor bit 28 will be inhibited

if the HFPU is in Double Precision
) . mode. This feature is used during
- the truncation of the guard digi .
portion of the results.

10 PICK SET |Micro-processor bit 25, EACLX will
Inhibit be inhibited if the PICK F/F is
EACLK set. This bit is used in the selec-

tion of the larger exponent during
floating add.

11 NRMDInhi- |Inhibits micro-processor bits 30,
bit ACLK1-i29, 28 and 25 if the argument in
3 & EACLK {the FPAC is normalized. .

13,12,11 Jump Con- |[The codes in this field are used
‘ dition to test for certain conditions
which will dynamically modify the
micro-processor sequence.

looo nul No jump. Do not modify the address
of the next instruction that appears
in bits 0 to 4.

1001 ET3 Exponent Too Big . This condition

. tests the output of the Magnitude
Comparator on the EXP TIMING board.
If the value being loaded into the
Shift Counter is larger than the
comparison value, then the jump
will take place,i.e., the jump
displacement in bits 5 to 7 of the
micro instruction will be added to
the ADDR field, bits O to 4.

010 UNF /OVF If the Exponent overflow condition

' is true, the next instruction
address is ADDR plus DFLTA. If
\Exponent Underflow is true, the next
instruction address is ADDR plus
DELTA + 1. If neither condition
is true, the next instruction
address is ADDR.

011 MA=3B | Jump, address of next instruction
: ' is ADDR + Delta, if the output of
the MALU is equal to O,

88951000 02 . 4-31

TABLE 4.2, FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT

POSITIONS

VALUE

MNEMONIC

DESCRIPTION

13,12,11
(Contd)

10,9,8

4-32

100

101

110
111

001

010

011

100

ZOUND

EGT

nul
nul

Hardware

MPY
DIV

SHIFT

NORM

Jump if the divisor is O or un-
normalized,

‘Exponent Greater Than 0 ., Jump
if the FPAC Exponent is greater
than 0. o

unused.
unused.

The codes in this field are used
to call up the high-speed, hard-
wired algorithms on the EXP and
TIMING board. The next instruc-
tion in sequence will not ex-
ecute until the hard wired algori-
thm has completed its function.

Multiply. Multiplicand in MDREG.
Multiplier in DREG. MALU set to
ADD/SUB MDREG to/from FPAC.

Divide. Dividend in FPAC. Divisor
in MDREG. MALU set to SUB/ADD MDREG
from/to FPAC. Quotient goes to BREG.

If the PICK F/F is set, the BREG
will be shifted right a number of
places equal to the count in the
Shift Counter. If the PICK F/F

is clear, the FPAC mantissa register
will be shifted right.

Normalize. 1If the FPAC is normalized,
or is 1 bit-position short of being
normalized, this instruction does
nothing. If the FPAC is more than
one position un-normalized, then

it will be shifted left and the

FPAC exponent decremented until

it is one bit-position short of being
normalized. The Exponent ALU field
and the Exponent B Side must be

set correctly to result in the
exponent decrement, since the nor-
malize hardware merely generates

an appropriate number of FPAC
exponent clocks (EACLK).

88951000 02

TABLE 4.2, FLOATING POINT MICRO-PROCESSOR INSTRUCTION FORMAT (Contd)

BIT - JVALUE | \WEMONIC DESCRIPTION
POSITIONS : :
7, 6, 5 DELTA Jump Displacement. DELTA will
: be added to ADDR-if the Jump
Condition is true. . The addition
- is done modulo 16, thus the most
significant bit of ADDR will not
change in a jump.
.4,3,2,1,0 ADDR Address of next instruction.

88951000 02

4-33

4,2 DESCRIPTION OF ALGORITHMS

4.2,1 Introduction to Flowcharts and Listings. The algorithms
used in the HFPU to perform its various functions are described
in 4.2.2 . The descriptions of that section arc all keyed to the
micro-code listings and flow charts that reside in appendix B.
Figure 4.7 summarizes the terminology and diagramatic conventions
used in the flow charts of appendix A. The only unusual charac-
teristic of these flow charts are the brackets that appear to

the left. These brackets encompass groups of flow charts oper-
ations that correspond to the manipulations performed by indivi-
dual micro-instructions in the micro-code listing. A step number
(e.g., STEP#1) and the micro-code sequence number (e.g.,LOC 10)
is indicated to the left of the bracket in the flow chart. Al-
gebraic operations are indicated in an ALGOL-like manner. Figure
4.7 also provides a short glossary which defines the mnemonics
used in the flow charts to reference the various elements of the
HFPU. ‘

4.2,2 The Algorithms.

4.2,2.1 OP-CODE FETCH/COLD START. Master Control flow charts
page M17. ‘

Step 1. Micro-code location 3. The same micro-code
is used for both the fetch of a new Command-Code word and for
the start-up on an A/Q Cold Start command. This micro-instruc-
tion sets the Active bit in the FSR and initiates a DSA request
for a memory-read cycle with the PCR as the memory address.
The DSA Data-out is loaded into the CCR and the PCR is incre-
mented on the trailing edge of RESUME. The Operand Byte Count
(OPBC) is set to @ to point to the first Cormand-Code in the
CCR. The micro-instruction sequence will return to this
point when the OPBC reaches 4. . P

Step 2. Micro-Code location E. This instruction
contains an -unconditional Execute Next which causes the micro-
processor to branch to the first instruction of the sequence
corresponding to the first OP-Code in the CCR. Page M26
of the flow charts illustrates the decisions that will be made
in the course of the Execute Next operation. If the OPBC is
equal to 4, then the micro-code will branch back to location 3
to fetch the next OP WORD. If the SPEC F/F is set, the micro-
processor will branch to the first instruction of the next
. OP-CODE. If neither of these conditions is true, the logic
then checks to see if an A/Q STOP command has been issued. If
so, it branches to the first micro-instruction of the STOP
sequence. If not, it branches to the first instruction cor-
responding to the nest OP-CODE, ' ‘ ‘

4.2.2,2 The SPEC GROUP. M. C. Flow chart pages M15 and !I16.
Execution of the SPEC Command-Code is accomplished entirely

by single micro-instruction at location 32 which sets the SPEC
F/F. Once this flip/flop has been set, the next Command-Code
sequence will come from the upper 16 locations in the SAR.

4-34 88951000

02

Usage

Beginning or end point for
a process

LOC 10 Decision Block
STEP#1

LOC 1E) '

STEP#2 A<B Operation

N\ / . :
< <EE> &————=on-page connection

Y
ORMJ pF19 , off page Reference
A<« B Replace A with B
A<«B . o ~ Replace A with B complemented
|B| Absolute value
+ Low to High transition of a
logic signal ’
EACC ' Exponent portion of FPAC
- MACC Mantissa portion of FPAC
- FPAC : : Floating Point Accumulator
MACnn _ Bit nn of MACC
MARG Memory Argument mantissa
EARG Exponent of Memory Argument
BREG Mantissa B Register
PICK _ Single Bit register used to save
: sign of exponent difference
MBnn Bit nn of B register
SAN/SFAN ‘ | Sign of Answer
EOR : Exclusive or

DEC Decrement

-

Figure 4.7. Flow Chart Conventions (Sheet 1 of 2)

88951000 02 _ 4-35

4-36

ADDR

TAR
PCR -
IR

DBPM' .
BUF@ to- 15

BUF 16 to 31

BUF 32 to 47

'MDg to 51

CCR
DPBC
FEND
ACTIVE
PROT
SSAR
AND
IADD

Address.driven to DSA address Bus

Temporary Address Register
Programs Counter Register
Index Register

Double Precision Mode Bit in FSR
First word of Look-Ahead-Buffer:
Second word of Look-Ahead-Buffer

"Third Word of Look-Ahead-Buffer

Multiplicand/Divisor Register.

Input register to Floating Point ALU,
Used to hold Memory Argument (MARG).
Current Command Register

Operand Byte Count.

FEND Bit in FSR

Active Bit in FSR

Protect Bit in FSR

Stop and save address reglster
Logial and Function

Micro-Processor Instruction Address
applied to ROM -

Figure 4.7. Flow Chart Conventions (Sheet 2 of 2)

88951000 02

pras

4,2,.2,2,1 CACS. ' The execution of a CACS consists entirely
of the micro-instruction at location 35. This instruction
initiates a DSA READ cycle with the PCR as the memory
address. If the HFPU is not in Relative Mode, then the DSA
data is loaded into the PCR. If the HFPU is in Relative
Mode, then the DSA data is added to the old contents of the
PCR-and the result placed into the PCR.

4,2,2,2,2 BRAZ,BRAN,BRAP ,BRAM. These Command-Codes require
two or three micro-instructions devmending on the state of
the condition being tested. Bits 7,6 and O of the Starting
Address as given in the Flow chart Index of appendix A de-
termine the condition to be tested. Refer to Fig. 4.5 for
a description of the relationship between these bits and
the tested condition. :

Step 1. Location 36. This instruction performs
an FP WAIT to allow the Floating Point iMicro-Processor (FDPMP)
to complete its operation so that the data in the FPAC will
be valid. v

Step 2. Location 37. This instruction tests
the specified condition. If it is true, then the next in-
struction to be executed is the CACS instruction at location
35. If the condition is false, the program counter is incre-
mented once to advance it past the Address "ord and execution
proceeds with the next sequencial Command-Code.

4.2,2.2,3 BRIZ,BRIN,BRIP,BRIM.

Step 1. Location 33. This instruction is simply
a no-op to allow the data in the Index Register to settle
so that the next instruction can properly test it.

Step 2. Location 34. If the condition is true,
the. next instruction to be executed is the CACS instruction
at location 35. 1If the condition is false, the PCR will be
incremented and the next sequencial Command-Code will be
executed.

4,2,2.3 Single Micro-Instruction Group. The Command-Codes
in this group require only a single mlcro-lnstruction
cycle for their executlon. .

- 4,2,2.3,1 FEND. M.C. Flow charts page M18. The FEND oper-
ation actually involves two micro instructions. The second
micro-instruction is used to place the HFPU in a state so
that it will be receptive to A/Q commands.

Step 1. Location 1D. This instruction walts for
the FPMP to complete its current operation and then proceeds
to set the FEND bit and clear the ACTIVE bit in the FSR.

Step 2. Location E. This instruction contains
simply the Execute Next field which is used to disable the
Next Instruction Address output of the laster Micro-Processor
(MMP) instruction register. If an A/Q STOP command has not
been received, the MMP Clock will be stopped and the HFPU will
-await further A/Q commands. If a Stop Request is pending,
the micro-processor will procced to execute the first instruc-
tion of the STOP sequence at location 2.,

88951000 02 : : 4-37

4,2,2,3.2 CHMD. Location M11l. This single micro-instruc-
tion complements the 'state of the Relative Mode bit in the

FSR and proceeds to first instruction of the next Command-

Code. : : -

4,2.2.3.3 NIDX. M.C.'FIowchart page M11l., This micro-
instruction clears the Index Register and proceeds to the
- next Command-Code sequence.

4.2.2.4 Floating Point Group. These commands all require
action on the part of the FPMP. Four bits of the MP Starting
Address are used to provide a starting address for the FDPP,
The bits are, in order from most significant to least signi-
ficant bit, bits 1,0,7,6. A fifth bit of the MMP starting
address, bit 2, is used to indicate that the FPMP is to per-
form an FSUB function instead an FADD. Note that the MMP
activity involved in the five functions, FLDD, FADD, FSUB,
FMPY, and FDIV is the same. Thus, the MMP action for these
five functions is described only once in the following section
on FLDD. '

4,2,2.4.1 FLDD, M. C. Flowcharts page M3. FPH Flow charts
page F9. : .
Step 1. Location 20 if FADD, FMPY, FDIV or FLDD.
Location 24 if FSUB. Initiate a DSA memory read request with
the PCR as the memory address. If the Relative lode bit is
false, the DSA data will be loaded into TAR. If the Relative
Mode bit is true, the PCR will be added to the DSA data and
the result loaded into TAR. On the trailing edge of RESUME,
the PCR will be incremented. '

Step 2. Location 21. Initiate consecutive DSA
memory read requests. If FSR bit 8 is set, select the IRALU
to multiply the IR by 1. If FSR bit 8 is clear, and the HFPU
is in single-precision select the IRALU multiply IR by 2; if
in double-precision, multiply the IR by 3. Add the outputs
of the IRALU to the data in TAR and apply the result to the
DSA address bus. Load the DSA data into the LABF word 1
which corresponds to FPAC bits O to 15. The DSA Interface
automatically increments TAR on the leading edge of RESUME,
so that the address is advanced in time for the next cycle,

-which will be stolen consecutively. - V
- Step 3. Location 25. Request a DSA memory-read
cycle with the address generation as in Step 2. If the unit
is in single-precision, disable the consecutive cycle request
and allow the release of the scanner. Load the DSA data into
the LABF word 2. If the unit is in single-precision mode
skip to Step 5. '

Step 4. Location 26. Request a DSA memory-read
cycle with the address generation as in Step 2. Load the
DSA data into LABF word 3. :

Step 5. Location 27. Wait for the FPMP to complete
its current operation before proceeding. Transfer word 1
of the LABF into the high word of the MDREG (bits 0 to 15).

4-38 ' 88951000 02

If in single-precision, load the sign bit into bits 32 to 51
of the MDREG. 'If in double-precision, load the sign bit into
bits ‘48 to 51 only. The guard digits are thus set to true
‘0 in ones complement arithmetic.

. Step 6. Location 28. Transfer word 2 of the
LABF to the middle word of the MDREG.

Step 7. Location 29. If the unit is in double-
precision mode, transfer word 3 of the LABF to the low
word of the MDREG. If in single precision, CLK3 is in- .
hibited thus leaving the guard digits unaffected. The MIRCLK
that terminates this micro-instruction sends a start signal
to the FPMP so that it can begin its portion of the FLDD
function. The MMP now proceeds to the first micro-instruction
of the next Command-Code.

This completes the MMP action during a floating
load. The following steps refer to the action taken by the
FPMP. Refer to page F2 of the FPH Flow charts. Note that
the FPH Flow charts in many places are actually drawn as two
parallel flow charts, one for the exponent and the other for
the mantissa arlthwetlc

Step 1. Location 3. Remove the exponent bias
and the effects of the mantissa sign by complementing bit I
and then complementing bits 1 to 8 if the sign bit is set.

The complementing referred to here occurs on the input to

the MDREG, so that the exponent value in the MDREG is a valid
ones-complement number. The FPMP selects its ALU'S to trans-
fer the MDREG into the FPAC in this micro-instruction.

Step 2. Location 18. Sign-extend the mantissa.
This micro- 1nstruct10n is the first example of the conditional
AILU control in the FP.P. The MALU is set to pass a zero
on its B input through to its output. 1If bit O of the FPAC
is set, however, the MALU function will be inverted to a
B Complement thus producing all 1's on its output. Thus the
output of the MALU is equal to the sign of the FPAC. This
result is clocked into section 4, bits 48 to 51, of the FPAC
if the unit is in double-precision. If the unit is in single-
precision, this result will be clocked in bits 32 to 51 of the
FPAC.

- Step 3. Location 15. This step is used to clear
negative O's in both the exponent and the mantissa. Both
the EALU and MALU are set to the A Arithmetic mode and the re-
sult loaded into the FPAC. 'The FPMP halts upon the completion
of this-instruction. : ' .

4.2,2.,4.2 FADD/FSUB. FPH Flowcharts page F6. All of the
action described here tskes place in the FPMP. The MMP action
required for these functions was described above in the
section on FLDD.

Step 1. Location @ of the floatlng—p01nt micro-code.
The first micro-instruction of FADD transfers the mantissa of
the memory argument from theé MDREG to the BREG. In the ex-
ponent arithmetic, the exponent of the memory argument is sub-
tracted from thc exponent of the FPAC. If this difference
is positive, the PICK F/F will be set and the Shift Counter
will be loaded with the difference. If this difference is

88951000 02 - ' . 4-39.

pegative, the PICK F/F will be cleared and-the Shift Counter
will be loaded with the complement of this difference. The
Shift Counter is thus loaded with the magnitude of the
differcnce of the exponents and the PICK F/F has the sign

of the difference stored in it.

Step 2. Location 1C. The mantissa portions of
the FPAC and BREG are shifted right one place arithmetically
to open up an overflow bit in bit position 9. This allows
the sum of the mantissa magnitudes to overflow without inter-
ferring with the sign bit. The exponent of the result will be
incremented at step 4 below in order to mantain the correct
value for the floating-point number. Note that shifting
the mantissa right one place divides the floating-point number
by 2 and that adding 1 to the exponent multiplies the floating-
point number by 2 thus leaving its value unchanged. 1In the
exponent arithmetic, if the PICK F/F is clear, the exponent
of the memory argument is transferred to the exponent of the
FPAC., 1If the PICK F/F is set, the clock to the EACC is in-
hibited thus leaving the exponent unchanged. This has the
effect of selecting the larger of the two exponents for the
exponent of the result. This micro instruction at location
1C also performs a conditional test on the magnitude cf the
exponent difference. If the magnitude of the exponent differ-
ence is too big for the size of the register (greater than or
equal to 26 in single precision, 42 in double precision),
then the next micro-instruction will be the one at location
1F. If the shift count is smaller than the register size,
then the next micro-instruction will beat location 1D.

Step 3. Location 1F or 1D. If the shift count
was to big, then the instruction at location 1F will be ex-
ecuted. This micro-instruction clears the mantissa of the _
floating-point number having the smaller exponent. If the
shift count is smaller than the register size, then the in-
struction at location 1D is executed. This micro-instruction
calls on the hard-wired shift logic to shift the mantissa
of the argument having the smaller exponent right a number of
places equal to the exponent difference. The micro-instruc-
tion sets the mantissa shift register mode controls into the
right shift mode and the hard-wired shift logic shifts the
mantissa of the smaller number right until the shift counter
reaches zero. The shift counter was loaded with the magnitude
‘'of the exponent difference at step 1 above. This micro-instruc-
tion accomplishes the "exponent-alignment'" portion of the
floating addition. In effect, the smaller floating-point
number has its mantissa shlfted right arithmetically and
its exponent incremented (thus maintaining its value unchanged)
until its exponent is equal to the exponent of the larger num-
ber. Once exponent equality has been achieved, then the two
mantissa's can be added together.

Step 4. Location 1E. This micro-instruction
performs the mantissa addition. If the operation being per-
formed is FADD, then the two mantissas are added together
using one's-complement arithmetic. If the operation is FSUB,
then the complement of the BREG is added to the mantissa of
FPAC using one's complement arithmetic. The exponent value
in the EACC is incremented by 1 to compensate for the right

4-40 88951000 02

shift of the mantissas that occurred in step 2 above. At this
point the floating-point addition is completed and all that
remains is the normalization of the result. What follows

is the description of the common normalize logic that is used
by all of the functions that require post-normalization.

p NORMALIZE,FPH Flowchart page F12 and F13.

Step 1. Location 11. The first micro-instruction
of normalize simply sets up the test for a zero mantissa
by setting the MALU to the A,Arithmetic mode. Since this
ALU mode converts negative ¢ to positive @, this instruc-
tion allows a test for true zero mantissa.

Step 2. Location 12. If the mantissa portion of
the FPAC is equal to zero, then this instruction becomes a
jump to the micro-instruction at location 17 where the micro-

processor forces a true ¢§ result (mantissa = ¢ and exponent
equals -127;,5) and halts. If the mantissa is not equal to

¢, then the hard-wired Normalize function will proceed .to .
normalize the floating-point number. The hard-wired Normal-
ized function proceeds in a rather peculiar fashion due to
the presence of the rounding which occurs in step 3 below.
The problem is that if the mantissa is effectively all 1l's
and a round is performed, then a carry can ripple through
into the most significant bit causing a mantissa overflow. A
thorough consideration of the floating-point functions (Add,
Subtract, Multiply, Divide and FIXF) shows that if the raw,
pre-normalization, mantissa is already normalized, then the
rounding of this result will not cause a mantissa overflow.
This is due to the fact that a normalized raw result will
always contain at least one zero in the middle bit positions
in the mantissa thus preventing a carry from rippling through
to the most significant bit. If, on the other hand, the

raw result is unnormalized and the normalize hardware 1is
allowed to normalize it completely, then the rounding may re-
sult in mantissa overflow. To prevent this from happening,
the normalize hardware shifts the mantissa left and decrements
the exponent until the mantissa is one bit-position short

of being normalized if normalization was required. If the
raw mantissa is normalized, the normalize hardware does not
not shift it. _

Step 3. Location 13. This step performs the
rounding by adding/subtracting the most significant of the
true guard digit to/from the mantissa if the mantissa is
positive/negative, If the mantissa resulting from the
normalization is normalized, then the most significant bit
of the guard digit is one bit off the end of the mantissa
(bit 32 in single precision and bit 48 in double precision).
If the mantissa is one bit-position short of being normalized,
then the most-significant bit of the true guard digit lies
two bit positions off the end of the mantissa (bit 33 in single-
precision and bit 49 in double-precision).

Step 4. Location 14. This step completes the
normalization of the result. If the mantissa resulting from
steps 2 and 3 is normalized, no action is taken. 1If the

.mantissa is unnormalized (at most it will be unnormalized by
one bit position), then the mantissa is shifted left once and

88951000 (2 , . 4-41

the exponcnt is decremented to produce a normalized result
Step 5. Location 18. This step truncates the
guard digit to remove spurious information that may be re-

- siding in those bits following the rounding. Using one's
complement arithmetic, all the bits of the guard digit.
(bits 32 to 31 in 81ng1e precision and bit 48 to 51 in
double precision), are set equal to the sign of the number
true 0 condition. ' '

- Step 6. Location 15. This step checks for
the possibility of exponent overflow or underflow resulting
from the calculation. Within the HFPU, two extra overflow
bits, labeled EACC (-2) and (EACC (-1), are carried to allow
for the correct detection of exponent overflow or underflow.
When a floating-point number is loaded, the overflow bits
are set equal to the sign bit of the exponent (EACCl). _
This sign-extension of the EACC converts it into a ten-bit
one's complement number. At the end of the a calculation |
if EACCl1l, (-1), and (-2) are all equal, then the exponent is
within range i.e., it can expressed in 8 bits, and the
result is valid. 1In this case, the FPMP halts at location
15 anu drops its busy signal to the MMP., If EACCl and EACC
(-1) are not the same, then the exponent of the result
cannot be represented in 8 bits and an error has occurred.
In this case EACC (-2) indicates the true sign of the
exponent of the result. If it is alone, then the exponent
of the result is negative and exponent underflow has occurred.
Micro-program control will then be transferred to location
17. If EACC (-2) is false, then the exponent of the result
is positive and exponent overflow has occurred. Micro-
program control will then be transferred to location 16.

~ 8tep 7. Location 17 if underflow, location 16

if overflow. 1In the case of underflow the mantissa is set
to ¢ and the exponent of result is set to the maximum nega-
tive value of -127;43. In the case of overflow, the exponent
is set to the maximum positive value of +127;, and the
mantissa is set to the maximum signed value. Note that in
the case of overflow, micro-program control returns to
step 5 (location 18) where the bits of the guard digit will
be truncated so that the result is a valid single or double

.-pre0151on ‘floating-point number. 1In the case of underflow

the micro-processor 51mp1y halts at location 17.

4,2,2,4.3 FMPY. FPH FLOWCHART Page F8. Only the FPMP
portion of FMPY is described here. The MIP portion was
described above in section 4.2.2.4.1, FLDD.

Step 1. Location 1. The FPAC mantissa is trans-
ferred to the BREG so that it may be used as the multiplier
in the mantissa multiplication. The exponent of the memory

- argument is added to the EACC and the result is placed in
the EACC.

4-42 | S o 88951000

Step 2. Location D. 1In this step the mantissa
of the FPAC is set to positive O if the sign of the result
as indicated by the Exclusive OR of the FPAC sign (MACO)
and the memory argument sign (MDO) is positive. The
MACC is set to negative @ if the sign of the result is ne-
gative 0. This step is necessary so that the arithmetic
right shifting of the MACC which occurrs during step 3
below will proceed correctly. :

Step 3. Location C. 1In this step the hard-
wired multiply logic performs the mantissa multiplication
portion of FMPY. The mulplication is performed using a
one's-complement version of the usual binary multiplication
algorithm in which the multiplicand is added to the partial
product for each true bit in the multiplier and the
partial product is shifted right for every bit in the mul-
tiplier. 1In the one's-complement version of this algorithm,
a true bit in the multiplier is a bit which has the opposite
sense from the sign of the multiplier i.e., if the multi-
-plier is positive, a true bit is a 1, if the multiplier
is negative, a true bit is a @. Additionallv, if the mul-
tiplier is negative, the multiplicarnd is subtiacted from
the partial product instead of being added to it as in the
binary algorithm. If the multiplier is positive, the one's
complement algorithm proceeds exactly as in the binary
algorithm.

The hard-wired function begins by loading
a counter register with the anumber of steps to be performed
(27 in single precision and 43 in double precision). This
step count is such as to provide for a correct fractional
multiplication with the binary point of the result lying
to the left of FPAC bit 9. This corresponds to the mantissa
result being either normalized or one bit position short
of being normalized. The step count is then immediately
decremented preparatory to the test for algorithm completion
occurs at the end of the loop in the flowchart. If the
“"true'" least-significant bit condition exists, then the
mantissa of the Memory Argument in the MDREG. is added to
or subtracted from the mantissa of the FPAC depending on the
sign of the multiplier in the BREG. If the 'true" bit con-
dition is not satisfied, then the mantissa of the FPAC is
left unmodified. The next step in the algorithm is to
shift both the mantissa of the FPAC and the mantissa of the
multiplier (in.the BREG) one position to the right. The
BREG is shifted right arithmetically thus preserving its
sign in bit position @ so that the tests for a 'true"
bit and the add/subtract decision will proceed correctly
in succeeding steps. As was illustrated in figure 4.4 of
section 4.1.3, the content of the FSAN F/F is shifted in
to the sign position of the MACC. The SFAN F/F was loaded
with the expected sign of the multiply result at the
time that the MMP started the FPMP. This sign is given
by the Exclusive OR of the sign of the memory argument
and the sign of the FPAC. The SFAN F/F is provided as

88951000 02 . ‘ ‘ 4-43

the right serial input to the MACC so that the MACC

will shift right in a truc arithmetic fashion even if
some of thc intermediate steps in the multiply algorithm
result in a temporary overflow of the mantissa into the
mantissa sign bit. The final step in the algorithm is a
check of the status of the step count. If it has reached
P, the proper number of steps have been completed and micro-
processor control is transferred to the normalize routine
at. location-11 in the micro code, otherwise the hard-
wired algorithm proceeds to check the next bit in the
multiplier for the ""true" condition. The Action of the
normalized routine was described in the preceding section
of FADD/FSUB. :

4,2.2.,4.4 FDIV. FPH Flowcharts page F9. MMP action for
the FDIV function was described above in the section on
FLDD. What follows then is a description of the FPMP
action involved in FDIV,
Step 1. Location 2. When the MiP starts the
.FPMP, the potential sign of the result (equal to the
Exclusive OR of the sign of the memory argument and the
sign of the FPAC) is loaded into the SFAN F/F. SFAN is
set if the sign of the result will be negative. The
first step of FUIV shifts the mantissa of the FPAC right
arithmetically one position and increments its exponent
thus maintaining its value unchanged. This right shift
of the dividend is performed in order to open up an
overflow bit so that the resulting quotient in the BREG
will not overflow that register. Mathematically, the
division of two normalized mantissas can result in a
quotient that lies between .5 and 1.999, Shifting the
MACC right one position effectively divides the quotient
by two so that it lies in the range .25 to .999. Thus
the result of the divide will either be normalized or
one bit-position short of being normalized and thus will
be compatible with the hard-wired normalize algorithm.
Step 1 also checks the divisior in the MDREG to verify
that it is a proper normalized floating-point number. If
it is not normalized, then a divide error would occur and
program control is transferred to location 16 where
the maximum signed result will be forced. The micro-
processor action involved in forcing the maximum result
has been described above in the normalize section of
" FADD/FSUB. If the divisor is a proper normalized floating-
point number then the micro-program proceeds to step 2.
Step 2. Location 10. In this step, the ex-
ponent of the divisor is subtracted from the exponent
of the dividend to generate the exponent of the result.
The mantissa of the dividend, in the FPAC, is converted
to absolute value. This is performed by setting the MALU
to the A,logical mode and allowing inversion of the MALU
to the A, complement mode if the sign of the FPAC (MAC@-H)
is set. The bits in the mantissa of the FPAC are thus
complemented if it is negative. The MACC is converted
to an absolute value in order to simplify the decisions
that are made during the mantissa division which is de-
scribed in the following step.

444 o 88951000 02

: Step 3. Location 1A. This step utilizes
the hard-wired divide logic to perform the division of
the two mantissas. The algorithm used is a one's-com-
plement version of the standard binary division algorithm.
As in the hard-wired multiply logic the sequence begins
by initializing the step counter so that the result will
end up either normalized or one bit-position short of
being normalized. Note that the value loaded in the count
(28 in single precision or 44 in double precision) is
exactly equal to the number of bits in the mantissa in-
cluding the guard digit and the sign bit.

Figure 4.4 of section 4.1.3 illustrates the bit

position at which the quotient bits are shifted into the
BREG as the divide result is generated. The hard-wired
logic assumes that the magnitude of the dividend is in the
FPAC and that the one's-complement divisor is in the MDREG.
The micro-code sets the MALU to the A-B mode with an ALU
inversion (A-B goes to A+B) if the sign of the divisor
(MDPH) is negative. Thus the MALU is continuously sub-
tracting the magnitude of the divisor from the magnitude
of the dividend. The algorithm proceeds by first decre-
menting the count preparatory to the final test of the
count at the end of the algorithm loop. The logic now
tests the sign of the output of the MALU (the magnitude
of the dividend minus the magnitude of the divisor). If
this sign is positive then it is time to enter a true bit
into the quotient and to replace the dividend with the
difference between the dividend and the magnitude of the
divisor. A "True" bit entered into the quotient consists
of a 1 bit if the sign of the answer is positive and a
@ if the sign answer is negative. If the sign of the
difference between the magnitude of the dividend and the
magnitude of the divisor was negative, then no change is
made in the dividend and a false bit must be entered to
the quotient. A false bit consists of a @ if the sign
of the answer is postive and 1 if the sign of the answer
is negative. Thus the quotient developed is a one's-com-
plement number. The next step in the algorithm consists
in multipling the dividend by 2 by shifting it left one
position. The final step in the hard-wired algorithm is
to test the count to see if has reached . If it has not,
the algorithm loops around and performs another step.
If it has reached ¢, then the micro-program proceeds to
location 11 where the normalization takes place. The
normalization was described above in section 4.2.2.4.2,
FADD/FSUB. :

4.2.2.4.5 FLST. Master control flowcharts page . M9.

FPH flowcharts page F3. There is no FPMP micro-processor
action involved in FLST. The flowchart on pg. F3 merely
shows the effect of the passive logic in the floating-
point portion of the HFPU during FLST. If the sign of
the floating-point number in the FPAC is set then all

88951000 02 4-45

8 bits of thc exponent are complemented so that they will
correspond to the external floating-point format. If the
sign of the FPAC is positive, then the bits of the ex-
ponent are read un-complemented. Following the above
step, the most-significant bit of the exponent is uncon-
ditionally complcmented so as to put the exponent into
the proper biased form. The following steps describe

the action taking place in the MMP during FLST.

Step 1. Location 2E. The first step of FLST
is to fetch the address of the argument and perform the
Relative Address Mode calculation as was described above
in step 1 of FLDD, section 4.2.2.,4.1 This step is
performed in parallel with any preceding FPMP action that
may be in progress.

Step 2. Location 2F. The MMP now interrupts
its micro-instruction flow to wait for the FPMP to com-
plete its action. When the FPMP drops its busy signal
to the MMP, the MIP proceeds to generate a memory-write
cycle request to the DSA interface. The multiplied
Index value is added to the address in TAR as was des-
cribed above in step 2 of FLDD. The MIP enables bits
0 to 15 of the FPAC onto the DATA 0 to 15 lines and the
DSA interface drives them at the appropriatc time onto
the DSA data bus. The address in TAR is incremented by
the DSA interface on the leading edge of the RESUME
signal. Note that this cycle is performed in conse-
cutive-cycle mode with the scanner halted if the HFPU
s in BLOCK modes. Because of the wait at the beginning
of this step for the FPMP, the first step did not hold
the scanner at the completlon of its cycle.

Step 3. Location 30. This micro-instruction
generates the second write-cycle request to the DSA
interface with the address information as in step 2 above.
The MMP enables bits 16 to 31 of the FPAC onto the DATA 0 to
15 lines so that the DSA interface can drive them to the
DSA data bus., If the HFPU is in single-precision mode
then this micro-instruction constitutes the final step
of FLST. The SPINH bit disables the SHLT and CC functions
in the DSA field and the "EXEC-NXT if SP" code causes the
MMP to perform its Execute Next function which takes the
Micro-program sequence to the next Command-Code. If the
HFPU is in double-precision mode, then the cycle of step
3 proceeds exactly as the cycle of step 2 with the scanner
remaining halted and the Consecutive-Cycle mode in effect.
In this mode, TAR is incremented on the leading edge of
RESUME so that the address is ready for the next cycle.

Step 4. Location 31. This step is performed
only if the HFPU is in double-precision mode. This
step consists of a third DSA memory-write cycle with the
address formation as in steps 2 and 3 above and with bits
32 to 47 of the FPAC being enabled to the DSA data bus.
Upon completion of this step, the micro-instuction se-
quence proceeds to the beginning of the next Command-Code.

4-46 ' 88951000 02

4,2,2.4.6 FIXF. MMP flowcharts pg. 7, FPH flowcharts

pg. F4. For the FIXF function, the master control fetches
the integer at the effective operand address, and the

FPMP performs the integer to floating-point conversion by
supplying the appropriate exponent and normalizing the
result. The discussion below begins with the action on the
part of the Master Micro-Processor.

Step 1. Location 1A of the MMP mlcro-code.

The first step of FIXF involves the fetch of the address
with the relative address computation being performed
as in step 1 of FLDD, section 4.2.2.4.1

Step 2. Location 1B. In this micro-instruc-
tion, the MMP requests a single DSA memory-read cycle with
unmultiplied indexed addressing allowed. This step is
exactly the same as step 3 of FLDD with the exception that
the IR will not be multiplied by 2 or 3. This characteristic
allows the HFPU to access sequencial elements in dimensioned
integer variables exactly as it does for dmensioned real
and double-precision variables. The integer fetched from
memory is placed intu the middle word of the Look-Ahead
Buffer. .

Step 3. Location 1C. The MMP first interrupts
its micro-instruction sequence to wait for the FPMP to
complete any preceding function. The MMP then transfers
the integer to the middle word of the input register
of the floating-point arithmetic, the MDREG, and it also
places the sign in the sign bit of that register by
loading the integer into the entire high word of the MDREG.
The FPMP will ignore the surrious bits loaded into the
other bit positions and will concern itself only with the
bit positions O and 16 to 31. The MMP starts the FPMP at
the beginning of its FIXF function. This completes the
MMP action during the FIXF function. It now proceeds to
the beginning of the sequence for the next Command-

Code. What follows then is a description of the FPMP
action involved in FIXF.

Step 1. Location 8 of the Floating-Point
micro-code, pg. F4 of the FPH flowcharts. 1In. this step
the FPMP utilizes the exponent constant 17;¢ to present
the exponent of the FPAC to 23 This value is chosen
so that when the integer is Shl%ted from its present
position in bits 16 to 31 to its final position somewhere
in bits 9 to 23, the resulting floating-point number
will have the correct exponent value. In the mantissa,
the FPMP transfers the input argument from the MDREG to
the mantissa of the FPAC. This results in the integer
lying in bits 16 to 31 and the sign bit in bit position
0. '

Step 2. Location A. This step sets all of
the bits of the mantissa of the FPAC equal to the sign
bit except for bits 16 to 31 which are left unmodified.
This is done by seclecting the MALU to the B mode with
a @ supplied to the B input. An ALU inversion is allowed

© 88951000 02 4-47

if the sign of the FPAC (MAC@) is true. In that case, the
MALU function will be changed to a B, complement, thus '
producing all 1's on the MALU output 1f the FPAC is ne-
gative. The output of the MALU, O's if positive, 1l's

- if negative, 'is entered into sections 1,3, and 4 of the
MACC. Micro-program control is now transferred to the.
normalize secé¢tion of the micro-code at location 11. This
is exactly the same normalize code that was described
above in section 4.2.2.4.2 on FADD/FSUB,

4,2.2.4.7 FLOF. Master Control flowcharts pg. M6, FPH
flowcharts pg. F5. The FLOF function is unique in that

the action of the MMP and that of the FPMP are more inter-
locked than they are in the other functions. The MMP starts
the FPMP running on the conversion of the contents of the
FPAC from floating-point to integer. It then proceeds to
the address generation and then waits for the FPMP to com-
plete its operation before storing the result. ‘

MMP Step 1. Location 22 of the Master Control
micro-code. The MMP first waits for the FPMP to complete
any rvoceeding function that may be progress and then starts
it executing on the FLOF function. '

FPMP Step 1. Location 9 of the FPMP micro-code.
In the first step of FLOF, the EALU is set to compare the
EACC against an exponent value of 15,4, (F,¢). If the ex-
ponent value in the FPAC is greater than 15;;, then the
floating-point number in the FPAC is too large to be converted
to a 16 bit, one's-compicment integer value. If the exponent
is grcatcr than 15, then program control transiers to location
F. 1If the exponent is less than or equal to 15, then program
control transfers to location D,

-Step 2. Location D or F. The mlcro—lnsruction
at location F is used to force the maximum signed-integer
result if the floating-point number is too large to be con-
verted to an integer. This is done by driving the maximum
negative integer value, 8000,¢, to the B input of the MALU,
setting the MALU to the B, complement mode, and allowing
. an ALU inversion if the FPAC sign is set. Thus, if the FPAC
is positive, the maximum positive integer, 7FFF,¢, (the one's-
complement of 8000,¢) will be loaded intc the middle portion
of the FPAC. 1If the FPAC is negative, the MALU function will
be changed to B and the middle word of the FPAC will be
loaded with the maximum negative integer. The micro-instruc-
tion at location F is the final step of FLOF if the floating-
point number in the FPAC was to large to be converted to an
integer. 1If the floating-point number was within range, then
the micro instruction at location D is executed. This micro-
instruction loads the Shift Count register with the value
23,0-EACC, This value is the number of -positions that the
- mantissa of the FPAC must the shifted to the right in order
to place the most-significant 15 bits into FRAC bits 16 to

88951000 02

P

31. This micro-instruction also tests the magnitude of the
value loaded into the Shift Count register to see if any bits
of significance will remain in FPAC 16 to 31. If the value’
is less than 23,3, then the integer result will be greater
than @ and micro-programmed control transfers to location E.
If the value is greater than or equal to 23, than all the
bits significance of the mantissa of the FPAC would be shifted
past. bit position 31 and the result will be 0. 1In order to
avoid unnecessarily long shifts and to prevent the possibility
of a negative P result, micro-program control transfers in
this case to the force-zero micro-instruction at location 17
which was previously described in the description of normalize
in section 4.2.2.4,2 FADD/FSUB.

FPMP Step 3. Location E. In this step, the hard-
wired shift logic shifts the mantissa of the FPAC right a
umber of places equal to the value in the Shift Count register.

FPMP Step 4. Location 15. The FPMP comes to a
halt at this location thus completing FPMP action in FLOF.

MMP step 2. Location 38 of the Master Micro-Code.
In this step, the MMP fetches the address and performs the
relative address calculation that was describe’l above in
step 1 of FLDD. This MMP step occurs in parallel with the
FPMP operations described above.

MMP step 3. Location 23. The MMP first interrupts
its micro-program sequence to wait for the FPMP to complete
its FLOF operation. The MMP then proceeds to generate a
DSA memory-write request with the index addressing as in
step 2 of FIXF. The raw, unmultiplied index value is used
so that the integer result of the FLOF function can be stored
into a dimensioned integer array. Bits 16 to 31 of the FPAC
are enabled onto the DATA O to 15 lines so that the DSA
interface can drive them to the DSA data bus. This completes
the MMP action in FLOF and micro-program control now transfers
to the next Command-Code.

4.2.2.4.8 FCOM.MMP flowcharts pg. M8, FPH flowcharts pg.

F4. At location 19 in the Master Micro-Code, the MMP waits
for the FPMP to complete its previous function and then

starts the FPMP executing on the FCOM function. The MMP

then proceeds to execute the next Command-Code. The following
is a description of the FPIP action in FCOM.

Step 1. Location 7 of the FPMP micro-code.

In this step, the FPMP complements the mantissa of the
FPAC with the MALU in the logical A Complement mode.

Step 2. Location 15. This micro-instruction
passes the FPAC through the EALU and the MALU with the
ALU's in the A, arithmetic code. This has the effect
of converting negatlve in the mantissa and exponent to
positive §. The FPMP then halts.

88951000 02 . 4-49

4.2.2.4.9 A/Q Load FPAC Commands. . MMP flowcharts pg.

M8, FPMP flowcharts pg. F2. Both micro-processors must
be activated in order to complete the execution of the
three A/Q commands which are used to load the three
sections of the FPAC. The decoding logic in the A/Q
interface loads the 16 bits of the A bus data into the
appropriate section of the MDREG and starts the MMP executing
the micro-instruction at location 1 in the MMP micro-
code. Bits 7 and 6 of the MMP starting address are used
to inform the FPMP as to which of the three A/Q load
commands it is to execute. The MIP simply starts the
FPMP running and proceeds to location E where it halts.
The FPMP then proceeds in a manner essentially identical
of that of the FLDD function. Its first micro-instruction
lies at location 4,5 or 6 respectively for the functions
load FPAC bits 0 ‘to 15, 16 to 31, or 32 to 47. The

FPMP transfers the data in the MDREG into the appro-:
priate bits of the FPAC. If it is performing the load FPAC
bits O to 15 function, then it also loads the sign bits
into the guard digits. The micro-program proceeds to
location 18 where it performs a second sign-extension of
the sign into the guard digits. This step is performed in
order to prevent a possible exponent-error detection

in the succeeding step. The program then proceeds to
location 15, where it clears negative @'s in the exponent
and mantissa and halts. ' -

4.2.2.5 Index Register Group. The three commands in this
group are used to load, modify and store the contents

of the IR. These three Command-Codes all execute with-
out requiring any action on the part of the FPMP., Ad-
ditionally, they all begin with the fetch of the address
and the relative address calculation that was described
above in step 1 of FLDD. 1In what follows then, the se-
cond step of each of these three functions will be des-
ribed.

4,2,2.5.1 INDX. Page M12 of the MC Flowcharts. Locations
2C and 2D in the MMP Micro-Code. The second step of

INDX involves a DSA memory-read request with the unmodified
contents of TAR bring used as the memory address. -The
effective address for the INDX function is not indexed.

The specification of the IRCLK field in the micro-
instruction causes the DSA data to be passed through the
main ALU on the ADDR board by forcing the TDMUX to select
its DATA O to 15 input during the RESUME signal. The
‘micro-instruction sets the ALU to select its A input and
directed the TDMUX to select its TAR input during the

- the REQUEST portion of the memory cycle, so that the con-
tents of TAR were passed through the ALU where they were
driven to the DSA address bus by the'DSA interface. During

4-50 ' : 88951000

02

RESUME the DSA data will pass through the ALU irrespective
of what data may present on the B input to the ALU. . The
output of the ALU is loaded into IR on the trailing edge
of RESUME. The MMP then proceeds to e\ecute the first
instruction of the next Command Code.

4.2JL5.2 ADDI. MC Flowcharts pg. M13. Micro-code
locations 2A and 2B. The second step of ADDI is essentially
identical to the second step of INDX with the exception
being that the PIMUX is set to select its IR input and the
main ALU on the ADDR board is set to add its A and B

inputs together. During RESUME the PIMUX is enabled and
the TDMUX is set to select its DATA O to 15 input so that
the DSA data is added to the contents of the IR and the
result loaded into the IR, As in INDX, the main ALU pre-
sents the contents of TAR to its outputs during the REQUEST
portion of the DSA cycle so that it can be used as the
memory address. The MMP then proceeds to execute the next
Command-Code.

4,2.2.5.3 STRI. MC Flowcharts pg. Ml4. Micro-code
locations 17 and 18. The second step of STRI consists
of a DSA memory-write request with TAR being used as

the address. The main ALU on the ADDR board is set to
select its A input with the TDMUX being set to select
the TAR input. Thus the output of the ALU which is used
as the DSA address corresponds to the contents of TAR.
The PIMUX is enabled and set to select its IR input and
the GROUP1 field is set to ADATA. This drives the output
of the PIMUX, which corresponds to the IR, onto the DATA
0O to 15 lines so that the DSA interface can drive it to
the DSA data bus during the memory cycle. The MMP then
proceeds to execute the next Command-Code.

4,2,2.6 The A/Q STOP Command. MC flowchart pg. M19
FPH flowcharts pg. F3 (same as in FLST). If the HFPU
is inactive and the A/Q STOP Command is received, the
A/Q interface forces the MMP to begin running at loca-
tion 2. If the HFPU is active when the command is
received, the A/Q interface sets the STOP REQUEST F/F.
When the MMP tries to execute the next Command-Code
with the Operand Byte Count not equal to 4 and the SPEC
F/F clear, then the presence of a Stop Request will cause
it to jump to location 2 and execute the STOP sequence
which is described below.

Step 1. Location 2 of the MMP Micro-Code. Since
the STOP command requires that the Preotect Mode bit in the
FSR be set, the actual FSR value must be saved before the
sequence of memory-write cycles begins. Thus the MMP first
waits for the FPMP to complete its action so that any FSR
changes (DVFL,OVFL or UNFL) will have been recorded. The
The MMP then reads the FSR onto the DATA lines and stores
it in the first word of the LABF.

88951000 02 . ~ | | 4-51

Step 2. Location F, Having saved the FSR, .
the MMP sets the Active and Protect bits and transfers
word zero of the LABF, the SSAR, into TAR. The SSAR
was loaded directly by the decodlng logic in the de-
coding A/Q interface at the time that the STOP command
was received,

Step 3. Location 10, This DSA memory-write’
cycle stores the value of the FSR that was saved in '
LABF at the address contained in TAR (SSAR). The cycle
is performed in Consecutive Cycle mode so that TAR is
incremented on the leading edge on RESUME. .

: Step 4. Location 11. This cycle stores the
CCR at the address contained in TAR (SSAR + 1). TAR
is incremented on the edge RESUME.

Step 5. Location 12. This cycle stores the
IR at the address contained in TAR (SSAR + 2)., The
- TDMUX is set to select its TAR input and the main ALU is
set to select its A input so that the output of the ALU
corresponds to TAR. The PINMUX is set to select its IR
input so that the value in the IR can be driven to the
DATA O to 15 lines and from there to the DSA data lines
by the DSA interface. TAR is incremented on the leading
edge of RESU.E.

Step 6. Location 13. This cycle stores the
PCR at the address contained TAR (SSAR + 3) in a manner
essentially identical to the store of the IR in step
5. The only difference that the PIMUX is set to select
its PCR input. TAR is again incremented on the leading
edge cf RESULEL.

: . Step 7. Location 14. This cycle stores the
high word of the FPAC at the address contained TAR
(SSAR + 4).. TAR is incremented to the leading edge
of RESUME. -
Step 8. Location 15. This cycle stores the
middle word of the FPAC at the address contained in
TAR (SSAR + 5). TAR is incremented from the leading
edge of RESUME. ‘ '

Step 9. Location 16. This cycle stores the
low word of the FPAC at the address contained in TAR (SSAR +
6). This is the final memory cycle of the STOP sequence
thus the SHLT and CC fields are cleared so that the scanner
will be released at the end of this cycle.

Step 10. Location D. This instruction clears
the Active bit in the FSR and starts the micro-processor
HALT sequence.

Step 11. Location E. This micro-instruction
is entered as start of the HALT sequence. The only field
that is set in it is the EXEC NXT field. This places
the micro-processor in the proper state to accept new
A/Q Commands. If a Stop Request is not pending the micro-
processor clock will stop at this point. If a Stop Re-
quest is pending, than the clock will not stop and the

4-52 , ’ 88951000

02

micro-processor will now proceed to execute the first
micro-instruction of the STOP sequence at location 2.
Note that the Stop Request that initiated the current
STOP sequence was cleared automatically by the entry into
this sequence. The ability of the MMP to execute se-
quential Stop Commands allows it to be operated in a mul-
ti-level interrupt environment. :

4,2,2,7 RESTART. MC flowcharts pg. M22, FPH flow chart
pg F2. The restart sequence is performed primarily by
the MMP, The FPMP is utilized towards the end of the
sequence to performe an FLDD sequence to transfer the
FPAC contents fetched from memory out of the MDREG into
the FPAC.

Step 1. Location . This instruction sets the
Active bit in the FSR and transfers word § of the LABF
(the SSAR) into TAR. Note that in both the STOP and
the RESTART sequences, the value in the SSAR is left un-
changed by the sequence. This is the value that would be
read by an A/Q read SSAR command.

Step 2. Loca*tion 4. This Micro-instruction
sets the double-precision mode kit in the FSR so that the
FPAC value that will be fetched from memory can be loaded
correctly into the FPAC reguardless of the precision that
it was originally expressed in. This instruction requests
a DSA memory recycle with TAR as the address. The DSA
data is loaded into word 1 of the LABF., The first word
fetched is the value that will ultimately be loaded into
the FSR. This wvalue is saved in the LABF until the end
of the sequence to prevent any conflicts that might arise
from its being loaded into FSR at this point. This cycle
is performed in Consecutive-Cycle mode so that TAR is in-
cremented on the leading edge of RESUME. .

Step 3. Location 5. This instruction fetches
the data at the location pointed to by TAR (SSAR + 1) into
the CCR and causes TAR to be incremented on the leading
edge of RESUME.

Step 4. Location 6. This instruction reads the
data at the location pointed to by TAR (SSAR + 2) and causes
that data to be loaded into the IR. The load of the IR
proceeds in a manner identical to that described in
section 4.2.2.5.1, INDX. The setting of the IRCLK bit
in the micro-instruction causes the main ALU and the
TBMUX to switch from TAR to DATA O to 15 during the
RESUME signal, thus allowing the data to be presented
to the input of the IR. This, unfortunately, inhibits
TAR from being presented to the DSA address bus during
the later part of RESUME. Thus consecutive cycles
can not be used for this and the following cycle.

TAR is incremented explicitly by the TARCLK bit in
the micro-instruction.

88951000 02 4-53

Step 5. Location 7. This cycle fetches the data at
the address contained in TAR (SSAR + 3) and loads it into PCR.
It functions. in a manner identical to that of step 4 above with
" the eéxception that the PCR is loaded instead of the IR, TAR
is incremented explicitly by the micro-instruction. ' ’

Step 6. Location 8. This cycle fetches the data at
the address contained in TAR (SSAR +4) and loads it into the
high word of the MDREG., Additionally, the most significant bit
is loaded into the guard digit bits of the MDREG to allow for
sign-extension. This cycle is performed in Consecutive-Cycle
mode so that TAR is incremented autonatlcally by the DSA inter-
face on the leading edge of RESUME.

Step 7. Location 9. This instruction fetches the data
at TAR (SSAR + 5) into the middle word of the MDREG. TAR is in-
cremented on the -leading edge of RESU.E. '

Step 8. Location A. This cycle fetches the data at
the location pointed to by TAR (SSAR + 6) and loads it into the
low word of the MDREG. This is the final memory cycle of RE-
START, thus the "SHLT,CC" field is cleared so that the scanner
will re released at the end of this cycle. In the same micro-
instruction, the MMP intiates the FP.P FLDD function. The FPMP
then proceeds to transfer the MDREG into the FPAC in an FLDD
function as was described above in section 4.2.2.4.1.

Step 9. Location B.. The MMP now fetches the old FSR
value from word 1 of the LABF and loads it all except for the
Active bit into the FSR. :

Step 10. Location C. This micro-instruction tests
the state of DATA line O, the old Active bit, to see if it is
true., If it is true, i.e., if Active, then the MMP proceeds to
execute the next sequential Command-Code. If the old FSR was
not active, then the MMP proceeds to location D where it clears
the Active bit in the FSR and halts. Tne old FSR Active bit was
not loaded into the FSR at step 9 so as to prevent a possible
discontinuity in the Active state of the FHPU, since the
HFPU does not really go inactive until it completes the execution
of the HALT instruction at location D.

4-54 A | o 88951000 02

DIAGRAMS 5

This section of the manual contains the logie diagrams for the hardware floating-point unit.

88951000 02

KEA]

i33us - ruuxm_

ooze5698 (1£160| 3 " yua 505 €1 PE

A3y “ON 9M0 | INSQ! 3000 A3y "ON 9MQ 219071 V1iv0 10¥INOD

3dAl D190

4
<

|x
X
<

-
<

XiX
H
<

I
<

X [X]X[X]X|X[X]x[X

WX XXX X%
29%&ﬂ

0
<

X[XXX

X

b

XX

ii%&&%lwtazl;;;z

EE]

x rC

SAHS L AnS DUIRS S NS vIAHS € LHS Z ArS JdAalT)
TYNYIe

XXX XXX x| X% XXX [%]%

88951000 02

X|X

X[X|

||| X]X]X] X
XXX XXX X
2318 wlt: @Jm

X|[X

<
<

]

X
>

X

x|X|

%|X
{2{>|3|x]

X|X

X| %] X)x|x|X|x|X
X[| %] X] X {X[X|X
X% | % XX %] X|X[X|

X XX x

N
Axxxxxxxxxxxxxxxxxxxxxxxxxxx
rt]
;; nulor{u \l]! x| ngla ql& 0]
t$] ’l

8

r X|x|X
IXX X|

]
ﬂxxxxx X| XXX XX

9

5-2

‘g Nm_ . s — LT024 ¥3 W%t 0}

NOISIAIG ININdOTIAID
13an

Ay on omo | 1n3al 3000 -on oma 1m0 RAVIURIETLTIN]

/e
00255609 |1£160| 3 | *5" "nvaa 20, 6€IPS

AL D190

RO
-9

=Sld
L - 1L~
-2zd
2z
<@sd
€D

s Cgazg

2 € Sytza

zsi

0%

NSt

esSi

N-Eansg

V-EN3SaAnW

A N.(-N&A I
HIWI @I'Hﬂ _
- |
-
a -
LT R m—— P [_ [>
4]

= -3 ~-23< Sivava

Hise D _NZ \ [er%zv-za< iea
Ly

o « I TZv-za< dsa

HiSY j&. [& wzw-za< sy
rsv _ ¥ [T =zvz=< sy
K-

5-3

88951000 02

L2026 Y9 Mot e
NOISIAIO ININGO1IAIC
¥ILNdWOD 1IVMS

133K _

ocozgseas |tel60|) |7/ S
=668 Ct 00 3 '2.] PT¥aa 2a2 Wm_ﬂﬂ YLV T04INDD

el @J : HZo> ®IIJ
. -
A e ——
Dviva <X =3 D = i zvava <GB> =y N. - —1
rviva B> > + = 2viva A S22 15
= <1 Soe 1= Orvav. z = < \MN.“MIA
Sviva AR 2! 1 i A@ [Z1 i +
1 —vq _— g
Eorey i il Sv-Z2a < 21viva T o) _ el dovzX vivava
e lZ pon o Z Pare-g £ <it =] z
3 - S°Zs € NNA.
[] 1|~ r-nS ._|A -2
B S BTy
> >
—Z —Zz w oLy
nal T -l n —w— S+
s Or3 = \ BOIV
YOre-x Z T Yore 2 Z
22 E ed4
S+ ZSEV) S+FEWzaEw
&0
Svava S 2t [
1
H122 @J
1wava <> =3 Cihi =1 Evivao < 5 a1
&) L . &
L~ 4 <2
< viva <> = 2 = Z tviva <> > v
1 et <
TOE ~
viva @ Z1 2] g ._(F(D@ Z
" a2 AMWUJ < v-Zo < ®ivava H —_— <1 Y
z
=1 ¥ z 0.(._.(G®Lrln|ﬂ e l|Z
s
1 1]
gy, —>ren SRS L))
vz O \i.ﬂ-l'u* N=-NT1OR7D
\Z O px = T-ag3
> - > H-QAAD
St

88951000 02

-4

20 00015688

G-

Clic-L :”:‘
MNXT - H LU — N
IS
“ P STZ-BzZO soRS ..
HADEIH - EZ-AZO BIOFP
HAD®RZH '>:z_m BIORIO (N e
<Al som\\
AD®ERH >2—— w—
:A l‘_‘ -8\e siomz |
HADE %+ 'er-Azz 'l"l;w_
o NA RE Gy
REOM - LOW 2
\ &2 bi'
717
§39 sax '3)
ccPH £ <
cciH 2 a3
cezH) s 7z
ccBH - 2 1
sPEC- \-S2c :] [- T4\ TBH
- > B
SARENS-L > TZ-AIS a;%* v }.1 Asez | AlL
" \Z 8 . *sI—J\v-T:
Al 8256 % M e U3
+*S WA 83 z al S atats 12 - d
—w - J i O n &
7
7 A
] NA
2 2 o TELy
s (3
= T
ROM -
) e Z
crmy 1] !
+5 } ?ig 1Z "5?
12
Pi- - .
AT 144 - TAITIN
AR 1= Z AVZ
HADRGHI— = | 14 4 E
146 [E3 A
ca B8Z56Ln 1Z
=2) 11 &
[N o 7
12 0— &
13 O
40 A
7 © -]
Zzo 0—4 z
1
CTRG \ X--Y a0
-5 W 4], — 3%
L3 MUX
" Ao z—
z 1z . AV -1 ANA—
= DP- E;;: t WA +
1419 3 - 13 2 ! a4 A 11
{ow > 470
1
.FZ zz -
- JIMUX oo T2 B4 o JYES -
1.0GIC TYPE
CONTROL DATA LOGIC DWG NO. c ALU Inev CODE IDENT | OWG NO. REV
bt bhsdaliath DC OP) o1
Bdi39 oo | C [09132| BEPS3200

SMALL COMPUTER
orveLopMent owision | SHEET
[

Isneev

oF8 |

S5

133HS

w—

“ON OMa AN3Qi 3000

00285608 |160| 3 | *15" " n1vaa 20 € €I PE

“ON DMa 219071

3dAl 21907

H-R=VW €

L Si\v-2d

|Ed
|E'D

LEB2E VD nief vy
NOISIAIO ININ401IAI0
411NdN0T 11VNS

¥1¥0 104LNOD

SViva
&Vviva
oVWwvivqg
nwviva
HSIaa

88951000 02

SRiRinfer § N -4

€=$|®i$i$

5| rervw €

HIS|
HZS)
HES|
HINT
Qs ya
Zl o>z
m.ll||||||v S
oy N
<21
SZV-id E=1) = r3

9% 0

LS ©

»s 04

oo

5-6

uuuuu - Ll _

SLfo/a
.| POF€S6P8 (LELE0| D | "o | rivaa a0 Tmo_omm ¥1V0 1041N0D

uuuuuuuuu

s =aS TV
22 & <wviva
-z <O uﬁlllAhN.MM 2viva
=27 SR 63 IA»NL LIS
R-|=vyw <Ip s
HELNOViIvg
T S
- a2 b— otz = ¥
=z - v “ neE
s A7 o= o _= N_
i3z QQ.“ ! 2 = e < s 21
1 =8
. B 9 L=rd oy > \.IAN Q_
’ - >
v - N_ T2t >y S rQ:_ 3 %
) KT 4 oy 2 2 ”
e = A =] =
-5A e xOn
oes | . > —“ex>aw =
2ol “-wisanw) S h IR d
1. >aa a/w e £2 nrea
o > > 1-@Nay g X aln
XPW GnW
HPS|
His
HZS)
HES)
HIWT
zs o
1S ©
o% o
ot 04
Svren
oveaw
S} rraw
2 ooz b
) AIE
a2t SESON
Si Qe z

5-7

88951000 02

/\ e oz ~=o
v
FITL . Tk

133HS

=4 .
ORESeD [TE160| D _w.\qa.i - eclpg e

A3y “ON OMC | 1IN3OI 300D A3Y “ON OMQ 21907 FZOU

3dal 31900

HEINOVIVT
vaLo W
e W—
M“G «®ALD N S+
H-8= “ EETERA
T|EVW Z350 , HSIos
> .
= > ; > Nz 5
P - Sid ” A S =
Lt £d =~
.w._ l61=(>'w'v)| ' . M“. = z |2
Z = 2] =1
"lv Z a2 |
oz 4l Z2o0z
_— [Z
p—e 4]
_ e .
h z v #® WIN) ;
)4 P4 K2 T-a15ew
& - H-oa
-andy *W alvw
HES)
HIS) -
Hzs!
HES]
HIWT
Lyovn Z O
rrovw 14 0-
=] TSOYN Hr O~
oz 04
uvrew
rew
=E Pven
=z arz M
T
[} e 1
L4} v
= s <> wven
Sl ozelc
>v
ozs
t-us
2]
-
-z
! T ->og
<) Hose
19 Aa-x Z T isg
oaze

88951000 02

5-8

m “mumxp 3 .:xm— ..;F

D“ ﬂh\@_}
a Nmmg.méns «.m.“_ww 3 '2,.| NTvaa unvwme._,mw mJ v.vQ 104INOD

5-9

M < Pves
MASIE 1) L2 - >
s+ V=35 Szvoig< eves
| A TE T
At -+ VR4
1}
Qo a'ys o] 1 1
80 tHe-wyvs [iz o2
-2 =YW <1 »(7wr'v)4} =
Ed _ 21
z 3Z o)
zZ & 1
= ‘s
4 132 a.“ z
B <l
1 ..Wl g ZiE 7 ekl
z £ B
N ﬂ] xXOw
] Z k4 N-aLSENW
g evale bz =
S o2} : -EN3Y
akl 4 ORE)
[}= <> AT
T-d z 3 QN> HIG
S56 I Q22 HZS
2 <> HES)
— Ae-x 21— > HIWT
mwyw —<T> PV Hl@
\& are 2vi I Szv-za< HEIww
e 19z] SRS '
I.Nq = € =
z I—-FY sraa< e
a <1 v =4 ll@M LY Tvw <
|BYI| S 1 e
F2Z5
= = v-2%
> L Tz Y = o
-z > P2 < -2
-1 : =P =3 a-z Wn iIZ®-Za
- t nosv < A%
.
Woren 2k >S5 nisvy = e} E
Dwd azi <> wvan
= 22% []
%
v-2s _l 260~
gy IS0
4 o6
-z &z 04
i @ gy -n1og
: ! rose
349 rex Z “rog
aae

88951000 02

01-§

20 000TS688

PN

SIGNAL SI4NAL
LETTER SHT Z SHY 3 SHTY 4 @MY S SHTS SHT T LETTER SHY Z SHT B3 SHY4A OSHT S SHTS SHT 7
A x %X DD X x
X X EE X 3
[b3 X FF X p3
[% X (=Y x X
[3 X X HH X X
3 % x x X X X IX x X
& % 3 JJ X 3
H 3 X KK 3 X
I X X [3 X
J X X E3 MM X 3
3 X x X NN x 3
[. X o0 x X
M X X X X X [d X X X
N 3 X P=2-4 X b3
o X 3 (53 x X
[X X =3 E3 E3
X X X %X T P X
3 X x x [V]¥] X X
3 x X NN % X
T X X Ww
Y] x % xx X X
v X X X YY X X
w x x X ZZ ES %
E3 3 3 AB X X
Y X 3 Ac X X
2 x X A X 3
AA X X AE
as X X X AF X x
< X %x Al X R
- A C oo onTROL DT RTINS o v
B ! :lulla o nur Ala
g 2 USED ON Bd '40 LOCIC TYPE
3 R PP v
] 10CIC WG NO I L7 CHx REY.__| 5/21/19] — e
z 4 /‘ TR 'COOE 1DENT NO, DRAWING. NUMBER
2/75
=l dicion 03 C| 09132 | 88953500
H B PwA MO PWB NO. APPO
NOTES: UNLESS OTHERWISE SPECIFIED -3 l B I
N 7 verr | o T

L30Z]

Qﬁﬁﬂga Tel160

ANKY KK)

GlL/\/S

‘2. oIvY

N-2M0Mm

-GN

- - SOL
]

)
L 124
> uze e
1 ——

ez & v

<{I> " -p3aonolt
Z

e—<O> H-3A110V

o>
<> 1-319w

.Paﬂ.vw

Z2Z2@-\d

Quvw anv

M-42
lﬂlﬂl@ va

S+

L

[al-7-~4

LT 24

ArTIQ IULSE

2T 04

He®

5-11

88951000 02

¢1-6

¢0 00075688

z
wesunm-L >TEAE T
Sk, Ky . Jf"‘ a
&5 03 L —] ,‘I Pz-azzwz_
’z-.ao' 4O cp‘ o
DMA-H D> { AT - < o
b 3 P!—Alg McLm-L A
. ?gg ’ <BG> scuLK-L
[[[/Y z A
AT A
Az =
McLR-H ASE +*S
>
Pz-ASO
<> MIRCLK -1
McoL®- L
&
44
>5—t_—-—®uxzcu<-_
svazr-L. &>
‘ '
A—] +
Pr
HALT-L ®___!21> T e
2 A7
zs
o >
1 zo) [©z-AZ7
@ 13 1465 NZ INlAla I/DMaDE-H@ Lz zio - “TIVE‘H®_‘—
| B85 | ’ [d OMODE - L
) ' =z
FPHwWAIT-L <>
B 3
as|z2a PE
z-eay i . Ay
ce-H >S5 = F3 l
sTrra-L<T SN zza
ACTIVE-L A
LOGIC TYPE
CONTROL DATA Beaaiddid e ‘ﬁsv CODE IDENT | DWG NO. REV
SR Bdi140 A& o | C|09132| 88953500

SMALL COMPUTER
DEVELOPMEN] DIVISION

SHEET
tadelia, t4 92037

i I'sor7

oogsses 16160 D | Z0F o 505 9VIPE

A3w ‘on oma | inaor 3000 A3y -on oma oo IREVIURINTUTIN

Zi>
TG>T OM . o<l Svets
" uN_.N SiTam :
Z 5
Za Zzi2
o - Ste | va
GG\ 1 N-ASHd f 1 Hr‘/.ﬂ@.ﬁﬂﬁ -y
_ Qavaxs
H b
N-WDAS .N._N.. 1-ded S <>
<> e T = evi|" — t_
T M !
{ ! <! Z1 110 > ‘._f_
na
I—t\!mNQ
Zi Za
Eommmn R Cresm £
s
Zi
1
a1
N-Adida 74
2
! JJIJ.WO
T ES—tnd i @ = s
. K i =
i Z 2 Rl -7 had gTE T2 2.
ZICE ST <> -aw
>
mr_Avl_N_l-. @ fg——<&> 1-3ATLOY
2 ot < O\k.N
= <> -xovoix
7 3=
e 7= -D3mdors
z —<Z>
Wi
Tang
< HED
“-wNEM >, [T oS
- ~-m~ay)
~ > S R
[1méa T 1
;—. W Iﬂ.nl*_.
(1 1 imLa . Ny,
[Wy] NS\
E3 <
Z S ALa . .m Zia
T Wiseas cve) o
! Meseo] 8a ' LT]
a'a 4 < 2uze
<2 29 j »
<> i T-omasX€¢—TH
-3 "
B UMWHJV!H <z & V-aasmrrx uc-n M
——— $ezd] | £ 38X v-iao -1
T2>Nn7an d T-vavovId_—rivog L1
a1,
b ab <17 b d L 4NF.JMM m.
%3 <gzg-z3 € mm e €
- -3 € — - By V23 :
. vEe-ze ! <a~n3 avas
MHOOTOALIWM WNA I1THM

5-13

88951000 02

Lios
L33INS
sLf6l/a .
CPOSESHOP |TE160 Qv_“m ‘
1
A3y "ON OMa IN3G! 3000 u >“wx Q\< é “ON OMa 21907 dh«D ._Omkzou
3aai Ji%07
Za
H-1o3s Szigza o 9%
v
“wva oz -
% €3 .
E2] -
2oz -
B
r7a) T
oV € -poz| 2! A22rd
sv-d| 1 3 sz
& H-Load < -i149)
€ zZO-24
=
Lviva € 3 ~Z
\8-za W]
<l
v €
189-i1d
—-aa Tnawas
= <= > g
WNaBa _ = V2Zv-Zd
Wwava € _
ze-24 @ |
2V &
ZL8-1d
HI‘-"@)TNJQE
2\ Z -
Zviva € ~J 0z Dviva € <J-Zoz VAV & -
-7 - hcd - b4 1-AL
- -1 F8-2d .3 oV-24 TINv-ZSS v
+a-2d >) =2V 22 D> - ous
Pl .
$ze-Zza% T-ALIVS
P 29 S v @-
ev € ny 9 -voz '
7v-1d av-d|7] = "-1a |2
ey
212 L
€Vviva 1VAvG € » (/%4 Siviawva .
<o-2g <v-za € | ¥ ev-zdg € ~-eNma
-

88951000 02

5-14

L2902,

FoE8269P L£160|) AM.._W oIy 20> 9YIP8

INMII 00

ON MO 190

s o0—
<% 0—
prape £
S 0— 4
<0 Z
192 ©— Nm
z9 o~ - i
€V
* %29
z HOBAVH
P——— e
Z1
"_ po——
il e < HemavH
+ 9 2ZV-Zd
Rl wWoa S =
> |5

R4
[} n e

) I-IaOWO/T
-0 2>y oy n >

kA o Sia TSN SRAr]
z2 Z1 .'A.N
<% o= | =Y - o
X \ -z <) : Zz -NadO
v
<

Zz

Se Si1vt
_ a1 pA < Z |
@‘Amﬂ.(— Z o Mm <- i ~E
L r™ 24 v)
- - - I 1-WONW W
T-Nlde €Z3eES a tD@L = T %J-uﬂv&u} A .
& ¥o |+ E T 53 \
v ES>— gl Sha—
3 -
.. < zal ¢
alpy
) — »
] ; > azt= [z aZas ﬂ.\lo«:
T 1oz ~ ! " czv-za S I BAVH
"I = ™ ws Z Zz@ TS NEIAYN
T E z [f.(-ﬂtn”ﬂ““«t
<EB>— =2 rn ¥ T X% >) "
<\
<> <> a5 ¥ ore
— v > AW opva -»Ovo/x
H-7sas &————a] '9Z ﬂ_.y “Q3ikgy KX rim g &
7Z8 ' \ < < 1% \3Y 4
g > z 57) F3
3 v Ny J.Ii\l— > g T Gl OV myYw
g avw ©+ =1 v EWEETT IR m)
— LD oy D
<> 5 wEETY A
R4 FPoje 222X
T 132V 0
“ s P 1 Rald M woa
.N!_(anIavs e
S+ } 0»<w<

5-15

88951000 02

91-6

¢0 00075688

MIrcuc-L WO

1
2 |e { ?
LY 2z
A Z-0) MOCLK]L

= <>

PI-AZ4 o pocixmL

t
PI-832 5 moeixzl
Tiomgon T2 = —<>
,._.>P2-Ar 13 “—‘v-:
o :; 'z?: SPIN-H
4
poLTIL o 210 |2——> pAaTAsLTIH -
spE— — 1Bl rz-mio
PouTzL . > DATAOLTZH
L_% T e 3-8
DouTEL , ——9 DATAOLTE N
>
"
2|2
Fsrro-HYE =822 12 o
DATAIPH & |
OATAIIH g»—{ "’;j ' &z a2
i 1
T/0MODE-LLV > T |s - 1 St 1z 45
EXNXT-H z| 42 TBEy Ler-L Zd 7= & AeTIvEnMO> o] =
<> o3 [z IS Zaos; oOPON-L
1= = Z la 13
& AO< i —10Z
- T ez
1 -, So0
) [
RED 5 .
z - A
ScK-L <> <5 |+>H zl.,
PLi-ABO 5 evraxr—H
ccrRClK-L.
LOGIC TYPE
a5 140 TR
L 1Z LOGIC DWG NO. REV CODE IDENT | owG no. REV
<% 3] coc Ala 1'%,
Bdi4o Aa | o | Cl09132| 88953500
SMALL COMPUTER

DEVELOPMENT DIVISION
La Jeits, 04 12037

[snzsr

|or7

S ~ |- | o i

¥a

GA141D34S FSIMEINLIO SSEINN SLON

COoPeGePP |LL160 |5 e L7 ST

SR NIV ON 1N3TI $00) LhAak o
— -

-lanjmnleln]el~
4817 Q3WIVLIIQ

Q122> e e
J\WwiPS T

vsQ 2aq

vou uwv> s v(104INO o |4 3 a 3 [v
ST U G A RS GE S oo x x E
R SO TR S SR S x o v] [x x 1 Y r 33
x_ Lo S . Ay _— R - X 1 1 "ag
S R U S S cY R X x N 1 P32]
- R R U SRR SIS . SN S B S 2 - x x 1 D GO SR T
*) GRERRR SN SRR S . ~ SRS S x X I NS 22
S " AR S X | 1T %o’] N ox T T T i S
N OO MRS S S 4y] o X TN (U SRR S Y .
13- R Ay IS (DR I (S S S
SN S S SRR SURRR SR - QY _| S S x 1 > b 1.

i
i
)
XX
i
xix

i
x

|

R

[}
X

1

H

|

1

i
i.

]

1
X X

I

:
i
T
|
H

x| X
ﬂﬂjﬂ»:>;x

+
|

(x| ¢ x| X
unuu.;;]xu-:x.:z:(s

;??V‘

T
Ladgd
M BRI
Iy
!X
!
‘l
ol
i
i
H—
!
+1
iy
|
i I
I
SEiEEs
+ HE M
lx'j‘ i X
]1
[
|
N
hE
41"
XK XXX
|
i
1
1

i

i

g

i
TTTT

!

|
i
| [y

)
i
i
1
i
!
[l
1
i

i
'
v
{
{
!
i
n
+
{
i
|
i
!
|
T

b e qrd ab i i

|DEREREREREE

'
i

-
i
&
+

3
%
HS PIMS & L1 Z LHE w913 S i LIS D ine SUNS ¥ IHS 6 AHS T AHS a3
AwNpIs TwNDIS

M

|
i
]
i
!
1
é
i
xixixix| |x
i
34

i

e e B8
i
‘h
1
l
i
XXX X X X
1
i
i
4
a
ix
|
n
n

i
r
i
3
§

Z

5-17

88951000 02

S oL s |

oo0Be S 69 | LE160

UIONN ONIMVIO ‘ON IN3Q1 300D
— e

3dAL 2201

SOd QUVD

vsa DJa>

1S17 Q3HOvi3a

N ECILAL ALK L

H-ANDS

NIAIZIS €—q

M
el
=
21 __ICo7m=>%
&
<z
Zi18 >
=
F 4]
<z
)
rdl .
" 2 p—
— TR e
= = 1= N
£ L L
t 3 B B -
St)

¥a

Q141034 ISIMYINLC SSIINN SILON

88951000.02

5-18

20 00076688

61-6

l = 7
‘2 470
Zigs, J 1\ L d 3 A
=T TP o 2>
P& CSADY
z [—4]
202 152 ¢ Ay ss 20, |6 {13
£ L -
=y 1 (¥4 Pi-81
=4l 470 AT \z 204 p:AD
(=8 \
ﬁ
£ L.i T
207 PoZ o Mp{es Zicog,] &2 L
o ci-Rz a 4 —1 < P-mz
. { o §|g Z0A
=l ot DsACZ
Pl-mi7 . R P 3 OATAZ >l’2-“ e
PRoTesy eRoirL e | | a0 s Ziz i Z— | z
WRT-H ! TS 17 ul A + 25 A
; <) 13]24Z cieel = \ * P"*.’L;
cssmc-L <> <u ¥ =d] 470 X z:iz >
- 4 =2 DSADS
oatas »FZ-B8=
DoLT-H
oin-L R
. +5 +S Wt
+5 A >y l ;
c‘n‘su | 12— ““1’54 l ‘2 N\ 470 2)i -
e N G e B U - B 2z Pi-sa osADs ' i'g-h_l l 25apRATI-AS 5
- - >
;_lh‘kgz | iy e Pt_.AZ,DSAD:?; Ll) mw OATarz SEZAL : 21, DSADIZ
DATA4 P2 8e ¢ =]} DaTAs =W
+SA— +5! claes
o= | | Lz 35> | | L 22| | Lo] .
21, > q
* '3 2 I Z \lr-Be
12, a" £ L lpial L Osaos —onds s 224 WEE G- r3E} z|Z04 N >
Pr-a 12|24 > - L3 Fargd oatas SEZ-A7 . o3 DSADIS
DATAS > =4 - 1015 CaTag>F2-A2 ¢ 111
h hcd l 5 cizRZ l S,
Cin@es I 5 ¢":—,zaz T A7 ! e
Py I P Ziz o \ e p ol
anles < CYLF WEIN Wy f £ 2lp-se yosan 2 et A O CE-T-N
Pz = z| %2 = bsAcgz_M S oatAla YEZ-AS oz PsADI4
CATAL > o5 DATA g >- e A o
¥ * <iam ~IBRY z
’c-sgu | d L= > L=z :
47e 2l s - “7o z:'od‘ £ - 7 etz ar—
ol ! i % leolei- 3 Pl-AL
! £ | lPam. 1\a hLP I -AS PSADI 204 —>
1 G B3 DSADY z04 > 5
> zo4 wrE- SPz-A% = DsADIS
patay >EZ- 2{ o oaTar M EAS 2loia DATAIS > | D13 |
TITLE CARD POS
A 8 c [3 F Locic TITE CONTROL DATA "3;:-{,:,:&:;;;:':;7“ cDc DsSA)
s
5 Bdi4| -
-t oRr C-;i
o A T bt siai/13] Gy o
x
3 s S/19/75{ mrc N c 09132 55953300
G © PWA NO PWB NO APPD -
NOTES: UNLESS OTHERWISE SPECIFIED -1 e - l] l e B = 63

P

02-§

¢0 00015688

CE~"

1]
@"—l X
12419

A
Exl 4 N z
A +5 °
—zo 1 12
"n =5 e 1Z
11
<> =Y

SCNHLY =

S

R s e N
z4

AlZ

HALT

P - Al
SSARESGME>— 2 2loas

Al4

Pz-a12

AIBR

&[}ktsuM:-L. =
=1
8
12 o] 142 F———<BL>BRrESUME-H
149 P =) .

I

I3 .
I ~<ARS>BRESUME-L
- —
& =
° =z L
. i1 :”\|z
ARZ werts
DELAY ’
A B c LOCIC TITLE CONTROL DATA BELISRILITNG TITLE CARD POS
iy it s coc DsA
- :
2 o USEDON Bd '4' Locic Tvee
S N2 v :
e‘ LOGIC DWC NO 1 REV. C PP |S/24/15] — — s
z 4 ot e [CO0E 1D6NT NO. DRAWING NUMBSER
HlB 5/1%/75 [urc C1 09132 | BBISmE80O0
g 6 PWA NO PWB NO APPO
NOTES: UNLESS OTHERWISE SPECIFIED g] - .
7 wirr M x B

T

830% — _ oo
FFFFF . 133KHS \
; sL/6\ /e .
Oogeseve (LE160| D | 7o Il Pg S
| T o oma 15001 300 %] WSA 2A2 . e omon v1vQ 1041N0D
AW = Z ez S WO
LIWOA v lsz wod B W W.
S\ WOA > PZWO2 - PEWOS -
&\ Woa =] LZWZS = IS wWo2 =
PzwWoa g oA 7] — PEWI2 >
1Z woa < [z o = LEWTAT N a
ZZWoa ” o woa <5 = Sewoan —=1
€ Zwoa . 1S WO enoaL
L ! E° 2 4 [W
*9928 *9G2€ %9528
= CIR— _ I
1 1 >
€ (3 (=]
Zi Zi Z!
1] K T
1 a1 o1
HPIH WO . HPIH Wwoas HTIH Wom
Ovi ey
MO Woa MO Woa NH Mo wom H ey %
\ 1
[vi ! M
=! < r
Z! z Zi
[} 1 1
a1\ = A 5o 4l
#DG29 1.— *952g #9526
& y 4 Z wsav™W
L A Z =
- 2 7
S | =] = Ve
v | v 4
= < :
' [N. v g S HeaaAvH
o I BE D 1004y
SATY Saev VW Nz S EBAVH
“3 v Zze-zdS ' mavH
= A i o P v #lﬁq HiaQwvH
37y Y & A Saev v toza-za< HoBIVH
A e dW e e e O
nWany VY 1“0.(._..(
. Zigav WV £ & =gevv—
_v_mvfl S\237Y v = .NUD(<><>1
Za o FEEe ™
t 4 >4t T x .

5-21

88951000 02

~~

8302 |

3u

ooBE S 698

“ON OMQ

TEl160

AN3IO! 300D

sLlel/s | *-“
% wvsa 2a2 ﬂo v.vQ T04INOD

T -3sa

€a
<> e
7 an - =E <> 2swoal
< SEWoH
ey I T e = i . <
= —<A> - 3AONI/X . o
NNBST EgEvIo <" x Eim 8
T-SNAvavy . r4 le
Ni
oz%
QFIAINLES 3 <
oaaT

v
ﬂ||_||QA
— -
" e Vm = _V. h=rd o IA“V LBNOD
]
o Z <> senoa
v
== s = | > Lemon
> b
> ozl |
] M <> -7Ia2
H-3LTAM = m.nwn .w

Jie] - |2 w;
A-a7nds <> Hﬂl 10z = b=
=

: ! o\a
_IAVJ-OZ.‘Q L1
A%

o>

H-3IWNSIAAUG
DENTD
“-NIOsL

~1-boor

88951000 02

5-22

e ,uuhxwﬁ - ruwxm—
sl/el/S
DoBESE698 T£160 P ;
on oma | w0t 3009 2 el YSD 2A2 uono m, V10 T04INOD
3aAl 1900
——< -da
T.ﬂ“HAI.IQ 2 2ID-Zd
nD-2d =z =
Vva
IN“HA-INI[YvZz r=i Zda
< 1[8-2Zd = - _ r~
-3 ﬁ“‘\ o
rl._:
AWM CSEenia
-mENnavay B> Tav-25< - 2aonoiT
" "
1 F3
B> =z ZI Y
<
r-3aowo/x <GP—i
S-aod €
2Z@-1d ==
L]
I~{] 1]
A% = <EorN>UIW
=0
i b5 A|J|1 ai
si=-za arxf l.ﬂ” <D w-3wns3wa
a |
T-eNaaay <GS
NS E r
v

5-23

88951000 02

| 24

20 00015688

TIOMODE-H. ! 1 1a Pz-AZs
PZ-A17 , |210—> Acara-H
zomze@D——H=5 I:Aom-z_—hq Eys = r@
15 Z-817 1zp] = FSRED- M
wz:@——-’-" 3 ,4"5 S Z= LZ X7V LFSERDCL g i gh-a >
1Z il _ ' ol Z F——> CcrRO-H
eonzz GB>——— 2z ce] Bl e
eomza <>——UTo L&® 5|
1= agg‘i Az
< a70
I/W'LM ! n B2y oo
- MoLm-L & 1IN 5B 4 1z z':_’ . > FSROLK- L
MIRCLK - 2 ! . ePzﬂ\uQ
p 2 4‘7 611—:) el
=] .éf L
1 - = oOPCLE-]
z|7 &2
1
- \ PZ-AIS
r_______'igﬁ——) BROMIG -
m:a@.—._&‘,
4 Pald- .; £ 1z PZ-Aze
rorm17<EE>— == : s 3 macvv-L
S 7 1 4
romis<D>———{<o F3 Pz-AZ)
5 N = -
' 2 — o = > sossPna-L
I 255 s P2 B23
L '.7 P S5 sprer-o
ze
[=3 [—®srm>q.
= z - 4 FEND g
3 F3 pt
A2 “S1<C 1
272 |,z "2-82> 32577 |,
) 'j P> saAcTV-L <2 Z | o <>
Zo4 DATA G
=2 >y
o 2 AlmR
MIRcLic-HCE>—- 4o i 30— I < '1& el _Z7 AT
ez]| ,, |4 M= - <5) " DATAS
=3 5 clom 1" P\, 1 = 1 5
izl Zoa P> 1
470 [3 = | 10 = 2l | &
4 4 &
T 1o l
PFz-B28 o Zon 11 . DNZ l
cs-L >——ZDmo e
! 1
REC-L 2|24 =
<D ==-1
o e || EECe
' FSRoLk-|_ l—;co,-, lﬁ- Llea
=[] L <E> ; > |z -PE—GED oaTae
csemc-L <G> oo | =¥
Do
PI=B7 5 recie-L
X
= 7417
(=37~
LOGIC ~ vyPE
LOGIC DWG NO. REV 5 1DENT DWG NO. -E—\:
CPC DsSA l on
BdI4 Y 59| C [09132|B8s9ss800
SMALL COMPUTER

OEVELOPMENT DIVISION IS"‘“T :

Tadells € 2037

|Bors |

@ » | 1w — — L b=4
[v 9 |o D
ON 8Md ON Vid ~m
D iall PV s |3
wal 1o [k]
5L)12/S| X3 -0 AN ON_ MO 01 = a
e o | TV SS3VAQY X = =1
<z 2¥1PQ = -4
gg QU 1083 N e
‘S04 CWVD U 31411 -nu..—-hul_.-u.lﬂ-._-.n! Y e UL 201 3 3 a 2 hd v
% x * 3 Eal
x X]
x x Lr
% X Ay x x IX
X X Ny x % 1]
E3 % 1wy x £ 2%
x X Sy X B3 24 |
x X 12 P X X x 33
X X v X X x x ag
3 3 —av] X X 3 X >3
% x Oy X X X X 29
X X Nv X X X X vv
X X WY X X =
X x Y X X A
X X Ay x X X X x
X x TV b X X X m
X X Iv x x x X A
x % HY X X x X n
X % v X X x x L
X X avY X x S
X X 3y b4 x o
X X Y| 3 b3 X % ®_ |
x 3 ; Ead X x)
X x X X v X X -
x X X X nE X X]
X x YN X X (4]
x x X X X X Rl
X X MM X X »
X X AN X x f
X * X x on X X K1
X x X x Y X X "
X X X X = x X ® |
X x x x 23 X x E]
* X D5 x x E] .
X X dd X x -]
X x oo X x Ed
b3 X X X NN X x <
b3 X X X 21 - X X y
DAHS SIHS YIHS € 1HS 2 1MS J§E- D LHS S AHS >4l ® 118 T irs gg

Q131034 ISIAYINLO SSITINN ‘STLON

5-25

88951000 02

92-G

¢0 00015688

. o '47a.n.
> —_DIRL_
rag-L PEITAS ESR
mai-L >EI-8S ESRZ v | +5V
EBRI
e “47an0.
4720
=)
P2-ARD DIRZ v
:-: oz DIRS 4.7” L-n—sv
1 - ' an
170 AF mAMEM]
5o R roll +d
| : AZ () as LABE
2
N 3 ey o]
° s X |2
1]le o kv .5 14‘6 ~ s ___
3148 ot 242 2 cia ot s4
1 s 4
s T 1 |
1 199 ss}’ bs s
uf 4 sz |2 9 14 bz sz|2
2l - L um 24 1 D s P!
DATAIGH 57 06— OATAIIN 4Z 0— DATASH lg o—¢
DATAIH 55 © DATAOH 4 O- N DATAZH p4 o
C > DATAISH 6O O DATAPH 480 O > DATAIH ’e
D> DATAIZH 59 O DATASGH 44 0— DATAOH ©
DaTAisH >TEAS -
DATAISH PE2-AT
M-rysu)—
ZH> oA
DATAN M >——
DaTAIgH DTG A
R CTY
DATASH >oo-0
DaTA7H PEEBP
parasn STERS
P87
Darasy HEE86
DATASH M—n_“
DATAZN >
DATAIN %
DATASH >———
o TITLE CARD POS
¢ D 3 £ LOGIC TITLE OL DATA BRI
S oyt son CDE ADDALU 23
[
E' 2 DO BdH-Z . Locic TYee
“H E I P25 R 172 ADDRESS ALY
[‘P
§ . TOGIC OWC MO "pvl ma QW |5/a1/15] 'COOE 1DENT NO. DRAWING NUMBER
2 /1975 Frac C| 09132 | 88954100
E 6 PWA NO PWE NO. APPD. -
NOTES: UNLESS OTHERWISE SPECIFIED -3 7 l L l seer & o &

20 00015688

L2-§

——0 54
053
0%z
) B, 470
X oY, L +%
21275 3 :9 -
o s
P il !
py P R rsaL-L
={gco TP -
GCNTR -
TAR
AZ
970 L
r [}
TcEP & laz i
TCETI -]
e 2341 2
TARMIH <BD>—2] 141 B L z
—21 Al L]
TARL-L s
TARCLK-L DEAIS
PZ-A26 | o
ADATANDI—-=1 210 '
oS %@
fz ADATA-L
(227 Gl
Sizco TP
2Hzco Jp=—
2{zco R
L ey S
GCNTR L
540 ce
” AS &
£ 1] & +s -
1z 5] 206 P I uz-L 23
12 Zl As AR GZé [-Y
2 g £ ™3 [a31 | A BIRS _470 ADBENSL
© Z,3¢1 i 49 [Y
- e gy = 3
M -
H £ ln e : a2 agge opie
z ash xstu._%ﬂ &l
L | x [|
rFCRL-L. > { [ADBEN
At [ze B MUx e
PCRCLK-1
] A 19
=Y - . L8
© 1 s r3 Ty GO s
1 1 '
= 2, Al i 4
. = A w2l?
o ;é z zle sl 7
3
z 2)
ESRI = P 18 's I 2[° *
+5 a7 IRCLK—L TR 41a -
W > I - e
Pz IS ESRZ Ee>rrair-L | 23|] PZ-AlG 1% =
IRCLK-L. >~ c Bl eepNE "5 R ' | 3AB=IS P3
Ft; IRS-H 2
IRCLR-L >—— L c4 CN+Z I csAB>IS a3 .
A [c) E F Locic TimLE TROL DATA REEORIITHON BEEL CARD POS
1] 1 0WIS
- Y CDC ADDALU 23
s 0
: 2 LFO ON M '42 LOCIC TYPE
ol 2 X S VR ADDRESS ALU
ti‘ < LOCIC DWC NO RV CHK (f(f 5/21(15 — —ase—
2 ol ENCR CODE 1DENT NO DRAWING NUMSER
5 5,
g —_— R k- icd 2 C| 09132 | 88954 1 00
NOTES UNLESS OTHERWISE SPECIFIED x oLs e
7 [ser B » G

PN

8C-G

¢0 00015688

© 3%
-0 35
© 34
33
MALU
3 R> YCEY\ . R T rppvare
= . TOMUX sAlL D218 S0
21725 TSEL-L (G0 2|t 356
220 3 &)
& Il Aoagne-L <O—= L
b
e ';"g)" — A;‘,U , ADoUT-HERD>——{ = = P-AZe
I“ - "
Ac e b8l D e T 5]|14che z| > H
e <8 ! »1c ' B|FABc) & co | il _ F-AzS
£ 2 [> e d Zi} . py Ll 3 K4 =3 e 5 Acidr
TcEm~ 5 212 “la 21 e P-Az4
TcET 5= 5 7 z3 12 [B N3 2 - ADoH
TARCLxc-L Y ZRS5 2341 o z z = L, Pi-Azz
! S Acent
i z z1, i 12 13] 1Z 12
e T > Z | 51°)
— [zo|% ==z
4 ASE Sax FALY
DATASH <H E=4 P2 Faz ox BOs
DATA9H LI a8 > 547 . [CIN PUSENS 7 e
IRV G ZB{T)c ga8-i5 A <
DATALIH D IJE ;_ 256 cax-(paZ
= | >z 240 2ontZ D> ; ¥
A.B m 16 Z%¢
Z
&Hog| A Po€ : :5 P <> xS
L}
ADATA-1 WD
L 4
nd 2o
l?
x-oYis] Gl 15 . =
E) 14
ZZo =
; Zco = »"-g_
Zi‘p : Tt
20 ScN
IecNTR) Ld IReN
]:cg + Py £A8
A o] B -
P~ P Al GE\ | A
712 |az T ALL
PcerP X
roer :: = SR > :“"YT /T MUX e X 12
(IR z.3+ £ IseL-L 3 = 4o
=z sz S2fF g% = 2o]a
e Le. <AA> 3 l" op G>—=|i AbBENE L <GB>—'2
o MUX s cosi Qeosz
2 [24 £ALUL
2 2 1= 14 1z an] 0" sios ¥
e B e il ol O ¥
21 A L (I @ Lin 2o, Gax-1 P> +=
217 ™
) 240 409012 - D>
za| |a o S 7z 3o Zog 1
z z N 22y 2y 1o "2<ED> xIms
2z ‘ ' z > 31,
iSts =L
F=3| z'
[17
e7H ERp>——— 1] saB>shHs
E"N 7 gA".; 'S
0 TITLE
A [] [D E F Locic TITLE 0 oL pATA BT CARD POS
e CDC ADDALU |23
. !
ol o Bdi42 tooe e
“H N 2 VA ADDRESS ALU
[TocK owe MO] mev. | S X |5/2ths -
wis o1 e 'COOE IDENT NO. NUMSER
Q
sl /1275w C| 09132 | 88954 | 0O
wi s PWA NO PWB NO. APPO
NOTES. UNLESS OTHERWISE SPECIFIED x 7 I —[:] vt o o @

70 00015688

6¢-G

—0 24
©0Z5
0Zé&
MALU °z7
XV i ! TceET —8 %0 X-»Y
2 /B MuX sa- <Dy),
=2y J'%—-—— TSEL-L v -2 4 23-‘ ADOLT-H
3¢ = o3
ra “1:) LA apagus . L O—2] ! & lz |
i]alnuxl' £ yXuY) L
o g‘ - 1 PI-&=\
AL ao 14 ASCL 2 19 Sl 3 sliache| 2|224 2 5 Any
[3 8lFapy) B8 oz P Dz Pl-B=o
TceER 71 % |az 1) ra 41 =3 4’2 x_ ADSL
L : 2 4 Pl
“ s A o -828
Tazo X z S 7 z> (Vd 1 5] =-p2 35 aos
L > 8+ z z
a7z & 3 z n P-es2z2
Tacir-L T —q! Ea Z], |2 =] N S 2 Ry ama
= £
2
CATATH T zZ|, |e
DATAGH . | 17
) €A B >15
PATASH Sk 7 =T
xs <A e =
DATA 4+ [
W 8l & 3
At [ot at i3
- Zie _| L3
(=41} o2 (Z2A B
9| A5 F3 H09 | A
Abata-L <> 2 e
X &Y] L@PCET
3 14
Py Z—
Sz 12
& =i
Zco =
[
uwre]:c = e " 47 R - = -
] AN L <INy i z-Al0
PeeL-L @—e ‘ = 2o 128 2 Tzeeo-n SET RS
85 AL 2!_3_ =
PEEPR,, & E jaz :é z e - ——
'—‘@j. Z 153 5| 2o 28 = <213{° Y] PIE MUX
PE!ug-L@ Z.34 AS T
&N z] A 2 rs:t.-u@—ﬁ'
e <G> & 6‘?
248 ;4 IR 1 @ S “
ADBENEB-L Mux
i
12 — i I 1t I
2 13 4 r5T 1z
BI== 14 =1
15 N~ 2
-4 & 2l
> 12 Sr= 4
As Eal
2 z 4
. = o
T 1
=,
. AlZ
e - & T =g £A8515 '\; B> aires
e 1 i < €A 8=15) CALY Pirrs
A 8 c ") E F LOCIC TITLE smatt co-mvun TITLE CARD POS
1} L]
B nlnll‘u;"u.!;‘;l.l:,m CDC ADDALU 23
(23
=f 2 Bd '42 LOGIC TYPE
s o |mAe— ADDRESS ALU
2 (0CKC OWC NO RV CHK o | 5/21/75] —
5 4 o0 ENCR COOE 1DENT NO. DRAWING NUMBER
£l s] S/ 75 e C| 09132 | 88954 | 00
Ial 3 PWA NO PWB NO APPD
«
NOTES. UNLESS OTHERWISE SPECIFIED x - l l e B x &

?

b

0€-S

¢0 00075688

° >
—0 4
-0 5
—o &
;;'E'z > 1
X-0-Y') TCE™ ‘.
3 3 ospz 5
—= 2= = "T% 4 [PaTi# TARMIH
—217.p 2 o
& tzco n
leocNTZ T/o MU SA LG ADOULT-H
Fyr e : TSEL-L o
- S veibca 471 MUX - Lz 3"‘-524;
2 &7 204 o=
TARCLK- L ®“< z 15 5., e & P o 3 EA PI-B25
re e Th 2 3 fals] F-p&— &
TaRcLE-L T Zle 2|2 N oy i
g =15 Z —H E3) P -szs
DATABH > 23 N e i 2 Uil
DATAZH z |- 4
DATAIH £ i
OATAZH
1
At £A,8>15] SHDE
E ‘7= 1 w
13
acara-L. <w>
‘x-oV
4128 =
y 7424
—z<0 -
leoonTR
- Alg
PeeL - @—ﬁ !
Al —F1g |az
+5 W i
e o
PeeeLc-L <G> >z.sn
<
]
PeecLr-. <> £ |
M‘f'®
P<ZB>
[}
14
> S .
e R> ' A
r
SHAIRS
IRCLIK-L P@Izs
ITRcLE-L
LOGIC TITLE CONTROL DATA. BRI TiTLE CARD POS
e -" CDC ADDALU | >3
- ! 4O ON Bd '42 Locic Tvee
Sp2 [N P Ve ADDRESS ALU
e 3 LOGIC OWC NGO '"0V| c:; [ALY YTy YT TR
zi 4 € NUMeER
st /12175 C| 09132 | 88954100
o 6 PWA 8O PWB NC APPD -
: e
MOTES: UKLESS OTNERWISE SPECIFIED -3 7 J [T & O &
o =N — -~ - -

D o) ims _ — L 4
- Qadv ON aMd ON vmd 9 I
-
ooozeceg | 16160 [D EZ prys =
UINON ONIMVED ON LNJOI 300D \ x
— — —— SsLlir/g %va o a. ON MU 21701 v ﬁ
£
-
oA 2507 Pm—vm 4 m
dnrda 242 _
0
304 QWD 110 iinanns nves . TCHRILTUL] 1 91901 4 3
|
% x =
X x A
% X % X
X x M
X X A
b3 X n
x X 4
o k.3 m —
x X
X x x % 5 S
X % x X x]
x X [«]
x 3 N
* x w
x % 1
b .3 n
x ® [
X .3 X
x x X X x [a]
X x X x x $ |
x 2.3 . X x P
X X X x x 2
Q
x x x 2
X x X x » h
R MG S UAHS & AHS ©1HS ZUArS aBALT
IYNIIS

G314103dS ISIMYIHLO0 SSITNN SALON

5-31

88951000 02

%€-6

¢0 000TS688

ROM
= s| ! G
ol o Azer o 146 P PZ-MZ 5 1m-L
o0 AZEZ an [B2 |
o AZES +S = PZ-B\%
82%6* =70 Azma < [L 4rsPP—— 1S3
A ' - i r—i’-" 1415 £l oz
™cz r =T |, Pz-Az
F—> 1521
1
= 14051= o= Pz-B815
3 12 5 s
] C' a ISPl
= = El Fz-m7
2 i
T el ' 2 (RN,
Pl-85 | P =1
SE-as 131, = 2
INSC\..LK-L o ‘jz\;> s z/oa]
9
<&> ¢ Pl L 22 |
‘ [N | 2 £
E l - s P N
ca &
SeEsET- > B3 o T |z z
.—' o4
| &
Z 'z o
= 0l BSR>
9 = s A
L) o 5 1_Ap
I A 14 S>i1le
S FADRAN
o AZES)
z7e Az,
o T T Pi-mea Pz-A19 | _
240 AAE At iz T > FSTART-L
o " PI-B22 9o

ise LZ_P"in;Es&L

Ba
Zr
PI-BB2\ .
1agspl—" = 3 esi
—2- M

3llacpt PUAZL S egoy

LOGIC TYPE

CONTROL DATA

LOGIC DWG NO.

Bdi37 Pc e | 2| C |09132| 8952600

REV CODE IDENT OWG NO. REV

SMALL COMPUTER
DFVELOPMI NI BIVISION

SHEET
Fadella (A 32037

RS

00925698

TEL60

ANIO! mv

D [*1C"} ammias 20> LEIPS

0N OMN HN 1

e
se o5 t7s QA*. ied KN vzmow I
= q-HNIva .
= " 0Ly
T 2 2] WS I)Y
) —a<] ¥ _v_ <=> “+r [M Zagy NN
N-AIVR €T 3 1R e p-petd
18-1d \ -<F>n-n17sn1 .g Wu I3ev
BV €5
R T 2> i i H”nuv
7 id " = Sl] L
—ra
-] a. o .
NSY €gzaza €t oz Qu. Z <> Qs - - -
1 <4 2 |5 — - =
[va.r?nﬂn..x
Sq,) . 1 -
eIV C———51"%, 4 el 5
Z18-2d \]
[4
w1V A[l._l..,uﬂ\m.u Z =5 |-
viv-zd R SO ziq 'Y =
x
= l= !
NNZANZY AI!'II.Q e =D I
2\V-Zd il ST > *'|5
= 2 re
2'z z
APV & Vo H-NIZY
- €1) P 1 7
vearza ! 1 oY 1.“1_ o 3>
"
5 ka3
&
H-aNnace E&——go < QW_ NmRIVPNS
1

Viv0 1041INDD

]

ov
*2%20

wos

—Hoadav
HEMdaVv
HZaav

LAF 2-14

H@aayv

5-33

88951000 02

L& A4
433N A3HS
aL/e\ra
00926698 |1£160| D | “2° waraas 20> LEI1PH [N
A3y "ON OMO AN30! 300D AN ON 9MQ D190
3agal 21900
&7 | <> H->T12eNx
NIAIDOHS AIIA: | ovi
ve-id 2 s
A ove
N-QIAND] f—-9 VY v o
oiv-1a ¥ 1 = S+ P Y MMM 2InoA
oQa o
T-aEn3Ied A|WIA$_ ; G LeOV ° e
Liv-ig © i P "
H-aa <M QFW. < T-<a A S 2 _ =t ~
e) = < 4 .
| [-2Za KR2ZV-1d T
s () 2! Zl =
Z 2
€= a2 =]
B
z >

88951000 02

5-34

DAO S

.33ks

[=V /Ay
00925698 (1160 LelPg ‘
s €OBLELS0| D | io | "areiad 2a “E T E MBI

3d4A1 21907

SIVLVA A.Ilr
Lv-2d i

Yiviva &
Bv-za !

0@“".@ nTnTEnT

<> 115Nt

=4 AN
E2 A
= S ! =
2 Iiu_li.ul
r v uo
E | one
[.IG@_ QN‘-N&AJ.AZ&N - P dalc]
o 1€ o\woa =
»
]
y 3]
T r3 k3 <! <«
g . z
[] Aex id v
= 2 ¥
n.\\:N_n-ﬂ pA L. e =
A | L= pvl P
& SIV-Zd4" S®IY
! & &1 0 yaivyW| S+
.M 7 .D..-.L/Jnk!q.l L 04 BV
<15 <-arcrs 1
e - Eee
H-NIv3 ?} ,.nm‘«
I
H-NIEY <D m ' T -
e 8l -5 = T -
H-NIHZY <D __“ el 1 v
P n <> H-da il ~ HN“M«
H-anan <> + Tav-za<HananN : $> HEmav
=] T] ball =) 4
A->oms 1 o /Heaav
2 7 £ V->21d woa /

«v-id

5-35

88951000 02

930D

133ms

3w ‘on oma | 1N301 3000 p3y

0092a698|(Tt160| D mwmw._\,.ul..:nu 24>

3gal D907

Zidlg
A-amarn g vIZi;
Siv-id [o
M._O.P CTTIRAA _ﬁ$
- b PETIR2AME
=;aav 1 0 [T 200
i : FISNI AN
d-waoN € go=lv 8fg
-1aIHS S et
- = v
e e i
z z =
miEt-Al <=
1 1
“-10n =
SV-ld

1 WV &
v N S E
Ssamaav °[5 3
NOTAONALSNT LXBN ' M,
— G € > L2 TV
3 i ' " g
e] 71 ZS 1 N
= i
== € 2 2 & A = [+ Ao
+ = A
z E2 z < Fetae) " [T
S| n Si|® 125 | 0 [5| QUO.‘.O&
== vig - 3 e S e dl 1 1
ZivL = v = TS ot—me TN
= (Y ! =
: R lof 5 A [
: 3 e) o V> Hemay’
<E> -nna .ﬂwﬂ. ntm\ibl
1 :
= <&> 1-m17enT " 3 \.\HM«
wWoa \

88951000 02

5-36

¢0 00015688

L€-G

SIGNAL

SIGNA
LETTER SHY SHNT B3 SHT 4 SWY TG SHT7 SHT S SHTH SHT I\ LETTER SHTZ SHT 3 SHTA SHTS SHT & 7 _SHTS® SHT® SHT\
A I3 3 - oQ 3 X X .
[-] X X PP *® x
c ® X aa X %
D x x RR X X
E X X 55 X *
[x b3 TT X B3
G X X [y X ®
C] x X x : vV X x 3
I x x x X
J x x XX x x
3 x X Yy X X
[3 x F¥3 X X
™M x X AB x 3
N x x AC X 3 X
o x ® AD x p
P X X x AE 3 X
(-4 X X AF 3 %X
.3 X x AG X x %X
- L3 x AN X .3 X
T X p.3 AL X X X
[¥) % X AJ X
v X x AK % X
w ® x AL 3 x
X X X ®x AM X 3
Y X X AN X X
3 % X AD X X
AA X X AP x P
b3 X AG *® .3
cc X 1 X AR X X
Do X x AS X X
EE X X AT x X X
[X x AU X I3
% X AV 3 %
lala) X X AW ® X
5} X L3 AX x b4
X X AY X X
KK X X AR 3 E3
[X X [BC 3 K
MM X »
[RN X X
.
A c 0 3 F LOCIC TITLE SHALL ‘:l-'.:v'uls.m TITLE CARD POS
B T o1 CDC EXP/TM
g 2 uscoon Bdl3‘ Locic et
3 or P2
S LOGIC OwC MO REv CHK b 5/21/15] —_
z 4 o1 ['COOK 10ENT NO DRAWING MUMBIR
D TEYLS s C| 09132 |B®B952300
g 6 PWA NO PW8 NO APPD
NOTES UNLESS OTHERWISE SPECIFIED « .
Sl 17 l L l var | = 1O

T
(9]
oo
13 .
7 —~
DATAI14H 2 4. PpE = \ & v
-7 | Ad un) PV
1) ors
*_! 7 4 > ‘v‘-"
2
DATAI3ZH
<> == - 4 asey | >
= A
oaTaizH 2
=1 o e = A::‘z
DATAIIH <> 2 L SBl-AZ 5 : .
33 zoI e 1ONGET
J'rm-r; 7F-L >"“‘;:8 andcr N e o —<2> e
EBENS-L >TLAT e ; 1 FyS =
PZ-B11 Z NS | - &
meenl JEEel T3 oo seeozy HAEpmee——| [« <> e
>P
L 326 , EaE
- rvs S 2| & <> €7
- Zelrzf>E—— !
- MO REG Pi-All 5 =
P2 -A [- - > o7 a @ E8
DATAISH >——z__!_'_ 14c P2 356 o —Zz
=d) MO wEGy z’a 8 : !
- [}
> 370 :r——— I 7 z|2eS = <k> E4
3504 : ; B4
) 1_ iz aji <IT>es
I {2 &
') , 47 s[* = <I>ez
I ‘BPpL SEIBI7 2 o, :
P - 74178 g R e —<E> EL
~ a]e u . : A
paTAion <>—1—2{Ae W
= . . ATl
2 R A
caTAIH E>—
[y —
‘ = n 3 Ares|t=
2 = AA-
patasH <E>——1—51 | ‘
=i)
- i 004 s ATz
DATATH <lg>—— —
"
m .
m . LOGIC TYPE
©
o
; CONTROL DATA LOGIC DWG NO. c €]nzv CODE 1DENT | owG No. ;E'.
S R B d 3¢ €Pc &7 ”“‘59,;/75 C |09132| 88952300 |,
sEviiomutaT oision | STEET - SHEE~
S Ladis 00 $203; l Iz [~ 24

AlEe U &Tn <Te e e

R{TTR HEL
[Gisos] _ o | gl i
GL|! . -
e, Z€160 _ o2¢ciPg
0| POETERLBBY LELEO| D O (ia/dxadas ” =T TR
IdAl D190
PZoiaM “ﬂL.Qz.
N> B3> 21 ! oo
Zi <t t— £
Tl7sz 2 oo
P ovz Z d
SOIS 2szig i
v oves g
= " 2or
:] RE I liad “_ I
! T T2 S mi s
Sa
<

n-(z-)s3 eg

1-193 -
ov-\J lel.
HPS Asl’..Vw =9 5[5+ TZvia e ess
os
His <>)¢ [FAN T T RPN e
oz -
HZS @d Y 4 [oo v 1253
oz e |
HES QM T Q\.uN T3 oZv-ia < nes3a
Lz
H-W gl[iwwg s
s

5-39

88951000 02

0v-S

¢0 00015688

o 56
Q 55
054
-05Z
=5 12 s --('A'.i.c)el-—"? ESIL
“ ESZL
: = — EAIL 2. <15 eszL
A 12 ESaL .
o 23| 4
7
(-4 '
-
L O O ¢ El 8 -
59 57155 S0 EZ a | sX.B>0| = al
E3 z o P (
]
EACLR-L Iny z:‘ |
EACLK-L. [J
£ACC L
M-+ r——% e
S3H T s Goo
S2H V] Ala S€S leary
5 a3
SiN v 2]z
SPH | XY
ﬁlm XY l
g 2 &oo
CACC) & | EALU
S 2z
2]
»
rea. B9 4| 44 4%
? 9900
z o
{53 5 =
4
co
=t 7
I ESSL
ES7L
ESoL
. ESsSL
Q0 45
a3
04z
O 40
LOGIC TvPE
CONTRO', DATA LOGIC DWG NO. REV CODE 1DENT OWG NO. REV
BdI350c BXP/m™ 'S [¢ [os132| seoszass o
. 5 /19/75 h/aysd
‘Sﬂll’\ CD‘IPUVEI SHEET - —
iy e | T oo

Q..Cm..
133NS 133NS
| = ARV
oo€2s699 [te160| D[1O 2¢iPg ‘
M E o om | a1 3000 | WIL/ax3 3a2 7 = = ERIRINT
FaAl D190
@TA 2 —— =< Hiinovava
Nnwviva €zgz5
Ziviva ﬂﬂbﬂ
€\viva & _ <
Sov-zg rea
viviva TB(-NA €
—-gunND
% 1301
H-13 ¢ oo od |5 H-XTH
9% | ~ o1
WLD LAIHS ! ! “1-dQ
e
- e
22 = ——< HPIVW
Qay 12 Ig 2z NE S2Zv-2d
ad>v Y G
L-237 Ny Lo 2
J 2ANDDI .
L N
b=t Fiwigs e
1=
L aoi = z ’ VD 2v
v = | —~<F> 8s3
L anle & L4
=MIDOHG \= 1571 263
k]
)
o2 > o Pt weer
S 1= T sl
Z Sil®?, rtuu
XS g2

°

5-41

88951000 02

e¥-§

¢0 00075688

ESSL.

ESGL

ES7L

ESSL

'S <B0> TCET

)

N

<>
<>
<>
<> —

Pi-a@e
7

FIX-L

X>v] 1
&3
<o 9
= Ico |
=1 A
El 1cD =
=\ 3
e]
: £
COMPARE 5245
'S r& T
131 4 P81
\2 P A
el ., ¥
Py A -
4
Fars bd ey
Gz A8
e L3 SHIFT CTmR
Jd Z 3|
T L22be N s
<S> 14{ 4 T] <& A<
ulz
FIX-H 2 'I:" 3 DSR
- A'A‘Av_:‘_s
1.4

[l z g——gpz_’_}M DATAIO
202z -

k 4

4 | O] P2Z-AZ

z L{©——> DATA9
f Pz

22 1a Al > pavtae
o
3 Pz-

ram I DATA7
DATACUTIH A&

LOGIC TYPE

S/ 19|17

CODE IDENT | DWG NO.

CONTROL DATA R
Bdi3 e exe/Tim | o1 1 Clog132

REV

SMALL COMPUTER
oeveLopugwt oivision J STEET
L dois 0 92687

88952300 |

SHEET

60F 10

NaoL,
ol sl/el /o
10| 99826688 LE160) 5| 10 | wjaxs 20>

2dAi V1907

=DM

MAN3

Bl 1 kil

r 4

=3
WSV & ozyEa o1

<> -nA1a

—<>
ﬁIAﬂ.LWA REF ST,]

HINSINN
—<F> H-nan
< -
7] QW_ T mivozas e
N ATV
- E>) S <+
>
T
I W.|||A.‘..a lel“z.
R i
I oo -1arn
- “' CIV-1d kd

<> 1-amoH

88951000 02

9-43

-9

¢0 00015688

Pi-5es

FSTART-L >—

INSTCLK

¥ 4

7SS

Als
Arare

clew
+5 AW

x-=Vv 1
z z

-3 z zo
i _
= 1z :f;>—i——®v-aowa_\< -
3l oz $ I L3
oz _
Alax 1 PI-A8
s 41 S = HiagsPE 5 mun-L
< e AlS
|§->é —
?:ESET-L® A4
! ? x &Y
P e
1acs 55ms L 7za P22 4B 4B serk-n
A Al AIS
ALrZ
Al . 1 12 _
SELECT ¢ AleL $—r® Soi-n
AS
L 51
%lfssTAzT—l.
~{BE>HOWS T-H 1
<G> 1463
- ciz -
Y HOWR- L 4
sl . bhall e -
LA e T
I q;
485
14
ei-
< SRESET-L
LOGIC TYPE
CONTROL DATA Braiiidaig REV 'CODE I0ENT | OWG ~o. =
BdI3g < ’"“L/O,,',,s C |09132| 88952300 |°

SMALL COMPUTER

DEVELOPMENT DIVISION
Laduita. C4 92037

I SHEET

1308 1
Y YAV
o TE160 o¢i
10| POEZ6608 |LII160/ D | 1O | wns/axa 2az OZUmo Y1¥Q T04INOD

3a41 21207

T-r7aiN

=)
©- PP
) =53 D>
L YW 1 oLv T S3Ca
. <12 Py Z 2 X H=XN1>%
== @ z bn\M LA | 1*&'Zz W»-M.Vu S 1+€'Z e ' AV !
o S—75z1 P €] €
2 v 1T ot Mt G o z
lans <P ; Pl (5 3|Z o/ zé| 3[Z
e T _ _ &>
< sors P & P [
v-ac <\ <1
g <E> T-aon WINZA a2 =5
> art f—rod ar v
-z ﬂ L 1 L B r) ieadi H —E>
= =T L ax = 3 q-1an L a» b —_— S g< -=e
o
LD Aa-x Z]or
r-rd) - a?n
21ViSan L 3 NP PO L < -
a2t I - ar |5 Wy G+
e} ¥ L Ml_ [> w
=z (€5 <= [
_ 2 ' AR S 1 Aeox

-izvasaa @IIdLHWMI Q:.
=te T

5-45

88951000 02

9¥-¢

20 00015688

HOWR - >_P"_A‘5—_®

2 zmﬁté._g.z‘_gz_“'_) Al Lkt

15 0 Dil
'z A Pz-Al
Brv-L 2 |m ol G FZ-Ae 5 ariczu
msgL SB2Z-AZZ U e | =)
Lo® SHFT 2] " la pzoeiz
1 Scixk-H 2 4 ” Q> AZLx3L
ENTE GF>—2 I3 .
&) & Gt 1\ 2-Al4- AcL =
SPcLK-H ‘I] -2 1z] 3 A
NEM-H
NNMD - H :f ot
ECLK-L- 2 '_"“ ‘zcol?s
2 z I
zo1
12
AIS = ;
=z
i
€s(-2)-L Bcens. YS! 12 & -
SHcLkIL L4 Br2-925 5 s+
1Z] & E3S c12s
: MOcLI - 112 Zv7e
- o1z
INScLk-L 4GS [3
cz —
PIox-L
LOGIC TITLE N o) ATA TITLE
e e coc Exp/ria R i e
La dulia €& 7
% I "
g 2 Bd '36 USED ON Locic TYee
L P
3
S L0GKC OWC MO REV cHe X Q.- |s/21/15] —
5 4 4] ENGR CODE IDENT NO. DRAWING NUMSER
B 5/1%/75 e 09132 | 88952300
NOTES |8 oA o Pwe NO Y
: UNLESS OTHERWISE SPECIFIED -
& 17 | | serio =10

f

&0

L33ms - 133Hs —

oo62%608 |LELI60(D mh_\w__mﬂl-im xumm—‘m

Ady "ON MO AN3IO mu A3y "ON OM0 31901 qu_vdc JQQFZOU

3aal D190

4 X o
X x HE X x 20
X X - % b4 NN
X g - % . L
» b3 3= X h- Rnl
X x a| | X x EE]
< X o8 3 X x X ~ (AN
> ® 2Y b3 X x X XX
> =< AY - X X HH
b X Xy X X ad
% * Y X X =3
X x AY X b.S 33
e X 1% X X ad
*x ® iV X X 2
x x [™ X -1-
R X i % vy
P X oY % 4 k3
x X aY X * A
b, X o X » X
% % NY X X X [
x *» WYy X % A
K %, v X X K X p.3 2.3 4 X [2)
x * Av KK b3 RS b3 3 3 X X A
x % [l = % X x % X 3 £ 3
WM < v X x X k3 M % o B3 F]
B3 Hy ¥ RS % %X w X X &
3 X v x p.3 X K K % % =]
X il 3V X X -3
Iy 3 X]
3 23 av X X W
X x v D x)
% X i 3% X >
X pS ¥ R % ©
% pd AN b3 E3 I
£ x XX * X X X X X * 3 =]
X W MM x x k3 3 w X x p3 =3
X RS AN o P E)
* x X B nn x X X X X x X X a
% X oy X X X X % X X x a
x 3 5| x X X X X X X X >
X x FT] m b3 m B % X % X]
X x] I-X-4 X X X X v
Teins @ 4 L 1ws 2116 S 1nS + ins RS Z 1ivs cu....wnum & iRs B4 Ting Sinc da T irs M.mﬂ‘ ~3 S lut.wu..
“TwN AYNYIS

5-47

88951000 02

8¥-G

20 000TG688

<
]! 2
8BS 1465 BSIH
e >51—® B8SIH
- 5

Bk -H M—I—@ BoLk-L : z

4¢ . WPz B 3] a4 >‘_"__1____® _
ASIL ' b’—:—@ ASIH - - IQ: e

a5
ASSL ! {4 ASPL

1
rz-esmo 1Z b 15

M/DENE - L l "
= __x_ __@ M -
rz-sze _15p]Z0! /BST.%”L éb__“g‘ = -3 n’; -

BENS - AL g
10 ' je uf—® MB gL @

BrReNe -

a o
";gg 3 z F2-B14
1 . 14 MPSNS -

s

z
oL czoaz zas| RN ! B> i MBS %—'5 s J -7
"o ‘s SEA L@————‘: 9 Pz2-827

DS Dise3

1z -
3 Qa.L_@—-E 4 i >
- M LI-
rz-oiy 45| ! L& f B> 153 MEmo, HFEUISZS z BR<-L

5= =z
s opel =
D4 Disriz
1sZL SEZz-azi LT] S 192ZH 1%
S ze
- . Al
= I1siL, >_P_Z__B_'Z___M,L-l L’.L@ Vo1
- —~ z9
_ 1
1sFL SPz-eis \243] L_i__® 15@H
a3A 12
oS oA i
) aza z
D'II:G NOTE: Ik = 1024 - a 1405}~ PZA o AP Y
s WS o ca Pl = alA L2 x
oK &AaK-\ " =AW
Gl A0 ZSis Jl_-lg—_—%cun = a@A
=1 384 1 CNZ PBA LAZ
&z 256 e G =2 I N
o G Z-y - 4 ALU
P: 240 ¢ L b I a]'= SIDDi LA ENT7 NOTE: IK = 1I0Z4
a i ALu C9s !
) |15 S0 |LA DON'T STRAR NOTE Ik =1024
| =7 For OP l. PZ-AZ9 -
= > et
—
LOGIT TYPE
A LOGIC OWG NO. REV CODE IDENT OwWG NO. RE\

CONTROL DA
] Bii3g <0 5™ 21| € [09132] 98952900

DEVELOPMENT UIVISION I SHEET SmEE T

it 1) ZO0F9

¢0 00075688

676

e gy &
BSg A '
0
i re SFAN-\-
me Te- A o8E7 W <>
reuiid FeTamr.L > EZ- A4
on-a R
57 sz =i | _Pz-sz2 -
Yo -2 o s Hiac]
b Zl,co \n-i‘ I (473 r
] m—‘—'x_ﬁ MULT-L D ra T
5 Erm—— T wlZi? o as-L
& 2> 1 =4 o z.-aze o
MBIZ Usco - C > MSP
MB g -
MBI wlze
Pi-AS ior—
] zr= - a&-;. 4"40‘
L D10
T L P
+*> 0—‘}—4—0"‘ sz
< 3 b = 2reT n PZz-AZ7
Z 1> 1495 ; NRMD -1
Afses Ld L 3
o058 - v 'S z —‘—_' s | |Pz-827
o= _6_’-_‘—" e 2 1] P MEMMIH
7 =3 PZ-AD
o0& Maciz 3co =1 |e Q .
oGt MAC I A 3 '— > Mu:;‘inu =
=
[GOP 1348
15
El(.
&Z1 |
2o [
. MB MUX el
BrENS-L 3
Gyt |
M/BSTE-L ! z Zi
Mux zs
z
14 A‘ Z3 "z 3
|: ! 20 . 30
= r-4 ze 4 t DI\Sxe s
T - zill zz| , Ld ,__Lﬂ-;&; MAZB-r
ol N 14
s} 1 FAB.C)-m
e = | Ee. o
1 NI < I sh@ o)L al
= Macy <G> ol agsphiz TEAEE L g
Z_Au) e
OAT >—== .
oavais | SEZAY W =1 |lg Pz-Azo mz"‘é‘", oz
DATAG Srz-se X 149 > zouno-L Cax
DATAS >cz-=r Y Ll Dars o\ |+
LPz- . W
DATA 4 SFz-8e = 4)
L PZ2-820 5 sap

LOGIC TYPE

CONTROL DATA LOGIC DWG NO. CDC SPALU].Z CODE IDENT DWG NO. REV
: Bdi3g =5)7s| C [09132| 88952900
oreLormnT DIion |'~m lsguo‘ -
Lo detia, 64 92037

0GS-S

¢0 00015688

[T 178
B85+ \ 2x-oY 4N
[1] \
BClc-L |-
Zo~
n c
‘1 -4
sz'
335 e 3
mmi KO- 2lico
. A) Eeac
Jé 3co ASIH <O ‘; Z XY g
773 % ASsgL CED m \
MBicL oo Ak IO T
MBIZ Ze
MBS c
S
152-4
528
Ba
b0 52 3355 \
053 MACI ®———: 1co "
054 3co 1
‘:7 ZZo 1z
MACIG L. 3co
MACIZ T
MACISL I2)
IMIH
—P 153H
152H
151
ISP
MB. MUX i
BEENS-L @——'ﬁ
G
M/BSTES -L @.__._‘ih
MU X
L
4 2}z
21 “
=1 2
1]
o z*
';’ | R . FaBc)is) :; MA=B-H
Z~1° zs = ! s\,i-o‘n Pz
| CNZ F cEAB>P [<Y4
I
o3L. N
ool
DBRIZ 4 |+
. Osms ,,'.‘,
LOGIC TYPE
CONTROL DATA cDC SPALU]n:v i 'CODE IDENT | OWG NO. REV]
Bdizs o | C |o9132| 8e9m2z900
/Y75
SMALL COMPUTER SHEET e
UEV(ll.O‘:"l.E‘l‘Y,z‘i’V;SIUI l] ™ ‘
. , *

(U
6305 ome | e B
28 Gl
A3u o ‘on Oma N»M*w.@vomu U .Wux— v “mmox—umuzm«GJ viv0 104INOY

3a4i 21907

%8s €gNv3a
AN e HZtvava
| 229 N“-MMA HEIViva
S+ yalg Y, Sv-i5< H¥ivava
WY p
W BLD oI Vava <M Hd."lﬂA HZiNnoviva
W Zsia
1 <S> >
o) [
‘> 220 N3 =
3IZ O
ya E2 S a> =1)
3z o2 n [3 =y
& 1 >
- ''e hord = |=
TEZ orz =l
I ey S, [o 20z 250
=1 o
LB e 3 I
=]
P F1->r12alv
T -
Yum a/w
/ s
HPS|
Hisi
HZs!|
HES!
ninE o) OWYN
N N21ovw
oo ozZTIYN
z oEcd — _
[|-WI.NQ“. “NM
el a>t g NSOYN Ead
3 a>e Siv [r)
lw 2 hOl. ym e
| >
v-us L e 2>V
5 T braw
-2 - Trenw
- m | are ozen
g ' 3 sy 2 S22
WS re-x Zfo a HISY ﬁlﬂ.. —E S
Ivds ¥
Zz
3

5-51

88951000 02

P===N

¢S-§

60 00075688

IREGe
| 2 0] l: Zw
M 1
BCUc 1 T
-L >
2o
1S c
! =
sr-4
=2z
/Y4
% B3CO 15
mey <Lo> Y 14 FPAC
f 33 . .
2{3cc 1 T AsH B ZTYSY ghz
VT zcp 1z ASIL CED ; | s
z4 7 3> ACLKZL !l!) (R
MB2ZO 3 Ze
Mazs - c
se-4
5z8
8
-o3! 2—1549 s
032 MACIY GpD——ico
4 b——b— 4
034 Z V=) 3
ZcO \Z
MAZZA B0
MACZO LW
MACZS
IMIH <
1S3 RO
1szH <5
151K T
MBS MUX ISgH o
BRENS-L ®—'§ =]
= &
MesTe-L <O>—3ZDNaz
MUX
1%
z 14 S—SF— iz 5
zoz, = 124,
= 215 z 2 24 4
* <o |‘?"‘ 1 ” 3
3 o 23 z
'; z n 1z == n 2} - . FAB,C)=1% 4 P> MA=B -
- S Py j‘ > 7% — 1| AB-o Xi> P3A
1 - S ' F3 T |c R8>0 <IN
DATALTZH -k
- ——
DOATAIIM PZ-AS z7::0 N~
DATAION >EZ-A4 | ZLITEWA
FZz-Az CIRIZ .. |+5
DATAYH e | L IE
DATA@H >——— 1 AN
LOGIC TYPE
CONTROL DATA [REV CODE IDENT | DWG NO. 03y
R BdI38 °° 5”“““5',,;‘75 C |09132| 88952900
! Dts:"«:at:‘”u‘rciv’";::v;un [5NEET ls;ser q
A
P — = -

......

oLzt (taasel? w.t_w}m nwes 20> 8€IPS NI
“ON OMa AN30! 3000 A3 'ON OMQ 907

»»»»»»»»»

W—=sha] :
WA/ viva
R B L — rebvava
W—=3no Hyvivd —ZE-za S Hivava
N IN.r%...(A
) < L=t P z |5
< a> -]
[z0 ny_Z 2
A L
> 3 .Nn. .W_
O od = I zoz
2 &
q1-@rsein Bl Ml G+
L-I!HUO aw aha
HPS\
HIS
HZS)
HESI
HINI
<Z o
»Z 0
®z o
=2 04
Lzew
vzeaw
— - ozew
arz
g7z
rq_ a1z
= Ilﬁx.rﬂ
a5 <dg> Szew

5-53

88951000 02

INMNW_

133N

AERTE Y3 ter 9]

133HS _ NOISINIG INING013A30

A3

02609

"ON OMa

TEL60

101 300

o) sL/el/a

12 | AIvdsS 2a>8EIPSg

Y3LN4N0) TIVNS

-on oma o100 ISCIURIN TG ING

i — o
A TR
YW STST1a H@Viva
Jaa/]
] HZ10dvava
<a'ys 2] | x '} {
L ym X3 o2 JU—
- o1
z
. T T
L 4 IZ o —
1 N
& IZ o
=y w
. *
T-Qisa/w
T-eNzae
L TS HoSI XON BN
‘el z QL HISI
56 Yy S22 HZS!
d T A HES!
_r rax)5 <D, Hiwt
TAWW ISIVW
vl €D] FZIVNW
| 8 229] v 1ZEIVW
| @ | 129 =z azz =
Y 21 rllﬁlllﬂ Lo~
v <15 = —EY Sio-
|'Y a2y Lz7rww <l O
Ay <l 22€ +1 04
E] Zl
2%
v-35
3 1
2 11> NESW
-z ozew
< - 1 m J‘“@g i) wa “1z@eOW|
. ' 1gSvY 1 arz =
hWerexztZ S HISY g%tz
IV r— 7€ >
. i b= <8P rLzew
. 976 = -
WV

88951000 02

5-54

606 — s | s e
al/6l /<
coezse08g|TE160| D | =] gelpg
o
] ow sun | peor 2000 Zon| TTVES a2 T oo JURUEIUIN
3dAl D000
zems 2\Vv-2d
NCEWS €55
LZE-\d aa z
ZHS\a Y 1WAV
v e s P yiviva
oo R =] W * Glvivag HE LN VIVG
-a= A
H-@ = 23z Sivivo ﬁ:lni'.uMA
R}
=
* e My 3 !
ym AYD> LND _ = 2 > 2= TN:.Av
IZ Q) T - [)
' £ n & a> o12 [y W38 =1
= ai [Zz L 3 B
*Z (24 = >
zz & 1] D1 —
3 € = 2) g Bl
oz k4 3z 2 Z ! 5“_
z '[<i <] g ~ e
(&1 zZit3Z_ |)]
1! = N
z <
= i V| [€z A
1L ewa| ¢ 2 25z “eise/w
3] : 7] 1o i H-aQ
N:wj.m. o D Tensae xW aln
- 1 (2} I\Ah_
.n—.v zrZ A S|
v HZe!
2% ™ M > oS
Aw-n 2 > HINT
YN TISROWVW L MW
zlmm IIV-id se
87z < 04
| B 129
X |7
V| <1 |
=2'Y3] 609
L'V 2009
E] S
1cdaw
7Zeen
4 Qe y -iosew
| Q) azz |5
T e =
=
=) SRy
G 1> nean
! a3 5
esan € vV |
N rze-id P44
r-25
2 |
4
-—-<
-y m =) N~
' Hovsa
P Aex v s Hi%a
e

9-55

88951000 02

e

WIRE LIST

X

This section of the manual contains the wire list and signal glossary for the hardware floating-
point unit.
NOTE

Signals with names ending in an H are high true, that is, a high equals a 1
and a low equals a 0.

Signals with names ending in an L are low true, that is, a low equals a 1 and
a high equals a 8.

Y

88951000 02

6-1

© System 17 HFPU
Backplane Wirelist and Signal Glossary
Alphabetical by Signal Name

Signal Board .
Name Name Pin Description
7L Drives Exponent Constant of 23;4(17;¢)
EXP P1B23 to A side of Exponent ALU. eused in
FPHMP ~ P1B23 FLOF)
1L Exponent Constant of 1. (used to
EXP P1A11 increment the exponent)
FPHMP P1A11 . :
MIL Mode Control to Mantissa ALU 74181's
FPH!P P2A12
SPALU P2A12
DPALU P2A12 .
1SpL ' Function Selects for Mantissa 74181's
FPHMP P2B15 .) .
SPALU P2B15
DPALU P2B15
1S1L Function Selects for Mantissa 74181'5
FPHMP P2B17 - .
SPALU P2B17 —
DPALU “P2B17
1S2L Function Selects for Mantissa 74181's
FPHMP P2A21
SPALU P2A21
DPALU P2A21
1S3L Function Selects for Mantissa 74181's
- FPHMP P2B19
SPALU P2B19
DPALU P2B19 |
FL Exponent Constant of 127,4(7F;¢)
EXP P1A14 (used for forcing maximum in case of
FPHMP P1A14 overflow)
8pL Exponent Constant of -127,4 (80;¢)
' EXP P1B17 (used to force zero result in case of
FPHMP P1817 zero mantissa or underflow)
Ag A/Q Data Bus
’ AQ P1Ap3
Al A/Q Data Bus

6-2 AQ P1891 | 88951000 02

Mg
AN
A12
M3
A4

A15

ACLKIL

ACLK2L

88951000 02

"
AQ.
M
A
A
A

AQ

AQ

AQ
AQ
AQ

AQ

" AQ

EXP
FPHMP
SPALU

EXP
FPHMP
SPALU

P1Bg6
P1AS
P1AG4
P1BR9
181G
PIAN
P1Bg2
P1Bg6
P1AD7
P1AB1
P1AD2
P1Bg3
P1BP4
P18g5

P2B24
P2B24
P2B24

P2A16
P2A16
P2A16

. A/Q Data Bus

A/Q Data Bﬁs
A/Q Data Bus
A/Q Data Bus
A/Q Dafa Bus
A/Q Data B;s
A/Q Data Bus

A/Q Data Bus

~ A/Q Data Bus ' 3 /

A/Q Data Bus

A/Q Data Bus

A/Q Data Bus
A/Q Data Bus
A/Q Data Bus

Mantissa FPAC Clock Bits § and 9 to 23

FPAC Clock Bits 24 to 31

ACLK3L

ACLK4L

ADD
AD1
AD1P
AD1Y
AD12
AD13
AD14

. ADI5
AD2
AD3

AD4

EXP
"FPHMP

SPALU
DPALU

EXP

FPHMP
DPALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA

ADDALU

P2B12
P2B12

P2B12

pP2B12

P2A14
P2A14

~ P2A14

P1823
P1B23

P1B24

- PIB24

P1A25
P1A25

P1A26
P1A26

P1A27
P1A27

P1A28
P1A28

P1A30
P1A30

P1A31

P1A31

P1B25
P1B25

P1826
P1B26

P1B27

P1B27

FPAC Clock Bits 32 to 47

FPAC Clock Bits 48 to 51

DSA Address

DSA Address
DSA Address
DSA Address
DSA Address
DSA Addrgss
DSA Address
D§A Address
DSA Address
DSA Address

DSA Address

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

88951000 02

AD5 .

AD6

AD7

AD8

AD9

ADAENBL
~ ADATAH

ADBENBL

ADOU%L

ASQL

ASIL

- BCENBH

88951000 02

DSA
ADDALU

DSA

ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA
ADDALU

DSA

ADDALU -

DSA
ADDALU

DSA
ADDALU

EXP

FPHMP
SPALU
DPALU

EXP

FPHMP
SPALU
DPALU

EXP
FPHMP

P1B28

P1B28

P1B3p
P1B3p

P1B31

P1B31

 PIA23

P1A23

P1A24
P1A24

P1B13
P1B13

P2A26
P2A26

P1A12

P1A12

P2A13
P2A13

P2A23
P2A23
P2A23
P2A23

P2B23
P2B23
P2B23
P2B23

P1B18
P1B18

DSA Address ?us
DSA Address Bus
DSA Address Bus
DSA Address Bus.
DSA Addfess‘Bus

Enables ADDR Bd MUX to A side of
ADDR ALY
{

Enables output of PCR/IR MUX on
ADDR Bd to HFPU DATA Bus

Enables ADDR Bd MUX to B side of
ADDR ALU | ,' .

Enables output of ADDR‘ALU to DSA
Address Bus

FPAC mantissa shift register mode control
FPAC mantissa shift register mode control

B Register C[ock Enable from FPH MP

6-5

BCLKH

BENBL

BROMI 6H

BSPL

BSIL

" CCH

CCRCLKL

CCRRDH -

CKSANL

CLK2L

CN11

CNTLODL

EXP

SPALU
DPALU.

FPHMP

SPALU.

DPALU

AQ
DSA

FPHMP
SPALU

DPALU-

FPHMP
SPALU
OPALU

AQ
DSA

DPALU

AQ
DSA

DPALU
DSA

FPHMP
SPALU

"

DSA

- SPALU

DPALU

EXP

FPHMP

P2B25
P2B25
P2B25

P2B26
P2B26
P2B26

P2A15

P2A15

P2A24
P2A24
P2A24

P2A25
P2225
PZA25

P2B19
P2B19

P2A18
P2A18
P2A18

P2B19

P2B19

P2A19
P2A19

P2B29
P2B29

P2A29
P2A29

P1A19
P1A19

4

Clock to B Register on SP and DP ALU

/

Enables B Register to B side of 74181" s
on SP ALU and DP ALU -

Buffered ROM bit 16 (Master control

micro-processor)

Mode Control for B Register
Mode Control for B Register

Master Control Consecutive Cycle Request
to DSA

Current Command Register clock
\

Current Command Register Read

Clock Sign of Answer

2nd Clock of Master Control micro-processor
Instruction Cycle

End-around carry bit for mantissa ALU

Load Shift-Counter

88951000 02

csL -

Do
DI
D1¢
on

D12

D3

Dl4

D15

D3

D7

D8

88951000 02

AQl

DSA

DSA
DSA
DSA
DSA
DSA
DSA
DSA

DSA

DSA

DSA
DSA

DSA

DSA

DSA

DSA

DSA

P2B28
P2B28

P1AD3

P1BG1

- P1B@6

P1Ag5
P1ADA4
P1B@9
P1B1¢
P1A11
P1Bp2
P1AR6
P1AD7
P1ADI

P1AD2

P1Bg3

P1BD4

P1B@S

Control.

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data

DSA Data
DSA Data
DSA Data

DSA Data

DSA Data

. COLD START command from 'A/Q to Master

Bus

Bus

Bus

Bus
Bus
Bus
Bus
Bus
Bus
Bu;
Bus
Bus
qu

Bus

Bus -

Bus

DATADH

DATAIH

DATA1gH

DATAT1H

DATA12H

DATA13H

DATAT4H

SPALU
DPALU
AQ
DSA
ADDALU

SPALU
DPALU
AQ
DSA
ADDALU

EXP
SPALU
DPALU
AQ

DSA
ADDALU

EXP
SPALU
DPALU
AQ

DSA
ADDALU

EXP
FPHMP
SPALU
DPALU
AQ
DSA
ADDALU

EXP
FPHMP
SPALU
DPALU
AQ
ADDALU

EXP
FPHMP
SPALUY
DPALU
AQ
DSA

ADDALU

. p2BP1
- P28g1

P2BQ1
P2Bg1

P21

P2Bp?2
P2Bp2
P2B @2
P2Bp2
P2B@2

P2AD4
P2AR4
P2Ap4
P2AP4
P2AD4
P2Ap4

P2APS
P2AD5
P2AQ5
P2ADS5
P2AP5
P2AP5

P2AD6
P2AD6
P2A%6
P2AD6
P2AP6
P2AD6
P2AD6

P2AQ7
P2Ap7
P2AQ7
P2AG37
P2AD7
P2AQG7

P2AD8
P2AP8
P2AD8
P2AP8
P2AP8
P2AP8
P2AP8

HFPU Internal

HFPU Internal

HFPU Internal

HFPU Internal

HFPU Interngl

HFPU Internal

HFPU Internal

Data Bus

Data Bus

Data Bus

Data Bus-

Data Bus

Data Bus

Data Bus

88951000 02

DATAISH

DATA2H

DATA3H

DATA4H

DATASH

DATA6H

DATA7H

88951000 02

AQ
.DSA

EXP
SPALU

‘DPALU

AQ
DSA
ADDALU

SPALU
DPALU
AQ
DSA
ADDALU

SPALU
DPALU
AQ
DSA
ADDALU

SPALU
DPALU
AQ
DSA
ADDALU

FPHMP
SPALU
DPALU
AQ
DSA
ADDALU

SPALU
DPALU

ADDALU

EXP
SPALU
DPALU
AQ

- DSA

ADDALU

P2ADI
P2AD9
P2AQ9
P2ADI
P2AP9
P2APS

P2BD4
P2BP4
P2Bp4

~ P2BP4

P2B@4

P2BP5
P2B@5
P2B@5
P2B@5
FcRPS5S

P2Bp6
P2B@6
P2BP6
P2BP6
P2BP6

P2Bp7
P2Bp7
P28Q7
P2Bp7
p2Bp7
P2B@7

P2B@8
P2BP8
P2B@8
P2B08
P2BP8

P2BP9
P2B@9
P2B@9
P2B@9
P2B99
P2B@9

HFPU Intemal

HFPU Internal

HFPU Internal

HFPU Internal

HFPU Internal

HFPU Internal

HFPU Internal

Data

Data

Data

Data

Data

Data

Data

Bus

Bus

Bus

Bus

Bus

Bus

Bus

6-9

DATA8H

DATA9H

DATAOUTIH

DATAOUTZH

DATAOUT3H

DIVL
‘DMAH

DPL

DSA PRIORITY

DSA PROG PROT

6-10

EXP

"SPALU

DPALU
AQ

DSA
ADDALU

EXP
SPALU
DPALU
AQ

DSA
ADDALU

EXP
SPALU

AQ

SPALU
AQ

SPALU
DPALU

AQ

EXP
FPHMP
SPALU

AQ
DSA

EXP

FPHMP
SPALU
DPALU

DSA
DSA

DSA

P2AD1
P2ART

P2ApT-

P2AD1

P2AQ1

P2AD1

P2ApD2
P2AQ2

- P2AP2

P2AD2
P2AP2
P2Ap2

P2A11
P2A11
P2AT1

P2B19
P2B1¢

P2B13
P2B13
P2B13

P1AP6
P1AD6
P1AgS8

P2B30
P2B3¢

P2B16
P2B16
P2B16
P2B16
P2B16
P2B16

P1B12

P1B14

HFPU Internal Data Bus

HFPU Internal Data Bus

Read FPAC ¢-15 to HFPU DATA

Read FPAC 16-31

Read FPAC 32-47

FPH MP Hardware Divide Command Line
Master Control DSA instruction execution

Double Precision bit from FSR

DSA Bus Signals

DSA Bus Signals

88951000 02

DSA REQ
! DSA RESUME
DSA WRITE

EACLKL
EBENBL
EGTL
EOVFL
ESQL
ESIL
ES2L
ES3L
ESML
ETBH

" EUNFL

88951000 02

DSA

"DSA

DSA

EXP
FPHMP

EXP
FPHMP

EXP
FPHMP

EXP
FPHMP

“EXP
'FPHMP

EXP
FPHMP

EXP
FPHMP

EXP

FPHMP

EXP
FPHMP

EXP
FPHMP

EXP
FPHMP

P1A15

P1A13

P1B21

P1B19

P1B19

P1A17
P1A17

P1AD9
P1AQ9

P1B12
P1B12

P1A22
P1AZ2

P1B21
P1B21

P1A21
P1A21

P1A20
P1A2¢

P1B22
P1B22

"P1A12

P1A12

P1B13
P1B13

DSA Bus Signals

DSA Bus Signals
DSA Bus Signals

Exponent Accumulator Clock

Enables output of Exponent B Reg to
B side of 74181

Exponent ALU output greater than zero

Exponent Overflow

- Exponent ALU function Select lines

Exponent ALU function Select lines

Exponent‘ALU functfon Select lines

Exponent ALU f;nction Select lines

Exponept ALU function Select lines
Eiponent difference Too Bié

Exponent UNder Flow

6-11

EXNXTH

FADR@H

FADRIH

FADRZH

FADR3H

FADR4H

FIXL

FL

FSRCLKL -

FSRRDH

FSTARTL

GL

6-12

DPALU

AQ

FPHMP .

DPALU

FPHMP
DPALU

FPHMP
DPALU

FPHMP
DPALU

FPHMP
DPALU

EXP
FPHMP

EXP
FPHMP

FPHMP
DSA

FPHMP

AQ
DSA

EXP
FPHMP

AQ

SPALU
DPALU

P1A32
P1A32

P2B29

P2829

P2A28
P2A28

P2B28
P2B28

P2AT1
P2A11

P1828
P1228

P1A18
P1A18

P1A23
P1A23

P1B29
P1B29
P1B29

P1B20
P1B29D
P1B2p

P18@8
P18@8
P1898

P2A17
P2A17

Execute Next op Code. Enable from Master

micro-processor

Starting Address Lines for FPH MP

Starting Address Lines'for FPH MP

Starting Address Lines for FPH MP

Starting Address Lines for FPH MP

Starting Address Lines for FPH MP

Control to ETB Comparator used during FIX

Exponent Constant of 15;4(F;g)

Function Status Register Clock
FSR Read
Start Command to FPHMP

Carry Generate out of DPALU

—7

88951000 02 -

GND -

-t HADRPH
HADRTH

HADR2H

188951000 02

DSA

ADDALU
ADDALU
ADDALU
ADDALU
ADDALU

ADDALU

DPALU
AQ
DSA

DPALU

AQ
DSA

DPALU
AQ
DSA

P1A29

P1Bpl

PI1B11
P2AP3

P2B21

P2B31
P1A29
P1B21
P1B11

-P2AD3

P2B21
P2B31
P1A29
P1B11
P2AP3
P2B21
P2B31
P1A29
P1B11
P2Ap3
P2B21
P2B31
P1A29
P1B11
P2AD3
P2B21
P2B31
P1A29
P1B11
P2AP3
P2821
P2B31
P1A29
P1B21
P1B11
P2AP3
P2B21

P2B31

P2B29
P2B29
P2B2p

P2A2p
P2A20
P2A29

p2B22
P2B22
p2B22

~ Ground

Master Control micro-processor Instruction
Address lines

Master Control micro-processor Instruction
Address lines)

Master Control

Micro-Processor

instruction Address
lines.

6-13

HADR3H

HADR4H

HADRSH

HADRG6H

HADR7H

HALTL
HDWRL

1/0 MODEL
"TADATAL
ICCRRDL
IFSRROL
INSCLKL
IR2H

IR3H

6-14

DPALU

AQ

- DSA

DPALU
DSA

DPALU
DSA

DPALU

DPALU
AQ

EXP
FPHMP

EXP .
FPHMP

AQ
DSA

AQ
DSA

AQ
DSA
AQ
DSA

EXP
FPHMP

DSA
ADDALU

DSA
ADDALU

P2A19
P2A19
P2A19

P2B18
P2B18
P2B18

P2A22
P2A22
P2A22

P1A31
P1A31

P1B31
P1B31

P1AD4
P1A4

P1A15
P1A15

P2A27

P2A27

P2A17
P2A17

P2A14
P2A14

P2B17
P2B17

P18@S
P1B@5S

P2B13
P2B13

P2B11
P2B11

Master Control micro-processor Instruction
Address lines ‘

Master Control micro-processor Instruction
Address lines

Master Control micro-processor Instruction
Address 1ines

Extra Master Control Starting address
ROM outputs used to generate the Two Least
Significant Bits of the FPH MP Starting
address

Extra Master Control Starting address
ROM outputs used to generate the Two Least
Significant Bits of the FPH MP Starting
address

FPQ MP HALT 1instruction execution

FPH MP Hardware micro-instruction (SHIFT,
NORM, MULT, DIV)

Input/Output interrupt of Master Control

A/Q interface drive of ADATAH (Enable
PCR/IR to HFPU DATA Bus).

A/Q interface Drive of CCRROH

A/Q interface Drive of FSRRDH

FPH MP Instruc;fon Clock

Index Register Times 2 | | L

. ‘ ' 1

Index Register Times 3
| 88951000 02

IRCLKL

IRCLRL
IRSH

ISELL

IZERCH

J-YESH

LEFTL

MA=BH

MACPH

MAC35L

MAC36L

88951000 02

AQ

‘DSA .

ADDALU

DSA
ADDALU

DPALU

ADDALU

AQ
DSA
ADDALU

DPALU
ADDALU

DPALU
AQ

DPALU
AQ

EXP

FPHMP
SPALU
DPALU

EXP
FPHMP

- SPALU

DPALU

SPALU
DPALU

SPALU

. DPALU

P2B15
P2B15
P2B15

P2B@7
P2Bp7

P2A16
P2A16

P2A28
P2A28
P2A28

P2A1Q
FZA1Q

P2B14
P2B14

P1B27
P1B27

P2A15
P2A15
P2A15
P2A15

P2A26
P2A26
P2A26
P2A26

P1A26
P1A26

P1A25
P1A25

" Index Register Clock

Index Register Clear -
Index Register Sign

Select Control to PCR/IR MuX

Index Register = Zero
Jump Yes . Master Control jump condition
true. 3

Shift Left mode Control to CCR

Mantissa A=B. Indicates that outputs of
Mantissa ALU are all high

Mantissa Accumulator Bit D.

Mantissa Accumulator Bit 35.

| Mantissa Accumulator Bit 36.

6-15

o
MB35L
MB36L
MBS 1L

MC

MCLRL

MDPH

MDCLKIL

MDCLK2L
MDCLK3L

MDENBL

MEL

6-16

FPHMP
SPALU

SPALU
DPALU

SPALU
DPALU

SPALU
DPALU

AQ.

EXP
FPHMP
DPALU

DSA

FPHMP
SPALU

- EXP

SPALU
DPALU

AQ

SPALU
AQ

SPALU
DPALU

AQ

FPHMP
SPALU
DPALU

AQ
DSA
ADDALU

p2B22

p2B22

P1829

P1829

P1825

P1B25

P1B24
P1B24

P1B23

P1A19
P1A19
P1A1Q
P1A1Q
P1A1Q

P2A3p
P2A3D

P2811
P2B11
P2B11
P2B11

P1839
P1B39

P1A24
P1A24
P1A24

P2B30
P2B39
P2B3@

P2A25
P2A25

P2A25

- Mantissa B Régister Bit @

‘Mantissa B Register Bit 35

Mantissa B Register Bit 36
Mantissa B Register Bit 51

A/Q Bus Master Clear

HFPU Master Clear. Inclusive OR of MC
and PCLR

Multiplicand/Divisor Register Bit @

M/D Register Clock, Bits P to 15

M/D Register Clock, Bits 16 to 31
M/D Register Clock, Bits 32 to 47

Enables M/D Reg to Mantissa ALU B side

Look-Ahead Buffer Register Memory Enable

8895100 02

MIRCLKL

MPSNSH
MSPL
MULTL
NORML

NRMDH

NRIMIH
OPCLRL

PCRCLKL

PCRLL
PICKL
PL

PROG PROT

88951000 02

DPALU
DSA

EXP
SPALU

EXP
SPALU

EXP

FPHMP
SPALU

EXP
FPHMP

EXP
FPHMP
SPALU

EXP
SPALU

AQ

DSA
AQ
DSA
ADDALU

DSA
ADDALU

EXP
FPHMP

SPALU
DPALU

AQ

P2A30
P2A3D
P2A3@

- P2B14

P2B14

P2A22
P2A22

P1A25

P1AJS5
P1B@8

P1B15
P1B15

P2A27
P2A27
P2A27

P2B29
P2B29

P2BP3
P28@3

P2B26
P2B26
P2B26

P1B22
P1B22

P1AB3
P1Ag3

P2BP3
P2BP3

P1A23

Mastef Control Instruction Register Clock

Multiply Sense line

Mantissa Summer Bif g

FPH MP H;rdware'Multiply Comand Tine
FPH MP Normalize Command

Normalized indicates that FPAC Bits @ and
9 differ

Normalized minus one., FPAC Bits @ and

10 differ,

Operand Byte Counter Clear

Program Counter Register Clock

Program Counter Register Load enable

Latch for storing sign of the exponent
difference for use in ADD/SUB to Pick the
larger exponent

Propagated Carry from DPALU to SP ALU

A/Q Bus Protected Command Line

6-17

PROTECT FAULT L DSA Bus Protect Fault

DSA P1B17 _
PROTH : FSR Protect Mode Status Bit
AQ 4 P2B12 ’
DSA P2BI2
QH A/Q Bus Address lines
AQ . P1A12
QIgH ’ A/Q Bus Address lines -
AQ P1A17 .
QlH A/Q Bus Address Tlines
AQ P1B12 '
Q2H : A/Q Bus Address lines
AQ PIAI3 |
Q3H ‘ A/Q Bus Address lines
AQ P1B13
®H A/Q Bus Address lines
AQ PiAl4 :
Q5H A/Q Bus Address lines
AQ P1B14
Q6H A/Q Bus Address lines
AQ P1A15
Q7H A/Q Bus Address lines
AQ P1B15
Q8H ' ~ A/Q Bus Address lines
: AQ P1A16
QH A/Q Bus Address lines
AQ P1B16 _
QL Serial Quotient Bit
SPALU P2B27
- DPALU P2B27
RADL | Look<Ahead Buffer Address Lines (RAM Address)
DSA P1AgJ8
ADDALU P1A28
RAIL Look-Ahead Buffer Address Lines (RAM Address)
DSA P1Bp8 ' :
ADDALU P1Bp8 |
RACTVL | Reset the Active Bit of FSR
AQ P2A23
DSA P2A23

6-18 88951000 02)

READ - ~ A/Q READ

, A P1A21
REJECT AQ Reject
- AQ P1B22
REPLY | A/Q Reply
) . AQ P1A22
RESUMEL ' DSA Resume
AQ P2R12
DSA P2A12
RUNL FPH MP Active line
- EXP P1A2Z8
FPHMP P1A28
AQ P1AZ8
SACTVL N Set the Active Bit in FSR
AQ P2B25
DSA P2B25
SAH Select A mode for Address ALU
- DSA P2A11 . .
ADDALU = P2Al11
SARENBL Starting Address Register Enable., (Reads
DPALU - P2A13 Location § of Look-ahead Buffer)
AQ P2A13 :
SBOL . ‘ Summer B input Bit @ (forces max mantissa)
FPHMP P2B29 '
SPALU P2B29
SB16L Summer B input Bit 16 (FLOF overflow Result)
FPHMP P2A13 4 '
SPALU P2A13 ‘
SB32L ~ Summer B input Bit 32 (single precision
‘ FPHMP P2A1Q Normalized Round) -
| SPALU P2A1Q
SB33L ‘ ‘ ~ Summer B input Bit 33 (single precision
FPHMP P1B27 Un-normalized Round)
SPALU P1B27 ' |
SBASL Summer B input Bit 48 (Double precision Nrm'd
: FPHIMP P1A27 Round)
DPALU P1A27 ‘
SB49L Shmmer B input Bit 49 (Double precision
_ FPHMP . P1A28 un-normalized Round)
DPALU P1A28

88951000 02 ' o 6-19

SCFUDIN

SCFWDOUT

SCREV IN

" SCREV OUT

SDBPML
SHCLKIL
SHIFTL
SPECH
SPINL
SPTCTL
SRESETL
TARCLKL
TARLL

TRUINL

6-20

'DSA

DSA
DSA

dSA

AQ
DSA

EXP
FPHMP

EXP
FPHMP

DPALU
AQ

AQ
DSA

AQ
DSA

EXP
FPHMP

DSA
ADDALU

DSA
ADDALU

AQ
DSA

P1A19

P1819

" P1B15

P1B16

P2A21
P2A21

P1Bg4
P1Bp4

PTA13

"P1A13

P1B26
P1B26

P2A29
P2A29

P2B23
P2B23

P18@3
P18@3

P1A16
P1A16

P1A22
P1A22

P2B27

P2B27 -

DSA Scanner 1ines
DSA Scanner lines
DSA Scanner liﬁes
DSA Scanner lines

Set the Double Precisioh Bit in FSR

Shift Counter Clock from FPH MP

FPH MP Hardware Shift Command
Master Control execution of SPEC OpCode.

Forces msb of OpCode Decode -ROM input.
Single Precision Inhibit to Master Control
Instruction

Set the Protect Bit in FSR

FPH MP System Reset

Temporary Address Register Clock

TAR Load enable

Jump condition true Inhibit to Master Control

Instruction

88951000 02

P

4
W

TSELL:

vce

W=p

WEL

WRITE

ZOUNDL

88951000 02

DSA

ADDALU

EXP
FPHMP-
SPALU

. DPALU

DSA
ADDALU

AQ

AQ
DSA
ADDALU

AQ

FPHMP
SPALU

P1A14
P1A14

P2A31
P2A31
P2A31
P2A31
P2A31
P2A31

P2A31

P1A2¢

P2B24
P2B24
P2B24

P1821

P2A20
P2A20

. Select Control to DATA/TAR MUX on
ADDR Bd. | |

+5V

ANQ W=0

Write enable to Look-Ahead Buffer

A/Q Write

Zero or unnormalized Divisor

6-21

Name - T.P. ' Description
Az 3 Address ALU.Summer outputs (1sb) .
AE]H 4 : i] Co .
AT2H - 5 "

"AZ3H 6 : "

AZ4H 24 , "

AL5H 25 "

Az6H 26 "

AL7H 27 ' "

Az8H 36 "

AL9H 35 "

AT10H 34 : "

AT11H 33 "

AL12H 54 "

AL13H 53 "

AT14H 52 "

Az15H 51 " (msb)
ADADAEHNB-L 62 MUX enable to Summer A side
ADATA-L 32 Enable PCR/IR MUX to HFPU DATA Bus
ADBENB-L 61 MUX enable to Summer B side -
ADOUT-H 31 Enable Summer to DSA Address
DATAQH 7 HFPU internal Data Bus high true (]sb)
DATATH 9 " A
DATA2H 10 "

DATA3H 2 "

DATA4H 28 "

DATASH 29 "

DATAGH 30 "

DATA7H. 22 "

DATA8H 44 "

DATA9H 45 "

DATA10H 46 "

DATA1TH 42 "

DATA12H 59 "

DATA13H 60 "

DATA14H 55 " .

DATA15H 57 " (msb)
IR2-H 48 INDEX Register times 2

IR3-H 49 " " "3

IRS-H 50 " " ' Sign

ISEL-L 18 Select IR input to PCR/IR MUX
IZERO-H 47 IR = zero

ME-L 12 Memory enable to Look-Ahead Buffer
PCRCLK-L 39 Program Counter Register Clock
PCRL-L 38 Program Counter Register Load Enable
RAD-L 17 . Look-ahead and SSAR Buffer address lines
RAI-L - 15 "

TARCLK-L 43 Temporary Address Register Clock
TARL-L 37 TAR Load Enable .
TSEL-L 23 Select TAR input to DATA/TAR MUX
WE-L

6-22

Address ALU Test Point Signal Glossary

16 Write Enable to Look-Ahead Buffer

88951000 02

DSA Test Points and Signal Glossary

Name T.P. ' Description

CC-H : 53 Consecutive Cycle Request

CONN-H 15 Connected to DSA (memory cycle in progress)
DIN-L 7 Enable DATA to DSA D Bus o
DOUT-H n Enable DSA D Bus to HFPU DATA Bus
FEND-H 28 FEND Bit in FSR

HALT-H 24 Scanner Halt Flip/Flop:

HOG-H 23 HOG Bit in FSR

INDX-H 25 FSR INDX mode Bit

LER-H 2 Leading edge of Resume

NEED-H 21 Need flip/flop in DSA Request logic
PTFLT-H 19 Protect Fault Bit in FSR

REL-H - 27 Relative Addressing mode Bit in FSR
RES-H 6 Buffered DSA RESUME

REQ-H 14 DSA Request flip/flop

ROM16-H 36 Master Control micro-processor ROM outputs
ROM17-H 39 "

ROM18-H 38 u

ROM19-H 37 "

ROM20-H 43 "

ROM21-H 42 "

ROM22-H 41 "

ROM23-H 40 ’ "

ROM24-H) 45 , "

ROM25-H - 52 "

ROI126-H 51 "

ROM27-H 46 "

ROM28-H 47 "

ROM29-H 48 . .

ROM30-H- 49 "

ROM31-H 50 "

ROM32-H 54 "

ROM33-H 55 "

ROM34-H 57 "

ROM35-H 58 .

ROM36-H 59 "

ROM37-H 60 "

ROM38-H 61 "

ROM39-H 62 " ‘

SCNCLR-L 5 Scanner Clear from Master Control
SCNHLT-H 44 Scanner Halt for Consecutive Cycles
SCNR-H 10 Scanner flip/flop

SET NEED-L 20 DSA Cycle initiate

TER-H ' 3 Trailing edge of Resume

-WORD-H 22 WORD mode in FSR

WRITE-H 17 Write cycle Control

WRT-H" 12 DSA write flip/flop

88951000 02 6-23

A/Q . A/Q Test Points and Signal Glossary

Name T.P. Description

PIN 1 = GRND

ACTIVE-H 1 Actlve 81t in FSR

CLK2-L - 42 “Second Clock of Master Control Instr Cycle
CCRCLK-L 49 Current Command Register Clock

DADATA-H 2 Drive HFPU DATA to A/Q A Bus

DECODE-L 21 Decode of a Valid Q address .

DEFINED-L 16 Indicates that the Q station Code is def1ned
DP-H 12 Double Precision mode Bit in FSR

FPWAIT-L 50 Wait for Floating Point execution Completion
HALT-L 38 Master control microprocessor Halt

I/0 ACK-L 37 . 1/0 Acknowledge, Master Clock Stopped

I/0 MODE-L 30 I/0 command being executed

MIRCLK-L 44 Master Control instruction Reg1ster clock
OPCNT-L 48 Clock to OP Byte Counter

OPDN-L 45 Op word Done, DP Byte Counter = 4

PCD-H 18 Protected Command Required

PFSR-L 20 Protected write FSR command

PROT-H 7 Protec. Bit in FSR

R+W-L 17 A/Q Read or Hrite

RADATA-H 3 Read A/Q A Bus to HFPU DATA Bus .

ROM8H 54 Master control micro-processor ROM outputs
ROMIH 55 ' " ‘

ROMI0H 57 -

ROMITH 58 "

ROM12H 59 "

ROMI3H 60 "

ROM14H 61 "

ROMI5H 62 "

RUN-L 51 FPH MP Active

SPIN-L 47 Single Precision Inhibit

START-L 15 Start command to Master Control

STKRQ-L 28 I/0 Request for stop of Master Clock
STOPREQ-L 22 A/Q STOP command Pending

TACT-L 19 Test Active before Reply to A/Q Write
TRUIN-L 46 Jump Condition true inhibit

Us-L 27 Q Register address defined

WCLK-L 14 Write Clock, generated to strobe data to

destination on A/Q write

.88951000 02

ASignéi

DP ALU Test Points and Signal G1ossar}

Test Point Description
IMH 33 Mantissa ALU 74181 function Se]ect Lines
1SPH 45
1S1H 44 "
1S2H 43 "
- 1S3H 53 "
ACLK3-L 59 FPAC Clock 3 (Bits 32 to 47)
AENB-L 36 Select B Register input to MD/B MUX
ASp-L 62 ACCumulator shift Register mode Controls
AS1-L 61
BCLK-L 48 B Register Clock
BSP-H 46 B Register mode Controls
BS1-H 47
CCPH 6 Current Command Bits (actually next opByte)
CClH 7 "
CC2H 17 "
CC3H 16 "
CCRCLK-L 24 Current Command Register Clock
CCRRD-H 15 " Read
DATAQUT3H 38 Enable FPAC Bits 32 to 47 onto HFPU DATA
DP-H 60 Double Precision
EXNXT-H 23 Execute Next
HADRZH 11 Master Control micro-processor ROM Address
HADR1H 12 "
HADR2H 13 "
HADR3H 14 "
HADR4H 19 "
HADR5H 20 "
IRS-H 4 Index. Register Sign
1ZERO-H 5 Index = Zero
JYES-H 22 Jump Condition satisfied
LEFT-L 21 Enable left shift of CCR
MA=B-H 3 Mantissa A = B i
MACPH 2 Mantissa Accumulator Bit @
MBSTR-L 35 Enable output of MD/B Mux into B side of 74181's
MDCLK3L 34 Multiplicand/Divisor Register Clock
MIRCLK-L 18 Master Control Instruction Register Clock
MS36L 54 Mantissa Summer Bits
MS37L 55
MS38L 57 "
MS39L 58 "
MS40L 49 "
MS41L 50 "
MS42L 51 "
MS43L 52 "
MS44L 39 "
MS45L 40 . "
MS46L 41 "

88951000 02

6-25

DP ALU Test Points and Signal Glossary

Signal Test Point Description

MS47L 42 Mantissa Summer Bits

MS48L 29 "

MS49L - 30 "

MS50L 31 "

MS51L . 32 "

SARENB-L 9 Starting Address ROM enable

SPEC-H 10 Master Control execution of SPEC op Byte

6-26 | 188951000 02

SP ALU Test Points and Signal Glossary

Signal T.P. Description

IMIH 26 Mantissa ALU 74181 Function Select Lines
1SPH - 29 " ‘

1S1H 28 "

1S2H 27 "

1S3H 35 " ‘

ACLKIL 62 FPAC Clock 1 (Bits P and 9 to 15)

ACLK2L 37 FPAC Clock 2 (Bits 16 to 31)

ACLK3L 4 FPAC Clock 3 (Bits 32 to 47)

ASQL 45 Accumulator Shift Register mode Controls
ASIL 46 " :

BBENB-L 40 Select B Register to B side of 74181
BCLK-L 51 B Register Clock

BSPH 49 B Register Mode Controls

BS1H 50 "

DATAQUTIH 47 Enable FPAC § to 15 to HFPU DATA Bus
DATAOUTZH 36 " " 16 to 31

DATAOUT3H 3 " " 32 to 47 " "

DP-H 2 Double Precision

DPSNS-H 19 Double Precision Multiply Sense Bit
M/BSTB 39 Enable MD/B MUX output to B side of 74181's
MA = B-H 30 Mantissa A = B

MAC36LI-L 13 Mantissa Accumulator Left Serial Input to Bit 36
MBAL 57 Mant1ssa B Register Bit

MB36LI-L 12 " Left Serial Input to Bit 36
MDCLKIL 48 Mu]t]p]lcand/D1v1sor Reg Clock 1 (Bits § to 15)
MDCLK2L 38 # 2 (Bits 16 to 31)
MPSNS-H 10 Multiplier Sense Bit '

MSPL 58 Mantissa Summer output Bits

MSIL 59 ' " .

MS10L 60 . ' "

MS11L 61 "

MSi2L 52 "

MS13L 53 "

MS14L 54 "

MS15L 55 "

MS16L 4 "

MS17L 42 "

MS18L 43 "

MS19L 44 "

MS20L 31 "

MS21L 32 "

MS22L 33 "

MS23L 34 "

MS24L 22 "

MS25L 23 “

MS26L 24 "

MS27L 25 "

MS2sL 14 "

MS29L - 15 .

MS30L 16 . .

88951000 02 S . 627

SPALU Test Points and Signal Glossary continued -

Signal T.P. Description

CMS31L 17 Mantissa Summer Output Bits

MS32L : 5 I -

MS33L - 6 "

MS34L . 7 - _ "

MS35L 9 "o

SPSNS-H 18 Single Precision Multiply Sense Bit

6-28 _ ‘ 88951000 02

FPH MP Test Points and Signal Glossary

Signal T.P.. . Description
ADRPH . 25 Floating Point Hardware Micro-Processor ROM Address Bits
ADRIH 26 " :
ADR2H 27 "

ADR3H 28 "

ADR4H 29 "

BROM13 23 Buffered ROM Bit 13

DF 2 Divide Fault

FSRCLK-L 5 Function Status Register Clock
FSRRD-H 24 FSR Read

INSCLK-L 42 FPH MP ‘Instruction Register Clock
JYES-L : 38 Jump Condition satisfied
OVF 3 Exponent Overflow

ROM@H 6 FPH MP ROM outputs

ROMIH 7 "

ROM2H 9 "

ROM3H 10 "

ROM4H 1 "

ROM5H 12 "

ROM6H 13 "

ROM7H 14 : "

ROM8H 15 : "

ROMIH 16 "

ROM10H 17 "

ROM11H 18 . "

ROM12H 19 "

ROM13H 20 "

ROM14H 21 "

ROM15H 22 "

ROM16H 30 "

ROM17H 31 "

ROM18H 32 "

ROMISH 33 -

ROM20H 34 "

ROM21H 35 "

ROM22H 36 "

ROM23H 37 "

ROM24H 43 "

ROM25H 44 "

ROM26H 45 "

ROM27H 46 "

ROM28H 47 "

ROM29H 48 "

ROM30H 49 o

ROM3IH 50 "

ROM32H 53 “

ROM33H 54 .

ROM34H 55 "

ROM35H 57 "

88951000 02 | 6-29

6-30

FPH MP Test Points and Signal Glossary continued

Signal T.P. Description

ROM36H 58 FPH MP ROM outputs
ROM37H 59 " _
ROM38H 60 "

ROM39H 61 : "

RUN-L 62 FPH MP Active

UNF 4 Exponent Underflow

88951000 02

EXP and Timing Test Points and Signal Glossary

,Signa1 : T.P. Déscription

1-L ' 35 Exponent Constant of 1

7.t~ 32 Exponent Constant of 23,4(17,¢)

80-L ‘ 47 Exponent Constant of -127,,(80,¢)

ACLK-L 15 Accumulator Clock '

ciL 4 Fourth time state of FPH MP instruction Cycle

CNTLD-L 60 Load Shift Counter Register

DATAQUT1-H 38 Read FPAC P to 15 to HFPU DATA

EA(-2)-L 61 Exponent Accumulator Bits

EA(-1)-L 51 "

EAIL 50 "

EA2L 53 "

EA3L 57 "

EA4L 59 "

EASL 39 "

EA6L 41 "

EA7L 44 "

EASL 46 " ‘

EACLK-L 62 Exponent Accurulator Clock

EBENB-L 37 Exponent B Register Output enable

ECLK-L 24 Clock derived from SHCLK-L during Shift

ENTR 17 Enter state of Multiply/Divide timing

ES(-2)-L 48 Exponent Summer output Bits

ES(-1)-L 49 -

ES1-L 52 "

ES2-L 54 "

ES3-L 55 "

ES4-L 58 "

ES5-L 40 , "

ES6-L 42 "

ES7-L 43 "

ES8-L a5 "

F-L 33 Exponent Constant of 15,4(17,¢)

F7"L 34 ’ "]2710“:716)

FSTRT-H 5 FPH MP Start Command from Master Control

HALT-L 6 Halt Bit from FPH MP

HDWCLK-L 20 Hardware Clock (during multiply/divide)

HDWST-L 13 Hardware Start (used to Start Shift, Morm, Mult or Div)

ICLK-L 12 FPH MP Instruction Register Clock

M-H ‘ 31 Exponent ALU 74181 Mode Control

MDCLK-L 23 Multiply/Divide hardware Clock

MDCLK1-L 36 Multiplicand/Divisor Clock 1 (Bits § to 15)

NRM-L 21 Normalize flip/flop output

RESTART-L 18 Hardware Command Line used to Restart FPH MP after
SHFT, NORM, MULT or DIV _

SPH 30 Exponent ALU 74181 Function Selects

S1H 29 ' " 4

S2H 28 u

S3H 27 "

SCLK-L 16 FPH MP System Clock

88951000 02 | - . _ 6-31

EXP and Timing Test Points and Signal Glossary continued

Signal T.P. Description

SFT-L 22 Shift Clock of Multiply/Divide timing

SHCLK-L- 25 Shift Clock

SHENB-H ~ 11 Shift Enable

SHFT 3 Shift flip/flop

SPCLK-H 19 Special clock (SCLK:2)

SRESET-L 7 FPH MP System Reset

STCLK-L 25 Stop Shift Clock (Count = @)

STCHNT-L 9 Step Count (used in Mult/Div) -

TST 2 Test State of HMult/Divide timing

ZED-H 10 Multiply/Divide step count =
6-32

88951000 02

GLOSSARY A

o

Calling Sequence String of command words and operand addresses residing
in SYSTEM 17 memory that is used to direct HFPU
activity.

Command-Code / OP-Byte / OP-Code Terms used to reference individual 4-bit commands
within the command words of a calling sequence.

FPAC Floating-point accumulator register within the FHPU.

FPMP Floating-point micro-processor. Portion of the HFPU
that performs arithmetic operations on the FPAC.

MMP Master Micro-Processor. Portion of the HFPU that

interprets command codes and communicates with
the A/Q, DSA interface.

8895100 02 A-1

PN

MICRO-CODE LISTINGS AND FLOW CHARTS B
p'
- The following pages contain the micro-code listings for

- the Floating-Point and Master micro-processors. The index
below identifies the page on which the flow charts for each
function will be found. The flow charts are divided into se-
parate sections covering the operation of the two micro-
processors. Figure 4.7 illustrates the conventions and
mnemonics used in these flow-charts. The mnemonics used in
the listings were defined in section 4.1.4.

The flow charts are keyed to the micro-code listings and
to the algorithm steps as defined in section 4.2. The nomen-
clature "LOCnn'" to the left of the flow chart indicates that
that step occurs at location nn in the micro-code listing.

In addition to the flow charts of the micro-code, this
appendix also contains flow charts of the major logic timing
loops within the HFPU. _

88951000 02 | B-1

HFPU FLOW CHART INDEX

FLOATING POINT

FUNCTION OP - CODE MASTER CONTROL
or LOGIC . MICRO-PROCESSOR
ELEMENT PAGE STARTING - PAGE | STARTING
- ADDRESS ADDRESS
LDWD1 , N/A M8 o1 F2 4
LDWD2 N/A M8 41 F2 5
LDWD3 N/A M8 81 F2 6
STOP N/A M19 C2 ~F3 (FLST)
RESTART N/A M22 -CP F2 3 (FLDD)
COLD START N/A T M17 C3 N/A
FPMP Timing N/A Fl4
A/Q Timing N/A AQ-1
DSA Timing N/A DSA-1
Master Timing| N/A M27
OP Code Fetch| N/A M17
Execute Next N/A M26
SPEC 0 M15 32 N/A
FLOF 1 M6 62 F5 2}
FIXF 2 M7 1A "F4 8
STRI 3 M1l4 17 N/A
FEND 4 M18 1D N/A
CHMD 5 M1l 1E N/A
NIDX 6 M11 1F N/A
FCOM 7 M8 D9 F& |7
FSUB 8 M3 24 F6 20
FMPY 9 M3 60 F8 1
FDIV A M3 =~ A0 F9 2
FLDD B M3 EO F2 3
ADDI C M13 2A N/A
FLST D M9 2E F3 (FLST)
FADD E M3 20 F6 0]
INDX F M12 2C N/A
FEND - 10 M18 1D N/A
-CACS 11 M15 35 N/A
BRAM 12 M1l6 - 36 N/A
BRAZ 13 M16 76 N/A
BRAN 14 M16 F6 N/A
BRAP 15 M16 B6 N/A
BRIM 16 M16 33 N/A
BRIZ 17 M16 73 N/A
BRIN 18 M16 F3 N/A
BRIP 19 M16 B3 N/A
FEND 1A M18 1D ‘N/A
' ' ' . -N/A
]]]
- FEND “1F M18 1D N/A
FPMP Micro-Code Fl
Master Micro-Code M1

88951000 02

P

88951000 02

.A/Q Flow Chart - Output to HFPU

Q DEFINED?

N
Q SN
@' AND Yes
App? PCLE to
HFPU
No T
DELAY For DELAY 1CR
200, TOTAL 200,,10TAL
;)|
ISSUE AQ
RIEPLY

©

B-3

P

ROM TRUTH TABLES AND A/Q DECODING ROMS | . C

' o c-1
88951000 02 | |

| A/Q - D9

~

OO0OO0OOOOrrmrmrmrm e O O0O000000000000000
OO0 O0O0OO0OOr rmrmrmrreOrmrmrrme— O0O00000000O00O0O000O0
OCOO0OO0OO0OOCmrmemrmrmr r—rr— 0000000000000 0O0
OO0 O0CO0OOCrmrmmOrmrermmm O0000000O00O0O0O0O00O00
OCOO0OOO0O~OrOrrrmmrmre O00000O00DOO0DOOOOO
OCOO0O0O0OOrm OO rmrrm 0000000000000 O000
OCOO0OOOOO0Orrmm COrmrmm e~ 0000000000000 000

——— — e —— - o

A/Q - D10

12345678, 12345678

OCOO0O0OOOrrmrmrerm e~ O~ 0000000000000 O00
COOOOOOrm rrmrmrmr O~ O0O000000000000000
OO0 O0O 0O Ormmrmrmermr e 0000000000000 O0
OO O0OOOOrm rOr rrmmr~ 0000000000000
OCOO0OOOOrm rrmrmOrmrmrm e 0000000000000 O0OO
COO0OO0OO0CO~=rrmrm OO0~ —0000000000O00O0O0DOO00O
OCOO0OOOO0COmrmmO—=rmrmre~m 0000000000000 000
OO0 OO0OOOODOOr~rmr OO0

PN~
o. a-
=X}
= =y
. 3=
M b b b=
M N — XN [- -4 .
[x3 coo< xO®n
OEZEE~O0Q~0OW
g Cecel3dage
< CESEHESSEES
LN OO0 mmrmemm — e~ 0000000000000
vuxxoN COO0COOrmrrmmrrm e~~~ O~O000000000D0000 00
—NWa (O] OO0 mmrmrer e~ O~~~ 0000000000000
© COL-I| OCOOOCOCOmrr—~ 0000~ D00000000O000COO 00
S PoDrmsl COCODOO~Ommm—~~~0000000000000O0 00
I DODFNIM OO0 Y000~ ~ O~~~ O0000000000000000
S [OPODF—N OOCO0O000mr O~~~ —~—0000000000000000
< =w ~ OO0 m i r rr—e—00 0000000000000
o =R =X X k= ke -k =
w ~N OO0 O0DO00O0DOO0O0DOOOOO0OOODOOOOOOOOO
2 O] OO0 OOOOOOOOCODOOOOOOOOOO
— > N OO0 OOOODOOOOOOOOODOOOOO0O0OO
' CLULZM| mrerec—-——_0 00000000 mmr e e —000000000 O
1S4 OO N OD0000OO0O00O000O000O0OD00CO~000~0000 O
< —FLO i~ O00DO00O~000O~O0O0mm 00000~ 00000000 O
—
o O
=X
ot b EE
o o g 22
Of v o = b= =
o [3 =] <M oo MmNy x a
» S (=1 neoagooxEgn oco< O 0
Dm w o NZTZTZTAA O WwwwﬂwwICF
— .
= o] £ Y =Y=1=2=1==R=1=) Fxxwooxx &
oal = < SRE222228 NEZ==ZxXxOO0OTE=
MW) .
m OrtANMTNONONANCOVAWULO~ NN NONOONLCMOOW W
-—d P g S pess g (S g P g . g

C-2

88951000 02

« ROM OUTPUT BIT

< Mnemonic

OO — O —O000000000M OO0 r—r~r~r=r—r—r=r=rr-

r—r—r—r— O~ 0O 0000~ 0000 rr~r—~r~rm—r—rm~— 000000

OO~ rm—r— O 0000~ Ormrmr—rerere e OO0 00 r—r— r

OO~ O r—r—— O0O000r—Or 0000000000 r—r~rmr—r—r—

DPALU BOARD LOCATION B13

I~ r— O 00000~ ¢t~r—r~r~r~r— O~~~ r— 000000

O~ O O0O00O0OrrrO O 00000000000 —0O0000000

STARTING ADDRESS ROM (SAR)

1121 3]4]5]6]7]8

COO0O0O0O0O—OO0O— 0000000000~ 0O00— 000000

()
ANH
S oL wOAQXSETO>>NHEFEAOXXONENZAZINZOOOOOOO .
OO ZZOOODD A~ AOONAOOZOILLLL A At N ZZ 2 = Z 2
o OPLITEchstnLDHANEARRRRRRRREEEEEE
QO L VUL O = U U e < W . OO MO MMM A L. W b b
ClOoO~NMahULLNOONCTONVAWUL O~ NMTULLOUONOONTNOO W L
o (= g P g e g e PR e (R (S (e Qe e e ge—
I
©
mc
o
(<]

88951000 02

C-4

Micro-Code ROM Truth Tables

MASTER CONTROL PAGE 1

‘DPALU - BI2

. CHIP LOCATION

S~~~ 0O0~0~00000~O~0O~O~000~0000O

OCr e~~~ 00~ 0000~ 00~ 0000~00~0O0.

Or e OO0~ mrer e —,— 000000000~ rerO~00
00O OO0 r rmrmrmrmem e O~ OO~ 0O
X=Xk R R o N N N R kX=X N= N = === == =X 1=k =)
000000000000]0000000000000000000

CO0O0O0DOO0O0O0O0O0O0ODOODOOODOOO0O0O0OOOOOOO00O0O .

A/Q - A2

OO0 O0O0O0O00DOO~0~0000O0DOCO~—~O OO rr—
OO0 0000000O~r— D000 —~OO M mrmem—
OO0 O000CO00000OODOO0O0OdDO

OO~ ODODO0O0O0O0CO0O0DO0O0O0ODO0OO00O0O0OO0OOOO0O~0O0 =00
01!0000000&‘0]0000000000001001!000
[=lellajejfofejefojolefofol Jolofolefo}oejlofe}oolofooleNe ool
OCOO0O0OO0OO0CO0OrrOr000 0000000000000 ~000

DSA - A7

OO0 OO0 OO0OO0OO0COO0CO0OOOOOO0OOCOOMr—m—0O000000O00O00O0O
OO0 O~ OO0 O0O0O0O0O0OOO0O0O0DO0DO0OO0OO0O0O0O00O~00
OO0~ OrO00000D00O00O MmO 00~0000O00

COmrOmOO00CO00COr0O00O0O~ODO0ODODOCOO0OOO0OO0COO0OO0O0OOO

DSA - A4

OO0 OO O0OOOOO0O OO DO OO0 OO0OO0O0O0O0OO0ODO——000
—_ O 0000000000000, ™mOO00O00O0O0O0O00O00O0O0O~0O00O
COO0OOO0O0OOOOOOOOO0O0O0ODOODO0O0OODOODOOOODOOOCOO0O
OO0~ DO0O0O~0D0D00000000DDOOCO~DOD~OD000
—O0 0000~ 000000O0~O0000O00O0~OOrOO0O00O0O

—O0000~O0O0O0O0O0O0O0ODMmMODOO0O0OO0O0O0~O00~0O000O0O

DSA - Al

39 38 37 36 35 34 33 3231 30 29 28 27 26 25 24 |23 22 21 20 19 18 17 16{15 14 13 12 11 1098|7654 3210 «Bit Position

Location Label

OOOOCrrmrrmrm e OO0 00O rmrrmrmrm O~ 00— 0 000
1100.0‘|1l..l.|.|..l.|000nv1|.|,.|1l.|1l.l..|0~l001!0000
OO0~ O00000000O0OO~000 mrmrm
OO0~ O0O0O~rO00~ 00000 mmrmrerer— O~ 00D0~0000
OO0 OO0 OOOOOOOOOOOrmrrmrmrerrrOr~ 00000

COCOrrrrr—r—,rO0OCOCCCr mrr e —~O—~O00~00 000

- .

- 2 ,
xoaoa x© OISO O X
200 O — e OX L LW Z3 0O
ML EXXXXX XXX X UL NNV LG OO X
P g g e e e g e g g - e g g

88951000 02

Micro-Code ROM Truth Tables

88951000 02

MASTER CONTROL PAGE 2

CHIP LOCA

DPALU - 811

e O O Cr—Cr O~ O OO OO00Orm rm QO -
0OCOO0OCr——0C O~ OO0 O—~0O0O0 OOCCrmr—Or—
O~ OO0~ —C0 O O OO OO~ Or—r—0O
OO0 OCOCOr—rm O O— O~ OO OO0 O0O0OO
OO OO0 SO0 rm OO0 r—Ormm™O
e O Or= O O OO r— O r = r—
[aYolofeRoeloeNololooooloNeNeoNoNeNolol oo]
OO0~ 00000000000000]00]0

A/Q - A3

|

DSA - A8

1_

DSA - AS

DSA - A2

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1615 14 1312 1110 9 8/7 6 5 4 3 2 1 0 Bit Posit

000]000001‘0]0]00]]]01‘00]0
OO0~ 000000 O O OO~ OO0 —~—O
COO0O0O0O~~ OO0 OO0 O0ODDOO0O0OOO0COOOO

OO0 m OO0~ 0000000 0O0O0O0DO™ OO
OO0~ OO0 00O0O0— OO0 OOOO00O 01.!00]0
COOOCOCOCOOCOCOOCODOOOOOm O OO0
(=Y =Nt egelel Hal Nelofofolalal Jole}eoloNo e o]
OO0 OCOOOD~rmm O0000DO~ OCOOoOO0O0OC

b - —

OO0 OO0 O0OO0OO0O0OO0OMmemrm OOO0OO0O0OOO

COO0OO0OO0COOOCOCOO0OOOO0OO0O0COOOOO0O0OO
oo 00000000.000000000000000
CO OO OCOO0OO0OOO0OO0OO0OO0COO0OO0OODODD OO OOOO
CODODOOCOOOOOOoODODODCOOC TS CC oo
O]OOOO]]O]000000000000000

00000]]01’]000000000000000

00000001]1000000000000000
OO0~ 00000000 e 0000000
CO OO0~ 000 COOOCOOOO
—O 0O~ O0000O~ 0O~ O~ 0000 OmmO rr—
—~—O 00~ 00000~ 0~ O0O~00000000O0
OO 000000~ O~0000000~00 O

—0 00]00000]1}‘]0000000001

o e e - L c—

O Or Ope e OO OO e Or= Or=r= ¢ 0000000
O OO r 0000~ O~ Ormrmr— 00000000
Or Qe Orrme OO0~ r~r-r~ 0000000 C
o o D e o e e O O O Oire O oo pe e OO O~ O O
[=Rslofololefooolololofolole oo e Nolodol do}e]
COC~ OO~ O000O0~O0r~Omrr—O0O0000O0O0 O
—_ OO e 00000 OO~ e 00000 ~

——r OO~~~ O~~~ DO000~00 O

Location Label

o~
[u ™M —O > - T O [NE7,] [V RV}
[=] O . D DIDDSTTTCLIICAMF
MZLLS34557DDNKLSSSPD\RQR -
o« «C b b LU <€ o« <L «f <L «L <C ome = L b L L. N DD W 0 e
™M < ~ NLOOOOWU OO NM WM
nzz ~N 22222223333“3333

20

- 21

. 25
26

- 28

C-6

Micro-Code ROM Truth Tables

FPH MP

CHIP LOCAT

-

FPMP - A14

C—COCCcCCOCcCCoC OO C OO~ Crmrmm OO0 0™~ m OO~ Cm

—_— O — e, O~~~ OO0~ O~ OO ~C O
QO e e e OO O rm O O rm r= e g e e pe e O e e g g
COCOO0OO0OO0OOC OO0 ~COO0ODOCOO0O DO O0C OO0
OO0 00000 OO0 CrOODOCOO OO0 O0DODO~,ODO
OO~ O O0O0OCOO OO0 OO0 OO0 OO0 OO0 OO0

FPMP - A12 .

COO0O0O0OO0OO0O0OOOO0OO O ~DOOCOOOCOOD OO ~O0O
CLOO0OO0O0OO0OCOO0OO0COCOO0O OO COOO0OOCOOCO ~O0O ~0OCO
COOCOO0COOO0TCOO0O0OCOCOO0OO~ODO0OO0OOO0O OO0 OO

OO0 0000000000 ~rODO0O0O~O0D0 OCOO0OODOO—0OO0OO0O

CO~ OO0 00000000 OO0 OO0 OO OO0

OO0 OO0 O0OOCOODO0O0OCOOONNO0COO0O ~00O0 0000 ~000O

FPMP - A9

—

[eleojlofolefoNolofojolofelelofoejllefofoleooleleloNeleNoNe e
ad=lelejoiojaoje}fofolofefoe} Jofoefofolelooojo}lefoloje ool
e OO0 00 0000000000000 0O0O00O~O000
COO0COOOOO0O O 0O~ 0O00O0 0000000000000
—OOrrr—r~r—r O~ 00000~ ~O00 Q000000 O
OO0 OO0 OOO0CODOmmem— OO0 000 0 ~—000~00 ™0

0000000000000~ —0000~00~—~—00 000000

FPMP - A6

OO0 O0COO0COO0O0OO0OO0ODOOOCO~0OO0O0OO0O ~O0~0000C0O0OO0O
O rmrer e e O remm OO0 OO~ Ormemrrrmrmm O rmerm O Orr~
COrmrrmrmOr e O~ rm OO0~ OO r~rmrm rmmre OO rr QO re -~
OCOrmrrmrre OO~ O rmrme OO0 OO0 rmerm e — 000 O r

—_r 000000000000 TO0OO0O0O0COO0DO0D0O0O0O0CO~000

CrrC O CC O rm—Cr— Um0~ O~ O rm O mr e OO

—CCCOCCOCCOmmrCrmmCrm O rmrmr OO0 OrmrCmmrmrO CC merm O .
P :

ODOO0OO0OO0O0OO0COO0O0OO0O0O0OO0O0O0O0O~O0O ~mOO0O0OODOO0O0O0OOO0O

FPMI - A3

39 38 37 36 35 34 33 32(31 30 29 28 27 26 25 2423 22 21 20 19 18 17 16(15 14 13 12 11 1.9 8|7.6 5 4 32 10| BIT POSITI

]001!1..000]\!000]]0]0]0]0,]00001‘000
Ormrm 0000~ 0000000000000~ 000~0m~0
OO0 D0DOO0O0ODO0Or OO0~ ™00 ~rO00 0O~ O0 000000
OO0 O0O0O0O0OO0O0OO™r 000000000000 ~0O0O00O0O

OO0 OCO0O0O0OO0 00O O0O 00000 ~O0O00~0D00O0O

LOCATION |LABEL

88951000 02

{

N

¢0 00015688

-a

CDC SYSTEM 17 TFLOATING POINT A CODE
. MALU ALUIV EALU | CIKS S1,50 |M-B E-B |Load/Pick | Inhibits | Cond HDWR | Disp Nxtlnst
PAdd/SuUB|l - A-B B 0N |M/DENB | EBENDB|LDCNT - - - - 1C
1 MPY Aarith - A+B B,E LOAD - EBENB| - - - - - B
2 DIV - - A+B E,A1,2,3,4|RIGUT - 1 - - ZOUND - 6(OVF-20) 10
3 FLDD |B - B E,Al,2,3,4|LOAD |M/DENB | EBENB| - - - - - 18
4 w1 B - B E,Al,3,4 |LOAD |M/DENB | EBENB| - DPinhA3 - - - 18
5 w2 B - - A2 LOAD |M/DENB | - - - - - - 18
6 %3 B - - A3,4 LOAD |M/DENB | - - - - - - 18
7 COM A - - A1,2,3,4 - |LOAD - - - - - - - 15
8 FIXF |B - B E,A1,2,3,4|/LOAD |M/DENB | 17 - - - - - A
9. FLOF |- - A-B - - - F - - - - - D
A FIXF2 |B MACPH - Al1,3,4 LOAD - - - - - - - 11(NORM)
B MPYCNT|B MDOH - A1,2,3,4 |LOAD - - - - - - - C
c A+B MBp-H - - RIGHT [M/DENB - - - - MULT - 11(NORM)
DFLCNT |- - A-B - - FIX 17 LDCNT - EGT - 1(F-E) E
EFLETB |- - A-B - JRIGUT |FIX 17 - - ETB SHIFT |2(ZERO-15) | 15 (NHLT)
F FOVA |B MACO-H - £1,2,3,4 [LOAD |FXMAX |- - - - HALT - F
10DIVCNT |ALog MACP-H A-B E,Al1,2,3,4|1LOAD - EBENB{ - - - - - 1A
11 NORM {Aarith - - - - - - - - - - - 12
12 Ny Aarith - A-B - LEFT - 1 - - MA=B NORM | 4(ZERO-13) | 13
13 Nj A+B MACPH - A1,2,3,4 |LOAD |ROUND - - - - - - 14
14 X, - - A-B E,A1,2,3,4{LEVT - 1 - NRMD - - - 18
15 NILT [AArith - Aarith| E,A1,2,3,4{L0AD - - - - OUF/UNF| HALT |1 15
16 MAX |B IMACPH B E,A1,2,3,4]LOAD |FLMAX - - - - - - 18(SEXT)
17 Zero |B - B E,A1,2,3,4|L0OAD |FLZERO - - - - HALT - 17
18 SEXT |B MACGH - A3,4 LOAD - - - DPinA3 - - - 15(NHLT)
19 - - - - - - - - - - - - -
1A DIV |A-B MD@H - - LEFT |M/DENB - - - - DIV - 1B
1B B - - Al1,2,3,4 |LOAD |BENB - - - - - - 11 (NORYM)
~ 1CADCNT |- - B E,B,A1234 JRIGHT - EBENB| - Pick SET [ETB - 2 1D
1D SHFT |- - - - RIGHT - - - - - SHIFT - 1E
1E A+B FSUB . A+B E,A1,2,3,4{LOAD [BENB 1 - - - - - 11(NORM)
1F zero (B - - A1,2,3,4 |LOAD | - - |Pick ENB - - - - 1E .

FPH FLDD and A/Q load FPAC flow chart

2D

 EXPONENT . MANTISSA
LOC 3
STEP #1 - Qtart
1OC 4,5,6
if LDWD 1’2’3 Complement
Bit 1

‘ Bit § set? Load Bits @
' and 9 to 51
v of FPAC

Complement NO)
Bits 1 to 8 \
4
Place Result
into FPAC
Bits 1 to S
LOC 18 SIGN EXTEND
STEP #2 The Mantissa
LOC 15

STEP #3 YES
Yes

MACC -9?
No No - —
2§t+gxponen# WV ‘ : \/ ‘ §§t+6antlssa
\
Done o N : Done

D-2 | | 88951000 02

FPH FLST Log}c flow chart for Read of FPAC Bits 1 to 8

il Start
FPAC Ye§
Bitvi/ff}// v
No
READ
Y Complement
of Bits 1-8
Y
A\ g
READ
Complement
of Bit 1

88951000 02

FPH FIXF Flow Chart

. EXPONENT

MANTISSA
- SET Move MARG to
~g%;§1 EACC=23 FPAC Bits 0
and 16 to 31
'] .
\\/4 (
LX A
SET FPAC
STEP 2 @, 9 to 15 and
32 to 51=SIGN
- \ -

wc [:§°R¥J

FCOM Flowchart
EXPONENT
AN

' Start]
10C 7 -
*STEP 1

MANTI

MACC+MACC

LoC 15
STED 2

Done

D-4

MACC=-0?

MACC+«MACC \
)
<

Donec

88951000 02

FPH Flow chart

‘FLOT
10C 9 o
o 1 EACC>157
Shift Count ! N
éQCEPDzor F FPAC 16 to 31 FPAC 16 to3l
1 o
+8OOO16 <-7FFF16
WV ;<
V
Zero
\V/
Loc 17 Done
f\\\\\\p?es
Shift e >
Hard-Wired
I0C E N Shift Algorithm
STEP 3
\\g
Decrement
SHIFT Count
< 0% —
Done
10C 15
STIP 4

88951000 02

FPH FADD/FSUB Flow chart

pl of 2
EXPONENT ' '
MANTISSA
Correct !em. Exp.
for Bias and Mant
Sign .
BREG+MARG
Yes
EACC>EARG? >
Loc ¢ 7;,//(’
STEP 1 JA :
Clear Pick,] Set Pick
Shift Count Shift Count
= EARG-EACC =EACC-EARG
/"“'.'— T e——— —— e — e e—
——_— o T T T e T Shift FPAC
Move) ' and BREG
EARG into Right Once
EACC Y) ,
10C 1C
STEP 2
STEP 3

> Shift
BREG Right,| Shift FPAC
Y DEC Shft DEC Shit.
CNT CNT
AE AM N < T
7 P

HARDWARYS FU..CI'ICH

D-6 88951000 02

=N

FPH FADD/FSUB Flow Char

Y

EACC+
EACC+1

STEP

88951000 02

2 of 2

Yes

\
7
MACC« ~ MACC+
MACC+BREG MACC-BREG
\4 \V4
/.
N

FPH_ FMPY Tlowcharts - v : ‘ -
EXPONENT MANTISSA

- @ Start
Correct MEM.
: EXP for Bias ,
10C 1 and Mant. Sign . ‘ \/4
STEP 1
Y ,
FACC - Move MACC
=EACC+EARG to BREG
NO d;%\\- Yes
h!
\ i §oal1Acp
I0C B MACC=+¢ ’ - NAcc=_¢
STEP 2 “"‘1‘“‘“‘9_ o
B T I T A — *-—-—- A ——
Set Count
27sp43dp
v/ S
Decrement
StepCount
\
jis ol o Hardware MACC+ ‘IACC
STEP 3 . Function MACC+MARG HMACC-TARG
/ Shift
BREG Right
a
Shift
MACC Right
, N/\
» Count=p? >
Y. o

Yes

D-8

jron >

88951000 02

—

P

FPH FDIV Flow Chart pl of 3.

EXPONENT - MANTISSA
Start : @
¥ 2
Correct MEXM. Save Sign.
EXP for Bias of Result (Set SFAN if Negatin
and lMantissa ‘ in SFAN ‘
Sign
LOC 2 }
STEP 1 \/ \Y
Increment Shift
EACC MACC Right
\\/4
N ra—
1 Set Divide
Fault in
LiFsr
;
Y
Y No
p —— 1
gﬁgcf}; ARG ; MACCTTACC § | MACC+MACC
LOC 10 - Y Y
STEP 2\ >

|3E| 3M

88951000 02 | D=9

)-10

" FPH

‘Dividc Flow Chart

EXPONENT

@

10C 1A
STEP 3
HDWR
FUXCTION

Enter at Bit:
35 if sSP, Bit
51 if DP

41F.

FHI

MANTISSA

'Set Count
288p44dp

7

AV

\ 4

Decrement

Count

NT

SFAN set?

MACC- | MARG

p2 of 3

Yes

Yes
No l
MACC « MACC «
MACC+MATG MACC-IIARG
Y ¢ Y
N Y

SFAN set?

No

| Y YES Y YES ,
Shift BREG Shift BREG Shift BRELG Shift BRLG
Left Left Left Left
Enter a 9 Enter a 1 Enter 2 9 Enter a1
Y \ v : V_ ¢ %
7 : < S

Shift

MACC

Left

88951000 02

FPH Divide Flow Chart

EXPONENT

@

i

Norm

88951000 02

p 3 of 3

MANTISSA

Move BREG
to MACC

Nerm

D-11

D-12

FPH Normalize Flow Chart
1oC 11)
STZP 1 .. MALU= .
A, Arithmetic
, .
MACP . Yes
EOR MAC92~-
— >
5 "
: ’ MACY
i0c 12 EACC+ SHIFT EOR MAC107? Yes
STEP 2 EACC-1 MACC -
HDSR LEFT
HNCTIQN ~ R 7 No
Yes f/g::i;:\\\ Yes Double
10C 13 ROUND &—< Pprec.? > Prec.?
STEP 3 _— \/
- No : ¥o
: 4 . Y '
MACC+ MACC+ | macce MACCe |
MACC+Bit 49 MACC+Bit 33 : MACC+Bit 48 MACC+Bit 32‘
- v \r N/ . \V/ » N/
‘ Yes
EOR MAC9?
No
LOC 14
: SHIFT
STEP 4 NACC LEFT
/
<
N5
e

88951000 0:

FPll - Normalize Flow Chart

- N5
I0C 18
STEP 5
N
[FPAC 32toS51 FPAC 48to51
L FPACQ «FPACQ
2 N
AY
—, ——
~ o ‘ N
EACC(-1) Yesy (Error)
10C 15 EOR EACC 4
STEP 6 >
N\
Yes
)
(Under- OVF%
- flow) '
Yes
ZERO
Y
N
\ % LOCl6 YNO
- MACC«0Q MACC+ MACC+
STEP 7 10C 17 |EACC«-127,, 8000, 0000, 00 7FFF ,FFFF,FF
EACC++12710 EACC«+12710
Y N)
4

88951000 02
D-13

D-14

[FreaN__5—=w

FPH Timing

v

nable Clock

VA

Advance Tim-
ing to C2
State

‘/

|l’l’llfli

Force Timing
to Cl1 State
Y
Apply Start Function Start Addr
Address to FADD [§)
ROM FSUB 2016
FMPY 1
Y FDIV 2
: FLDD 3
Force LDVD1 4
INSCLE-L ’ LDVD2 5
\'4 (‘ LDVD3 6
) FCOoM 7
. FIXF - 8
' No FLOF 9
Yes :
Enter First Current Instruction contains
Instruction address of next instruction A

88951000 02

{

- 88951000 02

FPH Timing

FPH2

Advance to
HDWST State

Vi
No
Yes
Y
‘Advance to
IRCLK State
Yes

'HDWR

\

Inhibit Clock|
to Timing

N4

‘Function

Perform High
Speed HDVR

HDWR
Function
Done?

Yes -

Enable Clock
-to Timing

~Y

Refer to Flow
Charts for FADD,
FMPY, FDIV and

" FLOF

D-15

D-16

Jump'True.

next inst

Address of
Next +1
Instruction

SELECT
Unmodified

tAdédress from

RO:{

Add Displace-
ment to add-

ress out of
oM

SCLK+t?

Complete
This
Instruction

V

‘ Entef
Next
Instruction

Y

Advance
- To
: CI State

HALT?

llo

Transfer Data to Selected
Destination Register

Ye§

(This Insg}/' VA

Issue
SPESET-L
1-
Clecar Run
Stop Clock

88951000 02

MASTER CONTROL MICRO-CODE ANf) FLOW CHARTS . E’
EEEEENNNNNNRN————— e

T kot Aot A fp to VT T r T T e i T T BT
LOC LABEL[DSA ' CLRIBENB I/I ALNN_T/D_LOAD CIK_CLK_SA_INDX DUFFER GRP1 FSR 'FPIl CTRL WAIT INN EXEC COND.. .V
0 | RSTRT|- - |- - o ‘tanL1 ,- '1 - RSSAR - SETA - - - - 1. - 4
1 LwD |- - |- e T - e - - FSTART - - JIALT - L
2 |s1op |- - |- te - - - < |- |- = 1wFPAC) FSRRD - - - 1 - - - ¥
3 | FTCH [RD,SCNHLT - '1 0 <« - - <1 't - |- CCR - SETA - 'a - et - E
_|NsT ' i i ; i ;CLK . : [~
4 R2 RD,SMLT,CC - - '« 1} 1 - - le 1 .- | WFPAC1 - SET - fe - . |- - - 5
! I ! . .) , DBPM '
5 |R3 |RD,suLT.CCi - |- - 1 R B R 'CCR .- = - - e < 6
. _ | | jcLx ; i i
6 | R RD, SHLT - |- - 1 IRCLK 1 : = 1 - - i= 4= c- - - - - 7
7 |RS RD, SHLT - - =1 1 PCRL1 1 1 - .= l- te - - - - - - 8
8 |r6 [RD,SHLT,CC!- - - 1 1 - - - 1 - .- - t= 'CLK . - - }- I - 9
. . H ' 0 . fl H ;1-203 . '
8 {R7 |RD,sULT,CC}- - - 1 1 -« - - 1 - ‘= - .- cLk2 - = e e o
A {R8 |READ - - - 1 1 - - - 1 - - - - CLK3 FSTART - - - - B
B i R9 - . - j= = = - - - = - = RFPAC1 FSR SET - - - e - - c
i Loy s CLK A , :
c|Rr0 |- S P ‘- - |- “TRUE - - .EXEC IN C
! ' ‘ | . INH NXT ACTV
p|R11 |- O R e T T S L. CLR i- - - |- HALT - E
. ' : '
J [| A, : |
E|(F2 |- - - - - - - = - - - - . - - - - |- 'Exec- -
| ' : | v ! NXT |
F(s2 |- - |- - 1 o TARL1 - 1 - RSSAR ‘- SET - ‘- - |- - 10
: ; - ALP !
10|s3 |wr,suT.cc'- (- - 1 1 - t - 1 - CRFPACI - - - - - |- L n
11 |s4 |wm,sHLT,CC - - - 1 1 - - 1 - - !CCR = = - - - = = 22
b . i | i \RD i | ' |
12 |s5 |wR,SHLT,CC'- 1 1 1 1 - R _ADATA - - - - 1= = = 13
13 [S6 | WR,SHLT.CC - :1 o 1 1 :- E - 1 - s :ADATA - - - - le oo 14
14 |87 |WR,SHLT,CC = .= - 1 1 - - 1 - ia - - DOUT1 - - - - - 15
15 | S8 | WR.SHLT.CC - .- - 1 = - 1 - - - - {DOUT2 - - 4= e = 16
16 | S9 | WRITE - - -1 R S S - - .l'pours - - - = - D
17 | STRI | RD,SHLT,REL - .1 o - - 'TARL)1 1 - - - t= - - - - - - - 18
18 | STI2 | NRITE - 1 1 1 1 ;= F j= 1 = = YADATA - |- - - |- 'Exc - -
: i i o . NXT
19 | Fcou | - 1 - - - - |- - - - - - - - FSTART 1 - EXEC - -
: Co : } NXT
1A | FIXF | RD, SHLT,REL - 1 0 - - |TARL1 1 - - - - - |- - - |- - - 1B
* 1B | FxF2 | READ -1 1 1 ‘1 - = = = = WRPAC2 - - |- - - |- - - 1c
1c | FxF3 | - l- - - = = j= b i= = = . RFPAC2;- - lcLx FSTART 1 - EXEC - -
} : ' : - ! . 11,2,3 i NXT
1p | FEND | - 1 - I - - = = - 1= - - Ia (S:Egl" - - 1 ! - 1+ HALT - E
‘ . LRA ' : i
1E |CHMD | - 1 - - - - - e = - - - CHMD - - - - - |EXEC - -
s . ‘ : . NXT
1P | NIDX | - 1 - L IRCLR - - = - |- {Exec - -
.. S ' ; ‘ ; NXT
20 | AMDF | RD, SHLT,REL - |1 o - - TARL1 1 - - |- - i- - 1= - 0= - - 21
21 | a2 | RD,sHLT,CC - |1 1 41 4,1 - - = = 1 KFPACl - - - s s 4= .= - 38
22 | FLOF f - . - -4 |- - L 1= 1-i- I- - - FSTART, 1 - - - 38
23 | FLF3 | WRITE (O Db N R O N o L !- I- - I- DOUT2| - I S N iaxrc;- i-
1 i !
24 |[FSUB | RD,SHLT.REL- (1 0 '- ‘= TARL1 1 = '= 1. L T R S AP
25 |A3 | Rp,suLt,CC - |1 1 1 1 - - - ~'1 'WFPAC2 - - {- - - 1 - SP 26
26 | A4 READ - 1 1 1 1 - - - -1 ¥FPAC2 - - - - - o o - 27
27 [A5 |- = - -l - &« .- <l. RFPACI - - JCLK - 1 - - - 28
i Lo i ; ; 1,2,3 ‘ !
28 (A6 |- - |- |- ‘- = F - -i- ‘reecz- - Jeix2 - - ‘e - 29
29 [A7 - - -]- - - - - .- ,RFPAC3 - - CLK3 FSTART - 1 ' EXEC - -
2A | ADDI | RD, SHLT,REL - |1 "= |- - TARLD 1 - '- - i- i- - - e e §XT - 2B
2B | ADI2 | READ = |- 1 |1 1 "IRCLK- - = . - - la !- - - '"e - 'ExEc - -
[P i . i ! i NXT
2¢ | INDX | RE, SHLT,REL - |1 - ! ‘e ‘TARLT ‘1 - !- - l- . |- - Lo b NET 2D
2D | INX2 | READ roF oy 1 ek - '- - - - 1= |- - - l'exe- -
’ ! ‘ ! : i i | NXT
2E | FLST | RD, REL - 1 - ,- - TARLDL 1 - - - l- - - - R L .
2F | FST2 | WR,SHLT,CC - 1 *1 -1 1 - - - =1 - i- ‘e |DOUTL - 1 - - - 30
30 | FST3 | WR,SHLT,CC - 1 ;1 |1 1 .- T e i- |poutz - - 1 EXEC - 31
| ! | L ‘ ' ' it se
31 | FST4 | WRITE t h oy e B 2- 1 - . !- DOUT3 - - ' Vexge - -
1) N
! ! . NXT
32 | SPEC | - 1 - - |- - ‘e o =- !- - - s- [- !spgc e =« EXEC - -
| ! oo : ' ' : NXT
33 BRI |- P N E T S U PR L ;- - - S - T
34 |BRI2 |- 1k -l |- - -1 e |- - e e - TRUE - . - |EXEC COND 34
- : INH NXT ENB
3s fcacs [ro,suLT,REL- 1 - |- |- PCRL - '1 - e I ,- - - .- l- SRR
36 ({BRA | - - - |- - - - .- - I - - - 1 - |- - 37
37 [braz | - r - |- - e = -- |- - - |- TRUE - - ' EXEC cOND 34
i ; INH CNXT LNDs
38 ||\FrLF2 | ro.REL - h - J - J- ‘a1 oto o - l- - - - - |- I 23
. - l_.. — b el ek L ORI SV S S ——— - I
. °

88951000 02 E-1

Master Control Flow Charts
FLDD, FADD, FSUB, FMPY, FDIV
. START
/
10C 20 if FADD,F.PY, FDIV |DSA READ
FIDD - . | RTQuUEST
. LOC 24 if FSUB ADDR=PCR
STEP 1° :
TAR <« TAR <
DSA DATA DSA DATA
+ PCR
|
INCREMENT |
PCR |
J
DSA READ
REQUEST
Yes
LOC 21 DBP)?
STEP 2 Address
Generate
"| ADDR=TAR ADDR=TAR
+IR*2t +In*+3t
J
t 1
DSA DATA tlﬂ*l if TSR

E-2

+BUI'PLol s
I

TAR

B

INCREMENT ' 53 :

Bit-8 Clear

88951000 02

—

. _ DSA RLEAD
- REQUEST
16c 25 l
- STEP 3 ADDRESS :
: GENLRATION
AS IN STEP2
DSA DATA
+BUF16to3
Yes
DBPVM,]
INCREHENT
No TAR
—_— 1
1
10C 26 ' DSA READ
D 4 , CYCLE AS
STEP ‘ » - - UIN_STER 3
DSA DATA
+BUF 32to47
_]
Yes
FPH Busy?
MO
UF ¢ to 15
10oC 27 »MD @ to 15
STEP 5 :
Sign Yes
Extension

BUFQ = BUFQ
+MD 32 to 51 -MD 48 to 51

L l

88951000 02

BUF 16to31
-MD 16to31

10C 28
STEP 6
BP!1?
\
- No BUF 32to47
Loc 29 Y >MD 32t047
STEP 7
\
Start
FPH Start FLDD, FADD, FSUB,
: FMPY or FDIV
Floating Point Micro-
processor
function
Go to
Start of
Next OP
Code
E-4

88951000 02

P-asN

Master Control Flow Charts

FLOF
10C 22
STEP 1
No
START
FPH FLOF
HCTION
Step 1
10C 38 of FLDD Fetch of Address
STEP 2 ' : ,
Yes
PH Busy?
No
DSA WRITE -
10C 23 REQUEST
STEP 3
ADDRESS AS
IN STEP 2
OF FLDD Except for IR*1 instcad
of IR* 2 or 3
DRIVE

88951000 o2

FPAC 16to31

to DSA DATA]

GO TO
START OTF
NEXT OP
CODE

E-5

Pewm s v - B e e e e -

FIXF

START
10C 1A -
ST=P 1 Step 1 Fetch of Address

of FLDD ' ‘

Step 3 ’ Fetch of Data to Buffer
1I0C 1B of FLDD Except for IR*1 instead
STEP 2 of IR*2 or 3

Yes
FPH Busy?
No
BUF 16to31 ,
1LOC 1C to MD 16to31 Integer to middle of FPAC
STEP 3 \ — '
BUF 16 ‘ Sign to FPAC Bit ¢
to MDD : :
- ‘ START FPH
FIXF _
FUNCTION

88951000 02

Master Control Flowcharts

FCOM

10C 19

Start FPH

FCOM
tion

Func-

to
of
oP

Go
start
next

Code

LDWD1, LDWD2, LDWD3

10C 1
STEP 1

IOC E
STEP 2

88951000 02

Start FPH

LDVD

Function

Enable

Exec.

Next

Stop the

Clock

‘Master Control Flowcharts

FLST

10C 2E
STEP 1

Step 1
of FLDD

Fetch of'AddreSS

1OC 2F
STEP 2

FPH Busy

No

Yes

DSA Virite
Request

Address as

in step 2
of FI.DD

Drive FPAC

g to 15 to
DS ATA]

Increment
TAR

@

88951000 02

88951000 02

FLST Continued

10C 30
"STEP 3

10C 31
STEP 4

@

DSA WRITE
REQUEST

ADDRESS AS.
IN STEP 2
OF FLDD

DRIVE
FPAC 16to31
To DSA DATA

DBPMN?

Yes

INCREMENT
TAR

»

- = - I

DSA VRITE
CYCLE J

=

ADDRESS AS

IN STEP 2
OF FLDD

TO DSA DATA

DRIVE
FPAC 32toAa7

Go To
Start of

Next op
Codce

Master Control Flow Charts

CHMD
' 10c 1T RELMODE-«
» RELMNODE
NIDX
START
|CLEAR IR
LOC 1F .

' . ’ Gom
- : » Start of

Next Op
Code

E-10

88951000 02

M. C. Flow Charts

INDX

/START

Step 1 Fetch of Address
FLDD , C

R
i

88951000 02

DSA READ
REQUEST

ADDRESS
= TAR

DSA DATA
To IR

E-11

M. C. Flow Charts -

ADDI

I0C 24

E-12

I0C 2B
STEP 2

Step 1
of FLDD

Fetch of Address

DSA READ
REQUEST

ADDRESS

= TAR

IR«
IR+DSA DATA

[start of)

Go ;;\\

- Next Op
Code

88951000 02

M. C. Flow Charts

STRI

1LoC 17

STEP 1 Step 1 |
of FLDD Fetch of Address
DSA WRITE
REQUEST
ADDRESS
= TAR

10C 18

STEP 2
DRIVE IR
TO DSA
DATA

88951000 02

Go ;;\\\
Start of

Next Op
Code

E-13

E-14

M. C. Flow Charts

SPEC

10C 32

SET SPEC)
Flip/Flop

Go To
Start of
Next Op
Code

CACS

I0C 35

START

N

DSA READ
REQUEST

|

ADDRESS
= PCR

RELMODE?

PCR «
DSA ,DATA

PCR+PCR
+DSA DATA

J

88951000 02

M. C. Flow Charts °

BRIP, BRIZ, BRIM, BRIN

. : , WAIT FOR
LoC 33 IR _DATA TO
STEP 1 SETTLE

LOC 34
STEP 2 PCR

BRAP, BRAZ, BRAM, DBRAXN

START

LOC 36)
STEP 1
LOC 37 Congreion c1)
STEP 2 ' |

[1ncrEvENT
PCR

88951000 02
E-15

M..C. Flow Charts
Fetch Op Word/Cold Start

5

/ . SET ACTIVE

-DSA READ

REQUEST
ADDR=PCR

LOC 3 : DSA DATA
STEP 1 To CCR

INCREMEN
PCR

CLEAR
OPBC

1OC E
STEP 2

E-16
| 88951000 02

}. C. Flow Charts

. FEND

LOC ID

STEP 1
Set FEXD
CLEAR ACTIVE
ENABLE \
EXEC. NEXT

10C E

STEP 2

STOP THE @ go to STOP Sequence

88951000 02
: E-17

M. C. Flow Charts

E-18

)

STOP
FPAC Active?
Yes
I0C 2° |
STEP 1 Move FSR to Save FSR
BUF @ to 15 :
Set Active
Set PROT
10C F - Get Address
STEP 2 Move SSAR
to TAR
DSA REQ
I0C 10 ADDR=TAR Store FSR € SSAR
STEP 3 ,
BUF @ to 15
To DSA DATA
INCEEENT
TAR
DSA RIEQ
10C 11 ADDR=TAR
STEP 4 - T » _
OCR Store CCR @ SSAR+1
To DSA DATA
1 :
INCREMENT
TAR ‘

88951000 02

M. C. Flow Charts

10C 12
STEP 5

10C 13

DSA REQ
ADDR=TAR

IR to

DSA DATA

INCREMENT
TAR

Store IR @ SSAR+2

DSA REQ
ADDR=TAR

PCR To
DSA DATA

I0C 14
STEP 7

88951000 02

TAR

Store PCR @ SSAR+3

ADDR=TAR

FPAC @ to 15
To DSA DATA

INCRIMENT
TAR

(=

Store FPAC (§ to 15)
@ SSAR+4

E-19

) ADDR=TAR
10C 15
STEP 8 FPAC 16 to 31 , ‘
To DSA DATA ‘
Store FPAC 16 to 31 @ SSAR+5
INCREMENT
TAR
: DSA REQ
10C 16 ADDR=TAR
STEP 9
FPAC 32 to 47 Store FPAC 16 to 31 @ SSAR+S
To DSA DATA ' ‘
: CLEAR
I0C D ACTIVE
STEP 10
ENABLE EXEC.
NEXT
1I0C E
STEP 11 STOP REQ. Yes

E-20

- PENDING?

STOP THE

88951000 02

e

RESTART

IoC 9
STEP 1

ACTIVE

MOVE SSAR
TO TAR

10C 4
STEP 2

DBPM

DSA REQ
ADDR=TAR

DSA DATA

To BUF @tolS

INCREMENT
TAR

@ SSARSTEMP (FSR)

10C 5
STEP 3

88951000 02

DSA REQ

ADDR+TAR

DSA DATA
To CCR

me. TAR

@SSAR+1 » CCR

E-21

M. C. Flow Charts

10C 6
STEP 4

@

DSA REQ
ADDR=TAR

DSA DATA
To IR

TAR

Not Consccutive Cycle Duc To

Address ALU Interference -

@SSAR+2 -+ IR

10C 7
STEP 5

DSA REQ
ADDR=TAR

DSA DATA
To PCR

INCRI2IENT
TAR

Not Consecutive Cycle Due To
Address ALU Interference

@ SSAR+3 -+ PCR

E-22

0c 8
STEP 6

-DSA RIQ

ADDR=TAR

DSA DATA
to MD QtolS

DSA DATA 15
To MD 48toS51

INC. TAR

R7

@ SSAR+4 -+ MARG @ to 15

SIGN EXTEND MARG

88951000 02

[{e]

a5

R7

DSA RFIQ
ADDR=TAR

DSA DATA To
D 16 to 31

INCRE: IENT
TAR

@ SSAR+5 -+ MARG 1€ to 31

DSA REQ
ADDR=TAR

DSA DATA To
MD 32 to 47

START FPid

FLDD FUNCTION

@ SSAR+6 - ARG 32 to 47

FPH Moves }MARG to FPAC

IOCB
STEP 9

MOVE BUF 1 to

15 To FSR

14 to @

Restore FSR

Iocc
STEP 10

88951000 02

R11

"Go To
Start of

E-23

M. C. Flow Charts

LOC D -
STEP 11- l ’
CLEAR
: , IVE
ENABLE
EXEC. NEXT
10C E
STEP 12

\

E-24 88951000 02

{. C. Flow Charts

start of Next Op Code = EXEC NXT Bit in Micro-Code

Yes

™

88951000 02

™

go to FETCH
New Cp Vord

go to STCP
Sequence

E-25

(e g

E-26

M. C. Flow Charts

TIMING
/ POSER
N
/
MCLR CLEARS
. ACTIVF. SETS
___\ 1 TO MODE
wyd
Start Address Function
No
STARTL ? (o I RESTART
01 j#0:%0)
41 1D\D2
81 ID'D3
Yes c2 STCP
, C3 QOLD START
Apply Start
Addr to ROl
Set Timing
INACTIVE To Cp State
STATE l
Force SCLX-L
'} Causes MIRCLK
No
START+?
Yes
RELEASE
SCIK
™ \
‘ Complete the DATA is entered into Destination Rerister
Precceding specified by Preceding Instruction

Instrliction

Enter
Current Instr

88951000 02

M. C. Flow Charts

Inter Address
of next
Instruction

Advance)
Timing to Cl

State

Cl STATE

88951000 02

_ Stop Clock

Instruction Register Holds Address
of Next Instruction if "Execute
Next' False’

Yes - Stop SCLIK Go To

\Yes

Set 10 Mode | Inactive

FPWAIT And
N?

State
lTll

doc/

No

Stop SCILX
Set 10 Mode

Stop_Clock
And Pun?

Yes
Clear 10 Mode

M. C. Flow Charts

" Cl STATE
Advance Timing /
To C2 State |
Cl STATE REXT? (This~_ Yes
Instmy/
No
Address of
Next !licro
Instruction Force 1ADD=C3
Fetch New Cg:
Code
JADD=INST ENABLE GEN. I0ACK
REG. OUTPUT SAR TO IADD TADD=C2 (STCP)

Instruction

No Force ROIp
True

E-28
88951000 02

M. C. Flow Charts

Yes
) : SET/RESET . :
C2 STATE ’ FSR BITS FSR Bits under Micro-Progrom
: Control: ACTIVE (FSR 15, SZT/RESET)

DBPM (FSR 7, S"’I‘)
FEND (FSR 6, SET)
PROT MODE (FSR 4, SET)

Yes.
REIMODE (FSR 9, Conmlement)
(occurs in CP state)

SET NEED

(This instr)

CP STATE
| Stop SCLK

No

88951000 02
E-29

M. C. Flow Charts

Yes

FORCE SCLI-
For Duration
nf BESILIE

o GENERATE
Cp STATE MIRCIK

E-30

MIRCIK causes Clock to

‘Destination Register or

FSTART Pulse to FPH

RISING EDGE CLCCKS DATA
TO DESTINATION

88951000 02

CUT ALONG LINE

— — —— — — — — — S — — — —— —— — —— ——— —— — o— — —— o—— S—— — —— — — — — — —— —— —— — ——— — — — — — — ————— — — — —

COMMENT SHEET

MANUAL TITLE cpc® Hardware Floating-Point Unit Hardware Reference Manual
PUBLICATION NO, 88951000 REVISION 02
FROM NAME:

BUSINESS

ADDRESS:

COMMENTS: This form is not intended to be used as an order blank, Your evaluation of this manual will be
welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or
general comments may be made below. Please include page number to which your comment
applies.

STAPLE

STAPLE

STAPLE

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FIRST CLASS
PERMIT NO. 333

LA JOLLA, CA.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
PUBLICATIONS AND GRAPHICS DIVISION
4455 EASTGATE MALL

LA JOLLA, CALIFORNIA 92037

STAPLE

CUT ALONG LINE

