UNISYS Product Information
Announcement

0 New Release @ Revision o Update o New Mail Code

Title
MCP/AS ALGOL Programming Reference Manual, Volume 2: Product Interfaces (8600 0734-301)

This announces a retitling and reissue of the ClearPath HMP NX and A Series ALGOL Programming Reference Manual
Volume 2: Product Interfaces. No new technical changes have been introduced since the HMP 1.0 and SSR 43.2
release in June 1996.

To order a Product Information Library CD-ROM or paper copies of this document

« United States customers, call Unisys Direct at 1-800-448-1424.

« Customers outside the United States, contact your Unisys sales office.

« Unisys personnel, order through the electronic Book Store at http://iwww.bookstore.unisys.com.

Comments about documentation can be sent through e-mail to doc@unisys.com.

Announcement only: Announcement and attachments: System: MCP/AS
AS165 Release: HMP 4.0 and SSR 45.1
Date: June 1998

Part number: 8600 0734-301

UNISYS

MCP/AS

ALGOL

Programming Reference
Manual

Volume 2:
Product Interfaces

Copyright © 1998 Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation

HMP 4.0 and SSR 45.1 June 1998

Printed in US America
Priced ltem 8600 0734-301

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a
duly executed agreement to purchase or lease equipment or to license software. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

RESTRICTED - Use, reproduction, or disclosure is restricted by DFARS 252.227-7013 and 252.211-
7015/FAR 52.227-14 & 52.227-19 for commercial computer software.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using
the Business Reply Mail form at the back of this document or by addressing remarks to Software
Product Information, Unisys Corporation, 25725 Jeronimo Road, Mission Viejo, CA 92691-2792
USA

Comments about documentation can also be sent through e-mail to doc@unisys.com.

Unisys and ClearPath are registered trademarks of Unisys Corporation.

All other terms mentioned in this document that are known to be trademarks or service marks have
been appropriately capitalized. Unisys Corporation cannot attest to the accuracy of this information.
Use of a term in this document should not be regarded as affecting the validity of any trademark or
service mark.

Contents

About This Manual

Section 1.

Section 2.

8600 0734-301

Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS) Extensions
Communications Management System (COMS) Extensions .
Data Management System Il (DMSII) Extensions
DMSII Transaction Processing System (TPS) Extensions
Screen Design Facility Plus (SDF Plus) Extensions
Semantic Information Manager (SIM) Extensions

Using Advanced Data Dictionary System (ADDS)
Extensions

Guidelines for Retrieving Data Descriptions
Retrieving Descriptionsccccvveeveeiiiiiiiiieecee e,
Retrieving Entities of the Same Type ...ccovvveveeiiiennneen.
Record Restrictionscccccvvveeeeeee i,
Relating ADDS Data Types to ALGOLccceoiivevnennnne
Mapping ADDS Types to ALGOL TYPeSccceceeeveeuvnneen.
ALGOL Data Types for ADDSccoveeeviiiieeeiiiieee e
Guidelines for Using ADDS TYPESoeevvvveveeeeeeenrrnnen,
Entity Qualifiersccooovii i
Referencing Fields and Recordscccoooenneiiinn,
Compiler Control Optionscccccoviiiieiiiiee e,
DICTIONARY Option: Establishing a Data Dictionary
STATUS Option: Selecting the Status of Descriptions ..

RANGECHECK Option: Checking Ranges of Run-Time

ValUBS o

Data Dictionary Declarationscccooooiiiiiiiiinins
Specifying a DICTIONARY RECORD cccocvveeiviiiieeanns

TYPE Declaration and Invocationccceeevvveeriiiivnnnnn.

Specifying a DICTIONARY ITEMcocoveeiiiiirieiiiieees

Passing Entities as Parameters ...l

Binding Considerations for ADDSccccceviveeeennee
Statements Used as ADDS Extensionscccccccoeeennnnene.
Assignment Statement ...,

REPLACE and SCAN Statementscccccevvvviiiiiiinnnnen.

Functions Used as ADDS Extensions
LENGTH Functioncoovvviiiiiiiiii

OFFSET FUNCHON cevvviiiiiieeeeeeeeeeeeeeeeeeeeeeee e

xiii

PPwNOONOITR~WNNDDNDDN

[T T S

|
WNMNDNNNNDNON R
QUOWONOITOT AN ONNO

Contents

POINTER FUNCHION wevveeeiiiicieeeeee e 2-31
RESIZE FUNCHION wvvveeeeeeeeccee e 2-32
SIZE FUNCHION e 2-34
STACK Option ..eeevveeeeeee e 2-35
UNITS FUNCLION wvveeeeeeeeceeeeeee e 2-36
Section 3. Using Communications Management System
(COMS) Features
Using ALGOL Functions as COMS Extensions 3-2
Purpose of the RANGECHECK Optionccovvvvvvvvennnen. 3-2
Purpose of FUNCioNScccovveeiieiiiiiieeeeee e, 3-3
Linking to COMS ... 3-4
Linking to COMS by Title ..ecovcvvieeiiiiiee e 3-4
Declaring an Input or Output Headercccccoeiee, 3-5
Input or Output Header Declarationcccccovveunnneeee. 3-6
Input or Output Header Type Declaration 3-8
Input Header Structure and Typecccovvveeveeeeiiicnnnee, 3-10
Output Header Structure and Typeccovvvvevveeeviennnnen, 3-13
Designator Data Typeccccvveeeeeiiiiiiieeeee e, 3-15
Declaring a Message Areacccccceeeeviiiiiiiieeee e, 3-15
Declaring a COMSRECORDcccccceeiiiiiiieee e, 3-16
Type Declaration of a COMSRECORDcccceeveeeeennns 3-18
Type Invocation of a COMSRECORDccovevveeeeennns 3-18
COMSRECORD Structures and TYPeScocccveeeeviivereanns 3-19
Structure and Type of an X.25 COMSRECORD 3-19
Using Records in COMS ..o, 3-24
Accessing Header FieldSccoovviiiieieiiiiiiieeee, 3-24
Binding Considerations for COMScccccevivireenne. 3-26
COMS Statementsccccoeeeeiiviiiiiiiieeeeeeeeeeee e, 3-27
COMS BEGINTRANSACTION Statementcccovveeene 3-29
DISABLE Statementcccovvveeeeeiiiiiiiiieeeee e, 3-31
ENABLE Statementcooovviiieeeeiiiieeeeee e, 3-33
COMS ENDTRANSACTION Statementccocceevvveneenns 3-35
MESSAGECOUNT Statementcoooevvvveeereeeeiiiiinen, 3-37
RECEIVE Statementocoovveeiieiiiieeee e, 3-38
SEND Statementoooveiiiiiii e, 3-40
Error Handlingccoieii e 3-44
STATUSVALUE Field ValuES ...ocvvvveviviiee i 3-44
FUNCTIONSTATUS Field Valuescccoeovevveveeicrveeeenee 3-44
Exception-Condition Statements and DMTERMINATE 3-44
COMS Service FUNCLiONSccccvvvieieiiiiiiciieeeeee e, 3-45
Functional Descriptionsccccccvvviiiiiiiiiiie 3-46
Declaring COMS Service Functionscccceveeeviecnnnneee. 3-47
CONVERT_TIMESTAMP ..ot 3-48
GET_DESIGNATOR_ARRAY_USING_DESIGNATOR 3-49
GET_DESIGNATOR_USING_DESIGNATORcoevvveenne 3-50
GET_DESIGNATOR_USING_NAMEvvvieiiciiiee e 3-51
GET_INTEGER_ARRAY_USING_DESIGNATOR 3-52
GET_INTEGER_USING_DESIGNATORoeeveviieeiiirieeens 3-53
GET_NAME_USING_DESIGNATOR ...ocvveieiiciieee e 3-54

v 8600 0734-301

Contents

Section 4.

8600 0734-301

GET_REAL_ARRAY ..ottt
GET_STRING_USING_DESIGNATOR oeevvvvieeeineeee,
STATION_TABLE_ADD ...
STATION_TABLE_INITIALIZE ..ot
STATION_TABLE_SEARCHcovviieiiiee e,
TEST_DESIGNATORS ..ovoeiieeee e
Designators for COMS Entitiesccovvvveeeeeeiiecnnnnen.
Service Function Types and Valuesccccceveeeeennns
Service Function Result Valuesccoccvvvvevveeeinins
COMS Sample Programccccoiieieeeeiiiiciiiieeeee e

Using the Data Management System Il (DMSII)
Interface

Invoking a DMSII Databaseccccccoeeiiiiiiiiieee s
Declaring a Databaseccccceeeviiiiiiiieeece e,
Example: Simple Databaseccccccvveeennen.
Example: Invoking Disjoint Data Sets
Example: Invoking a Logical Database
Database Equation Operationscccccvvvvvvvieennnnn.
BDMSALGOL Basic Language Constructs
BDMS Naming and Qualification Conventions
BDMS Identifier Constructccccvvvvvvvvennnnn.
Construct for Identifiers of Occurring ltems
Qualification of Database Itemscccvee......
Referencing Database ltemscccovvveveeeeiiiennnen,
Input Mapping Used with Retrieval Statements
Output Mapping Used with Storage Statements ..
Selecting a Record in a Data Setccoovvveveeiiinns
BDMSALGOL Statementscccccevvvieiiiiiii
ABORTTRANSACTION Statementoooovvveeeeeeennnnn.
ASSIGN Statement ...,
DMSII BEGINTRANSACTION Statement
BDMS CANCELTRPOINT Statementccccceevnnneee.
BDMS CLOSE Statementooevvveeeiiiiiiiiiiiieeeeeeee,
CREATE Statementeeeveeeeeeeeeieieeieeeeeeeeeeeeeeeeees
DMSII DELETE Statementeeeeveeeveveeieeeiieeiieeeeeenn,
DMTERMINATE Statementeevveveeeeieeiiiieeeeeeeeenn,
DMSII ENDTRANSACTION Statementcccceeeeenneeee.
FIND Statementooovvviiiiiiiiiii
BDMS FREE Statementoeeeeveeieieieiiieiiieeieeeeee,
GENERATE Statementcevvveeeviieeeiiieeiiieeeeeeeeee
GET Statementoevveeeeiiiiieeieeeeeeeeeeee
DMSIIINSERT Statementoovvvveeeeiieiieeeiiieeeeeeeee,
BDMS LOCK Statementcoovvvviviiiiiiiiiiiiiiiieeeee,
DMSII MODIFY Statementeeevvveeieeeeeieiiieeeieeeeeen,
BDMS OPEN Statementcooevvvviiviiiiiiiiiiiiiieeeee,
PUT Statement ...
RECREATE Statementoeeevvveeeeiiiiiiieeeieieeeeeeeee
REMOVE Statementooovvviiiiiiiiiiiiiiiieeeeieeeeeeeeee
BDMS SAVETRPOINT Statementoevvveeveeveieennnnns.

(A)(JJ(JJ(JJ(.I}J(JJU)UJU)(A)
OO O OO 01010101
O, OOOONO Ol

. 4-2
. 4-2
. 4-6
. 4-7
. 4-8
. 4-10
- 4-12
. 4-12
o 4-12
. 4-13
. 4-14
. 4-15

4-16
4-19

. 4-21
. 4-25
. 4-26
. 4-27
. 4-29
. 4-32
. 4-33
. 4-35
. 4-37
. 4-39
e 4-41
. 4-44
. 4-46
. 4-48
. 4-50
. 4-52
. 4-54
. 4-57
- 4-58
. 4-62
. 4-64
. 4-66
. 4-68

Contents

SECURE Statement ..o 4-69
BDMS SET Statementcccccoveiiiiiiiice e 4-72
STORE Statementccoocieeiiiiee e 4-75
BDMSALGOL Functionsccccciiiieeeiiiiiiecce e, 4-78
DMTEST FUNCHON vveeeeiiiiee et 4-78
STRUCTURENUMBER Functioncccccevviiieeniiinnenns 4-81
Exception Processingcccoocociiiiiieee i, 4-82
Database Status Wordcccccvviiieiviiee e 4-83
Exception Handlingcccooeeeeeei e, 4-84
BDMSALGOL Compiler Control Optionsccccceecvveenns 4-86
Binding and SEPCOMP of Databasesccccccceeiiiinnnne 4-87
BiNAING oo 4-87
SEPCOMP ...ttt 4-89

Section 5. Using DMSII Transaction Processing System
(TPS) Extensions

Using the Transaction Formatting Language (TFL) 5-3
Declaring a Transaction Baseccccccieeeeeeeiiicnnnnen, 5-4
Creating Transaction Recordscccccvieeneiiniinnne, 5-7
Declaring Transaction Record Variables 5-7
Creating Transaction Record Formatsccoeuueeee. 5-10
Using Transaction Recordsccooiie i, 5-12
Passing Transaction Record Variables as Parameters . 5-12
Assigning Transaction Record Variables 5-13
Accessing Transaction Record ltemscoooeel. 5-14
Requirements for Data ltem Qualification 5-16
Data Iltem Qualificationcccccoeviveeiiiiieeiiiiie e, 5-16
Format Name and Data ltem Name Qualification 5-16
Subformat Name and Data Item Name Qualification 5-17

Format Name, Subformat Name, and Data Item Name
Qualificationcceeeiiiiiie e 5-17
Inquiring About Transaction Record Control ltems 5-18
Using Transaction Compile-Time Functions 5-19
Using Transaction Library Entry Pointscccoccee. 5-21
CREATETRUSER ..oiitieeeee et 5-21
CLOSETRBASE ...ttt 5-21
HANDLESTATISTICS oot 5-22
LOGOFFTRUSER ...ttt 5-22
LOGONTRUSER ..ot 5-22
OPENTRBASE ...ttt 5-22
PROCESSTRFROMTANK ...ooiiiiiiieecee et 5-22
PROCESSTRANSACTION ..o, 5-23
PURGETRUSERooiiiiiiecce e, 5-23
READTRANSACTION ..oooviiiiiieece e 5-23
RETURNLASTADDRESSocoiiiiiieecieeceee et 5-24
RETURNLASTRESPONSEoviiiiiiecceeece e, 5-24
RETURNSTARTINFO ..oooiviiiiiieee e 5-24
SEEKTRANSACTION ..ooeiiiiiiieeecee e 5-24
SWITCHTRFILE ..oviiieeee e 5-24
TANKTRANSACTION ..o 5-25

Vi 8600 0734-301

Contents

Section 6.

8600 0734-301

TANKTRNORESTART ..o

5-25

TRUSERIDSTRINGcevveeieiiieee et 5-25

Using Update Librariesccccoociieiiiiiiiiie i, 5-26
ACCESSDATABASE Entry Pointcccceeeviieeiiiiieeee 5-26

Methods of Structuring the Update Library 5-26
Transaction Processing Statementsccccceel. 5-30
TPS BEGINTRANSACTION Statementcccccceeeevnneen. 5-31

TPS ENDTRANSACTION Statementcccceveveeeevnnen. 5-33
MIDTRANSACTION Statementccoceeevviieeeeiiieeennne, 5-35

BDMS OPEN Statement with TPS ..., 5-36

Sample User-Written Applicationsccccccceeeeeiiinnn, 5-38
Example 1: Declaring a Transaction Base and Library . 5-39

Example 2: Banking Applicationccccccevveeeiieiinnnnen. 5-41

DASDL Description of the Database 5-42

TFL Description of the Transaction Base 5-43

ALGOL Banking Application Program 5-46

Update LIbraryceeovviiciiiieiieee i 5-b5

Example 3: Detanking Procedurecocceevivieeennee. 5-60

Using the Screen Design Facility Plus (SDF Plus)
Interface

Understanding SDF Plus Interface Elements
Form Record Libraries ...
FOrm Recordsoooovvvviiiiiiiiiii
Form Record NUMbBErSooovvvvviviiiiiiiiiiiiiii
Transaction TYPES ...vvvveeeeeeiiiiiiiieie e e
Transaction NUMDErsSeeevvvevevvviriieiieiveeerveeeeenens
Using ALGOL Functions as SDF Plus Extensions
Invoking the Form Record Libraryccccoooiiiiinnen.
Using the SDF Plus Remote File Interface
READFORM Statementcccvvveveeeiiiiiieeeee e,
WRITEFORM Statementcccoeeevveeeeeeiiecirieeeeen,
Using the Form Record Number Attribute
Using the Transaction Number Attribute
Using SDF PLUS with COMSccoveiiiiiiiieeeeeee,
Using COMS Input/Output Headersc.cccoeeuvneeee.
Sending and Receiving Messagescccceveevnunnenn.
Sending Transaction Errorscccceevvivvivveenieeeiiinn,
Sending Text MeSSages ...ccccvvveeeevviieeeviiieee s,
SDF PLUS Sample Programsccccccocoveeviiieecnennen.

Example 1: General Use of SDF Plus Program

INEEITACE e

Example 2: Using COMS with the SDF Plus Program

INEEITACE e

[e)Ne)Ne)Ne)Ne)No)Ne)Ne)Ne)Ne)Ne)Ne)!

|
| |
DO PP LWWHFONOOOITR,WWWNDN DN

0\@@?\@0\@
N e Y e

6-16
6-19

Vii

Contents

Section 7. Using the Semantic Information Manager (SIM)

Interface

Using ADDS Extensions as SIM Extensions 7-3
Purpose of the Dictionary Optionccccevvveeiiiennnneen. 7-3
Purpose of the Rangecheck Optionccceevveeiiiinnnnen. 7-3
Purpose of FUNCionsccccveviieiiiiiiiieeeee e, 7-4
Declaring a SIM Databasecccccccceeiiiiiiiiiee e, 7-5
Mapping SIM Types Into ALGOLcccoeeiiiiiiec e, 7-7
QUEKIES ... 7-9
Retrieval and Update QUeriescccccevviveeeeiivneeenne, 7-10
Declaring a Query Data TYpecoccvveeevciieeeeiiiieeeeee 7-12
Declaring DMRECORDSccoooviiiiiee e 7-14
Type Declaration and Invocation for SIM 7-17
Referencing DMRECORD Fieldscccceevvveeeiiiiieeennee, 7-19
Using DMRECORDS and Their Fieldsccccoccvvveennee. 7-20

Passing Fields of Type Real, Boolean, Double,
and INteGEr ..vvvvveeeei i 7-20
Passing Fields of Type Entity Reference 7-20
Passing Fields of Type Recordcocvveveeeiinns 7-20
Passing Fields of Type EBCDIC Array 7-20
Passing an Entire DMRECORD Variable 7-20
Assigning Pointersccocceeeeiiiiiiieee e, 7-21

Output of Real, Boolean, Double, Integer, and
EBCDIC Array FieldScoocvvveeeviiieeeviieeeeeee, 7-21
Output of Entity Reference and Record Fields 7-21
Output of DMRECORD Variablesccccccvvvvveeeen. 7-22
Binding Considerations for SIMccooveeeviineeennee, 7-22
Impact of Declaring a Variable in a Subprogram . 7-22
Impact of Packingccccccovviieeiiiiee e 7-22
Declaring an Entity Reference Variable Data Type 7-23
Using Data Management Functions and Expressions 7-25
DM Arithmetic Functions ... 7-26
DM String Functionsccccevviieeiiiieee e 7-28
DM Symbolic FUNCtionsccccccevviiiieiviiiee e 7-30
DM Boolean Functionsocoovvviiiiiiiiiiiiiiiiiiiiiieeeeee 7-31
DM Primaries ... 7-33
Selection EXPressionsccccvveeeeeeeeiicivveeeeee e 7-35
SIM Statementscccoveeiiiiiiiiiie e 7-41
Using Transactionsccccceeeeeeeeiiiciiiieeee e e e e e 7-41
ABORTTRANSACTION Statementcccceveeeeeveciviennen. 7-43
SIM BEGINTRANSACTION Statementccceeveeevennneee. 7-44
CANCELTRPOINT Statementcooveevvveeeeeeeiieinnnen, 7-45
SIM CLOSE Statementccccvvvveeeeiiiieceeeeee e, 7-46
Database Attribute Assignmentscccccceeeeviiiiinnnen, 7-47
SIM DELETE Statementcccovveeveiiiiiiieeeee e, 7-51
DISCARD Statementcccovvveeeeeiiiiiiieieeee e, 7-53
SIM ENDTRANSACTION Statementcccoovvveeeeeiiennnnee, 7-54
SIM INSERT Statementcccovveeeiiiiiiiieeeee e, 7-55
SIM MODIFY Statementcccovvveeeeiiiiiieeeeee e, 7-58
SIM OPEN Statementcccoveeeiiiiiiieeeeeeeeee, 7-61

viii 8600 0734-301

Contents

RETRIEVE Statementcccovviiieiiiiee e 7-63
SAVETRPOINT Statementccocceeiviieeeiiiiee e, 7-64
SELECT Statementccooeeiiiiiieiiiiee e 7-65
SETTO Statementsccocceeeiiiiiee i 7-71
Exception Handling of SIM Statements 7-73
SIM Sample Programsccccooieeeiiiiiieee e 7-77
Example 1: Using Project-Employee Projects 7-78
Example 2: Archiving Assignmentsccccccevvveeeennnee 7-80
Example 3: Listing Subprojectscccccocveeeevcieeennnnen. 7-82
Example 4: Using COMS with a SIM Database 7-85
Section 8. Using TransIT Open/OLTP

More information about Transit Open/OLTP 8-2

Appendix A. Understanding Railroad Diagrams
Railroad Diagram Conceptscccccoeeiiiiiiiiiiee e, A-1
Paths oo A-1
Constants and Variablescccccevviieeeiiiiieeeeiiiieeeens A-2
COoNSLraNES .vveeeeeciiiee e A-3
Vertical Bar .oovveeiii e, A-3
Percent Sign ..o A-3
RIght AFTOW .o A-3
Required Iltem ..o A-4
User-Selected lfemccoccveeeeiiiiiiciciee e A-4
LOOP coeeeiiieee A-5
Bridge ..o A-5
Following the Paths of a Railroad Diagram A-6
Railroad Diagram Examples with Sample Input A-7

Appendix B. Extended ALGOL Reserved Words
Type 1 Reserved Wordscoooeeiiiiiiiiiiiiieeee, B-1
Type 2 Reserved Wordscoooeeiiiiiiiiiiiiieciieeee, B-2
Type 3 Reserved Wordscoooeeiiiiiiiniiiiieireeee, B-5
Reserved Words Alphabetical Listingcccenn. B-7
INAEX s 1

8600 0734-301 iX

Contents

X 8600 0734-301

Tables

8600 0734-301

ADDS EXEENSIONS cevvviiiiiiiiiiiiiiiiiiieeeeeeee e ee e e s e e e e s e e e e e s e e e e e e e e e e e e e aaaaaaaaas
COMS EXTENSIONS oiiiiiiiii e
DMSII EXTENSIONS ..vvvvuviurrrursrsssssrasssesesssesaee
TPS EXIENSIONS coveeeeeeeeeeeeeeeeee
SDF Plus EXIENSIONS .iiieeeeeeee e
SIM EXEENSIONS i ———

Mapping ADDS Types t0 ALGOL TYPES ...coveecirriiiee ettt
Brief Description of ALGOL Data TYpeSccccvveeeeeeiiiiiiiiiiecee e,

Input Header Structure and TYPE ..vveeeeeeeiiiiieeeeee e,
Output Header Structure and TYPEvveeeieeeiiiiiieeee e,
X.25 COMSRECORD Structure and TYPE weveeeeveiiiieeeeeee et
A Brief Explanation of COMS Service FUNCtionSccovvviviiiiiiiiiiiiiiiiiiiiee,
COMS ENHIHIES weeeeeeeei it e e e e
Installation Data ValUeSccooiiiiiiiiieeeeee e
Service Function Result Valuesccuvveeeiiiiiiiiiiee e,

TFL Item INterpretationseeeeeeeeeeieiiiiieeeeeeeeeeeeeeeeeeeeee e

Mapping SIM Types into ALGOLcoviiiiiiiiiieee e
DM Function Keywords and Values Returnedcccoccvvveeeeieiiiiiiiinennnnn.

Elements of a Railroad Diagramccooeviieeeeieeiiiiiieeeee e,

Xi

Tables

Xii 8600 0734-301

About This Manual

Extended ALGOL is a high-level, structured programming language. In addition to
implementing virtually all of ALGOL 60, Unisys has developed extensions that enhance the
basic capabilities of the language.

Purpose

The programming reference material for Extended ALGOL is divided into two volumes.
The ALGOL Programming Reference Manual, Volume 1: Basic Implementation contains
ALGOL language components that can be used for all Unisys products. This volume,
Volume 2, contains the ALGOL interfaces specifically developed for the following
products:

¢ Advanced Data Dictionary System (ADDS)

¢ Communications Management System (COMS)

e Data Management System II (DMSII)

¢ DMSII Transaction Processing System (TPS)

* Screen Design Facility Plus (SDF Plus)

* Semantic Information Manager (SIM)

¢ Open/OLTP

ADDS and SIM are part of the InfoExec (Information Executive) family of products. COMS

and SDF Plus are members of the InterPro (Interactive Productivity) family of products.

Volume 2 is designed to be used in conjunction with product-specific documentation.
Before developing an application program, consult the product's documentation for a
discussion of the product, programming considerations, and concepts. (See “Related
Product Information” later in this preface for a listing and brief description of these
manuals.)

8600 0734-301 Xiii

About This Manual

Scope

Volume 2 includes the syntax, explanation, and examples for ALGOL language interfaces
with ADDS, COMS, DMSII, TPS, SDF Plus, and SIM. Volume 2 describes the following:

The reason for developing ALGOL interfaces

What product interfaces and extensions are available

Prerequisites for and interrelationships among the interfaces and extensions
What the interfaces and extensions do

When and how to use the extensions

Audience

The primary audience for Volume 2 consists of the application programmers responsible
for implementing programs that use one or a combination of the specified Unisys
products.

Prerequisites

Volume 2 is written for application programmers who are familiar with Extended ALGOL
as described in Volume 1. Readers should also be familiar with the product or products for
which they are developing applications.

How to Use This Manual

Xiv

The phrase “Volume 1” refers to the first volume of the ALGOL Programming Reference
Manual set; “Volume 2” refers to the second volume.

For ALGOL syntax and rules not covered in this volume, refer to Volume 1. Also refer to
Volume 1 for information on

Compiling programs

The interface to the library facility
The compile-time facility

The batch facility

Data representation

Run-time format-error messages

Consult the product documentation for product error messages.

Documents that pertain directly to Extended ALGOL and the interfaces covered in this
volume are listed under “Related Product Information” in this section.

8600 0734-301

About This Manual

Railroad syntax diagram notation is used to represent ALGOL syntax. A complete
description of this notation can be found in Appendix A, “Understanding Railroad
Diagrams.”

Organization

After a brief introduction to ALGOL program interfaces, this volume describes the
individual program interfaces in product-specific sections. The sections are organized by
product. Each section summarizes the product, examines the interface for the product,
and when appropriate details the extensions developed for the product. Within a section,
extensions are grouped by function. All required syntax and explanations, as well as
program examples, are included.

Each section describes how to implement the functions covered in the product
programming guide, both when the product is used by itself and when the product is used
with other products. Where an extension serves as an interface to enable two products to
work together, the products are cross-referenced. When appropriate, requirements and
options for using a combination of interfaces are included.

Section 1. Introduction to ALGOL Program Interfaces

This section outlines the Unisys ALGOL interfaces for ADDS, COMS, DMSII, TPS, SDF
Plus and SIM. The outline of each interface lists the Unisys extensions that make up the
interface and briefly describes each extension. The brief descriptions can be used as a
quick reference aid.

Section 2. Using Advanced Data Dictionary System (ADDS) Extensions

This section presents the changes and additions made to ALGOL that enable you to use
ADDS to import record data definitions into an ALGOL program.

Section 3. Using Communications Management System (COMS) Features

This section discusses the additions made to ALGOL that make COMS features available
to an ALGOL program. The section details how to implement headers, service functions,
and DMSII statements.

Section 4. Using the Data Management System II (DMSII) Interface

This section contains the extensions developed for the DMSII interface. These extensions
enable you to invoke a database, use data management statements and database items,
and handle exception errors.

Section 5. Using DMSII Transaction Processing System (TPS) Extensions

This section examines the changes and additions that enable ALGOL to work with TPS to
perform online collection of input and output data for specific transactions.

8600 0734-301 XV

About This Manual

Section 6. Using the Screen Design Facility Plus (SDF Plus) Interface

This section contains the extensions developed for the SDF Plus interface. These
extensions enable you to define a complete form-based user interface for ALGOL
application systems.

Section 7. Using the Semantic Information Manager (SIM) Interface

This section describes how ALGOL can be used to manipulate data stored in a SIM
database. It covers declaring queries, performing transactions, and handling exceptions.

Section 8. Using TransIT Open/OLTP

This section provides a brief description of TransIT Open/OLTP for enterprise servers. It
also contains references that will provide further information regarding using Open/OLTP
through ALGOL.

Appendix A. Understanding Railroad Diagrams

This appendix explains how to read and interpret the diagrams used to depict the syntax
and use of ALGOL.

Appendix B. Extended ALGOL Reserved Words
This appendix explains and lists the three types of ALGOL reserved words

Results

Xvi

After reading this document, you will be more familiar with the product interfaces to the
Extended ALGOL programming language.

Additionally, you will be able to use this document to find answers to specific questions

about the ALGOL product interfaces, and to interpret product interface syntax in existing
ALGOL programs.

8600 0734-301

About This Manual

Related Product Information

Unless otherwise stated, all documents referred to in this publication are MCP/AS
documents. The titles have been shortened for increased usability and ease of reading.

The following documents are included with the software release documentation and
provide general reference information:

¢ The Glossary includes definitions of terms used in this document.

¢ The Documentation Road Map is a pictorial representation of the Product
Information (PI) library. You follow paths through the road map based on tasks you
want to perform. The paths lead to the documents you need for those tasks. The Road
Map is available on the PI Library CD-ROM. If you know what you want to do, but
don't know where to find the information, start with the Documentation Road Map.

e The Information Availability List (IAL) lists all user documents, online help, and
HTML files in the library. The list is sorted by title and by part number.

The following documents provide information that is directly related to the primary
subject of this publication.

ALGOL Programming Reference Manual, Volume 1: Basic Implementation

This manual describes the basic features of the Extended ALGOL programming language.
This manual is written for programmers who are familiar with programming concepts.

ALGOL Test and Debug System (TADS) Programming Guide

This guide describes the features of ALGOL TADS, an interactive tool used for testing and
debugging ALGOL programs and libraries. ALGOL TADS enables the programmer to
monitor and control the execution of programs under test and examine the data at any
given point during program execution. This guide is written for programmers who are
familiar with ALGOL programming language concepts and terms.

Communications Management System (COMS) Programming Guide

The guide explains how to write online, interactive, and batch application programs that
run under COMS. This guide is written for experienced applications programmers with
knowledge of data communication subsystems

DMSII Application Program Interfaces Programming Guide

This guide explains how to write effective and efficient application programs that access
and manipulate a Data Management System II (DMSII) database using either the DMSII
interpretive interface or the DMSII language extensions. This guide is written for
application programmers and database administrators who are already familiar with the
basic concepts of DMSII.

8600 0734-301 Xvii

About This Manual

Xviii

DMSII Transaction Processing System (TPS) Programming Guide

This guide describes the various modules of TPS and provides information on the TPS
library of transaction processing procedures. This guide is intended for experienced
systems programmers who are familiar with Data Management System II (DMSII).

File Attributes Programming Reference Manual

This manual contains information about each file attribute and each direct I/O buffer
attribute. This manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

InfoExec Advanced Data Dictionary System (ADDS) Operations Guide

This guide describes InfoExec (ADDS) operations, such as creating and managing
database descriptions. This guide is written for those who collect, organize, define, and
maintain data, and those who are familiar with the Data Management System II (DMSII),
the Semantic Information Manager (SIM), and the Structured Query Language Database
(SQLDB).

InfoExec Semantic Information Manager (SIM) Programming Guide

This guide describes how to use value-added language extensions to access InfoExec SIM
databases from application programs written in COBOL74, Pascal, and ALGOL. This guide
is written for programmers who know at least one of these programming languages
thoroughly and who are familiar with SIM.

InfoExec Semantic Information Manager (SIM) Technical Overview

This overview describes the SIM concepts on which the InfoExec data management
system is based. This overview is written for end users, applications programmers,
database designers, and database administrators.

Open/OLTP Programming Guide

This guide describes the X/Open TX and XATMI interfaces as implemented for use with
ALGOL, C, COBOLS85, and COBOL 74 application programs. This manual is written for
users responsible for designing Open/OLTP application programs that can participate in a
distributed transaction processing environment.

Screen Design Facility Plus (SDF Plus) Capabilities Manual

This manual describes the capabilities and benefits of SDF Plus. It gives a general
introduction to the product and explains the differences between SDF and SDF Plus. This
manual is written for executive and data processing management.

Screen Design Facility Plus (SDF Plus) Installation and Operations Guide

This guide explains how to use SDF Plus to create and maintain a user interface. It gives
specific instructions for installing SDF Plus, using the SDF Plus forms, and installing and
running a user interface created with SDF Plus.

8600 0734-301

About This Manual

Screen Design Facility Plus (SDF Plus) Technical Overview

This overview provides the conceptual information needed to use SDF Plus effectively to
create user interfaces.

Software Release Installation Guide

This guide explains how to use the Simple Installation (SI) program to install a new
software release. The guide also contains specific installation instructions for the current
system software release. This guide is written for system administrators, operators, and
others responsible for the installation of a new software release.

Task Attributes Programming Reference Manual

This manual describes all available task attributes. It also gives examples of statements for
reading and assigning task attributes in various programming languages. The Task
Management Programming Guide is a companion manual.

X.25 MCS Operations and Programming Reference Manual

This reference manual describes how to use the X.25 message control system (MCS) to
interface with packet-switched data networks (PSDNs) that use the X.25 protocol
recommended by the Consultative Committee on International Telegraphy and Telephony
(CCITT). This manual describes the operations necessary for network data transfer and
the functions available for application programming. The manual is written for system
administrators, system programmers, and application programmers.

8600 0734-301 Xix

About This Manual

XX 8600 0734-301

Section 1
Introduction to ALGOL Program
Interfaces

A program interface consists of the conventions, protocols, and syntax available in a
programming language to manipulate a software product to produce the desired output.

As new software products are developed, the existing program interface components are
not always able to manipulate the products for their intended uses. When this occurs,

additional program interface components are developed and implemented as required.

The additional program interface components presented in the ALGOL Programming
Reference Manual are extensions of ALGOL 60. Collectively, ALGOL 60 and Unisys
extensions to ALGOL 60 are referred to as Unisys Extended ALGOL. Extensions that are

developed for use with a specific product or products are described here, in Volume 2.

These products are

Advanced Data Dictionary System (ADDS)
Communications Management System (COMS)
Data Management System II (DMSII)

DMSII Transaction Processing System (TPS)
Screen Design Facility Plus (SDF Plus)

Semantic Information Manager (SIM)

The Open/OLTP product is not listed above because it does not contain extensions.

The following tables name and briefly describe the extensions used with each product.

The products are presented alphabetically, one per table. The extensions are ordered
alphabetically within the table.

8600 0734-301

1-1

Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS)
Extensions

The ADDS program interface allows programs to retrieve and incorporate data
descriptions as declarations. The ADDS extensions can be used to define records and
items. An ALGOL program can use ADDS extensions with COMS, DMSII, and SIM
extensions.

Outlined in Table 1-1 are the types, statements, dictionary entity declarations, compiler

control options, and functions that comprise the interface. Refer to Section 2, “Using
Advanced Data Dictionary System (ADDS) Extensions” for more information.

Table 1-1. ADDS Extensions

Extension Explanation

Assignment statement Causes item on the right of the assignment operator
to be evaluated and the resulting value to be
assigned to the item on the left of the assignment
operator.

Data types Specific types for ADDS items and embedded items.

DICTIONARY option Establishes the dictionary to be used during
compilation.

DICTIONARY ITEM declaration Declares which nonstructural entity description is to
be retrieved.

DICTIONARY RECORD Declares which record description is to be retrieved.

declaration

Entity qualification Specifies the exact entity to be referenced.

LENGTH function Returns the length of a specified entity.

OFFSET function Returns the number of units a specified entity is
offset from the beginning of the outermost record.

POINTER function Returns a pointer to a specified input.

1-2 8600 0734-301

Introduction to ALGOL Program Interfaces

Table 1-1. ADDS Extensions

Extension Explanation

RANGECHECK option Causes range checking to be performed at run time.

REPLACE statement Transfers data from one or more sources to a
destination.

SCAN statement Examines a contiguous portion of data in a field or
record.

SIZE function Returns the size of the array underlying a given
record identifier.

STATUS option Specifies the status of data descriptions to be
retrieved from the ADDS.

TYPE declaration Declares a user-defined type identifier with a format.

Type invocation Declares records which have their structures stored
in a specified type identifier.

UNITS function Returns the default unit size of the data in the

specified entity.

8600 0734-301 1-3

Introduction to ALGOL Program Interfaces

Communications Management System (COMS)
Extensions

The COMS extensions, outlined in Table 1-2, allow you to write interactive and batch
application programs that run under COMS. The extensions are detailed in Section 3,
“Using Communications Management System (COMS) Features.”

Through extensions, the programs can also use ADDS functions, DMSII and SIM
synchronized recovery, and COMS service functions. Statements used specifically for
synchronized recovery with DMSII are included as COMS extensions. Statements for
synchronized recovery with TPS are included in Section 5, “Using DMSII Transaction
Processing System (TPS) Extensions.” Statements for synchronized recovery with SIM are
included in Section 7, “Using the Semantic Information Manager (SIM) Interface.”

Additional information related to COMS extensions is included in Section 4, “Using the

Data Management System II (DMSII) Interface,” and Section 2, “Using Advanced Data
Dictionary System (ADDS) Extensions.”

Table 1-2. COMS Extensions

Extension Explanation

BEGINTRANSACTION statement Places the program in transaction state. It is used
only with audited databases.

COMSRECORD declaration Retrieves COMS-related format definitions from an
external system library.

DISABLE statement Logically disconnects COMS from a specified
destination.

Designator type Allows programs, running under COMS, to control
messages symbolically.

ENABLE statement Logically connects COMS from a specified
destination.

ENDTRANSACTION statement Takes the program out of transaction state. It is

used only with audited databases.

INPUTHEADER declaration Associates message routing or descriptive
information with an identifier when a program
receives a message from COMS.

LENGTH function Returns the length of a specified entity.
MESSAGECOUNT statement Returns the number of messages in specified
queues.

1-4 8600 0734-301

Introduction to ALGOL Program Interfaces

Table 1-2. COMS Extensions

Extension Explanation

OFFSET function Returns the number of units a specified entity is
offset from the beginning of the outermost record.

OUTPUTHEADER declaration Associates message routing or descriptive
information with an identifier when a program sends a
message to COMS.

POINTER function Returns a pointer to a specified input.

PROCEDURE declaration Declares a service function entry point in a
predeclared library.

RANGECHECK option Causes range checking to be performed at run time.

RECEIVE statement Requests a message to be transferred from the
COMS program queue to the message area.

RESIZE function Changes the size of the array underlying a given
record identifier.

SIZE function Returns the size of the array underlying a given
record identifier.

SEND statement Requests a message, or portion of a message, to be
transferred from the message area to a specified
destination.

UNITS function Returns the default unit size of the data in the

specified entity.

8600 0734-301 1-5

Introduction to ALGOL Program Interfaces

Data Management System Il (DMSII) Extensions

1-6

The DMSII extensions, outlined in Table 1-3, allow you to declare and use databases in
your application programs and to handle exception errors.

BDMSALGOL provides the extensions for declaring and using databases. Programs that
declare and use databases still can use the Binder program and the separate compilation
(SEPCOMP) facility.

DMSII and SIM databases can be manipulated in the same program. The DMSII extensions
must be used with the DMSII databases. The SIM extensions must be used with the SIM
databases. COMS can be used with DMSII for synchronized recovery. TPS can also be
used with DMSII. ADDS can be used to import definitions.

For the details of the DMSII extensions, consult Section 4, “Using the Data Management
System II (DMSII) Interface.”

Additional information related to DMSII extensions is included in Section 2, “Using
Advanced Data Dictionary System (ADDS) Extensions,” Section 7, “Using the Semantic
Information Manager (SIM) Interface,” Section 5, “Using DMSII Transaction Processing
System (TPS) Extensions,” and Section 3, “Using Communications Management System
(COMS) Features.”

Table 1-3. DMSII Extensions

Extension Explanation

ASSIGN statement Establishes a link from one record in a data set to
another record of the same data set.

BEGINTRANSACTION statement Places a program in transaction state. It is used only
with audited databases.

BDMS CLOSE statement Closes a database when further access is no longer
required.

BDMS FREE statement Unlocks the current record.

BDMS LOCK statement Finds a record and locks it against a concurrent

modification by another user. The MODIFY and BDMS
LOCK statements are synonyms.

BDMS OPEN statement Opens a database for subsequent access and
designates the access mode.

8600 0734-301

Introduction to ALGOL Program Interfaces

Table 1-3. DMSII Extensions

Extension

Explanation

BDMS SET statement

CREATE statement
DATABASE declaration

database attribute assignment
statement

DATADICTINFO option
DELETE statement
DMTERMINATE statement

DMTEST function
ENDTRANSACTION statement

FIND statement

GENERATE statement

GET statement

INSERT statement

LISTDB option

MODIFY statement

NODEFINE option

Alters the current path or changes the value of an
item in the current record.

Initializes the user work area of a data set record.

Specifies which database or parts of a database are
to be invoked.

Allows the database to be specified at run time, and
allows access to databases under different
usercodes and on packs not visible to a task.

Determines whether information on the use of
database structure and items is placed in the object
code file.

Deletes a specific record.
Aborts the current action.
Determines whether an item is null.

Takes a program out of a transaction state. It is used
only with audited databases.

Transfers a record to the work area associated with
a data set or global data.

Creates a subset in one operation. All subsets must
be disjoint bit vectors.

Transfers information from the user work area
associated with a data set or global data record into
program variables or arrays.

Places a record into a manual subset.

Determines whether information about the database
is included in the printer listing.

Finds a record and locks it against a concurrent
modification by another user. (See BDMS LOCK
statement.)

Determines whether defines are expanded in
BDMSALGOL constructs.

8600 0734-301

1-7

Introduction to ALGOL Program Interfaces

1-8

Table 1-3. DMSII Extensions

Extension Explanation
PUT statement Transfers information from program expressions into
the user work area associated with a data set or
global data record.
RECREATE statement Partially initializes the user work area.

REMOVE statement

Selection expression

STORE statement
STRUCTURENUMBER function

Removes a record from a subset.

Used in DELETE, FIND, MODIFY, and BDMS LOCK
statements to identify a specific record in a data set.

Places a new or modified record into a data set.

Determines the structure number of a data set, set,
or subset. It can be used to analyze exception
condition results.

8600 0734-301

Introduction to ALGOL Program Interfaces

DMSII Transaction Processing System (TPS)

Extensions

The TPS extensions, outlined in Table 1-4, aid DMSII users in processing a high volume of
transactions with synchronized recovery. Statements used specifically for synchronized

recovery are available only in BDMSALGOL. Synchronized recovery can be provided

through COMS.

Refer to Section 5, “Using the DMSII Transaction Processing System (TPS) Extensions,”

for details of the extensions.

Additional information related to DMSII TPS extensions is included in Section 4, “Using
the Data Management System II (DMSII) Interface.”

Table 1-4. TPS Extensions

Extension

Explanation

BEGINTRANSACTION statement

BDMS OPEN statement

Compile-time functions

CREATE statement

ENDTRANSACTION statement

[tem reference
MIDTRANSACTION statement

TRANSACTION BASE declaration

Places a program in transaction state. It is used
only with audited databases.

Opens a database for subsequent access and
designates the access mode.

Provide access to properties of transaction record
formats.

Initializes a transaction record variable to a
particular format.

Takes a program out of a transaction state. It is
used only with audited databases.

Identifies and names a transaction record variable.

Causes the compiler to generate calls on the given
procedure prior to the call on the Data
Management System (DMS) procedure in
Accessroutines.

Specifies which transaction base or subbase is to
be invoked.

8600 0734-301

1-9

Introduction to ALGOL Program Interfaces

1-10

Table 1-4. TPS Extensions

Extension

Explanation

TRANSACTION RECORD
declaration

TRANSACTION RECORD ARRAY
declaration

Transaction record control items

Transaction record variable
assignment

Associates a transaction record variable with a
transaction base or subbase.

Allows transaction record to be passed to
Transaction Library as a parameter.

System-defined items maintained by TPS. Control
items are defined only after a transaction record
has been created.

Copies content of one transaction record variable
to another transaction record variable in the same
transaction base.

8600 0734-301

Introduction to ALGOL Program Interfaces

Screen Design Facility Plus (SDF Plus) Extensions

The SDF Plus extensions, outlined in Table 1-5, are used to write programs that directly
take advantage of SDF Plus. Programs also can be written to take advantage of SDF Plus
by way of the COMS interface.

Refer to Section 6, “Using the Screen Design Facility Plus (SDF Plus) Interface,” for details
of the SDF Plus extensions.

Additional information related to SDF Plus extensions is included in Section 3, “Using

Communications Management System (COMS) Features,” and Section 2, “Using Advanced
Data Dictionary System (ADDS) Extensions.”

Table 1-5. SDF Plus Extensions

Extension Explanation
DICTIONARY option Establishes the dictionary to be used during
compilation.
DICTIONARY Invokes an SDF Plus form record library from the
FORMRECORDLIBRARY specified ADDS dictionary.
declaration
Form record number attribute Provides a means of performing I/0O operations on

form record libraries to enable individual form
records to be specified at run time.

LENGTH function Returns the length of an entity in the designated
units.

OFFSET function Returns the number of units a specified entity is
offset from the beginning of the outermost record.

POINTER function Returns a pointer to the specified input.

READFORM statement Causes a form record to be read from the
specified remote file and stored in the specified
buffer.

RESIZE function Changes the size of the array underlying a given

record identifier.

8600 0734-301 1-11

Introduction to ALGOL Program Interfaces

Table 1-5. SDF Plus Extensions

Extension Explanation

SIZE function Returns the size of the array underlying a given
record identifier.

Transaction number attribute Provides a means of performing /0 operations on
form record libraries to enable individual
transactions to be specified at run time.

UNITS function Accepts an entity as input and returns, as an
integer value, the default unit size expected by the
LENGTH and OFFSET functions.

WRITEFORM statement Causes the contents of a form record to be written
to the specified remote file.

1-12 8600 0734-301

Introduction to ALGOL Program Interfaces

Semantic Information Manager (SIM) Extensions

The SIM extensions are used to manipulate the actual data stored in a SIM database.
These extensions are outlined in Table 1-6. Library programs can define and access SIM
databases. Query records can be passed to and from library procedures.

COMS can be used with SIM for synchronized recovery. SIM and DMSII databases can be
manipulated in the same program. The SIM extensions must be used with the SIM
databases. The DMSII extensions must be used with the DMSII databases.

Data definitions can be retrieved from ADDS. Several ADDS functions can also be used.

Consult Section 7, “Using the Semantic Information Manager (SIM) Interface,” for details
of the SIM extensions, including synchronized recovery.

Additional information relating to SIM extensions is included in Section 3, “Using
Communications Management System (COMS) Features,” Section 4,“Using the Data
Management System II (DMSII) Interface,” and Section 2, “Using Advanced Data
Dictionary System (ADDS) Extensions.”

Table 1-6. SIM Extensions

Extension Explanation
ABORTTRANSACTION Aborts transaction state. It is used only with audited
statement databases.

BEGINTRANSACTION Places a program in transaction state. It is used only

statement with audited databases.

CANCELTRPOINT statement Cancels transaction state from a specified point. It is
used only with audited databases.

CLOSE statement Closes the specified database.

database attribute Alters immediate attributes of the perspective class.

assignment statement

DELETE statement Deletes all entities from the class satisfying the
selection expression.

DICTIONARY option Establishes the dictionary to be used during
compilation.

8600 0734-301 1-13

Introduction to ALGOL Program Interfaces

Table 1-6. SIM Extensions

Extension

Explanation

DISCARD statement

DMRECORD type

DM functions

DMRECORD variable
declaration

DM field reference

ENDTRANSACTION statement

ENTITY REFERENCE
declaration

Exception expression

INSERT statement

LENGTH function
MODIFY statement

OFFSET function

OPEN statement
POINTER function
QUERY declaration
RANGECHECK option
RESIZE function

Frees control structure resources associated with
query.

Provides a means to access the data returned by
SIM in a RETRIEVE statement.

Data Management (DM) arithmetic, string, symbolic,
and Boolean functions forwarded to SIM for
evaluation.

Structured variable used for information retrieved
from SIM.

Accesses information in a DMRECORD variable.

Takes a program out of transaction state. It is used
only with audited databases.

Contains an explicit reference to a database entity.

Provides additional information concerning data
management exceptions.

Causes attribute assignments to be applied to the
database and creates a new entity.

Returns the length of a specified entity.

Causes attribute assignments to be applied to the
database.

Returns the number of units a specified entity is
offset from the beginning of the outermost record.

Opens the specified database.

Returns a pointer to a specified input.

Declares classes or types used in query.

Causes range checking to be performed at run time.

Changes the size of the array underlying a given
record identifier.

8600 0734-301

Introduction to ALGOL Program Interfaces

Table 1-6. SIM Extensions

Extension

Explanation

RETRIEVE statement
SAVETRPOINT statement
SELECT statement
Selection expression
SEMANTIC DATABASE
declaration

SETTOCHILD statement
SETTOPARENT statement
SIZE function

TYPE declaration

UNITS function

Retrieves the attributes associated with the query
variable.

Saves transaction state from the specified point. It is
used only with audited databases.

Selects a set of entities from the perspective class
and associates it with the query variable.

Used to determine which entities from the database
are eligible for retrieval, deletion, or modification.

Specifies which SIM database and classes are
available to the program.

Adjusts level of the next retrieval away from the root
of the query tree.

Adjusts level of the next retrieval toward the root of
the query tree.

Returns the size of the array underlying a given
record identifier.

Defines a data structure description which can be
used to define a structured variable.

Returns the default unit size of the data in the
specified entity.

8600 0734-301

1-15

Introduction to ALGOL Program Interfaces

1-16 8600 0734-301

Section 2
Using Advanced Data Dictionary
System (ADDS) Extensions

The Advanced Data Dictionary System (ADDS) provides for the creation, storage, and
retrieval of data descriptions. A data description details the characteristics of the data
(such as length and type). It does not identify or define the value of the data.

Through ADDS, a program can import record and item definitions. ALGOL programs can
incorporate the descriptions as declarations but cannot alter the descriptions.

Consult Section 7, “Using the Semantic Information Manager (SIM) Interface,” for an
explanation of the relationship between ADDS and SIM. Refer to Section 4, “Using the
Data Management System II (DMSII) Interface,” for further information on the relationship
between ADDS and DMSII.

Consult the InfoExec ADDS Operations Guide for a discussion of concepts, procedures,
and programming considerations when defining, using, and invoking entities.

Conceptually, ALGOL regards ADDS as a “global” type description storage dictionary.
Retrieved entities are seen as type descriptions which are applied to variables being
declared in the ALGOL program. Variables declared using the same entity (type
description) are distinct variables with separate data spaces.

Additional information related to ADDS extensions is included in Section 7, “Using the

Semantic Information Manager (SIM) Interface,” and Section 4, “Using the Data
Management System II (DMSII) Interface.”

8600 0734-301 2-1

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Retrieving Data Descriptions

Data descriptions, or metadata, are the stored format descriptions of the data, not the data
itself. The data descriptions reside in ADDS.

To retrieve data descriptions, use the DICTIONARY compiler control option to identify the
data dictionary where the data descriptions reside. The data dictionary must be specified
before the first syntactic element of the program. Once the data dictionary is identified,
retrieval of a data description can be performed using a dictionary declaration.

The TYPE declaration can be used as a substitute for DICTIONARY RECORD
declarations. The TYPE declaration associates a user-defined name with a record
structure description. It can be used multiple times to define data spaces with the same
description or to describe parameters to procedures.

Retrieving Descriptions

Use the DICTIONARY RECORD declaration to specify the record description you want to
retrieve. Use the DICTIONARY ITEM declaration to specify the item description you want
to retrieve. (An item is any nonstructural entity that can be retrieved directly from ADDS.)
A data dictionary must be established, using the DICTIONARY option, before using these
declarations.

Retrieving Entities of the Same Type

To retrieve several entities of the same type from ADDS, you can declare each
corresponding variable separately or you can list the variables in one declaration list. The
ordering of entities has no significance.

Record Restrictions

2-2

To be compatible for operations such as assignment, record variables must share the same
entity description. The variables must be described by the same dictionary entity identifier
and entity qualifiers.

Parameters must also share the same type description. The TYPE declaration can be used
to retrieve a structure which is then used repeatedly. This guarantees that all declared
variables are the same type. Note that TYPE declarations are not necessary for ADDS-
retrieved entities.

Records that are described by separate, distinct entities, even if they are identical in
format, are not compatible. Even if they match field for field, they are not compatible

because they do not share the same type identifier.

Additional information related to data descriptions is included under “Entity Qualifiers”
and “TYPE Declaration and Invocation” in this section.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Relating ADDS Data Types to ALGOL

All the data types supported in ADDS are not supported in ALGOL. Some ADDS types
exist in ALGOL but cannot be retrieved through the interface. Therefore, ALGOL programs
can retrieve ADDS entities only if both of the following conditions are met:

¢ ALGOL directly supports that data type.

¢ The ALGOL interface supports retrieving that description.

An entity can be any data type supported by both ADDS and the ALGOL interface to
ADDS. The data type of the entity received from ADDS is verified against the type
specified in the program.

ADDS entities that are not structures are called “items.” The following list shows the

ALGOL data types for items:
Binary EBCDIC array
Boolean Event
Digit Real
Display Task

Some ADDS entities, such as Records, can contain embedded items. Any embedded item
within the structure must be one of the following ALGOL data types:

Binary Display Integer
Boolean Double Real
Digit EBCDIC array Record

All embedded items within a structure do not have to be the same data type. However,
they must all be supported data types for the structure to be retrieved and acted upon
correctly. An error will be reported during compilation if a structure is retrieved that
contains a field of a type not supported by ALGOL.

Each retrieved ADDS item and entity type is mapped into an existing ALGOL type.

8600 0734-301 2-3

Using Advanced Data Dictionary System (ADDS) Extensions

Mapping ADDS Types to ALGOL Types

Table 2-1 shows which ADDS types can be mapped into which ALGOL types. The table is
in alphabetical order, by ALGOL type. In addition, the table notes whether the type can be
mapped when the entity is an item or an embedded entity.

2-4

Table 2-1. Mapping ADDS Types to ALGOL Types

ALGOL Type Item Embedded ADDS Type

Binary X X Binary Numeric,
Binary filler

Boolean X X Boolean

Digits X X Number-Comp,
Comp filler

Display X X Display Numeric,
Numeric filler

Double X Double

EBCDIC array X X Alpha Display,
Alpha filler

Event X Event

Integer X Field

Real X X Real

Record X X Group, Record

Task X Task

Additional information related to types is included under “Guidelines for Using ADDS
Types,” “Referencing Fields and Records,” and “ALGOL Data Types for ADDS” in this
section.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

ALGOL Data Types for ADDS

Table 2-2 briefly defines the ALGOL data types that ADDS items and embedded items can
be mapped into. Consult Volume 1 for information on data representation and for in-depth
definitions.

Table 2-2. Brief Description of ALGOL Data Types

ALGOL Type Brief Definition

Binary Can be used to map items and embedded items. A binary is
a 48-bit operand in integer format with an optional scale
factor. The sign can be ignored. As an embedded entity it is
byte-aligned.

Boolean Can be used to map items and embedded items. An ALGOL
“Boolean” aligned on a digit boundary. A 4-bit type, all 4 bits
are acted upon.

Digits Can be used to map items and embedded items. As an
embedded entity it is digit-aligned and has 1 to 23
hexadecimal characters with an optional sign and scale
factor. In arithmetic expressions it is used as a number.
Negative numbers are rounded away from zero (0).

Display Can be used to map items and embedded items. A display is
1 to 23 EBCDIC numeric characters with an optional sign and
an optional scale factor. In arithmetic expressions it is used
as a number. Negative numbers are rounded away from zero
(0). As an embedded entity it is byte-aligned.

Double Can be used to map embedded items. An ALGOL “Double”,
aligned on a byte boundary.

EBCDIC array Can be used to map items and embedded items. All EBCDIC
characters are permitted. As an embedded entity it is aligned
on a byte boundary.

8600 0734-301 2-5

Using Advanced Data Dictionary System (ADDS) Extensions

Table 2-2. Brief Description of ALGOL Data Types

ALGOL Type Brief Definition
Event Can be used to map items. An ALGOL “Event”.
Integer Can be used to map embedded items. An integer is aligned

on a digit boundary. It is a 1 to 48 bit integer, left-justifed at
the boundary, and padded with “filler” bits on the right to the
closest digit boundary. (The filler bits cannot be referenced.)
It is unsigned but always considered to be positive.

Real Can be used to map items and embedded items. An ALGOL
“Real,” as an embedded entity it is aligned on a byte
boundary.

Record Can be used to map items and embedded items. A sequence
of fields, as an embedded entity it is aligned on a byte
boundary.

Task Can be used to map items. An ALGOL “Task”.

Additional information related to ADDS and ALGOL data types is included under “Mapping
ADDS Types to ALGOL Types,” and “Guidelines for Using ADDS Types” in this section.

2-6 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Using ADDS Types

All actions (reference or assignment) performed on a specified field must be contained
within the boundaries of that field. No explicit actions on one field can explicitly or
implicitly affect a neighboring field except as provided for by the POINTER function.
Within this guideline

* Fields of type EBCDIC array can be used anywhere an EBCDIC array can be used.

* Fields of type Display, Digits, Binary, or Real can be used anywhere an arithmetic
primary can be used.

¢ Fields of type Boolean can be used anywhere a Boolean primary can be used.
* Fields of type Integer can be used anywhere an integer primary can be used.
¢ Fields of type Double can be used anywhere a double primary can be used.

* Fields of any type filler can never be explicitly referenced.

e Fields of type Record can be used anywhere a record can be used, except where
explicitly forbidden.

The ADDS extensions permit bit manipulation and partial reference of Real, Boolean, and
Integer fields.

Items can be used where their corresponding field types can be used (as described above).

Arrays of fields are supported. An array of fields with a variable number of elements is
treated as an array of fields having the maximum possible number of elements. A variable-
length field is treated as a fixed-length field whose length is the maximum possible length
of that field. For example, if the length can vary between 5 and 10 digits, a fixed length of
10 is assumed. Redefines are also supported.

Additional information related to the use of ADDS types is included under “POINTER
function,” “Mapping ADDS Types to ALGOL Types,” “ALGOL Data Types for ADDS;,”
“Referencing Fields and Records,” and “RANGECHECK Option: Checking Ranges of Run-
Time Values” in this section.

8600 0734-301 2-7

Using Advanced Data Dictionary System (ADDS) Extensions

Entity Qualifiers

<entity qualifiers>

— ——|:/1\— NAME — = —<entity name) }

/1\~|:<r‘epos1'tory qualifiers>—

<database qualifiers>

<repository qualifiers>

—L—/1\— VERSION — = —<version number }
/1\— DIRECTORY — = — "' <directory name> vt
L7
/1\—- STATUS — = —<status value

<database qualifiers>

——|:/1\— USERCODE — = — '' —<usercode name>— "' |
/1\— PACKNAME — = — II—<pack name>— '

Explanation

2-8

When entities are retrieved, to ensure the retrieval of the correct entity, the entity must be
identified in such a way that it cannot be confused with any other entity. In an ALGOL
program this is done with entity qualifiers. The entity qualifiers are name, version,
directory, and status.

The entity qualifiers are assigned to the entity previously in ADDS. The ALGOL extensions
only iterate the information. In the absence of specified entity qualifiers, ADDS will apply
default rules to locate and identify the appropriate entity. Qualifiers do not have to be
specified if the default rules uniquely identify the entity. Consult the InfoExec ADDS
Operations Guide for the default rules.

Note: FEnabling the default rules to be applied can cause a previously compilable
program to become noncompilable due to the creation of new entities in the

dictionary.

An attempt to retrieve an entity that is not recognized by ADDS results in an error at
compile time.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

The repository qualifiers identify the exact entity to be retrieved from a repository.You
can use database qualifiers when you invoke a SIM database without retrieving it from a
repository. To use the database qualifiers, you must not specify a DICTIONARY with a
compiler control option, and the SIM configuration must include an optional repository. If
a DICTIONARY has not been specified, the repository is optional, and no database
qualifiers are specified, the default usercode and packname are used by SIM to locate the
database.The usercode name is the usercode of the database control files. It is
represented by a constant string that identifies a valid usercode on the system.The pack
name designates the pack on which the database control files are stored. It is represented
by a constant string that identifies a valid pack on the system.The entity qualifiers identify
the exact entity to be retrieved from ADDS. Consult the InfoExec ADDS Operations Guide
for a discussion of entity name, version, directory, and status and the default search rules.

An entity name is the name of the type description within ADDS. If it is not specified, the
value in the identifier declaring the variable is used as the default. Note that an entity
name might contain hyphens but an identifier cannot.

Hyphens (-) are permitted only in the entity name construct of an ALGOL declaration. At
declaration time, hyphens are translated into underscores (_) within the compiler. An
error is generated if, in the same scope, the translated identifier is already declared, or if a
later declaration attempts to declare the translated identifier.

A version number is an integer assigned to the entity by the data dictionary.

The directory is a literal that represents a valid directory name recognized by ADDS. The
directory name is a maximum of 17 characters. An asterisk (*) explicitly specifies that the
entity to be retrieved has no directory name.

The status value enables a particular status to be retrieved. The qualifier specifies the
expected status value of the entity and overrides the status specified by the STATUS

compiler control option.

Valid status values are TEST and PRODUCTION. No other status can be invoked by the
ALGOL compiler.

Additional information related to status values is included under “STATUS Option:
Selecting the Status of Descriptions” in this section.

Example

In the following example, all possible qualifiers are used to identify the entity:

(NAME = RECORD, VERSION = 123456,
DIRECTORY = "ACCOUNT", STATUS = TEST)

8600 0734-301 2-9

Using Advanced Data Dictionary System (ADDS) Extensions

Referencing Fields and Records

<qualified field ID and qualified record ID>

— <record ID> - . ——|: <field ID> J |
<subscripted field ID>

<subscripted field ID>
— <field ID> — [— <subscript> -] |

Explanation

2-10

When referencing fields in a record, each field must be uniquely identified. The field is
qualified by the record identifier, the field identifier, and, as needed, by a subscript field
identifier.

The record ID construct identifies the record that qualifies the field.

The field ID construct identifies the ADDS name for the field. If the field was declared in
the record as a subscripted field or as an EBCDIC array field, use the subscripted field ID
syntax to specify the occurrence of the field or the element of an EBCDIC array.

The subscript can be any arithmetic expression. Arrays of fields (ADDS occurs) are one-
bounded. EBCDIC array fields are zero-bounded.

ADDS field identifiers might contain both underscores and hyphens. However, in ALGOL,
underscores must be used in place of the hyphens. This can cause two fields in the same
record to have the same name. For example, in ADDS the fields can have the names
NEW_ACCOUNT and NEW-ACCOUNT. In ALGOL they are both noted as NEW_ACCOUNT
and only the first field of that name can be referenced.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Examples

In the following example, the field MAY is qualified by the record ACCOUNTS:
ACCOUNTS.MAY

Below, the field MAY is qualified by the form record ACCOUNTS and the form record
library GENERALLEDGER.

GENERALLEDGER.ACCOUNTS.MAY

The following example illustrates how to reference occurrence three in the STUDENT
field in the INSTRUCTOR record.

INSTRUCTOR.STUDENT[3]

The next example shows the syntax to reference character four of occurrence two in the
field STUDENT in the record INSTRUCTOR.

INSTRUCTOR.STUDENT[2,3]

8600 0734-301 2-11

Using Advanced Data Dictionary System (ADDS) Extensions

Compiler Control Options

One compiler control option is specific to ADDS: the STATUS option. The DICTIONARY
option can be used as an ADDS and SIM extension. The RANGECHECK option can be
used as an ADDS extension, as well as both a COMS and SIM extension.

¢ The DICTIONARY option establishes the dictionary to use during compilation.

Note: A dictionary must be established before the first executable statement in the
program. A program that retrieves an entity must specify a dictionary before it
attempts the retrieval. If a dictionary is not previously specified, the program
will not compile. Only one dictionary can be used by the program.

¢ The STATUS option specifies the status value of the retrieved data description. The
status value can be changed as needed. A status value is not required for successful
compilation of the program.

¢ The RANGECHECK option causes the compiler to perform range checking on some
run-time values; it is not required for successful compilation of the program.

2-12 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

DICTIONARY Option: Establishing a Data Dictionary

<dictionary option>

— DICTIONARY ﬁ "<d1'ct1'0nar‘y 1D> L J |

Explanation

The DICTIONARY compiler control value option establishes the ADDS to use during
compilation. The option can be used without retrieving any descriptions from ADDS.

Note: A data dictionary must be established before the first executable statement. Only
one data dictionary can be used by the program. If the program attempts to
retrieve a description and a data dictionary was not previously specified, the
program does not compile.

The compiler links to the specified ADDS (system library) when the first executable
statement is encountered. The link is ended at the end of the compilation. The data
dictionary specified in the first occurrence of a DICTIONARY option is used as the data
dictionary. All other occurrences incur warning messages but are otherwise ignored.

If the compiler cannot link to the specified data dictionary, the following error message is
generated and the compilation is terminated:

DICTIONARY NOT PRESENT OR UNABLE TO LINK

The dictionary ID must be constructed from a combination of uppercase letters and digits
only.

When you use SIM, the dictionary ID must be the ADDS to which SIM is linked.

Example

In the following example, the dictionary with the name DATADICTIONARY will be used
during program compilation:

$SET DICTIONARY = "DATADICTIONARY."

8600 0734-301 2-13

Using Advanced Data Dictionary System (ADDS) Extensions

STATUS Option: Selecting the Status of Descriptions

<status option>
— STATUS — = — <status value> }

<status value>
TEST |

PRODUCTION —

ANY

Explanation

The STATUS option is a value option used to specify the status of the data descriptions to
be retrieved. The STATUS option can appear anywhere within the program. The value can
be changed as often as desired. This option has no effect on declarations which explicitly

specify an entity status.

Additional information related to status values is included under “Entity qualifiers,”
“Specifying a DICTIONARY RECORD,” and “Specifying a DICTIONARY ITEM” in this
section.

Instances where no status value is specified and where the status value is ANY are treated
in the same way. Refer to the InfoExec ADDS Operations Guide for more complete
definitions of status values and default rules.

Examples

2-14

In the following example, the dictionary DATADICTIONARY will be used during program
compilation. From this dictionary, the system will first try to retrieve the record
MAYLEDGER with a PRODUCTION status. If none can be found, the system will try to
retrieve the record MAYLEDGER with a TEST status.

$SET DICTIONARY = "DATADICTIONARY."

$SET STATUS=ANY
DICTIONARY RECORD MAYLEDGER;

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

In the following example, the dictionary DATADICTIONARY will be used during program
compilation. From this dictionary, the system will only try to retrieve the record
MAYLEDGER with a TEST status.

$SET DICTIONARY = "DATADICTIONARY."
$SET STATUS=TEST
DICTIONARY RECORD MAYLEDGER;

In the following example, the dictionary DATADICTIONARY will be used during program
compilation. Although the status option is set to TEST, the system will only retrieve the
record MAYLEDGER with a PRODUCTION status because the status is explicitly set in
the declaration.

$SET DICTIONARY = "DATADICTIONARY."

$SET STATUS=TEST
DICTIONARY RECORD MAYLEDGER (STATUS=PRODUCTION);

8600 0734-301 2-15

Using Advanced Data Dictionary System (ADDS) Extensions

RANGECHECK Option: Checking Ranges of Run-Time Values

<rangecheck option>
— RANGECHECK |

Example

The RANGECHECK option is a Boolean option that causes range checking to be
performed at run time. The option is set by default. Use $RESET to reset the option.

The ranges checked include

* During assignments, checking if the numbers assigned into Display, Digits, Integer,
and Binary items or fields are too large to be assigned. (This also checks for
truncation errors.)

e Checking if subscripts are within the range for arrays of fields and for EBCDIC array
fields.

A run-time fault occurs if a value fails a range check; the program is discontinued and an
“Invalid Operation” is reported.

In the following example, the RANGECHECK option is reset. The compiler does not
perform range checking at run time. This means the compiler emits faster code but

permits incorrect assignments or indexing.

$RESET RANGECHECK

2-16 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Data Dictionary Declarations

The DICTIONARY RECORD and DICTIONARY ITEM declarations are used to retrieve
record descriptions and item descriptions from the specified ADDS.

A data dictionary must be set using the DICTIONARY option before the compiler
encounters any data dictionary retrieval declaration.

Additional information related to data dictionary declarations is included under

“DICTIONARY Option: Establishing a Data Dictionary,” and “Guidelines for Retrieving
Data Descriptions” in this section.

Specifying a DICTIONARY RECORD

<dictionary record declaration>

— DICTIONARY RECORD —J— <record ID> [_ _J }
<entity qualifiers>

<record ID>

— <identifier> |

Explanation

The DICTIONARY RECORD declaration specifies which record description is to be
retrieved from ADDS.

A DICTIONARY RECORD can also be declared using a TYPE declaration and invocation.
Because ADDS entities are considered to be global, the TYPE declaration and invocation

are not required with ADDS entities.

Additional information related to the DICTIONARY RECORD is included under “TYPE
Declaration and Invocation,” and “Binding Considerations for ADDS” in this section.

Additional information related to items of the DICTIONARY RECORD is included under
“Entity Qualifiers,” and “Referencing Fields and Records” in this section.

The record ID is the name within the program of the variable being declared.

The record identifier can be qualified by any or all the entity qualifiers: entity name,
version number, directory, and status.

If the identifier is qualified by an entity name, the name identifies the entity within ADDS.
If an entity name is not specified, the record ID is used as the entity name.

8600 0734-301 2-17

Using Advanced Data Dictionary System (ADDS) Extensions

Hyphens (-) are permitted only in the <entity name> construct. At declaration time,
hyphens are translated into underscores (_) within the compiler. An error is generated if,
in the same scope, the translated identifier is already declared, or if a later declaration
attempts to declare the translated identifier.

More than one record description can be retrieved at one time using a single DICTIONARY
RECORD declaration.
Examples

In the following example, the records MONTH, DATE, and YEAR are retrieved from the
ADDS with the name DATADICTIONARY.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD MONTHS, DATE, YEAR;

In this example, version 2 of record YEARLY stored under the directory ALL is retrieved
from the ADDS with the name DATADICTIONARY.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD YEARLY (VERSION = 2, DIRECTORY = "ALL");

In the following example, version 2 of record B is retrieved from the ADDS with the the
name DATADICTIONARY. The default version of record A is retrieved.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD A, B (VERSION = 2);

This example retrieves the record description FACTORY from the data dictionary
DATADICTIONARY. The description is applied to the record variable MANUFACTURE.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY RECORD MANUFACTURE (NAME = FACTORY);

In the following example, several records are declared in distinct declarations, and the
same records are declared in one declaration.

Separately Single Declaration
DICTIONARY RECORD X; DICTIONARY RECORD L, T, X;

DICTIONARY RECORD T;
DICTIONARY RECORD L;

2-18 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

TYPE Declaration and Invocation

<type declaration>

— TYPE — DICTIONARY RECORD i <type ID> L J }
<entity qualifiers>

<type ID>

— <identifier> |

<type invocation>

— <type ID> J— <record ID> |

Explanation

ADDS entities are assumed to be defined globally to the program. Thus, the TYPE
declaration and invocation are not required with ADDS entities. However, their use does
provide for a faster compilation when a dictionary record is declared multiple times.

The TYPE declaration associates a user-defined type identifier with a data description and
must precede the type invocation. The type invocation declares records that have the
structure associated with the type identifier.

In the TYPE declaration, a type identifier is associated with DICTIONARY RECORD
declaration. In effect, the type identifier is the name of a record structure description. The
TYPE declaration does not create a variable, it simply defines a type identifier that can be
used to declare record variables. The variables are declared using the syntax notation
shown below.

Only variables that share the same entity description and type are compatible. Records
described by separate, distinct entities and identical in content are not compatible if they
do not share the same type identifier.

The DICTIONARY RECORD declaration in the TYPE declaration identifies the record to
be used as the data definition. When the declaration is used as part of the syntax of a
TYPE declaration and invocation, the type ID is the name of the record structure
description.

The type identifier is the user-defined name associated with the format. The type ID
construct includes the name of the record declared in the TYPE declaration. Each record
specified by a record identifier in the type invocation has the structure defined by the type
identifier.

8600 0734-301 2-19

Using Advanced Data Dictionary System (ADDS) Extensions

The type identifier can be qualified by any or all the entity qualifiers: entity name, version
number, directory, and status.

Additional information related to type declarations is included under “Record
Restrictions” in this section.

Additional information related to items in the type declaration is included under
“Specifying a DICTIONARY RECORD,” “Referencing Fields and Records,” and “Entity
Qualifiers” in this section.

Examples

2-20

In the example shown below, a TYPE declaration equates the identifier
NEWRECORDTYPE with the record structure of INSTRUCTOR. The record PROFESSOR
is then defined. By using the type invocation, the structure of INSTRUCTOR becomes the
structure of PROFESSOR.

TYPE DICTIONARY RECORD NEWRECORDTYPE (NAME=INSTRUCTOR);
NEWRECORDTYPE PROFESSOR;

In the following example, a TYPE declaration equates the identifier MYRECORD with the
record structure of PAYABLE. The type invocation is then used to impose the record
structure onto the record NEXTPAYABLE.

TYPE DICTIONARY RECORD MYRECORD (NAME = PAYABLE,

VERSION = 123456, DIRECTORY = "ACCOUNTING");
MYRECORD NEXTPAYABLE;

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Specifying a DICTIONARY ITEM

<dictionary item declaration>

— DICTIONARY —— REAL <item ID>

— BOOLEAN |— <entity qualifiers> J

— DISPLAY

— DIGITS ———
— BINARY ————
— EBCDIC ARRAY —
— EVENT

— TASK

Explanation

The DICTIONARY ITEM declaration specifies which item description is to be retrieved
from ADDS. An item is an entity that is neither a structure nor embedded in a structure.

Real, Boolean, Display, Digits, Binary, EBCDIC array, Event, and Task are ALGOL-
supported types.

The item ID is the name of the item. It can be qualified by name, version number,
directory, and status.

Hyphens (-) are permitted only in the entity name construct. At declaration time, hyphens
are translated into underscores (_) within the compiler. An error is generated if, in the
same scope, the translated identifier is already declared, or if a later declaration attempts
to declare the translated identifier.

Additional information related to dictionary items is included under “Entity Qualifiers,”
“Referencing Fields and Records,” and “ALGOL Data Types for ADDS” in this section.

Example

In the following example, after establishing DATADICTIONARY, the dictionary items X Y,
and Z are retrieved. All three items are type Real.

$SET DICTIONARY = "DATADICTIONARY."
DICTIONARY REAL X,

Y (VERSION = 2),

Z (NAME = A, DIRECTORY = "*");

8600 0734-301 2-21

Using Advanced Data Dictionary System (ADDS) Extensions

Passing Entities as Parameters

<specification>

i ’
—— <specifier> <identifier> |

— <procedure specification>
— <array specification>

— <dictionary entity declaration> —

— <type invocation>

— <type declaration>

Explanation

2-22

To specify a formal parameter that has a description residing in ADDS, the dictionary
entity declaration or type invocation constructs found in the specification construct of the
PROCEDURE declaration must be used to declare the formal parameter. Note that the
TYPE declaration can be used with the type invocation construct. (The type identifier will
not be interpreted as a parameter.)

Dictionary Records, Displays, Digits, and Binaries must be specified in this manner.
Dictionary Reals, Booleans, EBCDIC arrays, Tasks, and Events can be specified in this
manner or by using normal ALGOL declarations.

Refer to Volume 1 for a full discussion of the PROCEDURE declaration.

All records are passed by name only. The actual and formal parameters must have the
same dictionary entity as their type description.

When passing embedded items to items or items to items, the entity type determines the
requirements, as shown below:

* Types EBCDIC array, Display, Digits, or Record that are embedded entities:

When passed by reference, they are passed as a by-value pointer and a lower bound.
They cannot be passed by value only. In addition, for records to be compatible, the
actual and formal parameters must have the same dictionary type description. For
Display and Digits, signs, lengths, and scale information is ignored.

* Types Real, Boolean, Binary, and Integer:

As fields, all specified types can be passed by value only. As items, types Real and
Boolean are treated normally. As items, when passed by name, type Binary can be
passed only to type Binary. Sign and scale information is ignored.

As implemented, records are logical structures imposed by the compiler on “*”-bound

EBCDIC arrays. Items can be passed as normal ALGOL variables. A field in a record
cannot be specified as the formal parameter.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Additional information related to entities is included under ” “Specifying a DICTIONARY
RECORD,” “Specifying a DICTIONARY ITEM,” and “TYPE Declaration and Invocation” in
this section.

Additional information related to ADDS entities is included under “Relating ADDS Data
Types to ALGOL” in this section.

Examples

The following two coding examples can be used to accomplish the same programming
task. In the first example, the record REC1 is declared. The formal parameter for
procedure P is REC2. REC2 is the same type as REC1. When procedure P is called, REC1
is passed as a formal parameter.

$SET DICTIONARY = "DATADICTIONARY."

BEGIN

DICTIONARY RECORD REC1 (NAME=X, VERSION=2);
PROCEDURE P (REC2);

DICTIONARY RECORD REC2 (NAME=X, VERSION=2);
BEGIN

END;
P (REC1)

END.

In the following example, the record REC1 is declared. The identifier X is assigned the
type. The formal parameter for procedure P is REC2, declared to be type X. By using X,
REC2 is noted as the same type as REC1. When procedure P is called, REC1 is passed as a
formal parameter.

$SET DICTIONARY = "DATADICTIONARY."
BEGIN

TYPE DICTIONARY RECORD X (VERSION = 2);
X REC1;

PROCEDURE P (REC2);
X RECZ;
BEGIN

END;
P (REC1);

END.

8600 0734-301 2-23

Using Advanced Data Dictionary System (ADDS) Extensions

Binding Considerations for ADDS

A DICTIONARY RECORD variable can be bound to another DICTIONARY RECORD
variable or to an “*”-bound EBCDIC array. A DICTIONARY RECORD can also be bound to
any other record type that can be bound to an “*”-bound EBCDIC array. The Binder
program does not check the record structures for compatibility; therefore, it binds
DICTIONARY RECORD variables to similarly defined DICTIONARY RECORDs.

Procedures that have DICTIONARY RECORD formal parameters can also be bound, but
type checking will not be performed at bind time. The user must ensure that the types of
the formal and actual parameters are identical.

How the variable is declared in a subprogram determines what the subprogram can do
with the variable and whether the variable is properly protected against write access.

» If the subprogram declares the variable as a DICTIONARY RECORD variable, the
DICTIONARY RECORD variable can be accessed through the described fields.

e If the subprogram declares the variable as another type of record variable, the
variable can be accessed through the field names of the record. The semantic rules for
that type of record variable are enforced.

e If the subprogram declares the variable as an EBCDIC array, no field-oriented access
can be used. Assignment to the variable is permitted.

Refer to the Binder Programming Reference Manual for more information. Additional
information related to ADDS items used as parameters is included under “Passing Entities
as Parameters” in this section.

2-24 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Statements Used as ADDS Extensions

The assignment, REPLACE, and SCAN statements can be used with ADDS entities. The
assignment statement syntax is shown below. Consult Volume 1 for the syntax of
REPLACE and SCAN statements. Additional information related to ADDS and pointers is
included under “POINTER Function” in this section.

Assignment Statement

<arithmetic assignment statement>

<display ID>

<qualified display field ID> —
<digits ID>

<qualified digits field ID> —

<binary ID>
<qualified binary field ID> —

<real ID>

<qualified real field ID>
<qualified integer field ID> —
<double ID>

<qualified double ID>

<Boolean assignment statement>

L

<Boolean ID> J
<qualified Boolean field ID>

<record assignment statement>

— <record> — := — <record>

:= — <arithmetic expression> —|

:= — <Boolean expression> —|

8600 0734-301

2-25

Using Advanced Data Dictionary System (ADDS) Extensions

Explanation

The assignment statement causes the item on the right of the assignment operator (:=) to
be evaluated and the resulting value to be assigned to the item on the left of the
assignment operator.

Three types of assignment statements can be used: arithmetic, Boolean, and record. Refer
to Volume 1 for a discussion of the assignment statement, specifically arithmetic and
Boolean assignment statements.

If the arithmetic value to be assigned into a field or item of type Display or Digits does not
fit, the value is rounded and/or the high-order characters are truncated. In effect, a MOD
operation for remainder division is performed (as described in Volume 1). If the
RANGECHECK compiler control option is set, a run-time fault will be generated if any
characters are truncated.

In assignments between Display fields or items, or between Digit fields or items, the
resulting value is converted into a 48- or 96- bit operand and then back into characters.
Blank fill is performed on unneeded character spaces.

The assignment of a Boolean value to a field of type Boolean affects all four bits of the
field.

If the arithmetic value to be assigned into a type Integer is too large, then the high-order
bits are truncated. In effect, a MOD operation is performed. If the RANGECHECK
compiler control option is set, a run-time fault will be generated if any bits are truncated.
Records can only be assigned to records that share the same dictionary entity type
description. Two records described by disjoint type descriptions but that are logically
identical will not be compatible for the purposes of assignment.
Additional information relating to assignment statements is included under
“RANGECHECK Option: Checking Ranges of Run-time Values,” “Referencing Fields and
Records,” “Entity Qualifiers,” and “Relating ADDS Data Types to ALGOL” in this section.
Examples

In the following example of an arithmetic assignment, the Integer field MONTH is
embedded in record YEAR:

YEAR.MONTH := 10;

2-26 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

REPLACE and SCAN Statements

The REPLACE statement, as described in Volume 1, causes character data from one or
more sources to be stored in a designated portion of an array row.

The SCAN statement, as described in Volume 1, examines a contiguous portion of
character data in an array row, one character at a time, in a left-to-right direction. The

source is always a pointer expression.

For both statements, fields and items of type EBCDIC array are considered to be pointer
expressions.

8600 0734-301 2-27

Using Advanced Data Dictionary System (ADDS) Extensions

Functions Used as ADDS Extensions

2-28

The ALGOL functions LENGTH, OFFSET, POINTER, RESIZE, SIZE, and STACK option are
extended for use with ADDS. ADDS also provides the UNITS function. Record, field,
display, and digit identifiers are valid input for all these functions.
 LENGTH function

The LENGTH function returns the length of a specified entity in the designated units.
¢« OFFSET function

The OFFSET function returns the number of units that the specified entity is indexed
from the beginning of the outermost record in which it is declared.

¢« POINTER function
The POINTER function returns a pointer to the specified input.
¢ RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier.

e SIZE function
The SIZE function returns the size of the array underlying a given record identifier.
* STACK option

The STACK compiler control option directs the ALGOL compiler to print data
definition descriptions that are imported from SDF Plus during compilation.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer value, the
default unit size expected by the LENGTH and OFFSET functions.

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

LENGTH Function

<length function>

— LENGTH - (<record ID> L J) |
<qualified field ID> — — <units value>

<display ID>

<digit ID>

Explanation

The extended LENGTH function returns, as an integer value, the length of the specified
entity in designated units.

The length of a record, field, display, or digit can be returned. If a field is specified, the
field must be qualified.

The valid values for units are 1, 4, 8, and 0 (zero). If a value is not specified, a default is
used. See “UNITS Function” for a list of defaults.

An error results if the length of the entity cannot be expressed as an integral number of
units. For example, the length of a 3-character EBCDIC array field cannot be expressed in
words.

Additional information related to the LENGTH function is included under “Referencing
Fields and Records,” “Relating ADDS Data Types to ALGOL,” and “UNITS Function” in this
section.

Examples

Shown below, A is assigned the Boolean field's length of 1. The field Booleanfield is
qualified by the record R.

A := LENGTH (R.Booleanfield); %A =1

In the following example, A is assigned the record's length of R. The default unit size is
bits.

A := LENGTH (R); %A = number bits in R

In this example, A is assigned the record's length of R. The default unit size is bits, but
digits are specified.

A := LENGTH (R,4); %A = number digits in R

8600 0734-301 2-29

Using Advanced Data Dictionary System (ADDS) Extensions

OFFSET Function

<offset function>
— OFFSET - (<record ID>

[T
<qualified field ID> — , — <units value>

<display ID>

<digit ID>

Explanation

The OFFSET function returns, as an integer value, the number of units that the designated
entity is indexed from the beginning of the outermost record in which the entity is
declared.

The valid values for units are 1, 4, 8, and 0 (zero). If no value is specified, a default is used.
See “UNITS Function” for a list of defaults.

An error results if the offset of the field, record, display, or digit cannot be expressed in an
integral number of units or if the offset can only be determined at run time and might not
be expressible as an integral number of units. This can occur when units larger than the
default unit are specified or when a field is an element in an array of fields.

Additional information related to the syntax of the OFFSET function is included under
“Referencing Fields and Records,” “Relating ADDS Data Types to ALGOL,” and “UNITS
Function” in this section.

Examples

In the following example, A is first assigned the offset of field X in record R. The units are
returned in digits. A is then assigned the offset of field Y. The units are returned in bytes.

A :
A :

OFFSET (R.X,4)
OFFSET (R.Y,8) %A

N
=
1

the offset of X in R in digits
the offset of Y in R in bytes

In this example, A is assigned the offset of T from the beginning of R, in digits:
A := OFFSET (R.S.T,4)

In the next example, A is assigned an offset in bits to be determined at run time. The
assignment is permitted because the offset is known to be expressible in bits.

A := OFFSET (R.Q[N]);

2-30 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

POINTER Function

<pointer function>
— POINTER — (<qualified field ID>

[I
<record ID> — , — <character size>

<display ID>

<digit ID>

Explanation
The POINTER function returns a pointer to the designated input. Records, while
implemented as EBCDIC arrays, cannot be referenced as such without the explicit use of
the POINTER function.
The pointer acts as if it were pointing to data of the specified character size. If the
character size is not specified, and the designated field holds 4-bit characters, a character

size of 4 is assumed. In all other cases the default character size is 8.

The POINTER function bypasses all compiler restrictions related to field integrity and
type. A record can thus be referenced as a one-dimensional array.

Additional information related to the syntax of the POINTER function is included under
“Referencing Fields and Records,” and “Guidelines for Using ADDS Types” in this section.

Examples

In the following example, R is an EBCDIC field which is filled with spaces.
REPLACE POINTER F.R BY " " FOR LENGTH (F.R)

Below, the quoted string “ABCDEF” is used to fill the entire length of R. The string is
repeated as many times as necessary to fill the entire length.

REPLACE POINTER (R,8) BY "ABCDEF" FOR LENGTH (R,8);

8600 0734-301 2-31

Using Advanced Data Dictionary System (ADDS) Extensions

RESIZE Function

<resize function>

— RESIZE — (- <record ID> — , — <new size> L) }
. RETAIN
DISCARD
PAGED
Explanation

The RESIZE function changes the size of the array underlying a given record identifier.
This function can also change the size of the array containing a record by changing the
upper bound of the array. The size of the entire array is changed, regardless of the
record's position in the array.

The record ID construct is the identifier of any valid record within the ALGOL program.

The new size construct is an integer that represents the number of elements in the array
after the RESIZE function is performed. The size of each element depends on the type of
the underlying array. The element sizes of some common record arrays are shown in the
following table.

Record Element Size
Advanced Data Dictionary System (ADDS) records Bytes
Communication Management System (COMS) Input Words
Headers, Output Headers, or COMS records

Screen Design Facility Plus (SDF Plus) form record Bytes

libraries

Semantic Information Manager (SIM) records Bytes

More detailed information on the RESIZE function is included in Volume 1, under “RESIZE
Statement” in Section 5, “Statements”. Additional related information is included under
“Referencing Fields and Records,” and “Relating ADDS Data Types to ALGOL” in this
section.

2-32 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Examples

In the following example, the array containing the record INPUTRECORD is changed to
the value of NEWSZ and the previous contents of the array are discarded.

RESIZE(INPUTRECORD, NEWSZ, DISCARD)
In the following example, the size of the array containing INPUTRECORD is changed to be
the same as the value of the MAXRECSIZE attribute of the file INPUTFILE. The previous
contents of the array are retained.

RESIZE(INPUTRECORD, INPUTFILE.MAXRECSIZE, RETAIN)
In this example, the size of the array containing INPUTRECORD is increased by 100
elements. The previous contents of the array are retained, but the array is changed to be a

paged (segmented) array.

RESIZE(INPUTRECORD, SIZE(INPUTRECORD)+100, PAGED)

8600 0734-301 2-33

Using Advanced Data Dictionary System (ADDS) Extensions

SIZE Function

<size function>
— SIZE — (- <record ID> -) }

Explanation

The SIZE function returns the size of the array underlying a given record identifier.

The SIZE function accepts a record identifier and returns the number of elements in the
array that contains the record. This function returns an integer representing the size of the
entire array, regardless of the record's position in the array.

The size of each element depends on the type of the underlying array. The element sizes of
some common record arrays are shown in the following table.

Record Element Size
Advanced Data Dictionary System (ADDS) records Bytes
Communication Management System (COMS) Input Words
Headers, Output Headers, or COMS records

Screen Design Facility Plus (SDF Plus) form record libraries Bytes
Semantic Information Manager (SIM) records Bytes

More detailed information on the SIZE function is included in Volume 1, under “Intrinsic
Function Descriptions” in Section 6, “Expressions”. Additional related information is
included under “Referencing Fields and Records,” and “Relating ADDS Data Types to
ALGOL” in this section.

Examples

In the following example, ARRYLIMIT is assigned the size of the array that contains the
record INPUTRECORD.

ARRYLIMIT := SIZE(INPUTRECORD)

2-34 8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

STACK Option

<stack option>

—[STACK—J |
MAP

Explanation

The STACK option directs the ALGOL compiler to print data definition descriptions that
are imported from SDF Plus during compilation.

When the stack option is set, the ALGOL compiler includes the definitions of the imported
form record field types, form record types, form record library types, and file types in the
compilation.

(Type: Boolean, Default value: FALSE)

MAP is a synonym for the STACK option.

8600 0734-301 2-35

Using Advanced Data Dictionary System (ADDS) Extensions

UNITS Function

<units function>
— UNITS = (<record ID>) '

<qualified field ID> —

<display ID>

<digit ID>

Explanation

2-36

The UNITS function accepts a specified entity as input and returns, as an integer value,
the default unit size expected by the LENGTH and OFFSET functions.

The default unit size is the lowest common unit of the target type in which the length and
offset of the target can be expressed. In general, if a target contains 4-bit or 8-bit character

data, the value returned is 4 or 8, respectively. Otherwise, the value returned is 1.

The following table shows how the unit sizes are interpreted:

Unit Meaning
1 Bits

4 Digits

8 Bytes

0 Words

8600 0734-301

Using Advanced Data Dictionary System (ADDS) Extensions

Example

Default unit sizes for ADDS fields and records are shown in the table below:

Field or Record

Default Unit Size

Display fields

EBCDIC Array fields
Digits fields

Binary fields

Boolean fields

Double fields

Entity Reference fields
Integer fields

Real fields

Record fields

Records

— = = = = = = = N 00 00

Note that, by definition

LENGTH(R.X) = LENGTH (R.X,UNITS(R.X))

Additional information related to the syntax of the UNITS function is included under
“Referencing Fields and Records,” “Relating ADDS Data Types to ALGOL,” “LENGTH

Function,” and “OFFSET Function.”

The default unit size of field X in record R is returned.

A := UNITS (R.X)

8600 0734-301

2-37

Using Advanced Data Dictionary System (ADDS) Extensions

2-38 8600 0734-301

Section 3
Using Communications Management
System (COMS) Features

The Communications Management System (COMS) is a message control system (MCS)
developed to control interactive environments. COMS supports the processing of multiple
program transactions as well as single-station and multiple-station remote files.

The ALGOL interface to COMS enables programs to communicate through COMS with
terminals or other programs. ALGOL programs interact with COMS through the COMS
direct-window interface. The following features and functions are available to the
programs:

* Message routing by transaction codes (trancodes) and agendas
* Security checking of messages that programs receive and send

e Service functions for manipulating COMS entities by translating COMS values to
names and translating names to COMS values

e Dynamic opening of direct windows to terminals not attached to COMS, and dynamic
communication over a modem

* Synchronized recovery for multiple database processing programs running
asynchronously

e External definition of record formats related to COMS (COMSRECORD declarations)

For COMS to perform these functions, the required version of COMS must be installed and
the ALGOL program must link to a COMS library and declare an input header, an output
header, and a message area.

COMS can be used with Advanced Data Dictionary System (ADDS), Data Management
System II (DMSII), and Semantic Information Manager (SIM). This section provides a brief
overview of the ALGOL functions that can be used with COMS and details the statements
that can be used for synchronized recovery with DMSII. Refer to Section 7, “Using the
Semantic Information Manager (SIM) Interface,” in this volume and to the InfoExec
Semantic Information Manager (SIM) Programming Guide for information on
synchronized recovery with SIM.

Refer to the Communications Management System (COMS) Programming Guide for a

discussion of COMS programming issues and a detailed explanation of the COMS features
and functions available with each version of COMS.

8600 0734-301 3-1

Using Communications Management System (COMS) Features

The COMS interface has created the following new ALGOL type 2 reserved words:

AFTER INPUTHEADER OUTPUTHEADER
BEFORE MESSAGECOUNT RECEIVE

EGI NOCR SEND

EMI NOLF TERMINAL

ESI

Additional information relating to COMS and SIM is included in Section 7, “Using the
Semantic Information Manager (SIM) Interface.”

Using ALGOL Functions as COMS Extensions

The RANGECHECK compiler control option, as well as the LENGTH, OFFSET, POINTER,
and UNITS functions, can be used as COMS extensions. More detailed information about
these ALGOL functions is included in Section 2, “Using Advanced Data Dictionary System
(ADDS) Extensions.”

Purpose of the RANGECHECK Option

3-2

The RANGECHECK option is a Boolean option that causes the compiler to generate code
that performs range checking at run time on values that were not known at compile time.
The option is set by default. A run-time fault occurs if a value fails a range check; the
program is discontinued and an “Invalid Operation” is reported.

8600 0734-301

Using Communications Management System (COMS) Features

Purpose of Functions
The following ALGOL functions can be used with COMS:

 LENGTH function
The LENGTH function returns the length of a specified entity in the designated units.
e OFFSET function

The OFFSET function returns the number of units that the specified entity is offest
from the beginning of the outermost record in which it is declared.

¢« POINTER function
The POINTER function returns a pointer to the specified input.
¢ RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For COMS input and output headers and COMS records, the size is given in
words. The size of the entire array is changed, regardless of the record's position in
the array.

e SIZE function

The SIZE function returns the size of the array underlying a given record identifier.
For COMS input and output headers and COMS records, the size is given in words.
The size returned is an integer representing the size of the entire array, regardless of
the record's position in the array.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer value, the
default unit size expected by the LENGTH and OFFSET functions.

8600 0734-301 3-3

Using Communications Management System (COMS) Features

Linking to COMS

An ALGOL program accesses a COMS library by declaring a record format related to
COMS (for example, INPUTHEADER, OUTPUTHEADER, or COMSRECORD).

The library linkage is implicitly declared to the COMS library entry point entitled
DCIENTRYPOINT. A link to the library entry point is established when the first COMS
statement is encountered at run time. It is preferable to establish a link to the library entry
point rather than declaring the COMS DCILIBRARY and calling the entry point explicitly.

The default library access is BYFUNCTION with a FUNCTIONNAME of COMSSUPPORT.
A LIBPARAMETER is generated by the compiler. The title, function name, and library
access attributes of the COMSSUPPORT library can be changed in the same way as any
other declared library, by using the internal name of COMSSUPPORT. If these changes are
made, they must be made prior to the first executable statement in the program.

For further information on libraries and library declarations, consult Volume 1. Refer to
the System Software Utilities Operations Reference Manual for details on library
attributes, and the System Commands Operations Reference Manual for a description of
the SL (Support Library) command.

Additional information relating to COMS libraries is included under “COMS Statements,”
“COMS Service Functions,” “Declaring an Input or Output Header,” and “Declaring a
COMSRECORD?” in this section.

Linking to COMS by Title

It is possible for an ALGOL program to link to COMS by title. The following is an example
of the statements that must be included at the beginning of the program.

Example

3-4

COMSSUPPORT.LIBACCESS := VALUE (BYTITLE);
REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE := STRING(SCRATCH[0], 256);
% Store the family name so it can be temporarily changed
REPLACE SCRATCH BY MYSELF.FAMILY;
% Reset family name to null in case running on disk named DISK
REPLACE MYSELF.FAMILY BY ".";
ENABLE (<inputheadername>, "ONLINE");
% Restore family name for accessing files, etc.
REPLACE MYSELF.FAMILY BY SCRATCH;

Note: It is recommended that you do not link to COMS by title. Linking by function is
the recommended method.

8600 0734-301

Using Communications Management System (COMS) Features

Declaring an Input or Output Header

A header is a record structure with predefined field names and purposes. Consult the
COMS Programming Guide for information on the structure of the header.

An input or output header declaration associates a header identifier with a header. It
declares a header record as a variable. An input or output header can also be declared by
using TYPE declarations and invocations. You can use the TYPE declaration to declare a
header record as a type identifier.

You can also declare input and output header formats by using the COMSRECORD
declaration. The COMSRECORD declaration is the best method to use when declaring
header formats. Refer to “Declaring a COMSRECORD” later in this section for more
information about the COMSRECORD declaration.

Input and output headers are used when a program communicates with COMS through a
direct-window interface. Each header is one record and is composed of multiple fields.
The fields contain routing or descriptive information for the actual message.

Although the message is not part of the header, it is associated with the header for routing
when it is named as the message area variable in a RECEIVE or SEND statement.

Both input and output headers can have an optional conversation area field at the end of
the structure. The conversation area field is the only user-defined field in an input or
output header. Consult the COMS Programming Guide for a definition of the contents in
the conversation area field of an input or output header.

The conversation area field is accessed in the same manner as the predefined fields. If a
header has a conversation area field and the header is passed as a parameter, a TYPE
declaration is required.

Input and output headers can be bound to other input or output headers. The headers
must have the same conversation area description.

Because the layout of input or output headers can change with each software release, a
program must not preserve any designators across executions. Designators must not be
used as key data in a database. To guarantee the validity of the data, save all necessary

information in the appropriate header every time the header is used.

Additional information relating to input and output headers is included under “Input or
Output Header Type Declaration” in this section.

8600 0734-301 3-5

Using Communications Management System (COMS) Features

Input or Output Header Declaration

<header declaration>
~|: INPUTHEADER — <inputheadername> J L J
OUTPUTHEADER — <outputheadername> <conversation area>
i] |
<addr equation>

<inputheadername>

— <identifier> }

<outputheadername>

— <identifier> }

<conversation area>

- <Boolean declaration>) }
<integer declaration>

<real declaration>

<conversation array declaration> —

<conversation array declaration>

ARRAY - <identifier> — [~ <bound pair> —] —|

Real —

Integer —

Boolean —

<addr equation>
— = —— <ADDS record ID> I

— <inputheader ID> —

— <outputheader ID> —

— <DMRECORD ID>

— <real array ID> —

- <EBCDIC array ID> —

3-6 8600 0734-301

Using Communications Management System (COMS) Features

Explanation
The inputheadername construct identifies an input header used to receive messages
through COMS. The outputheadername construct identifies an output header used to send

messages through COMS. A program can have one or more input or output headers.

The conversation area declaration is optional. However, if a header has a conversation
area, this declaration defines the type and length of the conversation area field.

The addr equation construct is optional. This construct is similar to the array row

equivalence construct of an array declaration in that it causes the declared input or output
header to refer to the same data as the specified record or array row.

Examples

The following example declares the input header RECEIVECOMS. It has no conversation
area field.

INPUTHEADER RECEIVECOMS;

In the following example, the input header MYINPUT is declared as having a one- word
Real conversation area identified as MYAREA:

INPUTHEADER MYINPUT (REAL MYAREA);
The conversation area field is declared as a REAL array in the following example:

OUTPUTHEADER SENDCOMS (REAL ARRAY CONVERSATION[0:90]);

8600 0734-301 3-7

Using Communications Management System (COMS) Features

Input or Output Header Type Declaration

<header type declaration>

—|: INPUTHEADER T <header type ID> L J |
OUTPUTHEADER <conversation area>

<header type invocation>

— TYPE

l

— <header type ID> ——|: <inputheadername> J }

<outputheadername>

<header type ID>

— <identifier> }

Explanation

3-8

The TYPE declaration can be used to associate a user-defined name with a header format
specified in an input or output header declaration. The format can then be used as a data
description. The TYPE declaration is required if a header has a conversation area field and
the header is passed as a parameter.

Normally, declaring an input or output header creates a structure as a variable. In
contrast, the TYPE declaration does not create a variable; it simply defines a type
identifier that can be used to declare record variables. A type identifier is associated with
an input or output header declaration. In effect, the type identifier is the name of a record
structure description.

Only variables that share the same entity description and type are compatible. The TYPE
declaration provides compatibility for the headers. Records described by separate, distinct
entities and identical in content are compatible only if they share the same type identifier.

A TYPE declaration must precede a type invocation. The type invocation declares records
that have the structure associated with the type identifier.

Additional information on the inputheadername, outputheadername, and conversation
area constructs is included under “Declaring an Input or Output Header” in this section.
Related information is also included under “Accessing Header Fields” in this section, and
under “Referencing Fields and Records” in Section 2, “Using the Advanced Data
Dictionary System (ADDS) Extensions.”

The header type identifier is the user-defined name associated with the format. The header
type ID construct includes the name of the input or output header, as declared in the
TYPE declaration. Each record specified by an inputheadername or outputheadername
construct in the type invocation has the structure defined by the header type identifier.

8600 0734-301

Using Communications Management System (COMS) Features

Examples

In this example, a TYPE declaration creates a data definition from the input header
MYINPUTHEADER. The type invocation is then used to impose the structure onto the
records NEXTHEADER and PREVHEADER.

TYPE INPUTHEADER MYINPUTHEADER; MYINPUTHEADER NEXTHEADER, PREVHEADER;
The following example creates a data definition from the output header OUTMSG. The
definition includes the conversation area CONAREA. The structure is then imposed on the

record ROUTE.

TYPE OUTPUTHEADER OUTMSG (REAL CONAREA); OUTMSG ROUTE;

8600 0734-301 3-9

Using Communications Management System (COMS) Features

Input Header Structure and Type

Table 3-1 shows the predefined fields of the input header that are available to an ALGOL
program. The fields are listed as they appear in the structure, including the optional
conversation area field. The listing gives the ALGOL name, data type, and a brief
description for each field.

COMS places values (designators and integers) in the input header fields when an
ENABLE, MESSAGECOUNT, or RECEIVE statement is executed. You can use a service
function to translate a designator to a name representing a COMS entity.

Input headers are used in receiving messages. For messages that are received, the input
header fields are used for the following tasks:

¢ Confirming message status

* Passing data in the conversation area field

* Detecting queued messages

* Determining message origin

* Obtaining direct-window notifications

e Processing transaction codes (trancodes) for routing

The fields, their COMS names and values, and their purposes are detailed in the COMS

Programming Guide.

Additional information relating to the fields of a COMS input header is included under
“COMS Service Functions” in this section.

Table 3-1. Input Header Structure and Type

Field Name Data Type Brief Description

PROGRAMDESG Designator Designator that COMS has assigned to
the program or designator of the
program that sent the message.

FUNCTIONINDEX Integer Module Function Index (MFI) that can be
used in conjunction with COMS trancode-
based routing.

FUNCTIONSTATUS Integer Positive value: COMS-defined error value.

Negative value: Reports the status of a
dynamic attachment, a confirmation
request for output messages, or a
COMS notification to a direct window.

USERCODE Designator Designator for the usercode associated
with the program or station originating
the message.

SECURITYDESG Designator Designator that can be used for security
checking.

3-10 8600 0734-301

Using Communications Management System (COMS) Features

Table 3-1. Input Header Structure and Type

Field Name Data Type Brief Description

FIELDS.VTFLAG Boolean Virtual terminal (VT) flag returned by
COMS.

FIELDS.TRANSPARENT Boolean Designator that shows whether the input
message is being passed in transparent
mode.

TIMESTAMP Real Time and date message is first
encountered by COMS.

STATION Designator Terminal number for the terminal being

dynamically attached or detached, or the
station originating the message.

TEXTLENGTH Integer Number of characters in the text of
incoming message, length of destination
telephone number, length of delivery
confirmation, or notification of a direct
window on/open activity.

STATUSVALUE Integer Status of an input message.

MESSAGECOUNT Integer Number of messages queued to the
program.

RESTART Designator Last message that COMS audited in the
DMSII transaction trail.

AGENDA Designator Designator of the most recently applied
input agenda.

SDFINFO Real Designator that identifies errors that

occurred during the processing of a
form message. See “Using COMS
Input/Output Headers” in Section 6,
“Using the Screen Design Facility Plus
(SDF Plus) Interface,” for more
information about the values of this field.

SDFFORMRECNUM Real Designator that identifies the form
record that is received.
SDFTRANSNUM Real The number of the SDF Plus transaction

that is received. This field must not be
altered by the user application.

CONTDATASTATUS Integer Status of the continuator data in the
input header conversation area.

8600 0734-301 3-11

Using Communications Management System (COMS) Features

Table 3-1. Input Header Structure and Type

Field Name Data Type Brief Description

CONTDATAOFFSET Integer Starting position (in bytes) of the
continuator data in the input header
conversation area (zero-relative to the
starting position of the conversation

area).

CONTDATALENGTH Integer Length (in bytes) of the continuator data
in the input header conversation area.

CONTENTRYNUM Integer Indicates the phase of a transaction
cycle.

Conversation Area User-defined Information passed by program,

processing item, or telephone number
for a direct-window interface.

Additional information relating to the fields of a COMS input header is included under
“Using COMS Input/Output Headers” in Section 6, “Using the Screen Design Facility Plus
(SDF Plus) Interface.”

3-12 8600 0734-301

Using Communications Management System (COMS) Features

Output Header Structure and Type

Table 3-2 shows the predefined fields of the output header that are available to an ALGOL
program. The fields are listed as they appear in the structure, including the optional
conversation area field. The listing gives the ALGOL name, data type, and a brief
description of the fields.

The output header is used in sending messages. You can place designators into the fields
to route outgoing messages and describe their characteristics. You can also obtain
designators by calling service functions to translate names representing COMS entities to
designators.

For messages that are output, the header fields are used in

e Specifying a destination

* Routing by transaction code (trancode)

* Sending messages using direct windows

* Confirming message delivery

* Checking the status of output messages

The fields, their COMS names and values, and their purposes are detailed in the COMS

Programming Guide.

Additional information relating to the fields of a COMS output header is included under
“COMS Service Functions” in this section.

Table 3-2. Output Header Structure and Type

Field Name Data Type Brief Description
DESTCOUNT Integer Number of destinations to which
the program sends the message.
TEXTLENGTH Integer Number of characters contained in
the text of an outgoing message.
STATUSVALUE Integer Notes whether the message was

successfully sent to its destination
or if an error occurred.

FIELDS.VTFLAG Boolean Virtual terminal (VT) flag set by
direct-window program.

FIELDS.CONFIRMFLAG Boolean Requests delivery confirmation of
an output message.

FIELDS.CONFIRMKEY EBCDIC array [0:2] User-defined tag for delivery
confirmation of an output
message.

FIELDS.TRANSPARENT Boolean Used to specify transparent mode

for an output message.

8600 0734-301 3-13

Using Communications Management System (COMS) Features

Table 3-2. Output Header Structure and Type

Field Name

Data Type

Brief Description

DESTINATIONDESG
NEXTINPUTAGENDA

TOGGLES.SETNEXT-
INPUTAGENDA*

TOGGLES.RETAIN-
TRANSACTIONMODE t
AGENDA

SDFFORMRECNUM

CONTMODE

CONTDATASTATUS

CONTDATAOFFSET

CONTDATALENGTH

CONTENTRYNUM

MAPALIAS

Conversation Area

Designator

Designator

Boolean

Boolean

Designator

Real

Integer

Integer

Integer

Integer

Integer

EBCDIC array [0:5]

User-defined

Destination for a message.

Agenda to be applied to the next
input for the current dialogue.

Used to specify whether COMS is
to use the contents of the
NEXTINPUTAGENDA field to
change the agenda for the next
input to the current dialogue of the
destination station.

Specifies whether or not
Transaction Mode is to be retained
for the current dialogue.

Specifies an agenda for
postprocessing of the message a
program is sending.

Designates the form record to be
written.

Tells COMS how it should handle
continuator data for the
destination station.

Indicates if the continuator data in
the output header conversation
area was successfully stored.

Starting position (in bytes) of the
continuator data in the output
header conversation area (zero-
relative to the starting position of
the conversation area).

Length (in bytes) of the continuator
data in the output header
conversation area.

Indicates the phase of a
transaction cycle.

Specifies a Map Alias name for
post-process mapping of the
message sent by a program. If
the name length is less than six
characters, pad it with spaces on
the right.

Passes information, in addition to
the message data, to processing
items.

Do not include the hyphen in the name.

8600 0734-301

Using Communications Management System (COMS) Features

Additional information relating to the fields of a COMS output header is included under
“Using COMS Input/Output Headers” in Section 6, “Using the Screen Design Facility Plus
(SDF Plus) Interface.”

Designator Data Type

The data type Designator is used only for specific fields of the COMS headers and with
COMS service functions. It is an internal code understood by COMS and used to control
messages symbolically in the data communications environment. COMS can determine the
kind of entity represented by a particular designator such as a station or usercode.

In ALGOL, the data type Designator is acted upon as if it were the data type Real. The
compiler does not differentiate between the two types. However, COMS operations
require that no arithmetic operations be performed on a field of type Designator. The
Designator type can be altered within a program only if some type of operation is done by
a COMS service function that decodes or returns a value for the designators. You can
return designators to their initial values by setting them to 0 (zero).

Additional information relating to the Designator data type is included under “COMS
Service Functions” in this section.

Declaring a Message Area

The message area is the variable reserved for the actual message. You must declare a
message area variable before you can send or receive a message. (The program builds
messages in the message area.) Once information is returned from COMS in the message
area, the program determines any further processing.

The variable can be an EBCDIC array or an ADDS record, including SDF Plus form record
libraries stored in ADDS. If the variable is not large enough to contain all the text of the
message, COMS truncates the message. The TEXTLENGTH field of the header is used to
report the length of the valid text in the message area.

Refer to the COMS Programming Guide for details of how COMS uses and interprets the
message area and for information on the fields of the headers.

Additional information on the message area is included under “COMS
BEGINTRANSACTION Statement,” “COMS ENDTRANSACTION Statement,” “RECEIVE
Statement,” and “SEND Statement,” in this section. Related information is also included
under “Using SDF Plus with COMS” in Section 6, “Using the Screen Design Facility Plus
(SDF Plus) Interface.”

8600 0734-301 3-15

Using Communications Management System (COMS) Features

Declaring a COMSRECORD

<COMSRECORD declaration>
— COMSRECORD

—>—|— <format type> — <record id> L, T N | i
<conversation area> <addr equation>

Explanation

3-16

The COMSRECORD declaration is a way to obtain the declarations for COMS record
formats from an external system library, instead of from information contained in the
ALGOL compiler.

When the ALGOL compiler encounters a COMSRECORD declaration, it extracts a
character string (called a format type) from the declaration. The character string is passed
to the COMSLANGSUPPORT external system library. The library checks the character
string against an internal list of COMS record formats.

e If the character string s a valid format type, the COMSLANGSUPPORT library returns
a description of the format to the compiler. This description contains the explicit
declarations and definitions for the desired record format (including the names, types,
and locations of the fields in the record).

e If the character string is not a valid format type, the COMSLANGSUPPORT library
returns an error condition to the compiler. The compiler generates a syntax error.

The ALGOL compiler has no information about the format types or record formats. It
simply passes the format type to the COMSLANGSUPPORT library and receives either the
record format definitions or the error condition.

The keyword COMSRECORD causes the compiler to request the desired record format
from the COMSLANGSUPPORT external system library.

The format type construct is the identifier of a character string. The character string can
be a maximum of 64 characters in length.

8600 0734-301

Using Communications Management System (COMS) Features

The following list identifies the three format types.

« INPUTHEADER

This format type represents the normal COMS input header record format described
earlier in this section. The results of a COMSRECORD declaration with a format type
of INPUTHEADER are identical to explicitly declaring a COMS input header in your
application program.

Refer to “Declaring an Input or Output Header” for the structure, field names, and
field types of a COMS input header record in this section. Consult the COMS
Programming Guide for information about the use and meaning of the input header
fields.

» OUTPUTHEADER

This format type represents the normal COMS output header record format described
earlier in this section. The results of a COMSRECORD declaration with a format type
of OUTPUTHEADER are identical to explicitly declaring a COMS output header in
your application program.

Refer to “Declaring an Input or Output Header” in this section for the structure, field
names, and field types of a COMS output header record. Consult the COMS
Programming Guide for information about the use and meaning of the output header
fields.

« X25
This format type represents the record format used with the X.25 MCS product.

Refer to “COMSRECORD Structures and Types” later in this section for the structure,
field names, and field types of a COMSRECORD in the X.25 format. Consult the X.25
MCS Operations and Programming Reference Manual for information about the use
and meaning of the individual fields in the record.

The record id construct identifies the individual COMSRECORD.

The conversation area construct is optional. If a COMSRECORD has a conversation area,
this declaration defines the type and length of the conversation area field. The syntax used
to declare a conversation area is described under “Input or Output Header Declaration” in
this section.

The addr equation construct is optional. This construct is similar to the array row

equivalence construct of an array declaration in that it causes the declared
COMSRECORD to refer to the same data as the specified record or array row.

8600 0734-301 3-17

Using Communications Management System (COMS) Features

Type Declaration of a COMSRECORD

<COMSRECORD type declaration>
— TYPE

> COMSRECORD — <format type> 3 - - <type id> 1
<conversation area>

Explanation

A COMSRECORD type declaration associates a user-defined name (called a type id) with a
specific COMSRECORD format. After a COMSRECORD type is declared, the user-defined
name can be used as a data description. COMSRECORD type declarations are used in the
same way as type declarations for normal COMS input and output headers. Refer to “Input
or Output Header Type Declaration” earlier in this section for more information.

The format type construct is the identifier of a character string. The character string can
be a maximum of 64 characters in length. The three valid format types include
INPUTHEADER, OUTPUTHEADER, and X25.

The conversation area construct is optional. If a COMSRECORD has a conversation area,
this declaration defines the type and length of the conversation area field. The syntax used
to declare a conversation area is described under “Input or Output Header Declaration” in
this section.

The type id construct is a user-defined name that is associated with the specific
COMSRECORD format.

Type Invocation of a COMSRECORD

<COMSRECORD type invocation>

— <type id> u <r‘ecor‘c’i id> | |

Explanation

3-18

A COMSRECORD type invocation must follow a COMSRECORD type declaration. The
type invocation declares a COMSRECORD that has the format associated with the type id.

The type id construct is a user-defined name that is associated with the specific
COMSRECORD format.

The record id construct identifies the individual COMSRECORD.

8600 0734-301

Using Communications Management System (COMS) Features

COMSRECORD Structures and Types

The following list describes the three valid COMSRECORD formats.

INPUTHEADER

A COMSRECORD with a format type of INPUTHEADER has the same structure and
type as the normal COMS input header record described earlier in this section. Refer
to “Declaring an Input or Output Header” in this section for the structure, field names,
and field types of a COMS input header record. Consult the COMS Programming
Guide for information about the use and meaning of the input header fields.

OUTPUTHEADER

A COMSRECORD with a format type of OUTPUTHEADER has the same structure and
type as the normal COMS output header record described earlier in this section. Refer
to “Declaring an Input or Output Header” in this section for the structure, field names,
and field types of a COMS output header record. Consult the COMS Programming
Guide for information about the use and meaning of the output header fields.

X256

The structure and type of a COMSRECORD with a format type of X25 is described in
the following pages.

Structure and Type of an X.25 COMSRECORD

Table 3-3 describes the predefined fields for a COMSRECORD, in an X.25 format, that are
available in an ALGOL program. The fields are listed as they appear in the structure. The
listing displays the ALGOL name, data type, and description of each field.

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name Data Type Brief Description

CLASS Integer The CLASS field describes the class
or type of the record. The record
must contain a CLASS field. The
initial value for this field is X25. X25
is the only possible value for use with
the X.25 MCS.

VERSION Integer The VERSION field contains the
record version number. All records
must contain a VERSION field. If
changes occur in the future to the
structure of a record, this field will be
incremented. The initial value for this
field is X25PIRVERSION.

FUNCTION Integer The FUNCTION field contains a
description of the packet type of the
record. All records must contain a
FUNCTION field.

8600 0734-301 3-19

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name

Data Type

Brief Description

COMMUNICATIONNUMBER

QBIT

DBIT

DATAIDENTIFIER

ORIGINATOR

CAUSE

Integer

Boolean

Boolean

Integer

Integer

Integer

The COMMUNICATIONNUMBER field
contains the communication number
assigned to the connection by the
X.25 MCS. The possible values for
this field are in the range 0 to
(2**39)- 1.

The QBIT field contains the qualifier
bit. When set, this field qualifies a
data packet and corresponds to the
qualifier bit in the X.25 network
packet.

Use of this field is not currently
supported.

The DBIT field, when set, requests
acknowledgment from the remote
DTE and corresponds to a D-bit
description of an X.25 level 3 packet.

Use of this field is not currently
supported.

The DATAIDENTIFIER field is used to
identify the data message being sent
or the data message being
acknowledged when the DBIT field
has been set to TRUE. The possible
values for this field are in the range 0
to 65535.

The ORIGINATOR field is used in
conjunction with the CAUSE and
DIAGNOSTIC fields. The ORIGINATOR
field describes the originator of a
message that is received by the
application program. The possible
values for this field are
NETWORKORIGINATED,
SYSTEMORIGINATED, and
APPLICATIONORIGINATED.

The CAUSE field describes the
reason the record was sent. It
corresponds to the Cause field in an
X.25 level 3 packet when the
ORIGINATOR field contains the value
NETWORKORIGINATED. The possible
values for this field are in the range 0
to 255.

3-20

8600 0734-301

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name Data Type Brief Description

DIAGNOSTIC Integer The DIAGNOSTIC field describes the
diagnostic information sent with the
record. It corresponds to the
Diagnostic field in an X.25 level 3
packet when the ORIGINATOR field
contains the value
NETWORKORIGINATED. The possible
values for this field are in the range 0
to 255.

ALREADYACCEPTED Boolean The ALREADYACCEPTED field is
meaningful only with the X.25 MCS
on a BNA Version 2 platform.

This field is valid only with the
INCOMINGCALL function. The X.25
MCS sets this field to TRUE on an
incoming call if the connection has
already been accepted by a CP
2000.

WAITFORCHANNEL Boolean The WAITFORCHANNEL field is valid
only with the CALLREQUEST function.

e On aBNA Version 1 platform, if
a logical channel is not currently
available, a TRUE value in this
field instructs the X.25 MCS to
hold the call to the remote DTE
until a channel is available to
make the connection.

¢ On aBNA Version 2 platform, a
TRUE value in this field instructs
the X.25 MCS to initiate or wait
for a dialogue with the CP 2000.

TRUNCATED Boolean The TRUNCATED field is valid only
with the DCEDATA function. A TRUE
value in this field indicates that the
data message is truncated.

REMOTEADDRESSLENGTH Integer The REMOTEADDRESSLENGTH field
contains the length of the
REMOTEADDRESS field in hex digits.
The maximum value for this field is
40. However, the X.25 MCS limits
this field to 15 hex digits on a BNA
Version 1 platform or a BNA Version
2 platform.

8600 0734-301 3-21

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name Data Type Brief Description

REMOTEADDRESS Hexadecimal The REMOTEADDRESS field contains
the address of the remote DTE
endpoint in hex digits. The maximum
value for this field is 40 hex digits.
However, the X.25 MCS limits this
field to 15 hex digits on a BNA
Version 1 platform or a BNA Version
2 platform.

LOCALSUBADDRESSLENGTH Integer The LOCALSUBADDRESSLENGTH field
contains the length of the
LOCALSUBADDRESS in hex digits.
The maximum value for this field is
14. However, the X.25 MCS limits
this field to 10 hex digits on a BNA
Version 1 platform or a BNA Version
2 platform.

LOCALSUBADDRESS Hexadecimal The LOCALSUBADDRESS field
contains the local endpoint
identification address in hex digits.
The maximum value for this field is
14 hex digits. However the X.25 MCS
limits this field to 10 hex digits on a
BNA Version 1 platform or a BNA
Version 2 platform. The data in this
field must be leftjustified, binary-
coded decimal (BCD) characters.

FACILITIESLENGTH Integer The FACILITIESLENGTH field contains
the length of the FACILITIES field
specified in octets. This field
corresponds to the X.25 level 3
Facility Length field. The maximum
value for this field is 109.

FACILITIES EBCDIC The FACILITIES field contains
untranslated information. It does not
contain message data. This field
corresponds to the X.25 level 3
facility field. The maximum value for
this field is 109 octets.

Information in the FACILITIES field is
passed unchanged by the X.25 MCS
directly to and from the X.25
network. Therefore, the application
program must format the FACILITIES
field exactly according to the CCITT
standards in use by the X.25
network.

3-22 8600 0734-301

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type

Field Name Data Type Brief Description

ENSEMBLELENGTH Integer The ENSEMBLELENGTH field
contains the length of the ENSEMBLE
field specified in octets. The
maximum value for this field is 17.

ENSEMBLE EBCDIC The ENSEMBLE field identifies the
ensemble through which the
specified message is routed. The
same remote DTE address can be
reached through different ensembles.
The maximum value for this field is
17 octets. This field is used for load
balancing and corresponds to a
preferred station in the UK and US
formats of X.25 records.

PHONENUMBERLENGTH Integer The PHONENUMBERLENGTH field
contains the length of the
PHONENUMBER field specified in hex
digits. The maximum value for this
field is 30. However, the X.25 MCS
limits this field to 17 hex digits on a
BNA Version 2 platform and ignores
this field on a BNA Version 1
platform.

PHONENUMBER Hexadecimal The PHONENUMBER field contains
the complete phone number, in hex
digits, that a CP 2000 must call to
establish a connection. This field is
meaningful only on a BNA Version 2
platform for the CALLREQUEST
function. It is ignored for all other
functions.

DATALENGTH Integer The DATALENGTH field contains the
length of the DATA field (specified in
octets). For call user data, the
maximum value for this field is 128.
For message data, there is no
maximum value.

DATA EBCDIC The DATA field contains data. This
field corresponds to the data
following an X.25 level 3 Data Packet
header or untranslated message in
the X.25 level 3 User Data field. This
field is the only variable-length field in
aPRR.

8600 0734-301 3-23

Using Communications Management System (COMS) Features

Using Records in COMS

The following pages describe techniques used to work with records in a COMS application
program and considerations that affect the way the records are used. The information
includes

* Accessing individual fields within a record

* Binding considerations for COMS

Accessing Header Fields

<input or output headers>

— <record ID> - . ——|: <field ID> J }
<subscripted field ID>

<subscripted field ID>
— <field ID> — [— <subscript> -] |

3-24 8600 0734-301

Using Communications Management System (COMS) Features

Explanation

Input headers, output headers, and COMSRECORDS are defined in ALGOL as record
structures whose fields have predefined names and purposes. The individual fields can be
accessed through fully qualified record syntax.

When referencing fields in a record, each field must be uniquely identified. The field is
qualified by the record identifier, the field identifier, and as needed, by a subscript field
identifier.

The record ID construct is the user-declared name of the input header, output header or
COMSRECORD.

Both the field and subscripted field identifiers are defined by COMS. The field ID
construct identifies the COMS name for the field. If the field is subscripted, use the
subscripted field ID. Subscripting is used to access a field in an embedded packed record
with a header.

When a field within a record is passed as a parameter in a procedure call, the value of the
field, rather than a reference to it, is passed. If you want to modify a field through a
procedure call, pass the record itself (input header, output header, or COMSRECORD)
rather than the field.

Additional information relating to the fields of input or output headers is included under

“Input Header Structure and Type,” “Output Header Structure and Type,” and
“COMSRECORD Structures and Types” in this section.

Examples

The example below accesses the subscripted field FIELDS.TRANSPARENT in the record
MYHEADER.

MYHEADER.FIELDS.TRANSPARENT
In the following example, the input header named MYIN assigns the value 32 into the
TEXTLENGTH field of the input header and the value of REQUESTDATA into word 7 of
the conversation area field.

REAL REQUESTDATA;

INPUTHEADER MYIN (ARRAY CONVERSATION[0:8]);

MYIN.TEXTLENGTH := 32;

MYIN.CONVERSATION[6] := REQUESTDATA;

8600 0734-301 3-25

Using Communications Management System (COMS) Features

Binding Considerations for COMS

3-26

The ALGOL interface to COMS contains three types of header records: input headers,
output headers and COMSRECORDs. The following paragraphs detail some considerations
that apply when you use the Binder program to bind procedures or programs that contain
COMS header records.

* A header record variable can be bound to another header record variable or to a star-
bounded REAL array. A header record can also be bound to any other record type that
can be bound to a star-bounded REAL array.

The Binder program does not check the record structures for compatibility when they
are bound. Because no checking occurs, the Binder program binds header record
variables to similarly defined header record variables.

¢ When you bind a subprogram that declares COMS input and output headers, declare
the headers in the global part of the subprogram.

* Procedures that have declared formal parameters can be bound, but no type checking
is performed when the procedures are bound. Ensure that the types of the formal and
actual parameters are identical.

* When a variable is declared in a subprogram, the declaration of the variable
determines what the subprogram can do with the variable and whether the variable is
properly protected against write access.

— If the subprogram declares the variable as a header record variable, the header
record variable can be accessed through the described fields.

— If the subprogram declares the variable as another type of record variable, the
variable can be accessed through the field names of the record. The semantic
rules for that type of record variable are enforced.

— If the subprogram declares the variable as a REAL array, no field-oriented access
can be used. Assignment to the variable is permitted.

Refer to the Binder Programming Reference Manual for more information.

8600 0734-301

Using Communications Management System (COMS) Features

COMS Statements

The COMS interface supports statements that pertain to the use of COMS features and
statements that provide synchronized recovery for application programs that update Data
Management System II (DMSII) and Semantic Information Manager (SIM) databases.

The COMS interface supports the following two database statements. These statements
provide synchronized recovery for application programs that update Data Management
System II (DMSII) databases, as detailed in the COMS Programming Guide.

BEGINTRANSACTION ENDTRANSACTION

The ALGOL interface to COMS also supports the following statements:

DISABLE RECEIVE
ENABLE SEND
MESSAGECOUNT

This section describes each of the above statements. The statements are presented in
alphabetical order. For information regarding when and why you use these statements,
consult the COMS Programming Guide.

Refer to Section 5, “Using DMSII Transaction Processing System (TPS) Extensions,” for
the TPS statements that work with COMS. These statements are

BEGINTRANSACTION MIDTRANSACTION

ENDTRANSACTION OPEN

Access to the functional Semantic Information Manager (SIM) environment is
accomplished through the use of a COMS window. Refer to Section 7, “Using the Semantic
Information Manager (SIM) Interface,” for the database management statements that work
with COMS. These statements are

ABORTTRANSACTION ENDTRANSACTION
BEGINTRANSACTION OPEN
CANCELTRPOINT SAVETRPOINT
CLOSE

8600 0734-301 3-27

Using Communications Management System (COMS) Features

Refer to Section 6, “Using the Screen Design Facility Plus (SDF Plus) Interface,” for an
explanation of how to access SDF Plus from COMS. No extensions specific to COMS are
required for SDF Plus.

Additional information relating to COMS statements is included in Section 4, “Using the
Data Management System II (DMSII) Interface”; Section 5, “Using DMSII Transaction
Processing System (TPS) Extensions”; Section 6, “Using the Screen Design Facility Plus
(SDF Plus) Interface”; and Section 7, “Using the Semantic Information Manager (SIM)
Interface.”

3-28 8600 0734-301

Using Communications Management System (COMS) Features

COMS BEGINTRANSACTION Statement

<begintransaction statement>

— BEGINTRANSACTION — <inputheadername> L J
<message area>

<restart data set> ———
(— <transaction record variable> —) —|

AUDIT

NOAUDIT

|— <exception handling> J

Explanation

The COMS BEGINTRANSACTION statement places a program in transaction state. It
enables a program interfacing with COMS to support synchronization of transactions and
recovery. The statement is used in application programs that update a DMSII database. It
provides synchronized recovery if an exception occurs while a program is in transaction
state. (The SIM BEGINTRANSACTION statement is used for SIM databases.)

Note: Al any given time, a program can be in transaction state with only one
database. For proper recovery, the name of the database in transaction state
must be the name of the database noted in the COMS Utility.

If the message area is specified, COMS stores restart information in the transaction trail.

COMS updates the STATUSVALUE field of the declared input header with the result of the
BEGINTRANSACTION statement.

Consult the COMS Programming Guide for more information about the STATUSVALUE
field, synchronized recovery and transaction trails, message areas, the restart data set, and
handling a BEGINTRANSACTION exception.

Additional information regarding the COMS BEGINTRANSACTION statement is included
under “Service Function Result Values” and “STATUSVALUE Field Values” in this section.
Related information is also included under “DMSII BEGINTRANSACTION Statement” in
Section 4 and “SIM BEGINTRANSACTION Statement” in Section 7.

Additional information regarding the inputheadername construct is included under
“Declaring an Input and Output Header” in this section. Information on the message area
construct is included under “Declaring an Input and Output Header” in this section.
Information on transaction processing and the exception handling construct is included
under “Database Status Word” in Section 4, “Using the Data Management System II
(DMSII) Interface.”

8600 0734-301 3-29

Using Communications Management System (COMS) Features

Explanation

The construct inputheadername identifies the declared input header.

The message area construct identifies the declared variable reserved for the actual
message.

The transaction record variable construct identifies a transaction record created through
the Transaction Processing System (TPS).

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the restart
area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can access to
recover database information after a system failure.

An exception is returned if the BEGINTRANSACTION statement is encountered while the
program is in transaction state. An ABORT exception frees all records that the program
locked. Note that deadlock can occur during execution of a BEGINTRANSACTION
statement.

Additional information is included under “Declaring a Message Area” in this section, and
under “Exception Processing” in Section 4, “Using the Data Management System II
(DMSII) Interface.”

Example

3-30

The following BEGINTRANSACTION statement is for the input header declared as
MYHEADER. COMS stores restart information in the transaction trail because the
message area, MSG, is specified. Since AUDIT is included, the restart area is trapped. The
restart data set is RDS.

BEGINTRANSACTION MYHEADER MSG AUDIT RDS;

8600 0734-301

Using Communications Management System (COMS) Features

DISABLE Statement

— DISABLE - (- <inputheadername> L J , — <keyname> -) —|
TERMINAL

<keyname>

~|:<"a1pha string Titeral'' }

<EBCDIC array row>

Explanation

The DISABLE statement logically disconnects the program from the station in the
STATION field of the declared input header.

The DISABLE statement can be used as an integer-valued function. The returned integer is
the same as the value COMS places in the STATUSVALUE field of the input header. For
example, a returned value of 0 (zero) means the STATION field of the header contains a
valid station designator and the disconnect was successful.

COMS updates the FUNCTIONSTATUS field of the input header. Consult the COMS
Programming Guide for an explanation of the FUNCTIONSTATUS and STATUS fields.

The construct inputheadername identifies the input header.

The word “TERMINAL” specifies a disconnect from a station. If it is not specified, it is
assumed.

The valid values for the construct keyname are: “DIAL”, “DONTCARE”, “RELEASE”, and
“RETAIN". They are detailed in the COMS Programming Guide. Note that these values
are literals and require quotation marks. If blanks are entered or no keyname is specified,
the default state of “DONTCARE” is assumed.

Additional information relating to DISABLE statement is included under
“FUNCTIONSTATUS Field Values” and “STATUSVALUE Field Values” in this section.

Additional information relating to the inputheadername construct is included under
“Declaring an Input and Output Header” in this section.

Consult Volume 1 for an explanation of alpha string literals.

Additional information is included under “ENABLE Statement” in this section.

8600 0734-301 3-31

Using Communications Management System (COMS) Features

Examples
The following DISABLE statement disconnects a previously enabled dial-out station.
DISABLE(MYINPUT TERMINAL, "DIAL");

In the following example, the program is disconnected from the station specified in the
STATION field of the input header INCOMS. If the station is a CP 2000 station, the
physical attachment is released.

DISABLE (INCOMS TERMINAL, "RELEASE");

The following example of the DISABLE statement shows using the default options. Even
though the TERMINAL option is not specified, the disconnect is from the station in the
STATION field of the input header THEINPUTHEADER. Since no keyname is given, the
default state is “DONTCARE”. If the station is a CP 2000, the terminal gateway decides
whether to retain or release the physical attachment.

DISABLE(THEINPUTHEADER) ;

3-32 8600 0734-301

Using Communications Management System (COMS) Features

ENABLE Statement

<enable statement>

— ENABLE - (- <inputheadername L J , — <keyname> -) —|
TERMINAL

Explanation

The ENABLE statement logically connects COMS and the destination specified in the
Station Designator field of the declared input header.

The ENABLE statement can be used as an integer-valued function. The returned integer is
the same as the value COMS places in the STATUSVALUE field of the input header. For
example, a returned value of 0 (zero) means the ENABLE was successful.

The STATUSVALUE field of the input header contains the status of the connect.
Consult the COMS Programming Guide for an explanation of the fields of the headers.
The construct inputheadername identifies the input header.

If the word “TERMINAL” is not specified, the ENABLE statement initializes the program
with COMS. If TERMINAL is specified, the ENABLE statement performs a dynamic
attachment to a station.

The valid keynames depend on whether the TERMINAL syntax is used in the ENABLE
statement. “BATCH” and “ONLINE” cannot be specified if the word “TERMINAL” appears
in the statement.

The other valid keynames are: “DIAL,” “NOWAIT,” “WAIT,” “WAITDIALOUT,” and
“NOBUSY.”

The “(HOSTNAME=<hostname>)” syntax can be used with the TERMINAL option for
“WAIT,” “NOWAIT,” “WAITDIALOUT,” and “WAITNOBUSY” keynames. HOSTNAME is the
name of the host of the station in the Destination field. The hostname string is not checked
for accuracy by the compiler; it is used by COMS at run time to define a host.

Note: The keyname values are literals and require quotation marks.

Consult the COMS Programming Guide for information on keynames and on batch and
interactive processing.

Additional information relating to the ENABLE statement is included under
“STATUSVALUE Field Values” and the “DISABLE Statement” in this section.

Additional information relating to the inputheadername construct is included under

“Declaring an Input and Output Header” in this section. Information on the keyname
construct is included under “DISABLE Statement” in this section.

8600 0734-301 3-33

Using Communications Management System (COMS) Features

Examples

The following ENABLE statement informs COMS that it is dealing with an interactive
program:

ENABLE (MYINPUT,"ONLINE");

In the following example, the conversation area field of the input header holds the
telephone number, the TEXTLENGTH field holds the telephone number length, and the
STATION field holds the station designator. The statement connects the program for data
transfer to a dial-out station.

ENABLE (MYHEADER TERMINAL,"DIAL");
The following example shows the syntax when a hostname, shown here as MACHINE, is
specified. The hostname is the name of the host of the station in the Destination field. The
hostname string is not checked for accuracy by the compiler; it is used by COMS at run

time to define a host.

ENABLE (MYHEADER TERMINAL,"WAIT (HOSTNAME = MACHINE)");

3-34 8600 0734-301

Using Communications Management System (COMS) Features

COMS ENDTRANSACTION Statement

<endtransaction statement>
— ENDTRANSACTION — <outputheadername with send options

AUDIT
NOAUDIT

»— <restart data set L J L J |
SYNC <exception handling>

<outputheadername with send options>

— <outputheadername L J L J |
[— <send options> —] <message area>

Explanation

The COMS ENDTRANSACTION statement takes a program out of transaction state. It is
used only in application programs that update a DMSII database. (The SIM
ENDTRANSACTION statement is used for SIM databases.)

Two of the basic tasks performed by the COMS ENDTRANSACTION statement are to

* Ensure that the information passed to COMS during the midtransaction phase is safely
stored in the transaction trail.

¢ Perform a DMSII ENDTRANSACTION.

If the DMSII ENDTRANSACTION returns an exception, COMS resubmits the current

transaction after synchronized recovery is complete.

COMS updates the STATUSVALUE field of the declared output header with the result of
the ENDTRANSACTION statement.

Consult the COMS Programming Guide for more information on the STATUSVALUE
field, synchronized recovery, the restart data set, and handling an ENDTRANSACTION
exception.

The construct outputheadername identifies the output header.

The send options describe the carriage and message controls that can be used with a send
operation.

The message area construct identifies the declared variable reserved for the actual

message. If a message area is specified, COMS ensures that the message is sent before the
DMSII ENDTRANSACTION is executed.

8600 0734-301 3-35

Using Communications Management System (COMS) Features

Example

3-36

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the restart
area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can access to
recover database information after a system failure.

The word “SYNC” forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and the
program is not in the transaction state. Records are freed in all cases. The transaction is
not applied to the database.

Additional information relating to the COMS ENDTRANSACTION statement is included
under “Exception Processing” in Section 4, “Using the Data Management System II
(DMSII) Interface,” “Service Function Result Values,” “STATUSVALUE Field Values,” and
“SEND Statement” in this section. Related information is also included under “DMSII
ENDTRANSACTION Statement” in Section 4, “Using the Data Management System II
(DMSII) Interface,” and under “SIM ENDTRANSACTION Statement” in Section 7, “Using
the Semantic Information Manager (SIM) Interface.”

Additional information regarding the exception handling construct is included under
“Exception Processing” in Section 4, “Using the Data Management System II (DMSII)
Interface.” Information on the outputheadername construct is included under “Declaring
an Input and Output Header” in this section. Information regarding the send options
construct is included under “SEND Statement” in this section. Information on the message
area construct is included under “RECEIVE Statement” in this section.

In the following example, the output header is MYOUT. The send option instructs the
system to skip two lines. Since a message area (MSG) is specified, a message will be sent
during synchronized recovery. The restart area is captured in the restart data set RDS.

ENDTRANSACTION MYOUT [SKIP 2] MSG AUDIT RDS;

8600 0734-301

Using Communications Management System (COMS) Features

MESSAGECOUNT Statement

<messagecount statement>
— MESSAGECOUNT - (— <inputheadername> —) }

Explanation

The MESSAGECOUNT statement returns the number of queued messages for the
program. COMS places the number of messages into the MESSAGECOUNT field of the
designated input header.

The MESSAGECOUNT statement can be used as an integer-valued function. The returned
integer is the number of queued messages. The STATUSVALUE field of the input header is
also updated. It contains the status of the MESSAGECOUNT request. A status value of 0

(zero) means the operation was successful.

Consult the COMS Programming Guide for more information about the
MESSAGECOUNT and STATUSVALUE fields.

Additional information relating to the MESSAGECOUNT statement is included under
“STATUSVALUE Field Values” in this section.

Additional information relating to the inputheadername construct is included under
“Declaring an Input and Output Header” in this section.

The inputheadername construct identifies the input header.

Example

The number of messages associated with the input header MYINPUT is assigned to the
variable COUNT and COMS puts the message count into the MESSAGECOUNT field of
MYINPUT.

COUNT := MESSAGECOUNT(MYINPUT);

8600 0734-301 3-37

Using Communications Management System (COMS) Features

RECEIVE Statement

<receive statement>

— RECEIVE - (— <inputheadername J , — <message area>—) —|

I— [— DONTWAIT -]

<message area>

~]: <EBCDIC array row> i
<ADDS structure> —l

Explanation

The RECEIVE statement requests that a message be transferred from the program queue
to the designated message area. Information about the message is provided in the
specified input header.

The RECEIVE statement can also be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the input
header. For example, a returned value of 0 (zero) means a message was received

successfully.

Consult the COMS Programming Guide for an explanation of the fields of the input
header.

Additional information relating to the inputheadername construct is included under
“Declaring an Input and Output Header” in this section.

The construct inputheadername identifies the input header to receive the message.

The DONTWAIT option enables you to specify that a receive operation is not to wait for a
message. [f DONTWAIT is not specified, the receive operation waits for a message.

The message area construct identifies the variable into which the actual message is to be
placed.

Additional information relating to the RECEIVE statement is included under
“STATUSVALUE Field Values” in this section.

3-38 8600 0734-301

Using Communications Management System (COMS) Features

Example

In the following example, the first RECEIVE statement is a conditional receive operation.
The variable COMSSTATUS, as well as the status value, is nonzero if no message is
waiting or if some other exception occurs. The second receive operation waits forever or
until a message comes in.

INTEGER COMSSTATUS;
INTEGER RECEIVECODE;

COMSSTATUS := RECEIVE(MYINPUT [DONTWAIT],MSG);

IF RECEIVE(MYINPUT,MSG) > 0 THEN
BEGIN

RECEIVECODE := MYINPUT.STATUS;
CASE RECEIVECODE OF

BEGIN

95:

HANDLE_AGENDA ERROR;

ELSE:
HANDLE _COMS_ERROR;
END;
END

ELSE
PROCESS_MESSAGE;

8600 0734-301 3-39

Using Communications Management System (COMS) Features

SEND Statement

<send statement>

— SEND - (— <outputheadername , — <message length>———

I— [- <send options> —] 4]

»— , — <message area> —) |

<send options>

|— <message control indicator> J BEFORE

AFTER

/1\~|: SKIP T <arithmetic expression> i
SPACE

/1\~ PAGE

/1\~ NOCR

L/1\~ NOLF

<message control indicator>

ESI |

EMI

EGI

<arithmetic expression> —

<message length>

~|: <arithmetic expression> i

*

3-40 8600 0734-301

Using Communications Management System (COMS) Features

Explanation

The SEND statement requests a message or portion of a message to be transferred from
the specified message area to the program or station queue designated by either the
DESTINATIONDESG or AGENDA field of the output header.

The SEND statement can be used as an integer-valued function. The returned integer is
the same as the value COMS places in the STATUSVALUE field of the output header and
represents the result of the transfer. For example, a returned value of 0 (zero) means the
transfer was successful.

Delivery confirmation uses the CONFIRMFLAG and CONFIRMKEY fields of the output
header. If the value of the CONFIRMFLAG is TRUE when the SEND statement is
executed, the three bytes of the CONFIRMKEY field are used as the tag for delivery
confirmation.

Consult the COMS Programming Guide for an explanation of the fields of the headers.
The outputheadername identifies the output header.

Additional information relating to the outputheadername construct is included under
“Declaring an Input and Output Header” in this section.

The send options describe the message controls and carriage controls to be applied to the
send operation.

A message control indicator is either the type or arithmetic value used to select a type of
output for the message. The output can be nonsegmented or segmented. Segmented
messages can be defined by changing the TEXTLENGTH field of the output header and
using one of the three segmenting options. The TEXTLENGTH field is used by COMS to
determine how much of the message area variable is to be used as the segment in the
SEND statement. Unless the TEXTLENGTH field is set, COMS uses the entire message
area.

8600 0734-301 3-41

Using Communications Management System (COMS) Features

The message control indicator types and their arithmetic equivalents are shown in the
following table. The default is EMI (the value 2). For a detailed explanation of the
indicators, consult the COMS Programming Guide.

Type Value Type of Indicator
ESI 1 End-of-Segment Indicator
EMI 2 End-of-Message Indicator (default)
EGI 3 End-of-Group Indicator

If multiple SEND statements are processed with the ESI control, and a SEND statement
with the EMI control is processed in the middle of these, the SEND statement with the
EMI control is sent immediately, while the other statements wait until one of the ESI
output conditions is TRUE. This means that, in some cases, it can appear that the
messages are not being sent in the correct order.

The results of the carriage control options can differ depending on the output device. If no
carriage controls are specified, the default value of AFTER SPACE 1 is used. This default
value sends the message and advances one line, consistent with ALGOL I/O.

The carriage control options, summarized in the following list, pertain to the output
device.

« BEFORE and AFTER determine whether the carriage control action is performed
before or after the message is sent to the output device. The BEFORE option causes a
carriage control action and then sends the message. The AFTER option sends the
message and then performs a carriage control action.

¢ SKIP causes the printer to skip to the channel specified by the value of the arithmetic
expression.

¢ SPACE causes the printer to space the number of lines specified by the arithmetic
expression.

* PAGE skips to the next page.
¢ NOCR suppresses the carriage return.
¢ NOLF suppresses line feed.

The message length construct gives the length, in bytes, of the data contained in the
message area. If a value is specified in the message length construct, the TEXTLENGTH
field of the output header is updated with that value.

Additional information relating to the SEND statement is included under “Service
Function Result Values” and “STATUSVALUE Field Values” in this section.

3-42 8600 0734-301

Using Communications Management System (COMS) Features

Example

The following SEND statement sends the message specified by the EBCDIC array MSG,

with a text length of 32 characters, and then uses the SKIP option to skip to channel 10

using the message control indicator EMI.

EBCDIC ARRAY MSG[0:32];

IF SEND(MYOUT [EMI AFTER SKIP 10], 32, MSG) THEN

BEGIN

CASE SENDCODE OF

BEGIN

98:

COMS_SECURITY VIOLATION;

ELSE:
HANDLE_COMS_ERROR
END;

END

ELSE
RESUME_PROCESS;

8600 0734-301

3-43

Using Communications Management System (COMS) Features

Error Handling

When an error occurs during communication processing, the result of a COMS statement
can be determined in two ways:

¢ The COMS statement can be used as a function.

¢ The value stored in the STATUSVALUE field of the header can be compared to the
error codes for the particular statements.

All COMS statements can be used as functions. Each statement returns an integer value.
Except for the MESSAGECOUNT statement, the integer value is the same as the status
value COMS places in the STATUSVALUE field of the respective header. The
MESSAGECOUNT statement returns the value COMS places in the MESSAGECOUNT
field.

When you detach a station or program, or when you use the Modular Function Index
(MFI), the status of the operation is reported in the FUNCTIONINDEX field of the input
header. The value stored in this field can be used to check if the detachment was
successful or if an error occurred.

STATUSVALUE Field Values

The values and meanings for the STATUSVALUE field of the input header and output
header and for the status of a call are listed and detailed in an appendix of the COMS
Programming Guide.

FUNCTIONSTATUS Field Values

COMS places values in the FUNCTIONSTATUS field of the input header when COMS
performs a DISABLE statement or any MFI operation. These values are listed and detailed
in the COMS Programming Guide. You can define these values in the program by using
the DEFINE declaration, as shown in Volume 1 of this manual. For example,

DEFINE CONTROLMSG = -1#, GOOD_DELIVERY = -12# ;

Exception-Condition Statements and DMTERMINATE

3-44

If you must use exception-condition statements to close a database, use the
DMTERMINATE statement for those exceptions not specifically handled by the program.

Additional information relating to the DMTERMINATE statement is included under

“DMTERMINATE Statement” in Section 4, “Using the Data Management System II (DMSII)
Interface.”

8600 0734-301

Using Communications Management System (COMS) Features

COMS Service Functions

COMS service functions are entry points that enable programs to obtain information on
COMS entities and to translate designators and names that represent these entities.

The majority of the service functions, except STATION_TABLE_INITIALIZE, return an
integer result. The integer definitions are described under “Service Function Result
Values” in this section.

On input, all entity names must be terminated with a blank character.

To determine the length of a string returned by a service function, the program must test
for a blank. The string is always terminated by a blank character.

The following pages briefly describe the service functions, detail their calling parameters,
and define the values used to report the results of the call.

Consult the COMS Programming Guide for further information on the COMS service
functions.

Additional information relating to COMS service functions is included under “Service

Function Result Values,” “Designator Data Type,” “COMS Statements,” “Error Handling,”
“Linking to COMS,” and “Designators for COMS Entities” in this section.

8600 0734-301 3-45

Using Communications Management System (COMS) Features

Functional Descriptions

The COMS service functions can be called by COMS application programs and by
processing items. The service functions and a description of how to use input and output
headers in conjunction with service functions are covered in the COMS Programming
Guide. The service functions are explained briefly in Table 3-4.

Table 3-4. A Brief Explanation of COMS Service Functions

Service Function Brief Explanation
CONVERT_TIMESTAMP Converts value in a COMS TIMESTAMP
field to the date or time as an EBCDIC
array.
GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Gets a designator vector from a
structure represented by a designator.
GET_DESIGNATOR_USING_DESIGNATOR Gets a specific designator out of the
structure represented by a designator.
GET_DESIGNATOR_USING_NAME Converts a COMS entity name to a
COMS designator.
GET_INTEGER_ARRAY_USING_DESIGNATOR Gets a vector of integers from the
structure represented by a designator.
GET_INTEGER_USING_DESIGNATOR Gets a specific integer out of the
structure represented by a designator.
GET_NAME_USING_DESIGNATOR Converts a COMS designator to a COMS
name for that designator.
GET_REAL_ARRAY Gets a structure of data with no
connection to any entity.
GET_STRING_USING_DESIGNATOR Gets an EBCDIC string out of the
structure represented by a designator.
STATION_TABLE_ADD Adds a station designator to an existing
station table.
STATION_TABLE_INITIALIZE Initializes a station table so that station
index values can be added using
STATION_TABLE_ADD.
STATION_TABLE_SEARCH Finds a station designator within a
station table.
TEST_DESIGNATORS Tests whether a designator is part of a
structure represented by another
designator.

3-46 8600 0734-301

Using Communications Management System (COMS) Features

Declaring COMS Service Functions

To declare the individual functions needed for an application, use the PROCEDURE
declaration with the library entry point specification. The syntax for each service function
is shown on the following pages.

When declaring the COMS library in a program that is to use one of the service functions,
you must not use the name “COMSSUPPORT.” If you use “COMSSUPPORT” in your
program, the compiler automatically generates a hidden library declaration of
“COMSSUPPORT” when it encounters an INPUTHEADER or OUTPUTHEADER
declaration. This declaration creates a conflict in your program. You can use a name like
SERVICE_LIB.

Example 1: Use of FUNCTIONNAME to Access the Service Functions

LIBRARY SERVICE LIB (LIBACCESS

BYFUNCTION, FUNCTIONNAME = "COMSUPPORT.";

Example 2: Use of TITLE

LIBRARY SERVICE LIB (LIBACCESS

BYTITLE, TITLE = "SYSTEM/COMS ON PACK.");

Consult Volume 1 of this manual for a complete explanation of the PROCEDURE
declaration, its syntax, and its constructs.

Consult the COMS Programming Guide for the valid designators for COMS entities and
for the service function values. The guide contains detailed information regarding each

service function.

Additional information relating to declarations of COMS service functions is included
under “Linking to COMS” in this section.

8600 0734-301 3-47

Using Communications Management System (COMS) Features

CONVERT_TIMESTAMP

3-48

The following example declares a procedure to convert a COMS TIMESTAMP field to a
date or time EBCDIC array.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE CONVERT TIMESTAMP

(ENTY_TIMESTAMP, ENTY TYPE, ENTY TIME);

VALUE ENTY TYPE;

REAL ENTY _TIMESTAMP;
INTEGER ENTY TYPE;
EBCDIC ARRAY ENTY_TIME[O];

LIBRARY SERVICE LIB;

ENTY_TIMESTAMP is the TIME (6) timestamp used as input in the conversion.

The ENTY_TYPE is the requested information. The only valid values are 72 for TIME and
71 for DATE. The time is returned in the form HHMMSS. The date is returned in the form
MMDDYY.

ENTY_TIME is the array where the result from COMS is returned.

COMS provides a timestamp in the TIME(6) format for application programs using a
direct-window interface. The TIME(6) intrinsic returns a unique 48-bit pattern for the time
and date. The TIME(6) timestamp returns positive numbers for the years 1970 through
1986 and negative numbers for the years 1987 and beyond. This affects software that uses
arithmetic compare operators, such as greater than, less than, or equal to, against the
TIME(6) format timestamp. Consult Volume 1 for a definition and explanation of the TIME
function.

8600 0734-301

Using Communications Management System (COMS) Features

GET_DESIGNATOR_ARRAY_USING_DESIGNATOR

The following example declares a procedure to retrieve a designator vector from the
structure represented by the designator.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSUPPORT.");
INTEGER PROCEDURE GET_DESIGNATOR ARRAY USING _DESIGNATOR
(ENTY _DESIGNATOR, ENTY DESGTOTAL, ENTY DESGVECTOR);

INTEGER ENTY_DESGTaTAL;
REAL ENTY DESIGNATOR;
REAL ARRAY ENTY_DESGVECTOR[O] ;

LIBRARY SERVICE LIB;
The ENTY_DESIGNATOR is the designator that represents the structure. The only valid
entry is a station list designator.
ENTY_DESGTOTAL is the total number of designators returned in the vector.

The ENTY_DESGVECTOR is the vector in which the designators for the stations are
returned.

8600 0734-301 3-49

Using Communications Management System (COMS) Features

GET_DESIGNATOR_USING_DESIGNATOR

The following example declares a procedure to retrieve a specific designator from the
structure represented by the designator:

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_DESIGNATOR USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY TYPE, ENTY DESGRES);
VALUE ENTY TYPE;
REAL ENTY DESIGNATOR,
ENTY_ DESGRES;
INTEGER ENTY TYPE;
LIBRARY SERVICE LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All designators
shown in “Designators for COMS Entities” can be used.

The ENTY_TYPE is the requested designator type. For example, DEVICE can be used only
as an entry for a station designator.

Valid ALGOL values for the various structures are given in the following table.

If ENTY_DESIGNATOR represents . . . The valid ALGOL value is . . .
Any designator 52 - INSTALLATION_DATA_LINK
Program 5 - SECURITY
Station 9 - DEVICE

5- SECURITY
User 5 - SECURITY
XATMI Call 9 - DEVICE

22 - XATMI SERVICE

ENTY_DESGRES is the designator returned by COMS.

Additional information relating to COMS designators is included under “Designators for
COMS Entities” in this section.

3-50 8600 0734-301

Using Communications Management System (COMS) Features

GET_DESIGNATOR_USING_NAME

The following example declares a procedure to convert a COMS entity name to a COMS
designator.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = " COMSSUPPORT.");
INTEGER PROCEDURE GET_DESIGNATOR USING_NAME

(ENTY_NAME, ENTY TYPE, ENTY DESIGNATOR);

VALUE ENTY TYPE;
EBCDIC ARRAY ENTY_NAME[O] ;
REAL ENTY DESIGNATOR;
INTEGER ENTY TYPE;

LIBRARY SERVICE LIB;

The ENTY_NAME contains the name of an entity, for example a window name, that is
terminated with a blank character. If the entity is an agenda, a trancode, or installation
data, and if the program calling the service function is running in another window or
outside of COMS, the format of the entity name can be

<entity name> OF <window name>

For installation data, use the “ALL” entity when no window is specified and the window in
which the program is running does not have an entity of the same name.

The ENTY_TYPE is the value for the requested name. For a list of valid entity types, refer
to “Designators for COMS Entities” in this section.

The ENTY_DESIGNATOR is the returned designator.

To ensure the return of a valid designator when the entity is an agenda, trancode, or
installation data
» (Call the service function only from a direct-window program or processing item.

» (Call the service function only after a direct-window program has executed an
ENABLE statement.

e Ifyou are calling from a processing item, do not enable the program to call the service
function until it has executed a FREEZE statement.

Additional information relating to COMS designators is included under “Designators for
COMS Entities” in this section.

8600 0734-301 3-51

Using Communications Management System (COMS) Features

GET_INTEGER_ARRAY_USING_DESIGNATOR

The following example declares a procedure to retrieve an array of integers from the
structure represented by the designator.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_INTEGER ARRAY USING_DESIGNATOR
(ENTY _DESIGNATOR, ENTY TYPE, ENTY INTEGERTOTAL,
ENTY_INTEGERVECTOR);

VALUE ENTY TYPE;

REAL ENTY DESIGNATOR;

INTEGER ENTY INTEGERTOTAL, ENTY TYPE;
INTEGER ARRAY ENTY_INTEGERVECTOR[O] ;

LIBRARY SERVICE LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All designators
shown in “Designators for COMS Entities” can be used.

The ENTY_TYPE describes which integer vector is requested. For example,
INSTALLATION_INTEGER_ALL can be used as an entry for all designators. However,
MIXNUMBERS is valid only if the designator represents a program.

Valid ALGOL values for the various structures are given in the following table.

If ENTY_DESIGNATOR represents . . . The valid ALGOL value is . . .
Any designator 45 - INSTALLATION_INTEGER_ALL
Program 84 - MIXNUMBERS

The ENTY_INTEGERTOTAL is the number of integers returned in the vector.
ENTY_INTEGERVECTOR is the vector itself.

Additional information relating to COMS designators is included under “Designators for
COMS Entities” in this section.

3-52 8600 0734-301

Using Communications Management System (COMS) Features

GET_INTEGER_USING_DESIGNATOR

The following example declares a procedure to extract a specific integer from the
structure represented by the designator.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_INTEGER USING DESIGNATOR
(ENTY_DESIGNATOR, ENTY TYPE, ENTY INTEGER);

VALUE ENTY TYPE;
REAL ENTY DESIGNATOR;
INTEGER ENTY TYPE, ENTY INTEGER;

LIBRARY SERVICE LIB;
The ENTY_DESIGNATOR is the designator representing the structure. All designators
shown in “Designators for COMS Entities” can be used.
The ENTY_TYPE describes which integer is requested. For example,
INSTALLATION_INTEGER_4 can be used as an entry for all designators. However,
CURRENT_USER_COUNT is valid only if the designator represents a window.

Valid ALGOL values for the various structures are given in the following table.

If ENTY_DESIGNATOR represents . . . The valid ALGOL value is . . .
Any designator 41 - INSTALLATION_INTEGER_1
42 - INSTALLATION_INTEGER_2
43 - INSTALLATION_INTEGER_3
44 - INSTALLATION_INTEGER_4
Program 61 - QUEUE_DEPTH

62 - MESSAGE_COUNT

63 - LAST_RESPONSE

64 - AGGREGATE_RESPONSE

Station 83-LSN

Window 81 - MAXIMUM_USER_COUNT
82 - CURRENT_USER_COUNT

XATMI Buffer 88 - LENGTH

The ENTY_INTEGER is the result. Additional information relating to COMS designators
is included under “Designators for COMS Entities” in this section.

8600 0734-301 3-53

Using Communications Management System (COMS) Features

GET_NAME_USING_DESIGNATOR

The following example declares a procedure to convert a COMS designator to a COMS
name.

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_NAME USING_DESIGNATOR
(ENTY DESIGNATOR, ENTY NAME);
REAL ENTY DESIGNATOR;
EBCDIC ARRAY ENTY_NAME [0];
LIBRARY SERVICE LIB;

The ENTY_DESIGNATOR is the supplied designator. All valid designators, as shown in
“Designators for COMS Entities,” can be used, except for a SECURITY designator.

The ENTY_NAME is the returned name. It is a string of 1 to 255 characters terminated
with a blank character.

Additional information relating to COMS designators is included under “Designators for
COMS Entities” in this section.

3-54 8600 0734-301

Using Communications Management System (COMS) Features

GET_REAL_ARRAY

The following example declares a procedure to retrieve a structure of data that has no
connection to any entity.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_REAL ARRAY

(ENTY_TYPE, ENTY REALTOTAL, ENTY REALVECTOR);

VALUE ENTY TYPE;
INTEGER ENTY _TYPE, ENTY REALTOTAL;
REAL ARRAY ENTY_REALVECTOR[O] ;

LIBRARY SERVICE LIB;

The ENTY_TYPE is the requested structure of data. The only valid value is 65.

ENTY_REALTOTAL is the total number of elements returned in the array.
ENTY_REALVECTOR is the array where the information is returned.

The service function returns a table. Refer to the COMS Programming Guide for further
details.

8600 0734-301 3-55

Using Communications Management System (COMS) Features

GET_STRING_USING_DESIGNATOR

3-56

The following example declares a procedure to retrieve an EBCDIC string from the

structure represented by the designator.

LIBRARY SERVICE LIB

(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE GET_STRING _USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY TYPE, ENTY STRINGTOTAL, ENTY STRING);

VALUE ENTY TYPE;

REAL ENTY DESIGNATOR;

INTEGER ENTY STRINGTOTAL, ENTY TYPE;
EBCDIC ARRAY ENTY_STRING[O];

LIBRARY SERVICE LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All designators
shown in “Designators for COMS Entities” can be used.

The ENTY_TYPE describes which string is requested.

Valid ALGOL values and ENTY-TYPE names for the various structures are given in the

following table.

If ENTY_DESIGNATOR represents . . .

The valid ALGOL value is . . .

Any designator

46 -
47 -
48 -
49-
50 -
51 -

INSTALLATION_STRING_1
INSTALLATION_STRING_2
INSTALLATION_STRING_3
INSTALLATION_STRING_4
INSTALLATION_HEX_1
INSTALLATION_HEX_2

Station designator

87 -
95 -

HOSTNAME
LANGUAGE

120 - CONVENTION

XATMI Buffer

89 - TYPE

90 -

SUBTYPE

The ENTY_STRINGTOTAL is the number of valid characters in the string. ENTY_STRING

is the returned string.

Additional information relating to COMS designators is included under “Designators for

COMS Entities” in this section.

8600 0734-301

Using Communications Management System (COMS) Features

STATION_TABLE_ADD

The following example declares a procedure that adds a station designator to an existing
table of station designators (sometimes called a station table). The procedure accepts the
station table and a station designator. It returns a unique index into the station table.

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMMSUPPORT.");
INTEGER PROCEDURE STATION TABLE ADD (STATION HASH,
STATION_DESIGNATOR);
ARRAY STATION HASH[O];

REAL STATION DESIGNATOR;
LIBRARY SERVICE LIB ;

STATION_HASH represents the station table. The station table is implemented as a hash
table.

STATION_DESIGNATOR is the designator of the station that is added to the station table.

8600 0734-301 3-57

Using Communications Management System (COMS) Features

STATION_TABLE_INITIALIZE

The following example declares a procedure that initializes a table of station designators
(sometimes called a station table). The procedure accepts a station table and a table
modulus.

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");

PROCEDURE STATION TABLE INITIALIZE (STATION HASH, SHMOD);

ARRAY STATION HASH[O];
INTEGER SHMOD;
LIBRARY SERVICE LIB;

STATION_HASH represents the station table. The station table is implemented as a hash
table.

SHMOD is the table modulus. The modulus determines the density of the station table and
the time required to access it.

¢ For fast access and lower table density, choose a value for the modulus that is twice
the maximum number of entries in the station table.

* For slower access and greater table density, choose a value for the modulus that is
one half of the maximum number of entries in the station table.

3-58 8600 0734-301

Using Communications Management System (COMS) Features

STATION_TABLE_SEARCH

The following example declares a procedure that finds a given station designator within a
table of station designators (sometimes called a station table). The procedure accepts a
station table and a station designator. It returns the index of the station designator within
the station table. If the station designator is not found, the returned index is zero.

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");

INTEGER PROCEDURE STATION TABLE SEARCH (STATION HASH,
STATION_DESIGNATOR);

ARRAY STATION HASH[O];
REAL STATION DESIGNATOR;
LIBRARY SERVICE LIB;

STATION_HASH represents the station table. The station table is implemented as a hash
table.

STATION_DESIGNATOR is the designator of the desired station (the station that the
procedure looks for in the station table).

8600 0734-301 3-59

Using Communications Management System (COMS) Features

TEST_DESIGNATORS

The following example declares a procedure to test if a designator is part of a structure
represented by another designator.

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "COMSSUPPORT.");
INTEGER PROCEDURE TEST DESIGNATORS
(ENTY _DESIGNATOR 1, ENTY DESIGNATOR 2);
REAL ENTY DESIGNATOR 1,
ENTY DESIGNATOR 2;
LIBRARY SERVICE LIB;

ENTY_DESIGNATOR_1 and ENTY_DESIGNATOR_2 are both designators. The order in
which they are passed does not affect the service function. However, only device, device
list, security, and security category designators are valid. Device and device list
designators can be used in combination. Security and security category designators can be
used in combination. The valid designators are:

CATEGORY_LIST INSTALLATION_INTEGER_3
DEVICE INSTALLATION_INTEGER_4
DEVICE_LIST INSTALLATION_STRING_1
INSTALLATION_DATA INSTALLATION_STRING_2
INSTALLATION_DATA_LINK INSTALLATION_STRING_3
INSTALLATION_HEX 1 INSTALLATION_STRING_4
INSTALLATION_HEX 2 SECURITY
INSTALLATION_INTEGER_ALL SECURITY_CATEGORY
INSTALLATION_INTEGER_1 SECURITY_CATEGORY_LIST

INSTALLATION_INTEGER_2

The valid ALGOL values for these designators are listed in “Designators for COMS
Entities” in this section.

3-60 8600 0734-301

Using Communications Management System (COMS) Features

Designators for COMS Entities

Each entity in the COMS configuration has an associated designator that can be used in
service calls. Table 3-5 lists the most common entities, their ALGOL values, and the
information a program can request. Table 3-6 lists the types for the installation data.
Consult the COMS Programming Guide for information on passing these values to service
functions and for a complete listing of values.

Each designator for agendas, trancodes, and installation data must uniquely identify a
particular combination of a window and that entity. Each designator for a station must
uniquely identify a particular combination of a window, a dialogue, and a station.

Because the layout of COMS designators can change with each software release, a

program must not preserve any designators across executions. It is advisable not to use
designators as keydata in a database.

Table 3-5. COMS Entities

Entity Type Value Type of Information

AGENDA 3 Name
Installation data

AGGREGATE_RESPONSE 64

CURRENT_USER_COUNT 82

DATABASE 13 Name
Installation data

DATE 71

DEVICE 9 Name
Installation data

DEVICE_LIST 11 Name
Installation data

INSTALLATION_DATA 20 Name
Installation data

LAST_RESPONSE 63

LIBRARY 18 Name
Installation data

LSN 83

MAXIMUM_USER_COUNT 81

MESSAGE_COUNT 62

MIX_NUMBERS 84

8600 0734-301 3-61

Using Communications Management System (COMS) Features

Table 3-5. COMS Entities

Entity Type Value Type of Information
PROCESSING_ITEM 14 Name

Installation data
PROCESSING_ITEM_LIST 15 Name

Installation data
PROGRAM 4 Name

Installation data
Security designator
Current input queue depth

Total number of input
messages handled

Response time for last
transaction

Response time aggregate

Mixnumbers for active copies

SECURITY
SECURITY_CATEGORY 8 Name
Installation data
SECURITY_CATEGORY_LIST 19 Name
Installation data
STATION 1 Name
Installation data
Logical station number
Security designator
Device designator
Language
Convention
STATION_LIST 10 Name
Installation data
Stations in list
STATISTICS 65
TIME 72
TRANCODE 16

3-62 8600 0734-301

Using Communications Management System (COMS) Features

Table 3-5. COMS Entities

Entity Type Value Type of Information
QUEUE_DEPTH 61
USERCODE 2 Name

Installation data
WINDOW 12 Name

Installation data
Maximum number of users

Current number of users

WINDOW_LIST 17 Name
Installation data
XATMI SERVICE 22 Name

Installation data

The types and values for installation data are shown in Table 3-6.

Table 3-6. Installation Data Values

Entity Type Value
INSTALLATION_DATA 20
INSTALLATION_INTEGER_1 41
INSTALLATION_INTEGER_2 42
INSTALLATION_INTEGER_3 43
INSTALLATION_INTEGER_4 44
INSTALLATION_INTEGER_ALL 45
INSTALLATION_STRING_1 46
INSTALLATION_STRING_2 47
INSTALLATION_STRING_3 48
INSTALLATION_STRING_4 49
INSTALLATION_HEX_1 50
INSTALLATION_HEX_2 51
INSTALLATION_DATA_LINK 52

8600 0734-301 3-63

Using Communications Management System (COMS) Features

Service Function Types and Values
The types used by the generalized service functions are detailed in the COMS
Programming Guide. Each type indicates which data item or items are being requested.
When passing values to the service functions, use the DEFINE declaration as shown in
Volume 1. For example,

DEFINE AGENDA = 3#;

Service Function Result Values

Table 3-7. Service Function Result Values

Value Definition

0 The function successfully completed.

1 An invalid name or designator was supplied.

2 An invalid designator was supplied.

3 The supplied array was too short to hold the
output.

4 The requested installation data was not
present.

3-64 8600 0734-301

Using Communications Management System (COMS) Features

COMS Sample Program

The following sample program monitors a sailboat race and updates a DMSII database by
using features of the COMS direct-window interface. The program illustrates the
techniques used in writing transaction processors that enable synchronized recovery.

The program runs in a COMS environment that has been configured to include a DMSII
database called SAILDB. The database contains three data sets.

RACE_CALENDAR contains one record for every race.

ENTRY contains one record for each boat entered in the race. A boat can have
multiple records, depending on the number of races it enters.

RDS is the restart data set.

An example of a program using COMS and a SIM database is included under “Example 4:
Using COMS with a SIM Database” in Section 7, “Using the Semantic Information Manager
(SIM) Interface.”

8600 0734-301

BEGIN
5 ONLINESAIL
REAL
COMS_STATUS;
TYPE INPUTHEADER
COMS_IN TYPE (ARRAY CONVERSATION [0:59]);
COMS_IN_TYPE
COMS_IN;
OUTPUTHEADER
COMS_OUT;
DATABASE
SAILDB;
DEFINE
GOEOT = 99 #,
TEXT LEN= 113 #;
EBCDIC ARRAY
SCRATCH[0:255],
MSG_TEXT[O : TEXT LEN-1];
DEFINE MSG_TCODE = MSG_TEXT[0] #,
MSG_FILLER
MSG_CREATE_RACE
MSG_CR_ID = INTEGER(MSG_TEXT[7],6) #,

o

o

MSG_CR_NAME = MSG_TEXT[13] #,
MSG_CR_DATE = MSG_TEXT[33] #,
MSG_CR_TIME = MSG_TEXT[39] #,

MSG_CR_LOCATION = MSG_TEXT[43] #,
MSG_CR_SPONSOR = MSG_TEXT[63] #,
FILLER

MSG_ADD_ENTRY REDEFINES MSG_CREATE_RACE
MSG_AE_RACE_ID = INTEGER(MSG TEXT[7],6) #,
MSG_AE_ID = MSG_TEXT[13] #,
MSG_AE_NAME = MSG_TEXT[19] #,
MSG_AE_RATING = INTEGER(MSG TEXT[39],3) #,

o

o

3-65

Using Communications Management System (COMS) Features

MSG_AE_OWNER = MSG_TEXT[42] #,
MSG_AE_CLUB = MSG_TEXT[62] #,
FILLER
MSG_DELETE_ENTRY REDEFINES MSG_CREATE_RACE
MSG_DE_RACE_ID = INTEGER(MSG_TEXT[7],6) #,
MSG_DE_ID = MSG_TEXT[13] #,
% FILLER
MSG_STATUS = MSG_TEXT[83] #;

o

o

BOOLEAN B;

PROCEDURE SEND MSG;

% Send the message back to the originating station. Do

% not specify an output agenda. Make sure to test

% the result of the SEND statement.

BEGIN COMS_OUT.DESTCOUNT := 1;

COMS_OUT.DESTINATIONDESG := COMS_IN.STATION;

COMS_OUT.STATUSVALUE := 0;

COMS_STATUS := SEND(COMS OUT, TEXT LEN, MSG_TEXT);

IF NOT(COMS_STATUS = 0 OR COMS_STATUS = 92) THEN

DISPLAY(60nline Program SEND Err: 6 !! STRING8(COMS STATUS,*));

END SEND_MSG;

PROCEDURE CREATE RACE;
Enter a new race record into the database. Since the
transaction is done in online mode, save the restart
data in the conversation area only. If the program aborts
at BEGINTRANSACTION or ENDTRANSACTION, go back to the
5 RECEIVE statement.

AN P O o

e

BEGIN

CREATE RACE-CALENDAR;

PUT RACE-CALENDAR (RACE-NAME := MSG_CR_NAME);
PUT RACE-CALENDAR (RACE-ID := MSG_CR_ID);
PUT RACE-CALENDAR (RACE-DATE := MSG_CR_DATE);
PUT RACE-CALENDAR (RACE-TIME := MSG_CR _TIME);

PUT RACE-CALENDAR (RACE-LOCATION := MSG_CR_LOCATION);
PUT RACE-CALENDAR (RACE-SPONSOR := MSG_CR SPONSOR);
BEGINTRANSACTION COMS_IN NOAUDIT RDS : Bj
IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE (B) ;
END
ELSE
BEGIN
STORE RACE-CALENDAR : B;
IF B THEN
REPLACE MSG_STATUS BY "Store Error", " " FOR 19
ELSE REPLACE MSG_STATUS BY "Race Added", " " FOR 20;
ENDTRANSACTION COMS_OUT AUDIT RDS : B;
IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE (B) ;
END

3-66 8600 0734-301

Using Communications Management System (COMS) Features

ELSE
SEND_MSG;
END;
END CREATE_RACE;
PROCEDURE ADD_ENTRY;
% Enter a boat in a race. The restart requirements are the
% same as those for creating a race.
BEGIN
FIND RACE-SET AT RACE-ID = MSG_AE RACE_ID: B;
IF B THEN
IF REAL(B.DMERROR) = NOTFOUND THEN
BEGIN
REPLACE MSG_STATUS BY "Race does not exist", " " FOR 11;
SEND_MSG;
END
ELSE
DMTERMINATE(B)
ELSE
BEGIN
CREATE ENTRY;
PUT ENTRY (ENTRY-BOAT-NAME
PUT ENTRY (ENTRY-BOAT-ID
PUT ENTRY (ENTRY-BOAT-RATING :
PUT ENTRY (ENTRY-BOAT-OWNER
PUT ENTRY (ENTRY-AFF-Y-CLUB
PUT ENTRY (ENTRY-RACE-ID

MSG_AE_NAME) ;
MSG_AE_ID);
MSG_AE_RATING);
MSG_AE_OWNER);
MSG_AE_CLUB);
MSG_AE_RACE_ID);

BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;
IF NOT B THEN
BEGIN
STORE ENTRY: B;
IF B THEN
REPLACE MSG_STATUS BY "Store Error", " " FOR 19
ELSE
REPLACE MSG_STATUS BY "Boat Added", " " FOR 20;
ENDTRANSACTION COMS_OUT AUDIT RDS : Bj
END;
IF B THEN
BEGIN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE (B) ;
END
ELSE
SEND_MSG;
END;

END ADD_ENTRY;
PROCEDURE DELETE ENTRY;
% Delete a boat from a race. The restart requirements are
% the same as those for adding an entry.
BEGIN
LOCK ENTRY-RACE-SET AT
ENTRY-RACE-ID
ENTRY-BOAT-1ID

MSG_DE_RACE_ID AND
MSG_DE_ID : Bs

8600 0734-301 3-67

Using Communications Management System (COMS) Features

IF B THEN
IF REAL(B.DMERROR) = NOTFOUND THEN
BEGIN
REPLACE MSG_STATUS BY "Boat Entry Not Found", " " FOR 10;
SEND_MSG;
END
ELSE
DMTERMINATE (B)
ELSE
BEGIN
BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;
IF NOT B THEN
BEGIN DELETE ENTRY : B;
IF B THEN
REPLACE MSG_STATUS BY "Found But Not Deleted", " " FOR 9
ELSE
REPLACE MSG_STATUS BY "Boat Deleted", " " FOR 18;
ENDTRANSACTION COMS OUT AUDIT RDS : B;
END;
IF B THEN
IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE(B) ;
SEND_MSG;
END;
END DELETE_ENTRY;
PROCEDURE CHECK COMS_INPUT_ERRORS;
% Check for COMS control messages.
BEGIN
CASE COMS_STATUS OF
BEGIN
93: REPLACE MSG_STATUS BY "MSG Causes Abort, Do Not Retry";
SEND_MSG;
20:
100:
101:
102: REPLACE MSG_STATUS BY "Error in STA Attach/Detachment";
SEND_MSG;
0:
92:
99:
ELSE:; % A good message, recovery message, or EOT notification.
END;
IF COMS_IN.FUNCTIONINDEX < O THEN
BEGIN
REPLACE MSG_STATUS BY "Negative Function Code", " " FOR 8;
SEND_MSG;
END;
END CHECK COMS_INPUT ERRORS;
PROCEDURE CLOSE_DOWN;
% Close the database.
BEGIN
CLOSE SAILDB;

3-68 8600 0734-301

Using Communications Management System (COMS) Features

END CLOSE_DOWN;

PROCEDURE PROCESS TRANSACTION;

% Since the transaction type is based on the
% function index, make sure it is within

% range.

BEGIN

CASE COMS_IN.FUNCTIONINDEX OF
BEGIN

ELSE:BEGIN
REPLACE MSG_STATUS BY

"Invalid Trans Code", " " FOR 12;

SEND_MSG;
END;

1: CREATE_RACE;

: ADD_ENTRY;

3: DELETE_ENTRY;

END;

END PROCESS TRANSACTION;
PROCEDURE PROCESS COMS_INPUT;
% Gets the next message from COMS. If the status
% returned is an EOF NOTICE, go to EOT, else make sure
% that it is a valid message before processing it.
BEGIN
REAL COMS_INPUT STATUS;
REPLACE MSG_TEXT BY " " FOR TEXT_LEN;
COMS_INPUT STATUS :=COMS_STATUS := RECEIVE(COMS IN, MSG_TEXT);
IF COMS_STATUS NEQ GOEQOT THEN
BEGIN
CHECK COMS_INPUT_ERRORS;
IF (COMS_INPUT_STATUS = 0 OR COMS_INPUT STATUS = 92) AND
COMS_IN.FUNCTIONINDEX >= O THEN
PROCESS_TRANSACTION;
END;
END PROCESS COMS_INPUT;

5 OPEN UPDATE SAILDB: B;
IF B THEN
DMTERMINATE (B) ;

ENABLE (COMS_IN,"ONLINE");
CREATE RDS;
DO
PROCESS_COMS_INPUT
UNTIL COMS_STATUS = GOEOT;
CLOSE_DOMWN;
END.

8600 0734-301 3-69

Using Communications Management System (COMS) Features

3-70 8600 0734-301

Section 4
Using the Data Management System I
(DMSII) Interface

An interface to the Data Management System II (DMSII) is provided in the BDMSALGOL
language. BDMSALGOL is based on Unisys Extended ALGOL and contains extensions that
enable a programmer to declare and use databases. The extensions to ALGOL that make
up the BDMSALGOL language are described in this chapter. These extensions provide the
following capabilities:

* Invoking a database

* Manipulating data through data management statements
* Using database items through a mapping syntax

* Processing exceptions

Programs written in the BDMSALGOL language must be compiled with the BDMSALGOL
compiler. Typically, this compiler is titled “SYSTEM/BDMSALGOL?”.

Refer to the DMSII Application Program Interfaces Programming Guide for a discussion
of DMSII programming issues, such as audit and recovery. Consult the DMSII Data and
Structure Language (DASDL) Programming Reference Manual for detailed information
on DASDL.

DMSII and Semantic Information Manager (SIM) databases can be accessed and used in
the same program. Each database must be invoked, manipulated, and processed with its
own extensions. Use DMSII and BDMSALGOL extensions for DMSII databases. Use SIM
extensions for SIM databases.

You can also use DMSII with other products described in this volume, such as
Communications Management System (COMS), Advanced Data Dictionary System
(ADDS), and Transaction Processing System (TPS).

Additional information relating to DMSII extensions is included in Section 3, “Using
Communications Management System (COMS) Features,” Section 2, “Using Advanced
Data Dictionary System (ADDS) Extensions,” Section 5, “Using DMSII Transaction
Processing System (TPS) Extensions,” and Section 7, “Using the Semantic Information
Manager (SIM) Interface.”

8600 0734-301 4-1

Using the Data Management System Il (DMSII) Interface

Invoking a DMSII Database

Invoking a database involves both database declarations and database equations.

Declaring a Database

<database declaration>
DATABASE — <database reference }

<database reference>

<database name-

|—<1’nter‘na1 name> = J |—<1og1’ca1 database name> OF J

- (— TITLE = '' — <database title> — '' —)J

= ——|: <data set reference>

<set reference>

<internal name>
— <BDMS identifier |

<logical database name>
— <BDMS identifier |

<database name>
— <BDMS identifier |

<database title>

A properly formed file title constant (as defined in the Work Flow Language (WFL)
Programming Reference Manual) that has only one node; that is, a file title constant that
does not contain any slashes (/).

4-2 8600 0734-301

Using the Data Management System Il (DMSII) Interface

<data set reference>

L J <data set name L J |
<internal name> = (<set part>)

<data set name>
— <BDMS identifier |

<set part>
— ALL |

— NONE

— SET

L SETS J— <set reference> J—

<set reference>

L J <set name> |
<internal name> =

<set name>
— <BDMS identifier |

Explanation

Like all variables, a database must be declared in a BDMSALGOL program before it is
referenced. However, a DATABASE declaration is unlike other declarations in that it is
actually an invocation of a database that has already been fully described and declared in
the Data and Structure Definition Language (DASDL).

Two different databases can be updated in the same program only if they are the same
physical database.

If the compiler control options LIST and LISTDB are both TRUE, all invoked structures,
together with the record formats, item and key descriptions, database titles, and other
pertinent information, are written on the program listing. When database application
programs are being developed, the LISTDB option should be used, and the resulting
information should be studied carefully.

Additional information relating to the LIST and LISTDB options is included under
“BDMSALGOL Compiler Control Options” in this section.

8600 0734-301 4-3

Using the Data Management System Il (DMSII) Interface

A DATABASE declaration declares a database and specifies which database or which
parts of a database are to be invoked. If no data set reference parts and no set reference
parts are specified in a DATABASE declaration, then all data sets and all sets for each data
set are implicitly invoked.

The internal name construct assigns an internal name by which a database, data set, set,
or subset is known within the program. When an internal name is specified, all subsequent
references to the structure must use this internal name.

A database, data set, set, or subset can be invoked more than once; however, the external
name (the name in the description file) can be used to reference only one invocation of a
structure. Internal names must be used to provide unique names for all other invocations
of a structure. The default internal name of a structure is its external name.

By using the internal names in the data set reference or the set reference constructs,
multiple record areas or set paths can be established. Thus, several records of a single
data set can be manipulated simultaneously.

The logical database name construct enables the program to reference a logical database.
A program can invoke structures selectively from a logical database, or it can invoke the
entire logical database. Selective invocations are specified in the same manner as for
physical databases; however, the choice of structures is limited to those structures
included in the logical database.

The database name form gives the external name of the database to be invoked.

The database title construct is an alphanumeric string. A usercode, if any, is the usercode
of the control file. The single node of the title is the directory node under which the
database files are stored. The family name, if any, is the family name of the control file.
The default database title is the external name of the database plus the control file
usercode and family name, if any, from the description file. When opening the database,
the Master Control Program (MCP) builds the control file title from the database title
specified in the declaration. See the DMSIT DASDL Programming Reference Manual for a
discussion of control files and description files.

This title equation is used only at run time, and cannot be used at compile time to specify
the title of the database description file. The primary use of the database title construct is
for modeling. See the DMSII DASDL Programming Reference Manual for a description of
modeling.

The data set reference construct specifies a particular data set from the declared
database. If a data set reference is used, only the specified structures are invoked. A data
set reference must be used to invoke a disjoint data set.

The data set name construct gives the external name of the data set to be invoked.
The set part construct invokes specific sets from the data set declared in the data set
reference that contains it. If the set part construct is omitted, all sets are implicitly

invoked. If the set part construct is used, all sets (ALL), no sets (NONE), or only the
specified sets are invoked.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

The set reference construct establishes a set that is not implicitly associated with any
particular record area. To load a record area using the set name specified in a set
reference, the “<data set> VIA” form of the selection expression must be used.

The set name construct gives the external name of the set to be invoked.

Only disjoint structures can be explicitly invoked. When a master data set is invoked
(either implicitly or explicitly), its embedded data set, sets, and subsets are always
implicitly invoked. When a data set containing an embedded set associated with a disjoint
data set is invoked, or a data set containing a link to another disjoint data set is invoked,
then a path is established. However, the disjoint data set must be invoked if it is to be
used.

Multiple invocations of a structure provide multiple record areas or set paths, or both, so
that several records of a single data set can be manipulated simultaneously. Selecting only

needed structures for UPDATE and INQUIRY provides better use of system resources.

If remaps are declared in DASDL, they are invoked in the same manner as conventional
data sets.

Additional information relating to the BDMS identifier construct is included under “BDMS
Identifier Construct” in this section.

8600 0734-301 4-5

Using the Data Management System Il (DMSII) Interface

Example: Simple Database

The following examples apply to the database DB described by the following DASDL
description:

D DATA SET (
K NUMBER (6);
R NUMBER (5);
)s

S1 SET OF D KEY K;

S2 SET OF D KEY R;

DATABASE DB: D

This declaration establishes one current record area for the data set D, one path for the
set S1 of data set D, and one path for the set S2 of data set D. The statements “FIND S1”,
“MODIFY S17, “FIND S2”, and “MODIFY S2” automatically load the data into the D record
area.

DATABASE DB: D, X=D (NONE)

This declaration establishes two current record areas (D and X) and two paths (S1 and
S2). The sets S1 and S2 are implicitly associated with the D record area. The set part
NONE prevents a set from being associated with X. Thus, the statements “FIND S1” and
“FIND S2” load the D record area. The statements “FIND X VIA S1” and “FIND X VIA S2”
must be executed to load the X record area using a set.

DATABASE DB: D, X=D

This declaration shows how multiple current record areas and multiple current paths can
be established. The statement “FIND S1 OF D” loads the D record area without disturbing
the path S1 OF X, and the statement “FIND S1 OF X” loads the X record area without
disturbing the path S1 OF D. Qualification of S1 is necessary to distinguish the paths.

DATABASE DB: D (SET S1), X=D (SET S1), Y=D (NONE)
This declaration shows how more current record areas than paths can be established.
Three record areas (D, X, and Y) are established, but only two paths (S1 OF D and S1 OF

X) are established. The program must execute the statement “FIND Y VIA S1 OF D”,
“FIND Y VIA S1 OF X”, or “FIND Y” to load the Y record area.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

DATABASE DB: X=D (SET S1), Y=D (SET T=S1)

This declaration explicitly associates a set with a given work area. The statement “FIND
S1” loads the X record area, and the statement “FIND T” loads the Y record area. S1 and T
both use the same key.

DATABASE DB: D, SY=S1

This declaration shows how a set reference can be used to establish a set that is not
implicitly associated with any particular record area. The statement “FIND D VIA SY”
must be executed to load a record area using the set S1.

Example: Invoking Disjoint Data Sets

The following example shows when a data set reference must be used to invoke disjoint
data sets. The database DB is described by the following DASDL description:

F DATA SET (
FI NUMBER (4);
)s
E DATA SET (
EK NUMBER (8);
)s
D DATA SET (
A NUMBER (6);
SE SET OF E KEY EK;
LINK REFERENCE TO F;

)s
If data set references are not specified to invoke E and F, as in the declaration
DATABASE DB: D
the paths are established by invoking the embedded set SE and the link item LINK.
However, these paths cannot be used unless data set references for E and F are specified

to establish record areas associated with these paths, as in the declaration

DATABASE DB: D,E,F

8600 0734-301 4-7

Using the Data Management System Il (DMSII) Interface

Example: Invoking a Logical Database

In this example, the database EXAMPLEDB, shown on the following page, is described by
the DASDL description given below:

D1 DATA SET (
A REAL;
B NUMBER (5);
C ALPHA (10);
)s
S1A SET OF D1 KEY IS A;
S1B SET OF D1 KEY IS (A,B,C);
D2 DATA SET (
X FIELD (8);
Y NUMBER (2);
Z REAL;
E DATA SET (
V1 REAL;
V2 ALPHA (2);
)s
SE SET OF E KEY IS V1
)s
S2A SET OF D2 KEY IS X;
S2B SET OF D2 KEY IS (X,Y,Z);
LDB1 DATABASE (D1(NONE), D2(SET S=S2A));
LDB2 DATABASE (D1(SET S1=S1B), D2(SET $2=S2B));
LDB3 DATABASE (D=D2);

4-8 8600 0734-301

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program invokes the logical database LDB1 of EXAMPLEDB.
Data sets D1 and D2 are available to the program; however, none of the sets associated
with D1 are available. The only set associated with D2 that is available is set S2A, which
appears as set S. The output produced by the LISTDB compiler control option is shown
with the program.

$ SET LIST LISTDB
BEGIN

DATABASE LDB1 OF EXAMPLEDB;
*DATABASE TITLE: EXAMPLEDB ON DISK
*01 D1: DATA SET (#2)

* INVOKED SETS:

* RECORD ITEMS:

*02 REAL A

%02 INTEGER B: NUMBER (5)

02 STRING C: ALPHA (10)

*01 D2: DATA SET (#5)

* INVOKED SETS:

* S (#8, AUTOMATIC), KEY = X

* RECORD ITEMS:

%02 REAL X: FIELD (8)

*02 INTEGER Y: NUMBER (2)

*02 REAL Z

%02 E: DATA SET (#6)

* INVOKED SETS:

* SE (#7, AUTOMATIC), KEY = V1
* RECORD ITEMS:

*03 REAL V1

*03 STRING V2: ALPHA (2)
*DESCRIPTION TIMESTAMP: 06/09/82 @ 17:30:34
END.

8600 0734-301 4-9

Using the Data Management System Il (DMSII) Interface

Database Equation Operations

<database attribute assignment statement>
— <string-valued database attribute> — := — <string expression> —|

<string-valued database attribute>

— <internal name> — . — TITLE }

Explanation

4-10

The term “database equation” refers to three separate operations:

* Specification of database titles during compilation.

¢ Work Flow Language (WFL) database equation to override compiled-in titles. (For
more information, refer to the DMSII Application Program Interfaces Programming
Guide for the WFL syntax.)

* Run-time manipulation of database titles.

To take advantage of the reentrance capability of the Accessroutines, the user must be
able to specify the title of a database at run time. Database equation enables the database
title to be specified at run time and enables access to databases that are stored under
other usercodes and on families that are not visible to a task. For further information
about the Accessroutines, consult the DMSII Application Program Interfaces
Programming Guide.

Database equation is operationally similar to file equation. WFL database equation
overrides the specification of a database title in the DATABASE declaration, and run-time
modification of a database title overrides both WFL database equation and the DATABASE
declaration. However, database equation differs from file equation in that a run-time error
results if a BDMSALGOL program attempts to assign a value to or examine the TITLE
attribute of a database while it is open. For an explanation of the TITLE database
attribute, refer to “DATABASE Declaration” in this section.

The string expression must evaluate to a string in the form of a database title.

The string-valued database attribute construct can be used anywhere a string expression
is valid.

Database titles never end with a period, and a replace pointer-valued attribute statement is
not valid for making assignments to database titles.

Note: BDMSALGOL programs employing database equation must be compiled with a
BDMSALGOL compiler with a release level later than Mark 3.2.

Additional information relating to the <internal name> construct is included under
“Declaring a Database” in this section.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Example

In this example, the first BDMS OPEN statement opens the database with the title
LIVEDB, whose data and control files are stored under the user's directory. The second
OPEN statement invokes the database TESTDB, whose files are stored on TESTPACK
under the usercode UC.

BEGIN

STRING S;

DATABASE MYDB (TITLE="LIVEDB");
OPEN UPDATE MYDB;

CLOSE MYDB;
MYDB.TITLE := "(UC)TESTDB ON TESTPACK";
OPEN UPDATE MYDB;

CLOSE MYDB;
S := TAKE(MYDB.TITLE,5);

END.

8600 0734-301 4-11

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Basic Language Constructs

The constructs described on the following pages are used within the DMSII “DATABASE”
declaration and in DMSII data management statements and functions. The descriptions
cover the following topics:

* The conventions for naming databases, data sets, sets, items, and so forth

e Input mapping and output mapping

* Selection expressions

BDMS Naming and Qualification Conventions

Naming conventions in DASDL for databases and their components follow COBOL rules;
that is, names can contain hyphens, and some item and structure names can require
qualification. Although both of these conventions contradict normal ALGOL naming rules,
they must be permitted in programs that declare and use databases.

BDMS Identifier Construct

The identifier of a database, data set, set, item, and so on is in the form of a BDMS
identifier.

<BDMS identifier>

J— <identifier> '

Explanation

The BDMS identifier construct must be fewer than 64 characters long.

4-12 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

If a database is described in DASDL by the following:

D-S DATA SET (
A-1 NUMBER (5);
A-2 NUMBER (10);
)s

then in a BDMSALGOL program, the data set D-S and the items A-1 and A-2 can be
referenced as in the following examples:

INTEGER I
GET D-S (
(

= A-1
PUT D-S =1

i)s
A-2 :=1);

Construct for Identifiers of Occurring Items

If an item is declared in the DASDL description to have an OCCURS clause, then its
identifier must be subscripted to denote which of its occurrences is to be used.

<subscripted BDMS identifier>

— <BDMS identifier> — [J— <arithmetic expression> J— 1 }

Explanation

The leftmost arithmetic expression denotes the subscript of the outermost OCCURS
clause that affects the item, the next arithmetic expression to the right denotes the
subscript of the next outermost OCCURS clause, and so on.

Examples

If items A and B are described in DASDL as follows:

DS DATA SET (
G GROUP (
A ALPHA (10);
B NUMBER (4) OCCURS 3 TIMES;

)
OCCURS 2 TIMES;

)s

8600 0734-301 4-13

Using the Data Management System Il (DMSII) Interface

there are two occurrences of A, denoted
A[1] AL2]

and there are six occurrences of B, denoted

B[1,1] B[2,1]
B[1,2] B[2,2]
B[1,3] B[2,3]

Qualification of Database Items

Database item names need not be unique within a database. Qualification is used to
distinguish between database items with the same names.

<qualification>

<BDMS identifier> '

Explanation

An item name can be qualified by the name of any structure that physically contains the
item. Any number of qualification names desired can be used, provided that the result is
unique. If improper or insufficient qualification is used, a syntax error is given.

A set name can be qualified by the name of the data set it spans.
A group name can be used to qualify an item it contains.

Qualification need not be used if the unqualified name is unique. Qualification must be
used whenever there is ambiguity. A variable name can be declared with the same name as
a database item in BDMSALGOL without requiring qualification of the item name.

Examples

If a database is described in DASDL as follows:

DS1 DATA SET (
N NUMBER (4) OCCURS 4 TIMES;
)s

DS2 DATA SET (
N NUMBER (4) OCCURS 4 TIMES;

)s

4-14 8600 0734-301

Using the Data Management System Il (DMSII) Interface

then the following BDMSALGOL statements indicate how qualification is used to
distinguish between the two data items named N.

SET N OF DS1 TO NULL;
SET N OF DS2 TO NULL;

SET N(1) OF DS1 TO NULL;
SET N(1) OF DS2 TO NULL;

Referencing Database Items

The record area (user work area) is not directly accessible to a BDMSALGOL program.
Instead, an explicit mapping between database data items and program variables must be
specified whenever access to those items is desired.

Mappings specify the source and destination of data to be transferred into or out of a user
work area. Mappings are of two kinds: input mappings and output mappings.

Example

If a database is described in DASDL by the following:

D1 DATA SET (
A NUMBER (5);
X NUMBER (5) OCCURS 3 TIMES;
)s

then the items of data set D1 can be referenced in the following ways:

INTEGER B,Y1,Y2,Y3;

% The following statement transfers the value of database item
% A to the locally declared integer B.

GET D1 (B := A);

% The following statement transfers the value of locally
% declared integer B to the work area for DI.
PUT D1 (A := B);
% The following statement transfers the values of all three
% occurrences of X into Y1, Y2, and Y3.
GET D1 (Y1 := X[1];
Y2 := X[2];
Y3 := X[3]);

o

The following statement transfers the values of locally
% declared integers Y1, Y2, and Y3 into the three occurrences
% of database item X.

PUT D1 (X[1] := Y1,
X[2] := vy2,
X[3] := Y3);

8600 0734-301 4-15

Using the Data Management System Il (DMSII) Interface

Input Mapping Used with Retrieval Statements

<input mapping>

J— <input assignment> '

<input assignment>

—— <arithmetic variable> — := —— <count item name> }
— <field item name>

— <numeric item name>

— <population item name> —

— <real item name>

— <record type item name> —

— <Boolean variable> — := — <Boolean item name>

— <pointer variable> — : <alpha item name>

<group item name>

<numeric item name>

<alpha item name>
<Boolean item name>
<count item name>
<field item name>
<group item name>
<numeric item name>
<population item name>
<real item name>
<record type item name>

—{:<BDMS identifier _J I
<subscripted BDMS identifier>

Explanation

Input mappings can be used with the retrieve statements DELETE, FIND, GET, BDMS
LOCK, and MODIFY. Input mappings transfer the value of a DASDL-declared data item to
a program variable. If the data item is an occurring item (that is, if the item is declared in
DASDL with an OCCURS clause), it must be subscripted appropriately.Additional
information relating to the BDMS identifier construct is included under “BDMS Identifier

4-16 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Construct” in this section. Information related to the subscripted BDMS identifier
construct is included under “Construct for Identifiers of Occurring Items” in this section.

An arithmetic variable can be an integer, real, or a double simple or subscripted variable.
A Boolean variable can be a subscripted or Boolean simple variable. A pointer variable can
be a pointer identifier or an element of a character array.

<arithmetic variable> := <field item name>

If the field item is defined to contain N bits, then N bits are stored right-justified in the
arithmetic variable. All other bits are set to zero.

<arithmetic variable> := <numeric item name>
<arithmetic variable> := <real item name>

The numeric item or real item is converted into a binary value with a scale factor of zero
(its true value). The value is stored in the arithmetic variable as in a normal arithmetic
assignment; that is, it is converted to an integer or extended, if necessary. An error and
termination results if it is not possible to convert the item to an integer, as in normal
ALGOL arithmetic assignments.

<arithmetic variable> := <count item name>
<arithmetic variable> := <population item name>
<arithmetic variable> := <record type item name>

The value of the count item, population item, or record type item is placed in the
arithmetic variable. Use of a count item, population item, or record type item enables
read-only access to the particular field. Those items cannot be changed directly. They are
accessed only through input mappings, and cannot be used in output mappings.

<Boolean variable> := <Boolean item name>

The Boolean variable is assigned the truth value (the value of bit 0) of the Boolean item.
Bits 1 through 47 of the Boolean variable are set to zero.

<pointer variable> := <alpha item name>
<pointer variable> := <group item name>

8600 0734-301 4-17

Using the Data Management System Il (DMSII) Interface

4-18

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred to the location pointed to by the pointer variable. A fault results
if one of the following conditions is satisfied:

* The pointer is uninitialized.

¢ The pointer is not an EBCDIC (8-bit) pointer.

* Fewer than N character positions remain in the referenced array.

A group item is treated as if it were an alpha item; all subordinate data items are
transferred without change.

<pointer variable> := <numeric item name>

This assignment takes advantage of the fact that a numeric item is maintained as a
hexadecimal string. If the numeric item is defined to contain N digits (including the sign
digit, if specified), the N hexadecimal characters are transferred to the location pointed to
by the pointer variable. A fault results if one of the following conditions is satisfied:

* The pointer is uninitialized.

e The pointer is not a hexadecimal (4-bit) pointer.

* Fewer than N hexadecimal character positions remain in the referenced array.

For more information concerning the arithmetic variable, Boolean variable, and pointer
variable constructs, refer to Volume 1.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Output Mapping Used with Storage Statements

<output mapping>
| ; |

J— <output assignment> |

<output assignment>

— <field item name> —— := — <arithmetic expression> }

<numeric item name> —

<real item name>

— <Boolean item name> — := — <Boolean expression>
<alpha item name> = —{: <pointer expressiiii;:I—
<group item name> <string literal>

<numeric item name>

Explanation

Output mappings can be used with the storage statements PUT and STORE. Output
mappings transfer the value of a program variable or expression to a DASDL-declared data
item. If the data item is an occurring item (that is, if the item is declared in DASDL with an
OCCURS clause), it must be subscripted appropriately.

An arithmetic expression used in an output mapping can be single precision or double
precision.

<field item name> := <arithmetic expression>
If the field item is defined to contain N bits, then the N rightmost bits of the value of the
arithmetic expression are assigned, unaltered, to the field item. Care should be taken if the
arithmetic value is real or double precision (that is, not integer) because the value might

be normalized, in which case the N rightmost bits would not contain the value.

<numeric item name> := <arithmetic expression>
<real item name> := <arithmetic expression>

The value of the arithmetic expression is scaled appropriately and assigned to the numeric
item or real item. If the numeric item or real item is unsigned, the absolute value of the

arithmetic expression is used.

<Boolean item name> := <Boolean expression>

8600 0734-301 4-19

Using the Data Management System Il (DMSII) Interface

4-20

The truth value (the value of bit 0) of the Boolean expression is assigned to the Boolean
item. Bits 1 through 47 of the value of the Boolean expression are ignored.

<alpha item name> := <pointer expression>
<group item name> := <pointer expression>

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred from the location pointed to by the pointer expression to the
alpha or group item. A fault results if any of the following conditions is satisfied:
* The value of the pointer expression is an uninitialized pointer.
e The value of the pointer expression is not an EBCDIC (8-bit) pointer.
* Fewer than N character positions remain in the referenced array.

<numeric item name> := <pointer expression>
This mapping takes advantage of the fact that a numeric item is maintained as a
hexadecimal string. If the numeric item is defined to contain N digits (including the sign
digit, if specified), then N hexadecimal characters are transferred to the numeric item
from the location pointed to by the pointer expression. The user is responsible for

ensuring that the string is a valid representation of the item declared in DASDL; that is, the
proper sign and numeric characters, in the proper format, must be used.

A fault results if any of the following conditions is true:

* The value of the pointer expression is an uninitialized pointer.
¢ The value of the pointer expression is not a hexadecimal (4-bit) pointer.

* Fewer than N hexadecimal character positions remain in the referenced array.

<alpha item name> := <string literal>
<group item name> := <string literal>

The string literal is transferred to the alpha item or group item. The string literal must be
EBCDIC, or a syntax error results. If the string literal is shorter than the alpha item or
group item, it is extended with blank fill characters on the right. If the string literal is
longer than the alpha item or group item, the excess characters on the right are truncated.

<numeric item name> := <string literal>

The string literal is transferred to the numeric item. The string literal must be a
hexadecimal string and must contain the exact number of characters for the numeric item
or a syntax error results. The user is responsible for ensuring that the string literal is a
valid representation of the numeric item.

Additional information relating to the field item name, numeric item name, real item name,

Boolean item name, alpha item name, and group item name constructs is included under
“Input Mapping Used with Retrieval Statements” in this section.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Selecting a Record in a Data Set

<selection expression>

J L <set selection expression> }
— <data set> VIA <link item>

FIRST <data set>

— LAST
— NEXT

— PRIOR

<data set>

— <qualification |

<set selection expression>

<set> }
— FIRST — |— <subset> J AT <key condition> J
— LAST — L WHERE J
— NEXT —
— PRIOR —
<set>

— <qualification> }

<subset>

— <qualification> }

8600 0734-301 4-21

Using the Data Management System Il (DMSII) Interface

<key condition>
AND

OR

<numeric relation> I

— <alphanumeric relation>
—ﬁ (— <key condition> —) -
NOT

<numeric relation>

<numeric item identifier> —— <relational operator>

<field item identifier> —

<real item identifier>

—>—|: <arithmetic expression> |

<pointer expression>

<numeric item identifier>
<field item identifier>
<real item identifier>

— <BDMS identifier> I

<alphanumeric relation>

— <alpha item identifier> — <relational operator> ——{: <constant string expression{

<pointer expression>:

<alpha item identifier>
— <BDMS identifier> I

<link item>

— <qualification> |

4-22 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Explanation

A selection expression is used in DELETE, FIND, BDMS LOCK, and MODIFY statements
to identify a particular record in a data set.

A set selection expression selects the record to which the set path refers. A NOTFOUND
exception is returned if the record has been deleted or if the path does not refer to a valid
current record.

The construct “data set VIA” identifies the record area and current path to be affected if
the desired record is found. This option is used for link items and for sets that are not
implicitly associated with the data set.

The link item form is used to specify a link item defined in the DASDL description. The
record to which the link item refers is selected. An exception is returned if the link item is
NULL.

The data set form is used to select the record to which the data set path refers. A
NOTFOUND exception is returned if the record has been deleted or if the path does not
refer to a valid current record.

The word “FIRST” selects the first record in the specified data set, set, or subset. If a key
condition is also specified, the first record of the specified set or subset that satisfies the
key condition is selected. FIRST is assumed by default.

The word “LAST” selects the last record in the specified data set, set, or subset. If a key
condition is also specified, the last record of the specified set or subset that satisfies the
key condition is selected.

The word “NEXT” selects the next record relative to either the set path (if a set or subset
is specified) or the data set path (if a data set is specified). If a key condition is also
specified, the next record (relative to the current path) of the specified set or subset that
satisfies the key condition is selected.

The word “PRIOR” selects the prior record relative to either the set path (if a set or subset
is specified) or the data set path (if a data set is specified). If a key condition is also
specified, the prior record (relative to the current path) of the specified set or subset that
satisfies the key condition is selected.

In a set selection expression, the set or subset construct selects the record to which the
set or subset path refers. A NOTFOUND exception is returned if the record has been
deleted or if the path does not refer to a valid current record.

The words “AT” or “WHERE” indicate that a key condition follows. AT and WHERE are
synonyms.

A key condition specifies values used to locate specific records in a data set referenced by
a particular set or subset. If the name of a data item specified in a key condition is not
unique, the compiler provides implicit qualification through the set or subset of the set
selection expression. Although not necessary, qualification of the item name by the name

8600 0734-301 4-23

Using the Data Management System Il (DMSII) Interface

of the data set that contains the item is permitted; however, the compiler handles this
qualification as documentation only.

The expressions that appear in a key condition cannot contain any transaction item
references.

A numeric relation specifies a particular numeric, field, or real item and compares it to the
value of an arithmetic expression or a pointer expression. The pointer expression must
evaluate to a hexadecimal pointer.

An alphanumeric relation specifies a particular alpha item and compares it to the value of
a constant string expression or a pointer expression. The pointer expression must
evaluate to an EBCDIC pointer. The constant string expression must be an EBCDIC string.

Additional information relating to the BDMS identifier construct is included under “BDMS
Identifier Construct” in this section. Information on the qualification construct is included
under “Qualification of Database Items” in this section.

For more information concerning constant string expression and relational operators,
refer to Volume 1.

Examples

4-24

These examples use the database described in DASDL by the following:
D DATA SET (
A ALPHA (3);
N NUMBER (5);
)s
S SET OF D KEY IS N, DATA A;
LOCK S WHERE N NEQ 10
This LOCK statement acts upon the first S where the value of N is not equal to 10.
FIND S AT A = "ABC" AND (N = 50 OR N = 90)

This statement locates the first S where A is equal to the string “ABC” and either N is equal
to 50 or N is equal to 90.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Statements

The following data management statements enable a BDMSALGOL program to use and
manipulate the data in a database.

ABORTTRANSACTION GET
ASSIGN INSERT
BEGINTRANSACTION BDMS LOCK
CANCELTRPOINT MODIFY
BDMS CLOSE BDMS OPEN
CREATE PUT
DELETE RECREATE
DMTERMINATE REMOVE
ENDTRANSACTION SAVETRPOINT
FIND SECURE
BDMS FREE BDMS SET
GENERATE STORE

Note that the BEGINTRANSACTION statement initiates a transaction which is concluded
by an ENDTRANSACTION statement. A transaction is a series of changes to the database
which are considered to be an indivisible logical change. A transaction is the basic unit
effecting change in the DMSII database.

Transaction state is that period of execution time when the DMSII database can be
updated. Every update program of an audited database must enter transaction state in
order to perform any data record update statements. Transactions are applied but not
actually committed until the ENDTRANSACTION statement is executed.

COMS and DMSII can be used together to provide a recoverable transaction system.

Consult Section 3, “Using Communications Management System (COMS) Features” for
more information and for the needed syntax.

8600 0734-301 4-25

Using the Data Management System Il (DMSII) Interface

ABORTTRANSACTION Statement

<aborttransaction statement>
— ABORTTRANSACTION

<restart data set> ——

|— <COMS header ID> J

|— <exception handling> J

Explanation

The ABORTTRANSACTION statement backs out all updates that occurred during a
transaction and takes a program out of the transaction state. The DMSII database is
returned to the point before the BEGINTRANSACTION statement (which initiated the
transaction) was executed.

The ABORTTRANSACTION statement is equivalent to performing a CANCELTRPOINT
statement followed by an END TRANSACTION statement.

The COMS header ID construct identifies the COMS Output Header. If the system fails
during transaction state, COMS resubmits the message when the program is reexecuted.

The restart data set construct identifies the data set containing the restart records that
application programs can access to recover database information after a system failure.

Additional information relating to the <exception handling> construct is included under

“Database Status Word” in this section.

Example
In this example, the ABORTTRANSACTION statement notifies DMSII of the abort, and
assigns the result of the abort call to the variable DMSTATUS. All transactions are backed

out to the BEGINTRANSACTION statement, and the program is taken out of transaction
state.

BEGINTRANSACTION RSTDS;
SAVETRPOINT (1);

ABORTTRANSACTION RSTDS : DMSTATUS;

4-26 8600 0734-301

Using the Data Management System Il (DMSII) Interface

ASSIGN Statement

<assign statement>

— ASSIGN <data set> T0O - <link item> [_ _J i
{ NULL <exception handling>

<link item>

Explanation

The ASSIGN statement establishes a link from one record in a data set to another record
of the same or a different data set. It assigns either the value of the current record in a
data set or the value in a link item to another link item. The value of the second link item,
called the target link item, then enables the system to locate the record in the referenced
data set.

The ASSIGN statement is effective immediately; therefore, the record containing the
target link item does not need to be stored unless data items of this record have been
modified.

The data set must be declared in DASDL as the object data set of the target link item. A
value that points to the current record in the data set is assigned to that link item.

If the data set form is used, the current path of the specified data set must be valid, but the
record need not be locked. If the data set path is not valid, an exception occurs.

If the word “NULL?” is used, the relationship between records is severed by assigning a
NULL value to the target link item. If that link item is already NULL, this option is ignored.
A FIND, BDMS LOCK, or MODIFY statement on a NULL link item results in an exception.

If the ASSIGN statement specifies two link items, the value of the first link item is
assigned to the target link item. The first link item must be declared in DASDL to have the
same object data set as the target link item and be the same type of link (counted link,
self-correcting link, symbolic link, unprotected link, or verified link). If the link items are
counted links, the count item is automatically updated, even if the record that is
referenced is locked by another program.

The current path of the data set containing the first link must be valid, but the record need
not be locked. If the data set path is not valid, an exception occurs.

After the ASSIGN statement has executed, the target link item points to either the current
record in the specified data set or to the record pointed to by the first link item.

The current path of the data set containing the target link item must be valid, and the
record must be locked; otherwise, an exception occurs.

8600 0734-301 4-27

Using the Data Management System Il (DMSII) Interface

If the target link item references a disjoint data set, then that link item can point to any
record in the data set. If the target link item references an embedded data set, then only
certain records in the data set can be referenced. In this case, the record being referenced
must be owned by the record containing the target link item or by an ancestor of the
record containing this link item. (An ancestor is the owner of the record, the owner of the
owner, and so forth.)

If an exception is returned, the ASSIGN statement is not completed, and a NULL value is
assigned to the target link item.

Additional information relating to the data set and link item constructs is included under
“Selecting a Record in a Data Set” in this section. Information on the exception handling
construct is included under “Database Status Word” in this section.

Examples

If the database EXAMPLEDB is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
L IS IN E VERIFY ON N;
)s
S SET OF D KEY A

E DATA SET (
N NUMBER (3);
R REAL;
)s

T SET OF E KEY N;

then the following BDMSALGOL program uses the ASSIGN statement to assign the value
of the current record of data set E to link item L.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE EXAMPLEDB;
EBCDIC ARRAY X[0:2];
INTEGER Y;

OPEN UPDATE EXAMPLEDB;

WHILE NOT READ(CARD FILE,<A3,I3>,X,Y) DO
BEGIN
FIND S AT A
FIND T AT N
ASSIGN E TO
END;

CLOSE EXAMPLEDB;

END.

=X;
=Y;

L;

4-28 8600 0734-301

Using the Data Management System Il (DMSII) Interface

DMSII BEGINTRANSACTION Statement

<begintransaction statement>
— BEGINTRANSACTION L

<inputheadername> — <message area> J

<restart data set> ———
— (— <transaction record variable> —) —

— AUDIT

— NOAUDIT

- <exception handling> J

<restart data set>

—<qualification |

Explanation

The DMSII BEGINTRANSACTION statement places a program in transaction state. This
statement can be used only with audited databases.

The BEGINTRANSACTION statement performs the following steps in order:

1. It captures the restart data set if AUDIT is specified.
2. It places a program in transaction state.
The transaction record variable construct identifies a transaction record created through

the Transaction Processing System (TPS).

If the transaction record variable construct is used, it is the formal input transaction
record variable, and NOAUDIT is the default action.

The word “AUDIT” causes the restart area to be captured. The path of the specified restart
data set is not altered when the restart record is stored. AUDIT is the default action.

The word “NOAUDIT” causes the restart area to not be captured. The restart data set
construct specifies the restart data set to be updated.

The restart data set construct identifies the data set containing the restart records that
application programs can access to recover database information after a system failure.

An exception is returned if the BEGINTRANSACTION statement is attempted while the
program is in transaction state. If any exception is returned, the program is not placed in
transaction state. If an ABORT exception is returned, all records that the program had
locked are freed.

8600 0734-301 4-29

Using the Data Management System Il (DMSII) Interface

4-30

Deadlock can occur during execution of a BEGINTRANSACTION statement.

Any attempt to modify an audited database when the program is not in transaction state
results in a fault. The BDMSALGOL statements that modify databases are:

ASSIGN INSERT
DELETE REMOVE
GENERATE STORE

Refer to the DMSII Application Program Interfaces Programming Guide for further
details regarding audit and recovery. Refer to the COMS BEGINTRANSACTION statement
when using DMSII and COMS and refer to the TPS BEGINTRANSACTION statement when
using DMSII and TPS.

Additional information relating to the exception handling construct is included under
“Database Status Word” in this section. Information on the inputheadername and message
area constructs is included under “Declaring Input and Output Headers” and “RECEIVE
Statement”in Section 3, “Using Communications Management System (COMS) Features.”
Related information is also included under “Passing Transaction Record Variables as
Parameters” in Section 5, “Using DMSII Transaction Processing System (TPS)
Extensions.”

Additional information relating to the qualification construct is included under
“Qualification of Database Items” in this section.

Additional information relating to DMSII transactions is included under “Declaring

Transaction Record Variables” and “Transaction Processing Statements” in Section 5,
“Using DMSII Transaction Processing System (TPS) Extensions.”

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);

R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)s

D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the BEGINTRANSACTION
statement can be used:

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY A[0:2];
INTEGER MY N;

OPEN UPDATE DBASE;

MY N := 1;

WHILE MY N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY N := * + 1;
END;

WHILE NOT READ(CARD FILE,<I3,A3>,MY N,MY A[0]) DO
BEGIN
LOCK S AT N = MY N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-301 4-31

Using the Data Management System Il (DMSII) Interface

BDMS CANCELTRPOINT Statement

<canceltrpoint statement>
—CANCELTRPOINT

J <restart data set> —1

|— (— <integer expression> —)

Explanation

The BDMS CANCELTRPOINT statement backs out all updates in a transaction to an
intermediate save point (set through the SAVETRPOINT statement) or to the beginning of
the transaction. The CANCELTRPOINT statement enables you to cancel all or part of the
update assignments without having to terminate the transaction state. The program
execution continues with the statement following the CANCELTRPOINT statement.

The inclusion of the integer expression construct causes DMSII to search for the
corresponding SAVETRPOINT statement and cancel only those transactions lying
between the two. If no corresponding SAVETRPOINT statement is found, or if the integer
expression construct is omitted or is zero, then all update assignments performed during
the current transaction state are discarded. However, the current transaction state is not
terminated.

The restart data set construct identifies the data set containing the restart records that
application programs can access to recover database information after a system failure.

Additional information on the BDMS SAVETRPOINT statement is included under “BDMS
SAVETRPOINT Statement” in this section.

Example

4-32

In this example, there is an intermediate transaction point with an integer value of 1. If an
error is detected, the CANCELTRPOINT statement backs out all updates accumulated
after the SAVETRPOINT statement.
BEGINTRANSACTION R;
SAVETRPOINT (1) R;
IF ERROR ... THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-301

Using the Data Management System Il (DMSII) Interface

BDMS CLOSE Statement

<BDMS close statement>
— CLOSE - <database identifier }

|— <exception handling> J

<database identifier>
— <BDMS identifier I

Explanation

The BDMS CLOSE statement closes a database when further access is no longer required
and performs the following steps in order:

1. It closes the database.
2. It frees all locked records.

The database identifier specifies the database to be closed. If the database was declared
to have an internal name, this internal name is the database identifier. If the database does
not have an internal name but is a logical database, then the logical database name is the
database identifier. For databases that do not have an internal name and are not logical
databases, the database name is the database identifier.

An exception is returned if the CLOSE statement attempts to close a database that is not
open. A database abort occurs if the CLOSE statement attempts to close a database that is
in transaction state.

Use of the CLOSE statement is optional; the system closes any open database when a
program terminates. A syncpoint in the audit file occurs when a database is successfully
closed.

The CLOSE statement is the only BDMSALGOL statement in which the status word has
meaning when no exception is indicated. Therefore, after a CLOSE statement, the status
word should be examined by the program and appropriate action taken, whether or not an
exception is returned. An ABORT exception can be obtained in this manner.

Additional information relating to the BDMS identifier construct is included under “BDMS

Identifier Construct” in this section. Information on the exception handling construct is
included under “Database Status Word” in this section.

8600 0734-301 4-33

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)s
D DATA SET (

A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)s
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how to use the CLOSE statement to close
DBASE

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT FILE(KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[O] := A,MB := B);
IF MB THEN
GET D (MR := N)
ELSE
MR := 0;
WRITE(PRINT FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
CLOSE DBASE;
END.

4-34 8600 0734-301

Using the Data Management System Il (DMSII) Interface

CREATE Statement

<create statement>

— CREATE - <data set L

(— <arithmetic expression> —) J

|— <exception handling> J

Explanation

The CREATE statement initializes the user work area of a data set record and performs
the following steps in order:

1. It frees the current record of the specified data set. (If the INDEPENDENTTRANS
option is set in DASDL for the database and the program is in transaction state, the
CREATE statement does not free the current record.)

2. Tt reads any specified expression to determine the format of the record to be created.
3. Itinitializes data items to one of the following values:
The DASDL-declared INITIALVALUE, if present
b. The DASDL-declared NULL, if present
c. The default NULL
Note: When creating partitioned data sets, you must establish the partition master

record prior to execution of the CREATE command.

The data set construct specifies the data set to be initialized. The current path of the data
set is not changed until a subsequent STORE statement has completed successfully.

The arithmetic expression specifies the type of record to be created. This arithmetic
expression is required when a variable-format record is created; otherwise, it must not
appear.

An exception is returned if the arithmetic expression does not represent a valid record
type.

Normally, the CREATE statement is eventually followed by a STORE statement, which
places the newly created record into the data set. However, if a subsequent STORE
operation is not desired, the CREATE statement can be nullified by a subsequent
CREATE, DELETE, FIND, BDMS FREE, BDMS LOCK, MODIFY, or RECREATE statement.

The CREATE statement sets up only a record area. If the record contains embedded
structures, the master record must be stored before entries can be created in the
embedded structures. If only entries in the embedded structure are created (that is, if
items in the master are not altered), the master need not be stored a second time.

8600 0734-301 4-35

Using the Data Management System Il (DMSII) Interface

Additional information relating to the CREATE statement is included under “Creating
Transaction Record Formats” in Section 5, “Using DMSII Transaction Processing System
(TPS) Extensions.”

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the exception handling construct is
included under “Database Status Word” in this section.

Examples

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);
)s

S SET OF D KEY N

then the following BDMSALGOL program shows how a record of data set D can be
created and stored.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<A10,I1,I3>,X[0],Y,Z) DO

BEGIN

CREATE D;

PUT D (A := X[0]);
IF Y = 1 THEN

PUT D (B := TRUE);
PUT D (N := 2);
STORE D;
END;
CLOSE DBASE;
END.

4-36 8600 0734-301

Using the Data Management System Il (DMSII) Interface

DMSII DELETE Statement

<delete statement>

— DELETE - <selection expression>

|— <exception handling> J

|— (— <input mapping> -) J

Explanation

The DMSII DELETE statement is identical to the FIND statement except that if a record is
found, it is locked and then deleted. The DELETE statement performs the following steps
in order:

1. It frees the current record, unless the selection expression is the name of the data set
and the current record is locked. In that case, the locked status is not altered. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the program is in
transaction state, the DELETE statement does not free the current record.)

2. It alters the current path to point to the record specified by the selection expression,
and locks this record.

3. It transfers that record to the user work area.

4. It removes the record from all sets and automatic subsets, but not from manual
subsets.

5. It removes the record from the data set.

If the record is found but cannot be deleted, an exception is returned and the DELETE
statement terminates, leaving the current path pointing to the record specified by the
selection expression.

If a set selection expression is used and the record is not found, then an exception is
returned and the set path is changed and invalidated. It refers to a location between the
last key less than the condition and the first key greater than the condition. A set selection
expression using NEXT or PRIOR can be done from this point provided keys greater than
and less than the condition exist. The current path of the data set, the current record, and
the current paths of any other sets for that data set remain unchanged.

It is the responsibility of the programmer to ensure that no manual subset refers to the
record being deleted.

The selection expression identifies the record to be deleted.

An exception is returned and the record is not deleted if the record has counted links
pointing to it, or if the record contains a nonnull link or a nonempty embedded structure.

8600 0734-301 4-37

Using the Data Management System Il (DMSII) Interface

When the DELETE statement completes, the current paths still refer to the deleted record.
Therefore, a FIND statement on the current record results in a NOTFOUND exception;
however, FIND NEXT and FIND PRIOR statements are still appropriate.

Additional information relating to the selection expression construct is included under
“Selecting a Record in a Data Set” in this section. Information on the exception handling
construct is included under “Database Status Word” in this section. Information on the
input mapping construct is included under “Input Mapping Used with Retrieval
Statements” in this section.

Examples

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the DELETE statement
to delete a record of the data set D where item N is equal to the value of X:

BEGIN
FILE CARD _FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<I3>,X) DO
DELETE S AT N = X;
CLOSE DBASE;
END.

4-38 8600 0734-301

Using the Data Management System Il (DMSII) Interface

DMTERMINATE Statement

<dmterminate statement>

— DMTERMINATE <Boolean identifier> |

<integer identifier> —

<real identifier>

Explanation

The DMTERMINATE statement aborts the current action. When an exception occurs that
the program does not handle, the DMTERMINATE statement can be called to produce the
same results as if the exception-handling syntax had not been specified in the statement;
that is, the DMTERMINATE statement causes the program to terminate with a fault.

For more information concerning the Boolean identifier, integer identifier, and real
identifier, refer to Volume 1.

8600 0734-301 4-39

Using the Data Management System Il (DMSII) Interface

Examples
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
S SET OF D KEY N;

then the following BDMSALGOL program shows an example of the use of the
DMTERMINATE statement.

BEGIN
FILE CARD _FILE(KIND=READER);
DATABASE DBASE;
BOOLEAN RSLT;
REAL RRSLT = RSLT;
INTEGER X;

OPEN UPDATE DBASE;
FIND FIRST D :RSLT;
IF RSLT THEN

BEGIN
DISPLAY("D IS EMPTY DATA SET");
DMTERMINATE (RSLT);
END
ELSE
WHILE NOT READ(CARD FILE,<I3>,X) DO
BEGIN

DELETE S AT N = X :RSLT;
IF RRSLT.DMERROR = NOTFOUND THEN
DMTERMINATE (RSLT);
END;
CLOSE DBASE;
END.

4-40 8600 0734-301

Using the Data Management System Il (DMSII) Interface

DMSII ENDTRANSACTION Statement

<endtransaction statement>

— ENDTRANSACTION <restart data set——

(— <endtransaction parameters> —) —

AUDIT

NOAUDIT

|— SYNC —l |— <exception handling> —l

<endtransaction parameters>

— <transaction record variable ID> — , — <saveoutput procedure identifier> 1

<saveoutput procedure identifier>

— <procedure identifier> }

Explanation

The DMSII ENDTRANSACTION statement takes a program out of transaction state. This
statement can be used only with audited databases. The ENDTRANSACTION statement
performs the following steps in order:

1. It captures the restart area if AUDIT is specified.

2. It forces a syncpoint if the SYNC option is specified.

3. It implicitly frees all records of the database that the program has locked.

If the endtransaction parameters form is used, the transaction record variable ID
construct is the formal input transaction record variable. The saveoutput procedure
identifier is the name of the SAVERESPONSETR formal procedure. For more information
about the SAVERESPONSETR procedure, refer to the DMSII Transaction Processing
System (TPS) Programming Guide.

The word “AUDIT” causes the restart area to be captured. The path of the restart data set
is not altered when the restart record is stored.

The word “NOAUDIT” causes the restart area to not be captured. NOAUDIT is the default
action.

The restart data set construct identifies the data set containing the restart records that
application programs can access to recover database information after a system failure.

The word “SYNC” forces a syncpoint.

8600 0734-301 4-41

Using the Data Management System Il (DMSII) Interface

An exception is returned if an ENDTRANSACTION statement is attempted and the
program is not in transaction state.

Records are freed in all cases. If an exception occurs, the transaction is not applied to the
database.

Refer to the DMSII Application Program Interfaces Programming Guide for information
regarding audit and recovery. Refer to the COMS ENDTRANSACTION statement when
using COMS and DMSII and refer to the TPS ENDTRANSACTION statement when using
TPS and DMSII.

Additional information relating to DMSII transactions is included under “Declaring
Transaction Record Variables” and “Transaction Processing Statements” in Section 5,
“Using DMSII Transaction Processing System (TPS) Extensions.”

Additional information relating to the <exception handling> construct is included under
“Database Status Word” in this section.

For information concerning transaction records, consult Section 5, “Using DMSII
Transaction Processing System (TPS) Extensions.” For more information concerning
procedure identifiers, refer to Volume 1.

Examples
Assume a database named DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)s
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s
S SET OF D KEY N;

4-42 8600 0734-301

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates how the ENDTRANSACTION
statement can be used with this database.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY A[0:2];
INTEGER MY N;

OPEN UPDATE DBASE;

MY N := 1;

WHILE MY N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY N := * + 1;
END;

WHILE NOT READ(CARD FILE,<I3,A3>,MY N,MY A[0]) DO
BEGIN
LOCK S AT N = MY N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-301 4-43

Using the Data Management System Il (DMSII) Interface

FIND Statement

<find statement>

FIND ~|: <selection exp\r'ess1'on>‘J L J
<database identifier> <exception handling>

FIND KEY OF — <set selection expression>

|— (— <input mapping> -) J

Explanation

4-44

The FIND statement transfers a record to the user work area associated with a data set or
global data and performs the following steps in order:

1. It frees alocked record in the data set if a data set is specified in the FIND statement,
or frees a locked record in the associated data set if a set is specified in the FIND
statement. (If the INDEPENDENTTRANS option is set in DASDL for the database and
the program is in transaction state, the FIND statement does not free the locked
record.)

2. It alters the current path to point to the record specified by the selection expression
or database name.

3. It transfers that record to the user work area.

The FIND statement does not prevent reads by other transactions before an update
transaction is complete.

The selection expression form is used to specify the record to be transferred to the user
work area.

The database identifier form is used to specify the global data record to be transferred to
the user work area associated with the global data. If no global data was described in
DASDL for the database, a syntax error occurs.

If the invoked database contains a remap of the global data, the name of the logical
database, not the name of the global data remap, is used to LOCK the global data record.

The form “FIND KEY OF set selection expression” moves the key and any associated data
(as specified in DASDL) from the key entry to the user work area. A physical read is not
performed on the data set; consequently, all items in the record area that do not appear in
the key entry retain whatever value they had before the FIND statement. The current path
of the data set is not affected.

If an exception is returned, the record is not freed. If a set selection expression is used and
the record is not found, then an exception is returned and the set path is changed and
invalidated. It refers to a location between the last key less than the condition and the first
key greater than the condition. A set selection expression using NEXT or PRIOR can be

8600 0734-301

Using the Data Management System Il (DMSII) Interface

done from this point provided keys greater than and less than the condition exist. The
current path of the data set, the current record, and the current paths of any other sets for
that data set remain unchanged.

To access data items, input mapping is required.

Additional information relating to the selection expression and set selection expression
constructs is included under “Selecting a Record in a Data Set” in this section. Information
on the database identifier construct is included under “BDMS CLOSE Statement” in this
section. Information on the exception handling construct is included under “Database
Status Word” in this section. Information on the input mapping construct is included under
“Input Mapping Used with Retrieval Statements” in this section.

Additional information relating to the input mapping construct is included under “Input
Mapping Used with Retrieval Statements” in this section.

Examples

FIND FIRST EMP AT DEPT-NO = 1019 :RSLT;
IF RSLT THEN
POP-EMPS[1019] :

03

FIND EMP AT EMP-NO
IF RSLT THEN
ERR_OUT(INV_EMP_NO_ERR);

SSN :RSLT;

FIND NEXT EMP :RSLT;
IF RSLT THEN
GO NO_MORE_EMP;

FIND FIRST OVR-65 AT DEPT-NO = 1019 :RSLT;

IF RSLT THEN
POP-0VR-65[1019] := 03

8600 0734-301 4-45

Using the Data Management System Il (DMSII) Interface

BDMS FREE Statement

<BDMS free statement>

— FREE <data set> L J }
<database identifier> ——— <exception handling>
STRUCTURE — <data set name> —

Explanation

The BDMS FREE statement unlocks the current record or structure.

Normally, a FREE statement can be executed after any operation. However, the FREE
statement is ignored if the current record or structure is already free, if no current record
or structure is present, or if the INDEPENDENTTRANS option is set in DASDL for the
database and the program is in transaction state.

The FREE statement can be used to unlock a record or structure that the user anticipates
cannot be implicitly freed for a relatively long time. A FREE statement executed on a
record or structure enables other programs to lock the record.

The data set form is used to specify the data set whose current record is to be unlocked.
The data set path and current record area remain unchanged.

The database identifier form is used to specify the global data record to be unlocked. The
data set path and current record area remain unchanged.

The STRUCTURE data set name construct frees all records in the structure.
If an exception is returned, the state of the database remains unchanged.

The FREE statement is optional in many situations because DELETE, FIND, BDMS LOCK,
and MODIFY statements can free a record before they execute. FIND, LOCK, and MODIFY
statements that use sets or subsets can free the locked record or structure only if a new
record or structure is successfully retrieved. Otherwise, the previously locked record or
structure remains locked. In general, an implicit FREE statement is performed, if
necessary, during any operation that establishes a new data set path.

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the database identifier construct is
included under “BDMS CLOSE Statement” in this section. Information on the exception
handling construct is included under “Database Status Word” in this section.

4-46 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the FREE statement to
unlock the current record of data set D.

BEGIN
FILE CARD _FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

8600 0734-301 4-47

Using the Data Management System Il (DMSII) Interface

GENERATE Statement

<generate statement>

— GENERATE - <subset> — =—|: NULL

<subset>

AND —— <subset> J

|— <exception handling> J

Explanation

4-48

The GENERATE statement creates an entire subset in one operation. All subsets must be
disjoint bit vectors. The GENERATE statement performs the following steps in order:

1. It deletes all the records from the subset to be generated if it is not already empty.

2. It assigns a null value, the records in another subset, or a combination of the records
in two other subsets to the subset that is generated.

The subset to the left of the equal sign (=) is the name of the subset to be generated. This
subset must be a manual subset, which must be a disjoint bit vector.

The word “NULL” assigns a null value to the generated subset.

If subset follows the equal sign, it is the name of the subset whose records are to be
assigned to the generated subset. This subset must be of the same data set as the
generated subset, and it must be a disjoint bit vector.

If to the right of the equal sign there are two subsets joined by the operation AND, OR, +,
or -, then these two subsets are to be combined in the specified manner. The result is then
assigned to the generated subset. The two subsets must be of the same data set, and must
be disjoint bit vectors.

The operator “AND” specifies that the intersection of the two subsets is to be assigned to
the generated subset. The intersection is defined to be all the records in the first subset
that are also in the second subset.

The operator “OR” specifies that the union of the two subsets is to be assigned to the

generated subset. The union is defined to be all the records that are in either the first
subset or the second subset.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

The operator “+” specifies that the exclusive OR of the two subsets is to be assigned to the
generated subset. The exclusive OR consists of the records in either the first subset or the
second subset, but not the records that appear in both subsets.

The operator “-” specifies that the subset difference of the two subsets is to be assigned to
the generated subset. The subset difference is defined to be the records in the first subset
that are not in the second subset.

Additional information relating to the subset construct is included under “Selecting a
Record in a Data Set” in this section. Information on the exception handling construct is
included under “Database Status Word” in this section.

Examples

If the database DBASE is described in DASDL as the following:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR;
Y SUBSET OF D WHERE (R LSS 1000) BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the GENERATE statement can be
used to assign all the records that are in both X and Y to subset Z.

BEGIN
FILE CARD FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY S[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;

WHILE NOT READ(CARD_FILE,<A3,II,I3,I4>,S,T,U,V) DO
BEGIN
CREATE D;
PUT D (A :=S);
IF T = 1 THEN

PUT D (B :=

PUT D (N :=U);
PUT D (R :=V);
STORE D;
END;

GENERATE Z = X AND Y;

CLOSE DBASE;

END.

TRUE) ;

8600 0734-301 4-49

Using the Data Management System Il (DMSII) Interface

GET Statement

<get statement>

— GET ——{: <data set> ———————————:]— (- <input mapping> -) ————————————{
<database identifier>

Explanation

The GET statement is used to transfer information from the user work area associated
with a data set or global data record into program variables or arrays.

The GET statement does not access the database; it assumes that prior database
operations have loaded the proper record or data items into the user work area.

The data set construct is used to transfer information from the user work area associated
with this data set into a program variable or array.

The database identifier is used to transfer information from the user work area associated
with the global data record into a program variable or array.

No exceptions are associated with the GET statement. However, if the database
containing the referenced data set or global data record has not been opened at the time
execution of the GET statement is attempted, the program terminates with a fault.

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the database identifier construct is
included under “BDMS CLOSE Statement” in this section. Information on the input
mapping construct is included under “Input Mapping Used with Retrieval Statements” in
this section.

Examples

4-50

Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
S SET OF D KEY N;

8600 0734-301

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates how the GET statement can be used to
assign current values of data items to program variables and arrays.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT FILE(KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[O] := A,MB := B);
IF MB THEN
GET D (MR := R)
ELSE
MR := 0;
WRITE(PRINT FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
CLOSE DBASE;
END.

8600 0734-301 4-51

Using the Data Management System Il (DMSII) Interface

DMSII INSERT Statement

<insert statement>

— INSERT - <data set> — INTO - <subset L }

<exception handling> J

Explanation

The DMSII INSERT statement places a record into a manual subset and performs the
following steps in order:

1. IfINDEPENDENTTRANS is set in DASDL, the current record of the specified data set
will be locked unconditionally.

2. Inserts the current record of the specified data set into the specified subset.

3. Alters the set path for the specified subset to point to the inserted record.

The data set construct specifies the data set whose current record is inserted into the
subset specified by subset. The path of the specified data set must be the object data set
of the specified subset.

The subset must be a manual subset, and it must be a subset of the specified data set.

The path of the specified data set must refer to a valid record; if not, an exception is
returned. Other reasons an exception is returned are:

* If duplicates are not allowed for the specified subset and the record to be inserted has
a key identical to that of a record currently in that subset.

» If the specified subset is embedded in a data set that does not have a valid current
record.

e If“LOCK TO MODIFY DETAILS” was specified in DASDL and the current record is not
locked.

» If the locking procedure in Step 1 results in a deadlock situation.

Additional information relating to the subset construct is included under “Selecting a
Record in a Data Set” in this section. Information on the exception handling construct is
included under “Database Status Word” in this section. Information on the data set
construct is included under “Selecting a Record in a Data Set” in this section.

4-52 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the INSERT statement can be used
to place the current record of data set D into subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;

SET D TO BEGINNING;

FIND NEXT D :RSLT;

WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN > 10 THEN

INSERT D INTO X;

FIND NEXT D :RSLT;
END;

CLOSE DBASE;

END.

8600 0734-301 4-53

Using the Data Management System Il (DMSII) Interface

BDMS LOCK Statement

<BDMS lock statement>

~|: LOCK <selection expression> L J
MODIFY <database identifier> ——— <exception handling>
STRUCTURE — <data set name> —

|— (— <input mapping> -) J

Explanation

4-54

The BDMS LOCK statement is similar to the FIND statement, except that if a record or
structure is found, it is locked against a concurrent modification by another user. The
LOCK statement provides an exclusive lock and can designate either a structure lock or a
record lock. The program owning an exclusive lock prevents all other programs from
successfully executing a SECURE or LOCK statement. However, other programs can
successfully execute a FIND statement. Use the SECURE statement to allow other
programs to secure the record or structure.

The words “LOCK” and “MODIFY” are synonyms.

If the record or structure to be locked has already been locked by another program, the
system performs a contention analysis. In this case, the present program waits until the
record or structure is unlocked. However, if a wait would result in a deadlock, all records
or structures locked by the program with the lowest priority involved in the deadlock are
unlocked, and the operation in that program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a LOCK statement longer
than the period specified by the MAXWAIT task attribute.

Consult the DMSII Application Program Interfaces Programming Guide for more
information on the DEADLOCK exception. For information about task attributes, consult
the Task Attributes Programming Reference Manual.

The LOCK statement performs the following steps in order:

1. If the LOCK statement specifies a data set, then a locked record or structure in the
data set is freed. If the LOCK statement specifies a set, then a locked record or
structure in the associated data set is freed. (If the INDEPENDENTTRANS option is
set in DASDL for the database and the program is in transaction state, the statement
does not free the locked record or structure.)

2. It alters the current path to point to the record or structure specified by the selection
expression or database identifier.

3. Itlocks the specified record or structure and then transfers that record to the user
work area.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Implicit structure locks are freed after execution of the ENDTRANSACTION statement.
The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be locked. If the
invoked database contains a remap of the global data, the name of the logical database,
not the name of the global data remap, is used to LOCK the global data record.

The STRUCTURE data set name construct locks all records in the structure. This is an
explicit structure lock; therefore, the records are not freed after the execution of the
ENDTRANSACTION statement. Explicit structure locks are freed with the FREE
STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a LOCK statement using a set selection expression returns an exception, the current
path of the specified set is invalidated. However, the current path of the data set, the
current record, and the current paths of any other sets for that data set remain unaltered.

To access data items, the input mapping construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or structure
can be freed explicitly by a BDMS FREE statement or implicitly by a subsequent CREATE,
DELETE, FIND, BDMS LOCK, or RECREATE statement on the same data set.

Additional information relating to locked records and structures is included under
“SECURE Statement” in this section.

Additional information relating to the selection expression construct is included under
“Selecting a Record in a Data Set” in this section. Information on the database identifier
construct is included under “BDMS CLOSE Statement” in this section. Information on the
exception handling construct is included under “Database Status Word” in this section.
Information on the input mapping construct is included under “Input Mapping Used with
Retrieval Statements” in this section.

8600 0734-301 4-55

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the LOCK statement to

lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO BEGINNING;
LOCK NEXT X :RSLT;
WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN <= 10 THEN
BEGIN
REMOVE D FROM X;
DELETE D;
END
ELSE
BEGIN
PUT D (B := TRUE);
STORE D;
END;
LOCK NEXT X :RSLT;
END;
CLOSE DBASE;
END.

4-56

8600 0734-301

Using the Data Management System Il (DMSII) Interface

DMSII MODIFY Statement

The DMSII MODIFY statement is described under the BDMS LOCK statement in this
section. They are synonyms.

8600 0734-301 4-57

Using the Data Management System Il (DMSII) Interface

BDMS OPEN Statement

<BDMS open statement>

OPEN <database identifier> |
— INQUIRY |— <exception handling>
L TRUPDATE ——
— UPDATE
— SINGLEUPDATE -
Explanation

4-58

The BDMS OPEN statement opens a database for subsequent access and specifies the
access mode. The OPEN statement performs the following steps in order:

1. It opens an existing database. Appropriate “NO FILE” messages are displayed if files
required for invoked structures are not present in the system directory.

2. It performs an implicit CREATE statement on the restart data set.

The word “INQUIRY” enforces read-only access to the database. This option is specified
when no update operations are to be performed on the database. An exception is returned
if the following BDMSALGOL statements are used when the database has been opened
with the INQUIRY option:

ASSIGN GENERATE
BEGINTRANSACTION INSERT
DELETE REMOVE
ENDTRANSACTION STORE

The data management system does not open any audit files if the “OPEN INQUIRY” form
has been used by all programs accessing the database.

The word “UPDATE” enables the program to modify the database being opened. The
UPDATE option must be specified in order to use the BDMSALGOL statements listed
above under the INQUIRY option. UPDATE is the default option.

The word “TRUPDATE” must be specified in order to use the MIDTRANSACTION
statement or the transaction record variable ID form of the BEGINTRANSACTION or
ENDTRANSACTION statements. Refer to Section 5, “Using the DMSII Transaction
Processing System (TPS) Extensions,” for more information on the MIDTRANSACTION
statement.

The word “SINGLEUPDATE” enables only one user to modify the database being opened.

The SINGLEUPDATE option can use the BDMSALGOL statements listed under the
INQUIRY option.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

The database identifier specifies the database to be opened.

If an exception is returned, the state of the database remains unchanged. An exception is
returned if the database is already open.

An OPEN statement must be executed before the first access of the database; otherwise,
the program terminates with a fault.

Additional information relating to the BDMS OPEN statement is included under “BDMS
OPEN Statement with TPS” and “Transaction Processing Statements” in Section 5, “Using
DMSII Transaction Processing System (TPS) Extensions”.

Additional information relating to the database identifier construct is included under
“BDMS CLOSE Statement” in this section. Information on the exception handling
construct is included under “Database Status Word” in this section.

Examples

Assume a database named DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)s
D DATA SET (
A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)s
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

8600 0734-301 4-59

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates the use of the OPEN statement with
the INQUIRY option to open database DBASE and perform read-only actions on the
database.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT FILE(KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
GET D (MA[O] := A,MB := B);
IF MB THEN
GET D (MR := N)
ELSE
MR := 0;
WRITE(PRINT FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MA[0] ,MB,MR) ;
END;
CLOSE DBASE;
END.

4-60 8600 0734-301

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates the use of the OPEN statement with
the UPDATE option to open database DBASE and perform update actions on the
database.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
BEGIN
BEGINTRANSACTION R;
DELETE D;
ENDTRANSACTION R;
END
ELSE
FREE D;
END;
CLOSE DBASE;
END.

8600 0734-301 4-61

Using the Data Management System Il (DMSII) Interface

PUT Statement

<put statement>

- PUT ——{: <data set> ———————————:]— (— <output mapping> -) ———————————{
<database identifier>

Explanation

4-62

The PUT statement transfers information from program expressions into the user work
area associated with a data set or global data record.

The PUT statement does not update the database; a subsequent STORE statement must be
executed to place the data in the user work area into the database.

Any number of PUT statements can be used to update items before a STORE statement is
executed.

The data set form is used to transfer information associated with this data set into the user
work area.

The database identifier form is used to transfer information associated with the global
data record into the user work area.

Output mappings transfer the value of a program variable or expression to a DASDL-
declared data item. If the data item is an occurring item, it must be subscripted
appropriately.

No exceptions are associated with the PUT statement. However, if the database
containing the specified data set or the specified database has not been opened, the
program terminates with a fault.

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the database identifier construct is
included under “BDMS CLOSE Statement” in this section. Information on the output
mapping construct is included under “Output Mapping Used with Storage Statements” in
this section.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
X SUBSET OF D BIT VECTOR;

The following BDMSALGOL program demonstrates how the PUT statement can be used to
assign values to data items.

BEGIN
FILE CARD FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY S[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<A3,I1,I3,I4>,S[0],T,U,V) DO

BEGIN

CREATE D;

PUT D (A :=S);
IF T = 1 THEN

PUT D (B := TRUE);
PUT D (N := U,R := V);
STORE D;
END;
CLOSE DBASE;
END.

8600 0734-301 4-63

Using the Data Management System Il (DMSII) Interface

RECREATE Statement

<recreate statement>

— RECREATE - <data set> L

(— <arithmetic expression> —) J

|— <exception handling> J

Explanation

The RECREATE statement partially initializes the user work area. All data items remain
unaltered; however, control items such as links, sets, counts, and data sets are
unconditionally set to NULL.

For variable-format records, the record type supplied must be the same as that supplied in
the CREATE statement that created the record. If not, the subsequent STORE statement
results in a DATAERROR subcategory 4.

The RECREATE statement performs the following steps in order:

1. It frees the current record of the specified data set.

2. Ttreads any specified arithmetic expression to determine the format of the record to
be created.

3. It unconditionally sets links, sets, counts, and data sets to NULL.
The data set construct specifies the data set to be initialized.
The arithmetic expression specifies a value indicating the type of record to be created.

This arithmetic expression is required when a variable-format record is created,
otherwise, it must not appear.

An exception is returned if the arithmetic expression does not represent a valid record
type.

Additional information relating to the data set construct is included under “Selecting a

Record in a Data Set” in this section. Information on the exception handling construct is
included under “Database Status Word” in this section.

4-64 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (

P ALPHA (10);

Q ALPHA (100);

)s
D DATA SET (

A ALPHA (10);

B BOOLEAN;

N NUMBER (3);

)s
S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates how the RECREATE statement
can be used to partially initialize a record of data set D.

BEGIN
FILE CARD FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<A10,I1,I3>,X[0],Y,Z) DO

BEGIN

CREATE D;

PUT D (A := X[0]);
IF Y = 1 THEN

PUT D (B := TRUE);

PUT D (N := 2);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
RECREATE D;
PUT D (N := Z+1);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-301 4-65

Using the Data Management System Il (DMSII) Interface

REMOVE Statement

<remove statement>

— REMOVE —|: CURRENT FROM — <subset> L J }
<data set> <exception handling>

Explanation

4-66

The REMOVE statement is similar to the FIND statement, except that if a record is found,
it is locked and then removed from the specified subset.

The REMOVE statement performs the following steps in order:

1. Frees the current record. (If the INDEPENDENTTRANS option is set in DASDL for the
database and the program is in transaction state, the REMOVE statement does not
free the current record.)

2. Alters the current path to point to the record specified by CURRENT or the data set.

3. IfINDEPENDTTRANS is set in DASDL, it will lock the previously found record and
will then remove the record from the specified subset.

If an exception occurs after step 2, the current path is invalid. If an exception occurs after
step 3, the operation terminates, leaving the current path pointing to the record specified
by CURRENT or by the data set.

The word “CURRENT” removes the current record from the specified subset. If this option
is specified, the subset must have a valid current record; if it does not have a valid current
record, an exception is returned.

The data set construct is used to find and remove from the specified subset the record
referenced by the current path. An exception is returned if the record is not in the subset.

The subset construct specifies the subset from which a record is to be deleted. The subset
must be a manual subset of the specified data set.

If the subset is embedded in a data set, the data set must have a current record defined
and that record must be locked; if not, an exception is returned. Exceptions are also
returned

¢ If CURRENT is specified and the specified subset does not have a valid current
record.
e If a data set is specified and the record is not in the subset.

e If the specified subset is embedded in a data set, and the data set does not have a
current record defined and locked.

e If the locking procedure in Step 3 results in a deadlock situation.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

After the REMOVE statement is executed, the current paths still refer to the deleted
record. Therefore, a subsequent FIND statement on the current record results in a
NOTFOUND exception. However, the FIND NEXT and FIND PRIOR forms of the FIND
statement give valid results.

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the subset construct is included
under “Selecting a Record in a Data Set” in this section. Information on the exception
handling construct is included under “Database Status Word” in this section.

Examples
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
SS SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the REMOVE statement
to lock and remove the record of data set D that is referenced by the current path from the
subset SS.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;

SET SS TO BEGINNING;

FIND NEXT SS :RSLT;

WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN < 10 THEN

REMOVE D FROM SS;

FIND NEXT SS :RSLT;
END;

CLOSE DBASE;

END.

8600 0734-301 4-67

Using the Data Management System Il (DMSII) Interface

BDMS SAVETRPOINT Statement

<savetrpoint statement>
— SAVETRPOINT - (— <integer expression> —) — <restart data set> —|

Explanation

The BDMS SAVETRPOINT statement creates an intermediate transaction point. You use
the SAVETRPOINT in conjunction with the CANCELTRPOINT statement. All updates
occurring between a SAVETRPOINT statement and a CANCELTRPOINT statement can be
backed out if an error condition is encountered that disrupts the integrity of the updates.

The integer expression construct marks the intermediate transaction point. It must have
the same value as the integer expression construct of the corresponding
CANCELTRPOINT statement.

The restart data set construct identifies the data set containing the restart records that
application programs can access to recover database information after a system failure.

Additional information relating to the BDMS CANCELTRPOINT statement is included
under “BDMS CANCELTRPOINT Statement” in this section.

Example

4-68

In this example, an intermediate transaction point has an integer value of 1. If an error is
detected, the CANCELTRPOINT statement backs out all updates accumulated after the
SAVETRPOINT statement.
BEGINTRANSACTION R;
SAVETRPOINT (1) R;
IF ERROR ... THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-301

Using the Data Management System Il (DMSII) Interface

SECURE Statement

<secure statement>

— SECURE <selection expression>

<database identifier> —— |— <exception handling> J

STRUCTURE - <data set name> —

|— (- <input mapping> -) J

Explanation

The SECURE statement is similar to the FIND statement, except that if a record or
structure is found, it is locked against a concurrent modification by another user. The
SECURE statement provides a shared lock and allows other programs to execute a
SECURE statement or a FIND statement successfully. However, other programs cannot
execute a LOCK statement successfully.

If the record or structure to be locked has already been locked by another program, the
system performs a contention analysis. In this case, the present program waits until the
record or structure is unlocked. However, if a wait would result in a deadlock, all records
or structures locked by the program with the lowest priority involved in the deadlock are
unlocked, and the operation in that program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a SECURE statement longer
than the period specified by the MAXWAIT task attribute.

Consult the DMSII Application Program Interfaces Programming Guide for more
information on the DEADLOCK exception. For information about task attributes, consult
the Task Attributes Programming Reference Manual.

The SECURE statement performs the following steps in order:

1. Ifthe SECURE statement specifies a data set, then a locked record or structure in the
data set is freed. If the SECURE statement specifies a set, then a locked record or
structure in the associated data set is freed. (If the INDEPENDENTTRANS option is
set in DASDL for the database and the program is in transaction state, the statement
does not free the locked record or structure.)

2. It alters the current path to point to the record or structure specified by the selection
expression or database identifier.

3. Itlocks the specified record or structure and then transfers that record to the user
work area.

Implicit structure locks are freed after execution of the ENDTRANSACTION statement.

The selection expression is used to specify the record to be locked.

8600 0734-301 4-69

Using the Data Management System Il (DMSII) Interface

4-70

The database identifier is used to specify the global data record to be locked. If the
invoked database contains a remap of the global data, the name of the logical database,
not the name of the global data remap, is used to lock the global data record.

The STRUCTURE <data set name> construct locks all records in the structure. This is an
explicit structure lock; therefore, the records are not freed after execution of the
ENDTRANSACTION statement. Explicit structure locks are freed with the FREE
STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a SECURE statement using a set selection expression returns an exception, the current
path of the specified set is invalidated. However, the current path of the data set, the
current record, and the current paths of any other sets for that data set remain unaltered.

To access data items, the input mapping construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or structure
can be freed explicitly by a BDMS FREE statement or implicitly by a subsequent CREATE,
DELETE, FIND, BDMS LOCK, or RECREATE statement on the same data set.

Additional information relating to locked records and structures is included under “BDMS
LOCK Statement” in this section.

Additional information relating to the selection expression construct is included under
“Selecting a Record in a Data Set” in this section. Information on the database identifier
construct is included under “BDMS CLOSE Statement” in this section. Information on the
exception handling construct is included under “Database Status Word” in this section.
Information on the input mapping construct is included under “Input Mapping Used with
Retrieval Statements” in this section.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)
X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the SECURE statement
to lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO BEGINNING;
SECURE NEXT X :RSLT;
WHILE NOT RSLT DO
BEGIN
GET D (MN := N);
IF MN <= 10 THEN
BEGIN
REMOVE D FROM X;
DELETE D;
END
ELSE
BEGIN
PUT D (B := TRUE);
STORE D;
END;
SECURE NEXT X :RSLT;
END;
CLOSE DBASE;
END.

8600 0734-301 4-71

Using the Data Management System Il (DMSII) Interface

BDMS SET Statement

<BDMS set statement>

- SET — <set> TO <data set> exception handh’ng>——|
t> :|

BEGINNING —

<subse

ENDING ——

<data set> - TO ~|: BEGINNING

ENDING ——

- <item> — TO — NULL

<item>

— <qualification |

Explanation

4-72

The BDMS SET statement alters the current path or changes the value of an item in the
current record. Only the record area is affected. The data set is not affected until a
subsequent STORE statement is executed.

The SET statement performs the following steps in order:

1. It frees the current path of the data set, set, or subset.
2. It performs one of the following actions:

a. Alters the current path of the data set, set, or subset to point to the beginning or
the ending of the indicated structure

b. Alters the set or subset path to point to the current path of another data set
c. Assigns a NULL value to a particular item
The constructs data set, set, or subset following the word “SET” specify the data set, set,

or subset, respectively, whose path is altered.

If “TO data set” is specified, the current path of the set or subset is altered to point to the
current record of the specified data set.

If “TO BEGINNING” is specified, the current path of the set, subset, or data set is altered
to point to the beginning of the set, subset, or data set, respectively.

If “TO ENDING” is specified, the current path of the set, subset, or data set is altered to
point to the ending of the set, subset, or data set, respectively.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

The item construct specifies an item of the current record that is assigned a NULL value.
The item cannot be a link item. NULL can be the DASDL-declared NULL value or the
system default NULL value. Consult the DMSII DASDL Programming Reference Manual
for more information.

After a SET TO BEGINNING form of the SET statement, the FIND NEXT and FIND FIRST
forms of the FIND statement are equivalent; similarly, after a SET TO ENDING, a FIND
PRIOR and FIND LAST are equivalent.

Additional information relating to the data set, set, and subset constructs is included
under “Selecting a Record in a Data Set” in this section. Information on the qualification
construct is included under “Qualification of Database Items” in this section. Information
on the exception handling construct is included under “Database Status Word” in this
section.

Examples
Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (20);
B BOOLEAN;
N NUMBER (2);
R REAL;
)
S SET OF D KEY (N);
SS SUBSET OF D WHERE (N = 3);

8600 0734-301 4-73

Using the Data Management System Il (DMSII) Interface

The following BDMSALGOL program demonstrates different ways to use the SET
statement.

BEGIN
FILE CARD_FILE(KIND=READER),
PRINT FILE(KIND=PRINTER);
DATABASE DBASE;
BOOLEAN MB,RSLT;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];
LABEL CLOSE DATABASE;

OPEN INQUIRY DBASE;
SET SS TO BEGINNING :RSLT;
IF RSLT THEN
BEGIN
WRITE(PRINT FILE,<"** NO ENTRIES IN SS. **">);
GO CLOSE_DATABASE;
END;
WHILE NOT READ(CARD FILE,<I3>,MN) DO
BEGIN
FIND S AT N = MN;
SET SS TO D :RSLT;
IF RSLT THEN
WRITE(PRINT FILE,<I3," NOT IN SS.">,MN)

ELSE
BEGIN
GET D(MA[O] := A,MB := B);
IF MB THEN
GET D (MR := R)
ELSE
MR := 0;

WRITE(PRINT FILE,<I3," ",A3," ",L5," ",E4.2>,
MN,MATO],MB,MR) ;
END;
END;

CLOSE_DATABASE:

CLOSE DBASE;
END.

4-74 8600 0734-301

Using the Data Management System Il (DMSII) Interface

STORE Statement

<store statement>

— STORE —|: <data set> J L J
<database identifier> <exception handling>

|— (— <output mapping> -) J

Explanation

The STORE statement places a new or modified record into a data set or a global record
area. The data from the user work area for the data set or global record is inserted into the
data set or global record area.

The STORE statement performs the following actions after a CREATE or RECREATE

statement:

1. Check the data in the user work area for validity if a VERIF'Y condition is specified in
the DASDL.

2. Test the record for validity for insertion in each set in the data set (for example, tests
whether or not duplicates are permitted).

3. Evaluate the WHERE condition for each automatic subset.

4. Insert the record into all sets and automatic subsets if all conditions are satisfied.

5. Lock the new record.

6. Alter the data set path to point to the new record.

After a BDMS LOCK or MODIFY statement, the STORE statement performs the following

actions:

1. Check the data in the user work area for validity if a VERIFY condition is specified in
the DASDL.

2. Reevaluate the conditions if items involved in the insertion conditions have changed.
If the condition yields FALSE, the record is removed from each automatic subset that
contains the record. If the condition yields TRUE, the record is inserted into each
automatic subset that does not contain the record.

3. Delete and reinsert the record in the proper position if a key used in the ordering of a
set or automatic subset is modified so that the record must be moved within that set
or automatic subset.

4. Store the record in a manual subset, but performs no reordering on that subset. The

user is responsible for maintaining manual subsets. A subsequent reference to the
record using that subset produces undefined results.

If the data set form is used, the data in the user work area for the data set is returned to
the specified data set.

8600 0734-301 4-75

Using the Data Management System Il (DMSII) Interface

If the database identifier form is used, the data in the user work area for the global data is
returned to the global data record area. The global data record must be locked before a
STORE statement references it; otherwise, the STORE statement is terminated with an
exception.

An exception is returned and the record is not stored if the record does not meet any of
the validity conditions.

An exception is returned if the data set path is valid and the current record is not locked,
or if the global data record is not locked.

Additional information relating to the data set construct is included under “Selecting a
Record in a Data Set” in this section. Information on the database identifier construct is
included under “BDMS CLOSE Statement” in this section. Information on the exception
handling construct is included under “Database Status Word” in this section. Information
on the output mapping construct is included under “Output Mapping Used with Storage
Statements” in this section.

4-76 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

If the database DBASE is described in DASDL as follows:

OPTIONS (AUDIT);
R RESTART DATA SET (
P ALPHA (10);
Q ALPHA (100);
)s
D DATA SET (
A ALPHA (3);
N NUMBER (3);
)s
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the STORE statement can be
used to place a record into the data set D.

BEGIN
FILE CARD_FILE(KIND=READER);
DATABASE DBASE;
EBCDIC ARRAY MY A[0:2];
INTEGER MY N;

OPEN UPDATE DBASE;

MY N := 1;

WHILE MY N < 100 DO
BEGIN
CREATE D;
PUT D (N := MY N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY N := *+1;
END;

WHILE NOT READ(CARD FILE,<I3,A3>,MY N,MY A[0]) DO
BEGIN
LOCK S AT N = MY N;
BEGINTRANSACTION R;
PUT D (A := MY_A[0]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;

END.

8600 0734-301 4-77

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Functions

There are two data management functions available in the BDMSALGOL language:
DMTEST and STRUCTURENUMBER. These functions are described in this section.

DMTEST Function

<dmtest function>
— DMTEST — (—— <alpha item> EQL — NULL-) |

<link item> — = —

<numeric item> | — IS —
<real item> — NEQ —
L ISNT -~

<alpha item>
<numeric item>
<real item>

— <qualification |

Explanation

The DMTEST function determines whether an item is null. The function returns a Boolean
value of TRUE or FALSE. It is TRUE if the value of the relationship expressed between the
parentheses is TRUE; otherwise, it is FALSE. No status value is associated with the
DMTEST function.

The alpha item construct specifies an alpha item declared in the DASDL. The alpha item
contains a NULL value after a “SET item TO NULL” form of the BDMS SET statement,
where item is the alpha item.

The numeric item construct specifies a numeric item declared in the DASDL. The numeric
item contains a NULL value after a “SET item TO NULL” form of the BDMS SET
statement, where item is the numeric item.

The real item construct specifies a real item declared in the DASDL. The real item

contains a NULL value after a “SET item TO NULL” form of the BDMS SET statement,
where item is the real item.

4-78 8600 0734-301

Using the Data Management System Il (DMSII) Interface

The link item construct specifies a link item declared in the DASDL. The link item contains
a NULL value if either of the following is TRUE:

1. The link item does not point to a record.

2. No current record is present for the data set that contains the link item. This condition
occurs following a BDMS OPEN statement, following the SET TO BEGINNING and
SET TO ENDING forms of the BDMS SET statement, or when the record containing
the link item has been deleted.

3. The use of a DMVERB against the structure where the link item points will cause a
VERSIONERROR.

The link item contains a nonnull value if the link item points to a record, even if that
record has been deleted.

The word “NULL” represents the DASDL-defined NULL value.
Additional information relating to the link item construct is included under “Selecting a

Record in a Data Set” in this section. Information on the qualification construct is included
under “Qualification of Database Items” in this section.

8600 0734-301 4-79

Using the Data Management System Il (DMSII) Interface

Examples
If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
)s
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the DMTEST function can be
used to determine whether or not the alpha item A is NULL:

BEGIN
FILE CARD _FILE(KIND=READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD FILE,<I3>,X) DO
BEGIN
LOCK S AT N = X;
IF DMTEST(A ISNT NULL) THEN
DELETE D
ELSE
FREE D;
END;
CLOSE DBASE;
END.

4-80 8600 0734-301

Using the Data Management System Il (DMSII) Interface

STRUCTURENUMBER Function

<structurenumber function>
— STRUCTURENUMBER — (<database identifier> —|(—) }

<data set>

<set>

<subset>

Explanation

The STRUCTURENUMBER function allows the programmer to determine
programmatically the structure number of a data set, set, subset, or of global data. This
function can be used to analyze the result of exception conditions.

This capability is most useful when several sets span a data set and the previous operation
against the data set yielded an exception. The program can determine which structure
caused the exception from the corresponding structure number.

If the database identifier construct is used, the STRUCTURENUMBER function returns
the structure number of the global data. Otherwise, the function returns the structure
number of the data set, set, or subset specified by its respective construct.

When a partitioned structure is declared in DASDL, it is assigned one or more structure
numbers, depending on unsigned integer in the “OPEN PARTITIONS = unsigned integer”
form of the DASDL OPEN data set option. For example, if “OPEN PARTITIONS = 3” is
specified, three structure numbers are assigned to the partitioned structure. Refer to the
DMSII DASDL Programming Reference Manual for further information.

The STRUCTURENUMBER function returns the smallest structure number assigned to the
structure; however, DMSTRUCTURE, the value in the exception status word, can evaluate
to any of these values; that is, it does not necessarily evaluate to the same structure
number every time.

Additional information relating to the database identifier construct is included under
“BDMS CLOSE Statement” in this section. Information on the data set, set, and subset
constructs is included under “Selecting a Record in a Data Set” in this section.

Example

REAL ERRORWORD;
IF STRUCTURENUMBER(D) = ERRORWORD.DMSTRUCTURE THEN
REPLACE EA BY "D FAULT";

8600 0734-301 4-81

Using the Data Management System Il (DMSII) Interface

Exception Processing

4-82

When executing BDMSALGOL statements, any one of several exception conditions, which
prevent the operation from being performed as specified, can be encountered. These
conditions result if the operation encounters a fault or does not produce the expected
action. For example, execution of the statement

FIND S AT NAME = "JONES"

would result in an exception if there is no entry in S that has a value of “JONES” for the
key item. If the operation terminates normally, no exception occurs.

A database status word is returned to the BDMSALGOL program at the conclusion of each

BDMSALGOL statement. The value of this word indicates whether or not an exception has
occurred and specifies the nature of the exception.

8600 0734-301

Using the Data Management System Il (DMSII) Interface

Database Status Word

<exception handling>

— : — <exception variable> }

<exception variable>

~|: <Boolean variable> I

<real variable>

Explanation

In a BDMSALGOL statement, the user must specify the name of a real variable or Boolean
variable in which the value of the database status word is stored at the completion of the
BDMSALGOL statement. If no such variable is specified, the status value cannot be
interrogated.

The exception handling construct is used in the syntax of the BDMSALGOL statements to
denote those statements where a program variable can be designated to receive the value

of the database status word.

A Boolean variable is a Boolean simple variable or an element of a Boolean array. A real
variable is a real simple variable or an element of a real array.

For more information regarding Boolean and real variables, refer to Volume 1.
Example

REAL ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;

8600 0734-301 4-83

Using the Data Management System Il (DMSII) Interface

Exception Handling

<exception value>

— <exception variable> — . DMERROR }
DMERRORTYPE
DMSTRUCTURE
Explanation

If the database status word is treated as a Boolean quantity, its value is TRUE if the
operation containing it results in an exception; otherwise, it is FALSE.

If an exception results from a database operation, but the value of the database status
word is not assigned to an exception variable in the program, the program is terminated. If
the value is assigned to an exception variable, no other indication of the exception is
given. The BDMSALGOL program is responsible for determining the nature of the
exception and responding appropriately. Failure to do so can cause unpredictable results.

To determine the nature of an exception, the database status word is interrogated by
specifying a period (.) and an attribute name following the exception variable. The
attribute names are recognized by the BDMSALGOL compiler as representations of the
appropriate fields of the database status word.

The values that can be stored in the database status word are noted and explained in the
DMSII Application Program Interfaces Programming Guide.

The DMERROR attribute yields a numeric value identifying a major category. Mnemonic
names are also available to represent these numeric values. Either the category number or
the category mnemonic can be used to test for a particular category.

The DMERRORTYPE attribute yields a numeric value identifying the subcategory of the
major category.

The DMSTRUCTURE attribute yields a numeric value identifying the structure number of
the structure involved in the exception. The structure numbers of all invoked structures
are shown in the program listing if the program was compiled with the compiler control
options LIST and LISTDB equal to TRUE.

4-84 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Examples

The following example illustrates one way of handling exceptions in a BDMSALGOL
program:

REAL ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;
IF BOOLEAN(ERRORWORD) THEN
IF ERRORWORD.DMERROR = OPENERROR THEN
IF ERRORWORD.DMERRORTYPE = 1 THEN
DISPLAY("I/O ERROR ON ACCESSROUTINES CODE FILE");

If the exception variable is a Boolean variable, the preceding example is changed as
follows:

BOOLEAN ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;
IF ERRORWORD THEN
IF REAL(ERRORWORD) .DMERROR = OPENERROR THEN
IF REAL(ERRORWORD) .DMERRORTYPE = 1 THEN
DISPLAY("I/O ERROR ON ACCESSROUTINES CODE FILE");

8600 0734-301

4-85

Using the Data Management System Il (DMSII) Interface

BDMSALGOL Compiler Control Options

<datadictinfo option>
— DATADICTINFO {

<listdb option>
— LISTDB |

<nodmdefines option>
— NODMDEFINES |

Explanation

The above compiler control options are available in the BDMSALGOL language in addition
to the options available in the ALGOL language. For information on the compiler control
options available in ALGOL, refer to Volume 1.

(Type: Boolean, Default value: FALSE) If the DATADICTINFO option is TRUE,
information about the usage of database structures and items is placed into the object
code file. This information shows which database structures and items were invoked by
the program and whether they were read or written. This option cannot be assigned a
value after the appearance of the first syntactical item in the program.

(Type: Boolean, Default value: FALSE) If both the LIST option and the LISTDB option are
TRUE, the printer listing contains information about the invoked databases, structures,
and items, including the declared database titles. If the LIST option is TRUE but the
LISTDB option is FALSE, the printer listing does not contain this information. The value of
LISTDB is ignored if the LIST option is FALSE.

(Type: Boolean, Default value: FALSE) If the NODMDEFINES option is TRUE, no defines
are expanded in BDMSALGOL constructs.

When the NODMDEFINES option is FALSE, defines in BDMSALGOL constructs are
expanded, including defines in the following situations:
¢ A database item has the same identifier as a define.

* An alphanumeric string that is part of a database item identifier (between two
hyphens, before the first hyphen, or after the last hyphen) is the same as the identifier
of a define.

4-86 8600 0734-301

Using the Data Management System Il (DMSII) Interface

Binding and SEPCOMP of Databases

Programs that declare and use databases can use the Binder program and the separate
compilation (SEPCOMP) facility of the compiler.

Binding

Programs that declare and reference databases can be bound together by the Binder
program. The following example shows a BDMSALGOL host program that

¢ Declares a database
¢ Declares an external procedure
¢ Declares a separate procedure that is to be bound to the host

* Declares the database in its global part
The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10);
)s
AGE NUMBER (2);
SEX ALPHA (1);
SSNO ALPHA (9);
)s
NAMESET SET OF DS KEY (LAST, FIRST);

The following program, compiled with the name SEP/HOST, is the BDMSALGOL host
program:

BEGIN
DATABASE TESTDB;
PROCEDURE P; EXTERNAL;
OPEN UPDATE TESTDB;
P;
CLOSE TESTDB;

END.

8600 0734-301 4-87

Using the Data Management System Il (DMSII) Interface

The following separate procedure, P, compiled with the name SEP/P, is to be bound to the
external procedure P of the host. Note how the database TESTDB is declared in the global

part.

[DATABASE TESTDB;]
PROCEDURE P;
BEGIN
BOOLEAN EXCEPTIONWORD;
EXCEPTIONWORD := FALSE;
SET NAMESET TO BEGINNING;
WHILE NOT EXCEPTIONWORD DO
BEGIN
FIND NEXT NAMESET AT LAST = "SMITH"
AND FIRST = "JOHN" :EXCEPTIONWORD;
% Other statements
END;
END;

The separate procedure P in SEP/P can be bound to the host SEP/HOST using the
following Work Flow Language (WFL) job. The resulting bound code file is named
GLOBDB.

?BEGIN JOB BIND/GLOB;

BIND GLOBDB WITH BINDER LIBRARY;
BINDER DATA

HOST IS SEP/HOST;

BIND P FROM SEP/P;

?END JOB.

Note: The description of the database in each subprogram that is called upon must
exactly match the invocation of the database in the host program to which you
want the subprogram to be bound. The host file, and all the subprograms that
access the database in these environments, must be compiled using the same
database description file. If you fail to adhere to these requirements, you receive
syntax errors when you attempt to combine the various components by using

Binder.

4-88 8600 0734-301

Using the Data Management System Il (DMSII) Interface

SEPCOMP

Programs that declare and use databases can also make use of the SEPCOMP facility of
the compiler, as shown in the following example.

The DASDL description of the database TESTDB is as follows:

DS DATA SET (
NAME GROUP (
LAST ALPHA (10);
FIRST ALPHA (10);
)s
AGE NUMBER (2);
SEX ALPHA (1);
SSNO ALPHA (9);
)s
NAMESET SET OF DS KEY (LAST, FIRST);

Because the MAKEHOST compiler control option is TRUE, the following program,
compiled as MY/HOST, can be used as a host program for SEPCOMP:

$ SET MAKEHOST

BEGIN 1
DATABASE TESTDB; 2
PROCEDURE P; 3

BEGIN 4
BOOLEAN EXCEPTIONWORD; 5
EXCEPTIONWORD := FALSE; 6
SET NAMESET TO ENDING; 7
WHILE NOT EXCEPTIONWORD DO 8
BEGIN 9

FIND NEXT NAMESET AT LAST = "SMITH" 10

AND FIRST = "JOHN": EXCEPTIONWORD; 11

% Other statements 12

END; 13

END; 14
OPEN UPDATE TESTDB; 15
P; 16
CLOSE TESTDB; 17
END. 18

The following source input invokes the SEPCOMP facility to change the record of the host
MY/HOST with sequence number 7, recompile the procedure P, and bind the new P to the
host:

$ SET SEPCOMP "MY/HOST" % Patch follows
SET NAMESET TO BEGINNING; 7

8600 0734-301 4-89

Using the Data Management System Il (DMSII) Interface

4-90 8600 0734-301

Section 5
Using DMSII Transaction Processing
System (TPS) Extensions

The Transaction Processing System (TPS) provides Data Management System II (DMSII)
users the software means to process a high volume of transactions. TPS separates into
modules the various functions needed to perform database processing. TPS also supplies a
library of transaction processing procedures. By using TPS, the DMSII user can

Minimize program coding and maintenance.

Eliminate much of the complexity that characterizes programming for database
processing.

Centrally define all transactions to be performed against a database.

Rely on comprehensive recovery capabilities.

Basically, there are two types of programs you can write for TPS:

The application program, which can call Transaction Library points to invoke library
procedures.

The Update Library, which is a collection of transaction-processing routines that
provide an interface between the Transaction Library and a DMSII database.

Consult the DMSII Transaction Processing System (TPS) Programming Guide for a
thorough discussion of TPS, its modules and libraries, and its associated Transaction
Formatting Language (TFL). Pertinent information about the DMSII and BDMSALGOL
interface can be found in this volume.

8600 0734-301 5-1

Using DMSII Transaction Processing System (TPS) Extensions

The TPS program interface consists of extensions that provide access to a transaction
base. You can

* Invoke a transaction base.

» Create transaction records.

* Use transaction records to pass variables as parameters and to assign (or copy) the
contents of a variable to another transaction record variable.

* Access transaction record items.
* Inquire about transaction record control items.

* Use transaction record compile-time functions to access certain properties of
transaction record formats.

¢ Use Transaction Library entry points to invoke library procedures.

* Use the Update Library to perform data management of the database with transaction
processing statements.

Sample ALGOL programs at the end of this section demonstrate the uses of the TPS
interface.

The ALGOL compiler enforces all restrictions on the use of transaction record variables
noted in this section and, when appropriate, issues syntax errors.

Additional information relating to DMSII transactions is included in Section 4, “Using the
Data Management System II (DMSII) Interface.”

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Using the Transaction Formatting Language (TFL)

Transaction Formatting Language (TFL) is a symbolic language used to define information

related to transaction processing. The symbolic descriptions of transaction record
structures are collectively referred to as a transaction base. Consult the DMSII TPS

Programming Guide for a complete description of TFL.

Table 5-1 shows what type must be declared for each TFL item in ALGOL application

programs that access a transaction base. In the listing, name is the declared item name.
For ALPHA and FIELD TFL items, “n” is the length. For all other items, “n” is an unsigned
integer, “Sn” is a signed integer, and “m” is a decimal.

Table 5-1. TFL Item Interpretations

ALGOL Type

<name> ALPHA(n)
<name> NUMBER(n)
<name> NUMBER(Sn)
<name> NUMBER(n,m)
<name> NUMBER(Sn,m)
<name> REAL
<name> REAL(n)
<name> REAL(Sn)
<name> REAL(n,m)
<name> REAL(Sn,m)
<name> BOOLEAN
<name> FIELD(n)
<name> GROUP

STRING <name>
INTEGER <name>
INTEGER <name>
REAL <name>
REAL <name>
REAL <name>
INTEGER <name>
INTEGER <name>
REAL <name>
REAL <name>
BOOLEAN <name>
REAL <name>
STRING <name>

8600 0734-301

5-3

Using DMSII Transaction Processing System (TPS) Extensions

Declaring a Transaction Base

5-4

— TRANSACTION BASE — <base spec> L J ; I
— <format list>

<base spec>

J <base name> —|

|— <internal base ID> — = J |— <subbase name> — OF

<format list>

J— <format spec> '

\— (— <subformat list> -) J

<format spec>

<format name> }

|— <internal format ID> — = J

<subformat list>
ALL |

NONE

<subformat spec> J—

<subformat spec>

<subformat name> }

|— <internal subformat ID> — = J

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Explanation

Before making any references to formats or items defined within a transaction base, a
user-written program must declare that transaction base. In the declaration, you can

e Specify only the transaction base and, by default, invoke all structures in the
transaction base.

¢ Optionally specify a list of transaction record formats and subformats to invoke only
those structures of the transaction base.

Any program that invokes the Transaction Library should not be a library itself.

The program can also specify alternate internal names for the transaction base and for any
of the formats or subformats declared. If alternate internal names are used for the base
name, subbase name, format name, or subformat name, the program must reference these
internal identifiers rather than the TFL source identifiers.

If a subbase has been defined for the transaction base, the program can also invoke the
subbase. When a subbase is invoked, only the transaction record formats and subformats
defined within that subbase are accessible to the program. As in transaction base
invocation, the program can specify a list of transaction record formats and subformats,
possibly using internal names that can be invoked from the defined subbase.

The syntax “TRANSACTION BASE base spec” specifies the name of the transaction base
or subbase to be invoked. Optionally, a list of transaction record formats and subformats
can be invoked. If the list is not included, all transaction record formats and subformats
are invoked for the designated transaction base or subbase. If the list is included, only the
indicated transaction record formats and subformats are invoked.

The different forms of the base spec construct specify either the transaction base or
subbase. The syntax “internal base ID=base name” is used to invoke a transaction base
with the designated internal name. The syntax “subbase name OF base name” designates
the name of a transaction subbase to be invoked.

The format list is a list of transaction record format and subformat names including,
possibly, internal names. If only format name is specified in the format spec syntax, by
default all subformats of that format are invoked.

When a subformat list is used in a format spec construct, it specifies the name of the
transaction record format being invoked. If the “internal format ID=format name” syntax
is used, it specifies its internal name, an indication of the transaction record subformats to
be invoked, or both.

A subformat list indicates the specific subformats of a transaction record format. If no
subformat list is included for a particular format name, ALL is assumed.

If a transaction base with a list of formats has been invoked, specifying ALL invokes all

the subformats of that format. If a transaction subbase has been invoked, specifying ALL
invokes only those subformats specified for this format in the TFL subbase declaration.

8600 0734-301 5-5

Using DMSII Transaction Processing System (TPS) Extensions

If only a format name is listed in the TFL subbase declaration, then by default TFL
includes all subformats of the format in the subbase declaration.

If NONE is specified for a particular transaction format, then no subformats are invoked.

If a list of subformat specs is specified, only those subformats on the list are invoked. If a
transaction subbase is invoked, then subformat specs can include only those subformats
defined within the transaction subbase for a particular format.

Examples

In the following example, the transaction base BANKACCT is invoked. Since no format list
is invoked, all transaction record formats and subformats are also invoked.

TRANSACTION BASE BANKACCT;

As seen in the following example, the transaction base MANUFACT is equated to the
internal name MNF and invoked. All transaction record formats and subformats are
invoked.

TRANSACTION BASE MNF = MANUFACT;

In the following example a transaction base with the internal base identifier DOC1 is
equated to DOC and invoked. The format list includes several formats with subformat
lists.

IFMT1, IFMT6, IFMT3, IFMT4, and IFMT5 are internal format identifiers that are each
equated to a format name.

The ALL option specifies that all the subformats of IFMT3 are invoked. Because neither
NONE nor a specific subformat is noted, any subformats of FMTO0, IFMT1, and IFMT6 are
also invoked. (The default is ALLL.)

The NONE option specifies that none of the subformats of IFMT4 are invoked. Only the
subformats S1 and IS3 are invoked for IFMT5. The internal subformat identifier IS3 is
equated to the subformat S3.

TRANSACTION BASE DOC1 = DOC :

FMTO,

IFMTL = FMTL,

IFMT6 = FMT6,

IFMT3 = FMT3 (ALL),

IFMT4 = FMT4 (NONE),

IFMTS = FMT5 (S1,IS3 = S3);

5-6 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Creating Transaction Records

A transaction record is an array row that can contain the transaction data of one of several
transaction formats declared in the TFL source. A transaction record variable names one
of these array rows. A transaction record variable can contain the transaction data of one
of several transaction formats and can make the transaction record, in effect, a structured
variable.

A transaction record variable can be associated with only one transaction base or
transaction subbase. A transaction record variable can contain only formats and
subformats that have been invoked from its associated transaction base or transaction
subbase. The size of the array row is large enough to accommodate the largest of all the
formats invoked for it.

The following information explains how transaction record variables are declared and
how transaction records are created.

Declaring Transaction Record Variables

<transaction record declaration>

LONG

5>—L <transaction variable ID> —- ; '

<transaction record array declaration>
— TRANSACTION RECORD ARRAY — (— <base ID> —)

>— <transaction array ID 1ist> — [— <bound pair list> -] —L ; —|

<transaction array ID list>

J— <transaction array ID> '

<bound pair list>

J— <arithmetic expression> — : — <arithmetic expression> }

8600 0734-301 5-7

Using DMSII Transaction Processing System (TPS) Extensions

Explanation

The transaction record can be declared as a one-dimensional or a two-dimensional array.
Use the transaction record declaration syntax to declare a one-dimensional array. Use the
transaction record array syntax to declare a two-dimensional array.

The transaction record declaration syntax is used with one-dimensional arrays. The
transaction record array declaration syntax is used with two-dimensional arrays.

The option LONG suppresses the segmentation of transaction records. Ordinarily,
transaction records larger than 1024 words are segmented into 512-word entities. (This
segmentation is standard for all ALGOL arrays declared to have more than 1024 elements.)

The base ID construct is the name, or internal name, of a transaction base or transaction
subbase. Specifying a base ID in the declaration of a transaction record or transaction
record array associates a transaction base or transaction subbase with the particular
record or records.

The transaction variable ID construct identifies the name of a transaction record variable.
The transaction array ID construct identifies the name of an array of transaction record
variables. Each fully subscripted element of a transaction array ID is a transaction record.
Additional information relating to transaction record variables is included under “Inquiring
About Transaction Record Control Items,” “Passing Transaction Record Variables as

Parameters,” and “Accessing Transaction Record Items ” in this section.

The bound pair list construct gives the lower and upper bounds of all subscripts taken in
order from left to right.

Refer to Volume 1 for information about arithmetic expressions and bound pair lists.

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Examples

In the following example, the transaction variables TRIN, TROUT, LASTINPUT, and
LASTRESPONSE are associated with the transaction base BANKACCT.

TRANSACTION RECORD (BANKACCT)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE;

In the next example, the LONG option suppresses segmentation for the transaction
records in the transaction base DOC.

LONG TRANSACTION RECORD (DOC);

In the following example, the transaction base DOC is an array. TRARRAY1, TRARRAY2,
and TRARRAYS3 are transaction array identifiers. The lower and upper bounds of
TRARRAY?2 are 0 and 9, respectively. The lower and upper bounds of TRARRAY3 are 0 and
0, respectively.

TRANSACTION RECORD ARRAY (DOC)
TRARRAY1,
TRARRAY2 [0:9],
TRARRAY3 [0:0];

8600 0734-301 5-9

Using DMSII Transaction Processing System (TPS) Extensions

Creating Transaction Record Formats

<create statement>

— CREATE — <transaction record> — . — <format ID>

L . — <subformat ID> l

<transaction record>

~|: <transaction record variable ID> J }

<transaction record array ID> — [— <subscript list> —]

<subscript list>

i <subscript> '

Explanation

5-10

The contents of a transaction record variable are undefined until the variable is initialized
to a particular format by a CREATE statement. A CREATE statement assigns the initial
values of all items in the transaction record format (and transaction subformat) to the
record variable and initializes the transaction record control items.

When a format is created, only those items in the common part are assigned initial values.
When a subformat is created, the common part items as well as the subformat part items
are assigned initial values. The record variable continues to contain the given format until
it is reinitialized by a subsequent CREATE statement. It is never cleared by the system.

Once a transaction record variable has been created in a particular transaction format
and, optionally, subformat, the items defined within the format and subformat can be
accessed and manipulated. If a transaction record is created in a particular transaction
record format, the record contains only the data items associated with that transaction
record format. If a transaction record is created in a particular transaction record format
and subformat, then the record contains the data items associated with the format and the
data items associated with the subformat.

The transaction record construct is the name of the transaction record variable to be
initialized. If a transaction record array element is referenced, it must be fully subscripted.

Additional information relating to transaction record formats is included under “Declaring
Transaction Record Variables” and “Requirements for Data Item Qualification” in this
section. Related information is also available under “CREATE Statement” in Section 4,
“Using the Data Management System II (DMSII) Interface.”

The format ID and subformat ID constructs are, respectively, the names of the format and
subformat (if given) whose data item's initial values are assigned to the record variable.

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

The subscript list construct gives one or more subscripts that are required to qualify the
referenced item. In this syntax, it is a transaction record array ID. The subscript form is
defined as any legitimate ALGOL arithmetic expression. Refer to Volume 1 for further
details on subscripting.

Examples

In this example, the transaction record variable TRIN is initialized. The data items of the
format ACCT are assigned to TRIN.

CREATE TRIN.ACCT;
Below, the transaction record variable TRRECORD is initialized. The data items of the
format ACCT and the subformat MAY are assigned to TRRECORD.

CREATE TRRECORD.ACCT.MAY;
As seen in the following example, the transaction record array TRARRAY1 is initialized. It
has a subscript of 7. The data items of the format ACCT are assigned to TRARRAY]1.

CREATE TRARRAY1[7].ACCT;

8600 0734-301 5-11

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Records

The compiler enforces certain restrictions on the use of transaction record variables.
Transaction record variables can be used only as shown below.

¢ To create transaction records and use compile-time and run-time functions

¢ To store data in transaction records

¢ To obtain data from transaction records

¢ To pass transaction records as parameters in procedures

Transaction record variables cannot be used

e Inlists
* Ininput or output statements

¢ In assignment statements except as described in “Assigning Transaction Record
Variables”

Additional information relating to transaction records is included under “Assigning
Transaction Record Variables” in this section.

Passing Transaction Record Variables as Parameters

In transaction processing, most of the work is carried out by Transaction Library
procedures. Transaction records are passed to these procedures as parameters.
Transaction records cannot be passed to intrinsics or to external procedures initiated
through a CALL or PROCESS statement.

The formal and actual parameters must refer to the same transaction base, but they need
not specify the same list of transaction record formats. If a procedure is given a
transaction record in a format it has not invoked, the procedure is limited as to what it can
do with that record.

The transaction base or subbase must be declared before specifying the syntax for a
formal transaction record variable.

The compiler checks that all the uses of a particular transaction record variable within a
code file are compatible. When the variable is passed as a parameter to a separately
compiled code file (such as the Transaction Library), parameter checking code ensures
that the following attributes of the variable are those that are expected:

¢ Transaction record format level

* Transaction record control item length

¢ Transaction base creation date-time stamp

5-12 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

The contents of the variable need not be inspected to make this check. If any of these
three attribute values do not match, the error message “MISMATCH AT PARAMETER
NUMBER <number>, TRANSACTION RECORD <attribute>s DIFFER” is issued when an
attempt is made to call a separately compiled code file.

Additional information relating to transaction record variables is included under

“Declaring Transaction Record Variables” and “Using Transaction Library Entry Points” in
this section.

Assigning Transaction Record Variables

— <transaction record> — := — <transaction record> |

Explanation

The contents of a transaction record variable can be assigned (that is, copied) to another
transaction record variable, provided that both variables represent the same transaction
base. Both the control and data portions of the transaction record are transferred when an
assignment is performed.

In DMALGOL, the implementation language for the Transaction Library, an ARRAY
reference variable can be assigned to a transaction record variable. This construct is not
permitted in user-written programs. Consult the DMALGOL Programming Reference

Manual for more information on DMALGOL.

The construct transaction-record-1 is the name of the transaction record variable that
receives its contents from another transaction record variable.

The construct transaction-record-2 is the name of the transaction record variable whose
contents are being assigned or copied to another transaction record variable.

Additional information relating to transaction record variables is included under “Inquiring
About Transaction Record Control Items” in this section.

Example

The contents of the transaction record TRRECORD are assigned to the transaction record
TRRECEIVE.

TRRECEIVE := TRRECORD;

8600 0734-301 5-13

Using DMSII Transaction Processing System (TPS) Extensions

Accessing Transaction Record ltems

<item reference>

— <transaction record L J L J .o
. — <format ID> . — <subformat ID>

>— <item name> L }

[— <subscript Tist> —] J

<item name>

—— <group item name> }
— <alpha item name> —
— <Boolean item name> —
— <numeric item name> —

— <real item name>

L <field item name> —

Explanation

5-14

A transaction record can contain only a transaction that has a format and subformat
declared for it in the TFL source. Data items in the declared format and subformat of that
transaction can be referenced.

Transaction record data items are considered normal data items and can be referenced in
the same manner as normal data items.

The construct transaction record is used to name a transaction record variable. If a
transaction record array element is used, it must be fully subscripted.

The format ID and subformat ID constructs are normally optional. However, they can be
required for qualification.

The item name construct specifies an item within the transaction record format or
subformat presently occupying the record variable. The item name must be fully
subscripted if it is an element of an occurring item.

An item name can be used either as the left part of an assignment or REPLACE statement

or as a primary in an expression. The type of the item must be consistent with the context
in which it is used.

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Data items of transaction record formats or subformats that are occurring items, items
embedded within one or more occurring groups, or items that occur and are embedded
within occurring groups must be subscripted. The subscripts within a subscript list
construct are listed from left to right, from the outer most occurring GROUP to the
innermost occurring GROUP or occurring items.

Additional information relating to transaction record items is included under “Using the
Transaction Formatting Language (TFL)” and “Requirements for Data Item Qualification’
in this section.

)

Examples

In the example, the item GR is within the transaction record format TRONE. The content
of the transaction record MANUFACT is assigned to the item GR.

TRONE.GR := MANUFACT;
The next example contains a subscript construct. The item ST is qualified by the format
GENLED and the subformat JONO. ST is an occurring item within the transaction record

format TRTWO. The content of AX is copied to the item.

TRTWO.GENLED.JONO.ST[9] := AX;

8600 0734-301 5-15

Using DMSII Transaction Processing System (TPS) Extensions

Requirements for Data Iltem Qualification

A data item is qualified in order to make it unique or to differentiate it from other similar
items. Use qualification to assure that the items referenced are the desired data items.

The amount of qualification required to access a data item of a particular transaction
record format or subformat varies. In every case, however, the transaction record variable
containing the desired data item must be referenced.

Shown below are the varying requirements and syntaxes for qualification. The following
tokens are used in the syntaxes.

Token Name
DATAITEMNAME Data item name
FORMATNAME Format name
SUBFORMATNAME Subformat name
TRANREC Transaction record

Data Item Qualification

If the name of the desired data item is unique with respect to data items of other invoked

Example

TRANREC.DATAITEMNAME

Format Name and Data Item Name Qualification

If the name of the desired data item is not unique with respect to data items of other
invoked formats, but is unique to the format that contains it, specify both the format and
the data item name.

Example

TRANREC. FORMATNAME . DATAITEMNAME

5-16 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Subformat Name and Data ltem Name Qualification

Specify both the subformat name and the data item name whenever any of of the
following are true:

¢ The name of the desired data item is not unique with respect to the common portion
of another invoked format.
¢ The name of the desired data item is contained within a subformat.

¢ Another data item within a different subformat of the same format has the same name
as the desired data item.

Also, if the desired data item is contained within a subformat whose name is unique to all
invoked formats and subformats, and the desired data item is not unique with respect to a
subformat of another format, then both the subformat name and the data item name are
needed.

Example

TRANREC.SUBFORMATNAME . DATAITEMNAME

Format Name, Subformat Name, and Data Iltem Name Qualification

When all the following statements are true, specify the format name, subformat name, and
data item name for qualification.

* The desired item is not unique with respect to a subformat of another invoked format.
¢ The item is not unique with respect to the format that contains it.

¢ The name of the subformat that contains the desired item is not unique with respect to
all invoked formats and subformats.

Example

TRANREC.FORMATNAME . SUBFORMATNAME . DATAITEMNAME

8600 0734-301 5-17

Using DMSII Transaction Processing System (TPS) Extensions

Inquiring About Transaction Record Control Items

— <transaction record ID> L J . — <record control item> 1
[<subscript>]

Explanation

Control items are system-defined items contained within every transaction record. These
items are maintained by the TPS and are read-only in all BDMSALGOL programs. The
initial values of these control items are assigned when a transaction record is created.
These items are defined only after a transaction record has been created using the TPS
CREATE statement.

The transaction record ID construct is a transaction record variable. The variable must be
fully subscripted if a transaction record array element is used.

A subscript is an ALGOL arithmetic expression that identifies a particular transaction
record variable within an array of transaction record variables.

The record control item construct identifies the specific control item. The valid items are
described in the DMSII TPS Programming Guide.

Additional information relating to transaction record control items is included under
“Creating Transaction Record Formats,” “Assigning Transaction Record Variables,” and
“Declaring Transaction Record Variables” in this section.

Example

5-18

In the following example, the record control item TRCONTROLSIZE is used to specify the
size, in bytes of the control portion of the transaction record TRIN. The content is
assigned to the variable STOREBYTES.

STOREBYTES := TRIN.TRCONTROLSIZE;

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Compile-Time Functions

<transaction compile-time functions>

— <transaction compile-time function name> — (

»— <transaction compile-time function argument> —) }

<transaction compile-time function argument>

L J <format ID> L J
<base ID> - . . — <subformat ID>

|— . — <transaction item ID> J

Explanation

Transaction compile-time functions provide access to certain properties of transaction
record formats that are constant at compile time. These compile-time constructs are
particularly useful when coding an Update Library.

The transaction compile-time function names are identified and described in the DMSIT
TPS Programming Guide.

The constructs base ID, format ID, subformat ID, and transaction item ID are all
components of the transaction compile-time function argument. The base ID is the name
of a transaction base that has been invoked within the program. The format ID specifies
the name of a transaction format that has been invoked within the program. A subformat
ID is the name of a transaction subformat that has been invoked within the program. The
transaction item ID is the name of a data item contained within an invoked transaction
format or subformat.

8600 0734-301 5-19

Using DMSII Transaction Processing System (TPS) Extensions

The table below identifies the possible arguments for each of the compile-time functions
available in ALGOL. Not all arguments apply to all functions. For example, the base ID
construct needs to be referenced only when transaction base qualification is required.

Additional information relating to compile time constructs is discussed in “Using Update
Libraries” located in this section.

Function Arguments

TRBITS <format ID>.<transaction item ID>
<format ID>.<subformat ID>.<transaction item ID>

TRBYTES <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>
TRDATASIZE <format ID>
<format ID>.<subformat ID>

TRDIGITS <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>
TRFORMAT <format ID>
TROCCURS <format ID>.<transaction item ID>

<format ID>.<subformat ID>.<transaction item ID>

TRSUBFORMAT <format ID>.<subformat ID>

Examples

TRBITS will return, in bits, the size of the transaction item REQUESTCASE. The
subformat is REMOTEREQUEST and the format is ACCT.

TRBITS(ACCT.REMOTEREQUEST.REQUESTCASE)

TROCCURS will return the maximum number of occurrences of the transaction item
REQUESTCASE. ACCT is the format and REMOTEREQUEST is the subformat.

TROCCURS (ACCT.REMOTEREQUEST.REQUESTCASE)

TRSUBFORMAT will return the numeric valued assigned to the subformat
REMOTEREQUEST. The format is ACCT.

TRSUBFORMAT (ACCT .REMOTEREQUEST)

5-20 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Using Transaction Library Entry Points

The Transaction Library is a collection of procedures that are accessed by user-written
programs to process or tank transactions and read them back from transaction journal
files. The procedures are accessed through a set of entry points supplied by the
Transaction Library.

The Transaction Library is tailored for a particular transaction during compilation. The
library performs functions such as

e C(Calling the Update Library to process a transaction against the data base

e Saving transaction records in transaction journal files

e Automatically reprocessing transactions backed out by DMSII recovery

The external entry points to the Transaction Library are called by user- written programs.
Calling these entry points is the only method of invoking them. If the Library detects an
exception condition, the entry point returns a nonzero result as the value of the procedure.
The value can be examined to determine the cause of the exception.

The TPS application program should not be a library itself whose entry points invoke the
Transaction Library's entry points.

The Transaction Library recovery mechanism requires that each program that submits a
transaction record for processing must have its own private library. The first program that
invokes an entry point which in turn invokes the OPENTRBASE Transaction Library entry
point becomes the only TPS user recognized by the Transaction Library.

The following alphabetical listing briefly describes the purpose of each entry point. The

syntax used to declare the entry point is shown. Consult the DMSII TPS Programming
Guide for a detailed explanation of the entry points and parameters.

CREATETRUSER

Creates and identifies a new transaction for the currently open journal.
INTEGER PROCEDURE CREATETRUSER(IDSTRING,IDNUM);

STRING IDSTRING;
STRING IDNUM;

CLOSETRBASE

Ends the use of TPS by the calling program.

INTEGER PROCEDURE CLOSETRBASE;

8600 0734-301 5-21

Using DMSII Transaction Processing System (TPS) Extensions

HANDLESTATISTICS

Enables the user to print out all TPS statistics and reset the statistics while the transaction
base is open.

INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION;
INTEGER STATOPTION;

LOGOFFTRUSER

Deactivates a transaction user.

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;

LOGONTRUSER

Makes a transaction user active.

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;

OPENTRBASE

Initiates transaction processing and opens a specified transaction journal for subsequent
use. OPENTRBASE must be the first Transaction Library entry point called.

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;

PROCESSTRFROMTANK

Similar to PROCESSTRANSACTION except a transaction user number other than that of
the input transaction is used to restart programs. It is used primarily for processing
transactions from a tank file.

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM,
RESTARTTR) ;
INTEGER IDNUM, RESTARTNUM;
TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;
PROCESSTRNORESTART

Sends an input transaction record to the user's Update Library for processing against the
database. No restart transaction record is passed. Use PROCESSTRNORESTART to
process transactions against the database if the program does not require the use of a
restart transaction record.

5-22 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE PROCESSTRNORESTART (IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, TROUT;

PROCESSTRANSACTION

Sends an input transaction record to the user's Update Library for processing against the
database. A restart transaction record is passed.

INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT,
RESTARTTR) ;
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, TROUT, RESTARTTR;

PURGETRUSER

Purges or deletes a transaction user previously created by CREATETRUSER. After
PURGETRUSER is called, the transaction user is no longer known to the currently open
journal. Information about that user's transactions is discarded.

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;

READTRANSACTION

Reads the next transaction record in sequence from the transaction journal and returns
the record in the parameter TRREC. The READTRANSACTION entry point can be called
only after the entry point SEEKTRANSACTION has opened and positioned the current
record pointer within a specific journal data file.

INTEGER PROCEDURE READTRANSACTION(TRREC);
TRANSACTION RECORD (TRBASE) TRREC;

8600 0734-301 5-23

Using DMSII Transaction Processing System (TPS) Extensions

RETURNLASTADDRESS

Returns the address of the last transaction to be either tanked or processed by a
transaction user.

INTEGER PROCEDURE RETURNLASTADDRESS (FILENUM, BLOCKNUM, OFFSET,
IDNUM) ;
REAL FILENUM, BLOCKNUM, OFFSET;
INTEGER IDNUM.

RETURNLASTRESPONSE

Returns the last saved response transaction record for the user.

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TRREC);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRREC;

Note: For reliable program restarting, the response record returned from
RETURNLASTRESPONSE should be used in conjunction with the restart or
nput transaction record returned from the entry point
RETURNRESTARTINFO.

RETURNSTARTINFO

Helps restart a user-written program.

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TRREC);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRREC;

SEEKTRANSACTION

Positions a current record pointer at a particular address within a journal data file.

INTEGER PROCEDURE SEEKTRANSACTION(TRFILE, TRBLOCK, TROFFSET);
INTEGER TRFILE, TRBLOCK, TROFFSET;

SWITCHTRFILE

Forces a file switch on the current data file of the journal. The current file is closed, the
file number associated with the current file is incremented by 1, and the next file in
sequence is created. The next write to the journal occurs on the new file.

If SWITCHTRFILE is not called, the Transaction Library creates the next journal data file
in sequence when the current file becomes full.

INTEGER PROCEDURE SWITCHTRFILE;

5-24 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

TANKTRANSACTION

Tanks an input transaction record and restart transaction record.

INTEGER PROCEDURE TANKTRANSACTION(IDNUM, TRIN, RESTARTTR);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;

TANKTRNORESTART

Tanks an input transaction record only. It performs the same function as
TANKTRANSACTION except that no restart transaction record is passed and
subsequently audited in the tank journal. For TANKTRNORESTART, only the input
transaction TRIN is saved in the tank journal.

INTEGER PROCEDURE TANKTRNORESTART (IDNUM,TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN;

TRUSERIDSTRING

Returns, in the parameter IDSTRING, the user identification string that corresponds to the
value of the input parameter IDNUM.

INTEGER PROCEDURE TRUSERIDSTRING(IDSTRING, IDNUM);

INTEGER IDNUM;
STRING IDSTRING;

8600 0734-301 5-25

Using DMSII Transaction Processing System (TPS) Extensions

Using Update Libraries

The Update Library is a collection of user-written transaction processing routines that
serve as an interface between the Transaction Library and a DMSII database.

The Update Library is the only user-written module within TPS that contains the database
declaration and all the code that performs data management statements against the
database.

To ensure effective interaction between the Update and Transaction Libraries, follow the
conventions regarding database consistency and reproducing transactions when
programming the Update Library. The Update Library conventions and
ACCESSDATABASE entry point are briefly explained here. For a full explanation, refer to
the DMSII TPS Programming Guide.

Additional information relating to the transaction library is included under “Using
Transaction Library Entry Points” in this section.

ACCESSDATABASE Entry Point

The Update Library must provide one entry point that makes it accessible to the
Transaction Library. For ALGOL Update Libraries, the procedure entry point must be
named ACCESSDATABASE.

The ACCESSDATABASE entry point accepts the following parameters, listed in the order
in which they must be declared:

1. A function flag indicating which basic function the Update Library should perform.
This value is input to the Update Library from the Transaction Library.

2. An input transaction record containing input data for one of the transaction update
routines.

3. An output transaction record containing the data output from a transaction update
routine also known as the “response transaction record.”

4. A Transaction Library procedure named SAVEINPUTTR that is passed as a formal
parameter to the Update Library and used in the MIDTRANSACTION statement.

A Transaction Library procedure named SAVERESPONSETR that is passed as a formal
parameter to the Update Library. This procedure is used in the TPS ENDTRANSACTION
statement.

Methods of Structuring the Update Library

5-26

There are three approaches to structuring the Update Library:

* Invoking the entire database using a single update library
* Invoking part of the database using a single update library

* Invoking multiple parts of the database using multiple update libraries

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Whatever approach is used to implement the Update Library, the library must provide the
external entry point ACCESSDATABASE and must be compiled as

<base name>/CODE/UPDATELIB
so that the Transaction Library can find it.

Synchronizing TPS and DMSII recovery is an important consideration in deciding which
approach to use. Refer to the synchronization statements in this section for more
information.

Information relating to the synchronization statements is included under “TPS
BEGINTRANSACTION Statement,” “TPS ENDTRANSACTION Statement,”
“MIDTRANSACTION Statement,” “BDMS OPEN Statement with TPS,” and “Transaction
Processing Statements” in this section.

Example: Update Library Skeleton Program

An example of the correct structure for an Update Library is shown in a skeleton program
on the following pages. The example uses multiple libraries to provide the code that
actually processes the transaction records.

$ SHARING = PRIVATE
BEGIN % Transaction Update Library

LIBRARY DBSUBONE (TITLE = "TRBASE/UPDATELIB/SUBONE ");

PROCEDURE ACCESSSUBBASEONE (FUNCTIONFLAG,INQ,TRIN,TROUT,
SAVEINPUT, SAVERESPONSE);

VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

LIBRARY DBSUBTWO (TITLE = "TRBASE/UPDATELIB/SUBTWO ");
PROCEDURE ACCESSSUBBASETWO(FUNCTIONFLAG,INQ,TRIN,TROUT,
SAVEINPUT,SAVERESPONSETR)

VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

DEFINE UPDATEV =1 #,
FORCEABORTV = 2 #;

% Global variables
REAL LASTSUBBASE, OPENTYPE;

8600 0734-301 5-27

Using DMSII Transaction Processing System (TPS) Extensions

PROCEDURE FORCEABORT;

BEGIN
CASE LASTSUBBASE OF
BEGIN
(2):
ACCESSSUBBASEONE (FORCEABORTV, SAVEFUNCTIONFLAG,TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;
(3):

ACCESSSUBBASETWO (FORCEABORTV, SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT, SAVERESPONSE) ;

END OF CASE;
END;

PROCEDURE UPDATE(TRIN,TROUT,SAVEINPUTTR,SAVERESPONSETR) ;
TRANSACTION RECORD (TRB) TRIN, TROUT;

PROCEDURE SAVEINPUTTR(); FORMAL;

PROCEDURE SAVERESPONSETR(); FORMAL;

BEGIN

LASTSUBBASE := TRIN.TRSUBBASE;
CASE TRIN.TRSUBBASE OF
BEGIN
(2):
ACCESSSUBBASEONE (UPDATEV,SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;
% Invokes Tibrary DBSUBONE
(3):
ACCESSSUBBASETWO (UPDATEV,SAVEFUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT,SAVERESPONSE) ;
% Invokes Tibrary DBSUBTWO
END OF CASES;

END;

PROCEDURE ACCESSDATABASE(FUNCTIONFLAG,TRIN,TROUT,SAVEINPUT,
SAVERESPONSE) ;

VALUE FUNCTIONFLAG;
REAL FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUT(); FORMAL;
PROCEDURE SAVERESPONSE(); FORMAL;

% External entrypoint

BEGIN

CASE FUNCTIONFLAG OF
BEGIN

5-28 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

1: % Open update

OPENTYPE := FUNCTIONFLAG;
2: % Open inquiry

OPENTYPE := FUNCTIONFLAG;
3: % Update

UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);
4: % Force abort

FORCEABORT;
5: % Close database

% Let BLOCKEXIT Do It;

END;
END ACCESSDATABASE;

hkhkkhkkhhkhkhhkkhkhkkhhhkhkhhkhkhhkhkhhkhkhhkkhhhkhkhhkhkhhkhkhhkhkhhkhkhkhkkhkhhkhkhhkhkhhkhkhhkkhkhkkhkkkx*

EXPORT
ACCESSDATABASE;

FREEZE (TEMPORARY) ;

END OF LIBRARY.

8600 0734-301 5-29

Using DMSII Transaction Processing System (TPS) Extensions

Transaction Processing Statements

5-30

Generally, DMSII program interface statements are used for programming the Update
Library in TPS. The following extensions and statements are required for the Update
Library to synchronize TPS recovery with DMSII recovery.

¢ The MIDTRANSACTION statement

¢ Optional extensions to the BEGINTRANSACTION and ENDTRANSACTION
statements

¢ The TRUPDATE option for the BDMS OPEN statement

These extensions are detailed in alphabetical order on the following pages. Examples of
their use are in the sample programs at the end of this section. Consult the DMSII TPS
Programming Guide for further information on using the statements. Refer to the DMSIT
Application Program Interfaces Programming Guide for information on exception
handling.

Note that the TPS syntax of these statements is uniquely designed for TPS. DMSII
applications that do not use TPS can continue to use the DMSII syntax that existed prior
to the implementation of TPS. However, user-written code in the Update Library must use
the syntax as it is defined here.

Additional information relating to the syntax of the TPS statements is included under “TPS
BEGINTRANSACTION Statement,” “TPS ENDTRANSACTION Statement,”
“MIDTRANSACTION Statement,” “BDMS OPEN Statement with TPS,” and “Sample User-
Written Applications” in this section.

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

TPS BEGINTRANSACTION Statement

— BEGINTRANSACTION

{— <inputheadername> [_

<message area> /l

»— <transaction record variable> —) — <restart data set> [_
<exception handh’ng>-|

Explanation

The TPS BEGINTRANSACTION statement places a program in transaction state. This
statement can be used only with audited databases. Any attempt to modify an audited
database when the program is not in transaction results in a fault.

The database must be opened with the TRUPDATE form of the BDMS OPEN statement.
If a BEGINTRANSACTION statement is attempted while the program is in transaction
state, an exception is returned. The program is not placed in transaction state. If an
ABORT exception is returned, all records that the program has locked are freed.
Deadlock can occur during execution of a BEGINTRANSACTION statement.

The transaction record variable construct is the formal input transaction record variable.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Additional information relating to the TPS BEGINTRANSACTION statement is included
under “Transaction Processing Statements,” “Declaring Transaction Record Variables,"

“BDMS OPEN Statement with TPS,” Related information is also available under “DMSII
BEGINTRANSACTION Statement” in Section 4, “Using the Data Management System II
(DMSII) Interface.”

8600 0734-301 5-31

Using DMSII Transaction Processing System (TPS) Extensions

Additional information regarding the transaction record variable construct is included
under “Passing Transaction Record Variables as Parameters” in this section. Information
on the inputheadername and message area constructs is included under “Declaring Input
and Output Headers,” and “RECEIVE Statement” respectively in Section 3, “Using
Communications Management System (COMS) Features.” Information on the exception
handling construct is included under “Database Status Word” in Section 4, “Using the
Data Management System II (DMSII) Interface.”

Example
In the following BEGINTRANSACTION statement, the transaction record variable is TRIN,
the restart data set is RDS, and the exception variable is RSLT. Note that the colon

preceding the exception variable is part of the exception handling syntax.

BEGINTRANSACTION (TRIN) RDS :RSLT;

5-32 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

TPS ENDTRANSACTION Statement

— ENDTRANSACTION - (— <endtransaction parameters> —) — <restart data set name>——

I

I
L syN¢ - L <exception handling> -

<endtransaction parameters>

— <transaction record variable ID> — , — <saveresponsetr procedure ID:

Explanation

The TPS ENDTRANSACTION statement takes a program out of transaction state. This
statement can be used only with audited databases. The database must be opened with the
TRUPDATE form of the BDMS OPEN statement.

If an ENDTRANSACTION statement is attempted and the program is not in transaction
state, an exception is returned. Records are freed in all cases of an exception and the
transaction is not applied to the data base.

Refer to the DMSII Application Program Interfaces Programming Guide for information
regarding audit and recovery.

Additional information relating to the ENDTRANSACTION statement is included under
“Declaring Transaction Record Variables,” “Transaction Processing Statements,” and
“BDMS OPEN Statement with TPS” in this section. Information is also available under
“DMSII ENDTRANSACTION Statement” in Section 4, “Using the Data Management System
IT (DMSII) Interface.”

The transaction record variable ID construct is the formal input transaction record
variable. The saveresponsetr procedure ID identifies the SAVERESPONSETR formal
procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.

The word “SYNC” forces a syncpoint.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

8600 0734-301 5-33

Using DMSII Transaction Processing System (TPS) Extensions

Example

In the following ENDTRANSACTION statement, the transaction record variable is TRIN
and the name of the saveresponsetr procedure variable is SAVERESPONSE. The restart
data set is RDS. There is no forced syncpoint. The exception variable is RSLT. Note that
the colon preceding the exception variable is part of the exception handling syntax.

ENDTRANSACTION (TRIN,SAVERESPONSE) RDS :RSLT;

5-34 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

MIDTRANSACTION Statement

— MIDTRANSACTION - (— <midtransaction parameters> —) — <restart data set name>——

I I 1

L <exception handling> —

<midtransaction parameters>

— <transaction record variable ID> — , — <saveinputtr procedure ID> 4|

Explanation

The MIDTRANSACTION statement causes the compiler to generate calls on the given
procedure immediately before the call on the DMS procedure in the Accessroutines.

The database must be opened with the TRUPDATE form of the BDMS OPEN statement.

The transaction record variable ID construct is the formal input transaction record
variable. The saveinputtr procedure ID is the name of the SAVEINPUT formal procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Additional information relating to the MIDTRANSACTION statement is included under
“Declaring Transaction Record Variables,” “Transaction Processing Statements,” and
“BDMS OPEN Statement with TPS” in this section.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Example

In the following MIDTRANSACTION statement, the transaction record variable is TRIN
and the name of the saveinputtr procedure variable is SAVEINPUT. The restart data set is
RDS. The exception variable is RSLT. Note that the colon preceding the exception variable
is part of the exception handling syntax.

MIDTRANSACTION (TRIN,SAVEINPUT) RDS :RSLT;

8600 0734-301 5-35

Using DMSII Transaction Processing System (TPS) Extensions

BDMS OPEN Statement with TPS

<BDMS open statement>

— OPEN <database identifier> {_ _J |
INQUIRY <exception handling>
TRUPDATE

Explanation

The BDMS OPEN statement opens a database for subsequent access and specifies the
access mode.

An exception is returned if the database is already open. If an exception is returned, the
state of the database remains unchanged.

An OPEN statement must be executed before the first access of the database; otherwise,
the program terminates with a fault.

The word “INQUIRY” enforces read-only access to the database. This option is specified
when no update operations are to be performed on the database. An exception is returned
if the following BDMSALGOL statements are used when the database has been opened

with the INQUIRY option:

ASSIGN GENERATE
BEGINTRANSACTION INSERT
DELETE REMOVE
ENDTRANSACTION STORE

The data management system does not open any audit files if the “OPEN INQUIRY” form
has been used by all programs accessing the database.

The TRUPDATE option must be specified in order to use the MIDTRANSACTION
statement or the transaction record variable form of the BEGINTRANSACTION or
ENDTRANSACTION statements.

The database identifier specifies the database to be opened.

Additional information relating to the BDMS OPEN statement is included under
“Transaction Processing Statements” and “Methods of Structuring the Update Library” in
this section. Related information is also available under “BDMS OPEN Statement” in

Section 4, “Using the Data Management System II (DMSII) Interface.”

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

5-36 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Examples

In the following example, the word INQUIRY forces read-only access to the database DB.
The exception variable is RSLT. Note that the colon preceding the exception variable is
part of the exception handling syntax.

OPEN INQUIRY DB :RSLT;
In the following example, the word TRUPDATE enables write access to the database DB.

OPEN TRUPDATE DB;

8600 0734-301 5-37

Using DMSII Transaction Processing System (TPS) Extensions

Sample User-Written Applications

Three examples are shown in the following pages. The first example is a user-written
skeleton program that demonstrates how the transaction base and Transaction Library
entry points are declared. The second example shows a complete transaction base
banking application. The third example is a detanking procedure.

The banking application, Example 2, includes the needed DASDL description, TFL
description, and Update Library. The descriptions are written in their respective language
(DADSL or TFL). The application program and Update Library are written in ALGOL.

Example 3, the detanking procedure, builds on the banking application shown in
Example 2.

Related information about these user-written programs can be found in the DMSII TPS
Programming Guide.

5-38 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Example 1: Declaring a Transaction Base and Library

Any user-written program that invokes the TPS Transaction Library should not be a library
itself. Each program that submits a transaction record for processing must have its own
private library for recovery to be successful. If an application program is written as a
shared library, then the Transaction Library might not work. The first program that
invokes an entry point becomes the only TPS user recognized by the Transaction Library.

BEGIN % Sample batch program using transactions.

TRANSACTION BASE TRB = BANKTR;
LIBRARY L(TITLE="BANKTR/CODE/HOSTLIB.");

% Declare all entrypoints to be used.

INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L;

INTEGER PROCEDURE PROCESSTRNORESTART (IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;

INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

8600 0734-301 5-39

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;

INTEGER PROCEDURE SWITCHTRFILE;
LIBRARY L;

INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION;
INTEGER STATOPTION;
LIBRARY L;

% Declare transaction record variables to be used.
TRANSACTION RECORD (TRB)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE;

STRING JOURNALNAME;

% Start of program.
% Set LIBPARAMETER in declaration or before first call on entrypoint.

L.LIBPARAMETER := JOURNALNAME;

0,

% Body of program.

END.

5-40 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Example 2: Banking Application

The following example is a typical DMSII application using TPS. In the example, bank
accounts are created and deleted, deposits and withdrawals are made, and account
balances are determined.

For the application to operate properly, several pieces of user-supplied software are
needed:
* A Data Structure and Definition Language (DASDL) description.

In DMSII, DASDL is used to describe a database logically and physically.
¢ A Transaction Formatting Language (TFL) description.

In the TPS, the TFL is used to describe the transaction base logically and physically.
* A user-written application program.

The user-written ALGOL program shows how TPS can be used for a number of simple
banking transactions.

e An Update Library.

The Update Library is capable of maintaining database consistency and ensuring
reproducibility.

The ALGOL application program and the TPS need both the DASDL and TPS descriptions
to ensure the integrity of data stored in the database and transaction base.

Examples of the user-supplied software are included under “DASDL Description of the

database,” “TFL Description of the Transaction Base,” “ALGOL Banking Application
Program,” and “Update Library” in this section.

8600 0734-301 5-41

Using DMSII Transaction Processing System (TPS) Extensions

DASDL Description of the Database

OPTIONS (AUDIT);
PARAMETERS (SYNCPOINT = 10 TRANSACTIONS);
ACCOUNT DATA SET % Specify a data set to hold the account
(% numbers and info associated with them.

ACCOUNT-NUM NUMBER(6) ;
NAME ALPHA(20);
BALANCE REAL(S10,2);

DEPOSIT UNORDERED DATA SET % Used to keep history of the deposits
(% and withdrawals made.
TRANDATE REAL;
OLD-BALANCE REAL(S10,2);
AMOUNT REAL(S10,2); % Negative for withdrawal.
NEW-BALANCE REAL(S10,2);
)s
)s
ACCOUNT-SET SET OF ACCOUNT
KEY ACCOUNT-NUM;

RDS RESTART DATA SET % Remember, a restart data set must be specified.
(

)

X ALPHA(10);

5-42 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

TFL Description of the Transaction Base

BANKTR TRANSACTION BASE; % First declare the name of the transaction
% base we are about to describe.
PARAMETERS
(
STATISTICS,
DATABASE = BANKDB ON DISK,
RESTARTDATASET = RDS,
HOSTSYSTEM = SYS456
)s
DEFAULTS % Specify defaults for items of transaction formats
% and for journal control and data files.

ALPHA (INITIALVALUE = BLANKS),
BOOLEAN (INITIALVALUE = FALSE),
NUMBER (INITIALVALUE = 0),
REAL (INITIALVALUE = 0),
CONTROL FILE
(
AREAS = 100,
AREASIZE = 100 BLOCKS,
BLOCKSIZE = 20 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE
)s
DATA FILE
(
AREAS = 100,
AREASIZE = 100 BLOCKS,
BLOCKSIZE = 30 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)s

CREATEACCT TRANSACTION FORMAT
(

o

The following formats are
used in the application
program and the Update
Library.

o

ACCTNUM NUMBER(6) ;
NAME ALPHA(20);

o

o

)s
PURGEACCT TRANSACTION FORMAT
(

)s
DEPOSIT TRANSACTION FORMAT
(

ACCTNUM NUMBER(6) ;

ACCTNUM NUMBER(6) ;
TRANDATE REAL;
AMOUNT REAL(10,2);

8600 0734-301 5-43

Using DMSII Transaction Processing System (TPS) Extensions

)s
WITHDRAWAL TRANSACTION FORMAT
(
ACCTNUM NUMBER(6) ;
AMOUNT REAL(10,2);
TRANDATE REAL;
)s
STATUS TRANSACTION FORMAT
(
ACCTNUM NUMBER(6) ;
BALANCE REAL(S10,2);
G GROuUP
(A ALPHA(20);
B REAL;);
)s
RESTARTDETANKER TRANSACTION FORMAT % This format illustrates possible
(% information to be kept in a
TANKFILENUM FIELD(14); % restart transaction record.

TANKBLOCKNUM FIELD(32);
TANKOFFSET FIELD(16);

)
MANAGER TRANSACTION SUBBASE % Example subbase that a manager might

(% use. Note that a GUARDFILE is attached
CREATEACCT, % to the subbase for security.
PURGEACCT,
DEPOSIT,
WITHDRAWAL,
STATUS,

)s
GUARDFILE = BANKTR/MANAGER/GUARDFILE;

TELLER TRANSACTION SUBBASE % Example subbase a teller might use.

(
DEPOSIT,
WITHDRAWAL,
STATUS
)s
TRHISTORY TRANSACTION JOURNAL % Example of specifying explicit values
CONTROL FILE % for the attributes of the TRHISTORY
(% journal
AREAS = 100,

AREASIZE = 100 BLOCKS,
BLOCKSIZE = 20 SEGMENTS,
FAMILY = DISK,

5-44

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

CHECKSUM = TRUE

)>

DATA FILE

(
AREAS = 100,
AREASIZE = 2 BLOCKS,
BLOCKSIZE = 3 SEGMENTS,
FAMILY = DISK,
CHECKSUM = TRUE

)s

TANK1 TRANSACTION JOURNAL % Example of TANK journal attribute
CONTROL FILE % specification.
(
USERCODE = SAMPLEUSER,
FAMILY = PACK
)s
DATA FILE
(
USERCODE = SAMPLEUSER,
DUPLICATED ON DISK
)s

8600 0734-301 5-45

Using DMSII Transaction Processing System (TPS) Extensions

ALGOL Banking Application Program

% Sample batch program using transactions.

BEGIN

o

N

N

The library routines, declared below, provide the proper function

for either environment.

N

N

)
%

o

o

ARRAY LIBPARAM[0:9];

o

N

o

Declare the transaction base to be used.

N

o

N

% Example of equating an internal
% name to the transaction base.

"BANKTR/CODE/HOSTLIB.");

TRANSACTION BASE TRB = BANKTR;

LIBRARY L(TITLE

N

N

o

Declare all the library entry points to be used.

o

N

N

INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);

STRING IDSTRING; INTEGER IDNUM;

LIBRARY L;
INTEGER PROCEDURE PURGETRUSER(IDNUM);

INTEGER IDNUM;

LIBRARY L;
INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);

STRING IDSTRING; INTEGER IDNUM;

LIBRARY L;
INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);

INTEGER IDNUM;

LIBRARY L;
INTEGER PROCEDURE RETURNLASTADDRESS(FILENUM, BLOCKNUM, OFFSET, IDNUM);

INTEGER IDNUM;

REAL FILENUM, BLOCKNUM, OFFSET;

LIBRARY L;
INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);

INTEGER IDNUM;

TRANSACTION RECORD (TRB) TROUT;

LIBRARY L;

8600 0734-301

5-46

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;
INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L;
INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT, RESTARTTRREC;
LIBRARY L;
INTEGER PROCEDURE PROCESSTRNORESTART (IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;
INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;
INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;
INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;
INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;
INTEGER PROCEDURE SWITCHTRFILE;
LIBRARY L;
INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION; INTEGER STATOPTION;
LIBRARY L;

FILE LINE(KIND=PRINTER);
FILE RMOTE(KIND=REMOTE, MYUSE = I0);
TRANSACTION RECORD (TRB)
TRIN,
TROUT,
LASTINPUT,
RESTARTTRREC,
LASTRESPONSE ;
REAL IDNUM, N, OPT;
INTEGER ACCT,TIMEOUT,STATISTICSOPTION;
INTEGER ACCT,TIMEOUT;
INTEGER RSLT;
ARRAY SP[0:14];
BOOLEAN ERROR;
LABEL EXIT;
STRING ID, FNAME, JOURNALNAME;

8600 0734-301 5-47

Using DMSII Transaction Processing System (TPS) Extensions

DEFINE TANKING

n
w
=

DEFINE ERR
BEGIN
WRITE(RMOTE, <"RSLT
ERROR := TRUE;
END#;

", I3, " @", I8, RSLT, LINENUMBER);

DEFINE GETSTRING(S, X)
BEGIN
REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER STRING FOR ", S;
WRITE(RMOTE, 15, SP);
READ(RMOTE, 15, SP);
SCAN SP FOR N:80 WHILE IN ALPHA;
X := STRING(SP, 80-N);
END#;
DEFINE GETINTEGER(S, I) =
BEGIN
REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER INTEGER FOR ", S;
WRITE(RMOTE, 15, SP);
READ(RMOTE, /, I);
END#;

DEFINE GETREAL(S, R) =
BEGIN
REPLACE SP BY " " FOR 15 WORDS;
REPLACE SP BY "ENTER VALUE FOR ", S;
WRITE(RMOTE, 15, SP);
READ(RMOTE, /, R);
END#;

DEFINE GETACCT = GETINTEGER("ACCOUNT NUMBER", ACCT)#;

PROCEDURE PROCESSTR;

BEGIN
IF OPT = TANKING THEN
BEGIN
IF RSLT := TANKTRNORESTART(IDNUM, TRIN) > 0 THEN ERR;
END
ELSE

IF RSLT := PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC)
> 0 THEN ERR;
END PROCESSTR;

5-48 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

PROCEDURE GETLASTP;

BEGIN
IF OPT = TANKING THEN
BEGIN
IF RSLT := RETURNRESTARTINFO(IDNUM, LASTINPUT) > O THEN
ERR
ELSE
WRITE(RMOTE,
<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT): ", 4I5>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFFSET,
LASTINPUT.TRFORMAT);
END ELSE
BEGIN
IF RSLT := RETURNRESTARTINFO(IDNUM, LASTINPUT) > O THEN
ERR
ELSE
BEGIN
WRITE(RMOTE,
<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT): ", 4I5>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFFSET,
LASTINPUT.TRFORMAT);
IF RSLT := RETURNLASTRESPONSE(IDNUM, LASTRESPONSE) > 0 THEN
ERR
ELSE
WRITE(RMOTE,
<"LAST RESPONSE (FILE, BLOCK, OFFSET, FORMAT): ", 4I5>,
LASTRESPONSE. TRFILENUM,
LASTRESPONSE.TRBLOCKNUM, LASTRESPONSE.TROFFSET,
LASTRESPONSE.TRFORMAT)
END;
END;

END GETLASTP;

PROCEDURE DISPLAYSTATUS;
BEGIN
IF TROUT.TRFORMAT NEQ TRFORMAT(STATUS) THEN
ERR
ELSE
WRITE(RMOTE, <"ACCOUNT NUMBER ", I5,
": CURRENT BALANCE IS ", F10.2>,
TROUT.STATUS.ACCTNUM,
TROUT.STATUS.BALANCE) ;
END DISPLAYSTATUS;
PROCEDURE CREATEP; % Create a new account number.
BEGIN
STRING NAME;
WRITE(RMOTE, <"FUNCTION IS CREATE">);
GETACCT;
GETSTRING("CUSTOMER NAME", NAME);
CREATE TRIN.CREATEACCT;

8600 0734-301 5-49

Using DMSII Transaction Processing System (TPS) Extensions

TRIN.CREATEACCT.ACCTNUM := ACCT;
TRIN.CREATEACCT.NAME := NAME;
PROCESSTR;

END CREATEP;

PROCEDURE PURGEP; % Eliminate an account number.

BEGIN

WRITE(RMOTE, <"FUNCTION IS PURGE">);

GETACCT;

CREATE TRIN.PURGEACCT;

TRIN.PURGEACCT.ACCTNUM := ACCT;

PROCESSTR;
END PURGEP;

PROCEDURE STATUSP; % Display the status of an account.
BEGIN

WRITE(RMOTE, <"FUNCTION IS STATUS">);

GETACCT;

CREATE TRIN.STATUS;

TRIN.STATUS.ACCTNUM := ACCT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END STATUSP;

PROCEDURE DEPOSITP; % Deposit some amount in an account.
BEGIN

REAL AMT;

WRITE(RMOTE, <"FUNCTION IS DEPOSIT">);

GETACCT;

GETREAL ("AMOUNT OF DEPQSIT", AMT);

CREATE TRIN.DEPOSIT;

TRIN.DEPOSIT.ACCTNUM := ACCT;

TRIN.DEPOSIT.TRANDATE := TIME(6);

TRIN.DEPOSIT.AMOUNT := AMT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END DEPOSITP;
PROCEDURE WITHDRAWALP; % Withdraw some amount from an account.
BEGIN

REAL AMT;

WRITE(RMOTE, <"FUNCTION IS WITHDRAWAL">);

GETACCT;

GETREAL ("AMOUNT OF WITHDRAWAL", AMT);

CREATE TRIN.WITHDRAWAL;

TRIN.WITHDRAWAL.ACCTNUM := ACCT;

TRIN.WITHDRAWAL.TRANDATE := TIME(6);

TRIN.WITHDRAWAL.AMOUNT := AMT;

PROCESSTR;

IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;
END WITHDRAWALP;

5-50 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

PROCEDURE NEWUSERP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS NEWUSER">);
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: ", Al5>, ID);
IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN
ERR
ELSE
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);
END NEWUSERP;

PROCEDURE REOPENP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS REOPEN">);
IF RSLT := CLOSETRBASE > 0 THEN
ERR
ELSE
BEGIN
WRITE(RMOTE, <"WHAT DO YOU WANT TO D0?">);
GETINTEGER("CHOICE (1=UPDATE, 2=INQUIRY, 3=TANK, 4=READ,"
"5=EXCLUSIVEUPDATE)", OPT);
IF RSLT := OPENTRBASE(OPT, 0) > O THEN ERR;
END;
END REOPENP;

PROCEDURE SEEKP;
BEGIN
REAL FILENUM, BLOCKNUM, OFFSET;
WRITE(RMOTE, <"FUNCTION IS SEEK">);
WRITE(RMOTE, <"ENTER FILENUM, BLOCKNUM, OFFSET">);
READ(RMOTE, /, FILENUM, BLOCKNUM, OFFSET);
IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0 THEN ERR;
END SEEKP;
PROCEDURE READP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS READ">);
IF RSLT := READTRANSACTION(TRIN) > O THEN
ERR
ELSE
BEGIN
WRITE(RMOTE, <"FILE, BLOCK, OFFSET:", 315>,
TRIN.TRFILENUM,
TRIN.TRBLOCKNUM,
TRIN.TROFFSET);
WRITE(RMOTE, <"FORMAT, SUBFORMAT:", 2I5>,
TRIN.TRFORMAT,
TRIN.TRSUBFORMAT) ;
END;
END READP;

PROCEDURE CREATEUSERP;
BEGIN

8600 0734-301 5-51

Using DMSII Transaction Processing System (TPS) Extensions

5-52

WRITE(RMOTE, <"FUNCTION IS CREATEUSER">);
GETSTRING("USER ID", ID);

WRITE(RMOTE, <"USER: ", Al5>, ID);

IF RSLT := CREATETRUSER(ID, IDNUM) > O THEN

ERR
ELSE

IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN
ERR

ELSE
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);

END
CREATEUSERP;

PROCEDURE PURGEUSERP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS PURGEUSER">);
IF RSLT := PURGETRUSER(IDNUM) > 0O THEN ERR;
END PURGEUSERP

PROCEDURE QUITP;

BEGIN
WRITE (RMOTE, <"FUNCTION IS QUIT">);
CLOSETRBASE;
GO EXIT;

END QUITP;

PROCEDURE SWITCHP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS SWITCH">);
IF RSLT := SWITCHTRFILE > O THEN ERR;
END SWITCHP;
PROCEDURE STATISTICSP;
BEGIN
WRITE(RMOTE, <"FUNCTION IS STATISTICS">);
WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?");

GETINTEGER("CHOICE (1 = PRINT & RESET, 2 = PRINT"
"ONLY, 3 = RESET)", STATISTICSOPTION);
IF RSLT := HANDLESTATISTICS(STATISTICSOPTION) > 0;

THEN ERR;
END STATISTICSP;

PROCEDURE HELPP;

BEGIN
WRITE(RMOTE, <"FUNCTIONS ARE:", /,
"CREATE", /,
"PURGE", /,

"DEPOSIT", /,
"WITHDRAWAL", /,
"QUIT", /’
"STATUS", /,
"NEWUSER", /,
"REOPEN", /,
"SEEK", /,

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

"READ", /,
"GETLAST", /,
"CREATEUSER", /,
"PURGEUSER", /,
"SWITCH", /,
"STATISTICS", /,
"HELP" >);

END HELPP;

% Set LIBPARAMETER before first call on a library entry point. The %
% LIBPARAMETER can be set in the Tibrary declaration rather than %
% here. %

GETSTRING("JOURNAL NAME", JOURNALNAME);
L.LIBPARAMETER := JOURNALNAME;

WRITE(RMOTE, <"WHAT DO YOU WANT TO D0?">);

GETINTEGER("CHOICE (1=UPDATE, 2=INQUIRY, 3=TANK, 4=READ,"
" 5=EXCLUSIVEUPDATE)", OPT);

WRITE(RMOTE,<"WHAT VALUE FOR TIMEOUT SHALL WE USE?">);

READ (RMOTE, /, TIMEOUT) ;

IF RSLT := OPENTRBASE(OPT, TIMEOUT) > O THEN ERR;

% A restart transaction record is created. It will be written to %
% the TRHISTORY file along with an input transaction. Here, we have %
% not assigned values to the items or this record. Normally, values %
% are assigned but, for simplicity, the code was left out of this %

% example. %
% %

IF NOT ERROR THEN
BEGIN
CREATE RESTARTTRREC.RESTARTDETANKER;
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: ", Al5>, ID);
IF RSLT := LOGONTRUSER(ID, IDNUM) > O THEN ERR;
IF NOT ERROR THEN
WRITE(RMOTE, <"USER #: ", I3>, IDNUM);
END;
ERROR := FALSE;
WHILE TRUE DO
BEGIN
GETSTRING("FUNCTION NAME (OR HELP)", FNAME);
IF SP = "CREATEUSER" THEN CREATEUSERP ELSE
IF SP = "PURGEUSER" THEN PURGEUSERP ELSE

8600 0734-301 5-53

Using DMSII Transaction Processing System (TPS) Extensions

IF SP = "CREATE" THEN CREATEP ELSE
IF SP = "PURGE" THEN PURGEP ELSE
IF SP = "DEPOSIT" THEN DEPOSITP ELSE
IF SP = "WITHDRAWAL" THEN WITHDRAWALP ELSE
IF SP = "QUIT" THEN QUITP ELSE
IF SP = "STATUS" THEN STATUSP ELSE
IF SP = "NEWUSER" THEN NEWUSERP ELSE
IF SP = "REOPEN" THEN REOPENP ELSE
IF SP = "SEEK" THEN SEEKP ELSE
IF SP = "R" THEN READP ELSE
IF SP = "HELP" THEN HELPP ELSE
IF SP = "GETLAST" THEN GETLASTP ELSE
IF SP = "SW" THEN SWITCHP ELSE
IF SP = "STAT" THEN STATISTICSP ELSE
WRITE(RMOTE, <"DID NOT RECOGNIZE FUNCTION NAME">);
ERROR := FALSE;
END;

EXIT:
END OF THE APPLICATION PROGRAM.

5-54 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

Update Library

% SHARING must be PRIVATE in order to ensure that each application
% program will get its own copy of the Update Library

$SET SHARING=PRIVATE

)
%

% User's Transaction Update Library

BEGIN
% It consists % of a single procedure, called "ACCESSDATABASE", which

% is designed to perform four basic functions: OPENDATABASE (for
% update or inquiry), UPDATE, FORCEABORT, and CLOSEDATABASE. The
% function to be performed is identified by the first parameter to

% the procedure.

% This library is written by the user of the transaction system.
%

% transaction to be processed. It must observe a few simple rules,

% such as when to lock records and when to call the formal

% UPDATE is called by the transaction system once for each input
% procedures.

% OPENDATABASE for update or inquiry is required to open the data

)
%

o

It is expected to examine each input transaction

FORCEABORT is required so that the transaction system can cause
Library global declarations.

% an abort, if necessary.

% record, perform the appropriate actions, create a response
CLOSEDATABASE must close the database.

% transaction, and exit.

)
d
)
d
)
%

% Invoke the database and transaction

% base to be used.

BANKDB;

DATABASE DB

TRANSACTION BASE TRB = BANKTR

EBCDIC ARRAY SPO[0

7915

.
.

% Procedure update.

)
%

5-55

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

5-56

PROCEDURE UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVERESPONSE(); FORMAL;
PROCEDURE SAVEINPUT(); FORMAL;
BEGIN

LABEL EXIT;
BOOLEAN RSLT;
CASE TRIN.TRFORMAT OF

BEGIN
(TRFORMAT (CREATEACCT)) : % Routine for creating a new account.
BEGIN

STRING SNAME;
EBCDIC ARRAY NAME[0:29];
SNAME := TRIN.CREATEACCT.NAME;
REPLACE NAME[0] BY SNAME;
CREATE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
PUT ACCOUNT
(
ACCOUNT-NUM := TRIN.CREATEACCT.ACCTNUM,
NAME := NAME[O];
)s
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT := TRIN; % Return same TR as good TR-RESPONSE.
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END CREATEACCT FORMAT;
(TRFORMAT (PURGEACCT)) : % Routine for purging an existing
% account.

BEGIN
REAL ACCT;
ACCT := TRIN.PURGEACCT.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
DELETE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT := TRIN; % Signal OK

8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END PURGEACCT FORMAT;

(TRFORMAT (STATUS)) : % Example of an inquiry routine. It
BEGIN % returns the balance of a particular

% account.

REAL ACCT, BAL;

ACCT := TRIN.STATUS.ACCTNUM;

FIND ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;

GET ACCOUNT

(

)s

TROUT := TRIN; % Signal OK

TROUT.STATUS.BALANCE := BAL;
END STATUS FORMAT;

BAL := BALANCE

(TRFORMAT (DEPOSIT)) : % Routine to perform a deposit into an
BEGIN % account.

REAL OLDBAL, NEWBAL;

REAL ACCT;

ACCT := TRIN.DEPOSIT.ACCTNUM;

LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;

GET ACCOUNT

(

)s

NEWBAL := OLDBAL + TRIN.DEPOSIT.AMOUNT;
CREATE DEPOSIT:RSLT;

IF RSLT THEN GO EXIT;

PUT DEPOSIT

OLDBAL := BALANCE

(
TRANDATE := TRIN.DEPOSIT.TRANDATE,
AMOUNT := TRIN.DEPOSIT.AMOUNT,
OLD-BALANCE := OLDBAL,
NEW-BALANCE := NEWBAL

)s

PUT ACCOUNT

(
BALANCE := NEWBAL

)s

BEGINTRANSACTION (TRIN) RDS :RSLT;

IF RSLT THEN GO EXIT;

MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;

STORE ACCOUNT:RSLT;

IF RSLT THEN GO EXIT;

STORE DEPOSIT:RSLT;

IF RSLT THEN GO EXIT;

8600 0734-301 5-57

Using DMSII Transaction Processing System (TPS) Extensions

CREATE TROUT.STATUS;
TROUT.STATUS.BALANCE := NEWBAL;
TROUT.STATUS.ACCTNUM := TRIN.DEPOSIT.ACCTNUM;
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;

END DEPOSIT FORMAT;

(TRFORMAT (WITHDRAWAL)) : % Routine to withdraw money from an

% account.

BEGIN % Uses DEPOSIT data set, not WITHDRAWAL
REAL OLDBAL, NEWBAL;
REAL ACCT;
ACCT := TRIN.WITHDRAWAL.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM = ACCT :RSLT;
IF RSLT THEN GO EXIT;
GET ACCOUNT

(

)s

NEWBAL := OLDBAL - TRIN.WITHDRAWAL.AMOUNT;
CREATE DEPOSIT:RSLT;

IF RSLT THEN GO EXIT;

PUT DEPOSIT

OLDBAL := BALANCE

(
TRANDATE := TRIN.WITHDRAWAL.TRANDATE,
AMOUNT := - TRIN.WITHDRAWAL.AMOUNT,
OLD-BALANCE := OLDBAL,
NEW-BALANCE := NEWBAL

)s

PUT ACCOUNT

(
BALANCE := NEWBAL

)s

BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
STORE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
CREATE TROUT.STATUS;
TROUT.STATUS.BALANCE := NEWBAL;
TROUT.STATUS.ACCTNUM := TRIN.DEPOSIT.ACCTNUM;
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;
END WITHDRAWAL FORMAT;
ELSE: % Flag an error
DISPLAY("NO UPDATE ROUTINE FOR THE FORMAT PASSED IN");

END CASES;
EXIT:
IF REAL(RSLT) ISNT O THEN

5-58 8600 0734-301

WRITE(SPO[*], <"UPDATE RSLT:", H13>, RSLT);

REPLACE SPO BY 0 FOR 10 WORDS;
DISPLAY(SPO);

Using DMSII Transaction Processing System (TPS) Extensions

BEGIN
END;
END UPDATE;

N

Procedure ACCESSDATABASE.

N

still in transaction state.

FORCEABORT is called by the
% Transaction Library when the last call
Close.

% resulted in exiting this Tibrary while

% Open update
% Open inquiry

% Update
UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);

0

)
%

0,

OPEN TRUPDATE DB;
OPEN INQUIRY DB;

CLOSE DB;

SAVEINPUT, SAVERESPONSE);
CLOSE DB;

VALUE FUNCTIONFLAG;
INTEGER FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVERESPONSE(); FORMAL;
PROCEDURE SAVEINPUT(); FORMAL;

BEGIN
CASE FUNCTIONFLAG OF

BEGIN
END CASES;

PROCEDURE ACCESSDATABASE (FUNCTIONFLAG, TRIN, TROUT,
END ACCESSDATABASE;

o

Initialize Tibrary.

N

5-59

ACCESSDATABASE;
FREEZE (TEMPORARY) ;

END UPDATE LIBRARY.

EXPORT

8600 0734-301

)
%

Procedure

ing

Detank
The ALGOL procedure on the following pages illustrates “detanking.” A detanking

procedure reads transactions from a tank journal and processes them against the

database.

% This program can run on either the host system or a remote system.

PROCEDURE DETANKER (TANKNAME) ;
ARRAY TANKNAME[*];

The input parameter is the name of the Tank journal. This procedure opens both the Tank
BEGIN

journal and the TRHISTORY journal, and then reads transactions from the Tank journal

and processes them against the data base.
Application.” The procedure also uses the previously defined DASDL description and

Update Library. Refer to “DASDL Description of the database,” “TFL Description of the

The transaction base invoked by this procedure is defined in “Example 2: Banking
Transaction Base,” and “Update Library” on the preceding pages for details.

Using DMSII Transaction Processing System (TPS) Extensions

Example 3

o

The library routines declared below provide the proper function

% for either environment.

)
%

8600 0734-301

"BANKTR/CODE/HOSTLIB.",

LIBRARY PROCESSLIB(ACTUALNAME = "CREATETRUSER");

STRING IDSTRING; INTEGER IDNUM;

LIBPARAMETER = "TRHISTORY");
INTEGER PROCEDURE CREATETRHISTORYUSER(IDSTRING, IDNUM);

TRANSACTION BASE TRB = BANKTR;
LIBRARY PROCESSLIB(TITLE

STRING TANKLIBPARAM;

Declare the transaction base to be used.
% Declare all the library entry points to be associated with the

% TRHISTORY journal.

5-60

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE LOGONTRHISTORYUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY PROCESSLIB (ACTUALNAME = "LOGONTRUSER");

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM, RESTARTTR);
INTEGER IDNUM, RESTARTNUM;
TRANSACTION RECORD (TRB) TRIN, RESTARTTR;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE OPENTRHISTORY (USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY PROCESSLIB(ACTUALNAME = "OPENTRBASE");

INTEGER PROCEDURE CLOSETRHISTORY;
LIBRARY PROCESSLIB(ACTUALNAME = "CLOSETRBASE");

% Declare all the Tibrary entry points to be associated with the %
% Tank journal. %

LIBRARY TANKLIB(TITLE="BANKTR/CODE/HOSTLIB.");

INTEGER PROCEDURE CREATETANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB (ACTUALNAME = "CREATETRUSER");

INTEGER PROCEDURE LOGONTANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME = "LOGONTRUSER");

INTEGER PROCEDURE TANKUSERIDSTRING(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME = "TRUSERIDSTRING");

INTEGER PROCEDURE TANKTRNORESTART (IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY TANKLIB;

8600 0734-301 5-61

Using DMSII Transaction Processing System (TPS) Extensions

INTEGER PROCEDURE OPENTANK(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY TANKLIB(ACTUALNAME = "OPENTRBASE");

INTEGER PROCEDURE CLOSETANK;
LIBRARY TANKLIB(ACTUALNAME = "CLOSETRBASE");

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY TANKLIB;

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY TANKLIB;
TRANSACTION RECORD (TRB)

TRIN,

TROUT,

RESTARTTR;

INTEGER IDNUM, N,

RESTARTNUM, TANKNAMESIZE,
FILENUM, BLOCKNUM,
OFFSET, CT,
TANKER, UPDATER,

MAXTANKER, RSLT;
ARRAY TRHISTORYUSERS[0:99];
ARRAY SP[0:14];
LABEL EXIT, LOOP, PRINTLAST;
STRING ID, FNAME;
BOOLEAN ALLDONE;
EBCDIC ARRAY SP0[0:79];

DEFINE ERR(L) =
BEGIN
REPLACE SPO BY "RSLT = ", RSLT FOR * DIGITS,
" @ ", LINENUMBER FOR 8 DIGITS, NULL;

ACCEPT(SPO) ;

GO L;
END#,
NULL = 48"00"#,
NORESTARTREC = 3#,
REJECTED = 2#,
EOF = 1#;

MAXTANKER := 99;

% Set the library parameter "LIBPARAMETER" for the Tank journal. Then %
% open the TRHISTORY journal for updating and the Tank journal for %
% reading. %

5-62 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

SCAN TANKNAME[*] FOR N:99 UNTIL = 0;
TANKNAMESIZE := 99-N;
TANKLIBPARAM := STRING(POINTER(TANKNAME,8), TANKNAMESIZE);
TANKLIB.LIBPARAMETER := TANKLIBPARAM;

IF RSLT := OPENTRHISTORY(1, 0) > O THEN ERR(EXIT); % Open update.
IF RSLT := OPENTANK(4, 0) > 0 THEN ERR(EXIT); % Open for reading.

ID := TANKLIBPARAM;

% Create a user of the History file and then Tog him on.

% CREATETRHISTORYUSER(ID, RESTARTNUM);

% NO-OP if not necessary.

IF RSLT := LOGONTRHISTORYUSER(ID, RESTARTNUM) > 0 THEN ERR(EXIT);

%The following code determines if the program has been restarted after
%a HALT/LOAD. If so, it determines the location in the Tank journal

%where we should begin reading transactions. It does this by
%extracting the file, block, and offset from the items within the
%restart transaction record: TANKFILENUM, TANKBLOCKNUM, and

%the program TANKOFFSET. If it was not restarted, start reading
%from the beginning of the Tank journal.

IF MYJOB.RESTARTED THEN
BEGIN
REPLACE SPO BY "DETANKING PROCESS RESTARTING", NULL;
DISPLAY (SPO);
IF RSLT := RETURNRESTARTINFO(RESTARTNUM, RESTARTTR) =
NORESTARTREC ~ THEN
BEGIN
FILENUM := 1;

BLOCKNUM := OFFSET := 0; % Start at first record of file.
IF RSLT := SEEKTRANSACTION(FILENUM,BLOCKNUM,OFFSET) > O THEN

ERR(EXIT);
END ELSE
IF RSLT > 0 THEN
ERR(EXIT)
ELSE % A restart record exists.
BEGIN

FILENUM := RESTARTTR.TANKFILENUM;

BLOCKNUM := RESTARTTR.TANKBLOCKNUM;

OFFSET := RESTARTTR.TANKOFFSET;

REPLACE SPO BY "LAST GOOD TR FROM TANK AT (",
FILENUM FOR * DIGITS, ",",
BLOCKNUM FOR * DIGITS, ",",
OFFSET FOR * DIGITS, ")", NULL;

DISPLAY (SPO);

IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0

THEN

8600 0734-301

5-63

Using DMSII Transaction Processing System (TPS) Extensions

ERR(EXIT);
% Now skip last good transaction.

IF RSLT := READTRANSACTION(TRIN) > O THEN ERR(EXIT);
END;
END ELSE
BEGIN
FILENUM := 1
BLOCKNUM :=
OFFSET := 0; % Start at first record of file 1.
IF RSLT := SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0 THEN
ERR(EXIT);

END;
CREATE RESTARTTR.RESTARTDETANKER;

LOOP:
IF ALLDONE THEN
BEGIN
CLOSETANK;
CLOSETRHISTORY;
GO PRINTLAST;
END;
% Read a transaction from the Tank journal.
IF RSLT := READTRANSACTION(TRIN) > 0 THEN
BEGIN
IF RSLT = EOF THEN
BEGIN
ALLDONE := TRUE;
GO LOOP;
END ELSE
ERR(EXIT);
END;

% If we read a system transaction ignore it and continue with the
% next transaction in sequence.

IF TRIN.TRFORMAT = TRFORMAT(SYSTEMTR) THEN GO LOOP;

TANKER := TRIN.TRUSERNUM;

IF TANKER > MAXTANKER THEN

UPDATER := 0 ELSE

UPDATER := TRHISTORYUSERS[TANKER] ;

IF UPDATER = 0 THEN

BEGIN
IF RSLT := TANKUSERIDSTRING(ID, TANKER) > 0 THEN ERR(EXIT);
CREATETRHISTORYUSER(ID, UPDATER); % NO-OP if necessary.
IF TANKER > MAXTANKER THEN
RESIZE(TRHISTORYUSERS[*], (MAXTANKER:=TANKER)+1, RETAIN);
TRHISTORYUSERS[TANKER] := UPDATER;

END;

5-64 8600 0734-301

Using DMSII Transaction Processing System (TPS) Extensions

% Set up the restart record values to be the address of the input
% transaction and then process the transaction.
RESTARTTR.TANKFILENUM := TRIN.TRFILENUM;
RESTARTTR. TANKBLOCKNUM := TRIN.TRBLOCKNUM;
RESTARTTR.TANKOFFSET := TRIN.TROFFSET;
IF RSLT := PROCESSTRFROMTANK(UPDATER, TRIN, RESTARTNUM, RESTARTTR)
> (0 THEN

ERR(EXIT);
GO LOOP;

PRINTLAST:
FILENUM := RESTARTTR.TANKFILENUM;
BLOCKNUM := RESTARTTR.TANKBLOCKNUM;
OFFSET := RESTARTTR.TANKOFFSET;
REPLACE SPO BY "LAST GOOD TR FROM TANK AT (",
FILENUM FOR * DIGITS, ",",
BLOCKNUM FOR * DIGITS, ",",
OFFSET FOR * DIGITS, ")", NULL;
DISPLAY (SPO);

EXIT:
END OF THE DETANKER PROCEDURE;

8600 0734-301 5-65

Using DMSII Transaction Processing System (TPS) Extensions

5-66 8600 0734-301

Section 6
Using the Screen Design Facility Plus
(SDF Plus) Interface

Screen Design Facility Plus (SDF Plus) is a user interface management system that gives
programmers the ability to define a complete form-based user interface for an application
system. It is a programming tool for simple and efficient designing and processing of
forms. SDF Plus provides form processing that eliminates the need for complicated format
language or code, and validates data entered on forms by application users.

The program interface developed for SDF Plus includes

* Extensions that enable you to read and write form records or form record libraries
easily

* Extensions that enable you to send and receive form records or form record libraries
easily

¢ Extensions that enable you to invoke form record library descriptions into your
program as ALGOL declarations

This section provides information about the extensions developed for SDF Plus. Each
extension is presented with its syntax and an example; sample programs are also included.

For an alphabetized list of the extensions, see “Screen Design Facility Plus (SDF Plus)
Extensions” in Section 1, “Introduction to ALGOL Program Interfaces.”

Refer to the Screen Design Facility Plus (SDF Plus) Capabilities Manual for information
defining the concepts and principles of SDF Plus. For information on general
implementation and operation considerations, refer to the Screen Design Facility Plus
(SDF Plus) Installation and Operations Guide. For information on general programming
concepts and considerations, refer to the Screen Design Facility Plus (SDF Plus)
Technical Overview.

SDF Plus can be be used with the Advanced Data Dictionary System (ADDS), and the
Communications Management System (COMS). Refer to the specific product
documentation for information on the concepts and programming considerations for using
these products with SDF Plus. For more information on the extensions used with these
products, refer to Section 2, “Using Advanced Data Dictionary System (ADDS)
Extensions,” and Section 3, “Using Communications Management System (COMS)
Features.”

8600 0734-301 6-1

Using the Screen Design Facility Plus (SDF Plus) Interface

Understanding SDF Plus Interface Elements

Communication between ALGOL application programs and SDF Plus form record libraries
is achieved through either the remote file interface or the COMS interface. Using the
remote file interface, you can interact with SDF Plus applications by means of remote
files. By using the COMS interface, you can interact with SDF Plus applications through
COMS windows and have access to all COMS capabilities and features.

SDF Plus interface elements include

¢ Form record libraries
¢ Form records

¢ Form record numbers
¢ Transaction types

¢ Transaction numbers

¢ ALGOL functions used as SDF Plus extensions

Form Record Libraries

Form record libraries are collections of form records and transaction types. This union is
achieved in the data dictionary. Form record libraries can be either retrieved or invoked
by the ALGOL program. The form records can then be used in various ALGOL statements
to transfer data.

Form Records

6-2

Form records are elements of form record libraries. Form records represent records of
data. This data is used either to output data from a form or to input data to a form. A form
can require several form records; therefore, a one-to-one relationship between forms and
form records does not exist.

In some manuals the term “message type” is a synonym for “form record.”

Forms and form processing are established through the use of SDF Plus. The ALGOL
program reads and writes data to these forms. This arrangement provides complete
separation between data entered on a terminal and actions completed within the program.
A user interface can be completely reconstructed without modifying the application
program, provided the form records are not changed.

When referenced, a form record must be qualified with the form record library name by

which it was invoked. Each form record within a form record library shares the same
storage area. The storage area is created large enough to hold the largest form record.

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Form Record Numbers

Form record numbers for form records are unique integers assigned at compile time to
each form record in a form record library.

In some manuals the term “message type number” is a synonym for “form record number.”

A form record number for a form record library is an attribute of the form record library.
This attribute contains the form record number of a specific form record. Form record
numbers determine I/O operations for form record libraries, enabling the form record to
be specified at run time.

A self-identifying read is used when the executing program has not established which form
record in a specific form record library has been read. The program must access the form
record number attribute for the form record library to determine the form record that has
been read.

A self-identifying write enables the executing program to specifically identify the form
record to be written by placing the appropriate form record number value into the form
record number attribute of the form record library.

Transaction Types

Transaction types are elements of form record libraries. A transaction type contains a pair
of form records: an input form record and an output form record. A transaction type
identifies the relationship of the two form records that are under it, namely, the input form
record to the transaction type and the output form record from the transaction type.

Transaction Numbers

Transaction numbers are similar to form record numbers. A transaction number is a
unique integer assigned at compile time to each transaction type in a form record library.

A transaction number for a form record library is an attribute of the form record library.
This attribute contains the transaction number of a specific transaction type. Transaction
numbers provide another means of determining I/O operations for form record libraries at
run time.

After a self-identifying read, the application program must access the transaction number

attribute of the form record library being read to determine the transaction type that has
been executed.

8600 0734-301 6-3

Using the Screen Design Facility Plus (SDF Plus) Interface

Using ALGOL Functions as SDF Plus Extensions

6-4

Several ALGOL fuctions have been extended to work with SDF Plus. The DICTIONARY
compiler control option, as well as the LENGTH, OFFSET, POINTER, RESIZE, SIZE,
STACK option and UNITS functions can be used as SDF Plus extensions.

Additional information relating to these functions is included in Section 2, “Using
Advanced Data Dictionary System (ADDS) Extensions.”

« DICTIONARY option

The DICTIONARY compiler control value option establishes the data dictionary to use
during compilation. This option is an ADDS extension that can be used when SDF Plus
is used with ADDS. A dictionary must be established before the first executable
statement. The dictionary specified in the first occurrence of a DICTIONARY option is
used as the data dictionary. All other occurrences are ignored.

 LENGTH function
The LENGTH function returns the length of a specified entity in the designated units.
e OFFSET function

The OFFSET function returns the number of units that the specified entity is indexed
from the beginning of the outermost record in which it is declared.

¢« POINTER function
The POINTER function returns a pointer to the specified input.
¢ RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SDF Plus form record libraries, the size is given in bytes. The size of the
entire array is changed, regardless of the record's position in the array.

e SIZE function

The SIZE function returns the size of the array underlying a given record identifier.
For SDF Plus form record libraries, the size is given in bytes. The size returned is an
integer representing the size of the entire array, regardless of the record's position in
the array.

* STACK option

The STACK compiler control option directs the ALGOL compiler to print data
definition descriptions that are imported from SDF Plus during compilation. When set,
the stack option causes the ALGOL compiler to include the definitions of imported
form record field types, form record types, form record library types, and file types in
the compilation.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer value, the
default unit size expected by the LENGTH and OFFSET functions.

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Invoking the Form Record Library

<dictionary form record library declaration>
— DICTIONARY FORMRECORDLIBRARY

»>—— <form record library ID> |

|— <entity qualifiers> J

Explanation
A form record library is invoked from a data dictionary that is specified with the $SET

DICTIONARY option. The form record library was placed in the data dictionary by SDF
Plus at the time that the form library dictionary was created.

The DICTIONARY FORMRECORDLIBRARY declaration invokes a form record library
with a description retrieved from the dictionary.

The form record library ID is the name by which the allocated record area is recognized
within the program and within the compiler. If the entity qualifier is not specified, the form

record library ID is used as the default name for both the type and space.

The DICTIONARY FORMRECORDLIBRARY declaration can be declared using a TYPE
declaration and invocation. This type of declaration is not normally used.

Refer to Section 2, “Using the Advanced Data Dictionary System (ADDS) Extensions,” for
information describing entity qualifiers and TYPE declarations.

Additional information relating to the entity qualifiers construct is included under “Entity
Qualifiers” in Section 2, “Using Advanced Data Dictionary System (ADDS) Extensions.”
Examples

In the following example, the form record library titled APPLFORMRECLIB is invoked
from the dictionary and is allocated a buffer:

DICTIONARY FORMRECORDLIBRARY APPLFORMRECLIB;

In the following example, the form record library titled APPLFORMRECLIB is invoked
from the dictionary and is allocated a buffer called RECLIB:

DICTIONARY FORMRECORDLIBRARY RECLIB (NAME=APPLFORMRECLIB);

8600 0734-301 6-5

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the SDF Plus Remote File Interface

The following paragraphs describe the syntax of the READFORM and WRITEFORM
statements. These statements are used to perform I/O operations when interacting with
SDF Plus by means of remote files.

READFORM Statement

<readform statement>

— READFORM — (— <file> — , —|: <form record> J) |

<form record library>

Explanation

The READFORM statement causes a form record to be read from the specified remote file
and stored in the specified storage area. Particular form records can be read by
designating the form record name. Self-identifying form records are read by specifying the
form record library name.

The READFORM statement returns the results of the I/O operation as a Boolean value. If
the I/O operation succeeds, the result is FALSE. The file used with this statement must be
aremote file. The compiler generates an error message if the file is declared DIRECT.

A specific read of a form record is completed by identifying the form record. The result of
the READFORM statement is to store that particular form record in the storage area
associated with the form record library.

A self-identifying read is performed by designating the form record library name in the
READFORM syntax. The form record returned is determined by the forms processing
performed in SDF Plus. A form record number is returned by SDF Plus to be used to
determine the form record that was read.

Examples
In the following example, a self-identifying read of a form record library is performed. The
form record number field contains the form record number of the form record that was

read.

READFORM (RMTFILE, APPLFORMRECLIB);
FORMNUM := APPLFORMRECLIB.FORMRECNUM;

In the following example, the form record FORMRECORDA is read from the form record
library APPLFORMRECLIB:

READFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

6-6 8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

WRITEFORM Statement

<writeform statement>
— WRITEFORM - (— <file> R

[— DEFAULT -]

[— DATAERROR - <error #> —] -

> <form record>) }

<form record library>

<text length> — , — <text> —

<text length>

— <arithmetic expression> }

<text>
— <EBCDIC pointer> }

Explanation

The WRITEFORM statement causes a form record to be written to a specified remote file.
Specific form records can be written by designating the form record name.

The WRITEFORM statement returns the results of the I/O operation as a Boolean value. If
the I/O operation succeeds, the result is FALSE.

The file used with this statement must be a remote file. The compiler generates an error
message if the file is declared DIRECT.

The DEFAULT option on a WRITEFORM statement causes SDF Plus to use default values
when it displays the form. This option is used when the application program does not
supply data for the form.

The DATAERROR option on a WRITEFORM statement enables you to respond to a record
received from the dictionary with an error indicator instead of another record.

A specific write of a form record is completed by designating the form record. A self-
identifying write is performed by designating the form record library name in the
WRITEFORM statement and using the form record number attribute to assign the form
record number for that form record library. The form record number or transaction
number in the form record library must be assigned before the write operation; otherwise,
an error occurs.

Using the WRITEFORM statement with the text option causes the contents of a text array
to be written to a designated remote file.

8600 0734-301 6-7

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

6-8

In the following example, a self-identifying write of the form record library
APPLFORMRECLIB is performed. The form record number attribute assigns the form
record number of the form that is to be written.
APPLFORMRECLIB.FORMRECNUM :=
APPLFORMRECLIB.FORMRECORDB. FORMRECNUM;
WRITEFORM (RMTFILE, APPLFORMRECLIB);

In this example, the form record FORMRECORDA is written from the form record library
APPLFORMRECLIB:

WRITEFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

In the following example, the default values for the form record FORMRECORDA are
written:

WRITEFORM (RMTFILE [DEFAULT], APPLFORMRECLIB.FORMRECORDA);

In the following example, the program responds to the record received with an error
indicator:

WRITEFORM (RMTFILE [DATAERROR 5], FORMRECLIB);

In this example, the first 30 words of the text array T_ARRAY are written to the remote
file RMTFILE and displayed in the text area of the form:

WRITEFORM (RMTFILE, 30, T_ARRAY);

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the Form Record Number Attribute

<form record number>
~|: <form record> —4|» . — FORMRECNUM |
<form record library>

<form record>

— <form record library> — . — <form record name> }

<form record name>

— <identifier> }

Explanation

The form record number attribute is used with either individual form records or form
record libraries. In some manuals the term “message type number” is used as a synonym
for “form record number.”

The form record number attribute associated with individual form records is preassigned
by SDF Plus at compile time.

The form record number attribute associated with form record libraries is used with self-
identifying reads and self-identifying writes.

The form record name must be qualified with the form record library name.

A form record number attribute of a form record library contains the form record number
field of the last form record read. This field should be queried after a read of a specific
form record to verify that the specific form record was actually read. The transaction
number field should be queried after a read of a self-identifying form record to determine
the action to be taken.

Changing the form record number attribute of a form record library enables self-
identifying writes. The form record number determines the form record that is written.

A form record number attribute of a form record is the preassigned form record number of
the specified form record. These numbers are integer constants assigned at compile time.

Attempting to change the form record number attribute of a form record results in an
error.

8600 0734-301 6-9

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

6-10

In the following example, B is assigned the integer value of the form record
FORMRECORDB:

B :=APPLFORMRECLIB.FORMRECORDB.FORMRECNUM;

In this example, the integer value B is assigned as a form record number for a form record
that is to be written in a self-identifying write:

APPLFORMRECLIB.FORMRECNUM := B;

In the following example, the form record number of the form record FORMRECORDB is
assigned to be written using a self-identifying write:

APPLFORMRECLIB.FORMRECNUM :=
APPLFORMRECLIB.FORMRECORDB. FORMRECNUM;

This example shows an attempt to change the form record number attribute of form
record FORMRECORDB. This action results in an error.

FORMRECORDB. FORMRECNUM := B;

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the Transaction Number Attribute

<transaction number>
~|: <transaction type> j» . — TRANSNUM |
<form record library>

<transaction type>

— <form record library> — . — <transaction name> }

<transaction name>

— <identifier> }

Explanation

The transaction number attribute is used with either individual transaction types or form
record libraries. Each transaction number is associated with a transaction name.

The transaction name must be qualified with the form record library name.

A transaction number of a form record library contains the transaction number of the last
transaction read. This field should be queried after every read to determine what action
the program should take. Note that the transaction number uniquely indicates both the
form record that was read and the action to take with it, but the same form record can
appear in two different transactions. For example, one transaction might return an empty
form record that is to be prefilled, while another transaction might return the same form
record that now contains data to be processed. Both reads returned the same form record,
but the actions to be taken by the application differed. Only the transaction number
uniquely indicates which action to take—the form record number is not sufficient in most
cases.

Changing the transaction number of a form record library or a transaction type is not
permitted. You should use the form record number of the form record library to indicate

to SDF Plus the action to take on the next write.

Attempting to change the transaction number attribute of a transaction type results in an
error.

8600 0734-301 6-11

Using the Screen Design Facility Plus (SDF Plus) Interface

Examples

6-12

In the following example, G is assigned the integer value of the transaction
TRANSACTIONL:

G := APPLFORMRECLIB.TRANSACTIONL.TRANSNUM;

In this example, the transaction number of a form record library is queried to verify that a
specific transaction has just been read. MYFORMRECPTT is a prefill request from SDF
Plus to the application program. MYFORMRECPRE is a prefill response from the
application program to SDF PLus.

IF APPLFORMRECLIB.TRANSNUM = FORMRECLIB.MYFORMRECPTT.TRANSNUM THEN
APPLFORMRECLIB.FORMRECNUM := FORMRECLIB.MYFORMRECPRE.FORMRECNUM;

The next example shows the processing of an update transaction. MYFORMRECTT is an
update transaction that transfers data entered by the user from SDF Plus to the
application program. FORMRECLIBSR is a standard response. There is one standard
response per library. The standard response indicates that the application program
accepted the update transaction. Use this technique when the application program enables
SDF Plus to decide which form to display next.

IF FORMRECLIB.TRANSNUM = FORMRECLIB.MYFORMRECTT THEN
FORMRECLIB.FORRECNUM := FORMRECLIB.FORMRECLIBSR.FORMRECNUM;

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Using SDF PLUS with COMS

SDF Plus can be used with COMS to take advantage of COMS direct windows. Using SDF
Plus with COMS provides enhanced routing capabilities for forms and also permits
preprocessing and postprocessing of form records.

Refer to the Communications Management System (COMS) Programming Guide for
detailed information on the use of the COMS direct window interface. The following
guidelines explain the steps to follow when using SDF Plus and COMS together.

Using COMS Input/Output Headers

SDF Plus supports the use of COMS headers. Three fields are defined within the headers
for use with SDF Plus. These fields are SDFINFO, SDFFORMRECNUM, and
SDFTRANSNUM. A description of each follows.

The SDFINFO field is used to identify specific form message processing requests (on
output) or to return form message processing errors (on input). On the output (sending)
path, this field can contain the following values:

Value Explanation
0 Normal form message processing
100 Last transaction error. This value is used for outgoing messages only.
101 Transaction error. Used when more than one transaction error is sent. The

application can send multiple messages in which the value of the SDFINFO
field is 101. This value is used for outgoing messages only.

200 Text message processing

On the input (receiving) path, this field can contain the following values, which
correspond to status information concerning the requested form message processing:

Value Explanation
0 No error
-100 Form message timestamp mismatch
-200 Incorrect form record number specified on the send operation
-300 Incorrect transaction number specified on the send operation

The SDFFORMRECNUM field is used to designate the form record to be written (on
output) or the form record that is to be received (on input).

8600 0734-301 6-13

Using the Screen Design Facility Plus (SDF Plus) Interface

The SDFTRANSNUM field is meaningful only on input and contains the number of the
SDF Plus transaction that was received. This field should not be altered by the user
application.

Sending and Receiving Messages

When using SDF Plus and COMS together, follow the usual statements for each product,
with the following guidelines:

COMS input/output headers should be used instead of binary communication
descriptions to take advantage of the new features in SDF Plus.

To send normal messages, the application program must move the value 0 (zero) into
the SDFINFO field of the output header. The application program must set the
SDFFORMRECNUM field. The form record library must then be passed as the
message area construct in a SEND statement.

To receive a message, the application program must do the following:

— Ifthe SDFINFO field contains a value less than 0 (zero), this field also contains an
error code that indicates a problem with message processing. In addition, the
FUNCTION-INDEX field of the input header contains the value 100.

— If the SDFINFO field contains the value 0 (zero), the application program can
query the form record number and transaction number attributes for the form
record library from the SDFFORMRECNUM and SDFTRANSNUM fields of the
input header.

Sending Transaction Errors

SDF Plus supports the ability to send error codes in response to incorrect data received by
the user application. These error codes are sent as integer values, which are used by SDF
Plus to process a user-defined error procedure for the form record library.

To send transaction error codes, the user application must do the following:

1.
2.

3.
4.

Move the value 100 or 101 into the SDFINFO field of the output header.

Move the value of the transaction error into the SDFFORMRECNUM field of the
output header.

Move the SDFTRANSNUM field from the input header to the output header.
Send the output header to display the message.

The user application can send any arbitrary message area along with the output header.
SDF Plus only processes the information within the output header.

6-14

8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Example

In this example, INX contains the number of the transaction error.

COMS_OUT.SDFINFO := 100;

COMS_OUT.SDFFORMRECNUM := INX;
COMS_OUT.SDFTRANSNUM := COMS_IN.SDFTRANSNUM;
COMS_OUT.TEXTLENGTH := COMS_IN.TEXTLENGTH;
SEND(COMS_OUT,COMS_IN.TEXTLENGTH,APPLFORMRECLIB);

Sending Text Messages

SDF Plus supports the ability to send text messages for display on the text area of a form.
To send a text message, the user application must do the following:

¢ Move the value 200 into the SDFINFO field of the output header.

* Move the text message into a message area to be sent through COMS.
* Use the SEND statement to send the text message.

The text message will be displayed when the next form is displayed.

For information about the extensions used with COMS, refer to Section 3, “Using
Communication Management System (COMS) Features.”

Example

In this example, literal text is moved into the message area. The form to display the text
message is FORM1.

COMS_OUT.SDFINFO := 200;

REPLACE STEXT[0] BY "This is an example of application text" FOR 38;
SEND (COMS_OUT, 38, STEXT);

COMS_OUT.SDFINFO := 0;

COMS_OUT.SDFFORMRECNUM := FORMI1.FORMRECNUM;

SEND (COMS _OUT, COMS_IN.TEXTLENGTH, FORMI);

8600 0734-301 6-15

Using the Screen Design Facility Plus (SDF Plus) Interface

SDF PLUS Sample Programs

Example 1 highlights the different uses of the SDF Plus program interface.

Example 2 demonstrates the use of the SDF Plus program interface with COMS.

Example 1: General Use of SDF Plus Program Interface

The following is a sample program showing different uses of the SDF Plus program
interface. For information about handling remote file errors in an application program,
refer to the SDF Plus Technical Overview.

In this program, a READFORM statement is performed. The transaction number attribute
is then interrogated to determine the form record that was read. The appropriate response
is then indicated by setting the form record number attribute.

The program accepts two string or binary inputs from a remote file, concatenates or adds
them together, and returns the original inputs and the result as outputs on the terminal
screen. The form record library was created in SDF Plus.

$SET LIST STACK
$SET DICTIONARY = "SDFPLUSDICT"

BEGIN
FILE REMFILE (BLOCKSIZE = 2040,
KIND = REMOTE,
MAXRECSIZE = 2040,
BLOCKSTRUCTURE = EXTERNAL,
MYUSE = 10,
UNITS = CHARACTERS) ;

DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB
(DIRECTORY = "SMITH",
VERSION = 1);

BOOLEAN END_PGMV;

EBCDIC ARRAY MYSTRINGL[0:24],
MYSTRING2[0:24],
MYSTRING[0:49] ;

INTEGER MYBNUMBER,
MYBNUMBER1,
MYBNUMBERZ ;

DEFINE BLANK = " "#;

o

PROCEDURE INITIALIZE ALL;
BEGIN REPLACE MYSTRING1 BY BLANK FOR 25;
REPLACE MYSTRINGZ BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER := 0;
MYBNUMBER1 := 03
MYBNUMBERZ := 03
END; % INITIALIZE ALL

6-16 8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

PROCEDURE CONCATSTRINGS;

BEGIN REPLACE MYSTRING1 BY

DTCOMPLEXLIB.APUTALPHAS.PASTRING1 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING1);

REPLACE MYSTRINGZ2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING2) ;

REPLACE MYSTRING BY MYSTRING1 FOR 25, MYSTRINGZ FOR 25;

END; % CONCATSTRINGS

PROCEDURE BINARYADD;

BEGIN MYBNUMBER1 :=
INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBERL) ;
MYBNUMBERZ :=

INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBER?2) ;
MYBNUMBER := MYBNUMBER1 + MYBNUMBERZ;
END; % BINARYADD

PROCEDURE GETBINARY;
BEGIN

DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER1 := MYBNUMBERI;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBERZ := MYBNUMBERZ;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER := MYNUMBER;

END; % GETBINARY

o

PROCEDURE GETALPHAS;

BEGIN

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING1
BY MYSTRING1 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2
BY MYSTRING2 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING
BY MYSTRING FOR 50;

END; % GETALPHAS

o

PROCEDURE MAIN FORM;
BEGIN
LABEL MAIN FORM-EXIT;
IF READFORM (REMFILE, DTCOMPLEXLIB) THEN
BEGIN % true result implies IO operation failed
WRITE(REMFILE,//,"READFORM ERROR");
END_PGMV := TRUE;
GO MAIN_FORM EXIT;
END;
CASE DTCOMPLEXLIB.TRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.AGETALPHASPRE.FORMRECNUM;
GETALPHAS;

8600 0734-301 6-17

Using the Screen Design Facility Plus (SDF Plus) Interface

END;
(DTCOMPLEXLIB.AGETBINARYPTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.AGETBINARYPRE.FORMRECNUM;
GETBINARY;
END;
(DTCOMPLEXLIB.APUTALPHASTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
CONCATSTRINGS;
END;
(DTCOMPLEXLIB.APUTBINARYTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
BINARYADD;
(DTCOMPLEXLIB.AGETALPHASTT.TRANSNUM) :
(DTCOMPLEXLIB.AGETBINARYTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
END;
ELSE:
BEGIN
WRITE(REMFILE,//,"UNKNOWN TRANSACTION");
END_PGMV := TRUE;
GO MAIN_FORM EXIT;
END;
END; % CASE
IF WRITEFORM (REMFILE, DTCOMPLEXLIB) THEN
BEGIN % true result implies IO operation failed
WRITE(REMFILE,//,"WRITEFORM ERROR");
END_PGMV := TRUE;
END;
MAIN FORM EXIT:
END MAIN_FORM;

o

INITIALIZE ALL;
DO MAIN FORM
UNTIL END_PGMV;
END.

6-18 8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

Example 2: Using COMS with the SDF Plus Program Interface

This sample program uses the same programming logic as that in Example 1. However,
this COMS interface example shows the application program interacting with users
through a COMS window. The SDFTRANSNUM field, which is located in the COMS input
header, is interrogated to determine the form record that was read. The response is
indicated by setting the SDFFORMRECNUM field, located in the COMS output header.
Additionally, the program accepts two string or binary inputs from COMS into a message
area declared in the program.

Refer to the COMS Programming Guide for a discussion of COMS programming issues
and a detailed explanation of the COMS features and functions available with each version
of COMS.

$SET LIST STACK
$SET DICTIONARY "SDFPLUSDICT"
BEGIN
DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB
(DIRECTORY = "SMITH",
STATUS = ANY,
VERSION = 1);

o

BOOLEAN END_PGMV;

EBCDIC ARRAY MYSTRING1[0:24],
MYSTRING2[0:24],
MYSTRING[0:49],
STEXT[0:32];

INTEGER MYBNUMBER,
MYBNUMBER1,
MYBYNUMBERZ ;

DEFINE BLANK = " "#;

% COMS declarations
INPUTHEADER ~ COMS_IN;
OUTPUTHEADER COMS_OUT;
EBCDIC ARRAY MSG[0:255];
REAL SDF_AGENDA;
DEFINE EOF _NOTICE = 99#;

LIBRARY SERVICE LIB
(LIBACCESS = BYFUNCTION,
FUNCTIONNAME = "COMSSUPPORT.",
LIBPARAMETER = "02");

INTEGER PROCEDURE GET_DESIGNATOR USING_NAME
(ENTY_NAME,
ENTY_TYPE,
ENTY_DESIGNATOR);
VALUE ENTY TYPE;
EBCDIC ARRAY ENTY NAME[O];
REAL ENTY DESIGNATOR;

8600 0734-301 6-19

Using the Screen Design Facility Plus (SDF Plus) Interface

INTEGER ENTY_TYPE;
LIBRARY SERVICE LIB;
PROCEDURE INITIALIZE COMS;
BEGIN
% get the title of COMS
COMSSUPPORT.LIBACCESS := VALUE(BYTITLE);
REPLACE MSG BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE := STRING(MSG[0],256);
ENABLE (COMS_IN,"ONLINE");
% get the agenda designator

REPLACE MSG[0] BY "JONES", " " FOR 251;
GET DESIGNATOR USING NAME(MSG,3,SDF_AGENDA);
END;

% INITIALIZE COMS;

PROCEDURE INITIALIZE ALL;
BEGIN
REPLACE MYSTRING1 BY BLANK FOR 25;
REPLACE MYSTRINGZ BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER := 03
MYBNUMBER1 := 03
MYBNUMBERZ := 03
END; % INITIALIZE ALL

o

PROCEDURE CONCATSTRINGS;

BEGIN

REPLACE MYSTRING1 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING1 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING1);

REPLACE MYSTRINGZ2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING2) ;

REPLACE MYSTRING BY MYSTRING1 FOR 25, MYSTRINGZ FOR 25;

END; % CONCATSTRINGS

o

PROCEDURE BINARYADD;

BEGIN

MYBNUMBER1 :=
INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBERL) ;

MYBNUMBERZ :=
INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBER?2) ;

MYBNUMBER := MYBNUMBER1 + MYBNUMBERZ;

END; % BINARYADD

o

PROCEDURE GETBINARY;
BEGIN
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER1 := MYBNUMBERI;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBERZ := MYBNUMBERZ;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER := MYBNUMBER;
END; % GETBINARY;

6-20 8600 0734-301

Using the Screen Design Facility Plus (SDF Plus) Interface

PROCEDURE GETALPHAS;

BEGIN

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING1
BY MYSTRING1 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2
BY MYSTRING2 FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING
BY MYSTRING FOR 50;

END; % GETALPHAS

PROCEDURE SENDTEXT;
BEGIN
REPLACE STEXT[0] BY
"-- THIS IS A SEND TEXT TEST -- " FOR 31;
COMS_OUT.SDFINFO := 200;
COMS_OUT.TEXTLENGTH := 31;
SENDSTATUS := SEND (COMS_OUT, 31, STEXT);
END; % SENDTEXT

o

N
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o\

SN
=
b=
—
=
)
)
o
[«p]
)
=
=
N

LABEL MAIN EXIT;

)
%

INITIALIZE ALL;
INITIALIZE COMS;

)
%

DO
BEGIN
RECEIVE
(COMS_IN, DTCOMPLEXLIB);
IF COMS_IN.STATUSVALUE NEQ EOF NOTICE THEN
BEGIN
IF COMS_IN.FUNCTIONSTATUS GEQ O THEN
BEGIN
COMS_OUT.DESTCOUNT := 1;
COMS_OUT.DESTINATIONDESG := COMS_IN.STATION;
COMS_OUT.SDFTRANSNUM := COMS_IN.SDFTRANSNUM;
COMS_OUT.AGENDA := SDF_AGENDA;

o

CASE COMS_IN.SDFTRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT.TRANSNUM) ;
BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.AGETALPHASPRE.FORMRECNUM;
GETALPHAS;
SENDTEXT;
END;
(DTCOMPLEXLIB.AGETBINARYPTT.TRANSNUM) :

8600 0734-301

6-21

Using the Screen Design Facility Plus (SDF Plus) Interface

6-22

o

ELSE

END

)
%

BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.AGETBINARYPRE.FORMRECNUM;
GETBINARY;
END;
(DTCOMPLEXLIB.APUTALPHAS.TRANSNUM) :
BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
CONCATSTRINGS;
END;
(DTCOMPLEXLIB.APUTBINARYTT.TRANSNUM) :
BEGIN
COMS_OUT.SDFFORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
BINARYADD;
END;
(DTCOMPLEXLIB.AGETALPHASTT.TRANSNUM) :
(DTCOMPLEXLIB.AGETBINARYTT.TRANSNUM) :
BEGIN
DTCOMPLEXLIB.FORMRECNUM :=
DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
END;
ELSE:
BEGIN
END_PGMV := TRUE;
GO MAIN _EXIT;
END;
END; % CASE

% set up COMS output header

COMS_OUT.TEXTLENGTH := COMS_IN.TEXTLENGTH;
COMS_OUT.SDFINFO := 0;

SEND (COMS_OUT, COMS_IN.TEXTLENGTH,DTCOMPLEXLIB);
END; % COMS_IN.FUNCTIONSTATUS GEQ O

END % COM_IN.STATUSVALUE NEQ EOF NOTICE

END_PGMV := TRUE;

MAIN EXIT:
UNTIL END_PGMV;

END.

8600 0734-301

Section 7
Using the Semantic Information
Manager (SIM) Interface

Semantic Information Manager (SIM) is a database management system that provides for
the control, retrieval, and maintenance of data.

This section explains how to use ALGOL to manipulate data in an SIM database and
provides samples of typical applications used with SIM. It contains discussions of the
ALGOL extensions developed for the following functions:

Declaring a SIM database
Mapping SIM types into ALGOL
Declaring or discarding a query to a SIM database

Declaring an entity reference variable to explicitly hold a reference to a SIM database
entity

Opening and closing a SIM database
Assigning SIM database attributes
Using statements for transaction state and transaction points

Using selection expressions to determine entities or values within SIM database
statements

Selecting a set of entities and associating it with the query
Altering level values in a transitive closure retrieval
Retrieving entities from the SIM database

Updating entities with single- or multiple-statement updates

Exception handling of SIM statements

Refer to the InfoExec Semantic Information Manager (SIM) Programming Guide for
detailed information on SIM programming considerations. Consult the InfoExec Semantic
Information Manager (SIM) Technical Overview for SIM concepts. For information on
defining files and elements in SIM, refer to the InfoExec ADDS Operations Guide.

For programming considerations when using SIM and COMS together, consult the
InfoExec SIM Programming Guide.

8600 0734-301 7-1

Using the Semantic Information Manager (SIM) Interface

The SIM interface uses the following ALGOL type 2 reserved words:

ABORTTRANSACTION DMMATCH INVERSE

ALL DMMAX MODIFY
APPLYINSERT DMMIN NONE
APPLYMODIFY DMNEXTEXCEPTION ORDER
BINARY DMPOS ORDERING
CANCELTRPOINT DMPRED QUERY
COLLATING DMRECORD RECORD
CURRENT DMRPT REFERENCE
DISCARD DMSQRT RETRIEVE
DMABS DMSUCC SAVETRPOINT
DMAVG DMSUM SELECT
DMCHR DMTRUNC SEMANTIC
DMCONTAINS ENTITY SETTOCHILD
DMCOUNT EQV_EQL SETTOPARENT
DMEQUIV EQV_GEQ SOME
DMEXECEPTIONINFO EQV_GTR STARTINSERT
DMEXCEPTIONMSG EQV_LEQ STARTMODIFY
DMEXCLUDES EQV_LSS SUBROLE
DMEXISTS EQV_NEQ TRANSITIVE
DMEXT EXCLUDE TYPE

DMISA EXISTS USING
DMLENGTH INCLUDE WHERE

The SIM, Data Management System II (DMSII), Communications Management System
(COMS), and Advanced Data Dictionary System (ADDS) interfaces can be used within the
same program. For example, both SIM and DMSII data bases can be accessed in the same
program. COMS and SIM work together to provide a recoverable transaction system for a
SIM database. The DICTIONARY and RANGECHECK options of the ADDS interface can
also be used as SIM extensions.

Note: Ifthe DICTIONARY compiler control option does not appear before the first
executable statement, SIM defaults to the dictionary titled “DATADICTIONARY"
and the program might not compile properly.

Note that if DMSII and SIM databases are accessed in the same program, each database

must be invoked, manipulated, and processed with its own extensions. Use DMSII and
BDMSALGOL extensions for DMSII databases. Use SIM extensions for SIM databases.

7-2 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Additional information relating to ADDS, COMS and DMSII is included in Section 3, “Using
Communications Management System (COMS) Features,” and Section 4, “Using the Data
Management System II (DMSII) Interface.”

Using ADDS Extensions as SIM Extensions

ADDS can be used to define a SIM database. However, different methods of data retrieval
are used when directly interfacing to ADDS and when using SIM to interface to ADDS.

¢ When a program accesses ADDS directly, the compiler links directly to ADDS to get
the non-SIM data descriptions.

¢ When a program accesses SIM, it indirectly accesses ADDS. The compiler does not
link directly to ADDS.

If a program accesses both ADDS and SIM, it gets two links to ADDS; one direct and one
indirect. Tracking data is not integrated.

The DICTIONARY and the RANGECHECK compiler control options, as well as the
LENGTH, OFFSET, POINTER, and UNITS functions can also be used as SIM extensions.
More detailed information about the ADDS extensions that are used with SIM is included
in Section 2, “Using Advanced Data Dictionary System (ADDS) Extensions.”

Purpose of the Dictionary Option

The DICTIONARY compiler control value option establishes the data dictionary to use
during compilation. A dictionary must be established before the first executable
statement. The dictionary specified in the first occurrence of a DICTIONARY option is
used as the data dictionary. All other occurrences are ignored. If a dictionary is not
specified, SIM defaults to the dictionary titled “DATADICTIONARY” and the program may
not compile properly.

Purpose of the Rangecheck Option

The RANGECHECK option is a Boolean option that causes the compiler to generate code
that performs range checking at run time on values that were not known at compile time.
The option is set by default. A run-time fault occurs if a value fails a range check; the
program is discontinued and an “Invalid Operation” is reported.

8600 0734-301 7-3

Using the Semantic Information Manager (SIM) Interface

Purpose of Functions

7-4

The following ADDS functions can be used with SIM. All of these functions can be used
with DMRECORDs.
« LENGTH function

The LENGTH function returns the length of a specified entity in the designated units.
e OFFSET function

The OFFSET function returns the number of units that the specified entity is indexed
from the beginning of the outermost record in which it is declared.

¢« POINTER function
The POINTER function returns a pointer to the specified input.
¢ RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SIM DMRECORDs, the size is given in bytes. The size of the entire array
is changed, regardless of the record's position in the array.

e SIZE function

The SIZE function returns the size of the array underlying a given record identifier.
For SIM DMRECORDs, the size is given in bytes. The size returned is an integer
representing the size of the entire array, regardless of the record's position in the
array.

e UNITS function

The UNITS function accepts an entity as input and returns, as an integer value, the
default unit size expected by the LENGTH and OFFSET functions.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Declaring a SIM Database

<database declaration>
— SEMANTIC — DATABASE — <database reference> }

<database reference>

i —

— <database name>

L <entity qualifiers> il

»— <classID Tist> —) }

<classID list>

| ’ < | |
class ID>
|—<a11‘as ID>—=J !

<alias ID>

— <identifier> |

<class ID>

— <identifier> |

Explanation

A SEMANTIC DATABASE declaration specifies the SIM database to be used in a query.
Only included classes and attributes belonging to the included classes can be used in a

query.

Multiple SIM databases can be declared in a program. A SIM database can be declared
more than once in the same program. Refer to the InfoExec SIM Programming Guide for
the SIM-defined limit to the number of SIM databases that can be declared in one program.

SIM and DMSII databases can be used in the same program, including separately compiled
programs that are bound. Each database must be declared in its own DATABASE
declaration. A DMSII database is available only from BDMSALGOL.

Note that if DMSII and SIM databases are accessed in the same program, each database
must be invoked, manipulated, and processed with its own extensions. Use DMSII and
BDMSALGOL extensions for DMSII databases. Use SIM extensions for SIM databases.

Two different databases can be updated in the same program only if they are the same
physical database.

Before a SIM database can be used in a SIM statement, it must be declared and opened.

Also, an access method must be stated. The ADDS for the database must be specified in
the DICTIONARY compiler control value option that appears before the first executable
statement.

Any hyphens in the identifier of an entity are translated to underscores by the ALGOL
compiler before the identifier is passed to SIM.

8600 0734-301 7-5

Using the Semantic Information Manager (SIM) Interface

The prefix “SEMANTIC” identifies the database as a SIM database. If the prefix is not
used, a DMSII database is assumed.

A SIM database can be invoked more than once. The database name construct is the name
of the declared SIM data base. If there are multiple SIM databases involved in a query, the
entity qualifiers are used to resolve any ambiguity. The database name must be unique
within scope rules.

The class ID list construct is a list of the SIM database classes used by the program. If the
program accesses more than one SIM database, naming conflicts can occur among the
database classes. Using the alias ID construct ensures uniqueness of the class names. If
only one SIM database is declared in the program or if there are no conflicts, no alias is
needed.

Additional information relating to the entity qualifiers construct is included under “Entity
Qualifiers” in Section 2, “Using Advanced Data Dictionary System (ADDS) Extensions.”

Additional information relating to SIM database declarations is included under “SIM OPEN
statement” in this section and “Invoking a DMSII Database” in Section 4, “Using the Data
Management System II (DMSII) Interface.” Related information is also available under
“DICTIONARY Option: Establishing a Data Dictionary” and “Entity Qualifiers” in Section 2,
“Using Advanced Data Dictionary System (ADDS) Extensions.”

Examples

In the following example, the SIM database UNIVDB is declared. It is qualified by its name
and version. The class list includes the classes INSTRUCTOR and COURSE. An alias,
CLASS, is equated with the class COURSE. Note the colon (:) preceding the class list.

SEMANTIC DATABASE UNIVDB
(NAME = UNIVERSITYDB, VERSION = 103) :
(INSTRUCTOR, CLASS = COURSE);

In the following example, the same database is declared without a repository. The
database qualifiers specify that the database files can be located under the DEV usercode
on the TEST pack.

SEMANTIC DATABASE UNIVDB
(NAME = UNIVERSITYDB,
USERCODE = "DEV", PACKNAME = "TEST"):
(PERSON, TEACHER = INSTRUCTOR);

7-6 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Mapping SIM Types Into ALGOL

SIM data items are normally mapped from the SIM database into an ALGOL program
according to the default types shown below in Table 7-1. Fields, however, can be declared
in DMRECORDs with any of the permitted types. When this occurs, the compiler emits
code to perform the mapping to the default type.

Table 7-1. Mapping SIM Types into ALGOL

SIM Type Default Type Permitted Type
Integer, Date, Time, Subrole Integer Real, Double, Integer
Real Real Double, Integer, Real
Number Double, Integer Integer, Real, Double
Character EBCDIC array [0:0] EBCDIC array[O:n]
Fixed & Variable String, EBCDIC array[0:n] EBCDIC

Symbolic

KANJI Character EBCDIC array[0:n*2] None

KANJI String Coerced into EBCDIC None

Boolean Boolean Real, Boolean
Compound Attribute Record Record

Entity Reference Entity Reference Entity Reference
Range Base type Base type
Enumeration Base type Base type

The SIM type “date” is mapped into an ALGOL integer. In an arithmetic form, the date can
be used with arithmetic operators such as MOD and DIV. The date is in the format

“YYYYMMDD”. The format is explained in the following table.

Symbol Meaning
YYYY A four-digit representation of the year
MM A two-digit representation of the month
DD A two-digit representation of the day

For example, “19891003” is October 3, 1989.

8600 0734-301

7-7

Using the Semantic Information Manager (SIM) Interface

The SIM type “time” is also mapped into an ALGOL integer. The time is in the format
“HHMMSS”. The format is explained in the following table.

Symbol Meaning
HH A two-digit representation of the hour
MM A two-digit representation of the minutes
SS A two-digit representation of the seconds

For example, “102359” is 10:23:59. Note that if you use a value that is less than six digits,
leading zeroes are assumed.

As a default, the SIM type “number” is mapped as either a double or an integer. The default
is double when the number is greater than 11 digits. The default is integer when the
number is less than or equal to 11 digits.

If you use a string type or a symbolic type, remember that the upper bound of the default
ALGOL type is set up to handle the largest possible string or symbolic value.

¢ For string types, the default upper bound is equal to the maximum string length
permitted by the compiler minus one.

¢ Symbolic types have a fixed length of 30 regardless of the symbolic value. The default
upper bound is therefore 29.

If you declare an upper bound that is less than the default, the compiled program displays
a warning message when an associated SELECT statement is executed.

SIM types are explained in the InfoExec Semantic Information Manager (SIM) Technical
Overview. ALGOL types, except Record and Entity Reference, are explained in Volume 1
of this manual.

Additional information relating to SIM types is included under “Declaring an Entity
Reference Variable Data Type,” and “Type Declaration and Invocation for SIM” in this
section. Related information is also available in the definintion of record types under
“ALGOL Data Types for ADDS” in Section 2, “Using Advanced Data Dictionary System
(ADDS) Extensions.”

7-8 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Queries

A query refers to both inquiry and update requests to a SIM database. A query consists of
the query statement, the query variable, and the DMRECORD.

A query statement is sent to SIM to instruct the SIM database about the action to be
performed. Query statements are constructed by the compiler from the SELECT, MODIFY,
INSERT, and DELETE statements. (The multiple-statement MODIFY and INSERT update
assignments are constructed as query statement fragments.) The query statements are
precompiled and stored with the object code until run time, when SIM acts on the
precompiled statements. One query statement can be associated with more than one query
variable.

The query variable represents an active query. It contains information about the state of
the query. The query variable can be associated with more than one query statement, but
only one query variable can be active at any time.

The DMRECORD gives the format of the data to be retrieved. A DMRECORD can be used
for multiple query statements, as long as the structure of the record is compatible with the
data to be retrieved.

Perform the following steps to create and use a query:

1. Declare and open the SIM database.

2. Declare the query variable and all other needed variables.
3. If desired, put the program in transaction state.
4

Execute the query. A query consists of statements that select, retrieve, and manipulate
the entities.

5. Take the program out of transaction state as needed. When the query is no longer
needed, close it with a DISCARD statement.

The DATABASE declaration specifies the SIM database. Only the classes included in the
declaration can be used in queries. The OPEN statement makes the SIM database
accessible and specifies an access mode.

The BEGINTRANSACTION statement initiates transaction state.

The SELECT, SETTOPARENT, SETTOCHILD, and RETRIEVE statements are used to
select the entities for the query and to retrieve the data.

The SELECT statement is used to associate a selected set of entities with the query and to
map SIM database attributes to previously defined DMRECORDs. Selection expressions
can be used within the SELECT statement to specify which entities are to be included in
the selected set.

For all queries, a selection expression is used to identify the set of entities upon which the

query operates. The selection expression serves to narrow the group of entities in the
perspective class and classes of interest for the scope of the query.

8600 0734-301 7-9

Using the Semantic Information Manager (SIM) Interface

A global selection expression applies to the whole query. A local selection expression
applies only to a specific entity-valued attribute (EVA).

The RETRIEVE statement is used to retrieve the data.

The SETTOCHILD and SETTOPARENT statements are used to manipulate the levels
involved in a selection and retrieval in transitive closure.

The query can be closed by ending the transaction state with an ENDTRANSACTION
statement (if the selection occurred within transaction state), by closing the SIM database
with a CLOSE statement, or discarding the current query with a DISCARD statement.

Query variables can be passed as by-name parameters. Program variables and expressions
can be used within query statements. DMRECORDs cannot be the target of an assignment;
however, database attributes to be modified or inserted that are associated with a query
variable can be the target of a SIM database assignment.

The SIM statements and the data management (DM) functions described in this section
are used to manipulate the query and the retrieved data.

SIM supports a variety of functions which, when used within a query, are evaluated during
the course of the query execution by the SIM system. These functions are explained in this
section.

Additional information relating to SIM queries is included under “SIM Statements,” “Using
Data Management Functions and Expressions,” “Type Declaration and Invocation for SIM”
and “Declaring an Entity Reference Variable Data Type” in this section.

Retrieval and Update Queries

7-10

Retrieval queries are always used with the SELECT statement.

A retrieval query can span one or more classes. Generally, there is one class that a query is
directed from, the perspective class. Additional classes are viewed in relation to the
perspective class. The relationships are maintained via entity-valued attributes (EVAs).

When there are multiple classes of interest in a retrieval query, the classes must be
connected so that common entities can be selected. For example, if STUDENT and
INSTRUCTOR are both classes, it is possible to find students and instructors with the
same name or with the same age.

The layout of retrieved data is specified as part of the query and does not need to bear any
direct resemblance to the physical or conceptual layout of the data. However, it must be
consistent with the conceptual layout, as determined by SIM.

Update queries are used in transaction state to update entities using the attribute

assignment statements. Update queries can be used for limited purposes with the SELECT
statement.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

There are two different forms of update statements, single- and multiple-statement
updates.

* With a single-statement update, all assignments are executed at the point where a
MODIFY or INSERT statement is encountered.

¢ The multiple-statement update enables dynamic specification of the attribute
assignments to be applied for the specified update. At run time, the multiple-statement
update is dynamically delimited by the START and APPLY syntax of the MODIFY and
INSERT statements.

Additional information relating to retrieval and update queries is included under
“Declaring a Query Data Type,” “Queries,” “RETRIEVE Statement,” “SELECT Statement,”
“SIM MODIFY statement,” “SIM INSERT statement,” and “SIM DELETE statement” in this
section.

8600 0734-301 7-11

Using the Semantic Information Manager (SIM) Interface

Declaring a Query Data Type

<query declaration>

<DMRECORD ID>
<DMRECORD type ID> —

— QUERY — <query ID> — («E <class ID>) }

<query ID>

— <identifier> I

Explanation

7-12

The QUERY declaration specifies the name of the query variable and the classes or types
used in the query.

Additional information relating to the query declaration is included under “Retrieval and
Update Queries,” and “Queries” in this section.

The query ID construct identifies the query.

The class ID construct identifies the class to be modified in a multiple-statement update. A
class cannot be accessed unless it has been declared in the class list of an opened SIM
database.

In retrieval queries and in update queries that use a SELECT statement, the class ID is
used to establish the current path in the SIM database. The query ID can be passed as an
argument to the CURRENT function.

For a retrieval query, the construct DMRECORD type ID identifies a previously defined
DMRECORD type. This construct is the user-defined name associated with the format.

If you use a query that is not declared in the outer block of the program, use the DISCARD
statement to close that query when it is no longer needed. This statement prevents the
program from unnecessarily consuming and failing to allow reuse of valuable resources
from SIM and potentially causing a run-time limit error.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section. Information on the DMRECORD ID construct is included
under “Declaring DMRECORDS?” in this section. Information on the DMRECORD type ID
contruct is included under “Type Declaration and Invocation for SIM” in this section.

Additional information relating to SIM queries is included under “Type Declaration and
Invocation for SIM,” “Declaring a SIM Database,” and “DISCARD Statement” in this
section. Related information is also available in the description of the CURRENT function
under “Selection Expressions” in this section. Refer to the InfoExec SIM Programming
Guide for information about query concepts, use of update and retrieval queries, and use
of the CURRENT function with queries.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Example

The following example declares several queries. The first two queries specify class
identifiers. The class STUDENT will be used in UPDATE_STU_QUERY and the class
INSTRUCTOR will be used in INSTRUCTOR_QUERY. The next queries specify
DMRECORD identifiers. The previously defined DMRECORD STU_REC will be used in
STUQ and the previously defined DMRECORD COURSE_REC will be used in COURSEQ.
And, the previously defined format INQ_TYPE will be used in INQUIRYQ.

TYPE DMRECORD INQ TYPE
(INTEGER SOC_SEC_NO;
EBCDIC ARRAY NAME [0:29]);

QUERY UPDATE_STU QUERY (STUDENT), % STUDENT is a class ID
INSTRUCTOR QUERY (INSTRUCTOR), % INSTRUCTOR is a class ID
STUQ (STU_REC), STU_REC is a DMRECORD ID
COURSEQ (COURSE_REC), COURSE_REC is a DMRECORD ID
INQUIRYQ (INQ TYPE); INQ_TYPE is a DMRECORD TYPE

N o°

o

8600 0734-301 7-13

Using the Semantic Information Manager (SIM) Interface

Declaring DMRECORDS

<DMRECORD declaration>
DMRECORD

L <packing spec> J

> <omReCORD 10> L: 5 | |
<field Tist>

<packing spec>
— UNPACKED |

<field list>

- (REAL <field ID>)

BOOLEAN
DOUBLE

INTEGER

— <entity reference declaration>

— RECORD J» <field ID> — <field Tist>

'— EBCDIC ARRAY J» <field ID> — <bound pair> J-

<DMRECORD ID>

— <identifier> |

<field ID>

_ <identifier> '

Explanation

A DMRECORD consists of fields which are used to hold information retrieved from SIM.
References to a field must be fully qualified. The type of the DMRECORD variable must be
compatible with the data to be retrieved.

The DMRECORD hold hidden control information provided by SIM to show which fields

are null and have no current value. The EXISITS function is provided to determine
whether or not a field is marked as being null. The RETRIEVE statement is used to write

7-14 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

data into a DMRECORD variable. All other uses of DMRECORD variables are read-only.
The compiler does not provide any protection to prevent the user from accessing a
DMRECORD variable before a RETRIEVE has been executed.

A DMRECORD can be bound to other DMRECORDs. Refer to “Binding Considerations” in
this section for more information.

Use the DMRECORD declaration to declare a DMRECORD variable. Use the DMRECORD
type declaration to declare a DMRECORD record structure description. The DMRECORD
type declaration must be used whenever a DMRECORD is passed as a parameter.

A packing spec construct specifies the record packing. The default is UNPACKED.
Unpacked records begin each field on a word boundary, regardless of where the previous
field ends.

The DMRECORD ID is the name within the program of the variable being declared.

The field list contains the type and field ID of the fields that comprise the DMRECORD.
The fields can be of type Real, Boolean, Double, Integer, Entity Reference, Record, or
EBCDIC array. All types other than Entity Reference and Record are described in
Volume 1. Also consult Volume 1 for a complete explanation of bound pairs in an array.

Fields of type Record enable nested structured data and are used to hold compound
attributes. A compound attribute has several parts. For example, a name might be a
compound attribute with the first, middle, and last names comprising the parts. As a
result, Record fields are broken down into subfields, each one associated with one part of
the compound attribute. Note that although Record fields can be nested, a DMRECORD
itself cannot be nested in another DMRECORD.

Record type fields do not provide generalized records in ALGOL. They can be declared
only as fields within DMRECORDSs, and are subject to the same restrictions as the other
field types.

The field ID construct is the name of the field. A field and a variable can share the same
name, since context can be used to determine which one is being referenced.

Additional information relating to the fields of a DMRECORD is included under
“Referencing DMRECORD Fields” in this section. Information on the class ID construct is
included under “Declaring a Database” in this section. Information on the entity reference
declaration construct is included under “Declaring an Entity Reference Variable Data
Type” in this section.

Additional information relating to DMRECORDS is included under “Declaring an Entity
Reference Variable Data Type,” “Mapping SIM Types into ALGOL,” “TYPE Declaration and
Invocation for SIM,” “Binding Considerations for SIM,” “Using DMRECORDS and Their
Fields,” “RETRIEVE Statement,” and “Referencing DMRECORD Fields” in this section.
Information on the EXISTS function is included under “DM Boolean Functions” in this
section.

Related information is also available under “ALGOL Data Types for ADDS” in Section 2,
“Using Advanced Data Dictionary System (ADDS) Extensions.”

8600 0734-301 7-15

Using the Semantic Information Manager (SIM) Interface

Example

In the following example, a DMRECORD with the name STU_REC is declared. STU_REC
has a nested Record field, a Real field, an EBCDIC array field, and an Entity Reference
field.

DMRECORD STU_REC
(RECORD STU NAME (EBCDIC ARRAY FIRST [0:50],
LAST [0:50],
MIDDLE [0:50]);
REAL TITLE CODE;
EBCDIC ARRAY MINOR [0:10];
ENTITY REFERENCE COURSE TAKING (COURSE));

7-16 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Type Declaration and Invocation for SIM

<DMRECORD type declaration>
— TYPE DMRECORD

L <packing spec> J

> <DMRECORD type 1D> ’I_ 5 | |
<field Tist>

<DMRECORD type invocation>

— <DMRECORD type ID> J— <DMRECORD ID> I

<DMRECORD type ID>

— <identifier> }

Explanation

A DMRECORD is a structured data type, consisting of fields, which is used to hold
information retrieved from SIM. The structure is described in a TYPE declaration. The
type of the DMRECORD variable must be compatible with the data to be retrieved.

The TYPE declaration is used to associate a user-defined name with a user-defined format.
The format can then be used as a data description. Normally, a declaration creates a
structure as a variable. In contrast, the TYPE declaration does not create a variable; it
simply defines a type identifier that can be used to declare record variables. A type
identifier is associated with the DMRECORD declaration. In effect, the type identifier is
the name of a record structure description.

Only variables that share the same entity description and type are compatible. The TYPE
declaration provides compatibility for the DMRECORDSs. Records described by separate,
distinct entities and identical in content are not compatible if they do not share the same
type identifier.

A TYPE declaration must precede a type invocation. The type invocation declares records
that have the structure associated with the type identifier.

Additional information relating to SIM type declarations is included under “Declaring
DMRECORDS,” “Referencing DMRECORD Fields,” and “Binding Considerations for SIM”
in this section. Related information is also available under “ALGOL Data Types for ADDS ”
in Section 2, “Using Advanced Data Dictionary System (ADDS) Extensions.”

The DMRECORD type ID construct is the user-defined name associated with the format.
In the type invocation, each DMRECORD specified by a DMRECORD type identifier has
the structure defined by the type identifier in the TYPE declaration. In the DMRECORD
type declaration syntax, the DMRECORD type ID is the name of a DMRECORD structure
description.

8600 0734-301 7-17

Using the Semantic Information Manager (SIM) Interface

The field ID construct is the name of the field. The names of the fields in a TYPE
declaration must be unique across that specification. However, field names need not be
unique across different TYPE declarations. A field and a variable can share the same
name, since context can be used to determine which one is being referenced.

Additional information relating to the DMRECORD declaration, DMRECORD ID, packing
spec, and field list constructs is included under “Declaring DMRECORDS” in this section.
Related information is also available under “Referencing DMRECORD Fields” in this
section.

Examples

In this example, a TYPE declaration defines the DMRECORD INSTR_REC_TYPE as three
fields. The first two fields, EMPLOYEE_NO and HDATE, are type Integer. The third field is
an EBCDIC array whose field ID is NAME. There is no record until the type is invoked and
referenced by the DMRECORD identifier.

TYPE DMRECORD INSTR REC_TYPE
(INTEGER EMPLOYEE NO, HDATE;
EBCDIC ARRAY NAME [0:10]);

INSTR_REC_TYPE INSTR REC;

In the following example, the TYPE declaration defines the DMRECORD STU_REC_TYPE
as having a nested Record field, a Real field, an EBCDIC array field, and an Entity
Reference field. The variable STUDENT_RECORD will have the format described by
STU_REC_TYPE. There is no record until the type is invoked and referenced by the
DMRECORD identifier.

TYPE DMRECORD STU REC TYPE
(RECORD STU_NAME (EBCDIC ARRAY FIRST [0:50],
LAST [0:50],
MIDDLE [0:50]);
REAL TITLE CODE;
EBCDIC ARRAY MINOR [0:10];
ENTITY REFERENCE COURSE TAKING (COURSE));
STU_REC_TYPE STU_RECORD;

In the following example, the DMRECORD COURSE_REC_TYPE is defined as having
three EBCDIC array fields. The variable COURSE_RECORD will have the format
described by COURSE_REC_TYPE. There is no record until the type is invoked and
referenced by the DMRECORD identifier.

TYPE DMRECORD COURSE REC TYPE
(EBCDIC ARRAY COURSE TITLE [0:100],
COURSE_MAJOR [0:50],
PROFESSOR [0:20]);
COURSE_REC TYPE COURSE_RECORD;

7-18 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Referencing DMRECORD Fields

<DM field reference>

— <DMRECORD ID> —— . — <field ID> |

<subscript>

<partial word part> —
References to a field in a DMRECORD must be fully qualified; all nested field names must
be specified.

Note that DMRECORD variables are basically read-only. Only the RETRIEVE statement
can write to a DMRECORD variable. Therefore, references to the fields are restricted to
read-only instances.

Additional information relating to the DMRECORD ID and field ID constructs is included
under “Declaring DMRECORDS?” in this section.

Additional information relating to DMRECORD fields is included under “RETRIEVE
Statement” and “Type Declaration and Invocation for SIM” in this section.

Explanation

The DMRECORD ID construct is the variable for the previously specified format and type.
The field ID construct is the name of a field in the previously specified format and type.
Field names need not be unique across different TYPE DMRECORD declarations. A field
and a variable can share the same name if the context can be used to determine which one
is being referenced. Each reference to a field must, however, be fully specified.

A subscript specification is only permitted for fields of type EBCDIC array.

The partial word part syntax is permitted only for fields of type Real, Integer, and Boolean.

Example

This example references the field PROFESSOR in the DMRECORD variable
COURSE_RECORD.

IF PROF_REC.EMPLOYEE NO = 12 THEN ...
WHILE COURSE_RECORD.PROFESSOR = "PROFA" DO ...

8600 0734-301 7-19

Using the Semantic Information Manager (SIM) Interface

Using DMRECORDS and Their Fields

Fields in a DMRECORD can be individually examined. They can be individually validated
through the EXISTS function. However, the fields can be altered only by SIM. The value in
a field can be assigned to variables of compatible types.

Fields can be passed as parameters to procedures. When an individual field is passed,
information about whether the field is null is not passed with the field.

Passing Fields of Type Real, Boolean, Double, and Integer

Fields of type Real, Boolean, Double, and Integer can be used as actual pass-by-value
parameters to a formal parameter of the appropriate type.

Passing Fields of Type Entity Reference
Fields of type Entity Reference cannot be passed directly; they can be assigned to a
regular Entity Reference variable which can then be passed.

Passing Fields of Type Record

Fields of type Record cannot be passed directly; however, the fields of the Record field
can be passed individually. For example, if a record contains three EBCDIC fields, each
can be passed separately.

Passing Fields of Type EBCDIC Array

Fields of type EBCDIC array can be passed to a formal parameter that is declared as an
“”_ pounded EBCDIC array. An attempt by the procedure to write into an actual parameter
that is an EBCDIC array field in a DMRECORD results in a run-time error.

Passing an Entire DMRECORD Variable

If the formal parameter is declared and invoked through a DMRECORD type declaration
and invocation as having exactly the same format and type as the actual parameter, then
the entire DMRECORD variable can be passed as a parameter.

7-20 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

The following example shows both the correct and incorrect usage of a DMRECORD as a
parameter.

BEGIN
TYPE STU_REC_TYPE DMRECORD (REAL STU_NUM;
RECORD STU NAME (EBCDIC ARRAY LAST [0:20];
REAL TITLE_CODE));
TYPE INSTR _REC TYPE DMRECORD (REAL INSTR_NUM);

STU_REC_TYPE STUDENT RECORD;
INSTR_REC_TYPE INSTR;

PROCEDURE P (X);
STU_REC_TYPE X;
BEGIN
REAL A;
A := X.STU_NAME.TITLE_CODE;
END; % OF PROCEDURE P

P (STUDENT RECORD); % LEGAL BECAUSE ACTUAL AND FORMAL ARE
EXACTLY THE SAME TYPE.

N

P (INSTR);

N

ERROR BECAUSE ACTUAL AND FORMAL ARE
NOT EXACTLY THE SAME TYPE.

N

END.

Note that two DMRECORD formats, even if they have exactly the same layout, are not the
same; they are considered to be two different types.

Assigning Pointers
Pointers can be assigned to a DMRECORD variable and to a field within a DMRECORD.
Any attempt to replace into a DMRECORD variable through a pointer results in a run-time
error.

Output of Real, Boolean, Double, Integer, and EBCDIC Array Fields
Formatted and regular output of type Real, Boolean, Double, Integer, and EBCDIC array
fields is supported exactly as formatted I/O for variables of these types.

Output of Entity Reference and Record Fields
Output of fields of type Entity Reference is not supported in any form because Entity

References are basically pointers into a SIM database and they are only valid while the
program is in transaction state.

8600 0734-301 7-21

Using the Semantic Information Manager (SIM) Interface

Record fields cannot be elements in a write statement. Regular and formatted output of
Record fields is not permitted because they can contain an Entity Reference field.

Output of DMRECORD Variables

Regular and formatted output of DMRECORD variables is not supported.

Binding Considerations for SIM

A DMRECORD variable can be bound to another DMRECORD variable or to an “*”-bound
EBCDIC array. A DMRECORD can also be bound to any other record type that can be
bound to an “*”-bound EBCDIC array. The Binder program does not check the record
structures for compatibility; therefore, it binds DMRECORD variables to similarly defined
DMRECORDs.

Procedures that have DMRECORD formal parameters can also be bound, but type
checking will not be performed at bind time. The user must ensure that the types of the

formal and actual parameters are identical.

Refer to the Binder Programming Reference Manual for more information.

Impact of Declaring a Variable in a Subprogram

How the variable is declared in a subprogram determines what the subprogram can do
with the variable and whether the variable is properly protected against write access.

» If the subprogram declares the variable as a DMRECORD variable, the DMRECORD
variable can be accessed through the described fields. Functions such as EXISTS can
be used.

e If the subprogram declares the variable as another type of record variable, the
variable can be accessed through the field names of the record. The semantic rules for
that type of record variable are enforced.

e If the subprogram declares the variable as an EBCDIC array, no field-oriented access
can be used. Assignment to the variable is permitted.

Impact of Packing

7-22

The type of packing being used is an important consideration when more than one
language is being bound together. The default packing type is not the same for every
language. For example, the ALGOL default begins each field on a word boundary while
COBOL starts a field immediately after the previous field. It might be necessary to declare
filler fields in the COBOL description of a DMRECORD in order to have it match an
ALGOL DMRECORD correctly.

The type of packing for a DMRECORD is specified in the TYPE DMRECORD declaration.
The default packing is UNPACKED.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Declaring an Entity Reference Variable Data Type

<entity reference declaration>

— ENTITY REFERENCE —— <entity ref ID> — (— <class ID> —) J—|

<entity reference array declaration>
— ENTITY REFERENCE ARRAY

> <ent ref array 10> — (— <class ID> —) — [— <b.p. Tlist> —] J—|

<entity ref ID>

— <identifier> }

<entity ref array ID>

— <identifier> }

Explanation

An Entity Reference variable is used to contain an explicit reference to a SIM database
class entity. The variable can be an array. The SIM database containing the class must be
declared prior to the ENTITY REFERENCE declaration.

An Entity Reference variable can be used to compare and assign entity-valued attribute
(EVA) values without having to select and retrieve the entities involved. For example, you
might need to know if the advisor of two selected students is the same entity. You can
retrieve the entity reference value for each student's advisor and compare them. The
entity reference values can also be assigned to EVAs.

In general, extended attributes are qualified by EVAs. An extended attribute can be
immediate to a class which is connected to a perspective class through intermediary
classes. In these cases, chains of EVAs are used in the qualification.

Each Entity Reference variable is associated with one specific class. Entity Reference
variables can only be assigned and compared with Entity Reference variables and EVAs
associated with the same class. This data type cannot be compared with arithmetic or
string variables or used in arithmetic or string expressions.

Entity reference values are only valid in the transaction state in which they are retrieved.
Using an entity reference value outside of transaction state, or in a different transaction
state, will result in a run-time error. Entity References can be passed as by-name
parameters provided the program remains in transaction state.

Additional information relating to entity reference variables is included under “Selection
Expressions” in this section, particularly in the description of the CURRENT function.

8600 0734-301 7-23

Using the Semantic Information Manager (SIM) Interface

The constructs entity ref ID and ent ref array ID identify the variable.
The class ID construct specifies the class associated with the Entity Reference variable.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section.

The b.p. list construct designates the bound pair list. The subscript bounds for an array are

given in the first bound pair list following the array identifier. Refer to Volume 1 for a
complete explanation of bound pair lists in an array declaration.

Examples

In the first example, the Entity Reference variable ADVISOR1 references the class
INSTRUCTOR. STUDENT_TRANSCRIPT references the class TRANSCRIPT.

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR),
STUDENT_TRANSCRIPT (TRANSCRIPT);

In the second example the Entity Reference variable ADVISORS is an array. Its class, with
a bound pair list, is INSTRUCTOR.

ENTITY REFERENCE ARRAY ADVISORS (INSTRUCTOR) [0:9];

7-24 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Using Data Management Functions and Expressions

All data management (DM) functions are forwarded to SIM for complete evaluation. The
arguments of a function can contain references to unretrieved values in the SIM database.
At run time, ALGOL expressions are evaluated to single values and passed to SIM by value.
ALGOL operators, precedence rules, and type compatibility are expected in all ALGOL
expressions.

The DM functions are

* Arithmetic functions
» String functions

* Symbolic functions
* Boolean functions

DM expressions are ALGOL expressions in which the following primaries are permitted:

* DM functions

* Qualification identification

e C(Class identification

e Selection expression

¢ Inverse entity-valued attributes

A DM primary is not permitted in a pointer expression, complex expression, ALGOL

function, or array subscript. Consult Volume 1 for more information on primaries.

The selection expression is used to determine which database entities are available for
retrieval, deletion, or modification. Both global and local selection expressions are
supported. All selection expressions are evaluated according to ALGOL rules and then
sent to SIM.

The ALGOL formats for using SIM functions and the selection expression are covered in
this section. Refer to Volume 1 for a comprehensive explanation of

* Arithmetic expressions and operators

* Boolean expressions and operators

e String expressions

* Relational operators

The InfoExec SIM Programming Guide discusses these concepts as they relate to SIM.

8600 0734-301 7-25

Using the Semantic Information Manager (SIM) Interface

DM Arithmetic Functions

<DM arithmetic functions>

—— DMCOUNT - (<qual ID>) |
4|: <class ID> J
DMAVG (- <qual ID> -)
— DMSUM
— DMMIN
— DMMAX
DMROUND (— <arithmetic expression> —)
— DMTRUNC
— DMABS
— DMSQRT
— DMPOS — (— <str exp> — , — <str exp>) —
|— , — <integer> J
— SUBROLE - (— <class ID> -)
L DMLENGTH - (— <string expression> —)

Explanation

7-26

The DM arithmetic functions return arithmetic values.

The DMCOUNT function accepts a class, a data-valued attribute (DVA), or an entity-
valued attribute (EVA). All other functions accept only a data-valued attribute.

The qual ID construct qualifies a DVA or EVA to the environment to which the function is
attached.

Arithmetic expressions are expressions that return numerical values. String expressions
using the SIM interface return EBCDIC strings and must be constant string expressions.
Their length must be able to be determined at compile time. Constant string expressions
and primaries include string constants, SIM attributes of type string or symbolic, EBCDIC
fields of DMRECORDS, and Advanced Data Dictionary System (ADDS) structures. String
variables and string arrays cannot be used in SIM expressions.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section. Information on the qual ID construct is included under
“Selection Expressions” in this section. Refer to Volume 1 of this manual and to the
InfoExec SIM Programming Guide for a complete discussion of arithmetic and string
expressions.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Table 7-2 below gives the function keyword and the corresponding value returned.

Table 7-2. DM Function Keywords and Values Returned

Keyword Value Returned

DMABS Absolute Real value of specified arithmetic expression.

DMAVG Average or mean of a collection of numeric values.

DMCOUNT Number of entities in a class or the number of values multivalued attribute.
Can also be used on single-valued attributes.

DMLENGTH Length of string expression.

DMMAX Maximum value from a collection of values.

DMMIN Minimum value from a collection of values.

DMPOS Returns the starting position of the specified occurrence of a designated
string within a string. The string to be searched is given first, followed by
the string to search for.

DMROUND Arithmetic expression rounded to nearest integer.

DMSQRT Nonnegative real number that is square root of arithmetic expression.

DMSUM Sum of all numeric values in a collection.

DMTRUNC Integer portion of truncated arithmetic expression.

SUBROLE Used for testing the value of subrole data-valued attributes.

Examples

In the following example, the value of the INPUT_AGE is assigned as the value of
CHILDREN_AGE and truncated. Therefore, if INPUT_AGE is 10 years and 2 months (10
and 1/6) or 10 years and 10 months (10 and 5/6), the value of CHILDREN_AGE is 10. (The
fraction is not rounded to the nearest value.)

INSERT PERSON

(ASSIGN (CHILDREN AGE,DTRUNC(INPUT AGE));

In this example, the selection of the minimum value of STUDENT_AGE is qualified by a
Social Security number criteria. Once the value is selected, it is assigned to SPOUSE_AGE.

MODIFY PERSON

(ASSIGN (SPOUSE_AGE,DMMIN(STUDENT AGE))
WHERE SOC_SEC NO = INPUT_SOCIAL;

8600 0734-301

7-27

Using the Semantic Information Manager (SIM) Interface

DM String Functions

<DM string functions>

—— DMEXT - (— <str exp> — , — <integer> — , ~|: <integer>) ——|
*

— DMRPT — (— <str exp> — , — <integer> -)

L DMCHR - (J— <hex string Titeral> J—)

Explanation

7-28

DM string functions can take one or more strings as an argument, or produce a string as
the function value, or perform both operations.

String expressions using the SIM interface return EBCDIC strings and must be constant
string expressions. Their length must be able to be determined at compile time. Constant
string expressions and primaries include string constants, SIM attributes of type string or
symbolic, EBCDIC fields of DMRECORDS, and Advanced Data Dictionary System (ADDS)
structures. String variables and string arrays cannot be used in SIM expressions.

Refer to Volume 1 of this manual for a discussion of string expressions (shown here as str
exp), integers, and hexadecimal string literals.

DMEXT returns the substring of the string expression with the specified beginning and
ending positions. (The first integer is the beginning position, the second integer is the
ending position.) An asterisk (*) as the ending position indicates the end of the string.

DMRPT returns the specified string a designated number of times.

DMCHR constructs a string that is a concatenation of the EBCDIC characters represented
by the hexadecimal numbers used in the argument.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Examples

In the following example, a substring of NAME, beginning in position 16 and going to the
end of the string, is returned in the variable MIDDLE_NAME.

SELECT STUQ FROM STUDENT
(MIDDLE_NAME = DMEXT(NAME,16,%));

The following example assigns the string NAME to ID_CODE. The string will appear twice
in ID_CODE so that if the string was “MIDDLENAME”, ID_CODE would be assigned
“MIDDLENAMEMIDDLENAME”.

SELECT INSTRQ FROM INSTRUCTOR
(ID_CODE = DMRPT(NAME,2))
WHERE SOC_SEC NO < A;

Using the perspective class DEPARTMENT, the query DEPTQ selects the name of the
department and the department number if the instructor's name is equivalent to the
hexadecimal string of characters “ABCD”.

SELECT DEPTQ FROM DEPARTMENT

(NAME_OF DEPT; DEPT.NO)
WHERE INSTRUCTOR EMPLOYED.NAME = DMCHR(4"C1C2C3C4");

8600 0734-301 7-29

Using the Semantic Information Manager (SIM) Interface

DM Symbolic Functions

<DM symbolic functions>

~|: DMPRED :|» (— <attribute chain> -) }
pMSUCC

Explanation

DM symbolic functions operate on SIM symbolic types. In ALGOL, a data type of symbolic
is supported as a string (EBCDIC array).

The attribute chain construct must have as its final element an attribute that has a type of
symbolic.

DMPRED returns the previous symbolic value.

DMSUCC returns the value of the successive symbolic.

Consult Volume 1 of this manual for a detailed explanation of identifiers. Refer to the
InfoExec SIM Programming Guide for detailed information about symbolic types and
functions.

Additional information is included under “Mapping SIM Types into ALGOL” in this section.

Additional information relating to the attribute chain construct is included under “DM
Primaries” in this section.

Example

7-30

In the following example, the query PERSONQ uses the perspective class PERSON to
select the value of NAME if the preceding and successive symbol values are “SINGLE”.

SELECT PERSONQ FROM PERSON (NAME)

WHERE DMPRED(MSTATUS) = "SINGLE" AND
DMSUCC (MSTATUS) = "SINGLE";

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

DM Boolean Functions

<DM Boolean functions>
<SVA qual ID>

— EXISTS - (— <DMRECORD field ID> —)

— DMMATCH - (— <DM string exp> — , — <pattern> —)
— DMISA - (—{: <EVA qual I?i_:]— , — <class ID> -)
<class ID>
L DMEQUIV - (— <DM string exp> — , — <rel op> — , — <DM string exp> —) —
Explanation

DM Boolean functions include relational and Boolean operators.

The DMEXISTS and the EXISTS functions are used to determine if an entity exists.
EXISTS also determines whether or not a field is marked as being null. The functions are
TRUE when the operand has a value other than null. The operand for DMEXISTS is either
a qualified multivalued attribute (MVA) or a qualified single-valued attribute (SVA). The
operand for EXISTS is a field within a DMRECORD.

The DMMATCH function tests whether the DM string expression matches a specified
pattern. It is comparable to the SIM “ISIN” operator. A <pattern> construct is specified
using literal characters plus metacharacters. For more information, refer to the InfoExec
SIM Programming Guide.

A DM string exp construct consists of valid combinations of DM string functions and
constant string expressions. Constant string expressions include EBCDIC string constants,
SIM attributes of type string or symbolic, EBCDIC fields of DMRECORDS, EBCDIC fields
of Advanced Data Dictionary System (ADDS) structures, and a limited form of the string
function. The limited string function can have only a constant arithmetic expression as its
second argument. String variables and string arrays cannot be used in SIM expressions.
Consult Volume 1 of this manual for a detailed explanation of string expressions.
Additional information relating to DM string functions is included under “DM String
Functions” in this section.

Additional information relating to the DMRECORD ID and field ID constructs is included
under “Declaring DMRECORDS?” in this section. Information on the qual ID construct is
included under “Selection Expressions” in this section. Information on the class ID
construct is included under “Declaring a SIM Database.”

The DMISA function tests whether an entity plays a certain role in a class. The function is

TRUE if the qualified entity-valued attribute (EVA) or the first designated class is a
member of the second designated class.

8600 0734-301 7-31

Using the Semantic Information Manager (SIM) Interface

Example

7-32

The DMEQUIV function compares two DM string expressions, using the values of the
characters in a pre-defined ordering sequence. This is called an “equivalent” string
comparison.

Refer to the InfoExec SIM Programming Guide for more detailed information about these
DM Boolean expressions functions.

In the following example, the query PERSONQ uses the perspective class PERSON to
select values for NAME and SOC_SEC_NO. Values are selected if the DMISA function
returns as TRUE.

The next query, STUQ, uses the perspective of the class STUDENT. The values for NAME
and STUDENT_NUM will be returned if DMEXISTS tests as true.

The EXISTS function then determines if the field TRANSCRIPT_RECORD within the
DMRECORD STUDENT_RECORD exists. If it does, the query STUQ uses the perspective
class STUDENT to select the SOC_SEC_NO where the DM string expression NAME
matches the pattern “JULES VERN”.

SELECT PERSONQ FROM PERSON
(NAME;SOC_SEC_NO)
WHERE DMISA(SPOUSE,STUDENT) ;
SELECT STUQ FROM STUDENT
(NAME ; STUDENT NUM=STUDENT NO)
WHERE DMEXISTS(STUDENT NO);
IF EXISTS(STUDENT RECORD.TRANSCRIPT RECORD) THEN
SELECT STUQ FROM STUDENT
(SOC_SEC_NO)
WHERE DMMATCH (NAME, "JULES VERN");

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

DM Primaries

<DM primaries>

—— <DM function> }

— <attribute chain>

— <qual ID>

— <class ID>

— <local selection expression>

L INVERSE - (— <entity-valued attribute> —) -

<attribute chain>

L J <attribute ID> |
<qual ID> - .

Explanation

A specified entity (SIM database or class) can be a primary.

The local selection expression, which includes several other primary elements, can be a
primary.

The INVERSE function uses an inverse attribute for the specified entity-valued attribute
(EVA). The result of the function can then be used as a primary.

The following primaries can be used to form a DM expression. Consult the section
“Expressions” in Volume 1 for more information on primaries.

Additional information relating to the attribute ID, local selection expression, and qual ID
constructs is included under “Selection Expressions” in this section. Information on the
entity reference ID construct is included under “Declaring an Entity Reference Variable
Data Type” in this section. Information on the DM function construct is included under
“DM Arithmetic Functions,” “DM String Functions,” “DM Boolean Functions,” and “DM
Symbolic Functions” in this section.

8600 0734-301 7-33

Using the Semantic Information Manager (SIM) Interface

Example

7-34

A local selection expression is shown in the following example. It is used as part of the
INCLUDE syntax to further narrow the scope of instructors from
INSTRUCTOR_EMPLOYED. The local selection expression uses the class INSTRUCTOR

as the class ID. Only those INSTRUCTOR_EMPLOYED who have an EMP_NO of 1 or 2 are
included.

MODIFY DEPARTMENT
(INCLUDE (INSTRUCTOR_EMPLOYED,
[INSTRUCTOR WHERE EMP_NO = 1 OR EMP_NO = 2]))
WHERE DEPT_NO = INPUT DEPTNO;

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Selection Expressions

<selection expression>

— <DM Boolean expression> |

<DM Boolean expression>

~—— <Boolean operator> ———]

——|: <DM Boolean primary> |

<Boolean primary>

<DM Boolean primary>

(— <selection expression> —) |

<entity-valued relation>

<DM Boolean function>

<entity-valued relation>

<local selection expression> ——— EQL <EVA qual ID> —

— INVERSE — (— <EVA> -) ———— =
— CURRENT - (— <query ID> —) ———— NEQ

— <entity reference ID> A=

L <class ID> — (— <entity ref ID> —) —

CURRENT - (— <query ID> —) ——— EQL <class ID>

— <entity reference ID> =

— <class ID> — (— <entity ref ID> -) - NEQ

<qual ID>

L J <qual term> |
<class ID> — .

<qual term>

<attribute ID> L_ _J
<compound selector>

<quantifier> — (— <qual term> —)

<path expression> — . — <qual term>

8600 0734-301 7-35

Using the Semantic Information Manager (SIM) Interface

7-36

<attribute ID>

— <identifier>

<path expression>

—— <entity-valued attribute chain>

— INVERSE - (— <entity-valued attribute chain> —) —

— <quantifier> — (— <entity valued qual term> —) —

— <transitive expression>

— <local selection expression>

L <Called ref ID>

— <class ID> — (— <entity-valued qual term> —) ——

<transitive expression>
— TRANSITIVE (<trans arg>

<transitive argument>

i 7
END LEVEL <integer constant>

— <reflexive path expression>

<quantifier>
ALL

SOME
NONE

<local selection expression>

- [<class ID>

<entity-valued attribute chain> —

INVERSE - (— <EVA ID> —) ——

<Called ref ID>

WHERE — <selection expression]|

— <identifier>

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Explanation

A selection expression is used to determine which entities from the SIM database are
eligible for retrieval, deletion, or modification. It is used to identify the set of entities upon
which a query is to operate. It narrows the group of entities in the perspective class for the
scope of the query.

If an entity meets the stated conditions of the selection expression, the query uses the
entity once the entity is retrieved.

A global selection expression applies to the whole query. A local selection expression
applies to only a specific attribute.

The selection expression is a Boolean expression in which DM primaries and functions are
permitted. Both arithmetic and string expressions can be used in a selection expression.
Any part of the selection expression that is strictly ALGOL is evaluated according to
ALGOL rules. The value is then sent to SIM.

In addition, the following can be used in a selection expression:

e Standard arithmetic operators
¢ Relational operators

¢ Boolean operators

* Order functions

* Aggregate functions

* Arithmetic functions

* Boolean functions

e Primaries

» String functions

* Symbolic functions

Relational operators test for relationships between values. They produce values of TRUE,
FALSE, or NULL. Boolean operators also produce values of TRUE, FALSE or NULL. A
Boolean null signifies SIM cannot determine if a Boolean expression is TRUE or FALSE.

SIM also provides DM string relational operators to perform “equivalent” string operations.
Equivalent string operations compare two strings based on the values of characters in an
ordering sequence (instead of the actual binary value of the characters). The available DM
string relational operators include the following:

EQV_EQL EQV_LEQ
EQV_GEQ EQV_LSS
EQV_GTR EQV_NEQ

EQV_LEQ, EQV_LSS, EQV_GEQ, and EQV_GTR are only valid for string operations among
ordered types.

8600 0734-301 7-37

Using the Semantic Information Manager (SIM) Interface

7-38

An ordering sequence is a predefined arrangement of members in a character set. In an
ordering sequence, characters can be placed in order based on criteria other than their
binary value. Different characters can be assigned the same ordering sequence value (for
example, the characters “A” and “a”).

A collating sequence is a predefined arrangment of members in a character set based on
ordering sequence and additional priority sequence values. Each character has an
ordering sequence value and a priority sequence value. Any characters that have the same
ordering sequence value are assigned differing priority sequence values. This gives each
character a unique combination of values and determines the character's position in the
collating sequence.

Order functions work on attribute values only. Aggregate functions apply to a collection of
values and produce one value.

For a detailed explanation of the use of selection expressions with SIM, consult the
InfoExec SIM Programming Guide.

Additional information relating to selection expressions is included under “Declaring an
Entity Reference Variable Data Type,” “DM Arithmetic Functions,” “DM String Functions,”
“DM Symbolic Functions,” “DM Boolean Functions,” and “DM Primaries” in this section.

Additional information relating to DM functions is included under “Using Data
Management Funcions and Expressions,” “DM Arithmetic Functions,” “DM String
Functions,” “DM Symbolic Functions,” and “DM Primaries” in this section.

Consult the InfoExec SIM Programming Guide for a discussion of DM Boolean
expressions and functions.

The Boolean primary construct within a DM Boolean expression can include either entity-
valued relations or relations made up of DM expressions.

A local selection expression affects specific attributes only. It specifies conditions under
which values for the attribute are chosen. It corresponds to the SIM “WITH” construct as
discussed in the InfoExec SIM Programming Guide.

The query ID identifies a previously declared query.

The INVERSE function uses an inverse attribute for the specified entity-valued attribute
(EVA).

The CURRENT function should be used inside of transaction state only. It can be used
with both update and retrieval queries. In retrieval queries, you can use the CURRENT
function to view or compare data without acting on it. In update queries, you can use the
CURRENT function to retrieve data and act on it. Consult the InfoExec SIM Programming
Guide for details of the SIM “CURRENT” function.

The construct entity reference ID identifies the previously declared entity reference
variable.

The construct class ID identifies a class in the SIM database.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Entity-valued relations are established using operators. The operators for “equal to” and
“not equal to” can be used.

The qual ID construct is used to uniquely identify an entity. The syntax can include the
entity's class and SIM database. It always includes qualifying terms.

The qual term and path expression constructs must evaluate to an entity value. The final
element must point to a class.

An attribute ID identifies an attribute. The attribute can be single- or multivalued. A
compound attribute is an attribute that consists of other attributes. Each of the attributes
in a compound attribute are unique. Qualification must be used whenever there is
ambiguity. The compound selector is the series of identifiers that uniquely identify the
attribute.

For quantifiers, the attribute must be multivalued. The valid quantifiers are ALL, SOME,
and NONE. ALL means that each value of the attribute must meet the condition. SOME
means that at least one value must meet the condition. NONE means that no value can

meet the condition.

The Called ref ID construct is a SIM reference variable. The SIM “CALLED” function is
used to assign a variable to a set of entities. The function also can be used in update
queries. (Refer to the InfoExec SIM Programming Guide for more information. The
ALGOL uses can be found in this section's discussion of the SELECT statement.)

Information on the entity reference ID construct is included under “Declaring an Entity
Reference Variable Data Type” in this section. Information on the class ID construct is
included under “Declaring a SIM Database” in this section. Information on the query ID
construct is included under “Declaring a Query Data Type” in this section. Information on
the compound spec construct is included under “Database Attribute Assignments” in this
section.

The construct transitive expression describes a TRANSITIVE function. A transitive path is
used for reflexive attributes. The function returns the transitive closure of a recursive path
expression. Refer to the SETTO statements in this section and to the InfoExec SIM
Programming Guide for further information on the transitive closure facility.

The reflexive path expression is a path expression that originates and ends with the same
class. The END LEVEL syntax specifies a level of recursion to be included if a complete

closure is not performed.

Additional information relating to selection expressions is included under “SELECT
Statement” and “SET TO Statements” in this section.

8600 0734-301 7-39

Using the Semantic Information Manager (SIM) Interface

Examples: Selection Expressions

In the first example, the current query is COURSE_QUERY. If it is a retrieval query, data
from the entity COURSE_TAKING can be retrieved and viewed or compared. If it is an
update query, you can retrieve and then modify the entity.

CURRENT (COURSE_QUERY) = COURSE_TAKING
Below, the attribute COURSE_NO is qualified by the entity-valued attribute
COURSE_TAKING. From this collection, the lowest number of the upper division courses
is compared with UPPER_DIVISION_COURSE.

DMMIN (COURSE_TAKING.COURSE NO) >= UPPER DIVISION COURSE

The third example of a selection narrows the scope to students that meet two criteria.
(The Boolean “AND” means both conditions must be met.)

STUDENT = STUDENT ERV AND S NUM = 1234

Examples: Path Expressions

In the following example, a path consisting of COURSE_TAKEN and COURSE.NO is
established.

COURSE_TAKEN.COURSE_NO
A multiple level path is established by the following example.

INSTRUCTOR.STUDENT ADVISED.TRANSCRIPT RECORD.GRADE
In the next examples, the reflexive attribute PREREQUISITES is a circular path. In the
first case, where there is no END LEVEL, it will be applied until all appropriate data is
returned. In the second case, the maximum number of times the path expression will be

applied is three.

TRANSITIVE (PREREQUISITE)
TRANSITIVE (PREREQUISITE END LEVEL 3)

7-40 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SIM Statements

The following SIM statements are supported through the ALGOL interface. Note that all
statements are valid only when the SIM database has been declared and opened.

CLOSE OPEN
DATABASE ATTRIBUTE ASSIGNMENTS RETRIEVE
DELETE SELECT
DISCARD SETTOCHILD
INSERT SETTOPARENT
MODIFY

In addition, several SIM transaction statements are supported. These statements enable
you to define when the program is in transaction state.

ABORTTRANSACTION ENDTRANSACTION
BEGINTRANSACTION SAVETRPOINT
CANCELTRPOINT

An overview of a transaction, transaction state, transaction points, and COMS's role in
transactions are included here.

All of the above SIM statements, their syntax, and examples are explained in this section.
The statements are presented in alphabetical order.

Using Transactions

A transaction is an action that causes a change in the SIM database. Transaction state is
that period of execution time when the SIM database can be updated. The transaction
statements enable SIM to treat two or more query statements as a unit by grouping the
statements within a transaction.

A transaction consists of a series of statements begun by a BEGINTRANSACTION
statement and concluded by an ENDTRANSACTION statement. SIM assigns transaction
points at the beginning and ending statements. These points are used to recover data in
case of a failure. Intermediate transaction points can be explicitly created and cancelled
using the SAVETRPOINT and CANCELTRPOINT statements.

Transactions are applied but not actually committed until the ENDTRANSACTION
statement is executed. If an ABORTTRANSACTION statement is executed before an
ENDTRANSACTION statement, none of the accumulated transactions are applied.
Instead, the SIM database returns to the state before the BEGINTRANSACTION statement
was encountered, before the program entered transaction state. (If the SIM database
involved in a transaction is closed before the transaction is ended, the transaction is
automatically aborted.) With intermediate transaction points you can control how far to
back out and still remain in the transaction state.

To prevent simultaneous transactions from affecting each other, no updates can be done

outside of transaction state. Any entities selected inside transaction state are locked; all
locks are released at end of transaction. Therefore, while a program can select and

8600 0734-301 7-41

Using the Semantic Information Manager (SIM) Interface

7-42

retrieve either in or out of transaction state, it can update the SIM database only in
transaction state. (Refer to the SELECT statement in this section for more information.)

Entity reference values are only valid within the transaction in which they were retrieved.

A transaction can update only one database. The database is identified by the first update
or data retrieval operation. Any attempt to update another database causes an exception
to be returned.

In order to provide a recoverable transaction system, SIM and COMS use the
ENDTRANSACTION and ABORTTRANSACTION statements. If one or more COMS
messages constitute a transaction, the name of the COMS header is used with the
ENDTRANSACTION or ABORTTRANSACTION statement and the proper communication
is generated by the compiler. If the system fails while the program is in transaction state,
COMS resubmits the messages which constituted the transaction when the program is
reexecuted.

Note: Al any given time, a program can be in transaction state with only one
database. For proper recovery, the name of the database in transaction state
should be the name of the database noted in the COMS Utility.

For more information on programming SIM and COMS together, consult the InfoExec SIM
Programming Guide.

Additional information relating to COMS extensions is included in Section 3, “Using
Communications Management System (COMS) Features.”

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

ABORTTRANSACTION Statement

<aborttransaction statement>
— ABORTTRANSACTION |

|— <COMS outputheadername> J

Explanation

The ABORTTRANSACTION statement cancels all accumulated operations in the current
transaction. The program is taken out of the transaction state and the SIM database
returns to the point before the BEGINTRANSACTION statement (which initiated the
transaction) was executed.

Additional information relating to the ABORTTRANSACTION statement is included under
“Declaring Input and Output Headers” in Section 3, “Using Communications Management
System (COMS) Features.”

The COMS outputheadername construct identifies the COMS Output Header. If the system
fails during transaction state, COMS resubmits the message when the program is
reexecuted.

Additional information relating to the outputheadername construct is included under
“Declaring Input and Output Headers” in Section 3, “Using Communications Management
System (COMS) Features.”

Example

The following example shows an abort when there is no COMS message in the transaction.
The second example shows an abort when there is a COMS message in the transaction.

ABORTTRANSACTION;
ABORTTRANSACTION MYOUTHEADER;

8600 0734-301 7-43

Using the Semantic Information Manager (SIM) Interface

SIM BEGINTRANSACTION Statement

<begintransaction statement>

— BEGINTRANSACTION L J
EXCLUSIVE

|— <COMS inputheadername> L

<message area> J

Explanation

The BEGINTRANSACTION statement places the program in a transaction state.
At any given time, a program can be in a transaction state with only one database.

The EXCLUSIVE option informs SIM that the program is going to perform a long or
extensive transaction. SIM assigns the program an exclusive transaction state; that is, a
transaction state in which there is no interference from or with other transaction states.

Using the EXCLUSIVE option is one means of preventing deadlocks. However, the option
can degrade throughput. Never use the option in an online environment.

Consult the InfoExec SIM Programming Guide for more information on the use of the
EXCLUSIVE option.

The COMS inputheadername construct identifies the COMS Input Header.

Additional information relating to the inputheadername construct is included under
“Declaring Input and Output Headers” in Section 3, “Using Communications Management
System (COMS) Features.” Information on the message area construct is included under
“RECEIVE Statement” in Section 3, “Using Communications Management System (COMS)
Features.”

The message area construct specifies the variable reserved for the actual message.

Information on the message area construct is included under “Declaring a Message Area”
in Section 3, “Using Communications Management System (COMS) Features.”

7-44 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

CANCELTRPOINT Statement

<canceltrpoint statement>
— CANCELTRPOINT {

L (— <integer expression> —) J

Explanation

The CANCELTRPOINT statement prevents a range of accumulated transactions from
being applied. The accumulated operations, from the current point back to either an
intermediate transaction point or the beginning of the transaction, are not applied. In all
cases, the program is left in transaction state.

The integer expression construct represents a marker set in a SAVETRPOINT statement. If
an integer expression is specified, all database changes between the current point and the
specified point are not applied. If no integer expression is specified, all SIM database
changes from the beginning of the transaction to the current point in the transaction are
not applied.

Additional information relating to accumulated transactions and the integer expression
construct is included under “SAVETRPOINT Statement” in this section.

Example

In the following example, there is an intermediate transaction point with a marker of “1”.
If an error is detected, the CANCELTRPOINT statement will rollback the accumulated
transactions to the marker.
BEGINTRANSACTION;
SAVETRPOINT (1);

IF ERROR ... THEN CANCELTRPOINT (1);
ENDTRANSACTION;

8600 0734-301 7-45

Using the Semantic Information Manager (SIM) Interface

SIM CLOSE Statement

<close statement>

— CLOSE - <database name> I

The SIM CLOSE statement closes a previously declared and opened SIM database. If the
SIM database involving a transaction is closed before the transaction is ended, the
transaction is automatically aborted. Any active query is closed.

The SIM CLOSE statement returns a Boolean result. The statement is used as a usual
Boolean expression.

Additional information relating to the CLOSE statement is included under “SIM OPEN
Statement” and “Declaring a SIM Database” in this section.

Additional information relating to the database name construct is included under

“Declaring a Database” in Section 4, “Using the Data Management System II (DMSII)
Interface.”

Explanation

The named SIM database name must have been declared and opened.

Example

In the following example, the SIM database UNIVDB is closed.

CLOSE UNIVDB;

7-46 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Database Attribute Assighments

<assign spec>
— ASSIGN - (— <destination> — , <DM expression>) —1

<local selection expression> —|

<compound assign spec>

<include spec>

— INCLUDE - (— <destination> — , —|: <DM expression> J) 1

<local selection expression>

<exclude spec>

— EXCLUDE - (— <destination> L J
<limit specification>

) I

|— , — <local selection expression> J

<destination>

~|: <single-statement update destination> J }

<multiple-statement update destination>

<compound assign spec>

—L ASSIGN - (— <compound spec> — , — <DM expression> —) ——|

<single-statement update destination>
~|: <attribute ID> J I
<compound spec>

<multiple-statement update destination>

— <query ID> — . — <attribute ID> }

<compound spec>

— <record ID> — . — <field ID> }

8600 0734-301

7-47

Using the Semantic Information Manager (SIM) Interface

Explanation

7-48

The database attribute assignment statements (db attribute assignments) add or remove
values from attributes. ASSIGN, INCLUDE, and EXCLUDE are used to assign database
attributes.

* Asclauses in a single-statement INSERT or MODIFY update
* As statements in a multiple-statement INSERT or MODIFY update

A query variable must be identified and specified for all multiple-statement INSERT and
MODIFY updates. Additional information relating to database updates is included under
“SIM INSERT Statement” and “SIM MODIFY Statement” in this section.

Database attribute assignments can only update immediate attributes of the current
perspective. The assignment of attributes must be done through assign statements
appropriate for the data type of the attribute. Attributes of other classes cannot be
modified through entity-valued attributes.

ASSIGN updates single-valued attributes (SVAs). Use the DM expression clause for data-
valued attributes. For entity-valued attributes, you must use the local selection expression
clause. The object of a local selection expression is restricted to class IDs associated with
destinations. Omitted parts are assigned null values.

The DM expression construct must evaluate to an appropriate type for the destination
specified using normal ALGOL coercion.

The compound assign spec construct must be used when assigning more than one field of
a compound. The compound spec construct identifies nested fields of a compound type
attribute.

INCLUDE adds values to multivalued attributes (MVAs). Use the DM expression clause for
data-valued attributes and the local selection expression clause for entity-valued
attributes. The object of a local selection expression is restricted to class IDs associated
with destinations. Use ASSIGN to add values to single-valued attributes (SVAs).

EXCLUDE removes values from both MVAs and SVAs. The object of a local selection
expression is restricted to destinations for MVAs. The optional local selection expression
is not valid when EXCLUDE is used for SVAs.

The limit specification determines the number of values to be excluded. Where NOLIMIT
is specified, all values are removed. Where LIMIT is specified, a maximum number of
values can be designated. If more values are found, an exception is returned and no values
are removed. The default limit is “1”.

The query ID construct identifies the destination for the SIM database assignment. It is

required with multiple-statement INSERT and MODIFY updates. The specified query must
match the query designated in the START and APPLY update statements.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Additional information on the field id construct is included under “Declaring
DMRECORDSs” in this section. Information on the limit specification construct is included
under “SIM DELETE Statement” in this section. Information on the local selection
expression construct is included under “Selection Expression” in this section. Information
on the record id construct is included under “Specifying a Dictionary Record” in Section 2,
“Using Advanced Data Dictionary System (ADDS) Extensions.”

All data management (DM) expressions that are valid for the type can be used. (Refer to
the InfoExec SIM Programming Guide and Volume 1 of this manual for more information
concerning DM expressions in SIM and ALGOL.) The CURRENT function cannot be used
in an assignment except in the selection expression syntax of a local selection expression.

Additional information relating to data management expressions is included under “Using
Data Management Functions and Expressions” in this section.

Examples

In the following example, the attribute BIRTHDATE of the query STUQ is assigned the
value BDATE.

ASSIGN (STUQ.BIRTHDATE ,BDATE);
The next two examples show the syntax that can be used to assign values to attributes.

ASSIGN (SPOUSE.NAME, "HELEN"); % single-statement update
ASSIGN (STUQ.CHILDREN.NAME OF CHILD, "BILLY"); % multiple-statement

The following example shows the compound attribute assign construct.

INCLUDE MANAGER
(ASSIGN (CHILDREN,
ASSIGN (CHILDREN.NAME_OF CHILD,"HARRY"),
ASSIGN (CHILDREN.AGE,16),
ASSIGN (CHILDREN.SEX,"MALE"));
ASSIGN (NAME,"LARRY");
ASSIGN (SOC_SEC NO_,99999999));

In this example, the value CLASS_ERYV is removed from the multivalued attribute
COURSE_TAKING. And, in the same query, a new value is added to the attribute
COURSE_TAKING. The new value is the course with number 512A.

EXCLUDE (STUQ.COURSE_TAKING (NOLIMIT), CLASS ERV);
INCLUDE (STUQ.COURSE_TAKING , [COURSE WITH COURSE NO = 512A]);

8600 0734-301 7-49

Using the Semantic Information Manager (SIM) Interface

The following example is a multiple-statement modify query and an INSERT statement.
The EXCLUDE destination must be a multivalued entity-valued attribute. No local
selection expression can be used.

INSERT DEPARTMENT
(ASSIGN(DEPT NO.,4321);
(ASSIGN(NAME_OF DEPT, "MATHEMATICS");
EXCLUDE (COURSE_OFFERED))
STARTMODIFY DEPTQ WHERE DEPT NO = 4321;
EXCLUDE (DEPTQ.COURSE_OFFERED,
[COURSE_OFFERED WHERE TITLE = "REMEDIAL MATH 11']);
APPLYMODIFY (DEPTQ)

7-50 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SIM DELETE Statement

<delete statement>
— DELETE — <class ID>

WHERE —M8MM
L <limit specification> J

>— <selection expression> |

<limit specification>

- —|: LIMIT - <integer expression> T) |
NOLIMIT

Explanation

The DELETE statement removes entities from the SIM database. All entities from the class
that satisfy the selection expression are deleted. If an entity is deleted from a class that is
a superclass, the entity is deleted from all its subclasses. If an entity is deleted from a
subclass, it does not affect its superclass.

You can use DMUPDATECOUNT to access the number of entities that were deleted.
DMUPDATECOUNT is an exception field of the exception word. If the delete operation
did not get an exception, but no entity was deleted, a warning is issued. The warning bit in
the exception word (bit 1:1) is turned on.

Additional information relating to the DMUPDATECOUNT exception field is included
under “Exception Handling of SIM Statements” in this section.

The class ID construct identifies the class.

The limit specification determines the number of entities to be deleted. With the NOLIMIT
specification, all occurrences are deleted. With the LIMIT specification, the maximum
number of occurrences to delete is designated by the integer expression. If the actual
number of occurrences is greater than the integer expression, an exception is returned
and no deletions are processed. The default limit is 1.

The WHERE selection expression syntax associates a selection expression with the
statement.

Additional information relating to the class ID construct is included under “Declaring a

SIM Database” in this section. Information on the selection expression construct is
included under “Selection Expressions” in this section.

8600 0734-301 7-51

Using the Semantic Information Manager (SIM) Interface

Examples

7-52

In the following example, all entities of the class INSTRUCTOR are deleted if their rank is
CONTRACT. If one or more entities are deleted, the message “ONE ENTITY DELETED” is
displayed. STATUS would contain the number of entities deleted.

STATUS := DELETE INSTRUCTOR WHERE RANK="CONTRACT";
IF REAL (STATUS).DMUPDATECOUNT > 1 THEN DISPLAY
("ONE ENTITY DELETED");

In the following example, a maximum of 10 members of the class DEPARTMENT can be
deleted. The entities must meet the selection criteria of the PHYSICAL SCIENCES
building.

DELETE DEPARTMENT (LIMIT 10) WHERE BUILDING = "PHYSICAL SCIENCES";

This example deletes entities in the class STUDENT depending on the selection criteria.
TRANSI1 and TRANS2 are reference identifiers. They are different occurrences of the
multivalued attribute.

TRANSCRIPT_RECORD.

DELETE STUDENT
WHERE TRANS1.SEMESTER = FALL AND TRANS2 = CURRENT (TRANS QUERY);

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

DISCARD Statement

<discard statement>
— DISCARD - (— <query ID> -) |

Explanation

The discard statement frees the control structure resources associated with a query. The
query is closed but the transaction remains active and the SIM database remains open.

The query ID is a currently active query.

Additional information relating to the query ID construct is included under “Declaring a
Query Data Type” in this section.

Example
GET_INSTRUCTOR is the currently active query. In this example, the query is terminated.

DISCARD (GET_INSTRUCTOR);

8600 0734-301 7-53

Using the Semantic Information Manager (SIM) Interface

SIM ENDTRANSACTION Statement

<endtransaction statement>
— ENDTRANSACTION |

|— <outputheadername with send options> J

Explanation

The SIM ENDTRANSACTION statement takes a program out of transaction state. All
applied transactions are committed once the statement is executed. All queries using
SELECT statements within the transaction state and all nonapplied multiple-statement
queries are closed.

The ENDTRANSACTION statement can be used in conjunction with the COMS Data
Communication Interface (DCI) library.

Additional information relating to the ENDTRANSACTION statement and COMS is
included under “Linking to COMS,” “Declaring Input and Output Headers,” and “SEND
Statement” in Section 3, “Using Communications Management System (COMS) Features.”

Additional information relating to the outputheadername with send options construct is
included under “COMS ENDTRANSACTION Statement” in Section 3, “Using

Communications Management System (COMS) Features.”

The outputheadername construct identifies the COMS Output Header. If the system fails
during transaction state, COMS resubmits the message when the program is reexecuted.

The send options of the COMS SEND statement can be included in the syntax.

Examples

Three examples are shown below. In the first statement, no COMS message was included
in the transaction. The second statement notes that a COMS message was included. The
last statement illustrates a COMS header ID with SEND.

ENDTRANSACTION;

ENDTRANSACTION MYOUTHEADER;
ENDTRANSACTION MYOUTHEADER [EMI AFTER SKIP 10];

7-54 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SIM INSERT Statement

<single-statement insert>

— INSERT — <class ID> (

L <subclass expr> i

L <db attri bute assignment> 1) |

<subclass expr>

— FROM —<class ID>— WHERE —<selection expression }

<multiple-statement insert>

— STARTINSERT - (— <query ID> L J) |
<subclass expr>

<apply insert statement>
— APPLYINSERT - (— <query ID> —) I

Explanation

The INSERT statement inserts new roles for existing entities or new entities with values
for their immediate attributes in the declared and opened SIM database. It does not permit
assignment of values to extended attributes.

An INSERT statement is valid only in transaction state. It can affect only the specified
class, its superclasses, or its inverses.

There are two types of INSERT statements, single and multiple. The single-statement
insert is executed as soon as it is encountered. A multiple-statement insert is used to mix
attribute assignments among other program statements or to place assignments in other
procedures and functions. All computations must be complete before a multiple-statement
update is processed. Only one type of insert update can be used in the same query.

The single-statement insert is initiated by an INSERT statement. The multiple-statement
insert is initiated by a STARTINSERT statement and must be concluded by an
APPLYINSERT statement. The APPLYINSERT statement causes the SIM database to

perform the multiple-statement update.

Additional information relating to the INSERT statement is included under “Database
Attribute Assignments” in this section.

The class ID specifies what class is affected by the statement.

If the INSERT syntax does not use a subclass expr construct, a new entity and its role are
inserted. If the subclass expr construct is used, a role for an existing entity is inserted.

8600 0734-301 7-55

Using the Semantic Information Manager (SIM) Interface

7-56

The FROM/WHERE selection expression syntax associates a selection expression with the
statement. The subclass expression enables the programmer to take an entity which exists
in a class and establish the entity as a member of a subclass in the same generalization
hierarchy. The selection expression must select exactly one entity; otherwise, an error is
returned. If the subclass expr construct does not appear, the entity is inserted as a new
entity in the subclass and its superclasses.

The insert superclass (the class appearing after FROM) can be the immediate superclass
of the insert subclass (the class named in the query-name following INSERT), or many
intermediate class levels can exist between the two. For each intermediate level, SIM
creates the entity as part of the execution of the insert from statement. If an entity already
exists at an intermediate level, at the insert subclass expression, a “subrole already exists”
error occurs at run time.

In the attribute assignment statements, you can reference attributes in these intermediate
classes. In fact, if an intermediate class has a required attribute, the at run time, as
assignment statement for that attribute must be executed before the apply insert
statement, or a “missing required attribute” error occurs.

The valid SIM database attribute assignments are ASSIGN, INCLUDE, and EXCLUDE.

For a multiple-statement update, the query ID construct associates a query with the
update. The same query is also specified in the SIM database attribute assignments that
are applied. The query ID must be associated with a database class ID in its declaration.

For STARTINSERT statements, the query ID must refer to a query that has been
associated with a class, not a DMRECORD.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section. Information on the query ID construct is included under
“Declaring a Query Data Type” in this section. Information on the selection expression
construct is included under “Selection Expressions” in this section. Information on the db
attribute assignments is included under “Database Attribute Assignments” in this section.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Examples

The following example illustrates a single-statement insert update for the class STUDENT.
The INCLUDE updates the multivalued attribute MAJOR_DEPARTMENT.

INSERT STUDENT
(ASSIGN (STUDENT NO, INPUT NO);
ASSIGN (NAME, INPUT NAME);
ASSIGN (BIRTHDATE, INPUT BDATE);
INCLUDE (MAJOR_DEPARTMENT, DEPT REFERENCE);
ASSIGN (CURRENT_ ADDRESS, INPUT_CADDR);
ASSIGN (PERMANENT ADDRESS, INPUT_PADDR));

This example of a multiple-statement insert is used for the query UPDATE_STU_QUERY.
The multivalued attribute COURSE_TAKING and the single-valued attribute AGE are
updated when the APPLYINSERT is executed.

STARTINSERT (UPDATE_STU QUERY);

INCLUDE (UPDATE_STU QUERY.COURSE_TAKING, CURRENT(COURSEQ));

ASSIGN (UPDATE_STU QUERY.AGE, CALCULATE AGE (INPUT_BDATE));

APPLYINSERT (UPDATE STU QUERY);

In the following example, by using the subclass expression, only one entity can be
selected.

INSERT STUDENT FROM INSTRUCTOR WHERE NAME = "DELAWARE"
(ASSIGN (NAME, "DELAWARE"));

8600 0734-301 7-57

Using the Semantic Information Manager (SIM) Interface

SIM MODIFY Statement

<single-statement modify>
— MODIFY —<class ID

|—<h’m1’t spec1’f1’cat1’on>J

— (—L—<db attribute assignment

— WHERE —<selection express1’on>J

<multiple-statement modify>
— STARTMODIFY — (

B] <query ID> —M—
<limit specification>

) |

L WHERE — <selection expression> l

<apply modify statement>
— APPLYMODIFY — (— <query ID> —) I

Explanation

7-58

The MODIFY statement changes existing entities in the declared and opened SIM
database. It must have a global selection expression. The number of entries to modify can
be limited.

MODIFY statements are valid only in transaction state. Each can affect only the specified
class.

There are two types of MODIFY statements, single and multiple. The single-statement
modify is executed as soon as it is encountered. A multiple-statement modify is used to
mix attribute assignments among other program statements or to place assignments in
other procedures and functions. All computations must be complete before a multiple-
statement update is processed.

The single-statement modify is initiated by a MODIFY statement. The multiple-statement
modify is initiated by a STARTMODIFY statement and must be concluded by an
APPLYMODIFY statement. The APPLYMODIFY causes the SIM database system to
perform the multiple-statement update.

You can use DUMPDATECOUNT to access the number of entities that were modified.
DUMPDATECOUNT is an exception field of the exception word. If the modify operation
did not get an exception, but no entity was modified, a warning is issued. The warning bit
in the exception word (bit 1:1) is turned on.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Additional information relating to the SIM MODIFY statement is included under “Database
Attribute Assignments” in this section. Information on the DMUPDATECOUNT exception
field is included under “Exception Handling of SIM Statements” in this section.

The class ID specifies what class will be affected by the statement.

A limit specification determines the number of entities to be modified. Where NOLIMIT is
specified, all occurrences are modified. Where LIMIT is specified, all occurrences to the
maximum number designated by an integer expression are modified. If more occurrences
are found (that it, the actual number of occurrences is greater than the integer
expression), an exception is returned. No modifications are processed. The default limit
is 1.

The WHERE selection expression syntax associates a selection expression with the
statements. It is not needed for modifying class attributes.

The valid SIM database attribute assignments are ASSIGN, INCLUDE, and EXCLUDE.

For a multiple-statement update, the query ID construct associates a query with the
update. The same query is also specified in the SIM database attribute assignments that
are applied. The query ID must be associated with a database class ID in its declaration.

For STARTMODIFY statements, the query ID must refer to a query that has been
associated with a class, not a DMRECORD.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section. Information on the limit specification construct is included
under “SIM DELETE Statement” in this section. Information on the db attribute
assignments construct is included under “Database Attribute Assignments” in this section.
Information on the query ID construct is included under “Declaring a Query Data Type” in
this section. Information on the selection expression construct is included under
“Selection Expressions” in this section.

8600 0734-301 7-59

Using the Semantic Information Manager (SIM) Interface

Examples

7-60

This single-statement MODIFY makes changes to the class STUDENT. When the student
number is the input student number, a value is added to the attributes
MAJOR_DEPARTMENT, MINOR_DEPARTMENT, and CURRENT_ADDRESS. If one or
more entities are modified, the message “ONE ENTITY MODIFIED” is displayed. STATUS
contains the actual count.

STATUS := MODIFY STUDENT
(INCLUDE (MAJOR DEPARTMENT, DEPT REFERENCE);
INCLUDE (MINOR _DEPARTMENT, MINOR DEPT REFERENCE);
ASSIGN (CURRENT_ ADDRESS,INPUT CADDR))

WHERE STUDENT NO = INPUT_STU NO;

IF REAL(STATUS) .DMUPDATECOUNT >1 THEN DISPLAY
("ONE ENTITY MODIFIED");

This multiple-statement MODIFY is associated with the query UPDATE_STU_QUERY. It is
operative only where the major department is PHYSICS. The database attribute EXCLUDE
and INCLUDE assignments are applied when APPLYMODIFY is executed. There is no
limit on the number of changes that can be applied.

STARTMODIFY ((NOLIMIT) UPDATE STU QUERY
WHERE MAJOR DEPARTMENT = "PHYSICS");

EXCLUDE (UPDATE_STU QUERY.ADVISOR);
INCLUDE (UPDATE_STU QUERY.ADVISOR, CURRENT(INSTRUCTOR QUERY));

APPLYMODIFY (UPDATE STU QUERY);

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SIM OPEN Statement

<open statement>

— OPEN <database name>
INQUIRY
UPDATE

Explanation

A SIM OPEN statement opens a previously declared SIM database and specifies the access
mode. An OPEN statements must precede all other SIM statements.

The SIM OPEN statement returns a Boolean result. The statement is used as a usual
Boolean expression.

Additional information relating to the SIM OPEN statement is included under “Declaring a
SIM Database” and “SIM CLOSE Statement” in this section.

INQUIRY access is read-only access. No update operations can be performed on the SIM
database. For INQUIRY access, an exception is returned if any of the following statements
are used when the SIM database has been opened:

ABORTTRANSACTION ENDTRANSACTION
APPLYINSERT INSERT
APPLYMODIFY MODIFY
BEGINTRANSACTION SAVEINSERT
CANCELTRPOINT SAVEMODIFY
DELETE SAVETRPOINT

UPDATE access is read/write access. The UPDATE option enables the program to modify
the previously declared data base. An exception is returned if the SIM database is already
open. If an exception is returned, the state of the database is unchanged.

If neither INQUIRY and UPDATE access is specified, the default access is UPDATE.

The database name is the name of the previously declared SIM database.

Additional information relating to the database name construct is included under

“Declaring a Database” in Section 4, “Using the Database Management System II (DMSII)
Interface.”

8600 0734-301 7-61

Using the Semantic Information Manager (SIM) Interface

Examples

Shown below, the SIM database UNIVDB is opened. The access method is UPDATE.
Therefore the database can be modifies by the program.

OPEN UPDATE UNIVDB;

In this example, the SIM database TOOLS is opened. The access method is INQUIRY. The
Access to the database is read only.

OPEN INQUIRY TOOLS;

In the following example, the default access method UPDATE is used when opening the
SIM database ACCOUNTING.

OPEN ACCOUNTING;

7-62 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

RETRIEVE Statement

<retrieve statement>

— RETRIEVE — (— <query ID>) '
L, — <omrecorn 1p> !

Explanation

The RETRIEVE statement requests information from the declared and opened SIM
database. It retrieves the query in order to make the entities available to your program.

The query ID construct identifies the query to be retrieved. Additional information relating
to the query ID construct is included under “declaring a Query Data Type” in this section.

The DMRECORD ID construct identifies a previously defined DMRECORD. If a
DMRECORD is specified, the attributes associated with the retrieved query variable are
returned into the DMRECORD. The DMRECORD variable must be the same type as the
query variable. Additional information on the DMRECORD ID construct is included under
“Declaring DMRECORDS” in this section.

If the retrieval is being used only to establish a current path, do not specify a DMRECORD.
For example, do not specify a DMRECORD if the query ID will be used as an argument to
the CURRENT function.

Additional information regarding the RETRIEVE statement is included under the

description of the CURRENT function under “Selection Expressions,” “Type Declaration
and Invocation for SIM”, “SELECT Statement”, and “SETTO Statements” in this section.

Examples

The first example demonstrates how a retrieval can be used to establish a current path.

INSTRUCTOR_QUERY can be used later as an argument to the CURRENT function. The

query variable INSTRUCTOR_QUERY was declared to be associated with a class ID.
RETRIEVE (INSTRUCTOR QUERY);

In the second example, the attributes associated with the query STUQ are retrieved and
placed into the DMRECORD STUDENT_RECORD.

RETRIEVE (STUQ, STUDENT RECORD);

8600 0734-301 7-63

Using the Semantic Information Manager (SIM) Interface

SAVETRPOINT Statement

<savetrpoint statement>

— SAVETRPOINT — (— <integer expressions> —) }

Explanation
The SAVETRPOINT statement creates intermediate transaction points. These points can
be used to specify the extent of a rollback. The intermediate transaction points can be

used to cancel transactions without aborting the entire transaction.

The integer expression is used as a marker. SIM requires the marker to be a positive,
nonzero value that is unique to the transaction. The integer expression is assigned to a
point in the transaction.

An integer is an arithmetic value that has an exponent of zero and no fractional part. Refer
to Volume 1 for a discussion of integer expressions.

Additional information relating to accumulated transactions is included under
“CANCELTRPOINT Statement” in this section.

Example

In the following example, an intermediate transaction point is created.

SAVETRPOINT (5);

7-64 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SELECT Statement

<select statement>

— SELECT - <query ID> — FROM —— <perspective> L_ _J
» DISTINCT

L— (— <selection body> —) _J

ORDER BY (<DM expression>
ASCENDING BINARY —
DESCENDING ORDERING —
COLLATING —

[— WHERE — <selection expression> —J

<perspective>
——{:<c1ass 1D _J |
<database ID>

<selection body>

<attr map> I

<subquery sel>

<attr map> —J— : —J— <subquery sel> —J——

8600 0734-301 7-65

Using the Semantic Information Manager (SIM) Interface

<attr map>
<field ID> |

|— = — <DM expression> J

WITH — <path expression> — (J— <attr map> J—)

<subquery sel>

— SELECT - <query ID> — FROM - <subquery select domain>

[— (— <selection body> —) —J

<subquery select domain>

<entity-valued qual ID> I

INVERSE - (— <entity-valued qual ID> —) —

<multivalued data-valued attribute>

<transitive expression>

Explanation

7-66

The SELECT statement is used to specify what is to be returned from the SIM database
and how it is to be returned. A SELECT statement selects a set of entities from the
perspective class and associates it with the query variable. (The RETRIEVE statement
retrieves the data.) Retrieved data can be presented in a tabular, structured, or hybrid
format.

When and how the SELECT statement is issued determines the action taken. There are
three possible cases:

e Ifitisissued within transaction state, all selected entities are locked. No other user
can access the locked entities. This ensures a protected read of the data. The query is
closed automatically at the end of transaction. All corresponding RETRIEVE
statements must be done in the transaction state.

e Ifissued outside of transaction state, the selected entities are not locked. Retrieval
can be either inside or outside of transaction state; however, in either case, entities
are not locked. Multiple users can access the data concurrently and there is a risk that
the database can change as the data is updated. If the selection is done outside of
transaction state and the program issues a RETRIEVE statement inside transaction
state, the query is still open when the program leaves transaction state. The DISCARD
statement can be used to close the query or the query can stay open until the database
is closed.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

« Ifissued outside of transaction state with the SECURED option, the SELECT
statement opens a query outside of transaction state and locks the entities. A
recommended practice is to use the corresponding RETRIEVE statements within
transaction state. The DISCARD statement must be used to close the query.

The global selection is associated with the perspective class (or classes). The local
selections are associated with particular paths. A subquery selection can be associated
with a local selection.

When a SELECT statement is performed on an already active query, implicit discard and
close operations are performed before the SELECT operations is executed; that is, the
query is closed and then opened again.

The query ID construct identifies the query. One query variable can be used for several
query statements. However, you cannot use the same variable in several SELECT
statements at the same time.

The word “FROM” signifies that the following syntax will give the perspective class
through which SIM associates the query.

The perspective construct specifies either a class or database ID. Retrieval queries can
have more than one class in the perspective. When a retrieval query has more than one
class in its perspective, any attributes in the SELECT statement must be fully qualified to
identify the class that they apply to. If the perspective is a database ID, only one database
can appear in the perspective.

All called constructs are comparable to the SIM “CALLED” function. The function is used
to assign a variable to a set of entities. Since these reference variables are not declared in
the program, they cannot be referenced beyond the scope of the SELECT statement. The
CALLED function can follow a class name, as in the perspective clause syntax, but it
cannot follow a variable name that was declared by another CALLED function. Quantifiers
cannot be used on variables created by a CALLED function. (Refer to the InfoExec SIM
Programming Guide for more information on the CALLED function.)

Reference variables are specified before the attribute mapping list to enables the explicit
assignment of reference variable or variables to an occurrence of a class or multivalued
attributes (MVAs). The program can then manipulate difference occurrences of the class
or MVA in the mapping list or selection expression.

The DISTINCT option removes any duplicates and selects only a unique set of data. This
option is valid for strictly tabular output only, not for subqueries.

8600 0734-301 7-67

Using the Semantic Information Manager (SIM) Interface

7-68

The selection body construct is used to map attributes for retrieval and specify the output
format. The mapping constraints are as follows:

¢ For tabular formatting, do not use the subquery SELECT clause. The compiler
requests tabular form if no subquery SELECT clause is specified; otherwise structured
formatting is requested.

¢ For structured formatting, use the subquery SELECT clause. Structured formatting is
a subset of hybrid selection.

* For hybrid formatting, combining structured with tabular formats, use attribute maps
for items to be displayed in a table and the subquery SELECT clause for items to be
displayed in a structured format.

The attr map construct determines how the SELECT statement maps data from the
database into DMRECORD fields.
e The field ID construct specifies one field of a record identifier.

* The DM expression construct identifies the attribute from which data is taken. If the
attribute's name is different than the name used in the field ID construct, the DM
expression is used to clearly identify the attribute.

If the DM expression contains an attribute and the perspective of the SELECT
statement contains more than one class, the attribute must be fully qualified to
identify the class it applies to.

The DM expression cannot include the CURRENT function.

* The WITH option enables you to use a path expression in each of the attribute
qualifications of a subsequent attr map construct. The path expression temporarily
translates the perspective of the query into another class of the SIM database.

Refer to the InfoExec SIM Programming Guide for more information on tabular,
structured, and hybrid formatting, as well as the CURRENT and WITH options.

In the attribute mapping list, a SIM attribute with the same name as the DMRECORD field
ID that it will be retrieved into, does not need to be specified.

The subquery sel construct identifies and qualifies a query, establishes the attribute
mapping characteristics, and associates a selection expression.

The subquery select domain is one of the following:

e A fully qualified entity-valued attribute (EVA)
¢ The inverse of a fully qualified EVA

e Atransitive expression

* A multivalued data-valued attribute

Consult the InfoExec SIM Programming Guide for a discussion of these terms.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Pay special attention to situations where the multivalued data-valued attribute is a
compound attribute (for example, a record that is made up of several fields). In this
situation, any fields that are used in the selection body of a subquery selection should be
fully qualified with the complete compound attribute. If they are not fully qualified, the
compiler cannot accept them as valid DM expressions in the attr map construct.

The ORDER BY option is used to sort output before it is returned.

¢ The DM expression must be able to be ordered. Unless tabular output is requested, the
DM expression must result in a single value.

¢ The ASCENDING keyword indicates ascending sort order (from low to high). This is
the default sort order. If more than one sort key is indicated, the leftmost is the most
significant for ordering. Nulls always sort to the end.

¢ The DESCENDING keyword indicates descending sort order (from high to low). If
more than one sort key is indicated, the leftmost is the most significant for ordering.
Nulls always sort to the end.

e The BINARY keyword indicates that as the retrieved data is sorted, SIM compares
strings based on their binary value. That is the default type of string comparison when
the strings are ASERIESNATIVE (sixteen-bit strings).

¢« The ORDERING keyword indicates that as the retrieved data is sorted, SIM compares
strings based on the current ordering sequence.

An ordering sequence is a predefined arrangement of members in a character set. In
an ordering sequence, characters can be placed in order based on criteria other than
their binary value. Difference characters can be assigned the same ordering sequence
value (for example, the characters “A” and “a”).

¢ The COLLATING keyword indicates that as the retrieved data is sorted, SIM compares
strings based on the current collating sequence. This is the default type of string
comparison when the strings are eight-bit strings (that is, not ASERIESNATIVE
strings).

A collating sequence is a predefined arrangement of members in a character set based
on ordering sequence and additional priority sequence values. Each character has an
ordering sequence value and a priority sequence value. Any characters that have the
same ordering sequence value are assigned differing priority sequence values. This
gives each character a unique combination of values and determines the character's
position in the collating sequence.

The WHERE selection expression syntax associates a selection expression with the
statement. If the perspective of the SELECT statement contains more than one class, any
attributes in the selection expression must be fully qualified to identify the class that they

apply to.

Additional information relating to the class ID construct is included under “Declaring a
SIM Database” in this section. Information on the field id construct is included under
“Declaring DMRECORDSs” in this section. Information on the query ID construct is
included under “Declaring a Query Data Type” in this section. Information on the selection
expression, transitive expression, and path expression constructs is included under
“Selection Expressions” in this section.

8600 0734-301 7-69

Using the Semantic Information Manager (SIM) Interface

Additional information relating to the SELECT statement is included under “Using Data
Management Functions and Expressions,” “Referencing DMRECORD Fields,” “Selection
Expressions,” “RETRIEVE Statement,” “DISCARD Statement,” “SIM ENDTRANSACTION
Statement,” “Queries,” and “Retrieval and Update Queries” in this section. Related
information is also available in description of the CURRENT function under “Selection
Expressions” in this section.

Examples

In the first example, the query INSTRUCTOR_QUERY uses the perspective class
INSTRUCTOR. The employee number and hire date are selected if the employee has a
salary greater than $20,000. Because of the SECURED option, the selected entities are
locked if this SELECT statement is issued outside transaction state. Because the
DISTINCT option is used, only a unique set of data is selected. Duplicates are not selected.
The selected data is presented in tabular format and in ascending order by employee
number.

SELECT INSTRUCTOR_QUERY FROM INSTRUCTOR, SECURED, DISTINCT,
(EMPLOYEE_NO = EMP_NO;
HDATE = HIRE_DATE) ORDER BY (ASCENDING EMP_NO)
WHERE SALARY > 20000;

Below are two ways of coding the same query. The query STUQ uses the perspective of
STUDENT. In this query, all students majoring in drama will be selected. The report will
include their name and minor. In the first case, a subquery, COURSEQ), is used to select
the title of the course and the professor teaching the course. The subquery will select only
courses where the course number is greater than 300. In the second case no subquery is
used.

SELECT STUQ FROM STUDENT
(STU_NAME = NAME;
MINOR = MINOR DEPARTMENT.NAME OF DEPT;
SELECT COURSEQ FROM [COURSE TAKING WHERE COURSE.NO0>300]
(COURSE_TITLE = TITLE;
PROFESSOR = INSTRUCTOR TEACHING.NAME))
WHERE MAJOR_DEPARTMENT.NAME OF DEPT = "DRAMA";
SELECT STUQ FROM STUDENT
(STU_NAME = NAME;
MINOR = MINOR DEPARTMENT.NAME OF DEPT;
WITH [COURSE_TAKING WHERE COURSE.N0>300]
(COURSE_TITLE = TITLE;
PROFESSOR = INSTRUCTOR TEACHING.NAME))
WHERE MAJOR_DEPARTMENT.NAME OF DEPT = "DRAMA";

The following example assumes that the query STU_Q selected an entity, namely a
student, in a previous action. The statement can then compare the courses taken by that

student against the prerequisites for a specific class.

SELECT PRE_Q FROM COURSE
WHERE CURRENT (STU_Q) = STUDENT TAKING;

7-70 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SETTO Statements

<settoparent state>
— SETTOPARENT — (— <query ID> —) |

<settochild statement>
— SETTOCHILD - (— <query ID> —) |

Explanation

The SETTO statements alter the value for the expected level in a retrieval query. The
statements are used with the SIM transitive closure facility.

A reflexive attribute is an entity-valued attribute that refers to the same class of which it is
an attribute. The transitive closure facility enables the program to recursively access a
reflexive attribute during a retrieval query. This can be used to create circular path
expressions. The program can specify at what levels of recursion the transitive retrieval
starts and stops.

For tabular output, a reflexive attribute is treated as a multivalued attribute. For
structured output, the reflexive attribute can have different values at each level of the
structure.

By default, a retrieval traverses the same level and then ends. The SETTO statements can
be used to detect and manipulate level changes during traversal. The level can be
adjusted, one level at a time, for the next retrieval. SETTOPARENT adjusts the level to the
next lower number (the parent level). SETTOCHILD adjusts the level to the next higher
number (the child level). These levels are then used in a subsequent RETRIEVE statement.

If SETTOPARENT is used and the current level is not yet exhausted, SIM abandons further
accesses at the current level and returns to the parent level. If SETTOCHILD is used, SIM
accesses the next child level rather than accessing the next entity at the current level. If
there are no entities are the expected level, SIM returns an error condition on the
RETRIEVE statement.

The query ID construct identifies the current query.

Additional information relating to the SETTO statements is included under “RETRIEVE
Statement” in this section.

8600 0734-301 7-71

Using the Semantic Information Manager (SIM) Interface

Examples

In the first example, the current query is INSTR_QUERY. The level is lowered by one.
SETTOPARENT (INSTR_QUERY);
In this example, the current query is STUQ. The level is raised by one.

SETTOCHILD (STUQ);

7-72 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Exception Handling of SIM Statements

<exception field>
DMEXCEPTION |

DMSUBEXCEPTION —
DMMOREEXCEPTIONS —

DMUPDATECOUNT ——

<DMEXCEPTION mnemonic>
—— DMNOERROR |

— DMWARNING —
— DMCOMPLETE —
— DMFAILED —

— DMSYSTEM —-

Explanation

When compiling SIM database statements, both the compiler and SIM can detect a syntax
error. In both cases, the error or warning is returned in the normal way.

When executing SIM statements, exceptions can occur. For example, the program can
encounter a fault. Each SIM statement returns a status word. The value of this word
specifies whether an exception has occurred and the nature of the exception.

If an exception results from a SIM database operation, but the value is not assigned to an
exception variable in the program, the program is terminated. If the value is assigned, no
other indication of the exception is given. The ALGOL program is responsible for
determining the nature of the exception and responding appropriately.

Consult the InfoExec SIM Programming Guide for exception categories and
subcategories.

The exception words is a Boolean variable. The value is TRUE if the operation results in
an exception; otherwise, it is FALSE.

When an exception occurs, the DM exception routines listed below can be called for
further information about the exception.

DMEXCEPTIONMSG is an integer function that translates the current exception to text in

the user language. DMEXCEPTIONMSG requires two REAL array rows. The first specifies
the language of the message. The second contains the actual message.

8600 0734-301 7-73

Using the Semantic Information Manager (SIM) Interface

7-74

The first word of the first REAL array row gives the length of the name of the language.
Then name of the language begins in the second row. If zero-length text is passed in first
word, the normal MultiLingual System (MLS) selection conventions are used. Otherwise,
the second word must specify a language.

The first word of the second REAL array row gives the number of characters returned in
the error message. The array, beginning in the second word, should be long enough to
receive two lines of 78 characters. This is where the translated text of the error or
exception message is returned.

DMNEXTEXCEPTION is a Boolean function that returns the next exception word in the
function value. It will not return the text corresponding to the returned exception word.
Use DMEXCEPTIONMSG to return the text.

The array returned from DMEXCEPTIONINFO is described by the compiler predeclared
DMEXCEPTIONRECORD structure. DMEXCEPTIONRECORD gives exception
information about the underlying structure of the database where the exception was
encountered.

The layout of DMEXCEPTIONRECORD is

TYPE PACKED DMRECORD DMEXCEPTIONTYPE
(REAL DMSTATUS;
EBCDIC ARRAY DMLUCNAME [0:29];
EBCDIC ARRAY DMVERIFYNAME [0:29];
EBCDIC ARRAY DMDBNAME [0:29];
EBCDIC ARRAY DMSTRUCTURENAME [0:17]);
DMEXCEPTION TYPE DMEXCEPTIONRECORD;

The construct exception field can be used to interrogate the DMSTATUS field of the
DMEXCEPTIONRECORD. The DMEXCEPTION field can be compared to the
DMEXCEPTION mnemonic to clarify the exception. The DMSUBEXCEPTION field values
are defined in the InfoExec SIM Programming Guide. The DMMOREEXCEPTION field
should be used as a pseudo-Boolean to retrieve the next message.

DMEXCEPTIONINFO is a Boolean function that returns detailed information about the
current exception. It returns a structure that can be accessed using the
DMEXCEPTIONINFO record field names. Fields of the structure can be meaningful only
with certain exceptions. Referencing a field that has no meaning produces an
unpredictable value. The DMEXCEPTIONINFO record fields are:

DMSTATUS

Contains the DMSII result for a physical database exception. It is meaningless for
logical database exceptions.

DMSTRUCTURENAME

Contains the name of the DMSII structure on which a physical database exception
was detected. It is meaningless for logical database exceptions.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

DMLUCNAME

Contains the name of the SIM logical component on which a physical or logical
database exception was detected

DMDBNAME

Contains the internal database name upon which a physical or logical database
exception, a verification or constraint exception, or a transaction exception
occurred.

DMVERIFYNAME

Contains the name of the VERIFY which caused the verification exception or a
description of the attribute option which caused the constraint exception.

The DMEXCEPTION mnemonics are used when a major type of exception is detected to
distinguish the exception type. These mnemonics and their corresponding integer values
are explained below.

DMNOERROR=1

Indicates that the last operation was successful (if returned as a result of the
operation) or, when calling DMNEXTEXCEPTION, that no further errors exist.

DMWARNING=1
Contains information about occurrences within the system that the user should be
aware of, but which do not affect the results of the operations. This warning is
returned in a result word which is FALSE.
DMCOMPLETE=2
Contains an indication of the end of a sequence of operations.
DMFAILED=3
Contains reasons for the failure of a query or an operation to complete properly.
DMSYSTEM=4
Contains exceptions detected by the SIM system which are fatal to the user program
and possibly to SIM itself. The program should discontinue operations against the
current database. The current database should be closed.
DMSUBEXCEPTION is an exception type. It provides more details as to the exact nature
of the exception. It yields a numeric value identifying the subexception of the major

exception. Refer to the InfoExec SIM Programming Guide for the numeric values and a
detailed explanation.

8600 0734-301 7-75

Using the Semantic Information Manager (SIM) Interface

DMMOREEXCEPTIONS is another exception type. it is used to indicate that there were
multiple errors. The errors are returned in descending order of severity, ascending order
of occurrence. Only the last detected error is returned in the exception word. To access all
the errors, use the function DMNEXTEXCEPTION.

DMUPDATECOUNT is not an exception type. It is used to access the number of entities
updated in an update operation. DMUPDATECOUNT is valid only when used with
MODIFY and DELETE statements.

Additional information relating to the exception fields is included under “SIM MODIFY
Statement” and “SIM DELETE Statement” in this section.

Example

7-76

In the following example, the ERRORWORD is a Boolean variable. In the retrieval of
PROF_QUERY, when the sequence of operations is complete, close the input file. If any
error occurs, place the text of the error, in English, into ERRTEXT. Write the content of
the message.

BOOLEAN ERRORWORD;

ERRORWORD := RETRIEVE (PROF_QUERY);
IF REAL (ERRORWORD).DMERROR THEN
IF REAL (ERRORWORD).DMEXCEPTION = DMCOMPLETE THEN
CLOSE (INPUT_FILE)

ELSE

BEGIN
DMEXCEPTIONMSG (ENGLISH LANG, ERRTEXT[*]);
WRITE (ERRFILE,FMT,ERRTEXT[*]);

END;

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

SIM Sample Programs

Example 1 highlights the use of multiple-statement MODIFY and INSERT updates. It also
illustrates the use of EXCLUDE assignments.

Example 2 demonstrates the hybrid retrieval technique. Some extended attributes are
retrieved in tabular form, and some in structure form.

Example 3 demonstrates the use of transitive closure and the statements SETTOPARENT
and SETTOCHILD.

Example 4 updates a SIM database by using the features of the COMS direct-window
interface.

8600 0734-301 7-77

Using the Semantic Information Manager (SIM) Interface

Example 1: Using Project-Employee Projects

The following program enables you to add or drop projects from a database. If a project is
dropped, the program completes all related assignments by asking for ratings. The
program then updates the overall-rating of the project employee.

The program uses multiple-statement updates, tabular retrieval, the AVERAGE function,
single-statement updates, the CURRENT function.

BEGIN

SEMANTIC DATABASE PROJECTMANAGER (NAME = PROJEMP) :
(EMPLOYEE,MANAGER,PROJ_EMPLOYEE, INTERIM MANAGER,
PROJECT,DEPARTMENT ,ASSIGNMENT , PERSON) ;

TYPE UNPACKED DMRECORD ASS1 REC TYPE
(INTEGER ASS1 START DATE);

ASS1 REC TYPE ASS1 REC;

QUERY ASS1 Q(ASS1 REC),
PEMP_Q(PROJ_EMPLOYEE);

DEFINE PROJ_ADD "ADD "#,
PROJ_DROP = "DROP"#;

EBCDIC ARRAY PROJ_INDICATOR[O0:3];

INTEGER PROJ_NUM,
SS_NUM,
MSG_LENGTH;

REAL INPUT_RATING;
BOOLEAN QUERY RESULT;

ARRAY MESSAGE_ARRAY[0:12],
LANG_ARRAY[0:5] ;

DEFINE ABORT GRACEFULLY =
MYSELF.STATUS := -1#;

PROCEDURE PROCESS THE MESSAGE;

0,
/0 ___________________

BEGIN

DMEXCEPTIONMSG (LANG_ARRAY, MESSAGE_ARRAY);
MSG_LENGTH := MESSAGE_ARRAY[0];
WRITE(RMT,MSG_LENGTH,POINTER(MESSAGE ARRAY[1],8));
END PROCESS_THE MESSAGE;

PROCEDURE PROCESS AN ASSIGNMENT;

0,
%000 ememememmmmmmmmmm————————

7-78 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

BEGIN
QUERY RESULT := RETRIEVE(ASS1 Q,ASS1 REC);

WRITE (RMT,<I8,X4,F3.1>,ASS1 REC.ASS1 START DATE,INPUT RATING);
MODIFY ASSIGNMENT

(ASSIGN(RATING, INPUT RATING))

WHERE ASSIGNMENT = CURRENT (ASS1 Q)3

END PROCESS_AN_ASSIGNMENT;

QUERY_RESULT := OPEN UPDATE PROJECTMANAGER;
IF QUERY_RESULT THEN

BEGIN

PROCESS_THE MESSAGE;

ABORT_GRACEFULLY;

END;

BEGINTRANSACTION;
READ(RMT,<A4,16,16,16>,PROJ_INDICATOR,PROJ_NUM,SS NUM,INPUT RATING);
STARTMODIFY PEMP_Q WHERE SOC_SEC NO = SS_NUM;

IF PROJ_INDICATOR = PROJ ADD THEN
INCLUDE (PEMP_Q.CURRENT PROJECT,
[PROJECT WHERE PROJECT NUMBER = PROJ_NUM])
ELSE
IF PROJ_INDICATOR = PROJ DROP THEN
SELECT ASS1_Q FROM ASSIGNMENT
(ASST_START DATE = START DATE)
WHERE
PROJECT OF .PROJECT TEAM.SOC_SEC_NO = SS_NUM AND
PROJECT_OF .PROJECT NUMBER = PROJ NUM AND
NOT DMEXISTS(RATING);

WHILE NOT QUERY RESULT DO PROCESS AN ASSIGNMENT;
ASSIGN(PEMP_Q.OVERALL RATING,DMAVG(ASSIGNMENT RECORD.RATING));
EXCLUDE (PEMP_Q.CURRENT PROJECT, [PROJECT TAKING WHERE

PROJECT NUMBER = PROJ_NUM]);
APPLYMODIFY (PEMP Q) ;
ENDTRANSACTION;
QUERY RESULT:= CLOSE PROJECTMANAGER;

IF REAL(QUERY RESULT).DMEXCEPTION NEQ DMCOMPLETE THEN
PROCESS_THE MESSAGE;

END.

8600 0734-301 7-79

Using the Semantic Information Manager (SIM) Interface

Example 2: Archiving Assignments

The following program removes assignments that were completed at least five years ago
from the database and stores those assignments on tape.

The program illustrate hybrid retrieval: the program formats some extended attributes in
tabular form and others in structured form.

BEGIN

SEMANTIC DATABASE PROJEMP:
(EMPLOYEE,MANAGER,PROJ_EMPLOYEE, INTERIM MANAGER,
PROJECT,DEPARTMENT ,ASSIGNMENT , PERSON) ;

TYPE UNPACKED DMRECORD PEQ REC TYPE
(EBCDIC ARRAY PEQ NAME[0:19];
INTEGER SOC_SEC NO;
EBCDIC ARRAY DEPT[0:19]);

TYPE UNPACKED DMRECORD AQ REC TYPE
(INTEGER AQ START DATE;
INTEGER AQ_END DATE;
REAL AQ RATING);

PEQ_REC_TYPE PEQ_REC;
AQ_REC_TYPE AQ_REC;

QUERY PEQ(PEQ REC),
AQ(AQ_REC);

DEFINE DEADLINE = 010187#;

ARRAY OUT_TEXT[0:26],
LANG_ARRAY[0:5] ;

BOOLEAN QUERY RESULT;

DEFINE ABORT GRACEFULLY =
MYSELF.STATUS := -1#;

PROCEDURE PROCESS THE MESSAGE;

0,
/0 ___________________

BEGIN

DMEXCEPTIONMSG (LANG_ARRAY, OUT TEXT);
MSG_LENGTH := OUT TEXT[O];
WRITE(RMT,MSG_LENGTH,POINTER(OUT TEXT[1],8));
END PROCESS_THE MESSAGE;

PROCEDURE DO_EMPLOYEE;

0,
% 0 mememem———————

BEGIN
QUERY_RESULT := RETRIEVE(PEQ,PEQ REC);

7-80 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

IF NOT QUERY_RESULT THEN
BEGIN
WRITE(RMT,<A20,X4,110,X4,A20>,
PEQ_REC.PEQ NAME,PEQ REC.SOC_SEC NO,PEQ REC.DEPT);
DO
BEGIN
QUERY_RESULT := RETRIEVE(AQ,AQ REC);
IF REAL(QUERY RESULT) THEN
IF QUERY_RESULT.DMEXCEPTION NEQ DMCOMPLETE THEN
PROCESS_THE_MESSAGE;
ELSE
ELSE
BEGIN
% Archive the assignment to TAPE
DELETE ASSIGNMENT WHERE ASSIGNMENT = CURRENT(AQ);
END;
END
UNTIL QUERY_RESULT;
END
ELSE
IF REAL(QUERY_RESULT) .DMEXCEPTION NEQ DMCOMPLETE THEN
PROCESS_THE_MESSAGE;

END DO_EMPLOYEE;

QUERY_RESULT := OPEN UPDATE PROJEMP;
IF QUERY_RESULT THEN
BEGIN
PROCESS_THE MESSAGE;
ABORT_GRACEFULLY;
END;

BEGINTRANSACTION;

SELECT PEQ FROM PROJ EMPLOYEE
(PEQ_NAME = NAME;
% SOC_SEC_NO need not be specified
DEPT = DEPT_IN.DEPT TITLE;
SELECT AQ FROM ASSIGNMENT RECORD
(AQ_START DATE = START DATE;
AQ_END_DATE END_DATE;
AQ_RATING RATING))
WHERE SOME(ASSIGNMENT RECORD.END DATE) < DEADLINE;

DO

DO_EMPLOYEE
UNTIL QUERY_ RESULT;
ENDTRANSACTION;

CLOSE PROJEMP;
END.

8600 0734-301 7-81

Using the Semantic Information Manager (SIM) Interface

Example 3: Listing Subprojects

The following program lists the subprojects for a specific project, including subproject of
subprojects. The program uses transitive closure and the related set statements.

BEGIN

SEMANTIC DATABASE PROJEMP:
(EMPLOYEE,MANAGER,PROJ_EMPLOYEE, INTERIM MANAGER,
PROJECT,DEPARTMENT ,ASSIGNMENT , PERSON) ;

TYPE UNPACKED DMRECORD PEQ REC TYPE

(EBCDIC ARRAY PQ TITLE[0:29]);
TYPE UNPACKED DMRECORD SQ REC TYPE

(EBCDIC ARRAY SQ TITLE[0:29]);

PEQ_REC_TYPE PEQ_REC;
SQ REC_TYPE SQ_REC;

QUERY PEQ(PEQ REC),
SQ(SQ_REC);

BOOLEAN ALL DONE, QUERY RESULT;

INTEGER COUNTER;

ARRAY OUT TEXT[0:26],
LANG_ARRAY[0:5];

DEFINE ABORT GRACEFULLY =
MYSELF.STATUS := -1#;

PROCEDURE PROCESS THE MESSAGE;

0,
/D ___________________

BEGIN

DMEXCEPTIONMSG (LANG_ARRAY, OUT TEXT);
MSG_LENGTH := OUT TEXT[O];
WRITE(RMT,MSG_LENGTH,POINTER(OUT TEXT[1],8));
END PROCESS THE MESSAGE;

PROCEDURE GET_SUBPROJECT;

0,
/0 ______________

BEGIN

WRITE (RMT,<A30>,5Q REC.SQ TITLE);
SETTOCHILD(SQ);

COUNTER := * + 1;

QUERY_RESULT := RETRIEVE(SQ,SQ _REC);
IF QUERY_RESULT THEN
IF REAL(QUERY RESULT).DMEXCEPTION = DMCOMPLETE THEN
DO
BEGIN
SETTOPARENT(SQ) ;
COUNTER := *-1;

7-82 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

IF COUNTER LEQ O THEN
ALL DONE := TRUE
ELSE
BEGIN
QUERY_RESULT := RETRIEVE(SQ,SQ _REC);
IF REAL(QUERY_ RESULT) .DMEXCEPTION NEQ DMCOMPLETE THEN
ALL DONE := TRUE;
END
END
UNTIL ALL DONE OR NOT QUERY_RESULT
ELSE
ALL DONE := TRUE;
END GET_SUBPROJECT;

QUERY_RESULT := OPEN UPDATE PROJEMP;
IF QUERY_RESULT THEN
BEGIN
PROCESS_THE MESSAGE;
ABORT_GRACEFULLY;
END;

BEGINTRANSACTION;

SELECT PQ FROM PROJECT
(PQ_TITLE = PROJECT TITLE;
SELECT SQ FROM TRANSITIVE(SUBPROJECT)
(SQ_TITLE = PROJECT TITLE));
WHERE PROJECT.PROJECT TITLE = "Master Project"

QUERY_RESULT := RETRIEVE(PQ,PQ REC);
IF QUERY_RESULT THEN
BEGIN
WRITE(RMT,<A15>,"No such project");
ALL_DONE := TRUE;
END
ELSE

8600 0734-301 7-83

Using the Semantic Information Manager (SIM) Interface

7-84

BEGIN
QUERY_RESULT := RETRIEVE(SQ,SQ _REC);
IF QUERY_RESULT THEN
BEGIN
WRITE(RMT,<A14>,"No subprojects");
ALL_DONE := TRUE;
END;
END;
IF NOT ALL_DONE THEN
DO
GET_SUBPROJECT
UNTIL ALL DONE;

ENDTRANSACTION;
CLOSE PROJEMP;
END.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

Example 4: Using COMS with a SIM Database

This program, called ONLINESAIL, tracks sailboat races and updates the SIM database
SIMSAILDB by using the following features of the COMS direct-window interface:

¢ Declared COMS input and output headers
¢ Trancodes and Module Function Indexes (MFIs)
* Recovery

The direct window, the headers, the trancodes, and an agenda must be defined to COMS
to enable the program to run.

BEGIN
% ONLINESAIL

REAL COMS_STATUS;
TYPE INPUTHEADER COMS_IN TYPE (ARRAY CONVERSATION [0:59]);
COMS_IN_TYPE COMS_IN;
OUTPUTHEADER COMS_OUT;
FILE RMT (KIND=REMOTE);
LIBRARY DCILIBRARY;
SEMANTIC DATABASE SIMSAILDB:
(RACE_CALENDAR, ENTRY);

TYPE DMRECORD RACE_REC_TYPE
(EBCDIC ARRAY RACE NAME [0:19];
INTEGER RACE_ID;
EBCDIC ARRAY RACE_DATE [0:5],
RACE_TIME [0:3],
RACE_LOCATION [0:19],
RACE_SPONSOR [0:91);
RACE_REC_TYPE RACE_REC;

TYPE DMRECORD ENTRY REC_ TYPE
(EBCDIC ARRAY ENTRY BOAT NAME [0:19],
ENTRY_BOAT_ID [0:5];
INTEGER ENTRY_BOAT RATING;
EBCDIC ARRAY ENTRY BOAT HELSMAN [0:19],
ENTRY_AFF_Y _CLUB [0:14];
INTEGER ENTRY RACE_ID);
ENTRY_REC_TYPE ENTRY_REC;

QUERY ENTQ (ENTRY),
RACEQ (RACE_CALENDAR);

EBCDIC ARRAY SCRATCH [0:255];
ARRAY LANG_ARRAY [0:5];

INTEGER NUM_KEY,

E_RACE,
E_BOAT;

8600 0734-301 7-85

Using the Semantic Information Manager (SIM) Interface

7-86

D

EB
DE

o

o

o

o

o

o

EB

DE

BO

PR

PR

EFINE EOT NOTICE = 99#,
TEXT _LEN = 113 #;
CDIC ARRAY MSG_TEXT[0 : TEXT LEN-1];
FINE MSG_TCODE = MSG_TEXT[0] #,
MSG_FILLER
MSG_CREATE_RACE

MSG_CR_ID = INTEGER(MSG_TEXT[7],6) #,

MSG_CR_NAME = MSG_TEXT[13] #,
MSG_CR_DATE = MSG_TEXT[33] #,
MSG_CR_TIME = MSG_TEXT[39] #,

MSG_CR_LOCATION = MSG_TEXT[43] #,
MSG_CR_SPONSOR = MSG_TEXT[63] #,
FILLER

MSG_ADD ENTRY REDEFINES MSG_CREATE RACE

MSG_AE_RACE_ID = INTEGER(MSG_TEXT[7],6) #,

MSG_AE_ID = MSG_TEXT[13] #,
MSG_AE_NAME = MSG_TEXT[19] #,

MSG_AE RATING = INTEGER(MSG_TEXT[39],3) #,

MSG_AE_OWNER = MSG_TEXT[43] #,
MSG_AE_CLUB = MSG_TEXT[63] #,
FILLER

MSG_DELETE ENTRY REDEFINES MSG_CREATE RACE
MSG_DE RACE ID = INTEGER(MSG_TEXT[7],6) #,

MSG_DE_ID = MSG_TEXT[13] #,
FILLER
MSG_STATUS = MSG_TEXT[83] #;

CDIC ARRAY WS FAMILY [0:39];
ARRAY WS MSG [0:28];

FINE MSG_1 = WS_MSG [0]+#,
MSG_2 = WS_MSG [12]#;

OLEAN B;

OCEDURE SEND_MSG;

% Send the message back to the originating station.

% not specify an output agenda. Make sure to test
% the result of the SEND operation.

BEGIN

COMS_OUT.DESTCOUNT := 1;

COMS_OUT.DESTINATIONDESG := 0;

COMS_OUT.STATUSVALUE := 0;

COMS_STATUS := SEND(COMS _OUT, TEXT LEN, MSG_TEXT);
IF NOT(COMS_STATUS = 0 OR COMS_STATUS = 92) THEN

DISPLAY("Online Program SEND Err: " !! STRING8(C

END SEND_MSG;
OCEDURE SIM ERR RTN;

BEGIN

WRITE(RMT,<"SIM Error: Race=",16," Boat='
DMEXCEPTIONMSG (LANG_ARRAY, WS MSG);

Do

% Get the error message from SIM. It can be up to 176 bytes.

8600 0734-301

Using the Semantic Information Manager (SIM) Interface

WRITE (RMT,78,MSG_1);
WRITE (RMT,78,MSG_2);
END SIM_ERR RTN;

PROCEDURE CREATE_RACE;
% Enter a new race in the database.
BEGIN
E RACE := MSG_CR ID;
B := BEGINTRANSACTION;
IF B THEN
BEGIN
SIM_ERR_RTN;
SEND_MSG;
END
ELSE
BEGIN
B := INSERT RACE_CALENDAR
(ASSIGN (RACE_NAME, STRING(MSG_CR NAME,20));
ASSIGN (RACE_ID, E RACE);
ASSIGN (RACE_DATE, STRING(MSG_CR DATE,6));
ASSIGN (RACE_TIME, STRING(MSG_CR TIME,4));
ASSIGN (RACE_LOCATION, STRING(MSG_CR LOCATION,20));
ASSIGN (RACE_SPONSOR, STRING(MSG_CR SPONSOR,10)));
IF B THEN
REPLACE MSG_STATUS BY "Store Error", '
REPLACE MSG_STATUS BY "Race Added", '
IF B THEN
SIM_ERR _RTN
ELSE
SEND_MSG;
END;
END CREATE_RACE;

PROCEDURE ADD_ENTRY;
% Enter a boat in a race. Check to see if the race exists.
% If a DM error occurs, it indicates a duplicate entry.
BEGIN
NUM_KEY := MSG_AE RACE ID;
E RACE := MSG_AE RACE_ID;
E BOAT := MSG_AE RATING;

SELECT RACEQ FROM RACE_CALENDAR
WHERE RACE_ID = NUM KEY;
B := RETRIEVE (RACEQ);
DISCARD (RACEQ);
IF B THEN
BEGIN
REPLACE MSG_STATUS BY "Race Not Found", '
END
ELSE
BEGIN
B := BEGINTRANSACTION;

8600 0734-301 7-87

Using the Semantic Information Manager (SIM) Interface

IF B THEN
SIM_ERR_RTN
ELSE
BEGIN
B := INSERT ENTRY
(ASSIGN (ENTRY BOAT NAME, STRING(MSG_AE_NAME,20));
ASSIGN (ENTRY BOAT ID, STRING(MSG_AE ID,6));
ASSIGN (ENTRY BOAT RATING, E_BOAT);
ASSIGN (ENTRY BOAT HELMSMAN, STRING(MSG_AE_OWNER,20));
ASSIGN (ENTRY RACE ID, E_RACE));
IF B THEN
BEGIN
SIM_ERR_RTN;
REPLACE MSG_STATUS BY "Insert Error", '
ELSE
BEGIN
REPLACE MSG_STATUS BY "Boat Added", '
IF B THEN
SIM_ERR_RTN;
END;
END;
SEND_MSG;
END;
END ADD_ENTRY;

PROCEDURE DELETE ENTRY;

% Delete a boat from a race. First check to see if the boat is

% entered. (SIM always returns an OK result so be sure to check.)
% If the boat is entered, delete it.

BEGIN

NUM_KEY := MSG_DE RACE ID;

SELECT ENTQ FROM ENTRY
WHERE ENTRY_RACE_ID
ENTRY_BOAT_ID
B := RETRIEVE (ENTQ);
DISCARD (ENTQ);
IF B THEN
BEGIN
REPLACE MSG_STATUS BY "Boat Entry Not Found", '<
SEND_MSG;
END
ELSE
BEGIN
B := BEGINTRANSACTION;
IF B THEN
SIM_ERR_RTN
ELSE
BEGIN
B := DELETE ENTRY WHERE ENTRY_RACE_ID
ENTRY_BOAT_ID

NUM_KEY AND
STRING(MSG _DE_ID,6);

NUM_KEY AND
STRING(MSG _DE_ID,6);

IF B THEN

7-88 8600 0734-301

Using the Semantic Information Manager (SIM) Interface

BEGIN
SIM_ERR_RTN;
REPLACE MSG_STATUS BY "Found But Not Deleted'
ELSE
BEGIN
REPLACE MSG_STATUS BY "Boat Deleted", '
IF B THEN
SIM_ERR_RTN;
END;
END;
SEND_MSG;
END;
END DELETE_ENTRY;

PROCEDURE CHECK COMS_INPUT ERRORS;

0,

% Check for COMS control messages.

BEGIN
CASE COMS_STATUS OF
BEGIN
93: REPLACE MSG_STATUS BY "MSG Causes Abort, Do Not Retry'
20:
100:
101:
102: REPLACE MSG_STATUS BY "Error in STA Attach/Detachment’
0:
92:
99:
ELSE:; % A good message, recovery message, or EOT notification.
END;
IF COMS_IN.FUNCTIONSTATUS < O THEN
BEGIN
REPLACE MSG_STATUS BY "Negative Function Code",
SEND_MSG;
END;

END CHECK COMS_INPUT ERRORS;

PROCEDURE CLOSE_DOWN;
% Close the database.

BEGIN

CLOSE SIMSAILDB;

END;

PROCEDURE PROCESS TRANSACTION;

0,

% Since the transaction type is based on the function index, make
% sure the function index is within range.
BEGIN

CASE COMS_IN.FUNCTIONINDEX OF

BEGIN

8600 0734-301 7-89

Using the Semantic Information Manager (SIM) Interface

ELSE:BEGIN
REPLACE MSG_STATUS BY
"Invalid Trans Code", " '

END;
1: CREATE_RACE;
: ADD_ENTRY;
3: DELETE_ENTRY;
END;

END PROCESS_TRANSACTION;

PROCEDURE PROCESS COMS_INPUT;
% Gets the next message from COMS. If the status returned is an
% EOT_NOTICE, go to EOT. Otherwise, make sure that it is a valid
% message before processing it.
BEGIN
REPLACE MSG_TEXT BY " " FOR TEXT_LEN;
COMS_STATUS := RECEIVE(COMS IN, MSG_TEXT);
IF COMS_STATUS NEQ EOT NOTICE THEN

BEGIN

CHECK COMS_INPUT_ERRORS;

IF COMS_STATUS = 0 OR COMS_STATUS = 92 AND
(COMS_IN.FUNCTIONSTATUS NEQ 0) THEN
PROCESS_TRANSACTION;

END;

END;

REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
DCILIBRARY.LIBACCESS := VALUE(BYTITLE);
DCILIBRARY.TITLE := STRING(SCRATCH[O0],256);

B := OPEN UPDATE SIMSAILDB;
IF B THEN
BEGIN
DMEXCEPTIONMSG (LANG_ARRAY,WS MSG);
WRITE(RMT,78,MSG_1);
END;

REPLACE WS_FAMILY BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
DCILIBRARY.TITLE := STRING(WS_FAMILY[0],40);

REPLACE WS_FAMILY BY MYSELF.FAMILY;

REPLACE MYSELF.FAMILY BY "DISK = DISK ONLY.";

ENABLE (COMS_IN,"ONLINE");

REPLACE MYSELF.FAMILY BY WS _FAMILY;

DO
PROCESS_COMS_INPUT
UNTIL COMS_STATUS = EOT_NOTICE;

CLOSE_DOWN;
END.

7-90 8600 0734-301

Section 8
Using TransIT Open/OLTP

TransIT Open/OLTP for enterprise servers enables an application program to update
multiple DMSII databases in a coordinated fashion. That is, Open/OLTP ensures that either
all updates are committed or all are rolled back. Pre-Open/OLTP (traditional online
transaction processing) software enables an application to update multiple databases, but
it is the responsibility of the application program to coordinate the updates and the
recoveries of those databases.

Open/OLTP also implements a client/server model. Clients invoke services but do not
update the databases directly. Service providers can provide multiple services where a
service is used to update a DMSII database. The client/server model applies to COMS
online programs only because the implementation of services is provided by COMS.

Open/OLTP is based on the X/Open Distributed Transaction Processing (DTP) model,
which is specified in standards developed by the X/Open Company, Ltd.

Example
The following example shows the logic for a client:
Open databases.

Start global transaction.
Call Service 1 to debit savings account.
Call Service 2 to credit mutual fund account.
If services completed successfully then
Commit global transaction
Else
Rollback global transaction.

Close databases.

You can access Open/OTLP through ALGOL by calling library entry points that are
exported by the Open/OLTP software. These entry points may be called in the same
manner as any other library. For a description of the X/Open TX and XATMI interfaces for
ALGOL, refer to the TransIT Open/OLTP for A Series Programming Guide. This guide
explains how to use the include file (supplied in ALGOL) to access the TX and XATMI
interfaces. This guide also provides sample programs written in ALGOL that call the
library interfaces for using Open/OLTP.

8600 0734-301 8-1

Using TransIT Open/OLTP for A Series

More information about Transit Open/OLTP

For further information regarding TransIT Open/OLTP consult the TransIT Open/OLTP
for A Series Programming Guide.

8-2 8600 0734-301

Appendix A
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

* Paths of a railroad diagram
¢ Constants and variables
¢ Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts

Railroad diagrams are diagrams that show you the standards for combining words and
symbols into commands and statements. These diagrams consist of a series of paths that
show the allowable structures of the command or statement.

Paths

Paths show the order in which the command or statement is constructed and are
represented by horizontal and vertical lines. Many commands and statements have a
number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

— REMOVE |
t SOURCE

OBJECT
The three paths in the previous example show the following three possible commands:

« REMOVE
« REMOVE SOURCE
« REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the
level of complexity, all railroad diagrams are visual representations of commands and
statements.

8600 0734-301 A-1

Understanding Railroad Diagrams

Railroad diagrams are intended to show

¢ Mandatory items

* User-selected items

¢ Order in which the items must appear

¢ Number of times an item can be repeated

¢ Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and

statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

Table A-1. Elements of a Railroad Diagram

The diagram element. . . Indicates an item that . . .

Constant Must be entered in full or as a specific abbreviation
Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or as
an allowable abbreviation. If part of a constant appears in boldface, you can abbreviate
the constant by

* Entering only the boldfaced letters

* Entering the boldfaced letters plus any of the remaining letters

If no part of the constant appears in boldface, the constant cannot be abbreviated.
Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement.

In railroad diagrams, variables are enclosed in angle brackets.

In the following example, BEGIN and END are constants, whereas <statement list> is a
variable. The constant BEGIN can be abbreviated, since part of it appears in boldface.

— BEGIN —<statement 1ist>— END }

8600 0734-301

Understanding Railroad Diagrams

Valid abbreviations for BEGIN are

. BE

. BEG

. BEGI
Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

* Vertical bars

* Percent signs

* Right arrows

* Required items

* User-selected items

* Loops

* DBridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (1) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

— SECONDWORD — (—=<arithmetic expression>—) }

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the command
or statement must be on a line by itself.

— STOP 5

Right Arrow

The right arrow symbol (>)

* Isused when the railroad diagram is too long to fit on one line and must continue on
the next

* Appears at the end of the first line, and again at the beginning of the next line

— SCALERIGHT — (—=<arithmetic expression>— ,

»—<arithmetic expression>—) }

8600 0734-301 A-3

Understanding Railroad Diagrams

Required Item

A required item can be

* A constant

e Avariable

e Punctuation

If the path you are following contains a required item, you must enter the item in the

command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items. Required
items can also exist on horizontal lines within alternate paths, or nested (lower-level)
diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

— EVENT —<identifier |

User-Selected Item

A user-selected item can be

e A constant
e Avariable
¢ Punctuation

User-selected items appear one below the other in a vertical list. You can choose any one
of the items from the list. If the list also contains an empty path (solid line) above the
other items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (-) can be

entered before the required variable <arithmetic expression>, or the symbols can be
disregarded because the diagram also contains an empty path.

—HQH thmetic expression |
+

A-4 8600 0734-301

Understanding Railroad Diagrams

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below the
other, connected on both sides by vertical lines. The top line is a right-to-left path that
contains information about repeating the loop.

Some loops include a return character. A return character is a character—often a comma
(,) or semicolon (;)—that is required before each repetition of a loop. If no return
character is included, the items must be separated by one or more spaces.

— 1 <field values—L. '

Bridge
A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/\) that

¢ Shows the maximum number of times the loop can be repeated
* Indicates the number of times you can cross that point in the diagram
The bridge can precede both the contents of the loop and the return character (if any) on

the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until all
valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two times.
In the second bridge example, you can enter LINKAGE or RUNTIME no more than three
times.

Lo LINKAGE | |
L rontve !

_iTZ LINKAGE — |
RUNTIME |

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you can
cross that point is indicated by the number in the bridge.

_—i_I:/Z*_ LINKAGE ——| |
RUNTIME — !

In the previous bridge example, you must enter LINKAGE at least once but no more than
twice, and you can enter RUNTIME any number of times.

8600 0734-301 A-5

Understanding Railroad Diagrams

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path; others have several
alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant
LINKAGE and the variable <linkage mnemonic>:

— LINKAGE —<Tinkage mnemonic }
Alternate paths are provided by

¢ Loops

* User-selected items

¢ A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested (lower-

level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes

¢ An ampersand (&)

¢ Constants that are user-selected items

These constants are within a loop that can be repeated any number of times until all
options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.
The second alternative path requires the ampersand followed by the required constant
ALTER and the required variable <new value>.

— &L TveE | |
ASCII ——
BCL ———
DECIMAL —
EBCDIC —
HEX ———
OCTAL —-

— ADDRESS

— ALTER —<new value>—

8600 0734-301

Understanding Railroad Diagrams

Railroad Diagram Examples with Sample Input

The following examples show five railroad diagrams and possible command and statement
constructions based on the paths of these diagrams.
Example 1

<lock statement>
— LOCK — (— <file identifier> —) |

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered.
Because no part of the word appears in
boldface, the entire word must be entered.

The parentheses are required punctuation,
and FILE4 is a sample file identifier.

Example 2
<open statement>
— OPEN database name }
i: INQUIRY
UPDATE

Sample Input Explanation

OPEN The constant OPEN is followed by the variable

DATABASE1 DATABASE]L, which is a database name.

The railroad diagram shows two user-selected
items, INQUIRY and UPDATE. However,
because an empty path (solid line) is included,
these entries are not required.

OPEN INQUIRY The constant OPEN is followed by the user-

DATABASE1 selected constant INQUIRY and the variable
DATABASEL.

OPEN UPDATE The constant OPEN is followed by the user-

DATABASE1 selected constant UPDATE and the variable
DATABASEIL.

8600 0734-301 A-7

Understanding Railroad Diagrams

Example 3

<generate statement>
— GENERATE —<subset>— = —— NULL |

<subset
AND <subset>—
+

Sample Input Explanation

GENERATE Z = NULL The GENERATE constant is followed by
the variable Z, an equal sign (=), and the
user-selected constant NULL.

GENERATEZ =X The GENERATE constant is followed by
the variable Z, an equal sign, and the user-
selected variable X.

GENERATE Z = X AND B The GENERATE constant is followed by
the variable Z, an equal sign, the user-
selected variable X, the AND command
(from the list of user-selected items in the
nested path), and a third variable, B.

GENERATEZ =X +B The GENERATE constant is followed by
the variable Z, an equal sign, the user-
selected variable X, the plus sign (from
the list of user-selected items in the
nested path), and a third variable, B.

A-8 8600 0734-301

Understanding Railroad Diagrams

Example 4

<entity reference declaration>

— ENTITY REFERENCE ——<entity ref ID>— (—<class ID>—) J—|

Sample Input Explanation
ENTITY REFERENCE ADVISORI1 The required item ENTITY
(INSTRUCTOR) REFERENCE is followed by the

variable ADVISORI1 and the variable
INSTRUCTOR. The parentheses are

required.
ENTITY REFERENCE ADVISOR1 Because the diagram contains a loop,
(INSTRUCTOR), ADVISOR2 the pair of variables can be repeated
(ASST_INSTRUCTOR) any number of times.

8600 0734-301 A-9

Understanding Railroad Diagrams

Example 5
— PS — MODIFY

»—J—[Q‘equest number :] |
<request number>— — —<request number>
— ALL

L ExcepTIONS

| a file attr"ibute phrase>:|-J~

—_|—<pr'1'nt modifier phrase>

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY Because the diagram contains a loop, the variable

11159,11160,11163 11159 can be followed by a comma, the variable
11160, another comma, and the final variable 11163.

PSMOD 11159-11161 The constants PS and MODIFY are followed by the

DESTINATION = "LP7" user-selected variables 11159-11161, which are

request numbers, and the user-selected variable
DESTINATION = “LP7”, which is a file attribute
phrase. Note that the constant MODIFY has been
abbreviated to its minimum allowable form.

PS MOD ALL The constants PS and MODIFY are followed by the
EXCEPTIONS user-selected constants ALL and EXCEPTIONS.

A-10 8600 0734-301

Appendix B
Extended ALGOL Reserved Words

Type

A <reserved word> in Extended ALGOL has the same syntax as an identifier. The reserved
words are divided into three types. In the following explanation, each type is discussed
separately and the reserved words for that specific type are listed. An alphabetical listing
of all reserved words can be found at the end of this appendix.

1 Reserved Words

Listed below are type 1 reserved words. A reserved word of type 1 can never be declared
as an identifier; that is, it has a predefined meaning that cannot be changed. For example,

because LIST is a type 1 reserved word, the declaration

ARRAY LIST[0:999]
is flagged with a syntax error.

ALPHA
ARRAY
BEGIN
BOOLEAN
COMMENT
CONTINUE
DIRECT
DO
DOUBLE
END

ELSE
EVENT
FALSE

8600 0734-301

FILE

FOR
FORMAT
GO

IF
INTEGER
LABEL
LIST
LONG
OWN
POINTER
PROCEDURE
REAL

REFERENCE
STEP
SWITCH
TASK

THEN
TRANSLATETABLE
TRUE
TRUTHSET
UNTIL
VALUE
WHILE

Z1P

B-1

Extended ALGOL Reserved Words

Type 2 Reserved Words

B-2

Listed below are type 2 reserved words. A reserved word of type 2 can be redeclared as an
identifier; it then loses its predefined meaning in the scope of that declaration. For
example, because IN is a type 2 reserved word, the declaration

FILE IN(KIND = READER)
is legal, but in the scope of the declaration, the statement

SCAN P WHILE IN ALPHA

is flagged with a syntax error on the word “IN”.

If a type 2 reserved word is used as a variable in a program but is not declared as a
variable, then the error message that results is not the expected “UNDECLARED
IDENTIFIER”. Instead, it might be “NO STATEMENT CAN START WITH THIS”.

ABORTTRANSACTION CHANGEFILE DGAMMA

ABS CHECKPOINT DICTIONARY
ACCEPT CHECKSUM DIGITS
AFTER CLN DIMP

ALL CLOSE DINTEGER
AND COLLATING DISABLE
APPLYINSERT COMPILETIME DISCARD
APPLYMODIFY COMPLEX DISPLAY
ARCCOS CONJUGATE DIV

ARCSIN COS DLGAMMA
ARCTAN COSH DLN

ARCTAN2 COTAN DLOG
ARRAYSEARCH CSIN DMABS

ASCII CSQRT DMAVG
ATANH CURRENT DMAX
ATTACH DABS DMCHR
AVAILABLE DAND DMCONTAINS
BCL DARCCOS DMCOUNT
BEFORE DARCSIN DMEQUIV
BINARY DARCTAN DMEXCEPTIONINFO
BREAKPOINT DARCTAN2 DMEXCEPTIONMSG
BY DCOS DMEXCLUDES
CABS DCOSH DMEXISTS
CALL DEALLOCATE DMEXT
CALLING DECIMAL DMFUNCTION
CANCEL DEFINE DMIN
CANCELTRPOINT DELINKLIBRARY DMISA

CASE DELTA DMLENGTH
CAT DEQV DMMATCH
CAUSE DERF DMMAX
CAUSEANDRESET DERFC DMMIN

continued

8600 0734-301

Extended ALGOL Reserved Words

continued
CCOS
CEXP
DMPRED
DMRECORD
DMRPT
DMSORT
DMSUCC
DMSUM
DMTRUNC
DMUPDATECOUNT
DNABS
DNOT
DNOTWAIT
DOR
DROP
DSCALELEFT
DSCALERIGHT
DSCALERIGHTT
DSIN
DSINH
DSQRT
DTAN
DTANH
DUMP
EBCDIC
EGI
EMI
EMPTY
EMPTY4
EMPTY7
EMPTY8
ENABLE
ENTER
ENTITY
EQL
EQV
EQV_EQL
EQV_GEO
EQV_GTR
EQV_LEQ
EQV_LSS
EQV_NEQ
ERF
ERFC
ESI
EXCHANGE
EXCLUDE
EXISTS
EXP

8600 0734-301

DETACH
DEXP
FIRSTWORD
FIX

FORMAL
FORWARD
FDMPOS
FREEZE
GAMMA

GEQ

GTR

DMSUCC
HAPPENED
HEAD

HEX

IMAG

IMP

IN

INCLUDE
INPUTHEADER
INTEGERT
INTERRUPT
INVERSE

IS

INST

LB

LENGTH

LEQ
LIBERATE
LIBRARY
LINE
LINENUMBER
LINKLIBRARY
LISTLOOKUP
LN

LNGAMMA
LOCK

LOG

LSS
MASKSEARCH
MAX

MERGE
MESSAGECOUNT
MESSAGESEARCHER
MIN

MON

MODIFY
MONITOR
MUX

DMNEXTEXCEPTION
DMPOS

NOCR

NOLF

NONE
NORMALIZE
FREE

NOT

NUMBERIC

OF

OFFSET

ON

ONES

OPEN

OR

ORDER
ORDERING
OUTPUTHEADER
OUTPUTMESSAGE
PICTURE

POTC

POTH

POTL

PROCESS
PROCESSID
PROCURE
PROGRAMDUMP
LENGTH

PURGE

QUERY
RANDOM

RB

READ
READLOCK
RECEIVE
RECORD
REFERENCE
REMAININGCHARS
REMOVEFILE
REPEAT
REPLACE
RESET

RESIZE
RETRIEVE
REWIND

RUN
SAVETRPOINT
SCALELEFT
SCALERIGHT

B-3

Extended ALGOL Reserved Words

B-4

continued

EXPORT
EXTERNAL
FILL

FIRST
FIRSTONE
SEEK

SELECT
SEMANTIC SEND
SET
SETACTUALNAME
SETTOCHILD
SETTOPARENT
SIGN

SIN

SINGLE

SINH

SIZE

SKIP

SOME

SORT

SPACE

SQRT

MYJOB
MYSELF
NABS

NEQ

NO
STACKER
STARTINSERT
STARTMODIFY
STATION
STOP
STRING
STRING4
STRING7
STRINGS
SUBFILE
SUBROLE
TAIL

TAKE

TAN

TANH
TERMINAL

SCALERIGHTF
SCALERIGHTT
SCAN

SDIGITS
SECONDWORD
THRU

TIME
TIMELIMIT
TIMES

TO
TRANSITIVE
TRANSLATE
TYPE

USING

WAIT
WAITANDRESET
WHEN

WHERE

WITH

WORDS
WRITE

8600 0734-301

Extended ALGOL Reserved Words

Type 3 Reserved Words

Listed below are type 3 reserved words. A reserved word of type 3 is context-sensitive. It
can be redeclared as an identifier, and if it is used where the syntax calls for that reserved
word, it carries the predefined meaning; otherwise, it carries the user-declared meaning.
The different meanings for the type 3 reserved word STATUS are illustrated in the
following example.

BEGIN
TASK T;

REAL STATUS;

% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE

STATUS := 4.5;

% IN THE NEXT STATEMENT, "STATUS" IS A TASK ATTRIBUTE
IF T.STATUS = VALUE(TERMINATED) THEN
% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE

STATUS :

END.

Type 3 reserved words include the following:

e File attribute names

e Task attribute names

e Library attribute names

¢ Direct array attribute names

¢ Mnemonics for attribute values

All file attributes, direct array attributes, and mnemonics described in the Flile Attributes
Programming Reference Manual are type 3 reserved words in ALGOL. All task attributes
and mnemonics described in the Task Attributes Programming Reference Manual are

type 3 reserved words in ALGOL.

ACTUALNAME BYTITLE EXCEPTIONEVENT
ALL CHARGECODE EXCEPTIONTASK
ALPHAG6 CLASS EXPONENTOVERFLOW
ALPHA7 CODE EXPONENTUNDERFLOW
ALPHAS8 COMPILETYPE FAMILY
ANYFAULT COREESTIMATE FILECARDS
ARRAYS CRUNCH FILES
AS DBS FUNCTIONNAME
ASCIITOBCL DECIMALPOINTISCOMMA HEXTOASCII
ASCIITOEBCDIC DECLAREDPRIORITY HEXTOBCL
ASCIITOHEX DISCARD HEXTOEBCDIC
BACKUPPREFIX DISK HISTORY
BASE DISKPACK INITIATOR
BCLTOASCII EBCDICTOASCII INTEGEROVERFLOW
BCLTOEBCDIC EBCDICTOBCL INTNAME

continued

8600 0734-301

B-5

Extended ALGOL Reserved Words

B-6

continued

BCLTOHEX
BYFUNCTION
INVALIDOP
INVALIDPROGRAM
WORD
JOBNUMBER
LIBACCESS
LIBPARAMETER
LIBRARIES
LOCKED

LOOP

MAXCARDS
MAXIOTIME
MAXLINES
MAXPROCTIME
MEMORYPARITY
MEMORYPROJECT
NAME

OFFER

OPTION

EBCDICTOHEX
ELAPSEDTIME
ORGUNIT

ouT

PACK

PAGED

PARTNER
PERMANENT
PRIVATELIBRARIES
PROCESSIOTIME
PROCESSTIME
PROGRAMMEDOPERATOR
REEL

RESTART

RETAIN
SCANPARITY

SIBS

STACKNO

INVALIDADDRESS
INVALIDINDEX
STACKSIZE
STARTTIME

STATUS
STOPPOINT
STRINGPROTECT
SUBSPACES
TADS
TARGETTIME
TASKATTERR
TASKFILE
TASKVALUE
TEMPORARY
TITLE

TYPE
USERCODE
ZERODIVIDE

8600 0734-301

Extended ALGOL Reserved Words

Reserved Words Alphabetical Listing

The following is an alphabetical list of reserved words for Extended ALGOL. The number
in parentheses following each word indicates the type of the reserved word. For example,

“FOR (1)” indicates that FOR is a type 1 reserved word.

ABORTTRANSACTION (2)
ABS (2)

ACCEPT (2)
ACTUALNAME (3)
AFTER (2)

ALL (2)

ALL (3)

ALPHA (1)
ALPHAG (3)
ALPHAT7 (3)
ALPHAS (3)

AND (2)
ANYFAULT (3)
APPLYINSERT (2)
APPLYMODIFY (2)
ARCCOS (2)
ARCSIN (2)
ARCTAN (2)
ARCTAN2 (2)
ARRAY (1)
ARRAYS (3)
ARRAYSEARCH (2)
AS (3)

ASCII (2)
ASCIITOBCL (3)
ASCIITOEBCDIC (3)
ASCIITOHEX (3)
ATANH (2)
ATTACH (2)
AVAILABEL (2)
BACKUPPREFIX (3)
BASE (3)

BCL (2)
BCLTOASCII (3)
BCLTOEBCDIC (3)
BCLTOHEX (3)
BEFORE (2)
BEGIN (1)
BINARY (2)
BOOLEAN (1)
BREAKPOINT (2)
BY (2)
BYFUNCTION (3)

8600 0734-301

CALL (2)
CALLING (2)
CANCEL (2)

CANCELTRPOINT (2)

CASE (2)
CAT (2)
CAUSE (2)

CAUSEANDRESET (2)

CCOS (2)
CEXP (2)
CHANGEFILE (2)
CHARGECODE (3)
CHECKPOINT (2)
CHECKSUM (2)
CLASS (3)

CLN (2)

CLOSE (2)

CODE (3)
COLLATING (2)
COMMENT (1)
COMPILETIME (2)
COMPILETYPE (3)
COMPLEX (2)
CONJUGATE (2)
CONTINUE (1)
COREESTIMATE (3)
COS 2)

COSH (2)

COTAN (2)
CRUNCH (2)

CSIN (2)

CSIN (2)

CSQRT (2)
CURRENT (2)
DABS (2)

DAND (2)
DARCCOS (2)
DARCSIN (2)
DARCTAN (2)
DARCTAN2 (2)
DBS (3)

DCOS (2)

DCOSH (2)

DECLAREDPRIORITY (3)
DEFINE (2)
DELINKLIBRARY (2)
DELTA (2)

DEQV (2)

DERF (2)

DERFC (2)
DETACH (2)
DEXP (2)
DGAMMA (2)
DICTIONARY (2)
DIGITS (2)

DIMP (2)
DINTEGER (2)
DIRECT (1)
DISABLE (2)
DISCARD (2)
DISCARD (3)
DISK (3)
DISKPACK (3)
DISPLAY (2)

DIV (2)
DLGAMMA (2)
DLN (2)

DLOG (2)

DMABS (2)
DMAVG (2)

DMAX (2)
DMCHR (2)
DMCONTAINS (2)
DMCOUNT (2)
DMEQUIV (2)
DMEXCEPTIONINFO (2)
DMEXCEPTIONMSG (2)
DMEXCLUDES (2)
DMEXISTS (2)
DMEXT (2)
DMFUNCTION (2)
DMIN (2)

DMISA (2)
DMLENGTH (2)
DMMATCH (2)
DMMAX (2)

continued

B-7

Extended ALGOL Reserved Words

continued
BYTITLE (3) DEALLOCATE (2) DMMIN (2)
CABS (2) DECIMAL (2) INTNAME (3)
DMNEXTEXCEPTION (2) DECIMALPOINTISCOMMA (3) INVALIDADDRESS (3)
DMPOS (2) ESI (2) INVALIDINDEX (3)
DMPRED (2) EVENT (1) INVALIDOP (3)
DMRECORD (2) EXCEPTIONEVENT (3) INVALIDPROGRAMWORD

3

DMRPT (2) EXCEPTIONTASK (3) INVERSE (2)
DMSQRT (2) EXCHANGE (2) IS (2)
DMSUCC (2) EXCLUDE (2) ISNT (2)
DMSUM (2) EXISTS (2) JOBNUMBER (3)
DMTRUNC (2) EXP (2) LABEL (1)
DMUPDATECOUNT (2) EXPONENTOVERFLOW (3) LB (2)
DNABS (2) EXPONENTUNDERFLOW (3) LENGTH (2)
DNOT (2) EXPORT (2) LEQ (2)
DO (1) EXTERNAL (2) LIBACCESS (3)
DONTWAIT (2) FALSE (1) LIBERATE (2)
DOR (2) FAMILY (3) LIBPARAMETER (3)
DOUBLE (1) FILE (1) LIBRARIES (3)
DROP (2) FILECARDS (3) LIBRARY (2)
DSCALELEFT (2) FILES (3) LINE (2)
DSCALERIGHT (2) FILL (2) LINENUMBER (2)
DSCALERIGHTT (2) FIRST (2) LINKLIBRARY (2)
DSIN (2) FIRSTONE (2) LIST (1)
DSINH (2) FIRSTWORD (2) LISTLOOKUP (2)
DSQRT (2) FIX (2) LN (2)
DTAN (2) FOR (1) LNGAMMA (2)
DTANH (2) FORMAL (2) LOCK (2)
DUMP (2) FORMAT (1) LOCKED (3)
EBCDIC (2) FORWARD (2) LOG (2)
EBCDICTOASCII (3) FREE (2) LONG (1)
EBCDICTOBCL (3) FREEZE (2) LOOP (3)
EBCDICTOHEX (3) FUNCTIONNAME (3) LSS (2)
EGI (2) GAMMA (2) MASKSEARCH (2)
ELAPSEDTIME (3) GEQ (2) MAX (2)
ELSE (1) GO (D) MAXCARDS (3)
EMI (2) GTR (2) MAXIOTIME (3)
EMPTY (2) HAPPENED (2) MAXLINES (3)
EMPTY4 (2) HEAD (2) MAXPROCTIME (3)
EMPTY7 (2) HEX (2) MEMORYPARITY (3)
EMPTYS (2) HEXTOASCII (3) MEMORYPROJECT (3)
ENABLE (2) HEXTOBCL (3) MERGE (2)
END (1) HEXTOEBCDIC (3) MESSAGECOUNT (2)
ENTIER (2) HISTORY (3) MESSAGESEARCHER (2)
ENTITY (2) IF (1) MIN (2)
EQL (2) IMAG (2) MOD (2)
EQV (2) IMP (2) MODIFY (2)
EQV_EQL (2) IN (2) MONITOR (2)
EQV_GEQ (2) INCLUDE (2) MUX (2)

B-8 8600 0734-301

Extended ALGOL Reserved Words

continued

EQV_GTR (2)
EQV_LEQ (2)
EQV_LSS (2)
EQV_NEQ (2)

ERF (2)

ERFC (2)

NEQ (2)

NO (2)

NOCR (2)

NOLF (2)

NONE (2)
NORMALIZE (2)
NOT (2)

NUMERIC (2)

OF (2)

OFFER (3)

OFFSET (2)

ON (2)

ONES (2)

OPEN (2)

OPTION (3)

OR (2)

ORDER (2)
ORDERING (2)
ORGUNIT (3)

OUT (3)
OUTPUTHEADER (2)
OUTPUTMESSAGE (2)
OWN (1)

PACK (3)

PAGED (3)
PARTNER (3)
PERMANENT (3)
PICTURE (2)
POINTER (1)

POTC (2)

POTH (2)

POTL (2)
PRIVATELIBRARIES (3)
PROCEDURE (1)
PROCESS (2)
PROCESSID (2)
PROCESSIOTIME (3)
PROCESSTIME (3)
PROCURE (2)
PROGRAMDUMP (2)
PROGRAMMEDOPERATOR (3)
PURGE (2)

QUERY (2)

8600 0734-301

INITIATOR (3)
INPUTHEADER (2)
INTEGER (1)

INTEGEROVERFLOW (3)

INTEGERT (2)
INTERRUPT (2)
REEL (3)
REFERENCE (1)
REFERENCE (2)
REMAININGCHARS (2)
REMOVEFILE (2)
REPEAT (2)
REPLACE (2)
RESET (2)
RESIZE (2)
RESTART (3)
RETAIN (3)
RETRIEVE (2)
REWIND (2)

RUN (2)
SAVETRPOINT (2)
SCALELEFT (2)
SCALERIGHT (2)
SCALERIGHTF (2)
SCALERIGHTT (2)
SCAN (2)
SCANPARITY (3)
SDIGITS (2)
SECONDWORD (2)
SEEK (2)

SELECT (2)

SEND (2)

SET (2)
SETACTUALNAME (2)
SETTOCHILD (2)
SETTOPARENT (2)
SIBS (3)

SIGN (2)

SIN (2)

SINGLE (2)

SINH (2)

SIZE (2)

SKIP (2)

SOME (2)

SORT (2)

SPACE (2)

SQRT (2)
STACKER (2)
STACKNO (3)

MYJOB (2)
MYSELF (2)
NABS (2)

NAME (3)
STOPPOINT (3)
STRING (2)
STRING4 (2)
STRINGT (2)
STRINGS (2)
STRINGPROJECT (3)
SUBFILE (2)
SUBROLE (2)
SUBSPACES (3)
SWITCH (1)
TADS (3)

TAIL (2)

TAKE (2)

TAN (2)

TANH (2)
TARGETTIME (3)
TASK (1)
TASKATTERR (3)
TASKFILE (3)
TASKVALUE (3)
TEMPORARY (3)
TERMINAL (2)
THEN (1)

THRU (2)

TIME (2)
TIMELIMIT (2)
TIMES (2)

TITLE (3)

TO (2)
TRANSITIVE (2)
TRANSLATE (2)
TRANSLATETABLE (1)
TRUE (1)
TRUTHSET (1)
TYPE (2)

TYPE (3)

UNTIL (1)
USERCODE (3)
USING (2)
VALUE (1)

WAIT (2)
WAITANDRESET (2)
WHEN (2)
WHERE (2)
WHILE (1)

B-9

Extended ALGOL Reserved Words

continued
RANDOM (2)
RB (2)
READ (2)
READLOCK (2)
REAL (1)
RECEIVE (2)
RECORD (2)

B-10

STACKSIZE (3)
STARTINSERT (2)
STARTMODIFY (2)
STARTTIME (3)
STATION (2)
STATUS (3)

STEP (1)

STOP (2)

WITH (2)
WORDS (2)
WRITE (2)
ZERODIVIDE (3)
ZIP (1)

8600 0734-301

Index

A

ABORTTRANSACTION statement

in DMSII, 4-26
example of, 4-26
in SIM, 7-43

<aborttransaction statement>, 4-26, 7-43
ACCESSDATABASE entry point, 5-26
Accessroutines, reentrance capability of, 4-10
ADDS, (See Advanced Data Dictionary

System)

Advanced Data Dictionary System

arrays of fields, 2-7
as seen by ALGOL compilers, 2-1
assignment statements, 2-26
Boolean, 2-26
examples of, 2-26
records in, 2-26
rounding and, 2-26
truncating and, 2-26
binding considerations, 2-24
bit manipulation, 2-7
checking ranges, 2-16
compiler control options, 2-12
description of, 2-1
DICTIONARY ITEM declaration, 2-2, 2-21
example of, 2-21
DICTIONARY option, 2-13
example of, 2-13
DICTIONARY RECORD variables
accessing, 2-24
binding, 2-24
declaring, 2-17, 2-19
example of, 2-18
entities
embedded items, 2-3
passing as parameters, 2-22
records, 2-3
retrieving, 2-3, 2-8
establishing a data dictionary, 2-13
establishing a status, 2-14
extension list, 1-2
fields

8600 0734-301

arrays of, 2-7

example of, 2-11

qualifying, 2-10

referencing, 2-10

subscripted, 2-10

types of, 2-7

using, 2-7
functions, 2-28

LENGTH, 2-29

OFFSET, 2-30

POINTER, 2-31

RESIZE, 2-32

SIZE, 2-34

UNITS, 2-36
items, 2-3

ALGOL data types for, 2-3

mapping to ALGOL data types, 2-5

passing as parameters, 2-22
LENGTH function, 2-29
mapping data types to ALGOL, 2-4
OFFSET function, 2-30
passing entities as parameters, 2-22
POINTER function, 2-31
RANGECHECK option, 2-16

example, 2-16
RANGECHECK option using in COMS, 3-2
REPLACE statement, 2-27
RESIZE function, 2-32
restrictions on parameters, 2-2
restrictions on records, 2-2
retrieving data descriptions, 2-2
retrieving entities, 2-2
retrieving item descriptions, 2-2
retrieving record description, 2-2
SCAN statement, 2-27
SIZE function, 2-34
STATUS option, 2-14

example of, 2-14
TYPE declaration, 2-19

as substitute for DICTIONARY RECORD

declaration, 2-2

example of, 2-20
using with COMS, 3-2
using with SDF Plus, 6-1

Index-1

Index

using with SIM, 7-3
AGENDA entity, 3-61
AGENDA field, 3-11, 3-14
aggregate functions, 7-38
AGGREGATE_RESPONSE entity, 3-61
ALGOL Functions
using with SDF Plus, 6-4
ALGOL reserved words, B-1
alphabetic list - all types, B-7
type 1, B-1
type 2, B-2
type 3, B-5
<alpha item identifier>, 4-23
<alpha item name>, 4-16
<alpha item>, 4-78
<alphanumeric relation>, 4-23
ALREADYACCEPTED field, X.25
COMSRECORD, 3-21
<arithmetic assignment statement>, 2-25
<assign spec>, 7-47
ASSIGN statement, 4-27
example of, 4-28
<assign statement>, 4-27
<attr map>, 7-66
<attribute chain>, 7-33

<base spec>, 5-5
<BDMS close statement>, 4-33
<BDMS free statement>, 4-46
<BDMS identifier>, 4-12
<BDMS lock statement>, 4-54
<BDMS open statement>, 4-58
<BDMS set statement>, 4-72
BDMSALGOL

compiling programs, 4-1

extensions for DMSII, 4-1

extensions for TPS, 1-9
BEGINTRANSACTION statement

effect on input headers, 3-29

in COMS, 3-29

in DMSII, 4-29

example of, 4-31
in SIM, 7-44
in TPS, 5-31
example of, 5-32

<begintransaction statement>

in COMS, 3-29

in DMSII, 4-29

in SIM, 7-44

Index-2

binding considerations
for ADDS, 2-24
for COMS, 3-5, 3-26
for DMSII, 4-87
for SIM, 7-22
<Boolean assignment statement>, 2-25
<Boolean item name>, 4-16
<bound pair list>, 5-8

C

CANCELTRPOINT statement
in DMSII, 4-32
example of, 4-32
in SIM, 7-45
example of, 7-45
<canceltrpoint statement>, 4-32, 7-45
CAUSE field, X.25 COMSRECORD, 3-20
CLASS field, X.25 COMSRECORD, 3-19
CLOSE statement
in DMSII, 4-33
example of, 4-34
in SIM, 7-46
<close statement>, 7-46
CLOSETRBASE entry point, 5-21
COMMUNICATIONNUMBER field, X.25
COMSRECORD, 3-20
Communications Management System
ALGOL functions and, 3-2
ALGOL interface to, 3-1
ALGOL type 2 reserved words, 3-2
BEGINTRANSACTION statement, 3-29
binding considerations, 3-5, 3-26
communicating with, 3-5
COMSRECORD
accessing, 3-25
COMSRECORD declaration, 3-16
COMSSUPPORT library, 3-4
changing attributes of, 3-4
conversation area field, 3-5
accessing, 3-5
declaring input headers, 3-5
declaring output headers, 3-56
default library access, 3-4
DEFINE declaration, 3-64
description of, 3-1
designator data type, 3-15
DISABLE statement, 3-31
ENABLE statement, 3-33
ENDTRANSACTION statement, 3-35
example of, 3-36

8600 0734-301

Index

entities, 3-61
error handling, 3-44
extensions, 1-4
features, 3-1
header records
declaring, 3-5
headers, 3-5
accessing field, 3-25
binding, 3-5, 3-26
considerations, 3-5
modifying, 3-25
naming, 3-8
passing fields, 3-25
providing compatibility for, 3-8
input header
accessing, 3-25
BEGINTRANSACTION statement
and, 3-29
conversation area field, 3-5
declaring, 3-5
DISABLE statement and, 3-31
ENABLE statement and, 3-33
fields of, 3-10
FUNCTIONSTATUS field, 3-31
FUNCTIONSTATUS field values, 3-44
modifying fields, 3-25
naming, 3-8
passing fields, 3-25
STATUSVALUE field, 3-29, 3-44
use of, 3-10
installation data, 3-63
integration with DMSII, 4-25
interface to, 3-1
LENGTH function, 3-3
linking to, 34
message area, 3-15
declaring, 3-15
using in BEGINTRANSACTION
statement, 3-29
MESSAGECOUNT statement, 3-37
OFFSET function, 3-3
output header
accessing, 3-25
conversation area field, 3-5
declaring, 3-5
modifying fields, 3-25
naming, 3-8
passing fields, 3-25
STATUSVALUE field values, 3-44
use of, 3-13
POINTER function, 3-3
RANGECHECK option, 3-2
RECEIVE statement, 3-38

8600 0734-301

RESIZE function, 3-3
sample program, 3-656
SDF Plus and, 6-1, 6-13
SEND statement, 3-41
Service Function Result Values, 3-64
service functions, 3-45
CONVERT_TIMESTAMP, 3-46, 3-48
declaring, 3-47
entities, 3-61
GET_DESIGNATOR_
ARRAY_USING_DESIGNATOR,
3-46, 3-49
GET_DESIGNATOR_
USING_DESIGNATOR, 3-46,
3-50
GET_DESIGNATOR_
USING_NAME, 3-46, 3-51
GET_INTEGER_ARRAY_
USING_DESIGNATOR, 3-46,
3-52
GET_INTEGER_USING_
DESIGNATOR, 3-46, 3-53
GET_NAME_USING_
DESIGNATOR, 3-46, 3-54
GET_REAL_ARRAY, 3-46, 3-55
GET_STRING_USING_
DESIGNATOR, 3-46, 3-56
passing values to, 3-61, 3-64
STATION_TABLE_ADD, 3-46, 3-57
STATION_TABLE_INITIALIZE, 3-46,
3-58
STATION_TABLE_SEARCH, 3-46, 3-59
TEST_DESIGNATOR, 3-46, 3-60
SIZE function, 3-3
subprograms, 3-26
synchronizing with DMSII, 3-29
TYPE declaration, 3-8
UNITS function, 3-3
updating a DMSII database with, 3-29
variables in subprograms, 3-26

compiler control options

DATADICTINFO, 4-86

DICTIONARY, 2-12, 2-13
example of, 2-13

in BDMSALGOL, 4-86

LIST, 4-3

LISTDB, 4-3, 4-86

NODMDEFINES, 4-86

RANGECHECK, 2-16
effect of, 2-12, 2-26

STATUS, 2-12, 2-14
example of, 2-14

with ADDS, 2-12

Index-3

Index

compile-time functions
TPS, 5-19
TRBITS, 5-20
TRBYTES, 5-20
TRDATASIZE, 5-20
TRDIGITS, 5-20
TRFORMAT, 5-20
TROCCURS, 5-20
TRSUBFORMAT, 5-20
<compound assign spec>, 7-47
<compound spec>, 7-47
COMS, (See Communications Management
System)
COMS, (See Communications Management
System), 3-1
COMSRECORD
accessing fields of, 3-25
INPUTHEADER
format, 3-10
OUTPUTHEADER
format, 3-13
type declaration, 3-18
X.25
ALREADYACCEPTED field, 3-21
CAUSE field, 3-20
CLASS field, 3-19
COMMUNICATIONNUMBER field, 3-20
DATA field, 3-23
DATAIDENTIFIER field, 3-20
DATALENGTH field, 3-23
DBIT field, 3-20
DIAGNOSTIC field, 3-21
ENSEMBLE field, 3-23
ENSEMBLELENGTH field, 3-23
FACILITIES field, 3-22
FACILITIESLENGTH field, 3-22
format, 3-19
FUNCTION field, 3-19
LOCALSUBADDRESS field, 3-22
LOCALSUBADDRESSLENGTH
field, 3-22
ORIGINATOR field, 3-20
PHONENUMBER field, 3-23
PHONENUMBERLENGTH field, 3-23
QBIT field, 3-20
REMOTEADDRESS field, 3-22
REMOTEADDRESSLENGTH field, 3-21
TRUNCATED field, 3-21
VERSION field, 3-19
WAITFORCHANNEL field, 3-21
COMSRECORD declaration, 3-16
COMSSUPPORT library, 3-4
changing attributes of, 3-4

Index-4

CONTDATALENGTH field, 3-12, 3-14
CONTDATAOFFSET field, 3-12, 3-14
CONTDATASTATUS field, 3-11, 3-12, 3-14
CONTMODE field, 3-14
control items, 5-18
conversation area field, 3-12, 3-14

accessing, 3-5

of input header, 3-5

of output header, 3-5
<conversation area>, 3-7
<conversation array declaration>, 3-7
CONVERT_TIMESTAMP service

function, 3-46, 3-48

<count item name>, 4-16
CREATE statement

in DMSII, 4-35

example of, 4-36
with TPS, 5-10
example of, 5-11

<create statement>, 4-35, 5-10
CREATETRUSER entry point, 5-21
CURRENT function, 7-38
CURRENT_USER_COUNT entity, 3-61

D

DASDL
INDEPENDENTTRANS
in DMSII INSERT statement, 4-52
INDEPENDTTRANS option
in a REMOVE statement, 4-66
Data and Structure Definition Language
remaps and, 4-5
data descriptions
definition of, 2-2
data dictionary extensions, (See Advanced
Data Dictionary System)
DATA field, X.25 COMSRECORD, 3-23
data management expressions, 7-25
forming, 7-33
selection, 7-37
examples of, 7-40
data management functions, 7-25
arithmetic, 7-26
examples of, 7-27
Boolean, 7-31
string, 7-28
symbolic, 7-30
data management primaries, 7-33
Data Management System II
ABORTTRANSACTION statement, 4-26

8600 0734-301

Index

example of, 4-26
ASSIGN statement, 4-27
example of, 4-28
BDMSALGOL extensions, 4-1
BEGINTRANSACTION statement, 4-29
example of, 4-31
CANCELTRPOINT statement, 4-32
example of, 4-32
CLOSE statement, 4-33
example of, 4-34
compiler control options, 4-86
concurrent use of SIM databases with, 7-5
CREATE statement, 4-35
example of, 4-36
DATABASE declaration, 4-3
examples, 4-6
database identifiers, 4-12
subscripting, 4-13
DATADICTINFO compiler control
option, 4-86
declaring databases, 4-3
DELETE statement, 4-37
example of, 4-38
description of, 4-1
DMTERMINATE statement, 4-39
example, 4-40
DMTEST function, 4-78
example of, 4-80
ENDTRANSACTION statement, 4-41
example of, 4-43
exception processing, 4-82, 4-84
example of, 4-85
extensions, 1-6
FIND statement, 4-44
example of, 4-24, 4-45
FREE statement, 4-46
example of, 4-47
GENERATE statement, 4-48
example of, 4-49
GET statement, 4-50
example of, 4-51
INSERT statement, 4-52
example of, 4-563
integration with COMS, 4-25
invoking databases, 4-2
LISTDB compiler control option, 4-86
LOCK statement, 4-54
example of, 4-24, 4-56
mapping, 4-15
alpha from pointer, 4-20
alpha from string literals, 4-20
alpha to pointer, 4-18
Boolean items, 4-17, 4-19

8600 0734-301

count items, 4-17
field items, 4-17
group from pointer, 4-20
group from string literals, 4-20
group to pointer, 4-18
input mappings, 4-16
numeric from arithmetic, 4-19
numeric from pointer, 4-20
numeric from string literals, 4-20
numeric to arithmetic, 4-17
numeric to pointer, 4-18
output mappings, 4-19
population items, 4-17
real items, 4-17, 4-19
record type items, 4-17
naming conventions, 4-12
NODMDEFINES compiler control
option, 4-86
OCCURS clause in, 4-13
OPEN statement, 4-11, 4-58
example of, 4-60
PUT statement, 4-62
example of, 4-63
qualification of database items, 4-14
RECREATE statement, 4-64
example of, 4-65
REMOVE statement, 4-66
example of, 4-67
SAVETRPOINT statement, 4-68
example of, 4-68
SECURE statement, 4-69
example of, 4-71
selection expression, 4-23
selection expressions, 4-23
SET statement, 4-72
example of, 4-74
status word, 4-83
STORE statement, 4-75
example of, 4-77
STRUCTURENUMBER function, 4-81
example, 4-81
synchronizing with COMS, 3-29
synchronizing with TPS, 5-30
TPS with, 5-1
transaction state, 4-25
updating a database, 3-29
<data set name>, 4-3
<data set reference>, 4-3
<data set>, 4-23
database
assigning attributes to, 4-10, 7-48
example of, 7-49
binding, 4-87

Index-5

Index

declaring in DMSII, 4-3
equation operations, 4-10
exceptions, 4-82, 4-84
example of, 4-85
identifiers, 4-12
subscripting, 4-13
invoking disjoint, 4-7
invoking logical, 4-8
mapping, 4-15
alpha from pointer, 4-20
alpha from string literals, 4-20
alpha to pointer, 4-18
Boolean items, 4-17, 4-19
count items, 4-17
field items, 4-17
group from pointer, 4-20
group from string literals, 4-20
group to pointer, 4-18
input mappings, 4-16
numeric from arithmetic, 4-19
numeric from pointer, 4-20
numeric from string literals, 4-20
numeric to arithmetic, 4-17
numeric to pointer, 4-18
output mappings, 4-19
population items, 4-17
real items, 4-17, 4-19
record type items, 4-17
naming conventions, 4-12
qualifying items in, 4-14, 5-16
selecting records in, 4-23
separate compilation of, 4-89
status word, 4-83
TITLE attribute, 4-10
<database attribute assignment
statement>, 4-10
DATABASE declaration
in DMSII, 4-3
example of, 4-6
in SIM, 7-5
example of, 7-6
<database declaration>, 4-2
DATABASE entity, 3-61
<database identifier>, 4-33
<database name>, 4-2
<database reference>, 4-2
<database title>, 4-2
DATADICTINFO compiler control option, 4-86
<datadictinfo option>, 4-86
DATAERROR option, 6-7
DATAIDENTIFIER field, X.25
COMSRECORD, 3-20

Index—6

DATALENGTH field, X.25
COMSRECORD, 3-23
DATE entity, 3-61
date type
mapping from SIM to ALGOL, 7-7
<db attribute assignments>, 7-48
DBIT field, X.25 COMSRECORD, 3-20
deadlock
exceptions, 4-54, 4-69
preventing, 7-44
occurring during BEGINTRANSACTION
statement, 3-30
declaring a COMSRECORD type, 3-18
DEFAULT option, 6-7
DEFINE declaration, 3-64
DELETE statement
in DMSII, 4-37
example of, 4-38
in SIM, 7-51
<delete statement>, 4-37, 7-51
designator data type, 3-15
DESTCOUNT field, 3-13
<destination>, 7-47
DESTINATIONDESG field, 3-14
detanking procedure, 5-60
DEVICE entity, 3-61
DEVICE_LIST entity, 3-61
DIAGNOSTIC field, X.25 COMSRECORD, 3-21
DICTIONARY compiler control option, 2-13
example of, 2-13
SDF Plus and, 64
SIM and, 7-3
<dictionary form record declaration>
in SDF Plus, 6-56
<dictionary ID>, 2-13
DICTIONARY ITEM declaration, 2-2, 2-21
example of, 2-21
<dictionary record declaration>, 2-17
DICTIONARY RECORD variables
accessing, 2-24
binding, 2-24
declaring, 2-17, 2-19
example of, 2-18
DISABLE statement
effect on input headers, 3-31
in COMS, 3-31
DISCARD statement, 7-12
in SIM, 7-53
<discard statement>, 7-53
<DM arithmetic functions>, 7-26
<DM Boolean functions>, 7-31
DM expressions See data management
expressions, 7-25

8600 0734-301

Index

<DM field reference>, 7-19
DM functions See data management
functions, 7-25
DM primaries See data management
primaries, 7-33
<DM primaries>, 7-33
<DM string functions>, 7-28
<DM symbolic functions>, 7-30
DMABS function, 7-26
DMAVG function, 7-26
DMCHR function, 7-28
example of, 7-29
DMCOUNT function, 7-26
DMEQUIV function, 7-31
DMEXISTS function, 7-31
example of, 7-32
DMEXT function, 7-28
example of, 7-29
DMISA function, 7-31
example of, 7-32
DMLENGTH function, 7-26
DMMATCH function, 7-31
example of, 7-32
DMMAX function, 7-26
DMMIN function, 7-26
example of, 7-27
DMPOS function, 7-26
DMPRED function, 7-30
DMRECORD, 7-14
as part of a query, 7-9
assigning pointers to, 7-21
binding considerations, 7-22
declaring, 7-14
example of, 7-16
passing as a parameter, 7-20
passing fields of, 7-20
referencing fields of, 7-19
example of, 7-19
TYPE declaration and, 7-17
use with SIM functions, 7-4
<DMRECORD ID>, 7-14
<DMRECORD type ID>, 7-17
<DMRECORD type invocation>, 7-17
DMROUND function, 7-26
DMRPT function, 7-28
example of, 7-29

DMSII, (See Data Management System II) .,
(See Data Management System II)

DMSQRT function, 7-26
DMSUCC function, 7-30
DMSUM function, 7-26

DMTERMINATE statement, 3-44, 4-39

example of, 4-40

8600 0734-301

<dmterminate statement>, 4-39

DMTEST function, 4-78
example of, 4-80

<dmtest function>, 4-78

DMTRUNC function, 7-26
example of, 7-27

E

ENABLE statement
effect on input headers, 3-33
in COMS, 3-33

<endtransaction parameters>, 4-41, 5-33

ENDTRANSACTION statement
in COMS, 3-35
example of, 3-36
in DMSII, 4-41
example of, 4-43
in SIM, 7-54
examples of, 7-54
in TPS, 5-33
example of, 5-34
<endtransaction statement>
in COMS, 3-35
in DMSII, 4-41
in SIM, 7-54

ENSEMBLE field, X.256 COMSRECORD, 3-23

ENSEMBLELENGTH field, X.25
COMSRECORD, 3-23
Entity qualifiers, 2-8
<database qualifiers>, 2-9
<pack name>, 2-9
<directory name>, 2-9
<entity name>, 2-9
example of, 2-9
<repository qualifiers>, 2-9
<status value>, 2-9
using with SDF Plus, 6-5
<version number>, 2-9
<entity qualifiers>
<database qualifiers>
<usercode name>, 2-9
<entity ref array ID>, 7-23
<entity ref ID>, 7-23

<entity reference array declaration>, 7-23

<entity reference declaration>, 7-23
<entity reference ID>, 7-23
entity reference variable, 7-23
example of, 7-24
entry points
example of declaring, 5-39

Index-7

Index

<exception handling>, 4-83
<exception value>, 4-84
<exception variable>, 4-83
<exclude spec>, 7-47
EXISTS function, 7-31
extensions

for ADDS, 1-2

for COMS, 14

for DMSII, 1-6

for SDF Plus, 1-11

for SIM, 1-13

for TPS, 1-9

F

FACILITIES field, X.25 COMSRECORD, 3-22
FACILITIESLENGTH field, X.25
COMSRECORD, 3-22
<field ID>, 7-14
<field item identifier>, 4-23
<field item name>, 4-16
<field list>, 7-14
fields of the input header, 3-10
fields of the output header, 3-13
FIELDS.CONFIRMFLAG field, 3-13
FIELDS.CONFIRMKEY field, 3-13
FIELDS.TRANSPARENT field, 3-11, 3-13
FIELDS.VTFLAG field, 3-11, 3-13
FIND statement, 4-44
example of, 4-24, 4-45
<find statement>, 4-44
form record libraries, 6-2
invoking, 6-5
form record number attribute, 6-9
form record numbers, 6-3
Form records, 6-2
<format list>, 5-56
<format spec>, 5-5
FREE statement, 4-46
example of, 4-47
FUNCTION field, X.256 COMSRECORD, 3-19
FUNCTIONINDEX field, 3-10
FUNCTIONSTATUS field, 3-10, 3-31
values of, 3-44

G

GENERATE statement, 4-48
example of, 4-49
<generate statement>, 4-48

Index-8

GET statement, 4-50
example of, 4-51

<get statement>, 4-50

GET_DESIGNATOR_
ARRAY_USING_DESIGNATOR
service function, 3-46, 3-49

GET_DESIGNATOR_ USING_DESIGNATOR
service function, 3-46, 3-50

GET_DESIGNATOR_ USING_NAME service
function, 3-46, 3-51

GET_INTEGER_ARRAY_
USING_DESIGNATOR service
function, 3-46, 3-52

GET_INTEGER_USING_ DESIGNATOR
service function, 3-46, 3-563

GET_NAME_USING_ DESIGNATOR service
function, 3-46, 3-54

GET_REAL_ARRAY service function, 3-46,
3-55

GET_STRING_USING_ DESIGNATOR service
function, 3-46, 3-56

<group item name>, 4-16

H

HANDLESTATISTICS entry point, 5-22
<header declaration>, 3-7
<header type declaration>, 3-8
as COMS extension, 3-8
<header type ID>, 3-8
<header type invocation>, 3-8
as COMS extension, 3-8

<include spec>, 7-47

<input assignment>, 4-16

input header
accessing fields of, 3-25
BEGINTRANSACTION statement and, 3-29
conversation area field, 3-5
declaring, 3-5
DISABLE statement and, 3-31
ENABLE statement and, 3-33
fields of, 3-10
FUNCTIONSTATUS field, 3-31

values of, 3-44

modifying, 3-25
naming, 3-8
passing fields of, 3-25

8600 0734-301

Index

STATUSVALUE field, 3-29
values of, 3-44
use of, 3-10
<input mapping>, 4-16
INPUTHEADER format, COMSRECORD, 3-10
<inputheadername>, 3-7
INSERT statement
in DMSII, 4-52
example of, 4-563
<insert statement>, 4-52
installation data, 3-63
INSTALLATION_DATA entity, 3-61
<internal name>, 4-2
INVERSE function, 7-38
<item ID>, 2-21
<item reference>, 5-14
<item>, 4-72

K

<key condition>, 4-22

L

LENGTH function

in ADDS, 2-29

example of, 2-29

in COMS, 3-3

in SDF Plus, 6-4

in SIM, 74
<length function>, 2-29
LIBRARY entity, 3-62
<limit specification>, 7-51
<link item>, 4-23
LIST compiler control option, 4-3
LISTDB compiler control option, 4-3, 4-86
<listdb option>, 4-86
<local selection expression>, 7-36
LOCALSUBADDRESS field, X.25

COMSRECORD, 3-22
LOCALSUBADDRESSLENGTH field, X.25
COMSRECORD, 3-22

LOCK statement, 4-54

example of, 4-24, 4-56
locked records

freeing, 3-30
<logical database name>, 4-2
LOGOFFTRUSER entry point, 5-22
LOGONTRUSER entry point, 5-22

8600 0734-301

MAPALIAS field, 3-14
mapping, 4-15
alpha items
from pointer expressions, 4-20
from string literals, 4-20
to pointer expressions, 4-18
Boolean items, 4-17, 4-19
count items, 4-17
field items, 4-17
group items
from pointer expressions, 4-20
from string literals, 4-20
to pointer expressions, 4-18
input mappings, 4-16
numeric items
from arithmetic variables, 4-19
from pointer expressions, 4-20
from string literals, 4-20
to arithmetic variables, 4-17
to pointer expressions, 4-18
output mappings, 4-19
population items, 4-17
real items, 4-17, 4-19
record type items, 4-17
SIM data items, 7-7
message area
declaring, 3-15
defined, 3-15
use in SIM BEGINTRANSACTION
statement, 7-44
using in COMS BEGINTRANSACTION
statement, 3-29
<message area>, 3-38
<message control indicator>, 3-41
<message length>, 3-41
MESSAGECOUNT field, 3-11
MESSAGECOUNT statement, 3-37
<messagecount statement>, 3-37
messages
in SDF Plus
receiving, 6-14
sending, 6-14
metadata, 2-2
<midtransaction parameters>, 5-35
MIDTRANSACTION statement, 5-35
example of, 5-35
MODIFY statement
in DMSII, (See LOCK statement)
<multiple-statement update destination>, 7-47

Index-9

Index

NEXTINPUTAGENDA field, 3-14
NODMDEFINES compiler control option, 4-86
<nodmdefines option>, 4-86

<numeric item identifier>, 4-23

<numeric item name>, 4-16

<numeric item>, 4-78

<numeric relation>, 4-23

0

OCCURS clause
in DMSII, 4-13
OFFSET function
in ADDS, 2-30
example of, 2-30
in COMS, 3-3
in SDF Plus, 6-4
in SIM, 7-4
<offset function>, 2-30
OPEN statement
example of, 4-11
in DMSII, 4-58
example of, 4-60
in TPS, 5-36
example of, 5-37
OPENTRBASE entry point, 5-22
ORIGINATOR field, X.256 COMSRECORD, 3-20
<output assignment>, 4-19
output header
accessing fields of, 3-25
conversation area field, 3-5
declaring, 3-56
fields of, 3-13
modifying, 3-25
naming, 3-8
passing fields of, 3-25
STATUSVALUE field, 3-41
values of, 3-44
use of, 3-13
<output mapping>, 4-19
OUTPUTHEADER format,
COMSRECORD, 3-13
<outputheadername with send options>, 3-35
<outputheadername>, 3-7

P

<path expression>, 7-36
<perspective>, 7-65

Index-10

PHONENUMBER field, X.25
COMSRECORD, 3-23
PHONENUMBERLENGTH field, X.25
COMSRECORD, 3-23

POINTER function

in ADDS, 2-31

example of, 2-31

in COMS, 3-3

in SDF Plus, 6-4

in SIM, 7-4
<pointer function>, 2-31
<population item name>, 4-16
PROCESSING_ITEM entity, 3-62
PROCESSTRANSACTION entry point, 5-23
PROCESSTRFROMTANK entry point, 5-22
PROCESSTRNORESTART entry point, 5-22
PROGRAM entity, 3-62
PROGRAMDESG field, 3-10
PURGETRUSER entry point, 5-23
PUT statement, 4-62

example of, 4-63
<put statement>, 4-62

Q

QBIT field, X.25 COMSRECORD, 3-20
<qualification>, 4-14
<quantifier>, 7-36
QUERY declaration, 7-12
example of, 7-13

R

railroad diagrams, explanation of, A-1
RANGECHECK compiler control option, 2-16
effect of, 2-12, 2-26
example of, 2-16
in COMS, 3-2
SIM and, 7-3
READFORM statement, 6-6
READTRANSACTION entry point, 5-23
<real item identifier>, 4-23
<real item name>, 4-16
<real item>, 4-78
RECEIVE statement, 3-38
<receive statement>, 3-38
<record assignment statement>, 2-25
<record ID>, 2-17
record type, 2-6
<record type itemname>, 4-16

8600 0734-301

Index

records
freeing locked, 3-30
in assignment statements, 2-26
passing as parameters, 2-22
example of, 2-23
referencing, 2-31
restrictions on, 2-2
RECREATE statement, 4-64
example of, 4-65
<recreate statement>, 4-64
REMOTEADDRESS field, X.25
COMSRECORD, 3-22
REMOTEADDRESSLENGTH field, X.25
COMSRECORD, 3-21
REMOVE statement, 4-66
example of, 4-67
<remove statement>, 4-66
REPLACE statement, 2-27
<reserved word>, B-1
reserved words in ALGOL, B-1
alphabetic list - all types, B-7
type 1, B-1
type 2, B-2
for COMS, 3-2
type 3, B-5
RESIZE function
in ADDS, 2-32
example of, 2-33
in COMS, 3-3
in SDF Plus, 6-4
in SIM, 74
<resize function>, 2-32
restart area, 3-30
restart data set, 3-30
<restart data set>, 4-29
RESTART field, 3-11
restrictions on records, 2-2
retrieval queries, 7-10
use in SELECT statements, 7-12
retrieve statement, 7-63
RETURNLASTADDRESS entry point, 5-24
RETURNLASTRESPONSE entry point, 5-24
RETURNSTARTINFO entry point, 5-24

S

<saveoutput procedure identifier>, 4-41
SAVERESPONSETR transaction library
procedure, 5-26
SAVETRPOINT statement
in DMSII, 4-68

8600 0734-301

example of, 4-68
<savetrpoint statement>, 4-68
SCAN statement, 2-27
Screen Design Facility Plus, 6-1
ADDS and, 6-1
ALGOL functions used with, 6-4
COMS and, 6-1, 6-13
<dictionary form record declaration>, 6-5
DICTIONARY option, 6-4
extensions, 1-11
form record libraries, 6-2
invoking, 6-5
form record number attribute, 6-9
form record numbers, 6-3
form records, 6-2
interface elements, 6-2
LENGTH function, 6-4
OFFSET function, 6-4
POINTER function, 6-4
reading form records, 6-6
RESIZE function, 6-4
sample programs, 6-16
sending and receiving messages, 6-14
sending text messages, 6-15
SIZE function, 6-4
transaction errors, 6-14
transaction number attribute, 6-11
transaction numbers, 6-3
transaction types, 6-3
UNITS function, 6-4
using COMS input/output headers, 6-13
writing form records, 6-7
SDF Plus See Screen Design Facility Plus, 6-1
SDFFORMRECNUM field, 3-11, 3-14
SDFINFO field, 3-11
SDFTRANSNUM field, 3-11
SECURE statement, 4-69
example of, 4-71
<secure statement>, 4-69
SECURITY_CATEGORY entity, 3-62
SECURITYDESG field, 3-10
SEEKTRANSACTION entry point, 5-24
<selection expression>, 4-23
SEMANTIC DATABASE declaration See
DATABASE declaration, 7-5
Semantic Information Manager, 7-1
ABORTTRANSACTION statement, 7-43
ADDS extensions and, 7-3
assigning database attributes
example of, 7-49
assigning database attributes in, 7-48
BEGINTRANSACTION statement, 7-44
binding considerations, 7-22

Index-11

Index

CANCELTRPOINT statement, 7-45
example of, 7-45
CLOSE statement, 7-46
concurrent use of DMSII databases
with, 7-5
DATABASE declaration, 7-5
example of, 7-6
declaring a SIM database, 7-5
declaring DMRECORDS, 7-14
example of, 7-16
DELETE statement, 7-51
DICTIONARY option, 7-3
DISCARD statement, 7-53
DM expressions, 7-25
forming, 7-33
DM functions, 7-25
arithmetic, 7-26
arithmetic example, 7-27
Boolean, 7-31
string, 7-28
symbolic, 7-30
DM primaries, 7-33
DM selection expression, 7-37
examples of, 7-40
ENDTRANSACTION statement, 7-54
example of, 7-54
entity reference variables, 7-23
example of, 7-24
establishing a data dictionary, 2-13
extensions, 1-13
LENGTH function, 7-4
mapping, 7-7
OFFSET function, 7-4
packing and, 7-22
POINTER function, 7-4
queries, 7-9
closing, 7-10
creating, 7-9
declaring, 7-12
passing, 7-10
retrieval, 7-10
update, 7-10
QUERY declaration, 7-12
example of, 7-13
RANGECHECK option, 7-3
reserved words, 7-2
RESIZE function, 7-4
selection expressions, 7-37
example of, 7-40
SIZE function, 7-4
subprograms and, 7-22
transaction point, 7-41
transaction state, 7-41

Index-12

transactions, 7-41
TYPE declaration, 7-17
example of, 7-18
UNITS function, 7-4
<send options>, 3-41
SEND statement, 3-41
<send statement>, 3-41
SEPCOMP facility, 4-89
service functions
CONVERT_TIMESTAMP, 3-46, 3-48
defined, 3-45
entities and, 3-61
GET_DESIGNATOR_
ARRAY_USING_DESIGNATOR, 34
6, 3-49
GET_DESIGNATOR_
USING_DESIGNATOR, 3-46, 3-50
GET_DESIGNATOR_ USING_NAME, 3-46,
3-51
GET_INTEGER_ARRAY_
USING_DESIGNATOR, 3-46, 3-52
GET_INTEGER_USING_
DESIGNATOR, 3-46, 3-53
GET_NAME_USING_ DESIGNATOR, 3-46,
3-54
GET_REAL_ARRAY, 3-46, 3-55
GET_STRING_USING_
DESIGNATOR, 3-46, 3-56
passing values to, 3-61, 3-64
STATION_TABLE_ADD, 3-46, 3-57
STATION_TABLE_INITTALIZE, 3-46, 3-58
STATION_TABLE_SEARCH, 3-46, 3-59
TEST_DESIGNATOR, 3-46, 3-60
<set name>, 4-3
<set part>, 4-3
<set reference>, 4-3
<set selection expression>, 4-23
SET statement, 4-72
example of, 4-74
<set>, 4-23
SIM, (See Semantic Information Manager)
SIM See Semantic Information Manager, 7-1
<single-statement update destination>, 7-47
SIZE function
in ADDS, 2-34
example of, 2-34
in COMS, 3-3
in SDF Plus, 6-4
in SIM, 7-4
<size function>, 2-34
STACK option, 2-35, 6-4
in ADDS, 2-35
in SDF Plus, 6-4

8600 0734-301

Index

STATION entity, 3-62
STATION field, 3-11
STATION_LIST entity, 3-62
STATION_TABLE_ADD service function, 3-46,
3-b7
STATION_TABLE_INITIALIZE service
function, 3-46, 3-58
STATION_TABLE_SEARCH service
function, 3-46, 3-59
STATUS compiler control option, 2-12, 2-14
example of, 2-14
overriding, 2-9
<status value>, 2-14
STATUSVALUE field
BEGINTRANSACTION statement and, 3-29
ENDTRANSACTION statement and, 3-35
of input header, 3-11, 3-29
of Output header, 3-13
values of, 3-44
STORE statement, 4-75
example of, 4-77
<store statement>, 4-75
<string-valued database attribute>, 4-10
STRUCTURENUMBER function, 4-81
example of, 4-81
<structurenumber function>, 4-81
subbase, 5-5
<subformat list>, 5-5
<subformat spec>, 5-5
SUBROLE function, 7-26
<subscript list>, 5-10
<subscripted BDMS identifier>, 4-13
<subset>, 4-23
SWITCHTRFILE entry point, 5-24
synchronization
TPS and COMS, 1-9
TPS and DMSI]I, 1-9, 5-30
syncpoint, 4-33

T

TANKTRANSACTION entry point, 5-25
TANKTRNORESTART entry point, 5-25
TEST_DESIGNATOR service function, 3-46,
3-60

text messages, 6-15
TEXTLENGTH field

of input headers, 3-11

of Output headers, 3-13

use of, 3-15
TFL See Transaction Formatting Language, 5-3

8600 0734-301

time type
mapping from SIM to ALGOL, 7-8
TIMESTAMP field, 3-11
TITLE attribute, 4-10
TOGGLES.RETAINTRANSACTIONMODE
field, 3-14
TOGGLES.SETNEXTINPUTAGENDA
field, 3-14
TPS See Transaction Processing System, 5-1
<transaction array ID list>, 5-8
transaction base
declaring, 5-5
examples of, 5-6
invoking a subbase, 5-5
sample program, 5-41
<transaction compile-time function
argument>, 5-19
transaction compile-time functions, 5-19
<transaction compile-time functions>, 5-19
transaction errors, 6-14
Transaction Formatting Language, 5-3
ALGOL types for, 5-3
transaction library
application program restrictions, 5-21
entry points, 5-21
SAVERESPONSETR procedure, 5-26
update library
accessing, 5-26
transaction number attribute, 6-11
transaction numbers, 6-3
transaction point, 7-41
Transaction Processing System, 5-1
assigning transaction record variables, 5-13
BEGINTRANSACTION statement, 5-31
example of, 5-32
compile-time functions, 5-19
control items, 5-18
data item qualification, 5-16
declaring a subbase, 5-5
declaring a transaction base, 5-5
examples of, 5-6
declaring transaction record variables, 5-8
example of, 5-9
ENDTRANSACTION statement, 5-33
example of, 5-34
entry points, 5-21
example of declaring, 5-39
extensions, 1-9
interface, 5-1
MIDTRANSACTION statement, 5-35
example of, 5-35
OPEN statement, 5-36
example of, 5-37

Index-13

Index

passing transaction record variables, 5-12
synchronizing with DMSII, 5-30
transaction library entry point, 5-21
transaction record formats, 5-10
update library, 5-26
uses and restrictions for transaction
records, 5-12
Transaction Processing System interface
Transaction Formatting Language, 5-3
<transaction record array declaration>, 5-8
<transaction record declaration>, 5-8
transaction record variables See transaction
records, 5-7
<transaction record>, 5-10
transaction records, 5-7
assigning, 5-13
compiler checks, 5-2
content of variables, 5-10
control items, 5-10, 5-18
copying, 5-13
creating format and subformat, 5-10
data items, 5-14
assigning, 5-15
declaring variables, 5-8
example of, 5-9
restrictions, 5-12
segmentation of, 5-8
valid uses and restrictions, 5-12
variables as parameters, 5-12
transaction state, 4-25, 7-41
transaction types, 6-3
transactions, 7-41
TransIT Open/OLTP
description of, 8-1
<transitive argument>, 7-36
<transitive expression>, 7-36
TRBITS compile-time function, 5-20
TRBYTES compile-time function, 5-20
TRDATASIZE compile-time function, 5-20
TRDIGITS compile-time function, 5-20
TRFORMAT compile-time function, 5-20
TROCCURS compile-time function, 5-20
TRSUBFORMAT compile-time function, 5-20
TRUNCATED field, X.25 COMSRECORD, 3-21
TRUSERIDSTRING entry point, 5-25
type 1 reserved words, B-1
type 2 reserved words, B-2
for COMS, 3-2
new, 3-2
type 3 reserved words, B-5
TYPE declaration, 2-19
as COMS extension, 3-8
example of, 2-20

Index-14

in SIM, 7-17
example of, 7-18
using to retrieve structures, 2-2
<type ID>, 2-19
<type invocation>, 2-19

U

unit size, 2-36
UNITS function
in ADDS, 2-36
example of, 2-37
in COMS, 3-3
in SDF Plus, 6-4
in SIM, 7-4
<units function>, 2-36
update library, 5-26
ACCESSDATABASE entry point and, 5-26
structuring, 5-26
synchronization and, 5-30
update queries, 7-10
use in SELECT statements, 7-12
USERCODE entity, 3-63
USERCODE field, 3-10

'

VERSION field, X.25 COMSRECORD, 3-19

W

WAITFORCHANNEL field, X.25
COMSRECORD, 3-21
WINDOW entity, 3-63
WINDOW_LIST entity, 3-63
words, reserved, B-1
alphabetic list - all types, B-7
type 1, B-1
type 2, B-2
for COMS, 3-2
type 3, B-5
WRITEFORM statement
for SDF Plus, 6-7
sample programs, 6-7

X

X.25 format, COMSRECORD, 3-19

8600 0734-301

	Documentation Notes
	Contents
	About This Manual
	Section 1. Introduction to ALGOL Program Interfaces
	Advanced Data Dictionary System (ADDS) Extensions
	Communications Management System (COMS) Extensions
	Data Management System II (DMSII) Extensions
	DMSII Transaction Processing System (TPS) Extensions
	Screen Design Facility Plus (SDF Plus) Extensions
	Semantic Information Manager (SIM) Extensions

	Section 2. Using Advanced Data Dictionary System (ADDS) Extensions
	Guidelines for Retrieving Data Descriptions
	Retrieving Descriptions
	Retrieving Entities of the Same Type
	Record Restrictions

	Relating ADDS Data Types to ALGOL
	Mapping ADDS Types to ALGOL Types
	ALGOL Data Types for ADDS
	Guidelines for Using ADDS Types

	Entity Qualifiers
	Referencing Fields and Records
	Compiler Control Options
	DICTIONARY Option: Establishing a Data Dictionary
	STATUS Option: Selecting the Status of Descriptions
	RANGECHECK Option: Checking Ranges of Run-Time Values

	Data Dictionary Declarations
	Specifying a DICTIONARY RECORD
	TYPE Declaration and Invocation
	Specifying a DICTIONARY ITEM
	Passing Entities as Parameters
	Binding Considerations for ADDS

	Statements Used as ADDS Extensions
	Assignment Statement
	REPLACE and SCAN Statements

	Functions Used as ADDS Extensions
	LENGTH Function
	OFFSET Function
	POINTER Function
	RESIZE Function
	SIZE Function
	STACK Option
	UNITS Function

	Section 3. Using Communications Management System (COMS) Features
	Using ALGOL Functions as COMS Extensions
	Purpose of the RANGECHECK Option
	Purpose of Functions

	Linking to COMS
	Linking to COMS by Title

	Declaring an Input or Output Header
	Input or Output Header Declaration
	Input or Output Header Type Declaration
	Input Header Structure and Type
	Output Header Structure and Type
	Designator Data Type

	Declaring a Message Area
	Declaring a COMSRECORD
	Type Declaration of a COMSRECORD
	Type Invocation of a COMSRECORD
	COMSRECORD Structures and Types
	Structure and Type of an X.25 COMSRECORD

	Using Records in COMS
	Accessing Header Fields
	Binding Considerations for COMS

	COMS Statements
	COMS BEGINTRANSACTION Statement
	DISABLE Statement
	ENABLE Statement
	COMS ENDTRANSACTION Statement
	MESSAGECOUNT Statement
	RECEIVE Statement
	SEND Statement

	Error Handling
	STATUSVALUE Field Values
	FUNCTIONSTATUS Field Values
	Exception-Condition Statements and DMTERMINATE

	COMS Service Functions
	Functional Descriptions
	Declaring COMS Service Functions
	CONVERT_TIMESTAMP
	GET_DESIGNATOR_ARRAY_USING_DESIGNATOR
	GET_DESIGNATOR_USING_DESIGNATOR
	GET_DESIGNATOR_USING_NAME
	GET_INTEGER_ARRAY_USING_DESIGNATOR
	GET_INTEGER_USING_DESIGNATOR
	GET_NAME_USING_DESIGNATOR
	GET_REAL_ARRAY
	GET_STRING_USING_DESIGNATOR
	STATION_TABLE_ADD
	STATION_TABLE_INITIALIZE
	STATION_TABLE_SEARCH
	TEST_DESIGNATORS
	Designators for COMS Entities
	Service Function Types and Values
	Service Function Result Values

	COMS Sample Program

	Section 4. Using the Data Management System II (DMSII) Interface
	Invoking a DMSII Database
	Declaring a Database
	Example: Simple Database
	Example: Invoking Disjoint Data Sets
	Example: Invoking a Logical Database

	Database Equation Operations

	BDMSALGOL Basic Language Constructs
	BDMS Naming and Qualification Conventions
	BDMS Identifier Construct
	Construct for Identifiers of Occurring Items
	Qualification of Database Items

	Referencing Database Items
	Input Mapping Used with Retrieval Statements
	Output Mapping Used with Storage Statements

	Selecting a Record in a Data Set

	BDMSALGOL Statements
	ABORTTRANSACTION Statement
	ASSIGN Statement
	DMSII BEGINTRANSACTION Statement
	BDMS CANCELTRPOINT Statement
	BDMS CLOSE Statement
	CREATE Statement
	DMSII DELETE Statement
	DMTERMINATE Statement
	DMSII ENDTRANSACTION Statement
	FIND Statement
	BDMS FREE Statement
	GENERATE Statement
	GET Statement
	DMSII INSERT Statement
	BDMS LOCK Statement
	DMSII MODIFY Statement
	BDMS OPEN Statement
	PUT Statement
	RECREATE Statement
	REMOVE Statement
	BDMS SAVETRPOINT Statement
	SECURE Statement
	BDMS SET Statement
	STORE Statement

	BDMSALGOL Functions
	DMTEST Function
	STRUCTURENUMBER Function

	Exception Processing
	Database Status Word
	Exception Handling

	BDMSALGOL Compiler Control Options
	Binding and SEPCOMP of Databases
	Binding
	SEPCOMP

	Section 5. Using DMSII Transaction Processing System (TPS) Extensions
	Using the Transaction Formatting Language (TFL)
	Declaring a Transaction Base
	Creating Transaction Records
	Declaring Transaction Record Variables
	Creating Transaction Record Formats

	Using Transaction Records
	Passing Transaction Record Variables as Parameters
	Assigning Transaction Record Variables

	Accessing Transaction Record Items
	Requirements for Data Item Qualification
	Data Item Qualification
	Format Name and Data Item Name Qualification
	Subformat Name and Data Item Name Qualification
	Format Name, Subformat Name, and Data Item Name Qualification

	Inquiring About Transaction Record Control Items
	Using Transaction Compile-Time Functions
	Using Transaction Library Entry Points
	CREATETRUSER
	CLOSETRBASE
	HANDLESTATISTICS
	LOGOFFTRUSER
	LOGONTRUSER
	OPENTRBASE
	PROCESSTRFROMTANK
	PROCESSTRANSACTION
	PURGETRUSER
	READTRANSACTION
	RETURNLASTADDRESS
	RETURNLASTRESPONSE
	RETURNSTARTINFO
	SEEKTRANSACTION
	SWITCHTRFILE
	TANKTRANSACTION
	TANKTRNORESTART
	TRUSERIDSTRING

	Using Update Libraries
	ACCESSDATABASE Entry Point
	Methods of Structuring the Update Library

	Transaction Processing Statements
	TPS BEGINTRANSACTION Statement
	TPS ENDTRANSACTION Statement
	MIDTRANSACTION Statement
	BDMS OPEN Statement with TPS

	Sample User-Written Applications
	Example 1: Declaring a Transaction Base and Library
	Example 2: Banking Application
	DASDL Description of the Database
	TFL Description of the Transaction Base
	ALGOL Banking Application Program
	Update Library

	Example 3: Detanking Procedure

	Section 6. Using the Screen Design Facility Plus (SDF Plus) Interface
	Understanding SDF Plus Interface Elements
	Form Record Libraries
	Form Records
	Form Record Numbers
	Transaction Types
	Transaction Numbers
	Using ALGOL Functions as SDF Plus Extensions

	Invoking the Form Record Library
	Using the SDF Plus Remote File Interface
	READFORM Statement
	WRITEFORM Statement

	Using the Form Record Number Attribute
	Using the Transaction Number Attribute
	Using SDF PLUS with COMS
	Using COMS Input/Output Headers
	Sending and Receiving Messages
	Sending Transaction Errors
	Sending Text Messages

	SDF PLUS Sample Programs
	Example 1: General Use of SDF Plus Program Interface
	Example 2: Using COMS with the SDF Plus Program Interface

	Section 7. Using the Semantic Information Manager (SIM) Interface
	Using ADDS Extensions as SIM Extensions
	Purpose of the Dictionary Option
	Purpose of the Rangecheck Option
	Purpose of Functions

	Declaring a SIM Database
	Mapping SIM Types Into ALGOL
	Queries
	Retrieval and Update Queries
	Declaring a Query Data Type

	Declaring DMRECORDS
	Type Declaration and Invocation for SIM
	Referencing DMRECORD Fields
	Using DMRECORDS and Their Fields
	Passing Fields of Type Real, Boolean, Double, and Integer
	Passing Fields of Type Entity Reference
	Passing Fields of Type Record
	Passing Fields of Type EBCDIC Array
	Passing an Entire DMRECORD Variable
	Assigning Pointers
	Output of Real, Boolean, Double, Integer, and EBCDIC Array Fields
	Output of Entity Reference and Record Fields
	Output of DMRECORD Variables

	Binding Considerations for SIM
	Impact of Declaring a Variable in a Subprogram
	Impact of Packing

	Declaring an Entity Reference Variable Data Type
	Using Data Management Functions and Expressions
	DM Arithmetic Functions
	DM String Functions
	DM Symbolic Functions
	DM Boolean Functions
	DM Primaries
	Selection Expressions

	SIM Statements
	Using Transactions
	ABORTTRANSACTION Statement
	SIM BEGINTRANSACTION Statement
	CANCELTRPOINT Statement
	SIM CLOSE Statement
	Database Attribute Assignments
	SIM DELETE Statement
	DISCARD Statement
	SIM ENDTRANSACTION Statement
	SIM INSERT Statement
	SIM MODIFY Statement
	SIM OPEN Statement
	RETRIEVE Statement
	SAVETRPOINT Statement
	SELECT Statement
	SETTO Statements

	Exception Handling of SIM Statements
	SIM Sample Programs
	Example 1: Using Project-Employee Projects
	Example 2: Archiving Assignments
	Example 3: Listing Subprojects
	Example 4: Using COMS with a SIM Database

	Section 8. Using TransIT Open/OLTP
	More information about Transit Open/OLTP

	Appendix A. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints
	Vertical Bar
	Percent Sign
	Right Arrow
	Required Item
	User-Selected Item
	Loop
	Bridge

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Appendix B. Extended ALGOL Reserved Words
	Type 1 Reserved Words
	Type 2 Reserved Words
	Type 3 Reserved Words
	Reserved Words Alphabetical Listing

	Index
	Master Glossary

