Burroughs

B 5500

_ Information
- Processing Systems

REFERENCE MANUAL

Burroughs
B 5500

INFORMATION PROCESSING SYSTEMS

REFERENCE MANUAL

Business Machines Group
Sales Technical Services

Systems Documentation

Burroughs Corporation

®
- ®
Detroit, Michigan 48232

Contains material from 200-21014 and B 5000.55B, both

COPYRIGHT® 1964 BURROUGHS CORPORATION

Burroughs B 5500 Information Processing System

TABLE OF CONTENTS

TITLE
INTRODUCTION e it e e e e

SYSTEMS DESCRIPTION it ittt o
General e e e e e e e e e e e e e e
Master Control Program
Description and Function of Major Units

Central Control Unit
Memory Exchange
JOEXChANZE it ittt et et et e

"System Control e

Processors, AandB
Word Mode i e
Character Mode
Normal State
Control State
Operators (instructions)
CloCK . .t i e e e e e e e e

Core Memory Moduleo,

Input/Output Control Unit
I/OChannel,

Display and Distribution Unit,

Information Flow Between Units

Memory ACCESS i i i it i e e e e e e e e e e e

INput/Output ACCESS . .« v v v o v e et e e

Information Transfer

Communication Between Memory and Processor
Memory Exchange 0o,
Memory Addressing oo,

Communication Between Memory and I/O Control Unit

and I/ODEvVICe i vttt e

I/OEXChaNgEeo i v ittt ettt et een

Input e e e

Output e

Interrupt System e e

Processor Independent Interrupts

Processor Dependent Interrupts

Interrupt Handling

DATA REPRESENTATIONttt ie i i
General e e e e e
Binary Notation 0.,
Octal Notation i ann
Number Conversion

Binary to Decimal Conversion
Integral e e e
Fractional i

Decimal to Binary Conversion
Integral e e

Fractional i i ittt e e ‘

XXI

i

R TR 1
RCRCING R IRC RGPS NS IS IS TS IS WS TS T I T N N N NN R RS

R R b b b b e e

el

1
O 0 ¢© 00 00 00 00 0o

[
[& 1
1 Pt
Pt

2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-4

TABLE OF CONTENTS (CONT.)

SECTION TITLE

2 Decimal to Octal Conversion
Integral,
Fractional

................................

......................

Octade
Integral
Fractional,
Binary Code Decimal (BCD). . . « = v v v v v v v e ie e e e e
Data Types and Physical Layout
Characters e
Operands,
Numeric Operands (Numbers)
Logical Operandsv..o....

3 POLISH NOTATION AND STACK . . o v o oo e e e e e i i i,
General

PolishString
General Rules for Generation of Polish String
Rule for Evaluating Polish String
Compilation Using Polish Notation
Stack Concept Description
Program Reference Table (PRT)
Relative Addressing
Simple Stack Operation
Program Segment String Syllables
Operand Call Syllable
Descriptor Call Syllable
Literal Syllable, . ..o......
Stack Area Description
Stack Location
Stack Register (A, B, S)
Topof Stack
Stack Adjustment
Relative Addressing in Stack (F Register)
Stack in Operation

4 MAJOR REGISTERS AND CONTROL FLIP FLOPS
General
Processor e

Registers and FlipFlops v....
ARegister e e
BRegister e
AROF . .. e e
BROF e e
YRegister
ZRegister e
GRegister
KRegister
HRegister
VRegister e
NRegister e e

...........

................

...................

.......................

..........................

.......................

vi

O~y Iooouta o

CO WL MDNMNNMNNMNDNDNDDNDN N
I I N T N D M M e T O i e O)
o

WWWWwWeoLw

1

(V4]
[}
GO U DR WWWLWN M

SECTION

4

TABLE OF CONTENTS (CONT)

TITLE

X Register
M Register
S Register
R Register
F Register
E Register
P Register
T Register
C Register
L Register
TROF

MSFF
Q Register
I Register
J Register

Memory Access Control Flip Flops (MROF, MRAF, MWOF)

Register Display
Program Syllable Access .
Information Access

E Register
Processor Interrupt

IRegister

.......................

.......................

.......................

.......................

.......................

.......................

.......................

Description of Interrupt Control

Detecting and Processing .
Categories
Priorities

External Interrupt Flip Flops

Interrupt Address Register
Real Time Clock
Halt Processor 2 Flip Flop

Commence Timing and Load FlipFlops

Core Memory Module Register .

I/O Control Unit Registers and Fip FIOpSo v vt v v v v e ...

Registers and Flip Flops . ..
WRegister
DRegister
Character Counter
Input Buffer Register

.......................

Tape Information Read Buffer Register

Output Buffer Register . . .

Tape Information Write Buffer Register
Longitudinal Parity Register

Sequence Counter
Pulse Counter
Logical Control Flip Flops

vii

?###ﬁ%ﬁﬁ###?##ﬁ##%###%h
WWW -~k 0oL LW 0oL LW wW

1N
[}

[

-y

4-11
4~-11
4-11
4-11
4-11
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-14

TABLE OF CONTENTS (CONT.)

SECTION TITLE

...............................
.........................
........................

............................

5 WORD MODE OPERATION iiun .
General,
Syllable Addressing and Syllable Identification

Syllable Addressing and Format
Pand TRegisters
LandCRegisters

Word Mode Syllable Identification
Syllable Type
Bits 0-9
Coding a Syllable Using Octal Multiplication by Four
Decoding a Syllable Using Octal Division by Four
Relative Addressing
TO OFF -~ (AB8OFF) . . . oo vt i i,
TO0 ON, T1 OFF - (A38ON, A390OFF)
TO ON, T1 ON, T2 OFF - (A38 ON, A39 ON, A40 OFF). . ..
TO ON, T1 ON, T2 ON - (A38 ON, A39 ON, A40ON).
Normal Word Mode Addressing

Referencing a Word with the Operand/Descriptor Call Syllable.
Operand Call Syllable
Descriptor Call Syllable
Data Descriptors
Application of Data Descriptors

Subroutines L
SALF o e e
Subroutine Entry and Exit
Special Subroutine Entry and Exit
Mark Stack Control Word (MSCW) Description
Mark Stack Control Word Format
Program Descriptor Description
Program Descriptor Format
Return Control Word (RCW) Description
Return Control Word Format

Stateand Mode
State

Normal State.
Mode

Interrupt Occurring While in Normal State (NCSF=1)
Word Mode
Character Mode
Processor 1
Processor 2 e

.............................

vili

PAGE

4-14
4-14
4-14

1.
o

11

SN

11

O'IO'IU'IC'J'IU'IU'IU'l

[|
O NUTUTU B WWNN N

UTUIC'}YO'IU'I

[=2]

(SR) NS I R LR I IS IS |
| T T A e e |
00 00 ~I

co

5-10
5-10
5-10
5-10
5-11
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-18

SECTION

5

TABLE OF CONTENTS (CONT.)

TITLE

Interrupt Return Control Word Format

Initiate Control Word (INCW)
Initiate Control Word Format
Initiating an Input/Output Operation
General
Detail
Load Operation

Description

...................

...................
....................
....................

WORD MODE SYLLABLES AND OPERATORS

General

LITC Literal Call Syllable (LTSL) XXX0or XXX4..........
OPDC Operand Call Syllable (OCSL) XXX2 or XXX6.

Operand or Control Word
Data Descriptor.
Presence BitOff
Presence BitOn
Program Descriptor
Presence Bit Off
Presence BitOn
Argument Bit Off
Argument BitOn

....................

....................

....................

....................

....................

....................

....................

DESC Descriptor Call Syllable (DCSL) XXX3 or XXX7

Operand or Control Word
Data Descriptor
Presence BitOff
Presence BitOn
Program Descriptor.
Operator Syllables

Arithmetic Operators - Single Precision

...................

....................

....................

....................

....................

................

ADD Single Precision Add (AD1L) 0101
SUB Single Precision Subtract (SULL) 0301.............
MUL Single Precision Multiply (MULL) 0401............
DIV Single Precision Divide (DV1L) 1001

IDV Integer Divide (DV3L) 3001
RDV Remainder Divide (DV4L) 7

....................

001 L

Arithmetic Operators -~ Double Precision.
DLA Double Precision Add (AD2L) 0105.
DLS Double Precision Subtract (SU2L) 0305
DLM Double Precision Multiply (MU2L) 0405
DLD Double Precision Divide (DV2L) 1005

Logical Operators
LND Logical and (LOAL) 0415 .
LOR Logical or (LOOL) 0215 .

....................

....................

LQV Logical Equivalence (LOEL) 1015
LNG Logical Negate (LONL) 0115,

Relational Operators

GTR B Greater Than A (BGAL) 0225

GEQ B Greater Than or Equal to
EQL B Equal to A (BEQL) 4425

LEQ B Less Than or Equal to A
LSS B Less Than A (BLAL) 4225

ix

A(BGEL)0125.........

(BLEL) 4125

...................

6-10
6-10
6-10
6-10
6-11
6-11
6-11
6-12
6-12
6-12
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-14
6-14
6-14

SECTION

6

TABLE OF CONTENTS (CONT.)
TITLE
NEQ B Not Equal to A (BNEL) 0425

Branch Operators00vvvu....
BFW Branch Forward Unconditional (BFUL) 4231

BBW Branch Backward Unconditional (BBUL) 4131

BFC Branch Forward Conditional (BFCL) 0231 .
BBC Branch Backward Conditional (BBCL) 0131.
BRT Branch Return (RJPL) 0135
LFU Word Branch Forward Unconditional (JFUL)

6231

LBU Word Branch Backward Unconditional (JBUL) 6131
LFC Word Branch Forward Conditional (JFCL) 2231......
LBC Word Branch Backward Conditional (JBCL) 2131

CBD Non-Zero Field Branch Backward,
Destructive (ZBDL) XX51.......... e e
CBN Non-Zero Field Branch Backward,
Non-Destructive (ZBNL) XX51 b e e e
CFD Non-Zero Field Branch Forward,
Destructive (ZFDL) XX51. . . v v v v e v n v on..
CFN Non-Zero Field Branch Forward,
Non-Destructive (ZFNL) XX51
Store Operatorsvo ...
STD "B" Store Destructive (BSDL) 0421
SND "B" Store Non-Destructive (BSNL) 1021 . ..
ISD Integer Store Destructive (ISDL) 4121
ISN Integer Store Non-Destructive (ISNL) 4221 . .
CID Conditional Integer Store Destructive (CSDL)

........

........
........
........
........

0121

CND Conditional Integer Store Non-Destructive (CSNL) 0221.

NOP Word Mode No-Op (NOPL) 0055
BitOperators.
DIADial A(DIAL) XX55. v v v v v v v e e s e n s
DIB Dial B (DIBL) XX61
TRB Transfer Bits (TRFL) XX65
FCE Compare Field Equal (CFEL) XX75......
FCL Compare Field Low (CFLL) XX71.......
MOP Reset Flag Bit (RFBL) 2015
MDS Set Flag Bit (SFBL) 4015 -+« .o v oo
TOP Test Flag Bit (TFBL) 2031
SSP Reset Sign Bit (MSPL) 4431
SSN Set Sign Bit (MSNL) 0431
CHS Change Sign Bit (CSSL) 1031
ISO Variable Field Isolate (VFIL) XX45. +

........

........

CTC Transfer ""Core'" Field to "Core" Field (CCXL) 5425 . .

CTF Transfer "Core" Field to "F" Field (CFXL)

7425.

FTF Transfer "F'" Field to "F'" Field (FFXL) 3425.

Subroutine Operators e
MKS Mark Stack (MSOL) 0441 -
XITExXit (REWL) 0435 0ot vvvnnn
RTN Return Normal (RNML) 0235
RTS Return Special (RSPL) 1235 +
CMN Enter Character Mode In Line (ECML) 4441

PAGE

6-14
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-16
6-16

6-16
6-16
6-16

6-17
6-17
6-17
6-17
6~-18
6-18
6-18
6-18
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-19
6-19
6-19
6-19
6-19
6-20
6-20
6-20
6-20
6-20
6-20
6~20
6-20
6-21
6-21
6-22

SECTION

6

TABLE OF CONTENTS (CONT.)
TITLE

Stack Operators. v,
XCH Exchange (EXCL) 1025..........
DUP Duplicate (DUPL) 2025..........

LOD Load Operator (LODL) 2021
INX Index (INDL) 0141, ..,,.....
COC Construct Operand Call (MDVL) 0241

............

............

CDC Construct Descriptor Call (MDAL) 1241

COM Communication Operator (COML) 101
PRL Program Release (PREL) 0111

...,

............

SF1 Store for Interrupt Operator (SFIL) 3011

General
Forced Store for Interrupt.

Programmatic Use of Store for Interrupt Syllable

Sequence of the Store for Interrupt Syllable
WordMode
Character Mode

ZPI Conditional Halt (CHPL) 2411.

XRT Set Variant (VARL) 0061

BFT Store for Test (STFL) 3411

BSF Set or Store S or F Registers (FXSL) 2141

FBS Flag Bit Search (SSFL) 7031
LLL Link List Lookup (LLLL) 2541

TUS Interrogate Peripheral Status (IPSL) 2431

TIO Interrogate I/0 Channels (TIOL) 6431
Control State Operators
ITI Interrogate Interrupt (IINL) 0211
IOR I/0O Release (IORL) 2111
IIO Initiate I/O (IOOL) 4411
IP1 Initiate P1 (INIL) 4111
IP2 Initiate P2 (PTOL) 4211
HP2 Halt P2 (HP2L) 2211
RTR Read Timer (RDTL) 0411
IFT Test Initiate (IFTL) 5111.

CHARACTER MODE OPERATION
General e
Function.
Character Mode Data Representation

Alphanumeric
Numericc.. ...
Character Mode Addressing
Source String Addressing
Destination String Addressing
Entrance to Character Mode
Character Mode Syllable Decoding
Character Mode Loopso v v ...
Loop Control Word (LCW) Description

xi

............

ooooooooo

............

............

............

............

............

............

............

............

............

............

PAGE

6-22
6-22
6-22
6-23
6-23
6-23
6-23
6-23
6~-23
6~-23
6-23
6-24
6-24
6-26
6-26
6-27
6-27
6-27
6-27
6-27
6-28
6-28
6-28
6-29
6-29
6~-30
6-30
6-30
6-30
6-30
6-30
6-30
6-31
6-31
6-31

7-1
7-1
7-1
7-1
7-1
7-2
7-2
7-3
7-3
7~4
7-5
7-5
7~6

TABLE OF CONTENTS (CONT.)
SECTION TITLE

7 Loop Control Word Format
Interrupt Loop Control Word (ILCW) Description

Interrupt Loop Control Word Format

Exit from Character Mode.c0v v u...

8 CHARACTER MODE OPERATORSt v vt it vt e e oo e n v
General e e e e e e e e e
Character Mode Addressing

Source String e e e e e e
Destination String
Character Movement
Address Adjustment e e
Operator Syllables ittt enn..
Operations Involving Memory Accesses to Source and
Destination Areasttt
Transfer Operators v i i ittt ittt s e
TRS Transfer Source Characters (TSDL) XX77
TRP Transfer Program Characters (TPDL) XX74
TRZ Transfer Zones (TZDL) XX76o v v v n v v v ..
TRN Transfer Numeric (TNDL) XX75
TRW Transfer Words (TWDL) XX05
TBN Transfer Blanks for Non-Numerics (TBZL) XX12
Test Operators i i it ittt e it e e
TGR Test for Greater (TGTL) XX27 v e vu.n
TEG Test for Greater or Equal (TGEL) XX26
TEQ Test for Equal (TEQL) XX24
TEL Test for Equal or Less (TLEL) XX34
TLS Test for Less (TLTL) XX35 . . .o v v v v w e menennn.
TNE Test for Not Equal (TNEL) XX25
TAN Test for Alphanumeric (TANL) XX36
BIT Test Bit (TEBL) XX37
Comparison Operators
CGR Compare for Greater (SGTL) XX63
CEG Compare for Greater or Equal (SGEL) XX62
CEQ Compare for Equal (SEQL) XX60
CEL Compare for Equal or Less (SLEL) XX70
CLS Compare for Less (SLTL) XX71. oo v v uun. ..
CNE Compare for Not Equal (SNEL) XX61
Jump Operators,
JFW Jump Forward Unconditional (FWJL) XX47
JRV Jump Reverse Unconditional (REJL) XX57
JFC Jump Forward Conditional (CFJL) XX45
JRC Jump Reverse Conditional (CRJL) XX55
BNS Begin Loop (BELL) XX52 . . vt v v v v e e e oo,
ENS End Loop (ENLL) XX51\t v i i nsner e nnn..
JNS Jump Out-of-Loop Unconditional (JOLL) XX46
JNC Jump Out-of-Loop Conditional (CJOL) XX44
Skip Operatorsttt
SFS Skip Forward Source (FSSL) XX31
SRS Skip Reverse Source (RSSL) XX30

xii

G0 00 00 Q0 00 OD OO0 Q0 Q0 QD 00 QO QO OO Q0 00 0O OO0 00 Q0 QO Q0 00 00 00 Q0 Q0 Q0 Q0 OO Q0 00 00 00 00 00 00 QO
L e T e A I I O T I I A R R I R I R A I T T A A M A A D I O O D A O
QR R R R PR PR R WWWWWWWWNONDNNDNDNDND Ll ol ol S

[0l =l I O I IS WS I < IS)

0 Q0 Q0 QO Q0 0o

TABLE OF CONTENTS (CONT.)

SECTION TITLE PAGE
8 SFD Skip Forward Destination (FSDL) XX16 8-6
SRD Skip Reverse Destination (RSDL) XX17 8-6
BSD Skip Bit Destination (SBDL) XX02. 8-6
BSS Skip Bit Source (SBSL) XX030..... 8-6
Address OperatorsS. . . v o vttt v i vt et vt et et e 8-6
SSA Store Source Address (STSL) XX15, 8-6
SDA Store Destination Address (STDL) XX14 8-6
SCA Store Control Address (STPL) XX54 8-6
RSA Recall Source Address (RSAL) XX53 8-6
RDA Recall Destination Address (RDAL) XX04 8~6
RCA Recall Control Address (RPAL) XX50 ce 8-17
SES Set Source Address (SSPL) XX22t e v v v v, 8-7
SED Set Destination Address (SDPL) XX06 8-7
TSA Transfer Source Address (SSAL) XX56 8~-7
TDA Transfer Destination Address (SDAL) XX07 8-17
ArithmeticOperators 8-7
FAD Field Add (FADL) XX73t rrnnnn. 8-17
FSU Field Subtract (FSUL) XX72ot v it i n e nnn 8-7
Conversion Operatorsottt enenennn. 8~8
ICV Input Convert (ICOL) XX67 v ennen.. 8-8
OCV Output Convert (OCOL) XX66c..... 8-8
Miscellaneous Operatorst ittt i iinneenens 8-8
SEC Set Tally (SETL) XX42 . .. v vttt enneenenn 8-8
INC Increase Tally (INTL) XX40¢c00.. 8-8
STC Store Tally (STAL) XX41ttt eeenns 8~8
BIR Reset Bit (REBL) XX65 . . v oo v v veeen e ennnn. 8-8
BISSet Bit (SEBL) XX64 v vt v et im e ineennenn 8-8
CRF Call Repeat Field (CLRL) XX430c0.. 8-9
EXC Exit Character Mode (RECL) XX00 8~9
CMX Exit Character Mode in Line (ILEL) 0100 8-9

9 PERIPHERAL UNITS . . . i ittt it ittt it te e aaneaennens 9-1
General e e e e e e e e e e e e e 9-1
Bl22CardReader 'ttt eenneeeeen 9-1
Functional Characteristics e e 9-1
Control Panelt v e enenene.s 9-1
Bl23Card Reader¢0uiuiiereeenennn 9-3
Bl24CardReader0c.uueueu... e e 9-3
Functional Characteristics oo 9-3
Control Panelttt i ittt tn et eennnns 9-3
Bl29CardReader¢.cuiiieineeeennnn. 9-4
B303CardPunch ¢ttt ieeerenmennnnen 9-4
Functional Characteristics e 9-5
Control Panel00t ineneen. 9-5
B304 CardPunch0 eeeennnnn 9-7
Functional Characteristics e e . 9-7
Control Panel i eineun. 9-17
Bl4l Paper Tape Readert v v ennennn 9-9
Functional Characteristics 9-9
Channel Select Plugboard e et e 9-10

xiti

SECTION

9

TABLE OF CONTENTS (CONT.)
TITLE

Code Translator'vveivmnnnennn.
ControlPanel e et e e

B 341 Paper Tape Punch00ou'.u...
Functional Characteristics
Channel Select Plugboard
Code Translator0uvviununu...
Control Panel0uuvummmnmnnnnn.

B 320 Line Printer 0.0 e
B321 Line Printer0.0 e,
Functional Characteristics
Tape Controlled Carriage e e c v
Control Tapec.'uvviennnunnun..
Control Panelc¢0vvremunnnon.
B325 Line Printer
B328 Line Printer e
Functional Characteristics e e e
B329 Line Printer00 u.....
Control Panel - B328/B329

B 423 Magnetic Tape Unitc0c0....

Functional Characteristics e e e e
Magnetic Tape.0 v it i e ienen.
Control Panelcouvuvmmnununi. .
B 424 Magnetic Tape Unit Transport
B 450 Disk File/Data Communications Basic Control Unit .
B 5470 Disk File Control Unit
B 471 Disk File Electronics Unit
Control Panel e
B 475 Disk File Storage Module
DIsKS . . e e
Control Panel0 i,
B 451 Disk File Expanded Control Unit
B 5480 Data Communication Control Unit
Functional Characteristics
Busy State
Input Ready State
Output Ready State
B 481 Teletype Terminal Unit
Functional Characteristics e
B 483 Typewriter Terminal Unit
Functional Characteristics
B 493 Typewriter Inquiry Station
Functional Characteristics
Data Transmission System ,,cc0ivureusonns
Functional Description , .,cc.vu..
B 249 Data Transmission Control Unit « v e v v o v v v v 0 v o
B 487 Data Transmission Terminal Unit (DTTU)........
Buffer Conditions « ¢ ¢ ¢ ¢ ¢ e v e vttt 0 e oo ennn. e e
Line Adaptors . i v vii ittt i i nennneneneenn
Typewriter

® % % 0 2 9 s s e e s s e s 0 e e e e e e e v e 0 e e

xiv

PAGE

9-10
9-12
9-14
9-14
9-15
9-16
9-18
9-19
9-19
9-20
9-20
9-20
9-21
9-22
9-22
9-22
9-22
9-22
9-23
9-23
9-23
9-24
9-24
9-25
9-25
9-26
9-26
9-26
9-28
9-28
9-28
9-28
9-28
9-28
9-29
9-29
9-29
9-29
9-29
9-29
9-30
9-30
9-30
9-30
9-30
9-31
9-31
9-32
9-32
9-32

SECTION

9

TABLE OF CONTENTS (CONT.)

TITLE

TWX Networks PR
Teletype Networks
801 Automatic Calling Unit (ACU) - oo oo vt
Dataspeed IT . -o ...
IBM 1050 vttt e e e e e e

Console . . . it e e e e e e e e e e e e e e,

Supervisory Printer

General Description of I/O Descriptors
General Description of Result Descriptor

1/0 Descriptor

Magnetic Tape Read Result Descriptor (Binary or

Alpha Mode):. ittt i e e e e e e
Alphanumeric Tape Write:
Control Bits, Ce
Binary Tape Write

Control Bits i i it e e e e e
Magnetic Tape Write Result Descriptors
Printer I/O - Result Descriptors0.....
I/ODeSCriptors. . . v v v vt e e e e e e
Result Descriptors i nnn..
Card Reader I/O Result Descriptorso ov.....
/O DesCriptors . .. v i v it it e e e e e e e
Result Descriptors uenun.
Punch I/O Result Descriptorsoou.v...
I/O Result Descriptorso v v i
Result Descriptors,
Paper Tape Reader I/0 Result Descriptors
Paper Tape I/O Read Descriptors
Paper Tape Read Result Descriptors
Paper Tape Punch I/O Descriptors
Paper Tape Punch Result Descriptors
Disk File I/O Result Descriptors

Xv

Functional Characteristics
Supervisory Printer I/O Result Descriptors.

Result Descriptor
Keyboard I/O Result DesCriptors « - « v« v o v v oo v ..
I/O DESCTIPtOrS - « v v v v v v e e e e
Result Descriptor e e e e e
Magnetic Drum e e e e e e e e e e e
Magnetic Drum I/O Result Descriptors
/O DeESCTIPtOT . . v vttt ettt e e e e e e e
Drum Read Result Descriptor
Drum Write Result Descriptor
Magnetic Tape Unit 0....
Magnetic Tape I/0O Result Descriptors.
Alphanumeric Tape Readc00.u...

PAGE

9-33
9-34
9-34
9-34
9-34
9-35
9-35
9-37
9-37
9-38
9-38
9-39
9-39
9-39
9-40
9-40
9-40
9-40
9-40
9-41
9-41
9-42
9-42
9-42
9-43
9-43
9-44
9-44

9-44
9-44
9-44
9-45
9-45
9-45
9-45
9~-45
9-46
9-46
9-46
9-46
9-46
9-46
9-47
9-47
9-47
9-47
9-47
9-48
9-48

SECTION

9

TABLE OF CONTENTS (CONT.)
TITLE

Disk File /O DesCriptors . . . v . v v v v v v e v v e e e neen
Disk File Result Descriptor
Data Communications e
Input Operations00,
Output Operationsc.......
Not Exceeding Terminal Unit Buffer Capacity
Exceeding Terminal Unit Buffer Capacity
Output Operation (Computer Initiated Messages - Teletype
Terminal Units Only) vnn,
Data Communication I/O Result Descriptors
Inquiry Read Result Descriptor
Inquiry Write Descriptor
Inquiry Write Result Descriptor
Data Transmissiont nnnn.
Typewriter/TWX Line Adaptor.
Teletype Line Adaptors
Dataspeed II Line Adaptor
801 Automatic Calling Line Adaptor
IBM 1050 Line Adaptor,
B 300, UNIVAC 1004 Line Adaptors.
Data Transmission I/O Result Descriptors.

APPENDIX A = €O i it i i it et e et e e et et e et et e e e
APPENDIX B - Designation Number of Peripheral Unit
APPENDIX C - Operators Alphabetical List
APPENDIX D - Operators Numerical List., ., v,
APPENDIX E = GlOSSaTy ittt ittt ettt e et ettt et e i
APPENDIX F - Abbreviations

INDEX

...

xvi

PAGE

9-48
9-48
9-50
9-50
9-50
9-50
9-50

9-50
9-51
9-51
9-51
9-52
9-52
9-52
9-53
9-53
9-53
9-53
9-54
9-54

A-1
B-1

D-1
E-1
F-1
One

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1.1 Major System Cabinet Configuration 1-2
1.2 Information Flow (General) 1-6
1.3 Memory-Processor Communication 1-7
1-4 Input Information Transfer 1-8
1.5 Output Information Transfer u.0u... 1-9
21 Binary to Octal Conversion 2-2
2.2 Schematic of Binary to Octal Conversion of

325.7519 = 505.6g = 101000101.110 2-2
2.3 Binary to Decimal Conversion0v..... 2-3
2.4 Decimal to Binary Conversion 0., 2-4
2.5 Decimal to Octal Conversion 2-5
2-6 Octal to Decimal Conversionouv'vvnur. .. 2-6
2.7 Binary Coded Decimal Representation 2-7
2.8 Character Mode Representation 2-7
2.9 Numeric Operand. 2-7
2.10 Logical Operand, 2-8
31 Evaluation of Polish String BC+7TXA =o vv ... 3-2
32 Execution Sequence and Stack Movement X+Y 3-4
3.3 Execution Sequence and Stack Movement of Z=X+Y 3-6
3.4 StackOperation 3-9
4.1 Processor Display Panel. 0., 4-5
4.2 Central Control Display Panel 4-8
4.3 Interrupt Priority and Addressing 4-10
4.4 I/ODisplay Panel 4-12
4.5 Basic I/O Control Unit Data FIoWo oo e vne s 4-15
4.6 Binary Card Read v .. 4-15
5.1 Program Word in P Register 5-1
5-2 Program Syllable Sequence 5-1
5.3 Syllable Access and AdAressovvuunn... 5-2
5-4 Word Mode Syllable Format.ovvunin.. 5-2
5-5 Generating a Syllable Using Octal Multiplication by Four 5-3
5-6 Decoding a Syllable Using Octal Division by Four 5-3
5-7 General Flow for Operand Call Syllable 5-6
5-8 General Flow for Descriptor Call Syllable 5-7
5.9 Data Descriptor Exploded 5-8
5-10 Example of 3-Dimensional Array [0:3, 0:1, 0:2] 5-9
5.1 Mark Stack Control Word Exploded 5-11
5-12 Program Descriptor Exploded 5-12
5.13 Return Control Word Exploded 5-13
5-14 Permissible Combinations of State, Level and Mode. 5~15
5.15 Store for Interrupt (Word Mode) 0.... 5-16
5-16 Store for Interrupt (Character Mode). 5-17
5-17 Interrupt Control Word Exploded.0.0o.... 5-18
5-18 Interrupt Return Control Word Exploded 5-19
5-19 Initiate Control Word Exploded. 5-20

xvii

LIST OF ILLUSTRATIONS (CONT.)

FIGURE TITLE PAGE
6-1 Operand Call Syllable Flow Chart 6-3
6-2 Descriptor Call Syllable Flow Chart 6-4
6-3 Index Operations - Operand and Descriptor Call Syllable 6-5
6-4 Subroutine Entry - Operand or Descriptor Call Syllable 6-6
7-1 Alphanumeric Character String 7-2
7-2 Alphanumeric Word e e -2
7-3 Outgoing Alignment Station 7-4
7-4 Character Mode Syllable, 7-5
7-5 Loop Control Word Exploded 7-7
7-6 Interrupt Loop Control Word Exploded -7
9-1 B 122 Card Reader Control Panel . . ., [9-1
9-2 B 123/B 124 Card Reader Control Panel e 9-3
9-3 B 303 Card Punch Feed Mechanism¢c'vueueo.. 9-5
9-4 B 303 Card Punch Control Panel. e e 9-5
9.5 B 304 Card Punch Feed Mechanism 9-7
9-6 B 304 Card Punch Control Panel. v .. 9-8
9-7 Channel Select Plughoardcutturunnann. 9-10
9-8 Plugboard Layout, 9-11
9-9 B 141 Paper Tape Reader Control Panel 9-12
9-10 Channel Select Plugboard, 9-15
9-11 Plugboard Layout. c v vt i 9-17
9-12 B 341 Paper Tape Punch Control Panel 9-18
9-13 Special Character Set it ons 9-20
9-14 Carriage Control Tape 9-20
9-15 B 320/B 321 Line Printer Control Panel 9-21
9-16 B 422/B 423 Magnetic Tape Unit Transport Mechanism 9-23
9-17 Magnetic Tape "Latch Leaders" 9-24
9-18 B 422/B 423 Magnetic Tape Unit Control Panel 9-24
9-19 B 471 Disk File Electronics Unit Control Panel. 9-26
9-20 Possible Paper Tape Format 9-33
9-21 TWX Network e e e e e e e e e 9-33
9-22 Teletype Network. it i et e 9-34
9-23 801 ACUCONNECtION . . & . v v v vt i e e et e e e e 9-35
9-24 Magnetic Drum Format, 9-41
9-25 Tape Record Formatt iiiueene.. 9-43

xvili

TABLE

1-1

3-1
3.2

5-1

9-9

9-10
9-1
9-12

LIST OF TABLES

TITLE PAGE
B 5500 ConfigurationChartc v, 1-2,
: 1-3,
1-4
Arithmetic Registers Relative to Core Portion of Stack 3-7
Description for Example of Stack Generation 3-10
Relative Addressing Table0ttt nnsas .o 5-4
Relative Addressing Tablecc0u... ce 6-2
Relation Between A Register Bit Position and Peripheral Unit . 6-29,6-30
B 122 Card Reader Control Panel Switches and Indicators 9-2
B 123/B 124 Card Reader Control Panel Switches and Indicators . . 9-3,9-4
B 303 Card Punch Control Panel Switches and Indicators 9-6
B 304 Card Punch Control Panel Switches and Indicators 9-8,9-9
B 141 Paper Tape Reader Control Panel Switches and Indicators .. 9-13,9-14
B 341 Paper Tape Punch Control Panel Switches and Indicators . . . 9-19
B 320/B 321 Line Printer Control Panel Switches and Indicators .. 9-21,9-22
B 422/B 423 Magnetic Tape Unit Control Panel Switches and
Indicators ,.............. . 9-25
B 471 Disk File Electronics Unit Control Panel Switches and
Indicators 000 it t e e ee. 9~27
Console Control Panel Switches and Indicators v es s 9-35,9-36
Supervisory Printer Switches and Indicators 9-37,9-38
9-49

Descriptor Combinations Gt et e e e e e

xix

INTRODUCTION

This reference manual describes the hardware characteristics of
the Burroughs B 5500 Information Processing System by presenting
detailed information concerning the functional operation of the en-
tire system. The B 5500 is a large-scale, high-speed, solid-state
computer which represents a departure from the conventional
computer system concept. It is a problem language oriented sys-
tem rather than the conventional hardware oriented system. Be-
cause of the design concept of the B 5500, there exists a strong
interdependence between the hardware and the Master Control
Program which directs the system. The material presented herein
pertains only to the hardware considerations, whereas the Master
Control Program is discussed under separate cover,

xxi

SECTION

SYSTEMS DESCRIPTION

GENERAL

1-1, Without delving into such elements of
computer design as circuitry and machine
logic, this manual explains how the B 5500
achieves its flexibility and efficiency through
a comprehensive systems approach to prob-
lem solving., The B 5500 is designed as a
complete system, combining components and
built-in aids, to bring simplified programing,
ease of operation, and complete freedom of
system expansion to the user. The B 5500
has compiler oriented machine language and
logic which accept the common languages;
ALGOL, FORTRAN, and COBOL. The ma-
chine language of the B 5500 is designed
specifically for these problem languages,
reducing compilation time and eliminating
object program redundancies. The B 5500
automatically handles memory assignments,
input/output unit assignments, segmentation
of programs, and subroutine linkages, elim-
inating many arduous programing tasks and
reducing the likelihood of error. Programs
may be corrected at the source language
level and are simplified by integral debugging
aids.

MASTER CONTROL PROGRAM

1-2, The Master Control Program provides
the over-all coordination and control of
processing that is so important to total
production through the maximum use of all
B 5500 components, Operator interventionis

nearly eliminated because complete manage-
ment of the system is assumed by the Master
Control Program, a comprehensive operating
system that provides simultaneous input/
output operations and multiprocessing. By
controlling the sequence of processing, ini-
tiating all input/output operations and pro-
viding automatic handling procedures to meet
virtually all processing conditions, the Master
Control Program can obtain maximum use
of the system components at all times, Be-
cause so many functions are performedunder
this centralized control, changes in schedule,
system configuration, and program sizes
can be readily accommodated; thus achieving
greater over-all production and efficiency.

1-3. The configuration for a B 5500 system
may vary considerably, depending on specific
applications and expected workload. Both
the possible components and the maximum
configuration are listed in table 1-1,

DESCRIPTION AND FUNCTION OF
MAJOR UNITS

1-4. The major units of a maximum B 5500
configuration include central control unit,
processors A and B, memory modules 0to7,
input/output control units 0 to 3, and display
and distribution unit, These major units are
contained in a major system cabinet and
must be arranged in a specific order (figure
1-1).

lhr L: I — T o I £ T — ‘ﬂ A—
PROCESSOR I/O CONTROL DISPLAY & CENTRAL MEMORY MEMORY PROCESSOR
A UNITS DISTRIBUTION CONTROL MODULES MODULES "g"
\ N ~ ~1 T :ll
Figure 1-1. Major System Cabinet Configuration
TABLE 1-1
B 5500 Configuration Chart

Unit Ability of
Number Description Max. One Unit Notes
B 5280 Processor A 1
B 5281 Processor B 1

4096 words 6 us
B 460 Memory Module 8 cycle time B 460 and B 461 modules
cannot be mixed on any
B 461 Memory Module 8 4096 words 4 us one system.
cycle time
B 430 Storage Drum 2 32, 768 words
B 5283 Input/Output Channels 4
B 422 Magnetic Tape Unit 16 | 24-66KC 16 Tape units maximum
: B 422 and B 423 units
B 423 Magnetic Tape Unit 16 24KC cannot be mixed. B 422
B 424 Magnetic Tape Unit 16 | 66KC and B 424 canbe mixed if
- - the B422 operates at 120

B 425* Magnetic Tape Unit 16 18-50-72KC inches per second.
B 320 Line Printer 2 475 LPM, 120 chr.
B 321 Line Printer 2 700 LPM, 120 chr.
B 325 Line Printer 2 700 LPM, 132 chr. Two Line Printers Max.
B 328 Line Printer 2 1040 LPM, 120 chr.
B 329 Line Printer 2 1040 LPM, 132 chr.
B 122 Card d 2 200 CPM

. ard Reader Two Card Readers Max.
B 123 Card Reader 2 475 CPM

* Requires Feature 872 Extended Magnetic Tape Capability.

1-2

TABLE 1-1 (Cont)

B 5500 Configuration Chart

Unit Ability of
Number Description Max. One Unit Notes
P
B 124 Card Reader 2 800 CPM Two Card Readers Max.
B 129 Card Reader 2 1400 CPM
B 303 Card Punch 1 100 CPM One Card Punch Max.
B 304 Card Punch 1 300 CPM
B 141 Paper Tape Reader* 2 Three Paper Tape Units
B 341 Paper Tape Punch* 2 Maximum
B 450 Disk/File/Data Com- 2 If system has two
munications Basic B 5470'sand one B 5480,
Control then two B 450's are
are needed.
B 452 Disk File/Data Trans- 8 Can hold 2 Required for B 487
mission Basic Control B 487 DTTU's DTTU's.
B 5470 Disk File Control 2
(DFC) Unit
B 5480 Data Communication 1 Can service up to B 487 DTTU's not
Control (DCC) Unit 15 Terminal Units | allowed
in any combination
B 249 Data Transmission 1 Can service up to All types of Terminal
Control Unit 15 Terminal Units | Units
B 451 Disk File Expanded 4 Service up to 5 Two per each B 5470
Control 5 DFE Units
B 471 Disk File Electronics 20 10 DFE Units Max. per
(DFE) Unit each B5470 DFC Unit
B 475 Disk File Storage 100 9,600,000 BCL 5 DFS Modules Max. per
(DFS) Module Characters each B 471 DFE Unit
B 481 Teletype (TTY) 15 Can service up to
Terminal Unit 399 teletype units
B 483 Typewriter (TYP) 15 Can service up to
Terminal Unit 8 B 493 TIS stations
simultaneously 15 Terminal Units Max.
B 484 TWX (TWX) Terminal 15 Can service up to

Unit

8 AT&T Data-sets
simultaneously

* Feature 920 is available for code translation.

1-3

TABLE 1-1 (Cont)

B 5500 Configuration Chart

Unit Ability of
Number Description Max. One Unit Notes
B 487 Data Transmission 15 Can service up to . .
Terminal Unit (DTTU) 16 adaptors 15 Terminal Units Max.
980 TYP/TWX Adaptor 1-TIS or 1-TWX
network
981 TTY Adaptor 1-TTY network
982 Data Speed II Adaptor
983 801 Auto Call Unit
984 U1004 Adaptor 1-1004 Station
985 IBM 1050 Adaptor 25-1050 Stations
B 493 Typewriter Inquiry 120 Only 8 TIS per each
Station (TIS) B 483 TYP Unit

Central Control Unit

1-5. The heart of every B 5500 system is
the central control unit which is comprised
of three sections: memory exchange, input/
output exchange, and system control. A
description of the basic function of each
section follows,

1-6. MEMORY EXCHANGE. The memory
exchange section provides access routes for
requesting units (processors and input/output
control units) to core memory modules, In
order to connect the proper memory module
to the requesting unit, the desired addressis
examined to determine which memory module
is being addressed, then the proper routing
is established. The design of the memory
exchange allows the simultaneous access of
different memory modules by multiple re-
questing units., (One requesting unit per one
memory module,) After the route is estab-
lished, all bits of a word are transferred in
parallel to or from the requesting unit,

1-7. INPUT/OUTPUT EXCHANGE. The in-
put/output exchange section provides the
connection between any input/output device
and any input/output control unit. Like the
memory exchange, the input/output exchange
permits simultaneous parallel transfer of
information, thus providing multiple input/
output operations, The routine established
enables the flow of both information and
control logic to each peripheral unit.

1-4

1-8. SYSTEM CONTROL. The system con-
trol section contains the master clock, a
one-sixtieth of a second timer, and an inter-
rupt system. The one-sixtieth second timer
is included to provide a means of recording
job run time. The interrupt system is the
major portion of the system control section
and will initiate Master Control Program
routines to handle "exception conditions"
when they are detected.

Processors A and B

1-9. The processors of the B 5500 system
are designed for maximum use of problem
oriented languages. A B 5500 system may
have two processors for simultaneous opera-
tion. Each processor is independent of the
other in normal operation and may operate
in one of two modes, word mode or character
mode. Only one processor in each system
can operate in either of two states, normal
state or control state; the other processor
must operate in normal state only.

1-10, WORD MODE. The usual mode of
operation is word mode. In word mode,
operators are primarily concerned with one
or two complete words. Each word contains
48 bits, Registers are arranged (for display)
in groups of three bits (an octade), coded in
octal notation. Word mode operation uses a
full parallel adder, with automatic floating
point logic,

1-11. CHARACTER MODE. In character
mode, a word consists of eight characters
of six bits each., Operators primarily work
with one character or one to six bits of a
character, Character mode operation uses
a serial adder and does not have automatic
floating pointlogic. Numbers are represented
in binary coded decimal (BCD).

1-12, NORMAL STATE. Instructions in this
state are concerned with the conventional
aspects of computation (adding, subtracting,
information transfer, etc.). Any interrupt
(detection of an "exceptional condition') that
occurs while processing in normal state will
suspend the normal state operation and
transfer operation to control state in proc-
essor one.

1-13. CONTROL STATE. All operations that
can be performed in normal state can also
be performed in control state. Additional
control operations are available while in
control state. Unlike normal state, interrupts
occurring in control state will not suspend
processing. Most MCP (Master Control Pro-
gram) routines are written to operate in the
control state because of the additional con-
trol operators that are available.

1-14, OPERATORS (INSTRUCTIONS). In both
normal and control state there are four
operators in a word. The act of obtaining
the next operator can occur simultaneously
with the performance of other operations.
This simultaneity of operations results in

minimal time loss due to the lack of an

instruction,

1-15. CLOCK. A one megacycle clock rate
is used throughout the entire system. The
clock rate plus the extremely efficient logic
results in an average add time for two words
of about 3 # s, and an average multiply time
for two words of about 30 & s., both in
floating-point.

Core Memory Module

1-16. A B 5500 system can have up to eight
memory modules, (All eight must be either
model B 460 or model B 461.) Each core
memory module operates independently of
any other module, Information stored in a
core memory module is accessed through
the memory exchange section of the central

1-5

control unit. As mentioned before, memory
exchange permits parallel accessestomulti-
ple modules (allows more than one core
memory module to be accessed at the same
time). Each module is a high speed (cycle
time of either 6 # s. or 4 #s,), coincident
current magnetic core memory. Every core
memory module has its own addressregister
and information buffer register, Each module
contains 4096 words resulting in a maximum
core memory size (for one system) of
32,768 words. One word of core memory
consists of 48 bits plus one bit reserved for
parity check. For the B 460 module and the
B 461 module, memory cycle times are
6 # s. and 4 # s, respectively. When a word
from either memory module B 460 or B 461
is read, the information is available for use
in either 3 4 s, or 2 M s. respectively.

Input/Output Control Unit

1-17. The I/O (input/output) control unit(s)
control all peripheral 1/O devices in the
B 5500 system, A B 5500 system may have
up to four I/O control units. Eachl/O control
unit operates independently of the other, thus
allowing a maximum of four simultaneous
I/O information transfer operations. The
I/0 control unit contains a one word buffer.
This buffer is used to hold information being
translated or transferred to or from an I/O
device, The I/O control unit will translate
each word of information from the internal
system code to the output code, or viceversa.
The I/O control unit communicates with a
core memory module through the memory
exchange section of the central control unit
and communicates with any I/O device through
the 1I/0 exchange section of the central con-
trol unit. The use of these exchanges allows
a maximum number of simultaneous I/O in-
formation transfer operations equal to the
number of I/O control units.

1-18. I/O CHANNEL. One I/O control unit
plus the established routing in the central
control unit (using memory exchange and I/O
exchange) is referred to as an I/O channel.
A B 5500 system can have a maximum of
four I/0 channels.

Display and Distribution Unit

1-19. The display and distribution unit con-
tains an indicator panel for each processor,

for each I/O control unit, and for central
control unit. The panel displays the contents
of most registers, flip flops, and certain
memory areas. Using the proper request
technique, any area of memory can be seen
as it actually appears in memory. Some
portions of memory can be altered during
processing via an indicator panel in the
display and distribution unit. Besides the
indicator panels, this unit contains control
indicators for the power supply and a Power-
Off switch., The display and distribution
unit is the distribution center for the peri-
pheral devices and for the power from the
power supply.

INFORMATION FLOW BETWEEN UNITS

1-20. The three phases of information flow
are input, processing, and output (figure
1-2), Core memory is a fast, random ac-
cess, temporary storage device for infor-
mation to be used during processing. During
the input phase, information is brought into
core memory, During the processing phase,
the information in core memory is worked
upon. During the output phase, the informa-
tion is taken out of core memory either as
output or as information to be re-entered into
the computer at a later time,

GENERAL FLOW

r———_———
| CENTRAL CONTROL |
CORE |) |
MEMORY 1/O |
MEMORY + / + 1/O DEVICES
MODULES | |EXCHANGE[EXCHANGE[|
| |
I I I SN |
1/0
PROCESSORS | | CONTROL
UNIT
PROCESSING PHASE
MEMORY
MODULE PROSESSOR
0 A
MoDOLEs | S| MENMORY
1106 | = EXCHANGE
M%”S%‘EEY PROCESSOR
7 IIBII
INPUT/OUTPUT PHASE
MEMORY i/0
MODULE | CcONTROL I/O DEVICE
0 UNIT Y
MEMORY | == MEMORY |. (/0 C.uU. 2)—= /0 F=}10 1/0 DEVICES
MODULES { 777 EXCHANGE EXCHANGE ._."" { 1030
170 6 Q._.. l—(1/0 C.U. 3)—= "S
MEMORY - 1/0 ey
MODULE L. CONTROL I/O DEVICE
7 UNIT 4 3l

Figure 1-2. Information Flow (General)

1-6

Memory Access

1-21. The only components which may access
core memory modules are processors or
I/0 control units. Each core memory module
is a self-contained unit independent in opera-
tion. This independence permits the simul-
taneous memory accesses of different mod-
ules. There is a maximum of six requesting
units (two processors and four I/O control
units) which can access a maximum of eight
memory modules. A total of six simultaneous
memory accesses are possible when each
requesting unit is accessing a different mem-
ory module. This condition of simultaneous
memory accesses is made possible by the
memory exchange section (in the central con-
trol unit) which provides multiple routes so
that any requesting unit may be connected to
any memory module that is not in the access
cycle (being accessed). The connection (rout-
ing) is made for each access,and each access
is for one word only.

Input/Output Access

1-22, For 1I/O operations, the I/O devices
are connected to the I/0 control units by the
I/O exchange section of the central control
unit. Then the I/O control units are con-
nected to memory by the memory exchange.
The I/O exchange can connect any I/O de-
vice to any I/O control unit. Multiple routes
can be established to enable simultaneous
I/0 operations. The connections are made by
the 1/0 exchange for each 1/O operation and
are maintained for the duration of the input
or output cycle,

Information Transfer

1-23. Information is transferred as 48 bit
words in parallel between the following:
processors and memory exchange, I/O con-
trol units and memory exchange, memory
exchange and memory modules. Information
is transferred seven bits at a time (6 bit
information character plus a parity bit) by
way of routing between the following: I/0O
control units and I/O exchange, I/0 exchange
and I/0 devices.

Communication Between Memory and
Processor

1-24, MEMORY EXCHANGE. When a word
in a processor is to be stored in core
memory, the transfer of a word of informa-~
tion is from the processor, through the
memory exchange, to the required core
memory module (see double line, figure 1-3).
Memory exchange contains a memory write
exchange and a memory read exchange.
These two features provide for a transfer in
either direction, Every word of information
going to a core memory module from a
processor goes through the memory write
exchange (see double line). Every word of
information going to a processor from a
memory module goes through the memory
read exchange (see single line),

CENTRAL CONTROL

I MEMORY EXCHANGE |

| PROCESSOR

—
MEMORY MODULE

| MEMORY READ |
EXCHANGE |
|

|

| |

INFORMATION | |

I | REGISTER |

B |MODULE SELECT [= :
|

|

; J_ T

MEMORY WRITE
EXCHANGE

!
|
|
|
I
|
|
!

ADDRESS REG.

Figure 1-3. Memory-Processor Communication

1-25. MEMORY ADDRESSING. Each core
memory module has 4096 words. Each ad-
dress, within the module, uses 12 bits. A
bit represents a binary condition (off or on)
which is related to the binary system of count-
ing in which 212 = 4096. The representation
of the address for the 4096th word would be
12 bits all on; the first word, all bits off.
Three bits are added to the address field of
each word to designate which memory mod-
ule. There is a maximum of eight modules
and 23 = 8, The first module is represented
by 3 bits off; the eighth module, by all 3
bits on. The total address field for merely
one word of information consists of 15 bits.
The three high order (left-most) designate
which (if more than one) memory module.
The remaining 12 bits designate the particular
word in the module. When a memory access
is requested by a processor (a processor
requests one word of information), the three
high-order bits of the address are examined

by the memory exchange module select (see
figure 1-3) and the route between the proc-
essor and the module is set up. Then, the 12
low order (remaining) bits of the address
are transferred to the memory module where
the word location is selected and the word of
information is transferred either to or from
the processor via the route just established.

Communication Between Memory and 1/0
Control Unit and 1/0 Device

1-26, 1/O EXCHANGE. The communication
between a core memory module and an I/O
control unit is identical to processor-mem-
ory communication. The I/O exchange, like
the memory exchange, allows for a transfer
of information in either direction. The rout-
ing procedure permits any of the four 1/0O
control units to be connected to any of the
I/0 devices. Generally, information istrans-
ferred to and from the I1/0 devices as 6 bit
information characters.

1-27. INPUT. During an input operation, the
information is transferred from the input de-
vice, through the I/O exchange, to the I/O con-
trol unit, through the memory exchange, to
core memory. Referringtofigure 1-4, the in-
put source character stringis read and trans-
ferred, one character (6 bits) atatime, to the
I/O control unit, A full (48 bit) word of eight
characters is built up in the one word buffer
contained in the I/0O control unit. The first
character of the one word buffer is the left-
most and is the most significant character of
the word. When the last character of a word
has been read and placed in the buffer, and be-
fore the next character of a word has been read
by the input device, the word in the buffer is
transferred to core memory. Thistransferis
effected when the 1/O control unit requests a
memory access, The proper memory module
is selected by the memory exchange and the
information word is then transferred to the
word address of the memory module through
the memory write exchange. As soon as the
next source string character is read, the input
operation starts building a new word of infor-
mation in the one word buffer of the I/O con-
trol unit. This process will apply to all input
except the instance of a magnetic tape back-
ward read operation, In this operation, the
first character to be read is theleast signifi-

cant (right-most) character and will be placed
in the least significant character position of
the least significant word out of all the word
positions in core memory that are reserved
for this input.

READ SEQ UENCE

LifziapalsTelrTalsTalniz[isfalis]ie
)

INPUT SOURCE
CHARACTER

ONE CHARACTER
(6 BITS)
PARALLEL TRANSFER

CORE

ADDRESS 1/O CONTROL UNIT

ONE WORD
(48 BITS PLUS PARITY)

MEMORY EXCHANGE
PARALLEL TRANSFER

CORE MEMORY
MODULE

T T T

WORD 2 {'yT,. (T3 E
woro 1 [1[2]3]4]s

Figure 1-4. Input Information Transfer

1-28. OUTPUT. An output operation trans-
fers information from core memory, through
memory exchange, to an1/0 control unit, then
from the I/O control unit, throughthe I/O ex-
change, tothe outputdevice. Aseachnew word
is needed in the I/O control unit, a memory
request is made, the core memory module is
selected, and the proper word is accessed,
Each character of the word (in the one word
buffer of the I/0 control unit) is transferred
serially (one character at a time) from the
1/0 control unit, through the I/O exchange, to
the output device. As in most I/O transfers,
the first character to be transferred to the
output device is the most significant and will
be inthe most significant character position of
the output string (figure 1-5).

Interrupt System

1-29. The interrupt system is a process
whereby certain conditions occurring during
processing will initiate a specific routine con-
tained in the MCP (Master Control Program),

Since the MCP maintains a centralized com-
munications control, an interrupt condition
causes a transfer of control from the program
to the MCP which may initiate certain types
of operations that can proceed simultaneously
with computation. In essence, interrupt con-
ditions provide opportunities either for the
MCP to transfer control to the area of proc-
essing which will use the equipment most ef-
fectively, or for the MCP to respond to any
error conditions. Because ithasover-all con-
trol of the system, the MCP is able to make
effective use of the available system. There
are two c¢lasses of interrupt conditions: pro-
cessor independent or processor dependent.

worp 2 [9 Jioliifizfiz e |5L6,

WORD 11i12}3 418 :'_._L ‘IL»‘J

CORE MEMORY
MODULE

(48 BITS PLUS PARITY)
PARALLEL TRANSFER

MEMORY EXCHANGE

ONE WORD BUFFER

[Tilslalilel7]s]

} ONE WORD

1/0 CONTROL UNIT

ourpuT

ONE CHARACTER
(6 BITS)
PARALLEL TRANSFER
i[CHARACTER STRING

l l I | I | x Ji‘ EJT._

.‘,. |v H
413 }
WRITE SEQUENCE

Figure 1-5. Output Information Transfer

1-30. PROCESSOR INDEPENDENT INTER-
RUPTS. Processor independent interrupts
are those which arenotinitiated or generated
by any program code, but which are received
from an external source. These are:

a., Time interval - used to collectlog infor-
mation and to check program running
time,

b. Processor B busy - used to determine
the presence of, or to indicate, a mal-
function of Processor B (all work will
be shifted to Processor A).

Printer finished - used to indicate that
one line has been printed.

Ce

I/0 channel busy - used to determine
which, if any, channels are available or
to indicate a malfunction of a channel,

I/O channel finished - used to indicate
that a channel is now available.

e.

Keyboard request - used to indicate that
the system operator has arequesttoen-
ter via the keyboard on the console.

Disk file check operation finished - used
toindicate that a disk file check operation
is finished.

1-31, PROCESSOR DEPENDENT INTER-
RUPTS. Processor dependent interrupts are
initiated or generated by a program code
operating within aprocessor. They are either
a result of a programing error or aresult of
requiring the MCP to perform afunction such
as initiating an I/O operation, allocating mem-
ory, etc. These are:

a., Memory parity - indicates a parity er-
ror in a word read from memory.

b. Invalid address - usedto indicate a mal-

function of a memory module or pro-

gram error,

c. Communication operator - used by a

program to enter the control state.

d. Flag bit - used to indicate the presence
of a construct other than an operand,
when an operand is required,

e. Continuity bit - used to indicate that a
multiple input/output area is now avail-
able,

f. Invalid index - indicates that an index
value exceeds a predesignated size.

g. Exponent underflow - indicates that an
arithmetic operation has resulted in an
exponent value less than -63 (operand
less than 8 51)

e

Exponent overflow - indicates that an
arithmetic operation has resulted in an
exponent value %reater than +63 (operand
greater than 8+ 6).

Integer overflow - indicates that an oper-
and exceeds 813 when a floating point
number is being convertedto aninteger,

Divide by zero - indicates that thedivi-
sor is zero when a divide operation is
executed,

. Program release - indicates an input/

output area is available to receive or
transfer information,

. Stack overflow - indicates that the stack

is about to exceed its allocated area.

m. Presence bit - indicates that a program
has referred either to information that
is not present in memory or to input/out-
put information that is not available,

1-32, INTERRUPT HANDLING. Whenever an
interrupt occurs, the interrupt will be retained
until an MCP routine has been initiated to pro-
cess the specific interrupt. Eachinterrupt has
an assigned priority that causes the MCP to
react to the interrupt withthe highest priority
whenever more than one interrupt occurs at
one time, Remaining interrupts will be han-
dled according to this priority sequence. A
more thorough explanation of interrupts is
presented later.

SECTION

DATA REPRESENTATION

GENERAL

2-1. Several methods of data representation
are used withthe B 5500 Information Process~
ing System. Two systems areused internally,
and three systems are used for input/output.
The internal systems are the binary system
and an alphanumeric code. Input/output de-
vices use Burroughs Common Language (BCL)
code, binary, or standard punched card code.
A number is composed of an integral part
(left of decimal point) and a fractional part
(right of decimal point).

BINARY NOTATION

2-2. The decimal system is based upon the
ten digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and
upon the powers of ten. Similarly, the binary
system is based upon the two digits, 0 and 1,
and upon the powers of two. Every binary
digit is represented by one flip flop, thus a
binary digit is one bit. A number will be
represented internally as a series of bits

20-1
0 _ off bit
8 = on bit
value of position = 2‘1t 23 22 21 20.

either off or on. When a bit is on (ﬁ), its
position determines the value. Consider an
example of five bits.

2-3. The least significant bit, if on (8), hasa
value of 20, or 1; the next most significant
bit ot the left of the binary point has the
value of 21, or 2; the third bit (count from
right to left) has the value of 24, or 4; etc.
In this manner, any integer can be repre-
sented in binary form. The example below
illustrates some integers. Fractions inbinary
are much the same as integers. Here,
though, the powers are negative powers with
the first power to the right of the binary
point having the value of 2-1, or 1/2; the
second bit has the value of 2~2, or 1/4; the
third bit, 2-3, or 1/8; the fourth bit, 274, or
1/16; etc. It is apparent that while some
fractions are represented correctly, others
can only be approximated. However, the
degree of error is very small when a
sufficient number of bits are used.

.0 0 0 0 8=0+0 +0 +0 + 1 =decimal 1

...0 0 0 8 0=0+0 +0 +2 + 0 =decimal 2

.0 0 0 & =0 +0 +0 +2 + 1 =decimal 3

.88 8 8 g=2of

2-1

2

1

+23+2 +2°+ 1=16+8+4 + 2+ 1=decimal 31

OCTAL 2 2 2 2

BINARY | 256 | 128 | 64 | 32 | 16 | 8 2 1 J2 L4 s 1161732 | 1/64

4
8 | Ty 5 N s N
N ,x2 N x2 N x2 N x2 N x2
4 7 4 4 e R -2 4 -
3

4
NXZI-——L‘ N XZ‘ _I N X2| -6‘
N, x2 N, x2 2 Nx20 2 N><23 2 N]x2

Figure 2-1. Binary to Octal Conversion

OCTAL NOTATION binary equivalent of 32570 into groups of

three, and substituting each group by its value,
2-4, When 2 is raised to the third power, 23, 101 000 101 will become 505. 505 is the
the result is 8. Eight is the base of the octal octal equivalent of 3251¢. Inthe octal system,
system, just as two is the base of the binary three bits are used to represent one octal
system and ten isthe base of the decimal sys- digit; hence, as illustrated, a direct con-
tem. The relationship between the three sys- version from binary to octal or octal to
tems is shownusing the decimal number 32510 binary is quite simple. The equivalence of
(the subscript 10 means''to the base ten''), and these two systems is shown in figure 2-1
its binary and octal equivalents. where N = either 0 or 1, and where N'= N4 x

22 4 No x 21 4+ N1 x 20, (The squareshave
32510 = 3x102 + 2x101 + 5x100 =300 + 5 = 325

101 000 101 =1x28 + 0x27 + 1x26 + 0x25 + ox2% + 0x23 & 1x22 4 ox2l 4 1x20=
956 + 0 + 64 + 0 + 0 + 0 + 4 4+ 0 + 1 =325
5055 = 5x82 + Ox8l . 5x80 = 320 + 0 + 5 = 325

2-5. Note that when the binary number been crossed out because they were multi-
101000101 is broken into groups of three, plied by zero.) The location of the decimal
working from right to left from the decimal point, binary point, and octal point is in-
point, it looks like 101 000 101, The result dicated by the serratedline. Similar tofigure
of 101 binary is 1x22 + 0x2! + 1x20=4 ;0 2-1, figure 2-2 illustrates the relationship of
+ 1 =5. Thus, after breaking 101000101, the the systems using the number 325.75.

5x8° 0x8'

OCTAL

BINARY 1,28 0x2” 1x2% 0x2° 0x2% 0x2% 1x22 0x2' 1x2% 1x27 1x272 0x273

[256 D] 60 DT 4 D0 e [DK

Figure 2-2. Schematic of Binary to Octal Conversion of 325.7510=505.6s=101 000 101 .110

2-2

NUMBER CONVERSION
Binary to Decimal Conversion

2-6. INTEGRAL. Thisconversion is effected
by adding together the value of eachbit thatis
on. In this way, the binary number 11010011
would be equal to

1x27 11x28, 0x2% 1x2% 0x2%4 0x22 1 1x0 L 4 1x20=

1 0

1x27+1x2%, 0 +1x2% 0"0.1x2ti1x00 -

128 + 64 + 16 + 2 + 1 21179

2-T7. A second method of effecting abinary to
decimal conversion is the "double dabble"
method. In this procedure, the high-order bit

N3

is doubled (multiplied by 2) and then added to
the next lower-order bit. This sum is then
doubled and again added to the nextlower bit.
This process is continued until the entire bi-
nary number has been expended (figure 2-3A).
The correct result is obtained after the low-
order bit (units) has been added.

2-8. FRACTIONAL. The above process will
work for integral numbers and for the integral
part of fractional numbers, but it will not work
for the fractional part of fractional numbers.
To convert binary fractions to decimal frac-
tions, division is used. As was previously
stated, the bits to the right of the binary point
have the decreasing values of 2-1, 2-2, 2-3,
2-4,etc., or, as fractions 1/2, 1/4, 1/8,1/16,
etc., respectively. N1isthebinary digitinthe
first position to the right of the binary point,
N2 is the digit in the second position to the
right of the binary point, etc. Thus, a binary
fraction would be expressed in the decimal
equivalent as:

'2—+N2

.N1x2 + N2x2 + N3x2 =

2

+ N1 = decimal equivalent fraction

DECIMAL 23

|

4+1

5
2

x

10+1=11
x2

2+1=23

®

2

.8125
2/1.625

$ i

.625
2/1.25

$ 14
.25
N

}
.5
2/7.0

BINARY .1101 = DECIMAL .8125

Figure 2-3. Binary to Decimal Conversion

2-3

This can beused to find thedecimal equivalent
of a binary fraction. In thisprocess, the low-
est order significantbitistaken as the integer
1 and divided by 2. The nexthigher-order bit
is then added into the unit's position of the re-
sulting quotient, and the division is repeated.
This is repeated until the binary point is
reached. The result is complete when the bit
to the immediate right of the binary point has
been added into the unit's position and the re-
sultdivided by 2. This process is shownin fig-
ure 2-3B.

Decimal to Binary Conversion

2~-9. INTEGRAL. This may be effected in
several ways. If the powers of 2 are known,
then the binary equivalent can be found by
subtracting from the number the largest
power of 2, which is smaller than the
decimal number, and then recording a bit
for that power of two. The largest power of
2, which 1is smaller than the result of the
preceding subtraction, is then found, sub-
tracted, and the corresponding binary bit
recorded. In effect, this is the reverse of
the first method of converting from binary
to decimal.

36 WITH REMAINDER OF 1
2/73 DECIMAL

18 WITH REMAINDER OF 0
2/36

9 WITH REMAINDER OF 0
2/18

4 WITH REMAINDER OF 1
2/9

2 WITH REMAINDER OF
2/ 4

1 WITH REMAINDER OF 0
2/ 7

0 WITH REMAINDER OF 1
2/ 1

0——]

DECIMAL 73 = BINARY 1001001

®

2-10. A second method of conversion is ac-
complished by successive division. Thedec-
imal number to be converted is divided by
2 and the quotient and remainder are noted.
The remainder will always be either 0 or 1.
Then the quotient is divided by 2, resulting
in another quotient and remainder. This is
repeated until the quotient is 0. The re-
mainder, resulting from the first division,
is the low order bit; and the last remainder
is the high order bit. This process is valid
for the integral part of a number (figure
2-4A).

2-11. FRACTIONAL. The fractional part of
a number may be converted in a method
somewhat similar to the preceding method
of division. The fraction is multiplied by 2
and, if the result is greater than 1, the 1 is
recorded in the binary string as a1 bit. If
the product remains less than 1, the binary
bit is 0. The fractional part of the product
is carried down and again multiplied by 2.
This is repeated until the fractional part is
equal to 0, or the required degree of accuracy
is attained. This process is shown in figure
2-4B.

.8125
x2
1.6250

.6250

DECIMAL .8125 = BINARY .1101

Figure 2-4. Decimal to Binary Conversion

2-4

66 WITH REMAINDER OF 3
8/531

8 WITH REMAINDER OF 2
8/ 66

1 WITH REMAINDER OF 0

8/ 8
0 WITH REMAINDER OF |

8/ 1

DECIMAL 531 = OCTAL 1023

®

439453125

DECIMAL .439453125=.341

IN OCTAL

Figure 2-5. Decimal to Octal Conversion

Decimal to Octal Conversion

2-12. INTEGRAL. When it is desirable to
convert a decimal number to its octal form,
the powers of eight may be used. Another
method is to divide the number by eight,
The remainder is the low-order octal digit.
The quotient is then again divided by eight,
and the remainder resulting is the next
higher-order octal digit. This process is
repeated until the quotient is zero. This
method is used for the integral part of
numbers (figure 2-54).

2-13. FRACTIONAL. When a fractional part
of the number is to be converted, multi-
plication is used. Here the fraction is
multiplied by eight and the integral portion

formed is the first octal digit to the right
of the octal point. This process is repeated
until either the fraction is zero, or the
desired degree of accuracy is attained. This
is shown in figure 2-5B.

Octal to Decimal Conversion

2-14. OCTADE. In octal to decimal or deci-
mal to octal conversions, if the powers of 8
are known, then the procedure is much the
same as the corresponding subtraction meth-
od of binary. The difference is the digital

2-5

multiplier (N) which will have avalue of from
0 through 7 in octal. Each octal digit will be
referred to as an octade. The values of the
octades are as follows (the top-most relates
to the least significant octade):

Nx81% = Nx 549,755,813,888
Nx8'% = Nx 68,719,476,736
Nx8'l = Nx 8,589,934,592
Nx80 = Nx 1,073,741,824
Nx8Y = Nx 134,217,728
Nx8® = Nx 16,177,216
Nx8' = Nx 2,097,152
Nx8® = Nx 262,144
Nx8°% = Nx 32,768
Nxgt = Nx 4,096
Nx83 = Nx 512
Nx8% = Nx 64
Nx8:l = Nx 8
NxS0 = Nx

Nx8~© = Nx .12500

Nx8~2 = Nx .01562 50000
Nx8™S = Nx .00195 31250
Nx8~% = Nx 00024 41406 25000
Nx8™° = Nx .00003 05175 78125
Nx8® = Nx 00000 38145 72265
Nx8™' = Nx .00000 04768 21533
Nx8™® = Nx .00000 00596 02691
Nx8~Y = Nx .00000 00073 25336
Nx8™1% = Nx 00000 00009 15667
Nx8~ M = Nx .00000 00001 14458
Nx8~12 = Nx .00000 00000 14307
Nx8~ 1% = Nx .00000 00000 01788

2-15. INTEGRAL. On the conversion from
octal to decimal, a method very similar to
"double dabble" may be used. Here the
higher-order octade is multiplied by 8 and
then added to the next lower octade. This
sum is then multiplied by 8 and again added
to the next lower octade. This is continued
until the first octade to the left of the octal
point is reached. After the unit's octade has
been added, the result should be complete
(figure 2-6A).

2-16. FRACTIONAL. The above is valid for

the integral part of a number, but for the
OCTAL 2 6 7 2 = DECIMAL 1466

2

x8
16+6=22
x8
176 +7 =183
x8
1464 + 2 = 1466

®

62500

20312 50000

65039 06250

45629 88281 25600

05703 73535 15625

38212 96991 89453 12500

29776 62086 48681 64062 50000

41222 07760 81085 20507 81250

fractional part of a number, the following
must be used. The lowest order octade is
considered to be an integer. As such, it is
divided by 8. The next higher octade is then
added to this quotient in the unit's position
and the sum again divided by 8. This con-
tinues until the first octade to the right of
the octal point has been added and the result
divided by 8. See figure 2-6B which is the
implementation of:

N3
8 + N2
—_—

g N1

3 = decimal equivalent fraction

439453125
8/3.515625
fHH
515625

8/4.125

I

125
8/1.000

OCTAL .341= DECIMAL 439453125

[

Figure 2-6. Octal to Decimal Conversion

Binary Code Decimal (BCD)

2-17. BCD is numerical representation as it
appears in the alphanumeric internal code.
In this code, each decimal digit is repre-
sented by six bits: 1, 2, 4, 8, A, B. Com-
binations of the numeric bits with the A and
B bits off, are used to represent the digits
0 through 9. As an example, the decimal
number 39 would have the 1 and 8 bits on in
the low order (units) digit; and the tens digit
(3) would have the 1 and 2 bits on. The
representation of numbers by this system is
shown in figure 2-7.

]
0
B
2
n
]

4x102

o

'7x10”

Figure 2-7. Binary Coded Decimal Representation

DATA TYPES AND PHYSICAL LAYOUT
Characters

2-18. When operating in the word mode,
data/words of 48 bits are normally referred
to as operands and may represent either
numeric or logical information. Incharacter
mode, data is represented in internal alpha-
numeric code and is in the form of con-
tinuous strings of characters. The portion
of a character string ...IS + 34... is illus-
trated in figure 2-8 as it would appear in
character mode. Each BA8421 represents
one character expressed in internal alpha-
numeric code. (See Appendix A,)

ON

Operands

2-19, Operands are the words of information
that are worked with when processing in
word mode. Bit number 0 being off indicates
that the word is an operand. Operands can
represent either numeric or logical in-
formation.

2-20. NUMERIC OPERANDS (NUMBERS).
The sign of a numeric quantity is represented
by bit number 1 (figure 2-9). When the bit is
off the quantity is positive; whenthebitis on,
the quantity isnegative. All numeric operands
are expressed in floating point form, where
each numeric operand has both a mantissa
and an exponent. This form may be related
to power of ten notation where 13297. is the
mantissa and -3, the exponent in a repre-
sentation of the number 13.297 (13297. x
10‘3). The mantissa is comprised of 39 bits
which make up 13 octades. The mantissa of
a numeric operand is considered to be an
integer and is treated as such; i.e., the
octal point is considered to be to the right of
the least significant octade. The exponent of
the number is represented by 6 bits (bits 3
through 8) which form two octades. Bit
number two is the sign of the exponent. When
bit 2 is off, the exponent is positive; when on,
negative. The 6 bit exponent field along with
the exponent sign provides for a maximum
positive exponent of +77 in octal (all bits on
in both octades) which is +63 in decimal
(7x81 + 7x80 = 56 + 7=68). The smallest ex-
ponent that could be represented would be
~77 in octal which is -63 decimal,

EXPONENT MANTISSA
- T A A
of3le]9 45
1]4]7 o 46
2]5]8|n 47
[]
[OCTAL
EXPONENT SIGN: ON = —, OFF = + POINT
MANTISSA SIGN: ON = —, OFF = +

FLAG: OFF = OPERAND

Figure 2-9. Numeric Operand

4]2

s [X8 42

4 X slals 2]]...

8lalsla

B X84 D
S

I

B

8+ 2 3 4

Figure 2-8. Character Mode Representation

2-7

2-21. An integer is any number that has an
exponent equal to zero. An integer is ex~
pressed only in the mantissa which contains
13 octades. Thus, the maximum integer is

+7TTTT7777T7777 in octal which is 549,755,
813,887 in decimal. The exponent must be
zero. As an example, the decimal number
12 (14 octal) might be represented in any of
the following forms. All notation is octal.

Exponent
Sign Exponent Mantissa
+ 00 0000000000014 (integer)
- 01 0000000000140
- 02 0000000001400((floating .
. point)
- 13 1400000000000

2-22, LOGICAL OPERANDS. Logical oper-
ands are considered to have one of two
values: true (on) or false (off). Logical
values are a result of Boolean operations

2-8

or relational operations. Relational opera-
tors generate a logical value as a result of
an algebraic comparison of two arithmetic
expressions. Bit number 47 is used to
represent a logical value. Relational opera~
tors set only bit number 47, and conditional
operators use hit 47 for a decision. Boolean
operators consider each bit, from bit 1 to
bit 47, as an individual logical value thereby
operating on the whole word. A logical value
is expressed in the following form (figure
2-10):

Bit 0 off to flag the value as an
operand
Bits 1-46 off
Bit 47 off for false, on for true,
0({3|6]9 45
11417 o | 46
2|15(8(1 47

LOGICAL INDICATION BIT:
ON = TRUE
OFF = FALSE

FLAG: OFF = OPERAND
BITS 1-46: OFF = 0

Figure 2-10. Logical Operand

SECTION

POLISH NOTATION AND STACK

GENERAL

3-1, To facilitate the understanding of the
B 5500 stack concept, a method of notation
(Polish notation) must be understood. A
problem that exists with most forms of
mathematical notation is clarifying the bound-
aries of specific terms. This has heen
eliminated with the use of parentheses,
brackets, and braces. However, with a com~
plex equation, it becomes necessary to dup-
licate the use of the few types of delimiters
that exist. It might be notedthatitis common
to encounter mathematical equations such as
Y = 5Z + 7/2Z and Y = (5Z + 7)/2Z. Two
equations express different functions of Z,
but one could easily be used when the other
was intended. From this it can be seen that
an error in notation can change the whole
problem, because the parentheses have defi-
nite meaning.

3-2, Polish notation is an arithmetical or
logical notational system using only operands

General Rules for Generation
of Polish String

3-4., The source of expression is:
Name
Variable
Operator
-Separator
-Arithmetic or Boolean operator

and last entered delimiter list
symbol was:

a. an operator of lower pri-

ority.
b. a left bracket " " or
paren "(".

and operators arranged in a sequence or
string which eliminates the necessity of
factor boundaries.

POLISH NOTATION

Polish String

3~3. The essential difference between Polish
notation and conventional notation is that
operators are written to the right of a pair
of operands instead of between them. For
example, the conventional B + C would be
written B C + in Polish notation. Looking at
the example, A= 7 (B +C), it could be written
as follows:

BC+7xA-=

Any expression written in Polish notation is
called a Polish string. In order to fully
understand this concept, the rule for evalu~
ating a Polish string should be known.

Action

Place variable in string being built and
examine next symbol.

Place in delimiter list and examine next
symbol.

Place operator in the delimiter list and
examine next source symbol.

3-1

Name

c. a separator,

d. nothing (delimiter list
empty.

-Arithmetic or Boolean operator
and last entered delimiter list
symbol was: an operator of
priority equal to or greater
than the symbol in the source

Rule for Evaluating Polish String

3=5. The rule can be summarized in a few
steps:

a. Scan the string from left to right.

b. Remember the operands and the order
in which they occur.

c. When an operator is encountered do the
following:

1) Take the two operands which are
last in order.

Action

Remove the operator from the delimiter
list and place in the string being built.
Then compare the next symbol in the
delimiter list against the source ex-
pression symbol.

2) Operate upon them according to the
type of operator encountered,

3) Eliminate these two operands from
further consideration.

4) Remember the result of (2) and
consider it as the last operand in
order,

Following this rule through the Polish string
step by step, B C + 7 x A= would result in A
assuming the value 7 (B + C) (figure 3-1).

3-2

Operands Being
Remembered and
Symbol Their Order of
Being Symbol Occurrence (1 or 2) Operation Results of
Step Examined Type Before Operation Taking Place Operation
a B Operand
b C Operand 1B
c + Add 2C B+C (B +0C)
Operator 1B
d 7 Operand 1(B+C)
e X Multiply 27 7x (B +C) 7x (B +0C)
Operator 1(B+C)
f A Operand 17B +C)
g = Replace 2 A A<—T(B + Q) A=7B+C)
Operator 17(B +C)
Figure 3-1. Evaluation of Polish String BC + 7 x A=

3-6. COMPILATION USING POLISH NOTA-
TION. Polish notation is used as the base
for the B 5500 ALGOL compilation algorithm.
An ALGOL arithmetic or Boolean expression
or assignment statement may be translated
to Polish notation in much the same way as
the arithmetic (or algebraic) expression that
already has been considered. In compiler
translation, the source expression is exam-
ined one symbol at a time with a left to right
scan and is combined into logical entities,
As each logical entity is examined, a specific
procedure is followed so thatthe Polish nota-
tion expression is constructed initsfinalized
form with one scan of the source expression.

STACK CONCEPT DESCRIPTION

3-7. When acomputer isutilized, the problem
is expressed in a source language used by
the programmer. Portions of the source
language program will fall into one of two
categories. One will describe the constants
and variables that will be used in the pro-
gram, and the other will be the computational
part.

3-8. When the source program is compiled,
certain constants and variables are assigned
a location within a table. The number of this
location, within the table, is referred to as
an index, In the B 5500, the areawhere these
constants and variables are placed is called
the program reference table (PRT). The
computational part of the source program will
be converted into a machine language string
of instructions. An example of this is the
source language plus sign (+) which will be
directly replaced by the machine language
Add instruction, The machine language
string, resembling a Polish notation string,
will be referred to as the program segment
string and will, as in the case of the PRT, be
assigned an area of memory at running time.
There are four "instructions" (12 bits each)
in each 48 bit program word of the program
segment string. Each "instruction" is called
a syllable.

3-9. The stack is purely a working area and
a temporary storage area used only in word
mode. The stack can be thought of as anal-
ogous to a physical stack where the lastitem
placed on the stack is the top of the stack.
When items are removed (one atatime)from
the stack, the item on the top of the stack is

3-3

the first item to be removed. The item at
the bottom of the stack remains at the bottom
of the stack until all other items have been
removed from the stack, Generally, the stack
will be used as a temporary storage areafor
the constants or variables.

Program Reference Table (PRT)

3-10. Basically, three areas will be associ-
ated with the computational part of every pro-
gram. These are the PRT, which isthe stor-
age area of certain constants and variables;
the program segment string, for the storage
of the actual machine language string of in-
structions that have been generated through
the actions of the compiler program; and the
stack which is used as a temporary storage
area to combine the operands and operators
needed to develop the results of given prob-
lems or source language statements,

3-11. RELATIVE ADDRESSING. When in-
formation within the PRT isto be referenced,
it will be called upon by a method of relative
addressing. The relative address requires
two elements: one element is the address of
the PRT, the other element is the location
number (index) which will be added to the
address., For example, consider data that
has been assigned the forty-second word
location of the PRT. This word would have
an index of +41 counting from 0. Note that
this 41 is not an absolute address, but is
just a position within the PRT. An index of
zero would be the first word of the PRT. At
the time a statement is compiled that refer-
ences the information at +41, the instructions
created by the compiler to reference this
information will have the index of +41 a part
of the instruction. Each time the program is
run, the MCP assigns an absolute core ad-
dress as a base address for the PRT. The
PRT contents are then read into an area
beginning with the address and continuing
with successive words above this base ad-
dress., Therefore, the information in the
forty-second word of the PRT is located
using an absolute address formed by adding
41 to the base address. By storing the PRT
in a different area of memory, the same
information can still be referenced, even
though it has a different absolute address.
Relative addressing is used to access infor-
mation from two areas other than the PRT.

These are the program segment string and
the stack. Relative addressing within the
stack may be both positive and negative with
respect to an absolute base address.

3-12. SIMPLE STACK OPERATION. The
stack is usually used for atemporary storage
or working area., For example, the add
operator (instruction) will add the two top
words of the stack together, delete the top
word, and place the sum in the second word
of the stack. The sum subsequently becomes
the top word of the stack. As in the add
operator, the other operators also manipulate
the stack to achieve their desired functions.
Before further stack discussions can be con-
sidered, the instructions necessary for bring-
ing information to the stack will be discussed
briefly.

Program Segment String Syllables

3-13. OPERAND CALL SYLLABLE. The
program segment string contains specific
types of syllables that place information into
the stack. When data is desired in the stack,
the word of data may be brought to the stack
with an operand call syllable. As mentioned
in relative addressing, this syllable con-
struction will contain an index value to be used
to increment an address. Assume the PRT
will be referenced for the following problem:

It is desired to add together the operands
X andY. Inorder to add these two operands,
X would be brought from the PRT and
placed in the stack and then the same
operation for Y will be completed. The
Polish notation sequence is XY+. The
actual program segment string would ap-
pear as follows (Note the similarity of the
Polish notation sequence to the program
segment string sequence,):

(OPDC = Operand Call syllable)
Operation Sequence

1) OPDC X
2) OPDC Y

3) ADD

Executing this program will leave the sum
of X +Y as the top word in the stack (figure
3-2). Advancing this example further, assume
that at compilation time X was assigned an
index of +32 and Y an index of +45. When the
compiler compiles the expression X + Y,
the resulting machine language will be:

OPDC32 OPDC45 ADD

Except for the conversion of these syllables
to their respective internal octal codes, this
program segment string is shown as it would
appear in the computer.

PRT rp (PROGRAM SEGMENT STRING) rp
L [opoc32]oPDC 45] ADD | [[oPDC32] OPDC 45] ADD |
STACK ! STACK
? X
: ?
45 Y P p
: [Topbc32[OpPDC45] ADD | [[OPDC 32 [OPDC 45] ADD |
: STACK ' STACK
32X Y (EMPTY)
X X+Y

?

?

Figure 3-2. Execution Sequence and Stack Movement of X 4 Y

3-4

3-14. DESCRIPTOR CALL SYLLABLE.
When executed, the Descriptor Call syllable
(DESC) will place in the stack a word con-
taining the absolute address of the referenced
operand. The word generated and placed in
the stack is referred to as a data descriptor.
The absolute address is contained in the
lower 15 bits of the word. For example,
DESC for the previously discussed "X"
would place, in the top of the stack, a data
descriptor containing the absolute address
of "X." The DESC places the address of the
operand in the stack, whereas the Operand
Call syllable places the operand itself in the
stack., In the example Z=<X + Y, a DESC
may be used to reference "Z" since "Z"
receives the value X + Y. A Store syllable
would be executed to store the sum of X +Y
in "Z." Assume that "Z" has an index of
+100, the program could have the following
sequence (the Polish notation string is
ZXY + -):

DESC = Descriptor Call syllable
DESC: 100, OPDC: 32, OPDC: 45, ADD,
EXCHANGE, STORE;

3-15. The Exchange syllable is necessary to
arrange the stack for the proper operation of
the Store syllable. Since the Store syllable
requires the address of ""Z" as the top word
of the stack and the sum of X + Y as the
second word of the stack, they must be ex-
changed prior to executing the Store opera-
tion. The following is a brief discussion
(illustrated in figure 3-3) of the operation of
Z=-X 4+ Y. The first syllable, DESC: 100,
will place the absolute address of Z in the
stack., For example, use a PRT address of
10300. After executing the DESC, the top
word of the stack would be a data descriptor
containing an absolute address of 10400, The
second syllable, OPDC: 32, would place the
value of X (brought from 10332) in the top of
the stack and force the data descriptor into
the second word of the stack. The third
syllable, OPDC: 45, would place the operand
Y on the top of the stack and push the operand
X and the absolute address of Z (data de-
scriptor) down to the second and third words,
respectively, of the stack. The Add syllable
would then add X and Y. The sum now be-
comes the top of the stack, because the Add
syllable deletes the operands X and Y from
the top of the stack and leaves only the sum

3-5

of X and Y. The Exchange syllable will switch
the two top words of the stack, This will
place the sum of X + Y in the second word
and the absolute address of Z in the top word
of the stack.

3~-16. The Store syllable will then place the
second word of the stack in the address
specified by the top word, or inthis example,
the sum of X + Y will be placed in the absolute
address 10400, the location of Z.

3-17. LITERAL SYLLABLE. Another type
of syllable is the Literal syllable. This type
of syllable isused whenever a positive integer
is required having a value less than the dec-
imal value of 1024 and when executed places
the integer in the top of the stack. Within the 12
bits that make up a syllable, two bits are
reserved to identify the type of syllable. The
remaining ten bits could contain a maximum
binary value equivalent to 1023, The remain-
ing ten bits of the Literal syllable will be the
value of the constant, When this syllable is
executed, the ten bits are used to form an
integer operand word as the top word of the
stack.

Stack Area Description

3-18. STACK LOCATION. The MCP allo-
cates, to each operational program, an area
of core memory to be used as a stack. The
lowest addressed location forms the bottom
of the stack, and successively higher memory
locations are used when words are put into
the stack. The first word of the PRT imme-
diately follows the last word (top) of the
stack area,

3-19. STACK REGISTERS (A,B,S). Two
arithmetic registers are associated with the
stack in the B 5500, These are the A and the
B registers. They are the two arithmetic
registers contained by each processor., These
are associated with the stack in such a way
that all information entering or leaving the
stack must go through one or both of these
registers. The A and/or B registers contain
part of the stack only if the information in
the respective register is valid. It is thus
possible for the two top words of the stack
to be in the arithmetic registers A and B, and
for the balance of the stack to be in core
memory. An address register S, containsthe

PRT base = 10300

100| RESERVED (FOR Z)
i—

32 X

;

p

P P
| [pescioofopoc 32Joppc4s] [Joesc 1oo[oppcaz]opoc45] [[pESC 100[OPDC 32[OPDC 45)

DATA DESCRIPTOR STACK STACK STACK
POINTING TO THE DD 10400 X Y
LOCATION 10400, DD 10400 X
DD 10400
rp P rp
[ADDJEXCHANGE] STORE] | [ADDJEXCHANGE]STORE] | [ADD]EXCHANGE[STORE]]
STACK STACK STACK
(EMPTY) DD 10400
X+Y X+Y
DD 10400

PRT base = 10300

100 X+Y
45 Y
32 X

Figure 3-3. Execution Sequence and Stack Movement of Z<-X4Y

address of the top word of the stack that is
in core memory. The S register is counted
up or down as words are added to, or taken
from, the core memory portion of the stack.
When one word is added to the core memory
portion of the stack, the S register is counted
up by 1 prior to storing the word into the
core stack,

3-20. TOP OF STACK. If the A and B
registers do not contain valid information,
then the word addressed by the S register
is the top word in the stack and is referred
to as the "top of the stack." Ifthe A register
does not contain valid information, and the
B register does contain valid information,
then the word in the B register is the top of
the stack. The word addressed by the S

3-6

register is the second word in the stack.
When register A contents are valid and
register B contents are not valid, then the
top of the stack is in A and, again, the
second word of the stack is addressed by
register S, When both A and B registers
contain valid information, then the top of the
stack is in register A; the second word, in
register B; and the third word of the stack
is addressed by register S. These conditions
are listed in table 3-1.

Stack Adjustment

3-21. Whenever a word is transferred from
the A or B registers to the memory portion
of the stack, the S register is counted up one
and the word is stored in the new S register

TABLE 3-1

Arithmetic Registers Relative to
Core Portion of Stack

A Register B Register Top of Stack Second Word of Third Word of
Contents Contents In Stack In Stack In
Valid Valid A register B register Word addressed

by S register
Valid Invalid A register Word addressed Word addressed
by S register by (S-1)
Invalid Valid B register Word addressed Word addressed
by S register by (S-1)
Invalid Invalid Word addressed Word addressed Word addressed
by S register by (S-1) by (S-2)

address. When the word pointed to by S is to
be transferred to the A or B register, the
word is transferred and the S register is
counted down by one to point to the next
valid word in the core memory portion of the
stack, This transfer of words between the
arithmetic registers and the core portion of
the stack is referred to as an adjustment of
the stack. The normal procedure for an ad-
justment of the stack when the arithmetic
registers are to be filled from the core por-
tion of the stack is such that register B is
filled. B is then shifted to A and B is filled
again from the top word inthe core portion of
the stack. S is counted down twice in the
process.

3-22. RELATIVE ADDRESSING IN STACK
(F REGISTER). When an operator is en-
countered that involves two operands, the
stack is adjusted so that A and B both contain
valid information and then the operation is
performed. The result is left in the B regis-
ter, and the A register is left empty. All
operators work with either one word or two
words from the top of the stack. Sometimes
it is desirable to use a word thatis not at the
top of the stack. Under this situation, this
word is accessed from within the stack and
placed in the top of the stack. To permit
this, relative addressing is allowed in the
stack. The base address of a working area of
the stack is contained in an address register
labeled F, This base address is used incon-

3-7

junction with an index to access a word in
the stack.

3-23. STACK IN OPERATION, It must be
realized that all information a program has
to work with must be brought into the sys-
tem before it can be worked upon. An area
of memory must be set aside for both input
and output. Information that is being intro-
duced to the system is brought into the sys-
tem through the input area. Information
leaving the system exits through the output
area. Arrays and tables are used in con-
junction with the storage of certain types of
data. Each of these arrays and tables are
allocated an area in core memory. This lo-
cation is determined by core memory space
available when the area is to be first used.
Thus data is stored in several different areas:
the program reference table, input/output
areas, data tables (arrays), and the stack.
In addition to these, constants will be con-
tained as words or syllables in the program
string. Since all work is done in the arith-
metic registers, all information or data is
transferred to the arithmetic registers and
the stack., Results which are generated must
be transferred from the stack to one of the
preceding areas.

3-24. At this point, an ALGOL assignment
statement and the Polish notation equivalent
will be related to the stack concept of oper-
ation. The example is Z=+Y+ 2x(W+V), where

<« means ""is replaced by.," In terms of a
computer program, this assignment statement
indicates that the value resulting from the
evaluation of the arithmetic expression is to
be stored in the location representing the
variable Z.

3-25. When Z<+Y + 2x(W+V) is translated to
Polish notation, the result is ZY2WV +X+ =,
Each element of the example expression
causes a certain type of syllable to be in-
serted in the machine language program when
the source problem is compiled. The follow-
ing is a detailed description of each element
of the example, the type of syllable compiled,
and the resulting operation (see figure 3-4
and table 3-2), Since "Z" is to be the recip-
ient of a value, the address of "Z'" must be
placed in the stack so that at a later time in
the program the computed value of the
problem may be stored. In order to place an
address in the stack, a DESC is executed on
"z." At compile time Z, W, and V would
have been reserved a location within the
PRT. In the problem, Y is to be added to
a quantity; therefore, Y will have to be
brought to the stack as an operand. This is
accomplished with an Operand Call syllable
on Y. The value 2 is a positive integer with
a value less than 1024, in magnitude. Instead
of reserving a 48-bit word within the PRT for
this quantity, a Literal syllable with the value
2 is compiled. W is to be added to a value
and, therefore, must be brought to the stack
as an operand, V is also an operand and,
therefore, is called to the stack by the Oper-
and Call syllable. The next operator en-
countered in the Polish notation string is the
add symbol. This symbol will cause the com-~
pilation of the add syllable for the add op-
erator. When this operator is executed, it
will cause the value of V to be added to W.
V and W no longer exist in the stack and the
top of the stack contains the sum of V and W,
The next syllable encountered in the Polish
notation string is the multiply symbol. For
this symbol a multiply operator will be com-

piled, and when executed, would multiply the
results of V + W by 2. The "2" and ""sum V
+ W" are deleted from the top of the stack and
the product "(2x(V+W)" is left as the top
word of the stack, The next syllable en-
countered in the Polish notation string is
another add symbol. For this symbol, the
add operated is compiled, and when executed,
would add the results of 2 times "W plus V"
to Y. At this time all necessary arithmetic
symbols have been replaced with their re-
spective operator and, if the program segment
string were executed, the arithmetic result
would be found in the top of the stack. Itisnow
necessary to store the result just generated in
the location of "Z." The store operator will
take the second wordof the stack (B register)
and storeit into the area pointed to by the top
word (data descriptor) of the stack (A regis-
ter)., The configuration of the stack at this
time has the result of the computation in the
top of the stack, while the address that the
result is to be stored in is the second word
of the stack. In order to satisfy the require~
ments of the store operator, these twowords
must be exchanged. The XCH (exchange)
operator is the next syllable in sequence.
After the execution of the Exchange syllable,
it is then possible to store the results of the
arithmetic operations into the area pointed
to by the data descriptor that was placed
into the stack by the descriptor call on "Z."
This is accomplished with the Store syllable,
This completes the compilation of the state-
ment Z<+Y + 2x(W+V). The PRT, PST (pro-
gram segment string) and stack could then be
assigned an area of memory, and the program
run, The PRT would contain reserved lo-
cations for Z, Y, W and V. The PST would
contain the following syllables for the speci-
fied statements:

DESC: Z; OPDC: Y; LITC: 2; OPDC: W;
OPDC: V; +; x; +; XCH; STD

The stack, at completion of the problem,
would be empty.

uoyniadQ }api§ ‘H-g 3inbiy

.,.I%J TOJNL *04ANT OINT "OINI O3NI 04N T04N oaN] "0INT Tl ‘O4NI 3 «N. 1130
snoiATId [S | snolaTud |€—s | snoiaFud SNOTATUd SNOIATId SNOIATId " SNOIATYd SNOIATNd SNOIATUd S | snoiAmud S | snoiATdd
LT+N. TTED
Z-'a‘a le— g Z-'a‘a zZ-'a‘a zZ-'a‘a zZ-‘a‘a Z-'d'd jg—s TN T

X P X X X P Z+N TIED
3 e ¢ z o €+N 1130
PN T1ED
S+N 113D

vy
ADVLS THOD
AITVANI A+M)Z+ Al (A+M)3+ A (A+Mm)g A+ M M 2. A Z-'a‘a AT'TVANI AIvANI HWISION .4,
VANT Zad ArivAND ArIvVANI QT IVANI A M 3 X Z-'a'd arivANI WILSION .V

€ -5 “—-9 ﬂl# Alid Ale €= € —5 € -9 €= 5 € -
/ / / / / / / / / /
/ / / / / / / / / /
/ / / / / / / / / /
/ / / / ! / / / /
/ / / / / / / / /
RIOLS FONYHOX3 + x + A M [A z
*do *do *do *do “do ‘D0 0°0 ‘1 ‘D0 ‘o'a 1Y TIAS
WY¥50ud
rear] 'L -t X AN T X Z ONIILS NOLLYION HSITOd
ren-puesado ‘D'0 A+ MW X 3 P
1en- soiduosaqg 5 a

INIWILY LS 1091V
S3dAL IV TIAS

3-9

TABLE 3-2

Description for Example of Stack Generation

Polish
Execution Notation Syllable Type
Sequence Element Compiled
%‘——— —_——
1 zZ Descriptor Call for Z
2 Y Operand Call for Y
3 2 Literal with Value
of 2
4 W Operand Call for W
5 \% Operand Call for v
6 + Operator - ADD
7 X Operator - MULTIPLY
8 + Operator - ADD
9 - Operator - EXCHANGE
Operator - STORE

Function of Syllable
During Running of Program

Place the address of Zin the top of
the stack and push down the stack.

Place the value of Y in the top of the
stack and push down the stack.

Place a 2 in the top of the stack and
push down the stack.

Place the value of Win the top of the
stack and push down the stack,

Place the value of Vin the top of the
stack and push down the stack,

Add the two top words in the stack
and place the result in the B register
as the top of the stack.

Multiply the top of the stack by the
second word of the stack (A register
contents multiplied by B register
contents). Place the result in the B
register as the top of the stack.

Add the two top words in the stack
and place the result in the B register
as the top of the stack.

Since the store operators store the
second word of the stack in the lo-
cation specified by the top of the
stack, the data descriptor and the
result must be interchanged before
storing. The store operator causes
the second word in the stack to be
stored in the location specified by the
top of the stack.

SECTION

MAJOR REGISTERS AND CONTROL

FLIP FLOPS

GENERAL

4-1. Some of the basic concepts of the B 5500
Information Processing System have been
introduced. Each of the major units of the
B 5500 are presented along with the actual
registers and control flip flops that are in-
cluded in the units., These registers and flip
flops are explained in terms of their major
usage within the system. If a system hastwo
processors, the circuitry of the second pro-
cessor is a duplicate of the first processor.
In addition to being displayed on various units,
a flip flop indicator may be set or reset.
Each flip flop indicator is a manual push
button; the setting is changed merely by
pushing. The display panel also contains
switches for maintenance purposes.

PROCESSOR

Registers and Flip Flops

4-2. A REGISTER. The A register is a 48-
bit information register that holds one com-
plete word of information. In word mode,
the A register may contain the top word of
the stack and is one of the arithmetic regis-~
ters. In character mode, the A register con-
tains one word (8 characters) of a source
string of information,

4-3., B REGISTER. The B register is a 48-
bit information register which holds one com-
plete word of information. In word mode,
the B register may contain either the top
word or the second word of the stack. In the
word mode, the B register is the other
arithmetic register (the A register is the
first arithmetic register). Incharacter mode,
the B register contains one word (8 char-
acters) of a destination string of informa-
tion. '

4-1

4-4, AROF. This is a control flip flop used
to indicate the validity of the information in
the A register. If AROF is on, the A register
contains valid information. This means that
the A register is the top of the stack.

4-5, BROF. This is a control flip flop used
to indicate the validity of the information in
the B register, If BROF is on, the B register
contains valid information. It therefore may
be either the top or the second word in the
stack.

4-6. Y REGISTER. The Y register is a 6-
bit register that is part of the serial adder,
The bits of the Y register are labeled as B,
A, 8, 4, 2, and 1. The Y register contains
one character that is shifted to it from the A
register.

4-7, Z REGISTER. The Z register is a 6-
bit register and is part of the serial adder,
The bits of the Z register are labeled as B,
A, 8, 4, 2, and 1, The Z register contains
one character that is shifted to it from the B
register. The output of the serial adder is
placed in the Z register before shifting the
result back to the B register.

4-8. G REGISTER. The G register is a 3-
bit register that indicates a source string
character position in the A register. The G
register counts from 0 to 7, and when equal
to 0, it indicates the most significant charac-
ter position,

4-9. K REGISTER. The K register is a 3-
bit register that indicates adestination string
character position in the B register, The K
register counts from 0 to 7. When at 0 it
indicates the most significant character po-
sition.

4-10. H REGISTER. The H register is a 3-
bit register that is used to indicate the
particular bit of the character selected by the
G register. The H register counts from 0
through 5 and back to 0, When the H register
contains a 0, it indicates the B bit of the

selected character (character bits being des-

ignated as B-0, A-1, 8-2, 4-3, 2-4, 1-5).

4-11, V REGISTER. The V register is a 3-
bit register that is used to indicate a particu-
lar bit of the character selected by the K
register. The V register counts from 0
through 5 and back to 0, When the V register
contains a 0, it indicates the B bit (of B, A,
8, 4, 2, and 1) of the selected character which
is in the B register,

4-12, N REGISTER. The N register is a 4-
bit counter which is used to record the octal
shifts performed on the contents of the B
register. When the contents of the B register
are shifted to the left, the N register is
counted up; when the contents of the B register
are shifted to the right, the N register is
counted down. The N register counts from 0
to 15 and back to 0. It is 0 when the contents
of the B register are in the normal unshifted
position,

4-13. X REGISTER. The X register is a 39-
bit information register which is used as an
extension of the B register mantissa in some
of the word mode arithmetic operations. This
extension allows for an additional accuracy
of approximately twelve decimal digits, When
in character mode, the X register is used to
contain a loop control word. A loop control
word contains information about the return
point, the number of times to be repeated,
repeat count, etc.

4-14. M REGISTER. The M registerisal5-
bit address register thatisused inword mode
for all relative address accessing of informa-
tion. During word mode arithmetic opera-
tion, fields of the M register are used as high
order extensions of the A and B register
mantissas and exponents and as several con-
trol counters., In character mode, the M
register contains the address of the source
string word being processed, and is used to
access the source string words.

4-15. S REGISTER. The S register is a 15-
bit address register that is used in word
mode to address the top word in the core
portion of the stack. In character mode, the
S register is used to address and access the
destination string words.

4-16. R REGISTER. The R register is a 9-
bit register that isusedto contain the address
of the base of the program reference table.
The 9 bits are used as the high order bits of
a 15-bit address, theloworder 6 being 0. The
R register is not used to access memory.
Its contents are shifted to the M register and
added to the index for ''relative addressing."
During character mode, the sixlow order bits
of the R register form the Tally register.

4-17. F REGISTER. The F register is al5-
bit address register that contains the address
of the last return control word or mark stack
control word (MSCW) that has been placed in
the stack. In character mode, the F register
always contains the address of a return con-
trol word (RCW) so that control may be re-
turned to word mode,

4-18, E REGISTER. The E register is a 6-
bit register that is used for memory access
control, Individual bits determine whether to
read a word out of core memory or to write
a word into core memory, which address
register to use, and the destination or source
register (A register, B register, Mregister,
S register, or P register).

4-19. P REGISTER. The P register is a48-
bit register that contains the current program
word of the program string segment. Each
program word is comprised of four 12-bit
program syllables which are numbered 0,
1, 2, and 3.

4-20. T REGISTER. The T register is al2-
bit register that contains the program syllable
currently being executed.

4-21. C REGISTER. The C register is al5-
bit address register thatcontains the address
of the program word that is contained in the
P register.

4-22, L REGISTER. The L register is a 2-
bit register that selects the syllables from
the program word in the P register. The L

register counts from 0 to 3 and back to 0.
It may point to the syllable that is presently
in the T register or as is the usual case, to
the next syllable to be executed.

4~-23, TROF. This is a control flip flopused
to indicate that the T register contains a
valid syllable., It permits execution of the
syllable. When TROF is off, anew syllable is
required in the T register.

4-24. PROF. This is a control flip flopused
as a part of the control for shifting a syllable
from the P register tothe T register in order
to be executed.

4-25, NCSF. This isthe normal control state
flip flop. When it is on, it indicates that the
processor is operating in normal state,

4-26. SALF. This isa sub-program level flip
flop. When it is on, it indicates that the pro-
cessor is in the sub-program level of oper-
ation,

4-27. CWMF. This is the character-word
mode flip flop. When it ison, itindicates that
the processor isoperating in character mode.

4-28, HLTF. This is the halt flipflop, which
is used to stop clock pulses to the processor
for maintenance purposes. It is not used
during normal processing.

4-29, MSFF (TFFF OR Q12F), The mark
stack flip flop, the true-false flip flop, and
Q12F are all the same flip flop. In word
mode, it is the mark stack flip flop. When it
is on, it indicates that the last control word
placed in the stack was a mark stack control
word. It is turned off whena RCW is placed in
the stack. In character mode, the flip flop is
called the true-false flip flop (TFFF). When
the TFFF is on, it indicates that the result of
the last conditional test was true,

4-30. Q REGISTER. The Q resister isactu-
ally a number of logical flip flops that are
used to control some of the processor opera-
tions., As noted above, the MSFF is one of the
Q register flip flops.

4-31, I REGISTER. The I register is com-
posed of 7 bits. The bits are numbered 1, 2,
3, and 5 through 8. The first three bits are
set individually as the result of a specified
interrupt condition, The last four (5 through
8) are set to a specific combination as the
result of other interrupt conditions. If any
of these bits are set while operating in nor-
mal state, the processor generates control
words using the information in specific regis~
ters and then enters control state, This
operation will be performed automatically at
the end of the execution of the program syllable
in the T register,

4-32. J REGISTER. The J register is a 4-
bit counter that is used for primary logical
control during the execution of eachsyllable,

4-33. MEMORY ACCESS CONTROL FLIP
FLOPS (MROF, MRAF, MWOF). There are
three flip flops in each processor that are
used within the processor for memory timing
purposes. MROF (memory read obtained
flip flop) is set to the on status to indicate
that information has been obtained during the
core memory read cycle, MRAF (memory
read access flip flop) is settothe on status to
indicate that a program word has been obtain~
ed when accessing a new program word to be
shifted to the P register. MWOF (memory
write obtained flip flop) is used to indicate
that a word has been written in core memory
during a memory write operation.

4-34. REGISTER DISPLAY. The display for
all processor registers is in the display and
distribution unit. All of the registers and
control switches for each processor are on
one panel, Figure 4-1 shows this panel lay-
out. Each indicator light on the display panel
contains a switch so that flip flops may be
manually set or reset. There is a REG
CLEAR switch to clear the entire register,
In addition to the register display, there are
a number of control switches for maintenance
purposes,

Program Syllable Access

4-35. Four registers and two flip flops are
associated with the access and execution of
program syllables, These are the C, L, P,

and T registers, and the TROF and PROF
flip flops. The P register holds 4 syllables.
One syllable at a time is transferred to the
T register for execution. The L register con-
tains the syllable number, within the program
word, of the next syllable tobe transferredto
the T register, It holds this number until the
syllable is transferred to the T register and
execution of the syllable is started. After
execution of the syllable is started, the L
register is counted up by one, When the last
syllable word istransferred to the T register,
the L register has been counted up to 0. At
this time the C register is counted up by one
and a new program word is brought into the
P register. The C register contains the
address of the program word. TROF and
PROF control the counting of the L andthe C
registers and the transfer of the next syllable
to the T register.

Information Access

4-36. Two registers are used to contain an
address for access to core memory for in-
formation. These are the S and M registers.
When an access is obtained, the information
is shifted to or from the core memory module
for either the A or B register. If the infor-
mation is read from memory, thenitis shifted
to either the A, B, or in a special case, the
M register., When the M register is used to
receive information, only bits 18 through 32
of the word are used.

4-37. E REGISTER. The E register of the
processor is used whenever a memory
access is needed. For information, only
the four low-order bits of the E register
will be used. The coding for the usage is
as follows:

E set to 2 Use the contents of the Sregis-
ter for the address of a core
memory read access. When
the word is obtained, place it

in the A register.

E set to 3 Use the contents of the Sregis-
ter for the address of a core
memory read access. When
the word is obtained, place it

in the B register,

4.4

E set to 4 Use the contents of the M reg-
ister for the address of acore
memory read access. When
the word is obtained, place it
in the A register.
E setto 5 Use the contents of the M reg-
ister for the address of acore
memory read access., When
the word is obtained, place it
in the B register,
E setto 6 Use the contents of the Mreg-
ister for the address of acore
memory read access. When
the word is obtained, place the
bits, 18 through 32, of the word
into the M register.

4
E set to 10 Use the contents of the S reg-
ister for the address of acore
memory write access. Store
the word in the A register in
the address specified,
E set to 11 Use the contents of the S reg-
ister for the address of acore
memory write access. Store
the word in the B register in
the address specified.

E set to 12 Use the contents of the M reg-
ister for the address of acore
memory write access. Store
the word in the A register in
the address specified.

E set to 13 Use the contents of the M reg-
ister for the address of a core
memory write access. Store
the word in the B register in
the address specified.

Processor Interrupt

4-38. 1 REGISTER. The interrupt register (or
I register) of each processor contains 7 bits.
Three of these represent specific interrupt
conditions. These three conditions have sep-
arate flip flops because they may all occur at
the same time. The other 4 bits are coded,
and only one interrupt may be present at any
one time. The interrupt condition and the
bits that they set are as follows:

;' ® 06 - 6 O-

L

|

ooco [ooo [ooo [ooo

coo |ooo |ooo |oooO
°|—ooo gooo iooo0 fooo fooo
fboo 000 00O [00O [0OO
000 (000 [000 [000 [000
(01030 §0-0- 0-0-0-0- [08 o [
0-0-0-70-0: 0-0-0-0-[00 O |O-
0-0-0- £0-0-0-0-30 0 0 ,O- |
£0.0-0-{0-0-0-f0-0-0-700 0 ®0- L
03030:¢0-0-0-{0-0-0- [0 0 O |0: [
010:0: Ot O |;0§oo IS
o:0:i[ooo-[ooo-[ooo 7
[0.0:0 [006-[006-[cco & L
10- 000-|000-|000 Of
0oo0-|0oo0-[000-|000
©00-10001000 1000 ’ i
000-|000-|000-|00O0 [0-0¢
©00-{000-|000- 1800 |olot
00 0-§000-§4000-300 0 olol
©00-7000-1000-1000 |0 0~
iooo0-[000-[000-looo g | &
000-|000-|000:|000 |0-0L
000-|000:|{000:|000 O{OI—
©000:/000:|000:{000 |0:0}
©00:{0006-[0006:|000 |010}
000:{000:|000-|{00O0
0o0o0:[000-|000-[o00 @O

4.5

EXIT

INTERRUPT NORMALIZED J COUNT

OPERATOR CLOCK

99 © 0 O

9 @ ¢ 9@

L]
4

LOCK uP

©

UNIT CLEAR

Figure 4-1. Processor Display Panel

T-PL] STORE IN/OUT

IROF
INTERRUPT 42 BIT ADD

ARCF
A REG

b

KEYEN

Q990 00 0909

L

® 0 ©

REPEAT FIELD G&M

101 ON

102 ON

103 ON

Memory parity error. This indicates that a parity error has occurred as
a result of a processor memory access. The word in error will be in either
the A, B, or P register. Thisinterruptcan be set while in normal or control
state. If this interrupt occurs on the processor that is designated as number
1, while it is operating in a control state, clock pulses to the processor will
be inhibited and the processor will idle.

Invalid address. This interrupt is set as aresult of the processor attempting
to access a nonexistent core memory location; or while operating in normal
state, when the C, S, or M registers are addressing the first 1000 (octal)
words of a core memory area. The latter case is to protect the MCP area
of memory from destruction by an object program,

Stack overflow. This interrupt may be set only while operating in normal
state and indicates that the program stack has exceed its allocated size.
Since the stack is located directly below the program reference table, this
condition is sensed when the three high-order octades of the S register
are equal to the R register.

The following interrupts may only be set while operating in normal state unless otherwise
indicated by the syllable causing the interrupt.

105

OFF

ON

OFF

ON

OFF

ON

106

'OFF

OFF

ON

ON

OFF

OFF

o7 108

ON OFF Communication operator. This interrupt is set by a

communication operator and is used to prove a means
of entry to the MCP.

ON OFF Program release. This interrupt is used to signal the

MCP that an input/output area is free to be filled or
emptied by an input/output operation.

ON OFF Continuity bit. This interrupt is used where I/O de-

scriptors indicate that multiple input/output areas are
linked by multiple I/O descriptors. The I/O descriptors
must be rotated and an I/O operation initiated.

ON OFF Presence bit. This indicates that the information as-

sociated with a descriptor is not present in core memory.
The information must be brought into core memory
before processing can continue.

OFF ON Flag bit. This interrupt indicates that an Operand

Call syllable (OPDC) accessed a descriptor. This is
an error condition.

OFF ON Invalid index. This interrupt indicates that an index is

larger than the size field of the descriptoror is negative.
This is an error condition,

5 106 17 108
OFF ON OFF ON
ON ON OFF ON
OFF OFF ON ON
ON OFF ON ON

Exponent underflow, This interrupt indicates that an
arithmetic operation has resulted in an exponent which
is less than -77 (octal). This is an error condition.

Exponent overflow. This interrupt indicates that an
arithmetic operation has resulted in an exponent which
is greater than +77 (octal). Thisisanerror condition.

Integer overflow. This interrupt indicates that a
numeric value, which should be stored integer, cannot
be made into an integer. This is an error condition.

Divide by zero. This interrupt indicates that a divide
operation was attempted with adivisor equal to 0 in the

A register. This is an error condition.

Description of Interrupt Control

4-39. DETECTING AND PROCESSING. The
interrupt control section of central control
provides a central point for system inter-
rupts. The interrupts are sensed and sent
into a priority area where the interrupt ad-
dress register (IAR) is set to a predeter~
mined value for this particular interrupt.
When processor 1 is in normal state and
completes the execution of an operator,
automatic interrupt detection takes place.
If an interrupt exists, processor 1 will store
its registers into control words and proceed
to process the interrupt, When processor 1
interrogates the interrupt, the contents of the
IAR are transferred to the C register. Pro-
cessor 1 will thenaccess memory to obtain an
MCP routine for processing the interrupt, If
several interrupts exist, as soon as processor
1 reads the present setting of the IAR, the
IAR will be set to the address of the next
priority interrupt. These interrupts are pro-
cessed independently until all of them are
processed, before processor 1 can return to
normal state,

4-40. CATEGORIES, Interrupts are of three
categories:

1. External interrupts - these include I/O
units finished, time clock, etc.

2. Processorl ‘interrup’cs- froin processor
1 computing operations.

3. Processor 2 interrupts - from processor
2 computing operations.

4-41. PRIORITIES. Priority of interrupts are
broken into 6 major categories, and are listed
in priority sequence,.

1. Processor 1 memory errors.

. External interrupts.

Processor 1 stack errors,

. Processor 1 syllable interrupts.

. Processor 2, memory or stack errors.

CDU‘IHA.OD[\D

. Processor 2 syllable interrupts.

4-42, Tt is the duty of the interrupt control
section to detect interrupts and to set address
location number, Each address location num-
ber is set one at a time according to a
priority scale and is stored into the interrupt
address register.

4-43. Once an interrupt condition develops
somewhere in the system, it transmits an
interrupt signal to the interruptcontrol area.
Each interrupt signal is geperated by a flip
flop. External interrupt flip flops are located
in the central control frame, The processor
interrupt flip flops are located in the pro-
cessor unit, and are cabled to the interrupt
area in central control.

4-44. EXTERNAL INTERRUPT FLIP FLOPS.
There are 14 interrupt flip flops contained
in the central control unit. These interrupts
are set for various system interrupt con-
ditions other than processor interrupts and
are displayed on the central control display
panel (figure 4-2). The external interrupt
flip flops are:

‘l CLOCK MODE INH
DC LOCKOUT |_ DOUBLE CCl03F PBIL

c 7 -9 B
@ @ DC ON SINGLE PAIL
@ DC ON START CLCCH
ll CL2F
® @ MASTER CLEAR HALT LOAD
I——CLEAR-—l
® @ ® O o
CL1F
CONTROL CROSS-
} rower off BIT RESET L cRoss
o
O O O O @) MCYF
ADiF CCIo8F CCI05F CQI03F 1ASF
O O @) O O PAXE
AD2F CCIO%F CCI06F TMOF 1A6F
O O O O O PBXF
AD3F CCNOF CCIO7F TMSF 1A5F
O O @) O O nXF
AD4F CCNIF CCN3F TM4F 1A 4F
O O O O O 12XF
CCI04F CMTF CCiraF TM3F IA3F
O O O O I3XF

a
[a}
o
B
-
~
>
@
a
[a]
&
%
—
2
o
5
>
o
R

14XF

,_
=3
£
4
I
e
N
R
o
o
s
%
o
3z
=
>
=

Figure 4-2. Central Control Display Panel

CCIO3F ON Time Interval. This interrupt CCIO4F ON I/0 busy. Thisinterruptis set
is set once each 64/60 (1.07) when an input/output operation
seconds when the real time is attempted and all available
clock counts through 63 to 0. I/0 control units are busy.
When the interrupt is pro-
cessed, the MCP will add the

64/60 seconds to the system CCI0O5F ON Keyboard request. This is set

elapsed time of each program
that is in the MIX. (Bits TM1F
through TM6F constitute the
real time clock.) CCIO3F is
also used as the most signifi-
cant bit of the real time clock.

as a result of the system op-
erator pressing the KEY-
BOARD REQUEST button on
the keyboard. It notifies the
MCP that the operator wants to
communicate with the system.

CCIOBF ON

CCIO7F ON

CCIOBF ON

CCIO9F ON

CCI10F ON

CCI11F ON

CCI12F ON

As a result, the keyboard input
will he accepted hy the MCP.

Printer 1 finished. This in-
terrupt denotes that the line
printer unit 1 has completed
the print cycle. Since the
printer contains a buffer for
a complete line of print, an
I/O control unit finished in-
terrupt occurs as soon as the
buffer is filled. When the
print cycle is completed, a
printer finished interrupt oc-
curs to signal the MCP that
the unit is free.

Printer 2 finished. This in-
terrupt is the same as printer
1 finished except that it is for
print 2,

1/0 1 finished. This interrupt
notifies the MCP that an I/O
operation has been completed
(including storing the result
descriptor in core memory)
and that the I/O unit is free.
I/O control unit 1 stores the
result descriptor in cell 14
(octal).

1/0 2 finished. This interrupt
is the same as I/O 1 finished
except that I/O control unit 2
stores the resultdescriptor in
cell 15 (octal),

I/0 3 finished. This interrupt
is the same as I/O 1 finished
except that I/O control unit 3
stores the resultdescriptor in
cell 16 (octal).

I/0O 4 finished. This interrupt
is the same as I/O 1 finished
except that I/O control unit 4
stores the resultdescriptor in
cell 17 (octal),

Processor 2 busy. This in-
terrupt is set when an attempt
is made to initiate processor
2, and processor 2 is either
busy or not available,

4-9

CCI13F ON Inquiry request. This inter-
rupt is set for the inquiry
interrupt level. It notifies the
MCP that a remote inquiry

request is desired.

CCI14F ON Special interrupt 1. Not as-

signed.

Disk file read check finished~
disk file control unit 1. This
interrupt indicates that the
initiated read check operation
has now been completed,

Disk file read check finished-
disk file control unit 2, This
interrupt is the same as disk
file read check finished - disk
file control unit 1 except that
the control unit is 2,

4-45. INTERRUPT ADDRESS REGISTER.
IAIF through IA6F forms the interrupt ad-
dress register. When an interrogate inter-
rupt operator is executed by processor 1 (in
control state), the interrupt address register
is set to a specific address, that of the high-
est priority interrupt, Thisaddressisplaced
in the C register of processor 1 and contains
the syllables to branch to the handling routine
of the MCP. The interrupt bit, whose gener-
ated address had been set into the interrupt
address register, is reset when the address
is transferred to the C register. In memory
module 0, the addresses 20 through 75 (octal)
are reserved for the words (interrupt control
words) containing MCP branch operators to
branch to the proper handling routine (figure
4-3).

4-46. REAL TIME CLOCK. The real time
clock consists of 6 flip-flops forming a bina-
ry counter that is pulled up by one every 1/60th
of a second. The flip-flops are labeled as
TML1F to TM6F. When the counter overflows
(counts past 63 to 0) the time interval inter-
rupt (CCIO3F) is set. CCIO3F is used as the
most significant digit of the real time clock.

4-47. HALT PROCESSOR 2 FLIP FLOP.
When processor 1 executes ahalt P2 operator
while operating control state, halt processor
2 flip flop (HP2F) is set. Processor 2 will
store its registers just as if a processor 2
dependent interrupt had occurred. Processor
2 will then idle. Processor 2 busy flip flops
(P2BF) is onwhen processor 2is in operation.

CCI15F ON

CCI16F ON

ILLUSTRATION OF THE APPROPRIATE
ADDRESS REGISTER SETTING FOR A
CENTRAL CONTROL INTERRUPT IN
ORDER OF DESCENDING PRIORITY

Abbrev. Name

Pk IOIF P1 Memory parity error

Pk 102F P1 invalid address

CC 103F Time interval

104F 1/0 busy.
105F Keyboard request

108F 1/0 1 finished

109F 1/0 2 finished

110F 1/0 3 finished

111F 1/0 4 finished

106F Printer 1 finished

107F Printer 2 finished

112F P2 busy

I13F Inquiry request

114F Special Interrupt 1

I15F Disk File Read Check Finished 1

Pk 103F P1 stack overflow

Continuity bit

Pk 105F Presence bit

Pk 106F Flag bit

Pk I07F |44|) Invalid index
Pk 108F |48| / Exponent underflow.

Exponent overflow
Integer overflow.

Divide by zero

Pk I01F P2 memory parity error
102F P2 invalid address

103F P2 stack overflow

Continuity bit

Pk I05F Presence bit
Pk 106F Flag bit

Pk I07F Invalid index
Pk 108F 8| / Exponent underflow

Exponent overflow.
Integer overflow.

i N 3] <+ w ©
~ o [e
SRR EIREIRE:
ZIIEE] 2] &l |8
J— E
==
h | ——
=
J—
—
116F Disk File Read Check Finished 2t :
j— u
P1 SYLLABLE INTERRUPTS
Communication operator
Program release operator. m
p— _—
P2 SYLLABLE INTERRUPTS
Communication operator
Program release operator S —
S : —
4_ e
o
I S

Divide by zero

~ |3
g E |8 s
EREEE
S8 | E R
48 60
49 61
18 22
19 23
20 24
23 | 27
24 | 30
25 | 81
26 | 32
21 25
29 26
27 33
28 34
29 35
30 36
31 37
50 62
52 64
53 65
54 66
55 67
56 70
57 71
58 72
59 73
60 74
61 75
39 40
53 41
34 42
36 | ¢4
37 45
38 46
39 47
40 50
41 51
49 52
49 53
44 54
45 55

Figure 4-3. Interrupt Priority and Addressing

4-10

4-48, COMMENCE TIMING AND LOAD FLIP
FLOPS. CMTF (commence timing flip flop)
is used to initiate processor 2 or an I/O
operation. LOFF (load flip flop) is set when
the LOAD button on the console is pressed.
LOFF is used to initiate the load operation
which causes a portion of the MCP to be
loaded into core memory, Thisloading starts
initial operation after the system power has
been down or after the HALT button on the
console has been pressed.

CORE MEMORY MODULE REGISTER

4-49, Each core memory module of the B 5500
contains 4096 words of information. Each of
these words contains 48 information bits and
one parity bit. Odd parity is usedand the de-
tection of parity errors is accomplished in the
individual memory modules. The generation
of the odd parity is accomplished when the
information is stored in the memory module.
In order to address 4096 words, the memory
address register (MAR) must contain 12 bits
reflecting binary code. The information reg-
ister in the core memory module is called
the memory information register (MIR) and
contains 49 bits.

A}
I/0 CONTROL UNIT REGISTERS AND
FLIP FLOPS

Registers and Flip Flops

4-50. As mentioned previously, the I/O con-
trol unit contains a one word buffer that is
used for input/output operations of the B
5500, Transfer of information between core
memory and an I/O control unit is accom-
plished by a parallel transfer of all 48 bits of
a word at one time, The information trans-
ferred to or from the peripheral unit is
accomplished by a transfer of 6 hits (one
character) at a time. Thus, the I/O control
unit serves as a buffer between the two
transfer areas.

4-51, W REGISTER. The W register in the
I/O control unit is a 48-bit register which
contains one word. The word is transferred
to or received from the peripheral unit as
6-bit characters. On the display panel, the
register is shown as being splitin the middle,
The high-order 24 bits are on top, and the

4-11

low order 24 bits are on the bottom. This is
shown in figure 4-4,

4-52, D REGISTER. The D register is used
for control purposes. This is a 42-bitregis-
ter whose bits are labeled as DO1F through
D45F, There are no flip flops for positions
23, 28 and 29. When an I/O descriptor is
brought into the I/O control unit, it is first
placed in the W register and then trans-
ferred to the D register. The D register
has the same general format as the 1/0
descriptor, The bits that are missing from
the D register are not used by theI/O control
unit. The fields of the D register are as
follows (the bit numbering corresponds to
the etching on the I/0 display panel):

Bits 45
through 41

Peripheral unit designation.

Bits 40
through 31

This is the word count field,
If the operation is to read or
write an integral number of
words, then the word count
field is used to terminate the
transfer of information to or
from core memory.

Bit 30 Memory inhibit bit. This bit
is on for operations that do not
require core memory com-

munication for information,

Bit 27 Binary/Alpha bit. When bit 27
is on, the information is con-
sidered to be in binary form
and an integral number of
words are read or written,
When bit 27 is off, the infor-
mation is considered to be in
alphanumeric form. The in-
formation may or may not be
an integral number of words,

Bit 26 Magnetic tape direction bit.
This bit is used in connection
with magnetic tape operation
and specifies the direction of
tape movement, Off indicates
forward motion and on indi-

cates backward motion.

-
O 00O OO0 03 ¢«
=
O 00O O O O Of .
O OO0 0 O O=
© O 0 O O O O
[“ "
O O 00 O 0:| 0%
O O 00 O 0| 0§03}
O O 0:0 O 0§ 0§0%§
4
w s : :0 3
EO O 030 O O 0§0j]
2 . | o357
O O O30 O 0%l 0§03
3 .
O O 030 O 0%l 0i0}
O O 0:0 O O:l0f0}
| © O 030 O O§| O30}
/\}I\!il\ll‘\’\l’)\\(\\)l\l‘r
e — S —————— T S —
® ®
®
O O

o

EMORY ADDRESS
O O O

SULT
O

oo

[WORD COUNT CONTROL RE
o O O_l a CTl -

r—UNIT
O

-

oo o 0O O
o O O O

o O
c o O O O

O

D27F

i

o OO O O
olo o o O O

D40F D37F D34F D 31F D30F D24F D22F DI19F D16 F DI13F DIOF DO7 F DO4F DOIF

D43 F

TEST.

| o O

1,14

o!

VRCF

MAG TAPE
O

1

PCC
o o O O O O

[

O

REMF ERR STOP KEY MEM RECYC

o o o o o O O 0 O

LPWF

® 9 0

©)

LPBF LPAF LP3F LPAF LP2F LPIF PUCF SHOF

LPPF

0

MEM INH MEM CYC

9.®

@ ©

LOCAL
REMOTE

IMIF

c O
o O

(@ -
© 3
EE

CLEAR

Figure 4-4. 1/0 Display Panel

4-12

Bit 25 Word counter bit. This bit is
used for operations that may
be either by word or by char-
acter. In these operations, if
the operation is by word, then
bit 25 is on; otherwise, it is
off, It should be on if bit 27 is

on.

Bit 24 Input/output bit. When this bit
is on, the operation is aninput
operation, and when off, an
output operation,

Bits 22 These bits are used for the

through16 error field of the result de-
scriptor and as logical flip
flops.

Bits 15 These bits contain the core

through1l memory address. Whenever

a memory access isrequired,
the address is shifted through
the memory exchange in the
central control unit to the
memory module.

4-53. In addition to the W and D registers,
the I/O control unit contains the following
registers and flip flops.

4-54. CHARACTER COUNTER. The char-
acter counter, labeled CC, contains three
flip flops which are CC1F, CC2F, and CC4F.
Which character is to be read into or out of
the W register is indicated by the character
counter, Character 0 is the most significant
character position of the W register.

4-55. INPUT BUFFER REGISTER. The input
buffer register, IB, contains 7 bits. The bits
are labeled as IB1F, IB2F, IB4F, IB8F, IBAF,
IBBF, and IBPF. The IBPF is the parity bit.
Information in the IB register is encoded and
set into the W register character position
specified by the character counter CC. The
IB register is set from the tape information
read register, or is read into from any input
device other than magnetic tape.

4-56. TAPE INFORMATION READ BUFFER
REGISTER. The tape information read reg-
ister, IR, contains 7 bits labeled as IR1F
through IRPF. One character plus a parity
bit can be contained in the IR register. This

4-13

register is set from information read from
magnetic tape units. The output of the IR
register is shifted to the IB register. The
basic function of this register is to provide
temporary storage for incoming tape infor-
mation. This is necessary to insure proper
timing,

4-57. OUTPUT BUFFER REGISTER. The
output buffer register, OB, contains 6 bits
labeled OB1F through OBBF. The register
contains one character and the parity level
is generated according to D27F. Information
is placed in the output buffer register from
the character position of the W register that
is specified by the character counter. The out-
put of the OB register is sent to peripheral
units, other than magnetic tape units, or is
shifted to the tape write buffer. Information
is decoded between the W register and the OB
register.

4-58. TAPE INFORMATION WRITE BUFFER
REGISTER. The tape write buffer register,
WB, contains 7 bits labeled WB1F through
WBPF. The register holds one character plus
a parity bit. Information is set into the WB
register from the output buffer, and the out-
put of the WB register is senttothe magnetic
tape unit by way of the I/O exchange in central
control. The function of this register is to
provide for a temporary storage for tape in-
formation to insure proper timing.

4-59. LONGITUDINAL PARITY REGISTER.
The longitudinal parity register, LP, con-
tains 7 bits labeled LP1F through LPPF.
This register contains one character plus a
parity bit. When information is shifted from
the input buffer to the W register, those bits
of LP are used to generate a longitudinal
parity character; it is also used for tempo-
rary storage.

4-60. SEQUENCE COUNTER. The sequence
counter, SC, is used for primary logic con-
trol. Four bits are included in the register:
SC8F, SC4F, SC2F, and SC1F. The sequence
counter may be counted up in binary form or
may be set to a particular count,

4-61, PULSE COUNTER. The pulse counter,
PC, is used for timing purposes., This coun-
ter includes 6 bits labeled PC1F through
PC6F. The pulse counter is counted at a one
megacycle rate, A specific pulse count is
then used for logical timing purposes.

4-62. LOGICAL CONTROL FLIP FLOPS. The
rest of the flip flops of the I/O control unit
are used for logical control of various op-
erations. Grouping on the display panel is by
major usage. Each indicator on the display
panel is also a switch so thattheflip flop can
be manually set or reset. The display panel
includes controls for maintenance purposes.

\
Information Flow

4-63. As previously stated, the W register is
the information register used for memory
communication in conjunction with the D
register. The 15 low-order bits of the D
register are used for memory addressing.
Two words enter the D register. Onewordis
the address of the I/O descriptor, and the
other word is the I/Odescriptor itself, These
words are brought into the W register and
then transferred to the D register (figure
4-5).

4-64, INPUT INFORMATION FLOW. When
magnetic tape is used, information is read
into the tape Information Read register. At
the time the information is sent from IR to
1B, the complete character should be in IR.
All other peripheral units are read into the
IB register. Information in the IB register
is decoded and sent to the W register char-
acter position which is specified by the
character counter. When a complete word
is built up in the W register, the W regis-
ter contents are stored in core memory and
a new word is started.

4-65. OUTPUT INFORMATION FLOW. When
information is read out of memory, it is sent
to the W register, One character at a time
is decoded and shifted from the W register

to the output buffer register (OB), All periph~
eral units, except magnetic tape units, use the
output of the OB register for the information
source, In the case of the magnetic tape
operation, the contents of the OB register are
shifted to the tape write buffer (WB). The out-
put of the WB register is used by magnetic
tape for writing,

4-66, CARD READER INPUT. The card
readers for the B 5500 have the ability to
read cards which are punched in either
normal card code or binary code. When the
cards are in normal card code, the operation
is the same as for any other peripheral unit
which sends BCL code to the I/O control unit.
The card readers contain the necessary logic
for changing the normal card code to BCL
code, When a card is coded in binary, each
card column represents 12 bits, The 12 bits
of a card column form 4 octades which are
equivalent to two characters (figure 4-6).
When a binary column is read, the bits
punched in rows 12 through 3 of that column
are placed in the IB register. These are the
high-order bits of the column. Next, as the
IB contents are shifted to the W register,
the bits punched in rows 4 through 9 of the
same column are placed in the IB register.
The character counter is counted up by 1 and
the low-order bits (4 through 9) of the card
column are then sent into the W register
from the IB register. In the case of binary
coding, there is no encoding between IB and
W registers. This sequence takes place for
each column, With 80 columns per card, a
card coded in binary will fill 24 octal words
of core memory. The word with the lowest
address will contain column 1 in the high-
order 4 octades. The word with the highest
address will contain column 80 in the four
low-order octades,

UNIT DESIGNATE , MEMORY ADDRESS
TO 1/O EXCHANGE TO MEMORY EXCHANGE

| WORD
COUNTER

45| 4239|3633 |30 271 24 21|18]| 15]12 |9 |6 |3
% 1
REGISTER |44 |41]38 |35 32//26& 200174 nls|s5]2
Z 7
(CONTROL) 7
43 | 40|37 |34 31%25 2{1wsf13|wo] 7] 4|,
2
I I I I]] [T
w "CHAR | CHAR | CHAR | CHAR | CHAR | CHAR | CHAR | CHAR |
REGISTER o ; y v v v . y
(INFOR.) |— 0 —] — 3] 7]
| | | | 11] | I
INFORMATION
TO AND FROM
MEMORY EXCHANGE
FROM 1/O EXCHANGE FROM MEMORY EXCHANGE
TO MEMORY EXCHANGE| CHARACTER TO 1/O EXCHANGE
SELECTION
ENCODING & DECODING &
PARITY CHECK PARITY CHECK
MAG. OTHER cc OTHER MAG.

TAPE INPUT . OUTPUT TAPE
UNITS UNITS 4 .

I UNITS UNITS

R 1 Caer o8 e
b4 H MM
k“" A A A A CHARACTER K" A < ﬁ—/
Rl T o g ST N g I 0 e Y

=] L s |
e e 2] e s -
e wlwmDy
N 2 Ao 2 2 N2 -4 2
N o I NG e V2 e [1/

[]

Figure 4-5. Basic 1/0 Control Unit Data Flow

W REGISTER
COL.1 COL. 2
’—.’\—./'/w
12 4 4
COL.1 COL. 2 ! 7p2]] 7
1 2 1M]2|5|8|11/2|5(8
12 12 013]6]92]0|3]|61]9
1 1"
0 0 CHARACTER #
i 1 1B REG.
2 2 P
3 3]
4 4 -
5 5 | 5]
6 6 | 6|
7 7 71
8 8 o |
9 9 8
i‘,

READ SEQUENCE

Figure 4-6. Binary Card Read

4-15

SECTION

WORD MODE OPERATION

GENERAL

5-1, This section describes the machine
language program which is in the form of
syllables and arranged in a program seg-
ment string.

SYLLABLE ADDRESSING AND SYLLABLE
IDENTIFICATION

Syllable Addressing and Format

5-2. A machine language program is in the
form of syllables which are arranged in a
string (program segment string) and exe-
cuted sequentially, These syllables are pack-
ed four to a core memory word (12 bits for
each program syllable). The first syllable
for a program word is formed from bits 0
through 11, and is labeled syllable 0 (figure
5-1).

SYLLABLE SYLLABLE SYLLABLE SYLLABLE
*o £ #2 #3

013]6]9112(15|18|21|24}27|30|33]36(39|42|45
| 1]4]7]10[13]16]19]22]25|28|31[34|37[40({43/46
2 (5]8411]14|17|20(23]26(29|32|35]38|41|44 |47

Figure 5-1. Program Word in P Register

1 e 1

PROIGRANI\ WORID !

PROGRAM
SEGMENT

PROIGRANI\ WORID 2

PROGRANI\ WORID 3
1

| 1 |

=

5-3. P AND T REGISTERS. The syllable
being executed is contained in a12-bitregis-
ter named the T register. The T register is
the control (instruction) register. The P
register contains the 48 bit program word
divided into 4 syllables. When the syllable
in the T register is completely executed,
the next syllable is shifted from the P regis-
ter to the T register. When the last syllable
of the word in the P register hasbeen shifted
to the T register, another program word is
brought into the P register (figure 5-2).

5-4, L. AND C REGISTERS. The 2 bit L
register contains the number of the next
syllable to be executed., This next syllable
to be executed will be selected from one of
four syllables currently within the program
word within the P register. The core mem-
ory address of the word currently in the P
register is kept in the 15 bit C register.
When the last syllable of a program word in
P has been shifted to the T register, the L
register is overflowed from 3 to 0, and the
C register is then counted up by one. The
next program word is then brought from
memory and placed in the P register (figure
5-3).

P REGISTER

10
215181

T REGISTER
(COMMAND
REGISTER)

Figure 5-2. Program Syllable Sequence

T T T T T T svmeie ADDRESSING |
l CORE |
| MEMORY MEMORY llcll "L” |
| EXCHANGE REGISTER REGISTER |
ADDRESS
I| REGISTER —— 15 BITS 2 BITS |
e - T 1~ _ |
| ~ "P" REGISTER |
=] —— o 1]2]3] |
II PROGRAM i1 |
WORDS SYLLABLE |
| SELECT |
| * |
| 12 BITS | "T" REGISTER |
| - '
!
L SYUABEACCES |

Figure 5-3. Syllable Access and Address

Word Mode Syllable Identification

5-5. SYLLABLE TYPE, In word mode, syl-
lables are grouped into four categories:
Descriptor Call, Operand Call, Literal Call,
and Operator syllables, The format of the
different types of syllables will be explained
by relating to figure 5-4. The four types of
syllables are distinguished by the two least
significant bits of the syllable in the T regis~
ter. The status of bits 11 and 10 and the
syllable type are;

Bit Bit Octal Value
11 10 Syllable Type Ending In
off off Literal Call Oor4

on off Operator lor5
off on Operand Call 2o0ré6,
on on Descriptor Call 3or?7

03|69
10| sYLLABLE

Figure 5-4. Word Mode Syllable Format

5-6, BITS 0-9. The Literal Call syllable
(LITC) uses bit 0 through 9 to contain the
integer value. Bit 9 in the T register, is the
units bit of the integer value. The Operator
syllables use bits 0 through 9 for deter-
mining the type of operator syllable and, for
certain syllables, to contain such things as
field length or other count. OPDC and DESC
use bits 0 through 9 to contain the index for
relative addressing1 and to indicate the base
address of the area which will be referenced.
For example, consider the following syllable
examples (SALF2 = 0):

Octal Code In Type of Syllable and

T Register Value or Index
1232 OPDC: R+246
0253 DESC: R+52
0040 LITC: 10
0101 ADD (Add instruction, no
decoding necessary)
0002 OPDC: R+0
0003 DESC: R+0

1. See paragraph 3-11.
2. Sub-program level flip flop.

As shown in the example, the value or index
of the syllable is not readily apparent, ex-
cept the Operator syllable type. However,
the type of syllable is immediately known by
observing the lower two bits of the T register.

5-7. CODING A SYLLABLE USING OCTAL
MULTIPLICATION BY FOUR. This system
may be employed by the machine language
programmer to convert an octal number to
a required syllable code. Multiplication by 4
will result in an answer that will be identical
to that of bit shifting the octal number two
places to the left, or in effect, multiplying it
by 4. A faster method of multiplying the
number is available than that of shifting two
bits to the left, In order to employ this
method, it is very helpful if the octal multi-
plication table of 4 is known. This table is
as follows:

0x4~0
1x4=4
2x4=10
3x4 =14
4x4=20
5x4=24
6 x4 =30
Tx4=34

Note that the answers resulting from multi-
plication always end in 0 or 4, This may be
a simple reminder to aid in rembering the
table. Multiplication of the octal number 123
by the number 4 is shown in figure 5-5.

11 4x3=14
123
x4 4x2=10+1=11

514
4x1=4+1=05- 0514

"T" Register Code

Figure 5-5. Generating a Syllable Using
Octal Multiplication by Four

Note that the multiplication is performed
first, then the previous carry is added as in
decimal multiplication, At the completion of
the multiplication, a Literal syllable has been
constructed having the value of 123, It is
known to be a Literal syllable because the
lower two bits equal 0. By adding 2 to the
product of 4 x 123, an OPDC is constructed
with an index of 123. By adding 3 to the
product of 4 x 123, a DESC is constructed
with an index of 123. This then, is a method
which can be used to generate syllable codes
for a desired value.

5~-8. DECODING ASYLLABLE USINGOCTAL
DIVISION BY FOUR. Division by 4 may be
used to determine the index or value of
syllables other than operators. This canalso
be done by shifting the syllable two bits to
the right, To divide the octal number 0514 by
4, use of the octal table of multiplication of
4 will be necessary. The division is illus-
trated in figure 5-6. The remainder of the
division indicates the syllable type. In the
example, the syllable type is the remainder
0 which indicates a Literal Call syllable, The
syllable 0515 would generate a value of 0123
with a remainder of 1 to indicate anoperator
syllable type with the operator code 0123.
The syllable 0516 would also generate a value
of 0123 with a remainder of 2 to indicate an
Operand Call syllable type, with an index of
123. The syllable 0517 would generate a value
of 0123 with a remainder of 3whichindicates
that this is a DESC with an index of 123.

Usable value = 0123 CODE IN

"T" REGISTER

4 0514
4
11
10
14
14
Syllable Type = 0

Figure 5-6. Decoding a Syllable Using Octal Division
by Four

5-9. RELATIVE ADDRESSING. Relative ad-
dressing, when in program level (SALF = 0),
always uses the base address contained in the
R register. The index will be the 10 high-
order bits of the T register or the 10 low-
order bits of the A register depending upon
the syllable being executed. The address
contained within the R register is set into
the 9 high-order bits of the M register and
the index is set into the A register. The M
and A registers are then added, and the sum
is placed in the M register. The M register
then contains the absolute address of the
word being accessed. In program level, the
index will always be positive with a maximum
value of 1,023 (10 bits). When a processoris
operating in sub-program level (SALF =1),
the number of bits available for an index is

reduced because the high-order bits deter-
mine the sign and base address for relative
addressing, The MSFF and the three high-
order bits of the index field (T0, T1, and T2,
or A38, A39, and A40) together determine the
base to use and the sign of the index. The
bits not required to determine the sign and
the base may be used for the index value.
This is given below and shown in table 5-1.
In the followingdescription, the SALF is on,
The T register bits are used in the explana-
tion; however, the same statements are valid
for corresponding bits of the A register. The
Relative Addressing Table, table 5-1, is
valid for any syllable that specifies relative
addressing capabilities, unless limiting spec-
ifications are outlined within the specific
syllable,

TABLE 5-1

Relative Addressing Table

TO T1 T2 Index Index Maximum Index
SALF A38 A39 A40 MSFF Base Sign Bits In Decimal/Octal
T(00=> 9)
OFF - - - - R + |A(38 =>4T7) 1,023/1777
T(02=> 9)
ON OFF - - - R + |A(39=>47) 511/777
T(02=> 9)
ON ON OFF - OFF | F + |A(40=>47) 255/3717
T(02=> 9)
ON ON OFF - ON (R+7) * + A(40 =>47) 255/3717
T(03=> 9)
ON ON ON OFF - C *x* + |A@41=>47) 127/177
T(03 => 9)
ON ON ON ON OFF | F - |A41 =>47) 127/1717
T(03 => 9)
ON ON ON ON ON (R+7) * - A(41 =>47) 127/1717

- Irrelevant (part of the index).

* Relative addressing using as the base, bits 18 thru 32 of the word stored

in the program's PRT at R+7.

ok
1/0 release operators.

5-4

"C" relative coding is forced to "R" relative for the store, program and

5-10, TO OFF - (A38 OFF). With TO in the
off state, the R register contains the base
address. The index is positive and contained
in bits T1 through T9 of the T register. The
maximum index is 511,

5-11., TO ON, T1 OFF - (A38 ON, A39 OFF).
With TO and T1 in the given conditions, the
index will be contained in bits T2 through
T9, and is always positive. The maximum
index is 255, The base will depend on the
state of the MSFF. If MSFF is off, then the
F register contents will be used as the base
address. If MSFF is on, then an F register
would have been stored in bits 18 through 32
of the mark stack control word (MSCW)
located in R + 7 of the program reference
table (PRT). In this case, a preliminary
memory access using relative addressing
would use the base address contained in the
R register. The index of 7 must be used, so
that the M register can be set tothe contents
of the 8th word of the PRT. The latter rela-
tive address is known as "(R+7)+."

5-12. TO ON, T1 ON, T2 OFF - (A38 ON,
A39 ON, A40 OFF). With these conditions,
the index is positive and is comprised of bits
T3 through T9. The base address will be in
either the C register or the R register,
depending on the operator contained in the T
register. The maximum index is 127,

5-13. TO ON, Tl ON, T2 ON - (A38 ON,
A39 ON, A40 ON). With these conditions, the
index is negative and is comprised of bits
T3 through T9. Again, the maximum index
is 127, With the MSFF in the off state, the
base address will be contents of the F
register, and is known as"F-." With MSFF
in the on state, the base address will be the
contents of the F register that were stored
in R + 7. This is known as "(R+7)F-"".

5-14, When decoding a syllable that is using
relative address code (SALF is on), do not
include the relative address code bits as
part of the syllable value. The inverse of this
is also true when coding syllables,

5-15. NORMAL WORD MODE ADDRESSING.
In word mode operation, the S register is
used to address the top valid word of the
core portion of the stack. This is always

true in word mode. Any other memory ac-
cessing for informationuses the address con-
tained in the M register. The S register is
used for all stack adjustment; and, with few
exceptions, the information register used is
the B register, Thus, the Bregister contents
are stored in the address specified by the S
register; or the B register is filled from the
location address by the Sregister. Occasion-
ally, the A register is filled from the location
addressed by the S register. When the M
register is used as the address register for
accessing information, there are three meth~
ods of setting an address into the M register.
In the first method, the low-order 15 bits
of the A register contain an absolute address
such as is found in a data descriptor. In this
case, the address is shifted from the A
register to the M register, and the access is
performed. The specific operator determines
which information register, A or B, is used.
In the second method, the M register is set
to the 15 bits (18 through 32) of an accessed
word. Here, the M register is used to
address the access word, and musthave been
originally set by one of the other two methods,
The third method is used when relative ad-
dressing is required. In the third method,
a base address is used with an index. The
index is in the 10 high-order bits of the T
register, or is in the 10 low-order bits of
the A register. The current condition, along
with a program syllable, determines which
bits will be used as a base address. This
base address will be one of the following:

1. Base address of the program reference
table, This address is inthe R register,

2, Address of the return control word in
the stack. This address is in the F
register,

3. The F register setting stored in the
MSCW. The MSCW is the eight word
of the program reference table (R+7).
The F register setting will be in bits
18 through 32. To access this MSCW by
relative addressing, an index of 7 is
added to the base address of the program
reference table. The M register con-
tains the new address and addresses
the cell (word). When the word is
accessed, the M register receives bits
18 through 32.

4. Current word address of the program
segment string, This address will be
the contents of the C register, This is
a special case and is not normally
used.

REFERENCING A WORD WITH THE
OPERAND/DESCRIPTOR CALL SYLLABLE

o-16. There are three types of words (oper-
ands, descriptors, and program descriptors)
that may be found in the PRT or stack.
Two syllables reference these areas and place
data in the stack or remove it from the
stack. These are the Operand Call and
Descriptor Call syllables., Figures 5-7 and
5-8 show block diagrams for the resulting
access operations.

5-17. OPERAND CALL SYLLABLE. If this
syllable accesses a word from either the
PRT or the stack, the following actions can
occur:

1. If an operand is accessed, the operand
is placed in the stack.

2. If a control word is accessed, the control
word will be placed in the top of the
stack, and treated as an operand.

OPERAND —

3. If a data descriptor is accessed, the
word addressed by the descriptor will
be placed in the stack. If thiswordis not
an operand, a "flag-bit" interrupt is
produced.

. If a program descriptor is accessed, the
program will branch to a sub-routine
within the program. In this case a spe-
cial word, the return control word, will
be placed in the stack. (Accessing a
special program descriptor causes itto
be placed in the top of the stack and no
branch is performed.)

5-18, DESCRIPTOR CALL SYLLABLE.
When this syllable references one of the four
types, the following action can occur:

1. Referencing an operand will cause a
data descriptor to be generated that
contains the absolute address of the
operand. This data descriptor will
then be placed in the stack as the top
word.,

. Referencing a data descriptor by this
syllable will cause the data descriptor
to be placed in the stack.

T

CONTROL WORD

ADD INDEX TO
BASE & ACCESS
WORD

DATA DESCRIPTOR

SPECIAL PROG.

PLACE THIS OPER-
AND, CONTROL

WORD OR PROGRAM

ACCESS THE WORD
SPECIFIED BY THE

DATA DESCRIPTOR

DESCRIPTOR IN TOP
OF THE STACK

DESCRIPTOR

PROGRAM
DESCRIPTOR

Il

PLACE CONTROL

WORD (S) IN TOP TRANSFER
OF STACK & SETF| _____ .| CONTROLTO |
REG. TO ADDRESS SUBRQUTINE

OF THE RETURN
CONTROL WORD

Figure 5-7. General Flow for Operand
Call Syllable

OPERAND

CONTROL
WORD

ADD INDEX TO
BASE & ACCESS

GENERATE A
DATA DESCRIPTOR
TO ADDRESS THE

OPERAND OR
CONTROL WORD

PLACE THIS
DESCRIPTOR IN
THE TOP OF THE

{DATA DESCRIPTOR }

WORD

SPECIAL PROG.
DESCRIPTOR

PROGRAM
DESCRIPTOR

STACK
PLACE CONTROL
WORD (S) IN TOP TRANSFER
OF STACK & SET F
REG. TO ADDRESS CS(SEIRTORSTLI :I(E)
OF THE RETURN
CONTROL WORD

Figure 5-8. General Flow for Descriptor Call Syllable

3. Referencing a program descriptor will
cause the same operation as though an
OPDC accessed a program descriptor,
A RCW will be generated and placed
in the stack and the program will
branch to the subroutine.

5~19, The primary function of the OPDC is
to place an operand in the stack. The pri-
mary function of the DESC is to place an
address in the stack., The exception to this
rule is when either syllable references a
program descriptor. This will cause the
program to branch to the subroutine indicated
by the program descriptor and also cause
subsequent generation of a RCW and the
placement of this generated word in the top
of the stack.

5-20. DATA DESCRIPTORS. Descriptors
have a function very similar to the impli~-
cation of the name: they describe some data,
a program, or an operation. All descriptors
are used in word mode. There are four
types of descriptors: data descriptors, pro-
gram descriptors, I/O descriptors, and 1/O
result descriptors. The I/O result descrip-
tors are generated at the completion of an
I/O operation and reflect the results of the
operation. The I/O descriptors and their
application are discussed in section 9. All

of the descriptors except the I/O result
descriptor, have the flag bit (bit 0) on to
mark them as descriptors. The remaining
bits of each type of descriptors are as
follows:
Bit 0 On marksthis word as being a
control word or a descriptor.
Bit 1 Off marks this word as a data
descriptor.
Bit 2 Used to reflect the avail-
ability of the associated infor-
mation, or space for the infor-
mation, This is the presence
bit. When bit 2 is on, the in-
formation is available; or, if
information is to be stored,
the space is available,

Bits 3 -7
Bits 8 - 17

Not used. (Off)

This is the word count field
and will be used when the data
descriptor is associated with
a group of words. When the
word count field is equal to 0,
the descriptor is associated
with only one word,

Bit 18 Not used. (Off)

Bit 19 This is the integer bit, and is
on if the data descriptor is as-
sociated with an operand that

has been declared as an integer,

Bit 20 This is the continuity bit, and is
on if there is more than one data
descriptor that references mul-
tiple areas for the same type of
information, such as multiple

I/0 bhuffers.
Bits 21-32 Not used. (Off)

Bits 33-47 These bits contain the absolute
address of the information ref-
erenced. This absolute address
is filled when the information
has been allocated space in
core memory.

5-21. APPLICATION OF DATA DESCRIP-
TORS. Data areas are referenced indirectly
through data descriptors (see figure 5-9) lo-
cated in the PRT. Each descriptor refer-
ences a unique area in memory. If an area
consists of a single word, the data descriptor
contains the address of that word. However,
if an area consists of data arranged in serial
sequence (a single dimensional array), the
data descriptor contains the base address of
the array. This base address isincremented
by an index to obtain the desired word from
the array. The word count field within the
data descriptor is not equal to 0 when refer-
encing an array. Multiple indexing is re-
quired for an array which has more than one
dimension. In thisphase, the descriptor inthe
PRT has a word count field equal to the size
of the first dimension. The first absolute
address (called the mother vector) is the base
address of a table of descriptors each called
a dope vector. The number of descriptors in
the table is dependent on the firstdimension.
Each of these descriptors has a word count
field equal to the size of the second dimen-

sion. The absolute address of each of these
descriptors in the first table is the base of
another table. The second table will contain
the actual data elements of the array (if the
array was declared as a two dimensional
array). If the array was declared as a three
dimensional array, then the second table
would have had descriptors in it, and these
descriptors would have pointed to the actual
data elements of the array. See figure 5-10,

NOTE

Any number of dimensions are al-
lowed in the B 5500.

Subroutines

5-22. A subroutine can be defined as a series
of operations that are repeated many times
during the execution of a program. The sub-
routine is entered by transferring control
from the main body of the program to the
subroutine. Upon completion of the sub-
routine, control is returned to the syllable
following the syllable that caused entry to
the subroutine. The structure of the B 5500
programing language extends the usefulness
of this type of program organization. Proce-
dure declarations in ALGOL, and sections
and paragraphs in COBOL, are considered
to be subroutines. Therefore, the subroutine
mode of operation in the B 5500 hasbeen de-
signed to assure efficient generalized handl-
ing of subroutines to any depth, including
recursively defined subroutines (a subroutine
which calls itself from within the subroutine.)

5-23. SALF. Although the subroutine sim-
plifies the programing task, it creates new
problems of stack control, accessing data for
the subroutine, etc. To alleviate some of these
problems, each processor contains aflipflop
called SALF. When a subroutine has been
entered, the SALF is set to indicate that at
least one subroutine has been entered.

ON |0 :

33'36 39.42 45

_____. -_'... _--4

OFF |1 10 131 16

19

34'37 40'43'4§

2 H .:18 11114117

1]

N |
TN

| 1]
%r'! ST

] 1
TTITTITT

oH 25

35138411 44147

_1 NO WORD
PREgFTNCE USED COUNT

NOT USED CORE ADDRESS

NOT USED

Figure 5-9. Data Descriptor Exploded

5-8

2
L CONTINUITY BIT
INTE GER BIT

> WC

DOPE
VECTOR #1
WC = 2
MOTHER
VECTOR
o WC = 2
WC = 4
WC = 2
I— WC =2

“*WC = word count

DATA;

Figure 5-10. Example of 3-Dimensional Array

5-9

DOPE

VECTOR #2
DATA ,
WwC =3 DATA 5
-3 DATA,
DATA,
DATA 5
DOPE DATA

VECTOR #2
DATA

=

WC =3 [DATA ,
DATA,
DATA 3
DOPE DATA,

VECTOR #2
DATA ,

WC = 3
g —— DATA 3
WC = 3 DATA,
DATA 2
DATA 3
DOPE DATA]

VECTOR #2
DATA 5

WC =3 ——
DATA 4
DATA
= WC =3]
DATA ,
DATA3
(0:3, 01, 0:2)

With SALF in the on status, the processor
is said to be operating in sub-level. The
functional purpose of this flip flop is to allow
additional relative addressing capability. For
example, if SALF is off, only R register
relative addressing can be used; however,
if SALF is on, then R, F, C, and R+7 relative
addressing can be used.

5-24. SUBROUTINE ENTRY AND EXIT. Nor-
mally, the actual parameters required by
each subroutine are stored in, or referenced
through, the Program Reference Table. Be-
fore the subroutine is entered, these param-
eters are brought tothe stack. Control isthen
transfered to the subroutine, which can ac-
cess the stack to use the parameters. How-
ever, before any parameter for the subroutine
is placed in the stack, the top of the stack
must be marked, This indicates the top of the
stack before entry to the subroutine. This is
accomplished with a Mark Stack Control Word
(MSCW). This word contains the value of cer-
tain registers last used by the prior program.
The F register is set to the address of the
MSCW when its current setting is placed in
the stack. The parameters for the subroutine
are then placed in the stack and a RCW is
placed in the stack, on top of the parameters,
just before entering the subroutine. The F
register is set to the address of the RCW
when its contents are placed in the stack.
Each control word contains the address of the
previous control word which was addressed
by the F register. The RCW contains the value
of the rest of the registersthat are necessary
to allow control to returnto the program at the
point following the syllable that caused a
branch to the subroutine. Return is accom-
plished automatically by executing a return
normal or exit operator when the subroutine
is completed. When exit from a subroutine is
executed, the RCW is accessed and the regis~
ters are restored from the contents of this
control word. The F registeris settothe ad-
dress of the previous control word, which is
the MSCW. Access of the MSCW is then made,
and the rest of the registers are restored.
This restoration will allow the program, from
which entry to the subroutine was made, to
continue processing.

5-25. SPECIAL SUBROUTINE ENTRY AND
EXIT. A special case arises when a sub-
routine (procedure) is to be entered that re-
quires no actual parameters, yet performs
work on data that is global to itself; but this
data is not in, or accessible through, the PRT.
This situation could best be illustrated by ex-
amining aprocedure within a procedure. When
this occurs rF does not point at the RCW at
the top of the stack, but at a previous RCW
lower in the stack. When this special proce-
dure is to be exited, rSis pointing at the RCW
at the top of the stack, therefore, a "return
special" operator is executed.

9-26. MARK STACK CONTROL WORD
(MSCW) DESCRIPTION. In most cases, the
actual parameters needed by the subroutine
are placed in the stack between a MSCW and
a RCW. Inthese cases, the MSCW is generated
and placed in the stack by a Mark Stack
operator. The execution of the Mark Stack
operator causes the contents, if any, of the
A and B registers to be pushed into the core
portion of the stack. The MSCW is then con-
structed and stored to mark the top of the
stack, The setting of the R register, the
state of MSFF, SALF, and the setting of the
F register are contained in the MSCW. The
F register is set to the address of the word
in which the MSCW is stored. If the MSFF
was off, and the processor is insub~-program
level (SALF = 1), at the time the MSCW is
constructed, the constructed MSCW is also
stored in the cell address by R+7. The MSFF
is then set to 1.

5-27. MARK STACK CONTROL WORD FOR-
MAT. The format of the MSCW (see figure
5-11) is as follows:

Bit 0 On marks this word as being
a control word or a descrip-

tor.

Bit 1 On marks this word as being
either a control word or a

program descriptor,

Bit 2 Not used. (Off)

IDENTIFIES

CONTROL WORD
OFF
onfo 3902 18 121124;27}301
ON|1 1710013 16 191221251 281311
=/ I USRIV B
|2 #He 17 H 201 23126129132
NOT ry 'F NOT USED
USED
SALF
MSFF
NOT USED

Figure 5-11. Mark Stack Control Word Exploded

Off marks this word as acon-
trol word as opposed to apro-
gram descriptor.

Bit 3

Bits 4 ~ 5 Not used. (Off)

These bits containthe contents
of the R register just prior to
entering the subroutine. This
is the base address of the
program reference table.

Bits 6 - 14

Bit 15 Not used. (Off)

Bit 16 This bit represents the state
of the MSFF just prior to the
time the MSCW is generated.
This bit is turned on if the
MSFF is on.

Bit 17 This bit represents the state
of the SALFT just prior to the
time the MCSW is generated.
This bit is turned on if the
SALF is on.

Bits 18- 32 These bits are set to the con-
tents of the F register when
the MSCW is generated. This
F register setting will be the
address of a previous control
word that has been placed in
the stack, or 0

Bits 33-47 Not used and will always be

equal to 0.

5-28. PROGRAM DESCRIPTOR DESCRIP-
TION. A subroutine is entered by a program

5-11

descriptor (often called a '"procedure de-
scriptor'). Program descriptors are gen-
erated during compilation and are placed in
the program reference table. When entry
into a subroutine is desired, an OPDC or
DESC accesses the program descriptor. This
causes a RCW to be placed in the stack and
then the subroutine to be entered. One of the
bits of the program descriptor is a presence
bit. This bit is used to specify if the sub~
routine program segment is incore memory.
If the desired program segment isnot incore
memory, then the program must be inter-
rupted until the segment can be brought into
core memory by the MCP. The interrupt
generated by this bit is called the presence
bit interrupt. Subroutines can be used in
either word mode or character mode opera-
tions. A bit, called the mode bit is used to
provide this information. The mode bit is
sensed when the subroutine is entered, and
the subroutines will operate in the mode
specified by the mode bit. The program
descriptor contains a core address field. The
core address field contains the absolute ad-
dress of the program word containing the
first syllable of the subroutine. The sub-
routine will start with the first syllable of
that program word. One bit of the program
descriptor is used as an argument bit. This
bit is on for every subroutine that requires
actual parameters to be stored in the stack
between the MSCW and the RCW. The pro-
gram descriptor contains a field to store a
setting of the F register. If the argument bit
is off, the contents of the F register will be
replaced by the contents of the F register field
in the program descriptor when the subroutine
is entered. This is called'accidental entry'.

The new address contained in the F register
is a prior setting of the F register, and will

be the base for relative addressing used in
the subroutine.

5-29. PROGRAM DESCRIPTOR FORMAT.,
The format of the program descriptor (see
figure 5-12) is as follows:

Bits33-47 This is the address of the
program word that contains
the first syllable of the sub-
routine. This addressisfilled
in by the MCP when the sub-
routine program segment is
brought into core memory.

5-30. RETURN CONTROL WORD (RCW)

. ; ; DESCRIPTION. The RCW is placed in the
ks th d as b
Bit 0 ao(rzlorr::?gl \Sazoréir‘?gesiiipig;g stack when an operand descriptor call is
) executed on a program descriptor. It is
: ; _ the last entry made in the stack before enter-
Bit1 On marks this word as a con ing the subroutine.
trol word or program descrip-
tor,
L) 5-31. RETURN CONTROL WORD FORMAT.
Bit 2 This is the presence bit and The format of the RCW (see figure 5-13) is
will be on if the program seg- as follows:
ment is available in core
memory.
Bit 0 On marks this word as not
Bit 3 On marks this word as a pro- being an operand.
iptor, d . :
%g %rginde:c;;g:ggl viirgppose Bit 1 On marks this word as being
& ' either a control word or a
Bit 4 This is the mode bit. If on, program descriptor.
the subroutine is to operate
in ch mode. If off, the .
;r;bcl.oilt‘ifeteris to operate in Bit 2 When off, this return control
word mode word was placed in the stack
' as a result of executing an
Bit 5 This is the argument bit. It OPDC. When on, this RCW
will be onif actual parameters was placed in the stack as a
are to be placed between the result of executing DESC.
MSCW and the RCW.
Bit 3 Off marks this word as acon-
Bits 6 - 17 Not used. trol word, as opposed to a
Bits18-32 This field contains the F reg- program descriptor.
ister setting that will be used
during 'the operation of the Bits 4 ~ 6 These bits contain the contents
Su'broutlne if the argument bit of the H register at the time
(bit 5) is off. the subroutine is entered.
ON ON] .
J=E 7 VL8 18121124127 13013336 39 142 145]
ON |1 4 ona6H19122125,28 131 334:37T40T43[46
A XA ATt i~ F-7— - i—— =
2 =5 H g isiyHa0i23126 129 32 H3s 1 a8 141 144 147
PRESENCE | NOT USED 18-32=rF CORE ADDRESS
BIT MODE | | ARGUMENT BIT (IF 5=0)

BIT (PARAMETER

REQUIREMENT)

Figure 5-12. Program Descriptor Exploded

5-12

IDENTIFIES
CONTROL WORD

OFF
N R == =R ==(P:E3: I} 121124127130 H33136 139 142 145
ON| ! A=H=DEEE 5_13__2; 12512813 131 a4’ 3:7_1119:_43_:{6_
2 Hs 8 i Hi4H17 H20i 23726 1 29132 H35 138 141 144 147

rH Y rb G K rF rC

SYLLABLE TYPE CAUSING

RCW TO BE GENERATED

Figure 5-13. Return Control Word Exploded

Bits 7 - 9 These bits contain the contents
of the V register at the time

the subroutine was entered.

These bits contain the contents
of the L register. These con-
tents are the address of the
syllable which follows the
OPDC/DESC that caused the
subroutine to be entered.

Bits10-11

Bits12~14 These bits contain the contents
of the G register when the

subroutine was entered.

Bits15-17 These bits contain the contents
of the K register when the sub-
routine was entered.
Bits18~-32 These bits containthe contents
of the F register when the sub~
routine was entered. Thiswill
be the address of a previous
control word.

Bits 33-47 These bits contain the contents
of the C register. These con-
tents are the address of the
program word that contains
the syllable indicated by bits
10 and 11 of this word.

STATE AND MODE
State

5-32. CONTROL STATE. The B 5500 can
operate in either control state or normal
state. Routines of the MCP are executed
mainly while in control state, whereas object

programs are executed mainly in normal
state. In control state, automatic interrupt
detection is suppressed and some machine
operators are activated that are treated as
no-ops while in normal state. The suppres-
sion of automatic interrupt detection in con-
trol state allows the MCP to complete its
particular function without further interrupts.
At the conclusion of any particular function,
the MCP can interrogate for any other inter-
rupt and handle them individually according
to priority.

5-33. NORMAL STATE. In normal state,
automatic interrupt detection occurs at the
end of each syllable execution. This auto-
matic interrupt detection has priority. Since
the interrupt causes a transfer to control
state, this is the only means of entering the
MCP from an object program. A normal-
control state flip flop (NCSF) in the processor
indicates the state of the operation, whether
normal or control. Inatwo processor system,
only one processor can operate in control
state. Processor 1 is the control state
processor. Either processor can be desig-
nated as processor 1 by means of aphysical
switch located on the display and distribution
panel. Processor 2 can generate interrupts,
but each interrupt must be handled by pro-
cessor 1.

Mode

5-34. Each processor of the B 5500 can
operate in either of two modes, word mode
or character mode. In word mode, the
operators primarily function with one or
more entire words. In character mode, the
operators primarily function with individual
characters or parts of a character. The
functions of the various registers are differ-

ent in the two modes and each mode has an
independent set of operators, Eachprocessor
contains a flip flop to control the mode of
operation. This flip flop is the character-
word mode flip flop (CWMF). It is on for
character mode operation, and off for word
mode operation. Although word mode opera-
tions may occur at either the program or
sub-program level, any character mode oper-
ation is at the sub~program level.

5-35. WORD MODE. Using the stack con-
cept as a basis, when a program isoperating
in word mode there must be several areasof
core memory reserved for various parts of
the program. The areas include the stack,
the program reference table, the program
segment string, and the I/O areas. Informa-
tion is brought into the input area. This in~
formation will then be brought into the stack
from the program reference table and from
the program reference string. After process-
ing, the results are stored in the output
area. The results are later transferred to
the output unit. Thus, word mode uses four
basic areas of core memory.

5-36. CHARACTER MODE. In character
mode, the processing is concerned with in-
dividual characters or parts of characters.
Therefore, the primary concern is the two
areas of memory; the source string area
and the destination string area. Bothof these
strings may be thought of as strings of
characters or character positions. The func-
tion of character mode operations is to take
characters of information from the source
string, process them, and transfer them to
the destination string. Actually, processing
in character mode is much more versatile
than the basic concepts just presented. It is
possible to skip characters in either string,
compare fields of the two strings which are
of equal length, add two fields (one in each
string), place the result in the destination
string, etc. Unless programed otherwise,
characters are always handled sequentially
from the high-order character to the low-
order character. A program operating in
character mode will reserve basic areas in
core memory for the destination string,
source string, stack, program reference
table, program segment strings, and I/O
areas. The destination string and source
string areas may be reserved in addition to,
or as part of the last four areas mentioned.

5-14

5-37. Any combination of mode andlevel that
occurs in normal state may occur in control
state. A processor in normal state may be in
either sub-program or program level of
operation. Program level occurs only in
word mode. Sub-program level may occur in
either word mode or character mode (figure
5-14). Since control state operation is not
considered part of an object program, an
object program is processed in normal state
and may be in either program or sub-program
level. The sub-program level operation can
be in either word mode or character mode.

PROCESSOR INITIATION

5-38. To initiate a processor in normal
state, the Initiate P1 or Initiate P2 syllable
must be executed. Which syllable is executed
depends on which processor is to be placed
in normal state. A processor will be des-
ignated as #1 by the designate switch that is

located on the display and distribution unit.
Consider the initiation of this processor.
Through the use of this switch, either pro-
cessor A or processor B may bedesignated
as processor 1 and the other processor auto-
matically becomes processor 2. The Initiate
syllable is only active if encountered while
the processor is operating in control state.
Therefore, processor 1 may only be initiated
by itself. Processor 2 may never initiate
processor 1, because processor 2 cannot
operate in control state., If the Initiate
syllable is encountered in normal state, it
is treated as a no-op.

INTERRUPT OCCURRING WHILE IN
NORMAL STATE (NCSF=1)

5-39. The Interrupt Address Register (IAR)
in central control is set by the presence of
an interrupt in the system. This includes the
interrupts of processor 2, all external inter-
rupts, and the interrupt register of processor
1. When an interruptispresent in the system,
processor 1 must go into control state in
order to handle the interrupt (assuming it is
in the normal state when the interrupt occurs).
If it is already in the control state, the inter-
rupt is "captured" in the IAR and, therefore,
will simply wait until processor 1 executes
an Interrogate Interrupt (ITI) operator.
Should processor 1 be in normal state when
any interrupt occurs, a Store For Interrupt

PROCESSOR

CONDITIONS
CONTROL
STATE
(}
PROGRAM SUB- PROGRAM
LEVEL LEVEL
WORD CHARACTER WORD
MODE MODE MODE

NORMAL
STATE

PROGRAM
LEVEL

SUB-PROGRAM
LEVEL

WORD
MODE

CHARACTER
MODE

WORD
MODE

Figure 5-14. Permissible Combinations of State,
Level and Mode

(SFI) is forced into its T register at the com-
pletion of the current operator, and immedi-
ately executed as the next syllable.

5-40. "Control words" are produced by a SFI
operator to record the settings of all neces-
sary registers. This is done so that after the
interrupt has been handled, processing may
continue at the exact point where it was inter-
rupted. All of the control words except one
are stored in the top of the stack. That one
control word contains the absolute address of
the top of the stack. The processor contains
some 18 different registers and the contents
of each are placed into the control words as
they are produced and placed in the stack.
The order that the control words are placed
in the stack depends upon the mode when the
interrupt occurs. See figures 5-15 and 5-16
for the order and contents of the control words.

5-41. WORD MODE. If the processor was
operating in word mode when the interrupt
was detected, the contents of the B register,
if valid, are stored in the stack. The contents
of the A register, if valid, are stored in the
stack. The interrupt control word (ICW) and
interrupt return control word (IRCW) are
then generated and stored in the stack. An
initiate control word (INCW) is generated and
stored in R + 10 (octal).

5-42. CHARACTER MODE. If the processor
was operating in character mode when the

5-15

interrupt was detected, the contents of the A
register, if valid, are stored in the stack.
The contents of the B register, if valid, are
then stored in the stack. The contents of the
X register are then transferred to the stack,
forming an interrupt loop control word. The
ICW and IRCW are then generated and placed
in the stack. An INCW is generated and
stored in R+10 (octal) of the program that
was being executed when the interrupt oc-
curred.

9-43. When generation of the new INCW is

completed, the NCSF isreset. The R register
is cleared to 0.

5-44. PROCESSOR 1. An Interrogate Inter-
rupt syllable is forced into the T register.
The function of this syllable is to interrogate
the IAR register in central control for an
interrupt, set the contents of IAR into the C
register, and set the S register to the value
octal 00100. The processor then branches to
the address contained in the C register.

5-45. PROCESSOR 2. Only processor 2 in-
terrogates its own interrupt register for the
presence of an interrupt. This interrogation
occurs after the execution of each syllable.
If a processor 2 interrupt is present, pro-
cessor 2 will execute a Store For Interrupt
syllable in the same manner as does pro-
cessor 1. However, at the termination of the
Store For Interrupt syllable, when NCSF is

IRCW
BROF 2 h
rH 4 =>4
rv 7 =9
rL 10=>11
rG 12=>14
rK 15=>17
rf 18=>32
rc 33 >42J
ICW
rR 6 => 14
MSFF 16
SALF 17
VARF 23
rN 29=> 32
r™ 33=>47

~
[

rA

INCW
CWMF 16
rs 15=>1

rB

Yy

(0)

INCW (INITIATE C.W.)

—— S:
PRT
rR = L

\\

N ::
rS——RCW(INTERRUPT RETURN C.W.)
5= 1cW (INTERRUPT C.W.)

K A REGISTER
o B REGISTER
R
0BJECT PROGRAM
STACK
(BASE]

Figure 5-15. Store for Interrupt Word (Word Mode)

5-16

rA
INCW
5 N\ CWMF 16 (1)
IRCWZ { &/ { rS 15=>1
BROF
rH L =>6 h v '
rv 7 =9 rB
ri 10=>11
rc 12=>14
rk 15=>)17
rf 18=>32
rC 33=>L7 ;
. @')_>
2 rR+10g™ INCW (INITIATE C.W.)
A ~=
3 PR
TCW l
R —p
rR 6 =>14 r
MSFF 16 L
SALF 17 ~ AN
VARF 23
rN 29=>32
Mo 3347 85——0 rS—{IRCW (INTERRUPT RETURN C.W.)
> S ICW (INTERRUPT C.W.)
—» S—s={ILCW (INTERRUPT LOOP C.W.)
(? »> S B REGISTER
— S A REGISTER
R
ILCW OBJECT PROGRAM
AROF L6 STACK
rL 10=>11
Repeat Field 12=)17 -
rs 18=>32
(DESTINATION ADDRESS)
BASE] -
rc 33 =47 []

Figure 5-16. Store for Interrupt Word (Character Mode)

5-17

reset, an Interrogate Interrupt syllable isnot

forced in the

T register. Instead, processor

2 is placed in an idle state by resetting TROF
and PROF. The processor will then remain

in this state

until it is reinitiated by pro-

cessor 1, Processor 1 reinitiates processor
2 by an Initiate P2 syllable,

5-46. INTERRUPT CONTROL WORD FOR-
MAT. The format and significance of the field
of the ICW (see figure 5-17) are as follows:

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4 -5

Bits 6 - 14

Bit 15

On marks this word as being
an operand.

On marks this word as being
a control word or a program
descriptor.

Not used.

Off marks this word as acon-
trol word as opposed to a pro-
gram descriptor.

Not used.

These bits contain the contents
of the R register. Ifthe inter-
rupt occurred while in word
mode, this will be the base
address of the PRT. If the

Bit 16

Bit 17

Bits18-28

Bits 29-32

Bits 33 -47

5-47. INTERRUPT

This bit reflects the state of
the MSFF when this word is
generated. If the MSFF is on,
then bit 16 is on.

This bit reflects the state of
the sub-program level flip
flop at the time this word is
generated. If operation is in
a subroutine level (SALF on),
then bit 17 is on.

Not used.

Used to store the count con-
tained in the N register.

Used to store the contents of
the M register. If the inter-
rupt occurred while in char-
acter mode, this will be the
current source string word
address. If this interrupt oc-
curred while in word mode,
the filed will be 0,

RETURN CONTROL

WORD FORMAT. The format of the IRCW
(see figure 5-18) is as follows:

On marks this word as not

On marks this word as being
a control word or program

interrupt occurred while in Bit 0
character mode, this will be being an operand.
the "tally" register value. Bit 1
Not used. descriptor.
IDENTIFIES
OFF CONTROL WORD
T T T 1 i
ON|013 619112 24 27130433136 | 391 42, 45
- AT - .. b “:"“— - et
ON|] H 710113 16 124 26 26531 034 137 1 40' 43,46
-+ — 4= — -K - - bt o e Sl adiall SRSl
508 11114 17 20126129132 135 138 1411 44! 47
NOT R NOT USED N rM
USED
(RESET) SALF
MSFF
NOT USED

Figure 5-17. Interrupt Control Word Exploded

Bit 2

Bit 3

Bits 4 - 6
Bits 7-9
Bits 10-11
Bits 12-14

IDENTIFIES

CONTROL WORD

==L 1215 H18 12112412730 H33136 139 | 142 145
i B L & R Rl T Sl e et = s Bl Sk Sl
] 47 EwoHisHisHio! 2_2_2_5_25_3 31134 1 137 140143 146 |
[2H s s = HiaHi7 Ho07 2312629132 H35 138 141 144 147

BROF (H 2% rk G (K rF rC

r= REGISTER
Figure 5-18. Interrupt Return Control Word Exploded

This bit indicates that the B
register may have contained
a valid word. This is signifi-
cant if the interrupt occurred
while operating in character
mode. In this situation, the
B register will contain aword
of the destination string that
has been partially processed
and must be stored to retain
the information. When the
program 1is restarted, this
situation is recognized, the B
register is filled again from
the stack, and operation con-
tinues in a normal manner.

Off marks this word as con-
trol word as opposed to a
program descriptor.

Used to store the contents of
the H register which is the bit
pointer associated with the A
register.

Used to store the contents of
the V register which is the
bit pointer associated withthe
B register.

Used to store the contents of
the L register. This will nor-
mally be the syllable number of
the next syllable to be executed
when control is returned to this
portion of the program.

Used to store the contents of
the G register. This is the
character pointer associated
with the A register.

Bits 15-17 Used to store the contents of
the K register. This is the
character pointer associated
with the B register.

Used to store the contents of
F register.

Bits 18 ~32

Bits 33-47 These bits store the contents
of the C register. This is the
address of the program word
containing the next syllable to
be executed when control is
returned to this portion of the

program.

5-48. INITIATE CONTROL WORD (INCW)
DESCRIPTION. All of the control words that
have been discussed are stored in the stack
after being formed. (See figures 5-15 and
5-16.) The INCW is stored in the 10th octal
cell (word) of the Program Reference Table
for the particular program. It is used when
initiating the program. The main purpose of
the INCW is to contain the address of the top
word in the stack of the program to be re-
initiated. The top word will be the IRCW.
Thus, when a processor is initiated, the pro-
cessor accesses the INCW. In initiating pro-
cessor 2, the MCP has placed the INCW in
cell 10 (octal) of core memory and processor
1 executes anlInitiate P2 syllable. Ininitiating
processor 1, the MCP placed the INCW inthe
top of its "personal' stack. From the INCW,
the processor obtains the address of the top
word of the stack of the program to be initi-
ated. From this point, the processor canre-
store registers so that the program can be
continued. Since the mode of operation is
also stored, when the program is reinitiated,
adjustments can be made for the different
conditions that exist during character mode
operation.

5=49. INITIATE CONTROL WORD FORMAT.
The format of the INCW is as follows:

IDENTIFIES
CONTROL
WORD
OFF
N =V A 33{36/39,42145
ON[I A)0 N8 ¥6 922\ 25126, :34_E37:40_;435_46
______ 22 34,37140,4314¢
V818 A A 26028 2628] 32 H 35138141 1 44 147
NOT USED MODE s
(COPY OF IRCW)

Figure 5-19. Initiate Control Word Exploded

Bit 0 On marks this word as being
a control word or a descrip-
tor.

Bit 1 On marks this word as being
a control word or a program
descriptor.

Bit 2 Not used.

Bit 3 Off marks this word as acon-
trol word as opposed to a
program descriptor.

Bits 4-31 No used.

Bit 32 Used to store the mode of
operation at the time of inter-
rupt.

Bit 32 would be on if operation
has been in character mode
(CWMF on).

This is the address of the
IRCW. At the time the INCW
was formed, this address was
the S register.

Bits 33-47

Initiating an Input/Output Operation

5-50. GENERAL. When a program requires
an I/O operation, the MCP must execute an
initiate I/O syllable. This syllable may only
be initiated by processor 1. The initiate I/O
syllable will store the address of the 1/O
descriptor (I/O instruction) in cell 10 (octal)
of memory module 0. The processor will then
transmit an "initiate I/O" signal to central
control. The MCP is then free to continue
processing., When central control receives

5-20

the initiate signal, it begins the operation on
the lowest numbered I/O control unit that is
not busy. Central control has then completed
its function. The I/O control unit that was
initiated will obtain the I/O descriptor using
the address stored in cell 10. Using this de-
scriptor, it will initiate the desired 1/0 op-
eration. When the I/O operation is completed,
the I/O control unit will set its respective
"I/O control unit finished interrupt" flip flop.

5-51. DETAIL. When an I/O operationis re-
quired, an initiate I/O syllable must be execu-
ted. However, before this syllable is executed,
the address of the desired I/O descriptor
must be in the top of the stack. For example,
suppose acard reader I/O descriptor has been
stored in cell 142 (octal). A card reader op~
eration is required; therefore, 142 must be
placed in the top of the stackbefore the initi~-
ate I/0 syllable is executed. The initiate I/O
syllable stores the top word of the stack into
cell 10 of memory module 0. When the store
operation is completed, the processor sends
a signal to central control to indicate that an
I/O operation is requested. This signal will
set the commence timing flip flop in the cen-
tral control unit. This flip flop will then re-
lease the processor and initiate the operation
using the lowest numbered I/O control unit
that is available and not busy. 1/O control
selection priority is as follows:

I/O control unit 1 - first
I/O control unit 2 - second
I/0 control unit 3 - third

1/O control unit 4 - fourth

Each I/O control unit has a corresponding
admit descriptor flip flop (AD1F through
AD4F) in the central control unit. When the
I/O control unit is selected and initiated, the
corresponding admit descriptor flip flop is
set. This flip flop indicates that the corres-
ponding I/O control unit is currently busy.
The I/O control unit will then access the
word in cell 10 which contains the address of
the I/O descriptor. Using this address, the
I/O control unit obtains the desired I/O de-
scriptor. In the example, the card read I/O
descriptor would be accessed from cell 142,

After the I/Odescriptor hasbeentransferred
to the I/O control unit, the I/O operation can
be initiated. When the I/O control unit has
completed the 1/0O operation, the respective
admit descriptor flip flop is reset. However,
the I/O control unit finished interrupt flip
flop is set. Setting thisflip flop accomplishes
two functions. First, while the flip flop re-
mains set, the I/0O control unit is marked
busy; second, the presence of this flip flop
being set is transferred to the interrupt
section of central control. This will set the
value of this interrupt in the Interrupt Ad-
dress Register in central control (providing
that there are no interrupts present on the
system with a higher priority). The 1/0
finished interrupt flip flop will remain set
until the interrupt is handled by the proces-
sor, through the initiation of an "interrogate
interrupt" syllable (0211). Therefore, the I/O
control unit will be marked as busy at the
time the unit is initiated and continued to be
marked as busy until the corresponding I/0
finished interrupt flip flop is reset.

Load Operation

5-52. The LOAD switch on the console initi-
ates the load operation. This is used toload,
initially, a'""loader' routine into core memory.

5-21

This is the only way an operator has of initi-
ating the system after power is first turned
on or after the HALT button on the console
has been pushed. The 'loader" will call in
portions of the MCP that are needed to start
operation., The source of the "loader'" may
be from either the drum memory or the card
reader. This is selected by the LOAD SE-
LECT switchonthe console. If the card reader
is selected, one binary card is read into core
memory. The load operation is controlled by
the central control unit which forces an I/0
descriptor into an I/O control unitinorder to
read from the drum or from the card reader
into core memory. Memory location 20is the
first address into which information is read.
After the input operation is completed with-
out error, the central control unit sends an
initiating signal to the processors. Processor
2 ignores the signal, while processor 1 re-
sponds as follows: The C registerissetto 20
(octal) and a fetch operation is performed.
The initial word of the program read into
core memory is transferred from memory
location 20 into the P register. When the op~
eration is terminated, control of the proces-
sor continues with the execution of the first
syllable of the program word inthe P register.
Operation is in the control state with all the
registers cleared except the C, P, and T
registers.

SECTION

WORD MODE SYLLABLES AND

OPERATORS

GENERAL

6-1. In this section each operator or syllable
description will be preceded by the OSIL/
ESPOL mnemonic, name, engineering mne-
monic, and octal form.

6-2. In word mode, there are four types of
syllables identified by the two low-order bits
of the syllable. The four types of syllables
and their identification are:

Next

Low Low

Order Order Octade
Bit Bit Syllable Type Equivalent
0 0 Literal Call Oor4
0 1 Operator lors
1 0 Operand Call 2o0ré6
1 1 Descriptor Call Jor?7

In character mode, there is only one type of
syllable which is an operator.

LITC LITERAL CALL SYLLABLE (LTSL)
XXX0 or XXX4

6-3. The purpose of this syllable is to place
a positive value between 0 and 1023 decimal
(1777 octal) on the top of the stack. This is
accomplished in the following manner. The
ten high-order bits of the T register (which
contains the syllable) are placed in the low-
order 10 bits of the A register (bits 38 =>47),
All other bit positions of the A register are
cleared to zero. Prior to the transfer of the
ten bits from T to A, the stackis pushed down
if the contents of the A register are marked
valid.

OPDC OPERAND CALL SYLLABLE (OCSL)
XXX2 or XXX6

6-4. The objective of the Operand Call syl-
lable is to bring an operand into the stack.
Since operands may be stored inthe program
reference table, or in an area specified by
a descriptor which is in the PRT, the PRT
will be referenced most of the time through
"R" relative addressing. It is possible that
operands might also be in the stack as a
result of previous operations. In this case,
the stack must be referenced and an image
of the operand brought to the top of the stack
where it can be worked upon, This usually
is accomplished with "F-" relative address-
ing. The program segment string may also
be referenced through "C'" relative address-
ing, The first action of the Operand Call
syllable is to reference the PRT, stack, or
program segment string, through relative
addressing that is determined from:

1. the status of the SALF
2. the ten high order bits of the syllable
3. the status of the MSFF.

The designated word is then placed in the A
register. The relative addressing scheme is
shown in table 6-1. Prior to the execution of
the syllable, if the A register is marked
valid, it will be pushed down in the stack.
For a flow chart of the following discussion
refer to figure 6-1, Once the stack, PRT, or
program segment string has been accessed,
the following actions are taken according to
the type of word brought to the A register.

Operand or Control Word (Operand =Bit 0
Off; Control Word =Bits O, 1 On; 2 Off)

6-5. If the word accessed is an operand or
control word, the operation is terminated as

soon as the word is placed in the A register. this descriptor is not present in core memory.

The A register is marked as valid. If the processor is in normal state, the
presence bit interrupt is set. The A register
Data Descriptor (Bit O On) is marked as valid and the syllable termi-

nated. If the processor is in control state,
6-6. PRESENCE BIT OFF (BIT 2 OFF). the A register is also marked as valid and
This indicates that the area referenced by the syllable terminated.

TABLE 6-1

Relative Addressing Table

This table is valid for any syllable that specifies relative addressing capabilities, un-
less limiting specifications are outlined within the specific syllable.

Addressable
T0 n T2 Index Index Area Size
SALF A38 A39 A40 MSFF BASE Sign Bits In Decimal
========= —= o]
T(O =>9)
OFF - - - - R + A(38 => 47) (1,024)
TA =>9)
ON OFF - - - R + A(39 => 47) (512)
T2 =>9)
ON ON OFF - OFF F + A(40=>47) (256)
T(2 =>9)
ON ON OFF - ON (R+7)* + A(40 =>47) (256)
T(3 =>9)
ON ON ON OFF - C ** + A(41 =>47) (128)
T(3 =>9)
ON ON ON ON OFF F - A(41 =>47) (128)
T(3 =>9)
ON ON ON ON ON (R+7)* - A(41 =>47) (128)
T — | S S N — R—

- Irrelevant (part of the index).

* Relative addressing using as the base, bits 18 thru 32 of the word stored in the
programs PRT at R+7.

** "C" relative coding is forced to "R' relative for the store, program and 1/0 release
operators.

6-2

DECODE SYLLABLE AND ACCESS
WORD WITH RELATIVE ADDRESSA
ING AND ERING TO THE "A"

.REGISTER

WHEN ENTERING AT THIS POINT A
VALID WORD IS IN THE "A"™ REGISTER

IS WORD IN "A" AN OPERAND YES

ON, 3 OFF)

NO
4

IS "A" REGISTER PRESENCE BIT

NO

IS WORD IN "A" A PROGRAM
DESCRIPTOR (0,1 & 3 ON)

NO
A
IS "A" REGISTER WORD COUNT

FIEID (BITS 8-17)EQUAL TO
ZERO

NO

ENTER INDEX OPERATIONS AT
"C" SEE FIGURE 6-3

(0) OR CONTROL WORD (0 & 1/

YES

(2) EQUAL TO ZERO /

STATE

SET PRESENCE BIT INTERRUPT
IF PROCESSCR IS IN NORMAL

YES SUBROUTINE ENTRY
SEE FIGURE 6- 4

YES

A

PLACE IN "A" THE WORD ADDRES-
SED BY THE 15 LOW BITS OF "A"
REG.

/

NO

IS "A" REGISTER FIAG BIT (o)\ YES

EQUAL TO 1 /

SET FLAG BIT INTERRUPT IF
PROCESSOR IS IN NORMAL STATE

Figure 6-1. Operand Call Syllable Flow Chart

Y

SET "A" FULL BY SETTING AROF
SO WORD IN "A" IS TOP OF
STACK

EXIT
SYLIABLE

&

DECODE SYLLABLE AND ACCESS
WORD WITH RELATIVE ADDRESS-
ING, BRING WORD TO "A" REG.
AND TURN ON AROF.

WHEN ENTERING AT THIS POINT A
VALID WORD IS IN THE "A" REGISTER

IS WORD IN "A" AN OPERAND \YES
(0) OR CONTROL WORD (0 & /

1 ON, 3 OFF)
NO
IS PRESENCE BIT (2) OF "A" \YES SET PRESENCE BIT INTERRUPT
REG. EQUAL TO ZERO / égA'fP‘gOCESSOR IS IN NORMAL
NO

IS WORD IN "A" REGISTER A YES
PROGRAM DESCRIPTOR (0, 1
& 3 ON)

SUBROUTINE ENTEY
Yo SEE FIGURE 6-4

CLEAR "A" REGISTER TO ZERO

SFT 1S LOW OFDEF BITI OF "a"
EEG. TO ADDRESS OF WGl
ORIGIVALLY REOVGHT 7O "&A" FEG.

SET 3 HIGH ORDER BITS CF "A"
REG. TO 101 TO MARK AS
DESCRIPTOR THAT IS PRESENT

IS WORD COUNT FIELD (8-17) \ YES

IN "A" EQUAL TO ZERO /

NO
1

ENTER INDEX OPERATIONS AT
"C" SEE FIGURE 6-3

SET WORD COUNT FIELD (8-17)
IN "A" TC ZERC

Figure 6-2. Descriptor Call Syllable Flow Chart

6-4

SET "A" FULL BY SETTING AROF
SO WORD IN "A"™ IS TOP OF
STACK

SYLLABLE

ADJUST STACK UP SO
THAT "B" REG. IS VALID.

IS WORD IN "B" REGISTER
AN INTEGER (EXP = 0)

NO
Y

IS "B" REG. EXPONENT > O
(BIT 2 OFF)

NO

SHIFT "B" MANTISSA RIGHT
& COUNT EXPONENT TOWARD
ZERO UNTIL AN INTEGER

(EXP = 0)

IS THE MANTISSA OF WORD

YES

YES

IS THE 13TH OCTADE OF
"B" EQUAL TO ZERO

NO

SET INTEGER OVERFLOW
INTERRUPT IF PROCESSOR
IS IN NORMAL STATE

SHIFT "B" REG. MANTISSA
LEFT AND COUNT EXPONENT
DOWN (NORMALIZE THE "B"
REG.)

ROs

SET "A" FULL SO WORD
IN "A" IS TOP OF STACK

IN "B" REG. NEGATIVE
(BIT 1 OFF) /

NO

ROUND THE WORD IN THE
"B" REGISTER USING LAST

IS WORD IN "B" REG. NEGATIVE\

NO

OCTADE SHIFTED FROM "B"
IF FOUR CR GREATER.

1

IS IOWER 10 BITS OF WORD IN
"B" » WORD COUNT FIELD IN "A"

NO

IS WORD IN "B" REG. ZERC

NO

YES

ADD 10 LOW-CRDER BITS OF
"B" TO 15 LOW-CRDER BITS
OF IIA"

SET INVALID INDEX
INTERRUPT IF PROCESSCR
IS IN NORMAL STATE

YES

SET "B" REGISTER TO EMPTY
BY RESETTING "BROF"

\

RETURN TO SYLLABLE
CAUSING ENTRY

Figure 6-3. Index Operations—Operand and Descriptor Call Syllable

6-5

EXIT
SYLLABIE

IS ARGUMENT BIT (5)
IN "A" = 1 AND
¥SFF = ©

NO

IS MODE BIT (L) IN
"A" = 1 AND ARGUMENT
(5) BIT = 0

NO

IS "B" REGISTER
EMPTY (BROF OFF)

S

S /

\KT/

NO

[
PUSH WORD IN
"B" INTO CORE

PORTION OF STACK

YES

IS ARGUMENT BIT
(5) IN "aA" EQUAL
0 1

NO

¥

YE:

BUILD MARK STACK
CONTROL WORD IN "B"
REG,

(ACCIDENTAL ENTRY)

INCREASE THE REGISTER
BY ONE AND STCRE
MSCW IN STACK

BUILD RETURN CONTROL
WORD IN "B" REG.

1

INCREASE THE "s"
REGISTER BY ONE AND
STORE THE RCW IN THE STACK

/

SET "C" TO 15 LOW
BITS OF "A" & SET
“L" TO ZERO.

SET "A" TO FULL BY
SETTING AROF

1

ARGUMENT BIT IN
"A" REG. EQUAL
100

NO

EXIT SYLLABLE

\ms
/

SET "F" TO THE CORE ADDRESS
OF RETURN CONTROL WORD JUST
PLACED IN THE STACK BY
TRANSFERRING "S" TO "p"

SET "F" FROM

BITS 18-32

OF "A" REG
(ACCIDENTAL ENTRY)

1

SET "A" & "B' EMPTY THRU
RESETTING AROF % BROF
SET SALF TO 1

SET MSFF T0 0

IS MOLE BIT (L)
IN "A" EQUAL
T0 O

NO

SET CWMF TO 1 (CHARACTER
MODE) CLEAR "R" & "S" SET X
{18-32) T0 ADDRESS IN "S"
REGISTER (RCW)

YES

EXIT SYLLABLE

Figure 6-4. Subroutine Entry—Operand or Descriptor

Call Syllable

6-6

6~7. PRESENCE BIT ON (BIT 2 ON), When
the presence bit is on, the word count field is
interrogated to see if it equals zero.

6~8. When the word count field is equal to
zero (Bits 8-17 = 0) then the word specified
by the data descriptor is accessed and placed
in the A register. If this word is an operand
or control word, the A register is markedas
valid and the syllable terminated. Ifthe word
accessed was a descriptor (bit 0 on), and if
the processor is in normal state, then a flag
bit interrupt is set and the syllable ter-
minated,

6-9. When the word count field is not equal
to zero (Bits 8-17 # 0) the data descriptor
is referencing an area such as an array
where indexing is required, The index is the
second word of the stack. If the index contains
an exponent value then it must be converted
into an integer. In this operation it is
possible to have an integer overflow inter-
rupt, at which time the operation is termi-
nated with the data descriptor in the top of
the stack and the index as the second word
of the stack. The integer overflow interrupt
may only be set if the processor isoperating
in normal state. With an integer index, the
low 10 bits of the index are compared to the
word count field, The value of the integer
must be a positive value and its magnitude
less than that of the word count field. If
either of the conditions do not exist and if
the processor is operating in normal state,
an invalid index interrupt is set, the opera-
tion is ended with the data descriptor in the
top of the stack and with the index as the
second word, At this point, the base address
(contained in the lower 15 bits of the data
descriptor) is added to the index (10 bits),
and the word referenced with the resulting
address is accessed and placed in the A
register. If this accessed word is anoperand
or control word, the word is marked as
valid and left as the top word of the stack.
The index value is deleted from the stack.
In either case, this completes the operation,
If the word accessed is a descriptor (10 bit
on) and the processor is in normal state, a
flag bit interrupt is set.

Program Descriptor (Bits 0, 1, 3 On)

6-10. PRESENCE BIT OFF (BIT 2 OFF).
This indicates that the program segment

6-7

string which this descriptor references is
not present in memory. The presence bit
interrupt is set if the processor is in the
normal state, and the syllable is terminated.
The A register is marked as valid,

6-11. PRESENCE BIT ON (BIT 2 ON). When
the presence bit is on, the argument bit is
interrogated to see if formal parametersare
needed.

6-12. ARGUMENTBITOFF, If theargument

bitis off (Bit 5 Off), these formal parameters
are not required., At this point the CWMF is
interrogated.

6-13. If the CWMF bit is on (Bit 4 On), the
program descriptor is left in the top of the
stack as a valid word and the syllable is
terminated. This is called a special program
descriptor.

6~-14. If the CWMF bit is off (Bit 4 Off), the
processor is entering word mode. This is call-
ed an "accidental entry." A MSCW and an RCW
are generated and placed in the top of the stack.
The C register is set from bits 33 through 47
of the program descriptor. The I registeris
set from the contents of bits 18 through 32
of the program descriptor. The SALF is turned
on. An exit is made from this syllable with
the MSFF in the off state. The next syllable
to be executed will be the first syllable of
the referenced program segment string.

6-15. ARGUMENT BIT ON. If the argument
bit is on (Bit 5 On), then formal parameters
are required. When formal parameters are
required, the MSFF is interrogated.

6~16. If the MSFF is off, then the referenced
program descriptor is placed in the top of
the stack and the syllable is terminated.

6-17. If the MSFF is on, the mode must be
determined.

6-18. If CWMF is on (Bit 4 On), the proc-
essor is entering character mode. Since the
MSFF 1is on, a MSCW has already been
placed in the stack. At this time, a RCW is
generated and placed in the top of the stack.
The C register is set from the program
descriptor. The F register is set from the
contents of the S register. This leaves the
F register pointing at the RCW. The contents
of the S register (which are identical to F at
this time) are stored in bits 18 through 32 of
the X register. The X register then contains

the address of the last previous RCW or loop
control word placed inthe stack when inchar-
acter mode. The CWMF and SALF are then
turned on. The first syllable of the referenced
program segment string is then executed.
This program would be in character mode.

6-19, If CWMF is off (Bit 4 Off), the processor
is entering word mode. Again, since the
MSFF is on, a MSCW has already been
placed in the stack, At this time, an RCW is
generated and placed in the top of the stack.
The C register is set from the program
descriptor, F register is set from the
contents of the S register. This leaves the
F register pointing at the RCW. The SALF
is turned on, and an exit is made with the
MSFT in the off state. The next syllable to
be executed will be the first syllable of the
sub-program,

DESC DESCRIPTOR CALL SYLLABLE (DCSL)
XXX3 OR XXX7

6-20. The function of this syllable is to
reference the stack program reference table
or program segment string for a descriptor
and to place this descriptor in the stack,
When the stack or PRT is referenced, either
an operand or a descriptor may be obtained.
In the case of an operand, a data descriptor
is generated which contains the address of
the referenced operand., When a program
descriptor is referenced, control is trans-
ferred to the program segment specified by
the program descriptor and operationis sub-
sequently in the sub-program level., The
first action of the DESC is to reference the
stack, PRT, or program segment string
through relative addressing, and bring the
word addressed to the A register., If the A
register is valid prior to this operation, its
contents will be pushed down into the stack.
Once the PRT, stack, or program segment
string have been accessed, and the word
brought to the A register, the following
actions occur according to the type of word
accessed (figure 6-2),

Operand or Control Word (Operand = Bit O
Off; Control Word =Bits 0, 1 On; 3 Off)

6-21. A data descriptor is generated which
contains the absolute address of the refer-
enced word. This data descriptor is placed
in the top of the stack as a valid word.

6-8

Data Descriptor (Bit 0 On)

6-22., PRESENCE BIT OFF (BIT 2 OI'F).
This indicates that the word referenced by
this descriptor is not present in memory,
The presence bit interrupt is set if the
processor is in normal state and the A
register is marked as valid. The syllable
is terminated.

6-23. PRESENCE BIT ON (BIT 2 ON). When
this bit is on, the word count field is
interrogated.

6-24. If the word count field is equal to zero
(Bits 8-17 = 0), then the referenced data
descriptor with a word count field equal to
zero is referencing a one word operand and
requires no index, The data descriptor is
placed in the top of the stack and the
syllable is terminated.

6-25, If the word count field is not equal to
zero (Bits 8-17 # 0), then the datadescriptor
is referencing an area such as an array
when indexing is required. The index is the
second word of the stack. If the index is a
fractional number (exponent not equal to
zero), then it must be converted into an
integer. In this operation it is possible to
have an integer overflow interrupt if the
processor is in normal state. The integer 10
low-order bits are compared to the word
count field. They must be a positive number,
and have an absolute value of less than the
value found in the word count field, If either
of the previous conditions do not exist an
invalid index interruptis set. If the processor
is operating in normal state, the operationis
ended with the data descriptor in the top of
the stack and the index as the second word of
the stack, At this point the base address
(contained in bits 33 through 47 of the data
descriptor) is added to the top word of the
stack to create the absolute address. The
absolute address formed by the indexing
operation is placed back into bits 33 through
47 of the data descriptor. The word count
field is set to zero. The index is eliminated
from the stack and the altered data descriptor
is placed in the top of the stack as a valid
word. The syllable is terminated.

Program Discriptor (Bits 0, 1, 3 On)

6-26. The actions that take place when a
DESC accesses this type of word are the

sa.ne as those described under the program
descriptor access of the Operand Call syl-
lable, For this action refer to that syllable,

OPERATOR SYLLABLES

6--27, The word mode operators are specified
and the description of the operators assumes
any necessary stack adjustments, For certain
operators an operand is made into aninteger
as follows:

a, If the exponent is zero, the operand is
not changed.

b, If the exponent is positive and non~zero,
the operand is normalized and the ex-
ponent reduced. If the exponent is not
reduced to zero as a result of normal-
izing, the integer overflow interrupthit
is set.

c. If the exponentisnegative and non-zero,
the operand is shifted to the right until
the exponent equals zero, and the man-
tissa is rounded according to the follow-
ing rules:

1. For positive operands, the mantissa
is increased in magnitude by one, if
the fractional part of the operand
(the digits shifted out of the register)
was greater than or equal to one-
half,

2, For negative operands, the mantissa
is increased in magnitude by one, if
fractional part of the operand was
greater in magnitude than one-half.

ARITHMETIC OPERATORS—SINGLE
PRECISION

6-28. The single precision arithmetic opera-
tors operate on the two top operands in the
stack. They remove the two top operands
from the stack and leave the result inthe top
of the stack.

ADD Single Precision Add (AD1L) 0101

6-29. The operands in the A and B registers
are added algebraically and the sum left in
the B register. For all conditions, at the end
of the operation the A register is set to
empty, the B register is set to full, and the
B register flag bit is set to zero.

6-9

6-30, If either operand has a mantissa of
zero, the non-zero operand is the result. If
both operands have a mantissa of zero, the
B register is set to all zeros. In either
case, the operation is terminated.

6-31. If the mantissa signs and the ex-
ponents of the operands are equal, the
mantissas are added and the sum placed in
the B register. If the sum exceeds 13 octal
digits, the mantissa of the sum is shifted
right one octal place, rounded and the ex-
ponent algebraically increased by one.

6-32. If the exponents of the operands are
equal but the mantissa signs are unequal, the
difference of the mantissa with appropriate
sign is placed in the B register. If the
difference is equal to zero, the B register
is set to all zeros.

6-33. If the exponents of the operands are
unequal, the operands are first aligned. If
the alignment causes the smaller operand to
be shifted right 14 octal places, the larger
operand is the result,

6-34. If the alignment causes the smaller
operand to be shifted right, but less than 14
octal places, the digits of the smaller oper-
and shifted out of the register are used to
obtain the result.

6-35. If the signs of the operands are equal,
the mantissas are added and the sum placed
in the B register. If the sum does not exceed
13 octal digits, the last digit shifted out of
the register is used for rounding the result.
If the sum is 14 digits, the mantissa in B is
rounded to 13 digits.

6-36. If the signs of the operands are unequal,
the digits are complemented as they are
shifted out of the register during alignment.
In effect, the equivalent of the 15 digit sub-
traction occurs in this latter case and the
result is rounded to the 13 most significant
digits of the 15 digit result.

6-37. If the result has an exponent greater
than +63, the exponent overflow bit is set in
the interrupt register. The B register con-
tains the correct mantissa, mantissa sign
and exponent sign. The magnitude of the
correct exponent is contained in the exponent
field of the B register modulo 64,

SUB Single Precision Subtract (SU1L) 0301

6-38. The operand in the A register is alge-
braically subtracted from the operand in the
B register and the difference left in the B
register. An add operation is performed as
specified for the ADD operator except for
the conditions of sign comparison.

MUL Single Precision Multiply (MU1L) 0401

6-39. The operands in the A and B registers
are algebraically multiplied and the product
left in the B register. For all conditions, at
the end of the operation the A register is set
to empty; the B register is set tofull and the
B register flat bit is set to zero.

6-40. If the mantissa of either operand is
zero, the B register is set to all zeros.

6-41. If the exponents of the operands are
both zero, the 26 digit product of the mantissas
is computed. If the 13 most significant digits
of the product are all zero, the 13 least
significant digits are the mantissa of the
result and the exponent of the result is zero,
If the 13 most significant digits of the product
are not all zero, the product is normalized
and rounded to 13 digits. A mantissa of
thirteen sevens is not rounded.

6-42, If the exponents of the operands arenot
both zero, the operands are normalized. The
26 digits product of the mantissas is com-
puted, normalized and rounded to 13 digits.

6-43. If the result has an exponent greater
than +63 or less than -63 the exponent over-
flow bit or exponent underflow bit respec-
tively, is set in the interrupt register. The B
register contains the correct mantissa, man-
tissa sign and exponent sign. The magnitude
of the correct exponent is contained in the
exponent field of the B register modulo 64.

DIV Single Precision Divide (DV1L) 1001

6-44. The operand in the B register is alge-
braically divided by the operand in the A
register and the quotient left in the B regis-
ter. For all conditions, after the operation
the A register is set to empty, the B regis-
ter is set to full and the B register flag bit
is set to zero.

6-45. If the mantissa of the B register is zero,
the B register is set to all zeros. If the
mantissa of the A register is zero, thedivide
by zero bit in the interrupt registeris set. In
either case, the operation is terminated.

6-46. If the mantissa of neither operand is
zero, both operands are normalized and the
operand in the B register is divided by the
operand in the A register. Fourteen signi-
ficant quotient digits are developed. The
quotient is rounded to thirteen significant
digits and left in the B register.

6~47. If the result has an exponent greater
than +63 or less than -63, the exponent over-
flow bit or exponent underflow bit, respec-
tively, is set in the interrupt register. The
B register contains the correct mantissa,
mantissa sign and exponent sign, The magni-
tude of the correct exponent is contained in
the exponent field of the B register modulo
64.

IDV Integer Divide (DV3L) 3001

6-48. The operand in the B register is alge-
braically divided by the operand in the A
register and the integer part of the quo-
tient is left in the B register. For all
conditions, after the operation in the A
register is set to empty, the B register
is set to full and the B register flaghbit is set
to zero.

6-49. If the mantissa for the B register is
zero, the B register is set to all zeros, If
the mantissa of the A register is zero, the
divide by zero bit is set in the interrupt
register. In elther case, the operation is
terminated.

6-50, If the mantissa of neither operand is
zero, both operands are normalized., If the
exponent of the B register is algebraically
less than the exponent of the A register after
both operands have been normalized, the B
register is set to all zeros. If the exponent
of the B register is algebraically equal to or
greater than the exponent of the A register,
the divide operation proceeds until an integer
quotient or a quotient of 13 significant digits
is calculated.

6-51. If an integer quotient is developed, the
quotient is left in the B register with zero
exponent. If a non-integer quotient is de-
veloped, the integer overflow bit is set inthe
interrupt register and the 13 significant digit
quotient with the correct exponent modulo
64 is left in the B register.

RDV Remainder Divide (DV4L) 7001

6-52, The operand in the B register is alge-
braically divided by the operand in the A
register to develop an integer quotient. The
remainder after the division is left in the B
register, For all conditions, after the opera-
tion the A register is set to empty, the B
register is set to full and the B register flag
bit is set to zero.

6-53. If the mantissa of the B register is
zero, the B register is set to all zeros. If
the mantissa of the A register is zero, the
divide by zero bit is set in the interrupt
register., In either case, the operation is
terminated.

6-54, If the mantissa of neither operand is
zero, both operands are normalized. If the
exponent of the B register is algebraically
less than the exponent of the A register after
both operands have been normalized, the
operand in the B register is the result, If the
exponent of the B register is algebraically
equal to or greater than the exponentofthe A
register; the divide operation proceeds until
an integer quotient or a quotient of 13 signi-
ficant digits is calculated.

6-55. If an integer quotient is developed and
the mantissa of the remainder is not zero,
the remainder with exponent modulo 64 is
placed in the B register. The sign of the
remainder is specified by the sign of the
dividend, If an integer quotient is developed
and the mantissa of the remainder is zero,
the B register is set to all zeros,

6-56. If a non-integer quotient is developed,
the integer overflow bit is setin the interrupt
register and the Bregisteris settoall zeros.

6-57, If the result has an exponent less than
-63 and there is no integer overflow, the ex-
ponent underflow bit is set in the interrupt
register. The B register contains the correct

mantissa, mantissa sign and exponent sign,
The magnitude of the correct exponent is
contained in the exponent field of the B regis-
ter modulo 64.

ARITHMETIC OPERATORS—DOUBLE
PRECISION

6-58. For the double precision arithmetic
operators, an operand occupies two words.
The mantissa of the second word of an
operand is considered an extension of the
mantissa of the first word of anoperand, i.e.,
the mantissa of the first word of an operand
is an integer and the mantissa of the second
word of the operand is a fraction. When in
the stack, the first word of a double precision
operand is in the top of the stack and the
second word of a double precision operand
is in the second word of the stack. There-
fore, double precision arithmetic operators
operate on four words in the stack, removing
those words from the stack and leaving the
result as two words in the stack.

6-59. For the add, subtract and multiply
operators, two integer operands yield an
integer result if no overflow occurs. If one
or both operands is non-integer or the result
overflows, the result is non-integer.

6-60, During the execution of all arithmetic
operators, the exponents of the operands are
carried to seven bits., At the completion of
the execution of an arithmetic operator, the
exponent is reduced to six bits. If the ex-
ponent of the result required more than six
bits, the appropriate interrupt bit is set in
the interrupt register.

DLA Double Precision Add (AD2L) 0105

6-61. The double length operand in the A and
B registers is algebraically added to the
double length operand addressed by the S
register. The double length result is left in
the A and B registers and the S register is
reduced by two. Bit positions 48 through 40
of the least significant word of the double
length result are set to zero. The flag bit of
the most significant word of the double length
result is set to zero. All non-zero results
are normalized. The A and B registers are
both set to full.

6-62. If the exponents of the two operands are
equal, the double length mantissas are alge-
braically added. If the doublelengthmantissa
exceeds 26 octal digits, the double length
mantissa is shifted right one place and the
exponent algebraically increased by one. The
result is normalized. If the mantissa of the
result is zero, the A and B registers are set
to all zeros and the operation is terminated.

6-63. If the exponents of the operands are
not equal, alignment of the double length
operands occurs. The alignment of double
length operands is equivalent to the align-
ment of single lengthoperands. When shifting
a double length mantissa, digits are shifted
between the least significant digit of the
most significant word of the operand to the
most significant digit of the mantissa of the
least significant word of the operand.

6-64. If the mantissa of the smaller operand
is shifted right 26 or more octal digits during
alignment, the larger operand, normalized,
is the result.

6-65. After alignment of operands with un-
equal exponents, the mantissas of the operands
are algebraically added. If the double length
mantissa exceeds 26 octal digits, the double
length mantissa of the result is shifted to the
right one place and the exponent algebraically
increased by one. The result is normalized.

6-66. If the exponent of the result is greater
than +63 or less than -63 the exponent over-
flow bit or exponent underflow bit, respec-
tively, is set in the interrupt register. The
result in the A and B registers contains the
correct double length mantissa, mantissa
sign and exponent sign. The magnitude of the
correct exponent is contained in the exponent
field of the A register modulo 64,

DLS Double Precision Subtract (SU2L) 0305

6-67. The double length operand in the A and
B registers is algebraically subtracted from
the double length operand addressed by the S
register. An addition operation is performed
as specified for the add double length operator,
(see paragraphs 6-61 through 6-66) except
that the conditions of sign comparison are
changed to effect an algebraic subtraction.

DLM Double Precision Multiply (MU2L) 0405

6~68. The double length operand in the A and
B registers is algebraically multiplied by the
double length operand addressed by the S reg-
ister. The double length result is left in the
A and B registers and the S register is re-
duced by two. Bit positions 48 through 40 of
the least significant word of the double length
result are set to zero. The flag bit of the most
significant word of the double length resultis
set to zero. Allnon-zeroresultsarenormal-
ized. The A and B registers are both set to
full,

6-69. Both double length operands are nor-
malized. If either operand has a mantissa of
zero, the A and B registers are set to all
zeros and the operation isterminated.

6-70. If neither double length operand has a
mantissa of zero, the normalized double length
mantissas of the two operands are multiplied.
Twenty seven digits of the 52 digit product are
retained. The productisnormalized and trun-
cated to a 26 digit result. The twoleast signi-
ficant digits are notconsidered aprecise part
of the resultbecause there may be a maximum
error of 1inthe twenty-fifthdigit position.

6~71. If the exponent of the result is greater
than +63 or less than -63, the exponent over-
flow bit or exponent underflowbitinthe A and
B registers containsthe correct double length
mantissa, mantissa sign and exponent sign.
The magnitude of the correct exponentis con~
tained in the exponent field of the A register,
modulo 64.

DLD Double Precision Divide (DV2L) 1005

6-72, The double length operand addressed by
the S register is algebraically divided by the
double length operand inthe A and B registers.
The double length result is leftinthe A and B
registers and the Sregister is reduced by two.
Bit positions 48 through 40 of theleast signi-
ficant word of the double length result are set
to zero. The flag bit of the most significant
word of the double length resultis setto zero.
All non-zero results are normalized. The A
and B registers are both set to full,

6-73. The double length operand in the A and
B registers is normalized. If the operand in

the A and B registers hasamantissaof zero,
the double length operand addressed by the S
register is placed in the A and B registers as
the result, the divide by zero bit is set in the
interrupt register and the operationistermi-
nated.

6-74, If the double length operand inthe A and
B registers does not have a mantissa of zero,
the double length operand addressed by the S
register is normalized. If the double length
operand addressed by the S register has a
mantissa of zero, the A and B registers are
set to all zeros and the operation is termi-
nated.

6-75. If neither double length operand has a
mantissa of zero, the divide operation on the
normalized operands takes place. A resultof
twenty six significant quotient digits is de-
veloped.

6-76. If the exponent of the result is greater
than +63 or less than -63, the exponent over-
flow bit or exponent underflow bit, respec-
tively, is setinthe interrupt register. The re-
sult in the A and B registers contains the cor-
rect doublelengthmantissa, mantissa sign and
exponent sign. The magnitude of the correct
exponent is contained in the exponent field of
the A register modulo 64.

LOGICAL OPERATORS
LND Logical And (LOAL) 0415

6-77. Set a one in each position of the B reg-
ister, except the flag bit, when a one appears
in the corresponding bit positions in both the
A and the B registers. Set a zeroin the cor-
responding position of the B register except
the flag bit, when a one is not in the corre-
sponding positions of boththe A and the B reg-
isters. The flag bit of the word in the B
register is unaltered. The A register is set
to empty.

LOR Logical Or (LOOL) 0215

6-78. For all bit positions of the B register,
except the flag bit, set the bit to one if the
corresponding bit position in either the A
or B registers is one, otherwise set the bit
to zero. The flag bit of the word in the B
register is unaltered. The B register is set
to empty.

LQV Logical Equivalence (LOEL) 1015

6-79. Set a one in each position of the B reg-
ister, except the flag bit, when the correspond-
ing bit positions of the A and Bregisters are
equal. Setazeroineachpositionofthe B reg-
ister, except the flag bit, when the correspond-
ing bit positions of the A and Bregisters are
not equal. The flagbitof the Bregister is un~
altered. The Aregisteris settoempty.

LNG Logical Negate (LONL) 0115

6-80. Complement every bit position of the A
register except the flag bit which isunaltered.

RELATIONAL OPERATORS

6-81. The relational operators perform com-
parisons on the two top operandsinthe stack,
The operands are removed from the stack and
the result of the comparison is placed in the
top of the stack. The operands may be in an
unnormalized form and the required normal-
izing/scaling will take place inthe comparison
operation. For the relational operators,
operands of zero, minus zero and a zero
mantissa with non-zero exponent are consid-
ered equal. Flag bits are ignored.

GTR B Greater Than A (BGAL) 0225

6-82. The operand in the B register is alge-
braically compared with the operand in the A
register. If the value of the operand in the B
register is algebraically greater than the val-
ue of the operand in the A register, the low or-
der bit of the B register is set to one and all
other bits of the B register are set to zero;
otherwise, all bits of the B register are set
to zero. The A registeris settoempty.

GEQ B Greater Than or Equal to A (BGEL) 0125

6-83. The operand in the B register is alge-
braically compared with the operand in the A
register, If the value of the operand in the B
register is algebraically greater than or equal
to the value of the operand in the A register,
the low-order bit of the B register is set to
one and all other bits of the B register are set
to zero; otherwise, all bits of the B register
are set to zero, The A register is set to

empty.

EQL B Equal to A (BEQL) 4425

6-84, The operand in the B register is alge~
braically compared with the operand in the A
register. If the value of the operand in the B
register is algebraically equal to the value of
the operand in the A register, the low-order
bit of the B registeris settoone and all other
bits of the B register are set to zero; other-
wise, all bitsof the B register are set to zero.
The A register is set to empty.

LEQ B Less Than or Equal to A (BLEL) 4125

6-85. The operand in the B register is alge-
braically compared with the operand in the A
register. If the value of the operand in the B
register is algebraically less thanor equal to
the value of the operand inthe A register, the
low~order bit of the B register is set to one
and all other bits of the B register are set to
zero; otherwise, all bits of the B register are
set to zero. The A register is set to empty.

LSS B Less Than A (BLAL) 4225

6-86. The operand in the B register is alge-
braically compared with the operand in the A
register. If the value of the operand in the B
register is algebraically less than the value of
the operand in the A register, the low-order
bit of the Bregisteris settoone and all other
bits of the B register are set to zero; other-
wise, all bits of the B register are set to zero.
The A register is set to empty.

NEQ B Not Equal to A (BNEL) 0425

6-87. The operand in the B register is alge-
braically compared with the operand in the A
register. If the value of the operand in the B
register is algebraically not equal to the value
of the operand inthe A register, the low-order
bit of the B registeris settoone and all other
bits of the B register are set to zero. The A
register is set to empty.

BRANCH OPERATORS

6-88. For the branch operators, the top of the
stack specifies the cell or syllable to which
branching occurs. Branching is either rela-
tive tothelocation of the branch operator or to
an absolute address, as determined by the type
of word in the top of the stack. An operand
specifies the number of syllables (for syllable

branches) or words (for word branches) to be
jumped, either forward or backward; a de-
scriptor specifies an address to which branch-
ing occurs. Conditional branchoperatorsuse
the low-order bit of the second word iu the
stack as the true-false condition on which to
branch. Conditional branches take place ona
false condition.

BFW Branch Forward Unconditional (BFUL)
4231

6-89. If the flag bit of the wordinthe A reg-
ister is zero, the C and L registers are in-
creased by the 12 low=-order hits of the word
in the A register. If the flag bit and the pre-
sence bit of the word in the A register are
both one, the 15 low-order bits of the word in
the A register are transferred to the C reg~
ister and the L register is set to zero. In
both cases the A registeris settoempty.

6-90. If the flag bit of the word inthe A reg~
ister is a one and the presence bit is a zero,
the presence bit is set in the interrupt reg-
ister, the contents of the A register are re-
tained and the operation terminated.

BBW Branch Backward Unconditional (BBUL)
4131

6-91. If the flag bit of the word inthe A reg-
ister is zero, the C and L registers are de-
creased by the 12 low-order bits of the word
in the A register. If the flag bit and the pre-
sence bit of the Aregister are bothone, the 15
low-order bits of the word in the A register
are transferred to the C register and the L
register is set to zero. In both cases the A
register is set to empty.

6-92. If the flag bit of the word inthe A reg-
ister is a one and the presence bit is a zero,
the presence bit is set in the interrupt reg-
ister, the contents of the A register are re-
tained and the operation terminated.

BFC Branch Forward Conditional (BFCL) 0231

6-93. If the low-order of the word in the B
register is a one, the A and B registers are
set to empty and the operationterminated.

6-94. If the low~order bit of thewordinthe B
register is a zero and the flagbit of the word
in the A register is a zero, the C and L reg-
isters are increased by the 12low-order bits
of the word inthe A register. If the low-order
bit of the word in the B registeris a zero and
the flag bit and the presence bit of the word in
the A register are both one, the 15low-order
bits of the word inthe A register are transfer-
red to the C register and the L. register is set
to zero. In both cases, the A and B registers
are set to empty.

6-95. If the low-order bit of the wordinthe B
register is a zero, the flag bit of the word in
the A register is a one and the presence bit
of the word in the A register is a zero, the
presence bit is set in the interrupt register,
the contents of the A and B registersare re-
tained and the operation is terminated.

BBC Branch Backward Conditional (BBCL) 0131

6-96. If the low order bit of the word in the B
register is a one, the A and B registers are
set to empty and the operation terminated.

6-97. If the low-order bit of the wordinthe B
register is a zero and the flagbit of the word
in the A register is a zero, the C and L reg-~
isters are decreased by the 12 low-order bits
of the word inthe A register. If the low-order
bit of the word in the Bregisteris a zero and
the flag bit and the presence bit of the word in
the A register are both one, the 15low-ordered
bits of theword inthe Aregister are transfer-
red to the C register and the L register is set
to zero. In both cases, the A and B reg-
isters are set to empty.

6-98. If the low-order bit of the word inthe B
register is a zero, the flag bit of the word in
the A register is a one and the presence bit
of the word in the A register is a zero, the
presence bit is set in the interrupt register,
the contents of the A and B registersare re-
tained and the operation is terminated.

BRT Branch Return (RJPL) 0135

6-99. If the presence bit of the word inthe A
register is zero, the presence bitis setin the
Interrupt register and the operation istermi-
nated.

6-100. If the presence bit of thewordinthe A
register ison, the operationis continued. The
S registeris set to the contents of bit positions
18 through 32 of the word in the A register.
The C register is settothe contents of bit po-
sitions 33 through 47 of the word inthe A reg-
ister. The L registeris settozero. The con-
tents of the cell addressed by the S register,
the MSCW, is read from memory. The R and
T registers are set to the contents of their
respective fields of the MSCW. The MSFF and
the SALF are set to the contents of their re-
spective positions of the MSCW. The Sregis~
ter isdecreased by one, The A and B registers
are set to empty.

LFU Word Branch Forward Unconditional
(JFUL) 6231

6~101. If the flag bit of thewordinthe A reg-
ister is zero, the C register is increased by
the 10 low-order bits of the wordinthe A reg-
ister, and the L register is setto zero. If the
flag bit and the presence bit of the word in the
A register are both one, the 15 low-order bits
of the word in the A register aretransferred
to the C register and the L register is set to
zero. In both cases, the A register is set to
empty.

6-102, If the flag bit of the wordinthe A reg-
ister is a one and the presence bitis zero, the
presence bit is set in the interrupt register,
the contents of the A register are retained and
the operation terminated.

- LBU Word Branch Backward Unconditional

(JBUL) 6131

6-103. If the flag bit of thewordinthe A reg-
ister is zero, the C register is decreased by
the 10 low~order bits of thewordinthe A reg-
ister, and the L register is setto zero. If the
flag bit and the presence bit of the A register
are both one, the 15 low~order bits of the word
in the Aregister aretransferredtothe C reg-
ister and the L registerissetto zero. In both
cases, the A register is set to empty.

6-104. If the flag bit of the wordinthe A reg-
ister is a one and the presence bit is a zero,
the presence bit is set in the interrupt regis-
ter, the contents of the A register are retained
and the operation terminated.

LFC Word Branch Forward Condifiondl (JFCL)
2231

6-105. If thelow-order bit of the word inthe B
register is a one, the A and B registers are
set to empty and the operation terminated.

6-106. If thelow-order bit of the wordinthe B
register is a zero and theflaghitof the word
in the A register is a zero, the C register is
increased by the 10low-order bits of the word
in the A register, and the L registeris set to
zero. If the low~order bitof the word in the B
register is a zero and the flag bit and the
presence bit of the word inthe A register are
both one, the 15 low-order bits of the word in
the A register are transferredtothe C regis-
ter andthe L registeris settozero. In both of
the cases the A and B registers are set to
empty. If the low-order bit of the wordin the
B register is a zero, the flag bit of the word
in the A register is a one, and the presence
bit of the word inthe A registeris a zero, the
presence bit is set in the interrupt register,
the contents of the A and B registersare re-
tained and the operation is terminated.

LBC Word Branch Backward Conditional
(JBCL) 2131

6-107. If the low-order bit of the word inthe B
register is aone, the A and Bregisters are set
to empty and the operation terminated.

6~108, If the low-order bit of the word inthe
B register is a zero and the flag bit of the
word in the A register is a zero, the C regis-
ter is decreased by the 10 low-order bits of
the word in the A register, and the L register
is set to zero. If thelow-order bit of the word
in the B register is a zero and the flag bit
and the presence bit of the word in the A
register are both one, the 15 low-order bits
of the word in the A register aretransferred
to the C register and the L register is set
to zero. In both cases, the A and B registers
are set to empty.

6-109. If the low-order bit of the word inthe
B register is a zero, the flag bit of the word
in the A register is a one and the presence
bit of the word in the A register is a zero,
the presence bit is set in the interrupt regis-
ter, the contents of the A and Bregisters are
retained and the operationisterminated.

CBD Non-Zero Field Branch Backward,
Destructive (ZBDL) XX511

6-110. Pushup occurs if necessary to fill the
A and B registers. This operator tests a
field of the word in the B register for zero.
The starting bit of the field is determined by
the G and H registers. The length of the field
is determined by the 4 high-order bits in
the operator code. The fieid may be 1 through
15 bits in length.

6-111. If the field is zero, both the A and B
registers are marked empty and the operator
is terminated. If the field is not zero, the
B register is marked empty and the T regis-
ter is changed to a syllable branch backwards
unconditional operator which is immediately
executed.

CBN Non-Zero Field Branch Backward,
Non-Destructive (ZBNL) XX511

6-112. A field in the B register is tested for
zero as described in paragraph 6-110,

6-113. If the field is zero, the A register only
is marked empty and the operator is termi-
nated. If the field is not zero, the T register
is changed to a syllable branch backwards
unconditional operator, which is immediately
executed.

CFD Non-Zero Field Branch Forward,
Destructive (ZFDL) XX511

6-114. A field in the B register is tested for
zero as described in paragraph 6-110.

1The bits of the two most significant octades
of the following four operators are defined
as follows:

Non-Zero Field Branch Backward, Destruc-
tive XXX X11

Non~Zero Field Branch Backward, Non-De~
structive XXX X01

Non-Zero Field Branch Forward, Destruc-
tive XXX X10 B
Non-Zero Field Branch Forward, Non-De-
structive XXX X00

6-115, If the field is zero, both the A and B
registers are marked empty and the operator
is terminated. If the field is not zero, the B
register is marked empty and the T register
is changed to a syllable branch forward
unconditional operator, which is immediately
executed.

CFN Non-Zero Branch Forward Non-
Destructive (ZFNL) XX511

6-116. A field in the B register is tested for
zero as described in paragraph 6-110,

6-117, If the field is zero, the A register only
is marked empty and the operator is termi-
nated.

6-118, If the field is not zero, the T register
is changed to a syllable branch forward
unconditional operator, which isimmediately
executed.

STORE OPERATORS

6-119. The store operatorsoperate onthe two
top words in the stack. The top word in the
stack specifies the address into which the sec-
ond word in the stack is stored. This address
may be relative or absolute, depending on
whether the flag bit is zero or one respectively.
The destructive store operators remove both
the address and the information stored from
the stack. The non-destructive store oper-
ators remove only the address from the stack.

STD ‘B’ Store Destructive {BSDL) 0421

6-120. If the flag bit and the presence bit of
the word in the A register are both one, the
contents of the B register are stored in
memory cell addressed by the 15 low order
bits of the A register. The A and B registers
are set to empty.

1The bits of the two most significant octades
of the following four operators are defined
as follows:

Non-Zero Field Branch Backward, Destruc-
tive XXX X11

Non-Zero Field Branch Backward, Non-De-
structive XXX X01

Non-Zero Field Branch Forward, Destruc-
tive XXX X10

Non-Zero Field Branch Forward, Non-De-
structive XXX X00

6-121, If the flag bit of the word in the A
register is one and the presence bit is zero,
the presence code is set in the interrupt
register and the operation terminated.

6-122, If the flag bit of the word in the A
register is zero, the ten low-order bits of
the word in the A register are used as a
relative address except that no addressing
relative to the C register takes place. If
the syllable calls for addressing relative to
the C register, the absolute address is con-
structed relative to the R register instead.
The contents of the B register are stored in
the memory cell addressed after appropriate
indexing of the relative address. The A and
B registers are set to empty.

6-123, If the VARF is set, the processor is
set to sub~-program level, after the relative
address operation and VARF is reset.

SND “B” Store Non-Destructive (BSNL) 1021

6-124, If the flag bit and the presence bit of
the word in the A register are both one, the
contents of the B register are stored in the
memory cell addressed by the 15 low-order
bits of the A register. The A register is set
to empty.

6~125, If the flag bit of the word in the A
register is a one and the presencebitis zero,
the presence code is set in the interrupt
register and the operation terminated.

6-126. If the flag bit of the word in the A
register is a zero, the 10 low-order bits of
the word in the A register are used as
relative address except that no addressing
relative to the C register takes place., If the
syllable calls for addressing relative to the
C register, the absolute address is construc-
ted relative to the R register instead. The
contents of the B register are stored in the
memory cell addressed after appropriate
indexing of the relative address. The A
register is set to empty. If the VARF is set,
the processor is set to sub-program level
after the relative address operation and
VAREF is then reset.

ISD Integer Store Destructive (ISDL) 4121

6-127, If the flag bit and the presence bit of
the word in the A register are both one, or
if the flag bit of the word in the A register
is zero, the word in the B register is made
an integer as specified in paragraph 6-27.

6-128. If an integer overflow occurs, the
integer overflow bit is set in the interrupt
register. The contents of the A and B
registers are retained and the operation is
terminated. If integer overflow does not
occur, a store operation, as specified for
the store destructive operator, is performed.

6-129, If the flag bit of the word in the A
register is one and the presence bit of the
word in the A register is zero, the presence
bit is set in the interrupt register and the
operation terminated.

6-130. If the VARF is set, the processor is
set to sub-program level after the relative
address operation and VARF is then reset.

ISN Integer Store Non-Destructive (ISNL) 4221

6-131. If the flag bit and the presence bit of
the word in the A register are both one or if
the flag bit of the word in the A register is
a zero, the word in the B registeris made an
integer as specified in paragraph 6-27.

6-132, If an integer overflow occurs, the in-
teger overflow bit is set in the interrupt
register, the contents of the A and B register
is retained and the operation is terminated.
If integer overflow does not occur, a store
operation, as specified for the store non-
destructive operator, is performed.

6-133. If the flag bit of the word in the A
register is a one and the presence bit of the
word in the A registerisa zero, the presence
bit is set in the interrupt register and the
operation terminated.

6-134. If the VART is set, the processor is
set to sub-program level after the relative

address operation and VARF is then reset,

CID Conditional Integer Store Destructive
(CSDL) 0121

6-135. If the integer bit of the word in the A
register is a one, aninteger store destructive
operator is performed as specified in para-
graphs 6~127 through 6~134,

If the integer bit of the wordinthe A register
is a zero, a store destructive operator is
performed as specified in paragraphs 6-120
through 6~123.

CND Conditional Integer Store Non-
Destructive (CSNL) 0221

6-136. If the integer bit of the word in the A
register is a one, an integer store non-
destructive operator is performed as speci-
fied in paragraphs 6-130 through 6-134,

If the integer bit of the wordinthe A register
is a zero, a store non-destructive operator
is performed as specified in paragraphs 6-124
through 6-126.

NOP Word Mode NO-OP (NOPL) 0055

6-137. Performs no operation exceptto count
up the L register by one.

BIT OPERATORS
DIA Dial A (DIAL) XX55

6-138. If the six high-order bits of the opera-
tor are not zero, the three most significant
bits of the operator are placed in the G
register and the three next most significant
bits of the operator are placed in the H
register., If all of the six high-order bits
are zero, no action takes place. If the H
register is set to 110 or 111, the operation
of the subsequent operators using this regis-
ter is not specified.

DIB Dial B (DIBL) XX61

6-139. If the six high-order bits of the opera-
tor are not zero, the three most significant
bits of the operator are placed in the K
register and the three next most significant
bits of the operator are placed in the V
register. If all of the six high-order bits of
the operator are zero, a setvariant operator

takes place as described inparagraphs 6-225
through 6-231. If the V register is setto 110
or 111 the operation of subsequent operators
using this register is not specified.

TRB Transfer Bits (TRFL) XX65

6-140. A field in the A register, starting at
the bit position addressed by the G and H
registers, replaces a corresponding length
field in the B register, at the bitposition ad-
dressed by the K and V registers, and pro-
ceeding towards the low-order bit positions.

6-141. The length of the field transferred is
specified by the six high~order bits of the
operator. The transfer of bits is terminated
by the transfer of the specified number of bits
or when either the A or B registers have
been exhausted.

6-142, The contents of the G, H, K and V
registers after the operation are the same
as prior to the operation. The A register is
set to empty.

FCE Compare Field Equal (CFEL) XX75

6-143. A field in the A register, starting at
the bit position addressed by the G and H
registers, is compared with a corresponding
length field in the B register, starting at the
bit position addressed by the K and V regis-
ters, and proceeding towards the low-order
bit positions.

6-144. The lengthof the fields in the registers
is specified by the six high-order bits of the
operator. The comparison is terminated by
the comparison of the number of bits specified
or by the comparison of the low-order bit of
either register.

6-145. If all of the corresponding bits of the
field compared are equal, the low-order bit
of the A register is set to one and all other
bit positions of the Aregister are setto zero.
If any of the corresponding bit positions of
the fields compared are not equal, all bit
positions of the A register are set to zero.
The contents of the B, G, H, Kand V registers
after the operation are the same as prior to
the operation.

6-19

FCL Compare Field Low (CFLL) XX71

6-146. A field in the A register, starting at
the bit position addressed by G and H regis-
ters, is compared with a field in the B
register, starting at the bit position addressed
by the K and V registers, and proceeding
towards the low-order bit positions.

6-147. The lengthof thefieldsinthe registers
is specified by the six high-order bits of the
operator. The comparison is terminated by
the comparison of the number of bits speci-
fied or by the comparison of the low-order
bit position of either register.

6-148, If the magnitude of the field compared
in the B register is less than the magnitude
of the field compared in the A register, the
low-order bit of the A register is set to one
and all other bit positions of the A register
are set to zero; otherwise, all bit positions
of the A register are set to zero. The
contents of the B, G, H, K, and V registers
after the operation are the same as prior to
the operation,

MOP Reset Flag Bit (RFBL) 2015

6-149. Set the flag bit of the word in the A
register to zero.

MDS Set Flag Bit (SFBL) 4015

6-150, Set the flag bit of the word in the A
register to one,

TOP Test Flag Bit (TFBL) 2031

6-151. If the flag bit of the word in the B
register is zero, the low-order bit of the
word in the A register is set to one and all
other bits of the A register are set to zero;
otherwise, all bits of the A register are set
to zero. The A register is set to full.

SSP Reset Sign Bit (MSPL) 4431

6-152, Set the sign bit of the word in the A
register to zero.

SSN Set Sign Bit (MSNL) 0431

6-153. Set the sign bit of the word in the A
register to one.

CHS Change Sign Bit (CSSL) 1031

6-154. Complement the sign bit of the word
in the A register.

ISO Variable Field Isolate {VFIL) XX45

6-155. This operator selects a field from the
top word in the stack. The selected field is
placed in a word right justified, and the rest
of the word is set to zero. This new word
replaces the top word in the stack.

6-156. The selected field may be 1 to 39 bits
in length as determined by the L and S fields
in the operator,

6~157. The starting bit position inthe source
field is defined by the G and H registers. The
length of the field in characters is defined by
the L field of the operator (see paragraph
6-159). The number of characters should
include the characters positions which contain
the first and last bits, If L =7, then 32H25,
selecting not more than three bits of the most
significant character position. The S field of
the operator (see paragraph 6-159) specifies
the number of bits that the resultant field is
shifted to the right, thus deleting bits from
the final characters transferred.

6-158. If G + L>8, no new word is accessed.
End-around operation on the same word
occurs,

AT THE END OF THE OPERATION N = 0,

G = TFINAL CHARACTER POSITION +1.
L S

INCLUDED BITS |OPERATOR CODE

CHARACTERS|SHIFTED

CTC Transfer ‘‘CORE” Field to ““CORE’’ Field
(CCXL) 5425

6~159. Pushup occurs, if required, into the
A and B registers. The contents of bits 33
through 47 of the A register are transferred
to bits 33 through 47 of the B register. The
rest of the B register remains unchanged.
The A register is marked empty.

CTF Transfer “CORE” Field to ““F” Field
(CFXL) 7425

6-160. Pushup occurs if required into the A
and B registers. The contents of bits 33

6-20

through 47 of the A register are transferred
to bits 18 through 32 of the B register. The
rest of the B register remains unchanged.
The A register is marked empty.

FTF Transfer “F” Field to “‘F”’ Field
(FFXL) 3425

6-161. Pushup occurs if required into the A
and B registers. The contents of bits 18
through 32 of the A register are transferred
to bits 18 through 32 of the B register., The
rest of the B register remains unchanged.
The A register is marked empty.

SUBROUTINE OPERATORS
MKS Mark Stack (MSOL) 0441

6-162, The contents, if any, of the A and B
register are pushed into the stack in mem-
ory. The MSCW is constructed and stored in
the top of the stack in memory. The F
register is set to the address of the cell in
which the MSCW has been stored. If the
MSFF is zero and the processor is in the
sub-program level, the MSCW is stored in
the cell addressed by the contents of the
R register plus seven. The MSFF is set
to one.

XIT Exit (REWL) 0435

6-163. Registers A and B are marked empty.
The word addressed by the F register, the
return control word, is placed in the B
register,

6-164. If the flag bit of the word in the B
register is 1, the operation is continued. If
the flag bit is 0 and the processor is in the
normal state, the flag bit interrupt is set and
the operator exited with the return control
word left at the top of the stack. If the flag
bit is 0 and the processor is in the control
state, the operator is terminated, but the
interrupt is not set.

6-165. The C, L, G, H, KandV registers are
set to the contents of their respective fields
of the return control word in the B register.
The S register is set to the contents of the F
register field of the return control word in
the B register.

6-166. The word now addressed by the S
register, the mark stack control word, is
read from memory into the B register. The
R and F registers are set to the contents of
their respective fields of the MSCW. The
MSFF and the SALF are set to the contents
of their respective positions of the MSCW.
The S register is decreased by one. The
A and B registers are set to empty. The
mark stack bit of the word in the B register
is examined. If this bit is zero, the operation
is completed.

6-167. If the mark stack bit is one, the pro-
gram level bit (SALF) is examined. If the pro-
gram level bit is zero, indicating program
level, the operation is completed.

6-168. If the SALF bit is one, indicating sub-
program level, the word addressed by the F
register field of the MSCW, the previous
MSCW, is placed in the B register. The
MSFF is examined. If the MSFF is set, the
process of reading the previous MSCW and
examining the state of its MSFF is repeated
until a MSCW with the MSFF reset (zero)
is placed in the B register. The contents
of the B register is stored in the cell ad-
dressed by the contents of the R register
plus seven. The operation is completed.

RTN Return Normal (RNML} 0235

6-169. If the A register is empty, a word
is placed in the A register by stack adjust-
ment and the A register set to full, If both
the A register and the B register are full,
the B register is set to empty.

6-170. If the flag bit of the word in the A
register isone and the presence bit zero, the
presence bit interrupt is set and the op-
eration immediately terminated.

6-171. The word addressed by the F register,
the RCW, is placed in the B register.

6~172, If the flag bit of the word in the B
register is 1, the operation is continued. If
the flag bit is 0 and the processor is in the
normal state, the flag bit interrupt is setand
the operator exited, with the A and B regis-
ters marked full. If the flag bit is 0 and the
processor is in the control state, the op-
erator is terminated but the interrupt is not
set.,

6-21

6-173. The C, L, G, H, K and V registers

are set to the contents of their respective
fields of the return control word in the B
register. The S register is set to the con-
tents of the F register field of the RCW in
the B register.

6-174. The word addressed by the Sregister,
the MSCW, is read from memory. The R and
F registers are set to the contents of their
respective fields of the MSCW. The MSFF
and SALF are setfromtheword. TheS regis-
ter is decreased by one.

6-175. The mark stack bit of the word in the
B register is examined. If this bit is zero
the operation is completed.

6-176. If the mark stack bit is one, the pro-
gram level bit is examined. If the program
level bit is zero, indicating program level,
the operation is completed.

6-177. If the program level bit is one, in-
dicating sub-program level, the word ad-
dressed by the F register field of the MSCW
(which is the previous mark stack control
word) is placed in the B register and its
mark stack bit is examined. If the bit is
one, the process of reading the previous
mark stack control word and the examin-
ation of its mark stack bit is repeated until
a MSCW with the mark stackbitequal to zero
is placed in the B register. The word in
the B register is stored in the cell ad-
dressed by the contents of the R register
plus seven. The operation is completed.

6-178. The subsequent action of the return
operation is similar to that of the Operand/
Descriptor Call syllable. If the syllable in-
dication in the return control word indicates
an OPDC, the subsequent action performed
is described by the operand call flow chart,
figure 6-1. If the syllable indication on the
RCW indicates a DESC, the subsequent action
performed is described by the descriptor cail
flow chart, figure 6-2.

RTS Return Special (RSPL) 1235

6-179. If the A register is empty, a word is
placed in the A register by stack adjustment
and the A register set to full. If both the A
register and the B register are full, the B
register is set to empty.

6~180, If the flag bit of the word in the A
register is one and the presence bit zero,
the presence bit interrupt is set and the op-
eration immediately terminated. The word
addressed by the S register, the RCW, is
placed in the B register.

6-181. If the flag bit of the word in the B
register is 1, the operation is continued. If
the flag bit is 0 and the processor is in the
normal state, the flag bit interrupt is set
and the operator exited, with the A and B
registers marked full. If the flag bit is 0
and the processor is in the control state,
the operator is terminated but the interrupt
is not set.

6~182. The C, L, G, H, K and V registers
are set to the contents of their respective
fields of the RCW in the B register. The S
register is set to the contents of the F
register field of the RCW in the B register.

6-183. The word addressed by the Sregister,
the MSCW, is read from memory. The R
and F registers are set to the contents of
their respective fields of the MSCW. The
MSFF and the SALF are set to the contents
of their respective positions of the MSCW.
The S register is decreased by one.

6~184. The mark stack bit of the word in the
B register is examined. If it is zero the
operation is completed.

6-185. If the mark stack bit is one, the pro-
gram level bit is examined. If the program
level bit is zero, indicating program level,
the operation is completed.

6-186. If the program level bit is one, in-
dicating sub-program level, the word ad-
dressed by the F register field of the MSCW,
the previous MSCW, is placed in the B regis-
ter. The mark stack bit is examined. If it
is one, the process of reading the previous
mark stack control word and examination of
its mark stack bit set is repeated until a
MSCW with its mark stack bit equal to zero is
placed in the B register. The word in the
B register is stored in the cell addressed by
the contents of the R register plus seven.
The operation is completed.

6-22

6-187. The subsequent action of the return
operation is similar to that of the Operand/
Descriptor Call syllable, If the syllable in-
dication in the RCW indicates an OPDC, the
subsequent action performed is described by
the operand call flow chart, figure 6-1. If
the syllable indicator in the return control
word indicates a DESC, the subsequent action
performed is described by the descriptor
call flow chart, figure 6-2,

CMN Enter Character Mode In Line (ECML)
4441

6-188. The contents of the A register (pre-
sumed to be a destination address) and the
B register are pushed down into the stack
and both registers are marked empty.

6-189. A RCW 1is constructed and pushed
into the stack. The C and L registers are
stored in the RCW in the normal way, al-
though they are not intended to be used
for return.

6-190. The contents of the S register is
transferred to both the F and X registers.
The word below the RCW (presumed to be
a destination address) is examined. If it
is descriptor which is not present, the pres-
ence bit interrupt is set. If it isa descriptor
which is present, the S register is set to
the low order 15 bits of the descriptor. If
the word below the return control word is an
operand, the S register is set to the low order
15 bits and the K register is set from bits
30 through 32. The SALF is set to one. The
MSFF is set to zero. The R register is set
to zero. The CWMF is set to character mode.

STACK OPERATORS

XCH Exchange (EXCL) 1025

6-191. The contents of the A and B registers
are exchanged.

DUP Duplicate (DUPL) 2025

6-192, Stack adjustment occurs to make one
register empty and the other full. The con-
tents of the full register is copied into the
empty register and the empty register mark-
ed full.

DEL Delete Top of Stack (DELL) 0065

6-193. The top word in the stack is deleted
in the following manner, depending on the
condition of the A register occupancy flip
flop (AROF) and the B register occupancy
flip flops (BROF).

AROF BROF Action
0 0 sS~—s-1
0 1 BROF~—0
1 0 AROF ~—0
1 1 AROF ~—0

MISCELLANEOUS OPERATORS
LOD Load Operator (LODL) 2021

6-194. If the flag bit and the presence bit of
the word in the A register are both one, the
word in the A register is replaced by the
contents of the cell addressed by the 15 low-
order bits of the A register.

6-195. If the flag bit of the word in the A
register is zero, the_ 10 low-order bits of
the word in the A register are used as a
relative address. The contents of the A
register are replaced by the contents of the
memory cell addressed after appropriate
indexing of the relative address.

6-196. If the flag bit of the word in the A
register is one and the presence bit zero,
the presence bit in the interrupt register is
set and the operation is terminated.

6-197. If the VART is set, the processor is
set to sub~program level after the relative
address operation and the VARF is reset.
INX Index (INDL) 0141

6-198. The 15 low-order bits of the word in
the B register are arithmetically added to
the 15 low-order bits of the word in the A
register. Positions 0 through 32 of the A

register are unchanged. Overflow is lost.
The B register is set to empty.

COC Construct Operand Call (MDVL) 0241

6-199. The contents of the A and Bregisters
are exchanged., The flag bit of the word in

6-23

the A register is set to one. The subsequent
action of this operator is identical to that of
an OPDC after it has caused a word to be
read from memory. For a complete de-
scription of the subsequent action of this
operator see figure 6-1.

CDC Construct Descriptor Call (MDAL) 1241

6-200. The contents of the A and Bregisters
are exchanged. The flag bit of the word in the
A register is set to one. The subsequent
action of this operator is identical to that
of a DESC after it has caused a word to be
read from memory. For a complete de~
scription of this subsequent action see figure
6-2,

COM Communication Operator (COML) 1011

6-201. The word at the top of the stack is
stored in R plus nine (11 octal). The word is
deleted from the stack. The communication
interrupt bit is set. The operator is a No-Op
in the control state.

PRL Program Release (PREL) 0111

6-202, If the flag bit and the presence bit of
the word in the A register are both one, the
contents of the cell addressed by the 15 low-
order bits of the word in the A register is
placed in the A register. If the processor is
in the control state, the presence bit of the
word obtained from memory is set to zero
and the word is stored back into the cell
from which it was fetched.

6-203. If the flag bit of the word in the A
register is one and the presence bit zero,
set the presence bit in the interrupt register
and terminate the operation.

6-204, If the flag bit of the word in the A
register is a zero, the ten low-order bits of
the word in the A register are usedas a rel-
ative address, except that no addressing
relative to the C register takes place. If
the syllable calls for addressing relative to
the C register, the absolute address is
constructed relative to the R register in-
stead. The contents of the cell addressed
after appropriate indexing of the relative
address are placed in the A register. If

the processor is in the control state, the
presence bit of the word obtained from
memory is set to zero and the word is
stored back into the cell from which it was
fetched.

6-205, If the processor is in the normal
state, the continuity bit of the word obtained
from memory is inspected. If the continuity
bit is a one, the continuity bit is set in the
interrupt register. If the continuity bit is a
zero, the program release bit is set in the
interrupt register. The A register is set to

empty.

6-206. If the processor is in normal state,
the address just used is stored in R plus
nine (11 octal). The address is stored in the
fifteen low-order bits of the word, and all
other bits are cleared to zero,

SFl Store for Interrupt Operator (SFIL) 3011

6-207, This operator can beused in any mode
and state. If the processor is in word mode,
the word mode interrupt operation takes place.
If the processor is in character mode, a

Interrupt

Processor 1 Memory Parity Error
Processor 1 Invalid Address
Time Interval

I/0O Busy

Keyboard Request

I/O Control Unit 1 Finished
I/0 Control Unit 2 Finished
I/O Control Unit 3 Finished
I/O Control Unit 4 Finished
Printer 1 Finished

Printer 2 Finished

character mode interrupt operation takes
place. (See paragraphs 5-39 through 5-41.)

6-208. If the operator occurs in processor 1
in either state, the store of registers and
control words occurs as previously described
and an interrogate interrupt operator is forced
at the end of the store.

6~209. If the operator occurs in either proc-
essor while inthe normal state, the processor
is not changed to control state by the oper-
ator.

6-210. GENERAL. When operating in the nor-
mal state and an interrupt occurs, all nec-
essary registers and flip flops are stored in
the stack to allow the program to be continued
after the interrupt has been processed. Fol-
lowing the interrupt, processor 1 isplacedin
the control state and the address of the cell
assigned to the interrupt is transferred to
the C register. All interrupts are processed
on a priority basis. The address assigned
to the interrupt is given and they are placed
in priority sequence. These interrupts are
given as follows in priority sequence:

Interrupt Octal Cell
Flip Flop Address
PKIO1F* 60
PKIO2F* 61
CCIO3F 22
CCI04F 23
CCIO5F 24
CCIO8F 27
CCIO9F 30
CCI10F 31
CCI11F 32
CCIO6F 25
CCIO7F 26

* PkI indicates the processor unit number Interrupt register,

6-24

Interrupt

Processor 2 Busy

Data-Communication/ Transmission
Interrupt

Not Assigned ‘

Disk File #1/Read Check Finished
Disk File #2/Read Check Finished
Processor 1 Stack Overflow
Processor 1 Communication Operator
Processor 1 Program Releaée Opérafor
Processor 1 Continuity Bit
Processor 1 Presence Bit

Processor 1 Flag Bit

Process 1 Invalid Index

Processor 1 Exponent Underflow
Processor 1 Exponent Overflow
Processor 1 Integer Overflow
Processor 1 Divide by Zero
Processor 2 Memory Parity Error
Processor 2 Invalid Address
Processor 2 Stack Overflow
Processor 2 Communication Operator
Processor 2 Program Release Operator
Processor 2 Continuity Bit '
Processor 2 Presence Bit

Proceséoi 2 Flag Bit

Processor 2 Invalid Index

Processor 2 Exponent Underflow
Processor 2 Exponent Overﬂow
Processor 2 Integer Overflow
Processor 2 Divide by Zero

Interrupt
Flip Flop

CCI12F
CCI13F

CCI14F
CCI15F

CCIL6F

PKIO3F
PKIOTF

PKIOSF . PKIOTF
PKIO6F . PKIOTF
PKIO5F . PKIO6F . PKIOTF
DKIOSF

PKIO5F . PKIOSF
PKIO6F . PKIOSF
PKIO5F. PkIO6F . PKIOSF
PKIO7F.PkIOSF
PKIO5F . PKI07F . PKIOSF
PKIOLF

PKIO2F

PKIO3F

PKIOTF

PKIO5F . PKIOTF
PKIO6F . PKIOTF
PKIO5F . PKIO6F . PKIOTF
PKIOSF

PKIO5F . PKIOSF
PKIO6F . PKIOSF
PKIO5F . PKIOGF . PKIOSF
PKIO7F . PKIOSF
PKIO5F . PKIO7F. PKI08F

Octal Cell
Address
33
34

35
36
37
62
64
65
66
67
70
71
72
73
74
75
40
41
42
44
45
46
47
50
51
52
53
54
95

Each cell assigned to an interrupt contains a
transfer of control. The transfer of control
is simply to a specific portion of the MCP
elsewhere in core memory. All possible
interrupts are sampled continuously and
simultaneously by the hardware.

6-211. Processor 2cannotoperate inthe con-
trol state. When an interrupt occurs that is
associated with Processor 2, the processor
performs the action described in the store
for interrupt operator, and then idles. When
processor 1 is operating in the control state,
all interrupts remain set until an interrogate
interrupt operator is executed by processor 1.

6-212, The action of the store for interrupt
operator is to adjust the stack so that any
information that happens to be in the A and
B registers, if valid, is pushed down into
core stack, and on top of these words place
an interrupt control word (ICW), aninterrupt
return control word (IRCW), and to store the
core address of the IRCW in R+10 (octal) of the
PRT (of the program running at the time this
syllable was executed) as an initiate control
word (INCW)., Within the ICW and IRCW, all
registers within the processor will be stored
except the state of the CWMF and the S
register setting for the address of the top
word of the stack (IRCW). The latter two
elements are stored in the INCW which was
placed in R+10 (octal) of the PRT.

6-213. This syllable is available for pro-
grammatic usage or may be forced into the
T register by an interrupt being present
and the processor operating in normal state.
In the case of the interrupt, the syllable
code is placed in the T register through
hardware functions. When this syllable is
executed, the following registers and flip
flops will be reset after the store of the
control words: R, PROF, MSFF, SALF,
CWMF, BROF, AROF and NCSF. The F
register will be left pointing at the last
MSCW or RCW placed in the stack if this
syllable was executed in word mode. If
executed in character mode, the F register
would be left pointing at the IRCW. The
S register will be left pointing at the IRCW
unless an Interrogate Interrupt syllable was
executed after this syllable. (Refer to ITI
syllable.)

6-26

6-214. FORCED STORE FOR INTERRUPT.
A processor that is designated as number 1
through the display and distribution unit, and
that is operating in normal state, will check
the IAR in central control (through hardware
logic) for the presence of an interrupt in the
system after the completion of each syllable
executed. If an interrupt is present (IAR not
equal to zero), this syllable, through hardware
functions, will be placed in the T register. The
subsequent action will be to generate the ICW,
IRCW, and INCW (ILCW if in character mode).
After completing the generation of these con-
trol words, the NCSF and CWMF are reset,
placing the processor in control state. An
Interrogate Interrupt syllable (ITI) code will
then be placed in the T register for execution.
For subsequent action, refer to the ITI.

6-215. A processor that is designated as
number 2, and is operating in normal state,
will check its own interrupt register (UIXF'S)
for an interrupt after the completion of each
syllable executed. If an interrupt is present
(UIxF's not equal to zero), the SFI syllable
code, through hardware functions, will be
placed in the T register. The subsequent
action will be to generate the ICW, IRCW
and INCW (ILCW if in character mode). After
completing the generation of these control
words, the NCSF and CWMF are reset,
However, since this processor is designated
as number 2, TROF is reset, causing it to
idle., This idle condition will remain until
the processor is reinitiated by an Initiate
P2 syllable being executed by the processor
designated as number 1,

6-216. PROGRAMMATIC USE OF STORE
FOR INTERRUPT SYLLABLE. If this syl-
lable is used programmatically, either in
control or normal state, word mode or
character mode, the ICW, IRCW and INCW
will be generated and stored. The state of
the NCSF and CWMF will be unaltered. If
at the time this syllable is executed the pro-
cessor 1is in the normal state (NCSF=1),
the syllable following the SFI syllable will
be executed. The S register will be left
pointing at the IRCW and the R register equal
to zero. If at the time this syllable is exe-
cuted the processor is in control state, an
IINL will be forced as the next instruction.
In either case, the F register will be point-
ing as previously described.

Sequence of the Store for Interrupt »
Syllable (See Paragraph 5-39 through 5-41)

6-217. WORD MODE. If the A and B regis-
ters are full, they are pushed into the core
portion of the stack. The Bregisterisclear-
ed. An ICW is generated by transferring
the contents of the R register to bits 14
through 16 of the B register; the status of
MSFF is bit 16; the present status of SALF
is transferred to bit 17; the contents of the
N register, to bits 29 through 32; and the M
register, to bits 33 through 47. The word
is marked as a control word by setting bits
0 and 1 and resetting bit 3, then the B
register is stored in the core portion of the
stack with the use of the S register.

6-218. The IRCW is then generated in the B
register by transferring the contents of the
C register to bits 33 through 47; the F regis-
ter, to bits 18 through 32; the K register to
bits 15 through 17; the G register, to bits 12
through 14; the L register, to bits 10 and 11;
the V register, to bits 7 through 9; the H
register, to bits 4 through 6; and the status
of the BROF to bit 2. The word is then
marked as a control word and stored in the
core portion of the stack on top of the ICW
using the S register.

6-219. The INCW is then constructed by
transferring the contents of the S register,
which is pointing at the IRCW, to bits 33
through 47; the state of the CWMF is trans-
ferred to bit 32; and the remaining bits will
contain the same configuration as was stored
in the IRCW. The word is then storedin R+10
(octal) using the M register.

6-220. As a result of the SFI syllable, the
stack would have, from top to bottom, the
following words: IRCW, ICW, A register (if
valid), B register (if valid), top of stack
before interrupt,

6-221. CHARACTER MODE. If the A register
is wvalid, it is stored in the core stack of
memory. If the B register is valid, itis then
stored on top of the A register word. The
contents of the X register is then stored
on top of the B register word as an ILCW.
On top of the ILCW, the ICW and the IRCW
are stored as described in paragraphs 6-217
through 6-220.

6-27

6-222, At the completionof this syllable, the
stack would have the following words from
top to bottom: IRCW, ICW, ILCW, B register
(if valid), A register (if valid), loop control
words (L.CW), if any loops have beenentered,
and RCW.

ZPl Conditional Halt (CHPL) 2411

6-223. If the STOP OPERATOR switchonthe
maintenance panel is in the ""stop' position, the
processor is halted by stopping the processor
clock; otherwise, this operator is a no-op.

6-224. The conditional halt operator is for
maintenance and/or debugging purposes only.
It is operative in either word or character
mode.

XRT Set Variant (VARL) 006]

6-225. The processor is set to the program
level. If the processor is inthe sub-program
level on entering this operator, the VARF is
set to indicate that the level was changed to
program level.

6-226. This operator is intended for use
immediately prior to the following syllables:

Operand Call syllable
Descriptor Call syllable
Loaa operator

Store operators

6-227. It is intended to set the processor
temporarily to program level, where nec-
essary, to provide R-relative addressing
with a span of 1024 (decimal) words.

6-228. The operators listed above auto-
matically set the processor backto sub-level
after the relative address is constructed, if
the VARF is set.

6-229. This operator is not intended for use
prior to other operators, such as program
release and I/O release, which also use
relative addressing. These operators do not
include the facility for returning to sub-
program level after constructing the address.

6-230. Interrupts are not inhibited between
the set variant operator and the subsequent,
associated operator. The store for interrupt
and returntonormal operations automatically
store and automatically reinstate the con-
ditions of the SALF and VARF.

6-231. There are no syllable dependent pro-
cessor interrupts associated with the set
variant operator. Syllable dependent pro-
cessor interrupts occurring during an oper-
and call, descriptor call, load, or store
operator do not terminate the operator until
the VARF is reset and the SALF adjusted,
as appropriate. For syllable independent pro-
cessor interrupts occurring during the oper-
and call, descriptor call, load or store
following a set variant operator, the con-
ditions of the SALF and VARF are undefined.

SFT Store for Test (STFL) 3411

6-232. The store for test operation is in-
cluded for test and diagnostic purposes. It
is normally hardware initiated and used as
an automatic part of the test procedure
described under the test initiate operator,
but may also be used as a programed
operator. The operation can take place in
either word mode or character mode and in
either control state or normal state.

Operation is as follows:

a. The processor is set to the control
state,

b. The content of the A register isplaced
in the stack unconditionally.

c. The content of the B register isplaced
in the stack unconditionally.

d. An ILCW is built up and placed in the
stack.

e. An ICW is built up and placed in the

stack.

f. An IRCW is built up and placed in the
stack.) '

6-233. The resulting stack in memory is the
same as for a character mode interrupt with
the A and B registers full.

An initiate test control word is built up
and stored in memory location R + 10.

a.

The processor is set to word mode and
program level. The M and R registers
and the MSFF are set to 0.

6-28

c. If the operation takes place in processor

- 2, the processor is left idle. If the
operation takes place in processor 1,
the operation continues as follows:

The K, V, G, and H registers are set to
zero. A word is read from memory,
absolute location 0, and placed in the B
register. The low-order 15 bits are
transferred to C and the operator is
exited. The L register is set to zero.
(A normal fetch cycle follows and the
instruction, whose address had been
stored in memory location 0, is fetched
and executed.)

SSF Set or Store S or F Registers (FXSL) 2141

6-234. This operator uses the top two words
of the stack. Based on the contents of the
top word in the stack, eitherthe F or S regis~
ter will be set from or storedinto the second
word in the stack. The top word is deleted
from the stack. If the F or S register is set,
the second word is also deleted, If the F or
S register is stored, the second word is left
in the stack. If the F register is set, the
processor is set to sub-program level. The
following illustration shows how the type of
operation is selected, based upon the two
low-order bits in the A register.

A47 | A46 Operation
0 o [B [18=>32}~F STORE
0 1 |F~B[18=>32]; SALF -~ 1 SET
1 0 |B [13=>47}s STORE
1 1 {s<B[13=>47] SET
FBS Flag Bit Search (SSFL) 7031

6-235. Pushup into A occurs if necessary.
The operator uses the low-order 15 bits of
the top word in the stack as the base ad-
dress for a search. The flag bit of the word
found in the location specified by this ad-
dress is examined. @’ "

6-236. If the flag bit is one, the address is
placed in the A register in the low-order 15
bits. The rest of the word is setto zero, and
the word is marked as a present data
descriptor. The operator is exited.

6-237. If the flag bit is off, the address is
increased by one and the flag bit of the word
found in this location is tested. Thisprocess
continues until a word is found with the flag
bit on.

LLL Link List Lookup (LLLL) 2541

6-238. This operator scans a linked list of
indefinite length and tests a field in each
list word against the corresponding field in
the A register.

6-239. Pushup occurs into the A and B regis-
ters if required. The top two words in the
stack are presumed to contain the following:

32

A Register | XXX| TEST FIELD |OOOOO

B Register | XXX XXXXXXXX

Link
Address

6-240. The complete test field canbe used or
any portion of the more significant end of it
can be used. Bits on the less significant end
are effectively eliminated from the test field
by setting them to zero in the test word in the
top of the stack.

6-241. The word addressed by the initial link
address is read from memory tothe B regis-
ter. The test field of the word inthe B regis-
ter is compared with the field in the corres-
ponding position in the A register.

6-242. If B field = A field, the address that
was used to access the link is left in the A
register as a present data descriptor, with
the remainder of the word set to zero. The
list word is left in the B register. The op-
erator is exited.

6-243. If the B field < A field, the link ad-
dress in the B register is used to access the
next word from memory. The process con-
tinues until a link word meeting the test
condition is found.

6-29

TUS Interrogate Peripheral Status (IPSL) 2431

6~244. This operator places in the top of the
stack a word representing the current ready
status of the peripheral equipment. One bit
in the word is associated with each peripheral
unit. This bit is set to 1 if the associated
unit is ready, to 0 if the associated unit is
not ready.

6~245. The stack is adjusted so that the A
register is empty. The A register is set to
zero. The low-order bits are set to reflect
the current status of the peripheral units.
The A register is marked full and the op-
eration is terminated. Table 6-2 shows the
association between the A register bit po-
sitions and peripheral units.

NOTE

A magnetic tape transport is re-
ported as ready only when the tape
is stationary and it is otherwise
ready. It is reported as not ready if
the tape is rewinding, or if the tape
is still indexing to a stop following
an operation.

TABLE 6-2

Relation Between A Register Bit
Position and Peripheral Unit

A Register Unit

Bit Position| Designate | Peripheral Unit
47 1 Magnetic Tape A
46 3 Magnetic Tape B
45 5 Magnetic Tape C
44 7 Magnetic Tape D
43 9 Magnetic Tape E
42 11 Magnetic Tape F
41 13 Magnetic Tape H
40 15 Magnetic Tape J
39 17 Magnetic Tape K
38 19 Magnetic Tape L
37 21 Magnetic Tape M
36 23 Magnetic Tape N
35 25 Magnetic Tape P
34 27 Magnetic Tape R
33 29 Magnetic Tape S
32 31 Magnetic Tape T
31 4 Drum 1
30 8 Drum 2

TABLE 6-2 (Cont)

Relation Between A Register Bit
Position and Peripheral Unit

A Register Unit
Bit Position | Designate| Peripheral Unit

29 6 Disk File 1

28 12 Disk File 2

27 22 Printer 1

26 26 Printer 2

25 10 Card Punch

24 10 Card Reader 1

23 14 Card Reader 2

22 30 SPO-Keyboard

21 18 Paper Tape
Punch 1

20 18 Paper Tape
Reader 1

19 20 Paper Tape
Reader 2

18 20 Paper Tape
Punch 2

17 16 Data Communi-
cation Control

TIO Interrogate |/O Channels (TIOL) 6431

6-246. This operator interrogates the I/O
channels to determine which channel is
currently in line to be assigned next, that is,
which is the lowest numbered currently avail-
able I/O control unit. Pushdown occurs if
necessary and a literal is placed inthe top of
the stack. The literal indicates the next
assigned channel in the following way:

Literal Channel
0 All channels busy
1 Channel one due for assignment
2 Channel two due for assignment
3 Channel three due for assign-
ment
4 Channel four due for assignment

Control State Operators

6-247. The following operators are used only
when operating in the control state. If these
operators are encountered when operating in
the normal state, they are treated asno-ops.

6-30

ITI Interrogate Interrupt (IINL) 0211

6-248. If any interrupt bit is set, the C regis-
ter is loaded with the 6-bits address which
corresponds to the highest priority interrupt
bit that is set. The interrupt bit(s) creating this
address is reset. The L register is cleared.
The S register is set to 64 (100 octal). If no
interrupt bit is set, control continues in se-
quence,

IOR 1/0 Release (IORL) 2111

6-249. If the flag bit and the presence bit of
the word in the A register are both one, the
contents of the cell addressed by the fifteen
low-order bits of the word in the A register
are placed in the A register. The presence
bit of the word in the A registeris set to one
and the word stored back to the cell addressed.
The A register is set to empty.

6-250. If the flag bit of the word in the A
register is zero, relative addressing takes
place as specified for the program release
operator.

6-251. If the flag bit of the word in the A
register is one and the presence bit zero,
the operation is terminated. The presence
bit interrupt is not set.

IO Initiate 170 (IOOL) 4411

6-252. The word in the A register is stored
in location 10 (octal) and A register is set to
empty. An initiate I/O signal is sent to central
control for selection of an I/O channel. The
processor proceeds to the next syllable.

6-253. The I/O busy bit is setinthe interrupt
register if all I/0O channels are busy.

IP1 Initiate P1 (INIL) 4111

6-254. The 15 low-order bits in the initiate
control word in the A register are trans-
ferred to the S register. Bit 32 is trans-
ferred to the CWMF. Processor 1 is set to
the normal state.

IP2 Initiate P2 (PTOL) 4211

6-255. The initiate control word in the A reg-~
ister is stored in memory location 10 (octal)
and the A register is settoempty. An initiate
P2 signal is sent to the central control unit
and processor 1 proceeds to the next syllable.

6-256. The central control unit sends a con-
trol signal to processor 2. Under control of
this signal, the initiate control word is trans-
ferred from memory location 10 (octal) to the
A register in processor 2. Processor 2 then
performs the initiate operations asdescribed
in paragraph 6-254, initiate P1.

6-257. If processor 2 is not idle or not
available, the P2 busy bit is set in the inter-
rupt register by the central control unit.

HP2 Halt P2 (HP2L) 2211

6-258. This operator causes processor 2 to
store its registers just as if a P2 interrupt
hadoccurred. Ifprocessor 2 is busy, the halt
operator in processor 1 is held up. The
operator in processor 1 is completed after
all appropriate processor 2 registers are
stored for interrupt. Processor 2isleftidle.

6-259. If processor 2 is not ready or is
absent, the halt P2 operation is immediately
terminated.

RTR Read Timer (RDTL) 0411

6-260. The 6-bit timer setting along withthe
timer interval interrupt setting as the 7th
(most significant) bit is placed in the A regis~
ter as an integer (bits 41 => 47).

IFT Test Initiate (IFTL) 5111

6-261. This operator is intended for test and
diagnostic purposes only. It may be usedonly
in the control state; otherwise, it is a no-op.
Certain registers, involved in this operator,
are used only for internal control and arenot
described elsewhere in this specification.

6~262. The 15 low-order bits of the initiate
test control word in the A register aretrans-
ferred to the S register.

6-263. The S register, mode bit, and the Q,
Y, and Z fields are transferred to the cor-
responding register and flip flops from the
initiate test control word in the A register.
The J field and the NCSF, CCCF, MROF,
and MWOF bits are transferred from the
initiate test control word to temporary stor-
age flip flops (TM 6 =>1).

6-31

6-264. The IRCW whose address is specified
by the S register, is read. Its contents are
distributed to the C, F, K, G, L, V and H
registers. The state of bit 2 isunconditionally
transferred to the BROF.

6-265. The S register is reduced by 1. The
ICW addressed by the S register, is read.
The R, mark stack, program level, variant,
and M and N fields, are transferred to the
corresponding registers and flip flops.

6-266. The S register is reduced by 1. Bits
19 to 47 of the ILCW, addressed by the S
register, are transferred to the X register.
Bit 2 of the ILCW is transferred to the
AROF.

6-267. The S register is reduced by 1 and the
word addressed by the S register, is trans-
ferred to the B register.

6-268. The S register is reduced by 1 and
the word addressed by the S register, is
transferred to the A register.

6-269. If the CWMF has been set (from the
initiate test control word), the contents of the
S register and the S field in the X register
are interchanged.

6-270. The contents of the temporary storage
flip flops (set from the initiate test control
word) are transferred to the four J flip flops.
and the NCSF, CCCF, MROF, and MWOF
flip flops. If the processor is being initiated
to word mode with CCCF=1, the S registeris
counted down one extra count to address the
second cell below that from which the con-
tents of the A register was accessed. The
operator is terminated without a normal
exit by resetting the TROF flip flop.

6-271. The operator specified by C and L
(set by the RCW) is fetched The operator
is entered at the J level specified in the
initiate test control word.

6-272. If CCCF=0, the operator continues to
its normal exit, no store-for-test operation
takes place, and the next syllable isexecuted
as usual. If CCCF=1, operation is asfollows:
After the fetch, a pulse time of operation at
the specified J level is performed.

6-273. If no access has been initiated, the
CCCF terminates the operation after one
pulse time. If a memory access has been
initiated, the CCCF terminates the operator
after the memory access is complete or
after a related set of uninterruptable memory
accesses is complete. The operator is ter-

minated without normal exit by resetting the
TROF.

6-274. If the CCCF equals 1, it causes the
following actions:

a. stores the centents of the J flip flops
and the NCSF in the temporary storage
flip flops - :

6-32

b. jams the store-for-test operator into
the T register

c. enables the T register

The remainder of the operation is an de-
scribed under the store for test operator.
If an interrupt has occurred, it is not
answered at this point. The store for test

operator has priority over the store for
interrupt operation,

SECTION

CHARACTER MODE OPERATION

GENERAL

7-1. Each processor of the B 5500 canoper-
ate in two modes; word mode or character
mode. In word mode, the operators mainly
function with individual words. In character
mode, operations usually occur with indi-
vidual characters or parts of characters
(bits). Since the functions of various regis-
ters are different in the two modes, thereis a
completely different list of operators. Each
processor contains a flip flop to control the
two modes. This flip flop is the character-
word mode flip flop (CWMF). It is on when
operation is in character mode. Character
mode operation is in sub-program level.

FUNCTION

7-2. In character mode, the primary areas
of memory used are the source string and the
destination string. Basically, both of these
strings can be thought of as continuous strings
of characters or character positions. The
function of any character mode operation is
to take information (characters) from the
source string, process them, and transfer
them to the destination string. It is possible
to skip characters in either string, compare
an equal length field of the two strings, add
two fields (one in each string), place the
result in the destination string, etc. Unless
programed otherwise, characters are always
handled sequentially from the most significant
character to the least significant character
within the word. '

CHARACTER MODE DATA REPRESENTATION

Alphanumeric

7-3. Alphanumeric information is represen-
ted by characters consisting of six bits; B,
A, 8, 4, 2, and 1. With these 6 bits, there
are 64 combinations of bits which can form
64 characters. These 64 characters are the

alphabetic characters A through Z, numeric
characters 0 through 9, and 28 special
characters (see Appendix A). Alphanumeric
information is stored internally as words of
8 characters. Characters are grouped to-
gether in successive words to form a string.
The first character of a string is inthe word
with the lowest memory location. The char-
acter following the last character of a word
is the first character in the word with the
next higher memory location (figure 7-1).
The string usually consists of fields of
various types of information. A field is
just a grouping of information within a
string. For instance, a sales evaluation
record might be as follows:

String Character

) Information Contained
- Position)

in Field

1 through 12 Stock number
13 through 30
31 through 45

46 through 60

Item name
Year-to-date sales

Previous year sales,
same period

Difference in sales
totals

61 through 75

7T-4. In this example, the first field (stock
number) might contain mixed alphanumeric
characters. The second field (item name)
would probably contain only alphabetic char-
acters, and the last three fields would be
numeric information. The last field (differ-
ence in sales totals) points to another con-
sideration. Since a number may be either
positive or negative, some provision must
be made for the sign of a numeric field.
The sign of a numeric field is contained in
the least significant character of a par-
ticular field. This is shown in figure 7-1.
In the above example, the signs for the
respective field would be in character posi-
tions 45, 60, and 75.

SUCCESSIVELY HIGHER MEMORY LOCATIONS

-}

WORD 1 i WORD 2 | WORD 3 ! WORD 4—
LI l 2 | 3 I 4 5l6 |7 Lstv IIOI1]112J13|I4115‘16|17ll8[9[20‘21 !22'23[24‘25126[27]7
./ THREE 1\ |
; CHARACTER |
/ NUMERIC |
/ FIELD \
B | B |/Baim NUMERIC FIELD SIGN BITS
2 g \?\g%/ SIGN + + + -
4 | 4 [48T BBIT| ON | OFF | OFF | ON
2 2 2BIT ABIT | ON ON OFF OFF
1 [] 78T

~ Figure 7-1.. Alphanumeric Charqder Siring

Numeric

7-5. A numeric field has a negative sign only
if the least significant character has the B
bit on and A bit off. All other combinations
result in a positive sign. The A and B bits
of all the other characters in a numeric
field are 0 (off) and are not checked for
signs. With 6 bits per character, each
character will occupy two octades. The
characters are numbered from left to right,
as 0 through 7 (figure 7-2).

7-6. Within a given character, the bits of that
character are numbered from top to bottom
and then from left to right. The B bit then
is bit 0 of a character, while the 1 bit is bit
5. With the character number andbit number
within the character, any one bit can be

referenced Therefore, character 0 encom~
passes the register bit positions 0 through5
Accordingly, the 3rd bit of the 7th character
is bit 44 of the register, and would be bit 2
within the character.

CHARACTER MODE ADDRESSING

7-7. In character mode, most addressing
pertains to the source string and the desti-
nation string The source string is associated
with the A register. The destination string
is associated with the B register All pro-
cessing between the two strings is accom-
plished by use of the serial adder and the Y
and Z registers. Character mode addressing
is accomplished using the G, H, K, and V
registers along with the S and M registers.

5

CHARACTER 0 1 2 3 4 6 7
0]3]eis|i215]18] 21[24[27 *:Tr*_" 36 [39]42]45
1|4 :'ii' 13116119 | 22| 251 28] 31 134137 140 43|46
2|58 n1]14)17]20| 23| 26[29] 22135 |38 |41 |44 |47

B |4 03
Al2 114
811 2|5
CHARACTER _BIT
BITS NUMBERING

Figure 7-2. Alphanumeric Word

7-2

Source String Addressing

7-8. Normally, one word of the source string
is contained in the A register. The address
of this word is contained in the M register.
When a new source string wordis needed, the
M register is counted upby one. The memory
access is requested using the M register for
the address while the A register receives the
word accessed. The word in the A register
contains 8 characters. Each character must
be addressed in order tobe transferred to the
Y register. Gating circuits are included so
that any character position of the A register
can be shifted to the Y register. This gating
network is controlled by the G register.
The H register is used to select a particular
bit position from the character contained in
the Y register. The bit selected is either
shifted to the Z register or compared to the
bit already in the Z register. Thisallowsfor
a bit-by-bit comparison of characters.

Destination String Addressing

7-9. Normally, one word of the destination
string is contained in the B register. The
core address of this particular word is con-
tained in the S register. When all characters
of a particular word in the destination string
are processed, the word in the B register
must be stored back in memory. Thus, the S
register is used for both reading and writing
operations. After a word is stored, the S
register is counted up by one; and the next
word is read out of memory and placedin the
B register for processing. There are no
gating circuits to allow every character
position of the B register to be shifted to the
7 register, or vice versa. However, there
are two character positions for shifting to
the Z register, and two for shifting from the
Z register to the B register Thus, the word
in the B register must be shifted so that the
required character is in one of these posi-
tions. The B register contains circuitry for
shifting by octade, either to the right or to
the left. A character shifted out of oneend is
placed in the other end; thus, a circulationof
the contents of the B register is accomplished
with no loss of information. The N register
counts the shifts of the B register. When the
B register is shifted to the right, the N
register is counted down one for each octal
shift. Under normal conditions when the word
in the B register isinthe normal position, the

7-3

N register is equal to 0. The Nregister may
be pre-set to enable proper character align-
ment when the character positions differ
from normal positioning.

7-10. Two octal shifts are required for a
complete character position shift. A char-
acter may be shifted to or from the B regis-
ter, from or to the Z register, only via
certain positions. These positions arecalled
alignment stations. The normal alignment
station for shifting from the B registertothe
Z register is octades 16 and 15. This is
character position 0 when the word is in the
normal position. If the B register is shifted
left two octades, then character 1 of the word
is in the alignment station; and the N register
has been counted up to 2. The three high-
order bits of the N register designate which
character of the word is in the normal out-
going alignment station. This is possible
since each two shifts (one octade per shift)
of the B register correspond to one full
character shift. The three high order bits
of the N register can be considered a char-
acter counter when the 1 bit of the N regis~
ter if off. Thus, it is possible to determine
which character is in the normal outgoing
alignment station. This is shown graphically
in figure 7-3. The Kregister isused to select
a specific character of the word that is to be
shifted to the Z register, and the N register
reflects the number of the character which
is in the alignment station.

7-11. By comparing the K register to the
high-order bit of the N register and by shift-
ing the B register until an equal condition
exists, with the 1 bit of the N register off,
the selected character can be placed in the
alignment station. When a character in the
Z register is to be shifted back to the B
register, it will be placed in the normal
position designated as octades 2 and 1. When
a character is placed back in the B register,
the next character is in position to be shifted
to the Z register. When adding, the serial
adder adds the contents of the Y register to
the contents of the Z register and places the
result in the Z register. For bit operations,
the contents of the V register select the bit
contained by the character in the Z register.
This is used when bits are tobe placed in the
Z register from the Y register, or when
setting or resetting bits in the destination
strings.

Z
l
o

, B REGISTER E / CHARACTER #0
DnBEnAnGE 01| 70 INALoNvenT
T Y]
ALIGNMENT STATION | 0]

N =2

E[CHARACTER # |
[[2]3]#]5]e[7]0] T N aanon
A'I{_‘IGNMENT STATION E

N=4

ey CHARACTER # 2
[23[4]sTe[7]0]1] 7‘;\:2 N anon T
ALIGNMENT STATION Z

N=6

1

191y CHARACTER #3
[s[+TsTe]7[0] 1]2] =y T N AR
T —
ALIGNMENT STATION ﬂ\

Figure‘ 7-3. 'Oufgoing Alignment Station

7-12. When whole characters are to be
shifted from the Y register to the desti-
nation string, they are transferred directly
to the B register alignment station from the
Y register. This eliminates passing through
the Z register. When comparing one charac-
ter of the source string against a given
character, the 6 high-order bits of the T
register provide for shifting to the Z regis-
ter. Information may be shifted to the
destination string from the program syllable
string. Characters which had been placed in
the program syllable string are shifted to
the Y register, which is then placed into the
B register,

7-13. In addition to addressing destination
string words, the S register is also used to
store loop control words in the stack. The
contents of the S reglster are saved for
restoration and the S register is set to the
address of the last control word in the stack
It is counted up by one, and the control word
is stored. The S register is then restored.

-

7-14. When the processor entered character
mode operation, an RCW was generated and
stored in the stack. The S register is also
used to address the stack below the RCW,
This is to obtain a destination string address.
The address of the RCW is in the F register.
The contents of the F register are placed
into the S register, then the S register is
counted down by an amount specified in the
program syllable. This word is accessed,
and the address is transferred to the S
register. The M register also addresses the
stack below the RCW, in the same manner
as the S register. This is for a new source
string address.

ENTRANCE TO CHARACTER MODE

7-15. Character mode may be entered through
an Operand Call syllable or a Descriptor Call
syllable referencing a program descriptor
that is marked character mode, In these
cases, the program descriptor would have

both the mode bit and the argument bit on.
When the program descriptor is marked
for character mode entry, and the MSFF
is on, an RCW will be placed in the stack
(per subroutine action), and the CWMF set.
The program segment string is initiated in
character mode at the address pointed to
hy the program descriptor. Another method
to enter character mode is with the enter
character mode in line (CMN) operator
(see section 6 for complete discussion), It
results in a change to sub-program level of
operation and generates the RCW.

7-16. Consider the first method of entry and
assume an MSCW has already been placed in
the stack (MSFF will be on). With these
conditions, an RCW is generated and placed
in the stack on top of the parameter entered
last. The C register is set from the address
contained in the lower 15 bits of the program
descriptor. The address in the S register
(address of the RCW in core stack) is placed
in the F register. The F register now points
to the RCW. The previous setting of the F
register was stored in bits 18 through 32 of
the Return Control Word. The address of the
RCW, contained in the S register, is also
placed into the X register. Prior to this
transfer, the X register would have been
cleared. The X register will be used to lo-
cate the top control word of the stack (not
always an RCW). This is necessary because
the S register is not used to address the
stack when operating in character mode, but
instead to address the destination string.

7-17, The "begin loop" operator incharacter
mode will cause a loop control word (LCW)
to be stored in the stack each time it is en-
countered in the program segment string.
Through the address found in the X register,
it is possible to determine where to store the
LCW in the stack. The F register always
points to the RCW while operating incharac-
ter mode. The R and S registers are cleared
so that they may be usedfor the tally register
and the destination string address registers
respectively. Both the CWMF and the SALF
are set to one. The Operand/Descriptor call
syllable which caused operation to enter the
character mode is then terminated with the
MSFF reset (off). The next syllable to be
executed will be the first syllable at the ad-
dress specified by the program descriptor.
The program segment string will be decoded

7-5

as character mode operators since the CWMF
is on.

Character Mode Syllable Decoding

7-18. Character mode syllables use the lower
bits to determine the type of syllable. The
upper 6 bits are referred to as a repeat
field. The repeat field of a character mode
syllable determines the number of characters,
or bits, with which a particular syllable will
work. With 6 bits in the repeat field, the
maximum number of charactersor bitsinone
string that any one syllable can work with is
63 (decimal). See figure 7-4,

REPEAT SYLLABLE
FIELD TYPE

12]91613
11181512
1017 |4

Figure 7-4. Character Mode Syllable

Character Mode Loops

7-19. In character mode, when a group of
syllables are to be repeated more than once,
a loop is formed using two syllables. These
syllables are the begin loop operator and the
end loop operator. Consider the following
character mode program segments strings
where BNS indicates begin loop operator;
BIS, set bit operator; and ENS, end loop
operator:

05:BNS -~ 01:BIS - ENS

The resulting action will be to set 5 bits in the
destination string starting with the bit ad-
dress by the S, K, and V registers. As this
program string is executed, the following
actions will occur.

7-20. When the begin loop operator (05:BNS)
is executed, an LCW containing the present
contents of the X register will be generated
and placed in the stack. If no other begin
loop operators were encountered before this
begin loop operator, the present contents of
the X register will only be the address of
the RCW. This address was stored when

character mode was entered (due to an Op-
erand/Descriptor Call syllable executed on a
program descriptor marked for character
mode or an enter character mode in-line
syllable). If a begin loop operator had been
executed prior to this begin loop operator,
the word stored in the stack would have the
format of an LCW. In either case, the word
placed in the stack will be called an LCW and
is used only in character mode operation.

7-21. After the contents of the X register are
stored, the X register will be replaced by the
following information: the repeat field of this
operator (05:BNS) minus1;the L count and the
C count of the syllable following the begin loop
operator; and the address of the top control
word of the stack, either the RCWor an LCW.
This completes the execution of the Begin
Loop Operator syllable (X now contains the
most current Loop Control Word.)

7-22. Omne bit is then set in the destination
string due to the Set Bit Operator syllable
01:BIS. The End Loop syllable is then en-
countered. The function of this syllable is to
determine if the loop has been repeated the
desired number of times specified by the begin
loop operator. If not, control returns to the
syllable that follows the corresponding begin
loop operator. The return point has been
stored in the L and C register field of the X
register. To determine if the proper number
of loops have been executed, the end loop
operator will check the repeat count field
bits of the X register for being equal to 0.
If they are not equal to 0, they are reduced
by 1 and the C and L registers are set to
their respective fields from the X registers.
If the repeat count bits are equal to 0, the
contents of the X register are replaced by
the word addressed by the X register. This
is the address of an LCW or RCW. The syl-
lable following the end loop operator is then
executed.

7-23. LOOP CONTROL WORD (LCW) DE-
SCRIPTION. In character mode, whenever a
loop is formed, several settings must be
retained such as the beginning point of the
loop. This beginning point is the point in the
program to which return occurs when the
loop is to be reiterated. This means that the
contents of the C and L registers must be

7-6

retamed Another value to be retained is the
number of times the loop is to be repeated
This latter value must be corrected withevery
pass through the loop. This is called the re-
peat field. If loops are nested within loops,
information pertaining to the previous loops
are stored as LCW's in the stack above the
RCW.

7-24. The X register is a 39 bit register used
to contain the information on the current loop.
Thus, the X register contains the return point,
repeat field, and the address of the previous
LCW. When anew loopisformed, the contents
of the X register are used to create a new
LCW. The information concerning the new
loop is stored in the X register, along with
the address of the LCW just formed. When a
loop is ended, the address in the X register

is used to access the last LCW. The X reg-

ister contents are then replaced by the in-
formation stored in the LCW just accessed.
This way, conditions are restored for the
previous loop. ‘ ’

7-25. LOOP CONTROL WORD FORMAT.

The format of the LCW is as follows:
Bit 0 On marks this word as not
_being an operand.

Bit 1

On marks this word asbeinga
control word or a program
descriptor.

Bit 2 Not used.

Bit 3 Off marks this word as acon-
trol word as opposed to a
program descriptor.

Bits 4~ 9 Not used.

Bits 10-11 Used to store the contents of
the L register.

Bits 12-17 These bits are used to store
the repeat field which hadbeen
in the X register.

'Bits 18- 32 These bits are used to store

the address of the preceding
control word. This address
will have been in the X regis-
ter. The field is labeled asF,
but will contain the setting of
the F register only when the
first LCW is stored after
entering character mode.

IDENTIFIES

CONTROL
OFF WORD
ONJo i Pz ! 1211241271 1361391 421
0,3 4 ‘.2_|_‘§:.‘§JZL,2‘£:_2Z'39:93&@[%‘/’4@1‘15
ON |1 : 10113:]6:l9+'.224l25_l}284l_3]:34:37:40l43'46
= e o a Sl = it Slu Ad Sl ik & AU I B P A
.4 11514 117H20123126129!32H35 1381 41144147
NOT USED rL REPEAT rF rC
FIELD

Figure 7-5. Loop Control Word Exlpoded

Bits 33-47 These bits are used to store
the contents of the C register.
This will be the address of the
program word that contains
the return point of the asso-
ciated loop (following the be-
gin loop syllable),

7-26. INTERRUPT LOOP CONTROL WORD
(ILCW) DESCRIPTION. If an interrupt con-
dition requires that the contents of the
registers be stored, then the information in
the X register must also be stored. This
will create the interrupt loop control word,
ILCW.

7-27. INTERRUPT LOOP CONTROL WORD
FORMAT. With the exception of one field,
the ILCW is identical to the LCW in format.
In character mode, when an interrupt con-
dition causes the register of a processor to
be stored, there may be a word of the desti-
nation string in the B register. This desti-
nation string word must be stored so that it
will not be lost. It is stored inthe program's
stack just above the last LCW. The A register
contents, if valid, are stored prior to the stor-
ing of the B register. Bit 2is set in the ILCW
to indicate if the A register was valid and

IDENTIFIES

stored. Bit 2 of the IRCW is set if the B
register contents were valid and stored in the
stack. To do this, the contentsof the S regis-
ter (address of the current destination string
word) and the address of the previous control
word (in the X register) are interchanged.
The S register is then counted up and the
destination string word is stored. The con-
tents of the X register is then used to form
the ILCW. Bits 18 through 32 will contain
the address of the destination string word
that had been in the B register. For this
reason, this field is labeled as S (figure 7-6).

EXIT FROM CHARACTER MODE

7-28. Character mode may be exited by
either of two operators: the exit character
mode (EXC) or the exit character mode in
line (CMX) operators. A complete dis-
cussion of these operators is givenin section
6. If entry to the character mode was made
by an operand/descriptor call executed on
a program descriptor, the EXC operator
must be used to exit character mode. How-
ever, if entry was made by the enter charac-
ter mode in line operator (CMN), the CMX
operator must be used.

CONTROL
[WORD
OFF
ON |01

ON |1 !

12115
Syl id
10013116
S m Byl

TITT

-
-
=

11H 14117

18121124127'30 H33136139 142 | 45
I YI0N 369,142 45
12:22;2_5:28.31

r T !
2023126129132 H35:38 141 |44 ' 47

1>, T
34137 140 143 44|

—_— =

AROF NOT USED rL REPEAT

FIELD

rS rC

Figure 7-6. Interrupt Loop Control Word Exploded

7-7

SECTION

CHARACTER MODE OPERATORS

GENERAL

8-1. The Character Mode Operator syllables
apply to Stream Procedures in ALGOL and
most of COBOL. The registers used to ad-
dress the source and destination strings are
explained in the following paragraphs.

CHARACTER MODE ADDRESSING

Source String

8-2. The M register will be used to select
the word from the source string that is to be
placed in the A register. The G register will
be used to point at the desired character
within the word pointed to by M. The H
register is used to select a bit within the
character pointed at by G. The bit pointer
(H) will count from 0 through 5 and back to
zero. If the register is caused to overflow
(5 to 0), the G register will be incremented
by one automatically. The G register is
capable. of counting from 0 through 7, then
back to 0. If the register is cycled from 7
to 0, this will cause the word pointer (M) to
be increased by one automatically.

Destination String

8-3. The S register will be used to point at
the destination string arca and the word ac-
cessed will be placed in B register. The K
register will be used to select the desired
character within the word pointed to by S.
The counting capabilities of the K register
are the same as those described for the G
register of the source string. TheV register
is used to select a bit within the character
pointed at by K. The V register also has
counting capablilities like those of the H
register in the source string.

8-1

Character Movement

8-4. Successive charactersproceedfrom left
to right within a word (character 0, (bit 0-5)
to character 7, (bits 42-47)) and to con-
secutively higher memory addresses by word.
At the completion of the operation, the next
bit, character, or word in sequence will be
pointed at unless the syllable executed was
only a test operator. A test operates on a
single bit or character within a given string
and does not alter the setting of the registers.

Address Adjustment

8~5. Prior to the execution of any operator
which operates on whole characters or words
of the source string (in A register) or destina-
tion string (in B register), the corresponding
lower-order pointers will be tested for zero.
If the respective registers are or are not
zero, they will be set to zero, witha possible
overflow to the next higher-order register.
For example, if a Transfer Word syllable
is executed, the source string registers as-
sociated with bits and characters will be
tested for zero. If the H registerisnot zero,
it will be set to zero, and the G register in-
creased by one. The G registeristhentested
for zero, and if not zero, it is set to zero,
and the M register is increased by one. This
same action will occur in the destination
string except the registers tested will be the
V and K registers. When the syllable finds
that the lower order registers are equal to
zero, it will then allow the transferring of
the words from the source string to the
destination string.

OPERATOR SYLLABLES

8-6. The following general limitations apply
to character mode operators. Operation in
violation of these limitations may produce
undefined results.

Operations Involving Memory Accesses to
Source and Destination Areas

8-7. At no time during the operation may the
source address and the destination address
refer to the same word in memory. Access
should not be made to the location specified by
the current destination address unless that
destination address is at a word boundary
(K =V =0). These general limitations apply
in all cases,

8-8. Prior to the execution of some operators
the H register is tested for zero. If the H
register is not equal to zero, it is set to
zero and the G register is increased by one.
Overflow into the M register can occur.

8-9. Prior to the execution of still other op-
erators the V register is tested for zero. If
the V register is not equal to zero, it is set to
zero and the K register increased by one.
Overflow into the S register can occur.

8-10. If the repeat field is equal to zero, the
operator isterminated after any adjustment of
address registers as described above.

8-11. Successive characters proceed from
left to right within a word and to consecutively
higher memory addresses by word. At the
completion of the operation, the M, G, Sand K
registers specify the next source and destina~
tion character in sequence. For those opera-
tors that operate only on the M and G regis~
ters, the S and K registers remainunchanged.
For those operators that operate only onthe S
and K registers, the M and G registers remain
unchanged.

TRANSFER OPERATORS

8~12. Transfer operators transfer informa-
tion from one area in memory to another. In
general, transfer operators proceed from
high-order to low-order within a word and to
successively higher addresses by word.
Transfers may occur from any character
position within a word to any character posi-
tion in another word, subject to the limitations
of paragraphs 8-6 thru 8-11.

TRS Transfer Source Characters (TSDL) XX77

8-13. This operator transfers characters
from the source string starting at the po-
sition specified by the M and G registers to
the destination string starting at the position

specified by theS and K registers. The num-
ber of characters transferred is specified by
the repeat field (XX).

TRP Transfer Program Characters (TPDL) XX74

8~14. This operator transfers characters
from the program string starting at the posi-
tion specified by the C and L registersto the
destination string starting at the position
specified by the S and K registers. The num-
ber of characters transferred is specified by
the repeat field. When the repeatfieldis odd,
the first character in the program string is
skipped. The next program syllable fetched
is the syllable following the one containing the
last character transferred.

TRZ Transfer Zones (TZDL) XX76

8~15. This operator transfers the zone por-
tion of the characters in the source string at
the position specified by the M and G regis~
ters to the zone portion of the characters in
the destination string starting at the position
specified by the S and K registers. The numer-
ic portions of the destination string characters
are retained. The number of zones trans-
ferred is specified by the repeat field.

TRN Transfer Numeric (TNDL) XX75

8-16. This operator transfers the numeric
portion of the character in the source string
starting at the position specified by the M and
G registersto the numeric portion of the char-
acter in the destination string starting at the
position specified by the S and K registers.
The zone bits of the characters in the destina~-
tion string are set to zero. If the zone portion
of the last source character transferred is
minus (BA = 10), the true/false indicator is
set to true; otherwise, the true/false indica-
tor is set to false. The number of numeric
characters transferred is specified by the re-
peat field.

TRW Transfer Words (TWDL) XX05

8-17. This operator transferswords from the
source string starting at the position specified
by the M register to the destination string
starting at the position specified by the S reg-
ister. The number of words transferred is

specified by the repeat field. Prior tothe ex-
ecution of the operator, the G, H, Kand V reg-
isters aretested for zero. If the G or H reg-
isters are not equal to zero, they are set to
zero and the M register increased by one. If
either the K or V registers are not equal to
zerothey are settozeroandthe Sregister in-
creased by one, Atthe completion of the oper-
ation, the M and S register specify the next
word in sequence. Refer to paragraph 8-10.

TBN Transfer Blanks for Non-Numerics
(TBZL) XX12

8-18. This operator tests characters speci-
fied by the S and K registers, for lessthan or
equal to zero. If the characterislessthan or
equal to zero, it isreplaced by a blank char-
acter, and the nextcharacteristested. If the
character is greater than zero, the operation
is terminated. The maximum number of char-
acters tested is specified by the repeatfield.
If the operator isterminated because a char-
acter tests greater than zero, theSand K reg-
isters are left pointing at this first non-zero
character. If the operator is terminated be-
cause the repeat field has been counted to
zero, S and K will point at the character fol-
lowing the field tested. If the field contains
all blanks, or if the field length is zero, the
True/False Flip Flop (TFFF) is set to 1;
otherwise it is set to 0.

TEST OPERATORS

8-19. Test operators provide the ability of
testing a character or bit in the source area
against a predetermined character or bit.
These operations do not cause an advance-
ment in the source area enabling repeated
tests of a character. Tests ofcharacters are
made on the basis of the collating sequence of
characters. The limitations are specified in
paragraph 8-8.

TGR Test for Greater (TGTL) XX27

8-20. This operator compares the repeat
field and the character in the source string
specified by the M and G registers for a
""greater than" condition. If the source char-
acter isgreater than the character in the re-
peat field, the TFFF is settotrue which turns
the True/False indicator on (true);otherwise,
the indicator is off which indicates that the
TFFF is reset (false). The M andG regis-~
ters are not advanced.

TEG Test for Greater or Equal (TGEL) XX26

8~-21. This operator compares the repeat
field againstthe character inthe source string
specified by the M and G registers for a
"greater than" or 'equal" condition. If the
source character isgreater or equal to the re-
peat field character, the true/false indicator
is true; otherwise, the true/false indicatoris
false. The M and G registers are not advanced.

TEQ Test for Equal (TEQL) XX24

8~22. This operator compares the repeat
field with the character in the source string
specified by the M and G registers for an
"equal" condition. If the condition is met, the
true/false indicator is true; otherwise, the
true/false indicator is false. The M and G
registers are not advanced,

TEL Test for Equal or Less (TLEL) XX34

8-23. This operator compares the repeat
field with the character in the source string
specified by the M and Gregistersfor a "less
than or equal" condition. If the source char-
acter is equal or less than the repeat field
character, the true/false indicator is true;
otherwise, the true/false indicator is false.
The M and G registers are not advanced.

TLS Test for Less (TLTL) XX35

8-24. This operator compares the repeat
field against the character in the source
string specified by the M and G registers for
a'"less than" condition. If the source charac-
ter is less than the repeat field character, the
true/false indicator is true; otherwise, the
true/false indicator is false. The M and G
registers are not advanced.

TNE Test for Not Equal (TNEL) XX25

8-25. This operator compares the repeat
field with the character in the source string
specified by the M and G registers for a "not
equal" condition., If the source character is
not equal to the repeat field character, the
true/false indicator is true, otherwise the
indicator is false. The M and G registers are
not advanced.

TAN Test for Alphanumeric (TANL) XX36

8~26. This operator compares the repeat
field and the character in the source string
specified by the M and G registers for a
"greater than or equal" condition. If the
source character is greater than or equal to
the repeat field character and the source
character is not the ""multiply" character (ex-
ternal code 10 1010) or '"notequal' character
(external code 01 1010), the true/false in-
dicator is true; otherwise the true/false in-
dicator is false. The M and G registers are
not advanced. A '"'not equal" character in the
repeat field compared with a '"not equal"
character in the source string will result in
setting the TFFF to true. A'"multiply" char-
acter in the repeat field compared with a
"multiply" character in the source string will
result in setting the TFFF to true.

BIT Test Bit (TEBL) XX37

8~27. This operatortestsone bit in the source
string at the position specified by the M, G and
H registers against the low-order bit of the
repeat fleld. If they are equal, the true/false
indicator is true; otherwise, the true/false
indicator is false. The M, G and H registers
are not advanced.

COMPARISON OPERATORS

8-28. The comparison operators are used for
comparing two identical length fields of alpha-
numeric characters. Comparisons are made
on the basis of the collating sequence of char-
acters. Fields may start at any positionwith-
in a word; word boundaries are ignored. Al-
though the result of the comparison may be
known before all characters of the fields have
been compared, the address registers are ad-
vanced the full amount. The limitations are
specified in paragraphs 8-6 thru 8-11.

CGR Compare for Greater (SGTL) XX63

8~29. This operator compares a character
field in the source string starting at the posi-
tion specified by the M and G registers with an
identical length character field in the destina-
tion string starting at the position specified by
the Sand K registers for a"greater than" con-
dition. If the field in the source string is
greater than the field in the destination string,

the true/false indicator is true; otherwise, the
true/false indicator is false. The number of
characters in each of the fields to be compared
is specified by the repeat field.

CEG Compare for Greater or Equal (SGEL)
XX62

8-30. This operator compares a character
field in the source string starting at the posi-
tion specified by the M and G registers against
an identical lengthcharacter field in the desti-
nation string starting atthe position specified
by the SandKregistersfor a'greater than or
equal" condition. If the field in the source
string is greater than or equal to the field in
the destination string, the true/false indicator
is true; otherwise, the true/falseindicatoris
false. The number of charactersineachofthe
fields to be compared is specified by the repeat
field.

CEQ Compare for Equal (SEQL) XX60

8-31. This operator compares a character
field in the source string starting at the po-
sition specified by the M and G registers
against an identical length character field in
the destination string starting at the position
specified by the S and K registers for an
"equal" condition. If the fields are equal the
true/false indicator is true; otherwise, the
true/false indicator is false.

CEL Compare for Equal or Less (SLEL) XX70

8~32. This operator compares a character
field in the source string starting atthe posi-
tion specified by the M and G registers against
an identical length character field in the des-
tination string starting at the position speci-
fied by the S and K registers for a "less than
or equal' condition. If the field in the source
string is equal or less than the field in the des-
tination string, the true/false indicator is
true; otherwise, the true/false indicator is
false. The number of charactersineach of the
fields to be compared is specified by the re-
peat field.

CLS Compare for Less (SLTL) XX71
8-33. This operator compares a character

field in the source string starting at the posi-
tion specified by the M and G registers

against an identical length character field in
the destination string starting at the position
specified by the S and K registersfora "less
than" condition. If the field in the source
string is less than the field in the destination
string, the true/false indicator is true; other-~
wise, the true/false indicator is false.

CNE Compare for Not Equal (SNEL) XX61

8-34. This operator compares a field of char-
acters in the source string starting at the posi~
tion specified by the M and G registers against
an identical length character field in the des-
tination string starting at the position speci-
fied by the S and K registersfor a ''not equal”
condition. If the fields are notequal, the true/
false indicator is true; otherwise, the true/
false indicator is false. The number of char-
acters in each of the fields to be compared
is specified by the repeat field.

JUMP OPERATORS

8-35. These operators are used to adjustthe
C and L registers to provide branchinginthe
program string and executing repeated pro-
gram strings. Limitations are specified in
paragraph 8-10.

JFW Jump Forward Unconditional (FWJL)XX47

8-36. This operator initiates an unconditional
forward jump. The C and L registersarein-
creased by the contents of the repeat field.
Prior to the addition of the repeat field of
this operator, the C and L registers contain
the address of the next syllable in sequence.

JRV Jump Reverse Unconditional (REJL) XX57

8-37. This operator initiates anunconditional
reverse jump. The C and Lregistersarede-
creased by the contents of the repeat field.
Prior to the subtraction of the repeat field of
this operator, the C and L registers contain
the address of the next syllable in sequence.
Operation with repeat field equal to 1 is a
closed loop.

JFC Jump Forward Conditional (CFJL) XX45

8-38. This operator initiates a jumpforward
unconditional if the true/false indicator is
false. If the true/false indicator is true, the
next syllable in sequence is fetched. The
true/false indicator remains unchanged.

8-5

JRC Jump Reverse Conditional (CRJL) XX55

8-39. Thisoperator initiates a jump reverse
unconditional if the true/false indicator is
false. If the true/false indicator is true, the
next syllable in sequence is fetched. The
true/false indicator remains unchanged.

BNS Begin Loop (BELL) XX52

8-40. This operator begins a string of pro-
gram syllables which are tobe repeated. The
end of the string is identified by the end loop
operator. The number of times this string of
syllables is to be repeated is specified by the
repeat field of the begin loop operator. Ifthe
repeat field is zero or one, the program string
is executed once. Any repeated program
string may contain within it repeated program
strings. This operator builds a new loop con~
trol word in the X register and stores the
previous one in the stack. The repeat field
minus one is part of the loop control word.

ENS End Loop (ENLL) XX51

8-41, This operator marks the end of a re-
peated program string. A test is made of the
number of times the program stringhas been
executed. If the repeatfield inthe loop control
word is not zero, it isdecreased by one and an
unconditional branch occurs to the syllable
following the corresponding beginloop opera-
tor. Otherwise, control continues in sequence
and the loop control word in the X register is
replaced by a previous LCWor RCW from the
stack.

JNS Jump Out-of-Loop Unconditional (JOLL)
XX46

8-42. This operator terminates the repetition
of a program string bracketed by a begin loop
and an end loop operator, and jumps out of the
repeated string. The operator deletes the as-
sociated loop control word and causes anun-
conditional forward jump over the number of
syllables specified by the repeat field of the
operator. If the repeat field of the operator
is 00, the loop control word is deleted as
above, but no jump occurs. Control passes to
the next syllable in sequence. In either case,
the current loop control word inthe X register
is replaced by a previous LCW or RCW from
the stack,

JNC Jump Out-of-Loop Conditional (CJOL)
XX44

8-43. If the true/false indicator is false, a
jump out loop operator is performed. If the
true/false indicator is on indicating that the
TFFF is set to true, control continues in se-
quence.

SKIP OPERATORS

8-44. Skip operators are used to set the ad-
dress registers associated with the source
and/or destination character strings.

SFS Skip Forward Source (FSSL) XX31

8-45. The contents of the G and M registers
are increased by the contents of the repeat
field. See paragraphs 8-8 and 8-10.

SRS Skip Reverse Source (RSSL) XX30

8-46. The contents of the G and M registers
are decreased by the contents of the repeat
fields. See paragraphs 8~8 and 8-10.

SFD Skip Forward Destination (FSDL) XX16

8-47. The contents of the K and S registers
are increased by the contents of the repeat
field. See paragraphs 8-9 and 8-10.

SRD Skip Reverse Destination (RSDL) XX17

8-48. The contents of the K and S registers
are decreased by the contents of the repeat
field. See paragraphs 8~9 and 8-10.

BSD Skip Bit Destination (SBDL) XX02

8-49. The contents of the V, K and Sregisters
are Increased by the contents of the repeat
field. See paragraph 8-10.

BSS Skip Bit Source (SBSL) XX03

8-50. The contents of the H, G and M registers
are increased by the contents of the repeat
field. See paragraph 8-10.

ADDRESS OPERATORS

8-51. These operators are used for storing
addresses in the stack, calling addresses
from the stack, and addressing locations in the
stack. In addition, it is possible to obtain
source and destination addresses from the
source and destination character strings.

8-6

SSA Store Source Address (STSL) XX15

8-52. The contents of the G and M registers
are stored in the word at the address formed
by reducing the address of the RCW by the re-
peat field. The contents of the M register are
stored in bit positions 33 through 47 and the
contents of the G register in bit positions 30
through 32 of the word address. The flag bit
of the word address is set to zero. The ad-
dress of the RCW remains unchanged. See
paragraph 8-8.

SDA Store Destination Address (STDL) XX14

8-53. The contents of the K and S registers
are stored in the word at the address formed
by reducing the address of the RCW by the re-
peat field. The contents of the S register are
stored in bit positions 33 through 47 and the
contents of the K register in bit positions 30
through 32 of the word address. The flag bit
of the word address is set to zero. The ad-
dress of the RCW remains unchanged. See
paragraph 8-9,

SCA Store Control Address (STPL) XX54

8-54. The contents of the C and L registers
are stored in the word addressed formed by
reducing the address of the RCW by the re-
peat field. The contents of the C register are
stored in bit positions 33 through 47 and the
contents of the L register in bit positions 10
and 11 of the word addressed. The flag bit of
the word address is set to zero. The address
of the RCW remains unchanged.

RSA Recall Source Address (RSAL) XX53

8-55. The word at the address formed by re-
ducing the address of the RCW by the repeat
field is read from memory. If the flag bit of
the word is aone and the presence bit is zero,
the presence bit is set in the interrupt regis-
ter and the operation terminated. If the flag
bit and the presence bit of the word are both
one, the bit positions 33 through 47 of the word
are transferred to the M register and the G
and H registers are setto zero. If the flag bit
is zero, bit positions 33 through 47 are trans-
ferred to the M register and bit positions 30
through 32 of the word are transferred to the G
register and the H register is set to zero.

RDA Recall Destination Address (RDAL) XX04

8-56. The word at the address formedby re~
ducing the address of the Return Control Word

by the repeat field is read from memory. If
the flagbitof the word is a one and the pres-
ence bit is zero, the presence bitis set in the
interrupt register and the operation termi-
nated. If the flag bit and the presence bit of the
word are both one, bit positions 33 through47
of the word are transferred to the S register
and the K and V registers are set to zero. If
the flag bit of thewordis a zero, bit positions
33 through 47 of the word are transferred to
the S register. Bitpositions30through32are
transferred to the K register and the V regis-
ter is setto zero. The addressofthe RCW re-
mains unchanged.

RCA Recall Control Address (RPAL) XX50

8-57. The word at the address that is formed
by reducing the address of the RCW by the re-
peat field is read from memory. If the flag bit
and the presence bit of the word are both
one, bit positions 33 through 47 of the word
are transferred to the C register and the L
register is set to zero. If the flag bit of the
word is one and the presence bit is zero, the
presence bit is set in the interrupt register,
and the C and L registers are not advanced.
If the flag bit of the word is zero, the bit
positions 33 through 47 of the word are trans-
ferred to the C register; bit positions 10 and
11 are transferred to the L register, and the
C and L registers are advanced by one to
specify the next syllable in sequence. The
address of the RCW remains unchanged.

SES Set Source Address (SSPL) XX22

8-58. The M register is set to the address
formed by reducing the address of the RCW
by the repeat field. The address of the RCW
remains unchanged. Registers G and H are
set to zero (M is pointing at the stack).

SED Set Destination Address (SDPL) XX06

8-59. The S register is set to the address
formed by reducing the address of the RCW
by the repeat field. The address of the RCW
remains unchanged. Registers K and V are
set to zero (S is pointing at the stack).

TSA Transfer Source Address (SSAL) XX56

8-60. The eighteen bits of the three charac-
ters in the source string, starting at the posi~
tion specified by the M and G registers, are

8-7

transferred to the M and G registers. The
three most significant bits are transferred
to the G register and the remaining 15 bits
are transferred to the M register. The H
register is set to zero. See paragraph 8-8.

TDA Transfer Destination Address (SDAL)
XX07

8-61. The eighteen bits of the three charac-
ters in the destination string starting at the
position specified by the S and K registers
are transferred to the S and Kregisters. The
three most significant bits are transferredto
the K register and the remaining 15 bits are
transferred to the S register. TheV register
is set to zero. See paragraph 8-9.

ARITHMETIC OPERATORS

FAD Field Add (FADL) XX73

8-62. This operator algebraically adds a
source field whose most significant position
is specified by the M and G registersto a des-
tination field whose most significant position
is specified by the S and K registers. The
lengths of the two fields are equal and are
specified by the repeat field. The result is
stored in the destinationfield. The zone posi-
tions of the least significant character of a
field contain the sign of the field. (BA= 10 is
minus; all other combinations are plus). In
the result, all zone positions other than the
sign are set to 00; a plus signis BA=00 and a
minus sign is BA=10. If the result of the ad-
dition overflows the destination field, the
overflow is lost and the TFFF set to true;
otherwise, the TFFF is settofalse, If the op~
eration is an arithmetic addition, and both
fields are minus zero, the result is minus
zero. If the operation is an arithmetic sub-
traction, the source field is plus zero and the
destination field is minus zero, the result is
minus zero. In all other instances a resultof
zero is a plus zero. See paragraphs 8-6 thru
8-11,

FSU Field Subtract (FSUL) XX72
8-63. This operator algebraically subtracts

a source field from a destination field in the
manner described in the field add operator.,

CONVERSION OPERATORS
ICV Input Convert (ICOL) XX67

8-64. This operator converts decimal char-
acters in the source string starting at the
position specified by the M and G registers
to an octal word (binary integer) at the posi-
tion specified by the S register. The number
of decimal characters converted is specified
by the repeat field; the maximum value for the
repeat field is 8. If the value of the field con-
verted is not zero, the sign of thefield is ob~
tained from the zone bits of the least signifi-
cant character of the field (BA=10 is minus;
all other combinations are plus) and is stored
in the sign positionof the word. All other zone
bits of the field are ignored. If the value of the
field converted is zero, the sign of the word
is set to plus. If prior to the execution of
this operator the K or V registers are not
zero, they are set to zero and the S register
advanced by one. If the repeat field is zero,
no conversion takes place, but the register
manipulation does take place. The conver-
sion process treats the decimal field as an
integer. The flag bit, exponent sign and ex-
ponent of the octal word are set to zero. See
paragraph 8-8 and 8-10.

OCV Output Convert {(OCOL) XX66

8-65. This operator converts anoctal word in
the source string at the position specified by
the M register todecimal characters starting
at the position specified by the S and K reg-
isters. The number of decimal characters re-
sulting from the conversion is specified by the
repeat field; the maximum value for the repeat
field is 8. If the octal word does not have a
value of zero, the sign of the word is stored in
the zone bits of the least significant character
of the field (for minus BA is setto 10, for plus
BA is set to 00). Allother zone bits are zero.

8-66. If the octal word has a value of zero,
the sign of the word is storedinthe zone bits
of the least significant character as a plus.
If prior to the execution of this operator the
G or H registers are not zero, they are set to
zero and the M register advanced by one. In
the conversion process, the flagbit, exponent
sign and exponent are ignored; the mantissa
of the octal word is treated as an integer. If
the value of the mantissaislarger thancan be

8-8

converted to the field size specified by the re-
peat field, the characters converted will be the
least significant characters of the decimal in-
teger equivalent of the octal integer mantissa.
If the number being converted isnegative and
non-zero, the sign of the result is set to nega-
tive even if all of the least significant digits
converted are zero. The characters in ex~
cess of the number specified by the repeat
field are lost. The true/false indicator is set
to false. If the word can be converted to the
field size specified, or if the repeat field is
zero, the true/false indicator is set to true.
See paragraphs 8-9 and 8-10.

MISCELLANEOUS OPERATORS

SEC Set Tally (SETL) XX42

8-67. This operator sets the tally register
(lower 6 bits of rR) to the value contained in
the repeat field.

INC Increase Tally (INTL) XX40

8-68. This operator increases the tally reg-
ister by the amount of the repeat field. The
tally is modulo 64; overflows are lost.

STC Store Tally (STAL) XX41

8-69. This operator stores the 6 bit tally
register at the address formed by reducing
the address of the RCW by the repeat field.
The value contained in the tally register is
stored as an integer. The contents of the
tally register remain unchanged.

BIR Reset Bit (REBL) XX65

8-70. This operator sets bits to zero in the
destination string starting at the position
specified by the S, K and V registers. Suc-
cessive bits proceed from left to right. The
number of bits set to zero is specified by the
repeat field. The S, K and V registers, upon
the completion of this operator, address the
next bit in sequence. See paragraph 8-10

BIS Set Bit (SEBL) XX64

8-71. This operator sets bits to one in the
destination string starting at the position
specified by the S, K and V registers. Suc-
cessive bits proceed from left to right. The
number of bits set to one is specified by the

repeat field. The S, K and V registers, upon
the completion of this operator, address the
next bit in sequence. See paragraph 8-10.

CRF Call Repeat Field (CLRL) XX43

8-72. The six low-order bits of the word at
the address formed by reducing the address
of the RCW by the repeat field are transferred
to the repeat field of the T register. If this
field is not zero, the transfer of the repeat
field of the next syllable to the T register is
suppressed and the present contents of the
repeat field of the T register is used. If the
field is zero, a jump forward unconditional
operator is executed using the repeat field
in the next syllable. No interrupt may occur
between the execution of this operator and the
execution of the subsequent operator.

EXC Exit Character Mode (RECL) XX00

8-73. Registers A and B are marked empty.
The RCW is read from memory. If the flag
bit of the word in the B register is 1, the

8-9

operation is continued. If the flag bit is 0
and the processor is in the normal state, the
flag bit interrupt is set and the operator
exited with the RCW left at the top of the
stack. If the flag bit is 0 and the processor
is in the control state, the operator is ter-
minated but the interrupt is not set. The C,
L, G, H, K and V registers are set to the
contents of the respective field of the RCW.
The S register is set to the contents of the F
register field of the RCW. The word ad-
dressed by the S register, the MSCW, isread
from memory. The R and F registers are
set to the contents of the respective fields of
the MSCW. The MSFF and the SLAF are set
to the contents of the respective positions of
the MSCW. The S register is decreased by
one. The A and B registers are set to
empty. The CWMF is set to word mode.

CMX Exit Character Mode In Line (ILEL)
0100

8-74. This operator is the same as the exit
character mode operator except that the C
and L registers are not set.

GENERAL

9-1. The peripheral units are those units
that provide the input and output facilities
for the B 5500 system, They operate in-
dependently of the processor, but always
under control of the MCP through the I/O
control wunit. This section will describe
the peripheral units that may be used on a
B 5500 system,

B 122 CARD READER

9-2. The B 122 Card Reader is designed for
use as a compact general purpose card
reader capable of reading 80 column punched
cards at a maximum rate of 200 cards-per-
minute (CPM) under control of the I/0
control unit. Buffered operation, through the
I/0O control unit, permits computations to
proceed while the card data is being read.
The card reader is capable of reading
binary cards. The card reader can handle
cards that are cut in any four corners, and
cards that are notched during verification.
Cards may also be scribed for ease of fold-
ing and tearing.

Functional Characteristics

9-3. A single path mechanism transports
cards from the picking mechanism, through
the read station, and into the stacker, A
failure to feed, or feed jams, causes a
"'not ready" signal to be relayed to the
associated I/0O control unit. A jam will halt
the card read operation with no more than
two cards in a jammed condition. Informa-
tion punched in the card is read and trans-
ferred into the one word input buffer, parallel
by bit, serially by column. By use of the
switch on the control panel, the validity of

SECTION

PERIPHERAL UNITS

9-1

each character in the card can be checked,
For proper MCP operation, the VALIDITY
switch must be turned on. A demand-type
card picking mechanism permits the com-
plete reading of an 80 column card in a total
time of 350 ms. or less after a start feed
signal is received. The card hopper has a
capacity of 450 cards, Cards may be placed
into the hopper while the unit is operating as
long as approximately 150 cards are still
in the hopper. During loading, the cards in
the hopper remain in proper position for the
continuous feeding, without manual support
from the operator. A single, one-column
data reading station, reads the cards column-
by-column serially for the entire 80 col-
umns. The card data may be in tabulating
card code or binary code, and is transferred
to the input buffer of the associated 1/O
control unit in 6 bit binary code. The cards
are stacked in the stacker in the same se-
quence as they are fed, and cannot be re-
moved from the stacker while the unit is
operating.

Control Panel

9-4. A B 122 Card Reader control panel (fig-
ure 9-1) contains the switches and indicators
for operation of the unit and indicates error
conditions. The function of each of these
elements is provided in table 9-1.

POWER
ON

NOT
READY

FEED
CHECK

VALIDITY
CHECK

END OF

FILE START

POWER
OFF

READ VALIDITY

CHECK ON RESET

STOP

Figure 9-1. B 122 Card Reader Control Panel

TABLE 9-1

B 122 Card Reader Control Panel
Switches and Indicators

SWITCH/INDICATOR

FUNCTION

POWER ON

NOT READY

FEED CHECK

VALIDITY CHECK

END OF FILE
START
STOP
RESET
VALIDITY ON
READ CHECK
POWER OFF

This is a combination switch-indicator that applies power to
the card reader and lights when pressed,

Ths indicator lights when any of the following conditions exist:
card jam, stacker full, cover not in place, empty hopper, or
STOP switch is pressed. The condition causing the NOT
READY indicator to light must be corrected before reading
can be resumed.

This indicator will light as a result of a card jam or a failure
to feed or stack a card properly.

This indicator lights when an invalid character is read by the
card reader, and the MCP is notified of this by flagging the
1/0 result descriptor. The VALIDITY CHECK indicator and its
associated circuitry are only operative when the VALIDITY
ON switch~indicator is lit,

This switch-indicator is not used for B 5500 operations. An
end-of-file is accomplished with control cards,

This switch will ready the card reader (turn the NOT READY
indicator off) to allow the card reader to read cards under
control of the B 5500,

This switch is used to stopthe card reader from feeding cards.
When the switch is pressed, the card reader will go "NOT
READY."

This switch clears all error indicators on the card reader.
However, the NOT READY indicator is not turned off by
pressing this switch.

This switch-indicator provides the means of performing a
validity check by the card reader. Validity checking is per-
formed when the switch is pressed and the indicator lights.
Validity checking is disabled when the switch is pressed and
the indicator goes out,

This indicator lights when the read check circuitry detects an
operational failure.

This switch removes power from the unit.

9-2

B 123 CARD READER

9-5. The B 123 Card Reader is functionally
the same as the B 124 Card Reader, except
that the B 123 reads cards at the maximum
rate of 475 CPM; therefore, separate dis-
cussion is not given of the B 123,

B 124 CARD READER

9-6. The B 124 Card Reader is used to
process punched cards of 51, 60, 66, or 80
columns of either standard or post card
thickness, under control of an I/O control
unit, at the rate of 800 CPM. An immediate
access clutch provides demand feeding. Read
data is transferred to the one word buffer
of the I/O control unit and then to memory.
Cards cut on any four corners, and cards
that have been verified (notched on the right
edge) may be used. However, the card stock
thickness and the length must be consistent
during any one run. The B 124, B 123, and
B 122 Card Readers are interchangeable.
A maximum of two card readers may be used
with any B 5500 system. The card reader
is capable of reading binary cards.

Functional Characteristics

9-7. A single one column reading station
reads the cards column-by column. Col-
umn 1 is read first, The tabulating card
code is translated into 6 bit binary coded
decimal and transferred to the input buffer
of the associated I/O control unit. A de-
mand-type card picking mechanism picks
the cards from the card hopper, and if an

initial pick fails, a second pick would be
attempted automatically. The card hopper
has a capacity of 2400 cards and can be
loaded by the operator while the unit is
operating. The operator does not have to
hold the cards already in the hopper in
position while loading additional cards, Cards
are conveyed from the hopper to the card
stacker by means of a card transport mech-
anism. The cards are then stacked into the
card stacker in the same sequence and
manner in which they were fed. The stacker
will also hold a maximum of 2400 cards.
Cards may be removed from the stacker
during operation. Failure to feed a card
will cause a missing card condition and the
card reader will be placed in a "not ready"
state. A card jam will not cause mechanical
damage, but the unit will stop operating
when two cards are jammed.

Control Panel

9-8., The B 124 Card Reader contains a
control panel (figure 9-2) for communication
withthe 1I/0 control unit and toindicate error
conditions, The functions of each switch
and indicator on the control panel is given
in table 9-2,

POWER NOT FEED VALIDITY END OF START
ON READY CHECK CHECK FILE

POWER READ VALIDITY
OFF CHECK ON RESET SToP

Figure 9-2. B 123/B 124 Card Reader Control Panel

TABLE 9-2

B 123/B 124 Card Reader Control Panel
Switches and Indicators

SWITCH/INDICATOR

FUNCTION

POWER ON

NOT READY

This is a combination switch-indicator that applies power to
the card reader and lights when pressed.

This indicator lights when any one of the following conditions
exists: card jam, stacker full, cardline mechanism not locked,
empty hopper, or STOP switch is pressed. The condition
causing the NOT READY indicator to light must be corrected
before reading can be resumed.

TABLE 9-2 (Cont)

B123/B 124 Card Reader Control Panel

Switches and Indicators

SWITCH/INDICATOR

FUNCTION

FEED CHECK

VALIDITY CHECK

END OF FiLE
START
STOP
RESET
VALIDITY ON
READ CHECK
POWER OFF

This indicator will light as a result of a card jam or a failure
to feed or stack a card properly.

This indicator lights when an invalid character is read by the
card reader. The MCP is notified of this condition by flagging
the I/O resultdescriptor. The VALIDITY CHECK indicator and
its associated circuitry are only operative whenthe VALIDITY
ON switch-indicator is lit.

This switch~indicator is not used for B 5500 operations. An
end-of-file is accomplished with control cards,

This switch will ready the card reader (turn the NOT READY
indicator off) to allow the card reader to read cards under
control of the B 5500.

This switch is used to stop the card reader from feeding cards.
When the switch is pressed, the card reader will go "NOT
READY."

This switch clears all error indicators on the card reader.
However, the NOT READY indicator is not turned off by
pressing this switch.,

This switch-indicator provides the means of performing a
validity check by the card reader. Validity checking is per-
formed when the switch is pressed and the indicator lights.
Validity checking is disabled when the switch is pressed and
the indicator goes out.

This indicator lights when the read check circuitry detects
an operational failure.

This switch removes power from the unit,

B 129 CARD READER

B 303 CARD PUNCH

9-9. This high speed input unit provides
buffered reading of 1400 cards per minute.
Appearance and physical characteristics
are the same as the B 124, An empty
hopper condition causes the transport to
shut off, When cards are placed in the
empty hopper, the transport restarts without
additional operator action.

9-4

9-10, The B 303 Card Punch feeds, punches,
checks, and stacks 80 column cards in both
standard and post card thickness at the
maximum rate of 100 CPM. The cards may
be cut on any of four corners and may also
be scribed for either tearing or folding.
However, certain types of scribe cards may
generate error signals if used with the

PUNCH CHECK switch on (table 9-3). A
plugboard is not required in the B 303 Card
Punch since all formatting is under control
of the program. The B 303 operation is
completely buffered through the I/0 control
unit, thus allowing processing to continue
during the card punch operation.

Functional Characteristics

9-11. Cards that are to be punched are
placed in the hopper face down, 12-edge
first. Card stock thickness must be con-
sistent during any one run and cards can be
loaded into the hopper while the unit is op-
erating without disturbing the cards that
are already loaded into the hopper. Entry
of cards into the feed rollers is accom-
plished by feed knives which select cards
sequentially when activated by a feed signal.

HOPPER

=

FEED ROLLERS

PICKER

Cards are under positive control of pairs of
feed rolls during their travel from hopper
to stacker (figure 9-3), The B 303 punch
unit is capable of punching up to 80 columns
simultaneously in any one row of a standard
card without overloading. Up to 60 columns
can be punched in post card stock cards.
Card jams will not cause any damage to the
punch mechanism. The stacker holds 800
cards and can be unloaded while the unit is
punching. The B 303 is capable of idling with
cards in the feed mechanism. Card move-
ment is controlled by the I/O control unit,

Control Panel

9-12, The B 303 Card Punch control panel
(figure 9-4) contains switches and indicators
for operation of the unit and indication of
error conditions. The function of each of
these elements is provided in table 9-3.

READ BRUSHES
FEED ROLLERS

STACKER

Figure 9-3. B 303 Card Punch Feed Mechanism

POWER NOT PUNCH FEED STA
ON READY CHECK CHECK RT
PUNCH
POWER
OFF RUNOUT CHECK RESET STOP
ON

Figure 9-4. B 303 Card Punch Control Panel

TABLE 9-3

B 303 Card Punch Control Panel
Switches and Indicators

SWITCH/INDICATOR

FUNCTION

POWER ON

NOT READY

PUNCH CHECK

FEED CHECK

START

STOP

RESET

PUNCH CHECK ON

RUNOUT

POWER OFF

This is a combination switch-indicator that applies power to the
unit when pressed. The indicator lights when power is on.

This indicator will light when any one of the following conditions
exists: STOP switch is pressed, empty hopper, improperly
registered card, punch die not in place, card line mechanism
not locked, stacker full, chip box not in place, and punching
error. The condition causing the '"not ready" state must be
corrected, and the start switch pressed, before operation can
be resumed.

This indicator will light if fewer than 80data bits are received
for each row, or if more or fewer than 12 row cycles are
counted (punch station check). It will also light if the number
of punched holes does not agree with the number of bits in the
original data received from the I/O control unit (post-punch
read station check).

This indicator will light when either a failure to feed or a
jammed condition exists.

Pressing this switch causes one card to move from the hopper
to the ready station, provided that all "not ready'" conditions
listed above have been corrected. Pressing this switch does
not clear PUNCH CHECK or FEED CHECK conditions,

Pressing this switch will stop card feeding, light the NOT
READY indicator, and set the unit to a''not ready" state. When
the switch is pressed, cards that are in motion will be pro-
cessed completely through the duration of the cycle.

Pressing this switch clears the FEED CHECK and PUNCH
CHECK conditions.

This is a switch-indicator that selects between full punch
checking and partial punch checking, The switch includes a
mechanical toggle which reverses its choice each time it is
pressed. When the switch is pressed and the indicator lights,
a check is made of both punch station error conditions and
post-punch read station error conditions. When the indicator
is not lit, a check is only made on punch station error con~
ditions. This feature allows the use of pre~punched and certain
pre-scribed cards.

As long as this switch is pressed, cards will pass through the
unit without being punched. The switch is only effective when
the unit is in a "not ready" state. Error conditions, if any,
are not cleared.

Pressing this switch removes power from the unit.

9-6

B 304 CARD PUNCH

9-13. The B 304 Card Punch has amaximum
card punching capacity of 300 cards per
minute (CPM). The format of the output cards
is under program control; therefore, no plug-
board is used. Buffering through the I/O con-
trol unit allows pro