
• UNISYS A Series
NEWP
Programming
Reference Manual

Release 3 .8.0
Priced Item

May 1989
Distribution Code SE
Printed in U.S.A.
5044233.380

• UNISYS A Series
NEWP
Programming
Reference Manual

Copyright © 1989.Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation

Release 3.8.0
Priced Item

May 1989
Distribution Code SE
Printed in U.S.A.
5044233.380

• UNISYS

Title

Product Information
Announcement
o Nevi Release 0 Revision • Update 0 Nevi Mail Code

A Series NEWP Programming Reference Manual

This ProciJct Information Announcement announces the release of Update 1 to the A Series NEWP PrO{Tamming
Reference Manual, dated May 1989, relative to the Mark 3.8.0 ~stem Scltware Release.

This manual prOJides reference information on the structure and components cl NEWP progams for use in
systems progamming

Update 1 contains adcitional information on the MODULE declaration, PROCEDURE declaration,
DEOMALOONVERT function,' SEPCOMP and the STANDALONE and XREF compiler contrd ortions. It also adds
the MODSTRICT compiler cootrd q:tion, and the TESTRASD and TESTWASD UNSAFE procedures.

O1ang3S to the text are indicated by vertical bars in the margns d the replacement pa~

Remove

iii through iv
ix through xvi
4-1 through 4-2

4-17 through 4-18

4-31 through 4-34
5-3 through 5-4
5-11 through 5-12
6-11 through 6-12
7-5 through 7-6

8-5 through 8-6

8-7 through 8-12

8-13 tlirough 8-14
9-27 through 9-28

Index-1 through 10

Insert

iii through iv
ix through xvi
4-1 through 4-2
4-2A through 4-2B
4-17 through 4-18
4-18A through 4-18B
4-31 through 4-34
5-3 through 5-4
5-11 thJ:ough 5-12
6-11 through 6-12
7-5 through 7-6
7-6A through 7-6B
8-5 through 8-6
8-6A through 8-6B
8-7 through 8-12
8-12A through 8-12B
8-13 through 8-14
9-27 through 9-28
9-28A through 9-28B
Index-l through 10

Retain this Produd Information Announcement as a record of chang3S made to the basic publication.

Announcement only: Announcement and attachments: ~em: A Series
AS20S Release: 3.9.0 SeJ:Xember 1991

Part Number: 5044233-001

To order additional copies of these manuals,

• United States customers call Unisys Direct at 1-800-448-1424.

• All ether customers contact your Unisys Subsidiary Ubrarian.

• Unisys persoonel use the Bec:trooic Uterature Ordering (8..0) system.

To receive the update packa~ ooly,. ader 5044233-001. To receive the complete gJide, order 5044233.380.

Page Status

Page Issue

iii through iv -001
v through vii .380
viii Blank
ix through xv -001
xvi Blank
xvii .380
xviii Blank
1-1 .380
1-2 Blank
2-1 through 2-2 .380
3-1 through 3-5 .380
3-6 Blank
4-1 through 4-2A -001
4-2B Blank
4-3 through 4-16 , .380
4-17 through 4-18A -001
4-18B Blank
4-19 through 4-30 .380
4-31 through 4-34 -001
4-35 through 4-45 .380
4-46 Blank
5-1 through 5-2 .380
5-3 through 5-4 -001
5-5 through 5-10 .380
5-11 through 5-12 -001
6-1 through 6-10 .380
6-11 through 6-12 -001
6-13 through 6-19 .380
6-20 Blank
7-1 through 7-4 .380
7-5 through 7-6A -001
7-6B Blank
7-:1 through 7-9 .380
7-10 Blank
8-1 through 8-4 .380
8-5 through 8-6A -001
8-6B Blank
8-7 through 8-12A -001
8-12B Blank
8-13 through 8-14 -001
8-15 through,8-19 .380
8-20 Blank
9-1 through 9-26 .380

5044233-001 iii

Page Status

iv

9-27 through 9-28A
9-28B
9-29 through 9-35
9-36
A-I through A-7
A-8
8-1 through 8-5
B-6
C-1 through C-9
C-10
Glossary-l through Glossary-4 .
Bibliography-l
Bibliography-2
Index-I through Index-lO

-001
Blank
.380
Blank
.380
Blank
.380
Blank
.380
Blank
.380
.380
Blank
-001

5044233-001

About This Manual

Purpose

Scope

This language reference manual for the NEWP product presents the programmer. with
information on how to use various features of NEWP to do systems programming.
NEWP is an ALGOL-based language, and this manual indicates the ways in which
NEWP features are similar to or different from those in ALGOL.

Along with information on the structure and components of NEWP programs,
the manual provides syntax and explanations for use of declarations, statements,
expressions, functions, and compiler controls. The manual also gives guidance in using
the UNSAFE mode. Appendixes provide information on ALGOL features not included
in NEwp, information on reserved words, and instructions for reading syntax diagrams.

Audience
This manual is directed to system software programmers.

Prerequisites
The programmer should know the ALGOL language and should be familiar with the
A Series architecture.

How to Use This Manual
This document contains reference information for each NEWP feature, which can
be accessed either through the index or the table of contents. Cross references are
provided within each section. This manual should be used in conjunction with the
A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation.

5044233.380 v

About This Manual

Organizatiol]

vi

This manual is divided into nine sections and three appendixes, supplemented by a
glossary, a bibliography, and an index.

Section 1. Introduction to NEWP

This section gives an overview of the relationship between ALGOL and NEWP.

Section 2. Program Structure

The basic structure of a NEWP program and the scope of its variables are covered here.

Section 3. Language Components

The building blocks of NEWP are outlined here.

Section 4. Declarations

This section provides information on differences between NEWP and ALGOL
declarations. It also provides information on declarations that are available only in
NEWP.

Section 5. Statements

This section provides information on differences between NEWP and ALGOL .
statements. It also provides information on statements that are available only in NEWP.

Section 6. Expressions and Functions

This section provides information on differences between NEWP and ALGOL
expressions and functions. It also provides information on expressions and functions
that are available only in' NEWP.

Section 7. Compiling NEWP Programs

Various input and output files used by the NEWP compiler are .presented here.

Section 8. Compiler Controls

This section provides information on differences between NEWP and ALGOL compiler
controls. It also provides information on compiler control options that are available only
inNEWP.

Section 9. UNSAFE Mode

The various programming constructs that are considered unsafe for general use are
presented in this section,as well as some advice on their proper use.

)

5044233.380

About This Manual

Appendix A. Reserved Words

A reference list of reserved words and keywords, along with their types, is provided.

Appendix B. ALGOL Features Not Implemented in NEWP

For reference purposes, a list of ALGOL features not provided in NEWP is presented.

Appendix C. Understanding Railroad Diagrams

Inforination on the specifics of railroad, or syntax, diagrams is provided.

Related Product Information
The information in this manual is supplemented by the following documents:

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form 1169844)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

A Series Work Flow Administration and Programming Guide (form 1170149)

This guide discusses the facilities for task initiation and control, including an overview
of tasking, a discussion of process management, information on controlling specific
processes, and a detailed discussion of task attributes. This guide is written for.system
administrators, operators, and programmers.

A Series Work Flow Language (WFL) Programming Reference Manual (form
1169802)

This manual presents the complete syntax and semantics of the Work Flow Language
(WFL). This language is used to construct jobs that compile or run programs written in
other languages, and is used to construct jobs that perform library maintenance such as
copying files. This manual is written for individuals who have some experience with
programming in a block-structure language such as ALGOL and who know how to create
and edit files using CANDE or the Editor.

5044233.380 vii

viii 5044233.380

Contents

About This Manual 0 v

Section 1. Introduction to NEWP

Section 2. Program Structure

Program Unit 0 0 0 0 0 0 0 • 0 0 ••••••••••••••• 0 •• 0 0 •• 0 • • • • 2-1
Elements of a NEWP Program •••.•. 0 ••• 0 ••••••••••• 0. • 2-1

Section 3. Language Components

Basic Symbols 0 • • • • 0 0 • 0 0 0 0 • • • 3-1
Reserved Words ••••••••• 0 • 0 • ~1

Numbers, Numeric Constants, and String Constants 0 ••• 0 • • • • 3-1
Numbers •••••••• 0 ••••• 0 •• 0 ••• 0 ••• 0 • • • • • • 3-1
Numeric Constants ••••• 0 0 ••••• 0 0 0 0 •• 0 • • • • • • 3-2
String Constants ••••• 0 0 0 0 ••••••••• 0 ••• 0 0 • 0 • 3-4

Section 4. Declarations

ARRAY Declaration •• 0 0 •••• 0 •••••••••••• 0 ••• 0 • 0 0 • • • 4-2A
ARRAY REFERENCE Declaration •••. 0 0 ••••••• 0 • • • • • • • • • 4-3
CONSTANT Declaration •••.•.•••..•••••••.••••••• 0 • • 4-4
EXCEPTION PROCEDURE Declaration .•••.•••• 0 0 • • • • • • • • 4-5
EXCEPTION PROCEDURE FORWARD Declaration •.• 0 • 0 • 0 • 0 4-8
EXPORT Declaration .••••...•••.. 0 0 •• 0 •••••••• 0 • • • • • 4-8
INTERLOCK and INTERLOCK ARRAY Declarations ••• 0 • • • • • • 4-9
INTRINSIC Declaration •• '0 • 0 0 ••••••••• 0 •• 0 • 0 • 0 • • • • • • 4-10
LABEL Declaration • 0 • • • • 0 0 • 0 • • • • 4-14
LIBRARY Declaration .• '. • • • .. • . • • • • • • • • • . • • • • • • • • • • . • 4-14
MODULE Declaration ••••••••••.•• 0 • • • • • • • • • • • • • • • • • 4-15
MODULE Declaration (Old) • . • • • • • • • • • • • • • • . • • • • • • • • • . 4-18A
ON Declaration •••••••••.••••••••••••••••••••••••• 4-22
OUTPUTMESSAGE ARRAY Declaration • • • • • • • • . • • • • • • • • • 4-23
POINTER Declaration ••••• 0 • 4-24
PROCEDURE Declaration. o ••• 0 •• 0 0 0 •• 0 ••••••••••••• 0 4-24

Parameter Passing ••••••••.••••• 0 • • • • • • • • • • • 4-26
In-Line Procedures •••••• 0 • • • • • • • • • • • • • • • • • • 4-28
Procedure Value •• 0 ••••••••• 0 ••• 0 • 0 • • • • • •• 0 4-30
Dynamic Procedure Specification 0 ••••• 0 • 0 • • • • • • • 4-31

PROCEDURE REFERENCE Declaration 0 0 • 0 •• 0 0 0 0 0 0 0 • • • • • 4-34
SEGMENT Declaration • 0 0 0 0 0 0 0 0 0 0 ••• 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 4-34

5044233-001 ~

Contents

SIMPLE VARIABLE Declaration 00.00 0 0 0 • 0 0 0 •• 0 0 0 • 0 0 0 0 0 0 4-35
STRUCTURE TYPE Declarations 000000000000000000000.0 4-35

SCALAR TYPE Declarations 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 4-35
Enumerated Types 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-36
Subtypes 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 0 •• 0 • 0 0 0 0 0 4-39
Descendant Types 0 0 • 0 •• 0 0 0 0 •• 0 0 0 • 0 0 0 0 0 0 4-40
Assignment Compatibility 0 0 0 0 0 •• 0 0 0 • 000 • 0 • 4-41
Range Checking o. 0 • 0 0 0 • 0 0 0 0 • • • • • • • • • • • 4-41

SET TYPE Declaration •...•••••. 0 • 0 ••••••• 0 • 0 4-42
STRUCTURE TYPE VARIABLE Declaration. 0 0 ••• 0 • 0 • 00, 00, 4-43
SUPPLY Declaration ...•. 0 • '00 • 0 •• 0 .00.0 0 • 0 •• 0 0000 0 0 4-44
VALUE ARRAY Declaration ... 0 ••• 0 0 0 • 00 ••• 0 •••••• 0 •• 0 4-45

Section 5. Statements

ASSIGNMENT Statement 00 ••••••••••••••••••••••••• 0 5-3
Differences between ALGOL and NEWP ASSIGNMENT

Statements. 0 0 • • • 0 0 • 0 ••• 0 • 0 0 0 •• 0 •• 0 • 0 0 0 0 5-3
Array Reference Assignment •..• 0 0 0 0 ••••••••• 0 0 5-4
Procedure Reference Assignment •• 0 0 0 • 0 • 0 ••• 0 • • 5-4
Procedure Reference Array Assignment .. 0 0 • 0 •• 0 • 0 5-6
Set Assignment 0 • 0 • 0 0 0 '.0 ••••••• 0 ••• 0 0 ••••.• 0 5-7

CASE Statement•. 0 0 0 0 •• 0 ••• 0 • 0 0 0 0 0 0 • 0 ••••• 0 0 5-8
FOR Statement • 0 •• 0 •• 0 0 •• 0 0 0 0 0 • 0 • 0 0 • 0 •••• 0 • 0 0 0 • 0 0 5-8
FREEZE Statement •• 0 •• 0 0 •• 0 0 0 ••• 0 • 0 0 • 0 • 0 0 •• 0 • 0 0 0 0 0 5-9
PROCEDURE REFERENCE Statement. 0 0 0 • 0 • 00000 •• 0 0 00' 5-10
REPLACE Statement . 0 • 0 0 • 0 0 • 0 • 0 0 0 0 • 0 • 0 00' 0 0 •• 0 0 000 5-11
SELECT Statement 0 • 0 0 •• 0 0 ••• 0 •• 0 0 • 0 • 0 0 0 0 0 • 0 ••• 0 • 0 0 5-12
SWAP Statement ~ 0 •• 0 •• 0 •• 0 • 0 • 0 • 0 0 0 • 0 0 0 0 0 0 0 0 • 0 • • • • 5-12

Section 6. Expressions and Functions

Arithmetic Expressions 0 ••••••• 0 ••• 0 0 • 0 •• 0 ••• 0 ••• 0 •• 0 6-3
Boolean Expressions ...•••.•• 0 •••••••• 0 •••••••• 0 0 •• 0 6-3

Precedence in Boolean Expressions •••••.• 0 •• 0 • 0 0 6-4
Set Relation .• 0 ••••••• 0 •• 0 0 ••••••••• 0 ••• 0 0 6-5

Function Expressions ..•..•• 0 ••••••••••• 0 •• 0 0 0 0 • 0 • 0 • 6-5
Arithmetic Function Designator. 0 • • • • • • • • • • • • • • • 6-5
Boolean Function Designator •.• 0 •••• 0. 0 • • • • • • • 6-6

Pointer Expressions . 0 ••••••••••••• 0 •• 0 •• 0 •• 0 ••••• 0 • 6-6
Scalar Type Expressions •... 0 •••• 0 • 0 0 0 0 • 0 • 0 0 0 0 0 0 •• 00' 6-7
Set Expression . 0 0 •• 0 ••• 0 • 0 0 0 0 0 0 ••• 0" ••• 0 •• 0 0 0 0 • 0 0 0 6-8
String Expressions 0 •••• 0 • 0 •• 0 0 •••• 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 • 0 6-10
DECIMALCONVERT Function •. 0 0 • 0 00' • 0 • 0 0 0 0 0 0 • 00.000 6-10
DINTEGERT Function • 0 •••• 0 00 0 •• 0 • 0 0 0 0 •• 0 • • • • • • • • • • 6-11
INTERLOCK Functions .•.......•.•.. 0 •• 0 • 0 0 0 0 0 0 0 • 0 0 0 6-11

ARROGATE Function . 0 0 0 0 0 • 0 0 •• 0 • 0 0 0 • 0 • 0 0 0 0 • 6-11
BREAK Function . 0 •• 0 0 •••• 0 • 0 • 0 0 • 0 0 • 0 • 0 0 0 0 0 6-12
LOCK Function. 0 0 0.0 0 • 0 0 • 0 •• 0 00 0 •••••••• 0. 6-13
LOCKSTATUS Function. 0 • 6-14

x 5044233-001

Contents

UNLOCK Function .. 0 • 0 .0.0 0 .0000 ••• 0. • • • • • • 6-15
PACKDECIMAL Function •................. ~ 0 • 0 • 6-16
SCALAR TYPE Functions .•..•............... 00.0.... 6-16

LOWER BOUND Function 0 •••• 0 •• 0 0 ••• 0 0 6-16
MAPPING Function. 0 0 0 •• 0 0 •••••••••••• 0 • • • • 6-16
PREDECESSOR Function 0 ••• 0 • • • 6-18
SUCCESSOR Function. 6-18
UPPER BOUND Function. • . . • . 6-19

Section 7. Compiling NEWP Programs

Full Compilations ..•... ' 0 •• 0 • 0 • 7-1
Host Compilations . 0 •••••• 00. • 7-1
Compiling with SEPCOMP ...• 0 ••••••••••••••••••• 0 • • 7-2

SEPCOMP Background 0 o •••• 0 • 7-3
Performing a SEPCOMP 0 • • • • • • • • • • 7-4
SEPCOMP Guidelines. . • . • • . . 7-6

SEPCOMP MERGE ' . . . • . • 7-8
Compiling for Syntax Only • • 7-9

\

Section 8. Compiler Controls

Compiler Control Options•...•.............•.•.. 8-1
ALGOL Options Duplicated in NEWP . • • . . . • . • . . 8-2
Additional NEWP Options•..•..••..•......•.•.. , . 8-2

·ASD••...•..•.... " •...•.. ,.... 8-2
CLEAR. ,•....•.•••.•.• , • . • . . 8-3
INCLLIST . • . . • .. . • . • • •8-3
INSTALLATION . . • • . . • . . • • 8-3
INTERLOCKOPS .•.•.•.•.•...•. '.' . • . . . • 8-3
LiST................................. .. 8-4
LISTO ... , •...•.•...........•.. 0. ••••••• 8-4
LIST1 .0 •••• ' ••••• 0 0 0 0 0 0 ••• 00 •• 0 0 •• 0 0 .0. 8-4
MAKEHOST ... 00.0 ••• 00000000 ••• 0 0 •• 0 •• 0 • 8-5
MCP 0 ••• 0 0 ••• 0 •• 000. 0 0 ••••• 0.00 •••••• 0' 8-5
MERGE 0000. 0.'.'. 0 ••• ' ••••• , •• , ••• 0.00. 8-5
MODSTRICT 0 • 0 • 0 0 0 8-5
NEW 00' 0 0 0 0 0 0 0000.0.00.00000 •• 0 0 0 000.00 8-6
NOCOUNT 000 •• 000000 •• 0 •• 0 •• 0 •••• 0 0 • 0 • 0 • 8-6
PROCREF . 0 •• 0 •• 0 •• 0 0 • 0 • 0 • 0 0 0 •• 0 0 ••• 0 0 • • 8-6
READLOCK •• 0 0 0 • 0 •• 0 0 0 0 •• 0 0 ••• 0 • 0 0 • 0 •• 0 • 8-6
READLOCKTIMEOUT • 0 0 • 0 •••• 0 • 0 0 0 0 0 • 0 • 0 0 • • 8-7
SEPCOMP • 0 ••• 0 • 0 0 0 ••• 0 0 0 • 0 ••••••• 0 0 • • • • 8-7
SEPCOMPMERGE-•..••....• 0 •• 0 •• 0 ••••••• 0 • 8-7
SINGLE •.• o •••• , , ,', • , '0".' ,.,. , , " , , , • • 8-7
STANDALONE ",., 0 • , , ••• , •• , • , 0 , 0 , , , • • • • 8-8
STATISTICS ••.•.•.•.••••••.•• 0 •••••• 0 • • • • 8-10
TADS. 0.0 ••••••••• 0 ••• "', ••••••• 00..... 8-11
UNDERLINE •..••.•.....•.•••• 0 ••••••• 0 , , 8-11
VERSION .• , . , . , .•••. , • , , • , , .. , , , . , . 0 , , , • 8-12

5044233-001 xi

Contents

VOID •....••...•...•.••.•..••••.•... '.... 8-12
XREF•..••.• : . . . • • • • • • • • • • . • • . . . • . . 8-12A
XREFFILES. • • • • . • . . • • • • • . . 8-12A
$ 8-12A

Block Directives • . . • . . • • • • • . • • • • 8-13
ASDSPACE • . . • . . . • . • • . . • . • • • 8-14
CONTROLSTATE : . . 8-14
FIRSTFREEDOCELL•••..•••...••••..• 8-14
FIRSTSEGDESC • • . • . . • . • • • • • • . . • . . 8-15
INHERITSTATE • • • . • . • • • . . • • . 8-15
INLINE•...•••..•.•.••.....••..•.. 8-15
INTERLOCKOPS • • • . . ••• . •. .•• •.•.• 8-15
MEMIMAGEBOUND •.. .. . • .• •.•• . •. ••. ..••• 8-16
NORANGECHECK. .•••••.•••••••.••••...••• 8-16
NORMALSTATE.. .•..••.•....••. ..••...•.. 8-16
PROTECTED. • • • •• . . . • • . . • . . • 8-17
RANGECHECK • • . . • • • . • . . • • • . • • • . . . • • . 8-17
SAFE. • . . • . • • • . • . . •• • . • • • . . 8-17
SEGMENT. • . . . • . • • . . . • • • • . • •• . • . • • • . • • • . 8-17
SEGMENTLEVEL .••.••.•••..••••••.•.....• 8-18
SEPCOMPLEVEL ..•.......•...•.•..••.•.•. 8-18
STATSUMMARY ...•..•..•.. " . • • . • . • • . • . • . . 8-18
<target option> . . . • • • • • • • . • • • • • . . . 8-18
UNSAFE ..•.•.•••.••.••.•..••••.•••..••. 8-19

Section 9. UNSAFE Mode

Declarations (UNSAFE). • • • • • . • . • • • • • . . • . • . . • . 9-1
Address Equation •••..•..•.•..••.••.•.•.•.. 9-1
DESCRIPTOR Declaration ..•.••.••••..••..•.. 9-3
PROCEDURE Declaration •.••.•••.•...•••• , • • • 9-4
SAVE ARRAY Declaration. . • • . • . . • • • • . . • • . . • • • 9-4
SEGMENT Declaration. , • • • • • • • • • • • . . . • • . . • • • 9-4
WORD Declaration •••..•••....•••••••.•••.. 9-5

Statements (UNSAFE) . • • • • • • • • • • . • • . • • . • • . • • • • • . • • • . 9-6
FORK Statement. . • • • . • • • • . • . . • • • • . • • • • . • • • 9-6
PROCESS Statement. • • • • • • • • . • • • • • • • • . • . • • • 9-6
REPLACE Statement • . • • . • • . • • . • • • • • • • . . . • • . 9-7

OVERWRITE Option •••••••••.•.•••••••• 9-7
FLOAT Option. • . • • • • • • • . . • . • • . • • • • . • . . 9-7

WAIT and WAITANDRESET Statements. • • •• • . . • • . 9-8
Expressions and Functions (UNSAFE). • • • • • • • • • • . • • . • 9-9

DESCRIPTOR Expressions. • • • • • . • • • • • • • • • • • • . 9-9
SETACTUALNAME Function. • • • • • • • . • . • • • . • • • • 9-9
SIZE Function. • • • . • . • . • . • . • • . • • . • . . • • . . • • • 9-10
WORD Expressions. • . . . • • • . • . . • • • • . . • • . . • • . 9-10

Intrinsics (UNSAFE) . • • • . • • • • . • • . • • . • . • • • • • • • • • • • • • • 9-11
ASDTABLE[MACHINEOPS]................... 9-12
AT [REFERENCE] • . • • • • • • . • • . • 9-13
BMASKSEARCH [MACHINEOPS] . . • . . . • • • • . • • . • 9-14
BUZZ [MISC] •... 0. • 9-14

xii 5044233~01

Contents

BUZZ47 [MISC] .. • 9-15
CALLIO [MACHINEOPS]•• 9-15
CHECKHASH [MACHINEOPS] 9-15
DAWDLE [MISC]. • 9-15
DESCRIPTOR [DESCRIPTOR]. 9-16
DLL [REGISTERS] . • • 9-16
DREADMEMORYCONTROL [MACHINEOPS] 9-16
EVAL[MACHINEOPS]•....... .•...•... 9-17
EXIT [MACHINEOPS] .•...........•......... 9-17
FAILREGISTER [MACHINEOPS] . • • 9-17
FMMRREADLOCK [MACHINEOPS] . • • 9-18
IGNOREPARITY [MACHINEOPS]•.. 9-18
INTERRUPTCHANNEL [MACHINEOPS]•..... 9-18
INTERRUPTCOUNTZERO [MACHINEOPS]•. 9-18
LEXLEVEL [MISC] • • 9-18
LEXOFFSET [MISC] ... '. • 9-19
LlSTLOOKUP [MACHINEOPS] • • . 9-19
LOADEVENT[MACHINEOPS]...•. ..•.. .•.. 9-1~
MAKEPCW [MACHINEOPS] . . . • . . . • • . . . • • 9-19
MEMORY [MEMORY] • • . . 9-20
MOVESTACK [MACHINEOPS] •..••.........•.. 9-20
PAUSE[MACHINEOPS].....••.. 9-20
POINTER [DESCRIPTOR or WORD] •••..•....... 9-21
READANDCLEAREXTERNALS [MACHINEOPS] ...•. 9-21
READMEMORYCONTROL [MACHINEOPS] 9-21
READPROCESSORSTATE [MACHINEOPS] • 9-21
READTIMEOFDAY [MACHINEOPS] 9-22
READXMEMORYTABLE [MACHINEOPS] • . • . • 9-22
RECEIVEFROMREQUESTOR [MACHINEOPS] .•..•. 9-22
REFERENCE TO [REFERENCE and WORD] • • . • . . • . 9-22
REGISTERS [REGISTERS] • . . • • . • . • . • . • . . 9-23
RETURN [MACHINEOPS] .•...•...•.••.•.•..• 9-23
RETURNORIGINALS [MACHINEOPS] . •••••• . 9-23
RUNNINGLIGHT [MACHINEOPS] • • • . 9-24
SCALERIGHTS [MACHINEOPS] •• . • • • . • . • 9-24
SCANIN [MACHINEOPS] .••.•.... '. . . • • . • • • • . . 9-24
SCANOUT [MACHINEOPS] •••....•...••.••.•• 9-24
SENDTOREQUESTOR [MACHINEOPS] .•.• '. • 9-25
SETINHIBIT [MACHINEOPS] • • • • . • . • • • • . . • . . • • 9-25
SETLIMITS [MACHINEOPS] . • . • • . • • • • • • • 9-25
SmlMEOFDAY [MACHINEOPS] . • . • • . • . . . • . • . . 9-26
SHOW [MACHINEOPS] • • • • • . • • . . • . • • • . . • . . • • 9-26
SIGNALPROCESSOR [MACHINEOPS] • • • • • • . . • . • . 9-27
STACKNUMBER [MACHINEOPS] . • • • • • • . . . • • . . • 9-27
STOP [M~CHINEOPS] • • .. • . • • .. • • . . . • . . . 9-28
STOP77[MACHINEOPS] .. ~.................. 9-28
SUSPEND [MACHINEOPS] .•.•..•••..•..••..•• 9-28
SYSTEMCONTROL [MACHINEOPS] .••..•.•••... 9-28
TESTRASD[MACHINEOPS] ••.••..•...•..•.... 9-28A
TESTWASD [MACHINEOPS] •.....•.•••.•....• 9-28A
TIMER [MACHINEOPS] • • . . • 9-28A
VECTOR INTRINSICS [MACHINEOPS] .•.••....•. 9-29

5044233-001 xiii

Contents

Untyped Intrinsics That Act on Two Vectors 9-29
Untyped Intrinsics That Act on Two Vectors and a

Scalar . 9-30
VSCAT Intrinsic. • • • . . 9-31
VGATH Intrinsic .••.....•......... ~ 9-31
VSUM and VSUMA Intrinsics•... • . 9-31
VDOT and VDOTX Intrinsics • 9-31
VSEQ Intrinsic. . • • • . • . . • . . . • • . 9-32
VPOLY Intrinsic. . • • • • • . • 9-32
VCHEK Intrinsic •.•...•..........•..... 9-32
VFMX, VFMN, and VFMXA Intrinsics 9-33

VIA [REFERENCE] ...•...........•....•.... 9-33
WHATAMI [MACHINEOPS] 9-34
WHOAMI' [MACHIN EOPS] • • . . . • 9-34
WORD [WORD] • • • 9-34
WRITEMEMORYCONTROL [MACHINEOPS] •.....• 9-34
WRITEPROCESSORSTATE [MACHINEOPS] . . . • . . . • 9-34
WRITEXMEMORYTABLE [MACHINEOPS] • . . . • . • . . 9-35

Appendix A. Reserved Words

Types of Reserved Words••..•.•.........•.•.•.. A-l
Reserved Words List. . • . • • . . . • • • • . • A-2

Appendix B. ALGOL Features Not Implemente~ in NEWP

General Features •.•••....•..............• c. • • • • • • • • B-1
Specific Features. • • • . • • • . . . • • • . . . • . . . • • . • . • • • . B-1

Declarations. • . • . • . • . . . • • . . • . . • • . • . . • B-1
Statements. • . • • • . • . • • • . B-2
Expressions •. . . . • • • • . • • • • • . . • . • . • • . • . • • . . B-3
Compiler Control Options • • • . • • • . • • • . . • • • . • • • . B-4
Miscellaneous. . • '.' • . • . • •. ' • • • . • • • • . • • • . • • • . B-5
Product Interfaces • • • • • • • • • . ~ • • • • • • . . • • . • . . . 8-5

Appendix C. Understanding Railroad Diagrams

Glossary '. 1

Bibliography ' •........ ' .. '. 1

Index. 1

xiv 5044233-001

Figures

8-1. Diagnostic tnformation Format 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 8-6A

C-1. Railroad Constraints 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 ••• 0 •• 0 0 •••• 0 ••• 0 • • C-5

5044233-001 xv

xvi 5044233-001

Tables

3-1.

4-1.

8-1.

9-1.
9-2.

5044233.380

Character Representation: Differences between ALGOL and NEWP

Intrinsic Identifiers

Unsafe Constructs Permitted

Untyped Intrinsics: Two Vectors
Untyped Intrinsics: Two Vectors and a Scalar

3-5

4-11

8-19

9-29
9-30

xvii

xviii 5044233.380

Section 1
Introduction to NEWP

NEWP is an ALGOL-based language designed for your use in implementing system
software. Its major application is the A Series and B 7900 Master Control Program
(MCP). The code files produced by the compiler are executable unless you use unsafe
features. For more information on tmSafe features, see Section 9, "UNSAFE Mode."

Although NEWP is based on ALGOL, there are some significant differences between
the two languages. One major difference is that NEWP performs more rigorous type
checking than ALGOL does, which helps prevent errors caused by unexpected type
conflicts.

As a result, a program that compiles with the ALGOL compiler sometimes receives
syntax errors from the NEWP compiler. For example, ALGOL allows a REAL variable
to be passed to an INTEGER by-reference formal parameter and allows this formal
parameter to be passed to a REAL variable. NEWP does not allow either, unless the
actual parameter has had its type explicitly converted with a type transfer function.

Another difference is that NEWP provides a number of features that ALGOL lacks, such
as modules, user-defined scalar types, and sets.

NEWP does not provide all the features of ALGOL, nor does NEWP include the
environmental software interfaces that ALGOL supports, such as interfaces to Data
Management System II (DMSII), Communications Management System (CaMS), and
Semantic Information Manager (81M).

Because the syntax and semantics of most NEWP constructs are the same as the
syntax and semantics of the corresponding ALGOL constructs, only those features of
NEWP that are not the same as in ALGOL are described in this manual. Elements of
NEWP that are not outlined in this document are identical in operation to ALGOL as
described in the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation. Specific information on ALGOL features not supported in NEWP can
be found in Appendix B, "ALGOL Features Not Implemented in NEWP."

5044233.380 1-1

1-2 5044233.380

Section 2
Program Structure

Program' Unit
A program unit is a group of NEWP constructs that can be compiled as a whole. The
following diagram shows the elements that you can include in a NEWP program.

<program unit>

BEGIN -----------+-+
L-<level 2 procedure heading~

-+'--r-CC-+--d-e-c l-a-r-at-i-o-n>----;-Jj---.--.-u:-<m-O-d-u '-e-de-c-l a-r-a-t 1-· o-n->---; -Jj---''''''---+

-+- END - • ---------------------1

<level 2 procedure heading>

--,r------------....,- PROCEDURE -<procedure headi ng>---1
L-<leve' 2 procedure type~

<level 2 procedure type>

1 BOOLEj;3N'
DOUBLE
INTEGER
REAL

Elements of a NEWP Program
The simplest valid NEWP program is just a BEGIN/END pair. The BEGIN/END
pair can enclose a list of declarations, a list of modules, or a list of statements. If the
BEGIN/END pair is preceded by a procedure heading, the entire program is a procedure,
which can be typed or untyped and can have one or more parameters.

A NEWP program cannot include the < global part> or < separate procedure> list that
are valid in ALGOL.

In NEwp, the lexical level is increased only by nested procedures, not by both nested
procedures and nested blocks, as in ALGOL. Thus, by default, any nested procedure
causes a change in lexica1level, while a nested block that is not a procedure does not.

Segmentation is based upon lexical levels. By default, a new segment is assigned
to each procedure declared at lexical level 15 or below, whether or not you declare
local variables. You can change the lexical level at which segmentation occurs by

5044233.380 2-1

Program Structure

2-2

using the SEGMENTLEVEL block directive. In addition, you can override automatic
segmentation on a block-by-block basis by using the SEGMENT block directive.

For the semantics of the <procedure heading>, see "PROCEDURE Declaration" in
Section 4, "Declarations." For information on block directives, see "Block Directives" in
Section 8, "Compiler Controls."

5044233.380

Section 3
Language Components

Language components are the building blocks of NEWP. These components consist of
basic symbols, reserved words, and constants .

. Basic Symbols
Basic symbols are the same in NEWP as in ALGOL, except that both uppercase and
lowercase letters are allowed in NEWP. Compiler control options and any token in a
program can be written in lowercase letters. Any mixture of uppercase and lowercase is
legal; the NEWP program does not make a distinction between uppercase and lowercase
letters.

Reserved Words
Reserved words are described and listed in Appendix A, "Reserved Words."

Numbers, Numeric Constants, and String Constants
In ALGOL, there is a syntactic ambiguity between string constants and numeric
constants. For example, the following ALGOL symbols could be interpreted as the 8-bit
character A when you use the symbols in a string concatenation or as the 48-bit operand
represented by the 12 hexadecimal characters OOOOOOOOOOC1 when you use the symbols
in an arithmetic expression:

SIIAII

In NEwp, string constants and numeric constants are syntactically distinct; string
constants are delimited by quotation mark characters ("), and numeric constants are
delimited by apostrophe characters (').

The following is information on NEWP numbers, numeric constants, and string
constants.

Numbers
<number>

unsigne;;;;rnumber
<sign
<numeric constant
<constant identifier

5044233.380 3-1

Language Components

Explanation

NEWP extends the definition of a < number> to include < numeric constant> and
< constant identifier>. For more information, refer to "Numeric Constants" in this
section and to the "CONSTANT Declaration" in Section 4, "Declarations."

Numeric Constants

3-2

<numeric constant>

l
<EBCDIC constant
<ASCII constant>-----i
<BCl constant:>-------1
<hexadecimal constant
<octal constant>-----I
<quaternary constant
<bi nary constant>------J

<EBCDIC constant>

, -I:/6\-r=<~~CDIC numeric character>=f=1- ' --1

<EBCDIC numeric ~haracter>

Any EBCDIC character except an apostrophe (').

<ASCII constant>

<ASCII numeric character>

Any ASCII character except an apostrophe C).

<BCl constant>

<BCl numeric character>

Any BCL character except an apostrophe (').

Note: The BeL data type is not supported on all A Series and B 7900
systems.

5044233.380

Language Components

<hexadecimal constant>

~ :e-=r- I -I:/12\-<hexadecimal character>=1- I --i

<octal constant>

--.- 3 --.- I -I:/16\-<octal character>=1- I --1
L 3e -.J

<octal character>

Any digit from ° through 7.

<quaternary constant>

--r= ~e-=r- ' -I:/24\-<quaternary character>=1- I --1

<quaternary character>

1if
<binary constant>

~ te-=r- I ~/48\-<binary character>=1- I --i

<binary character>

Explanation

A numeric constant is a representation of a 48-bit value. You can specify the value
in EBCDIC, ASCII, BCL, hexadecimal, octal, quaternary, or binary notation. An
apostrophe in a BCL, EBCDIC, or ASCII numeric constant is represented by two
adjacent apostrophe characters. For example, 8 I I I I is the EBCDIC numeric constant
consisting of a single apostrophe character.

A character code that ends in zero (that is, 10, 20, 30, 40, '60, 70, or 80) indicates
that the bits represented by the constant are to be left-justified within the 48-bit
arithmetic value, with binary-zero fill. All other character codes generate right-justified,
binary-zero-filled values.

5044233.380 3-3

Language Components

String Constants
<string constant>

1
EBCDIC string constant

<ASCII stri n9 constant>------1
<hexadecimal string constant

BCl stri n9 constant>-------"

<EBCDIC string constant>

-E
(+-.. <space>

•• -.e:=EBCDIC stri n9 character~ a

8 ~~" ~ J
48 - •• .J:<hexadecimal character>-<hexadecimal character>=L N

3-4

<EBCDIC string character>

Any EBCDIC character except a quotation mark (tI).

<ASCII str·ing constant>

7 - .. -.L[<~~CII string character>=f'L .. ----.-....J--i -1
(<space>

47 - •. L hex character>--<hex character>l •]

<ASCII string character>

Any ASCn character except a quotation mark (").

<hexadecimal string constant>

rr <space>

-L 4 - •• -L<hex character>l N ~
<hexadecimal character>

Any digit from 0 through 9 or any letter from A through F.

<BCl string constant>

~------------------<space>>----------------~

6 - I. -L<BCl character>=L "

36 - •• i:<octal character>-<octal character>l .. J
<BCl character>

Any BCL character except a quotation mark (").

Note: The BeL data type is not supported on all A Series and B 7900
systems.

<octal character>

Any digit from 0 through 7.

5044233.380

Language Components

Explanation

String constants are primaries of type string and of subtype EBCDIC, ASCTI,
hexadecimal, or BCL. A string constant of a particular subtype must include only
characters defined for that sUbtype. Quotation mark (") characters can be included in
strings if you represent each embedded quotation mark as two adjacent quotation marks
in the syntax.

No more than 256 characters can appear between one pair of quotation marks in a
string constant; however, as many as 4095 characters can appear in an EBCDIC string
constant, ABCn string constant, or hexadecimal string constant.

You can concatenate string constants by using implicit string concatenation or by
using the < string concatenation operator> (see "String Expressions" in Section 6,
"Expressions and Functions"). You can type-transfer a string constant to an
arithmetic value by using the REAL function. Table 3-1 shows differences in character
representation between NEWP and ALGOL.

Table 3-1. Character Representation: Differences between ALGOL and NEWP

Actual String

ABC

AHB

null string

NEWP Representation

-ABC"

not implemented

Examples of legal < string constant> s include the following:

5044233.380

"ABeD"
48"0109"
48"0109" "ERROR MESSAGE"

. 8"A MESSAGE OF TEXT"

ALGOL Representation

"ABC"

IIlIU

EMPTY

3-5

3-6 5044233.380

Section 4
Declarations

NEWP provides several kinds of declarations that are not supported by ALGOL.
The NEWP-specific forms of declarations are discussed in this section and in the
"Declarations (UNSAFE)" portion of Section 9, "UNSAFE Mode."

The following table describes the differences between declarations that are supported
in both NEWP and ALGOL. The table also refers you to more detailed information
on differences in particular declarations. In addition, information about ALGOL
declarations that NEWP does not support can be found in Appendix B, "ALGOL
Features Not Implemented in NEWP."

Declaration

ARRAY'

ARRAY REFERENCE,

BOOLEAN

DIRECT ARRAY

DOUBLE

EXPORT

INTEGER

LIBRARY

OUTPUTMESSAGEARRAY

POINTER

PROCEDURE

PROCEDURE REFERENCE
ARRAY

REAL·

SIMPLE VARIABLE

5044233-001

NEWP Information

Refer to "ARRAY Declaration" and "INTERLOCK and
INTERLOCK ARRAY Declarations" later in this section and to
"SAVE ARRAY Declaration" in Section 9. "UNSAFE Mode."

Refer to "ARRAY REFERENCE Declaration" later in'this
section.

The OWN clause is not supported; use globally declared
variables instead.

The OWN clause is not supported; use globally declared
variables instead.

The OWN clause is not supported; use globally declared
variables instead.

Refer to "EXPORT Declaration" later in this section.

The OWN clause is not supported; use globally declared
variables instead.

Refer to "LIBRARY Declaration" later in this section.

Refer to "OUTPUTMESSAGE ARRAY Declaration" later in
this section.

The OWN clause is not supported; use a globally declared
variable instead. For information on other differences. refer
to "POINTER Declaration" later in this section.

Refer to "PROCEDURE Declaration" later in this section and
in Section 9. "UNSAFE Mode."

Only the <local procedure reference array declaration> form
is supported in NEWP.

The OWN clause is not supported; use a globally declared
variable instead.

Refer to "SIMPLE VARIABLE Declaration" later in this
section.

4-1

Declarations

Declaration

TRANSLATETABLE

VALUE ARRAY

4-2

NEWP Information

The <translate table identifier> form of the <translation
specifier> is not supported.

Refer to "VALUE ARRAY Declaration" later in this section.

5044233-001

ARRAY Declaration
<array declaration>

[LONG] [<array class>J ARRAY

r~ ·
.. ..J..L:;array ld~ntifier>=L [-<dimension specs>-] --'------f

<array class>

--.-<type>
L-<character type~

<type>

l
BOOLEAN
DESCRIPTOR ---I
DOUBLE ----I
INTEGER ----I
REAL ------i
type identifier>­
WORD -----'

<dimension specs>

I
I

l~\ · bound pa i r>>----r-'---i
ype identifier~

<bound pair>

-<lower bound>-- : --<upper bound>--1

<lower bound>

~rithmetic expression~
L-cscalar type expression~ .

<upper bound>

--,-<arithmetic expression~
. L-cscalar type express;on~ .

(All other syntax is identical to ALGOL.)

ExplaDation

Declarations

NEWP allows one or all dimensions of an array to be unspecified. The < bound pair >
0:-1 indicates an unspecified bound (for example, ARRAY A[O:-1j). Except for this
special case, the lower bo~d can never exceed the upper bound.

For a one-dimensional array, the unspecified bounds indication causes the compiler
to build a zero-length descriptor for the array. For a multidimensional array, if any
bounds are unspecified, either all bounds or only the last bound must be unspecified.
If all bounds are unspecified, a zero-length descriptor is built. If only the last bound
is unspecified, the dope vectors for the array are built normally and only the row
descriptors are built as zero-length descriptors.

5044233-001 4-2A

Declarations

4-28 5044233-001

Declarations

For a multidimensional array, a zero-length descriptor has to be used under the
UNSAFE (DESCRIPTOR) construct.

If a dimension is specified by a < type identifier>, the type of the dimension is defined to
be that of type identifier. The type identifier must denote an ordered, bounded, discrete
type. The lower bound of this dimension is taken from the smallest value defined
for that type (the .LBOUND value), and the upper bound is taken from the largest
value defined (the .UBOUND value). When an array is referenced, a subscript that
corresponds to a scalar type dimension must be of the same type as the dimension.

If a dimension is declaredby a < bound pair> , then the < lower bound> and the
< upper bound> must be either both arithmetic expressions or both scalar type
expressions.

If both bounds are given by < scalar type expression> s, the expressions must be of the
same ordered type. The type of the dimension is defined to be that of the < scalar type
expression> s.

For more information on ARRAY declarations, see "INTERLOCK and INTERLOCK
ARRAY Declarations" and the discussion of < type identifier> in "SCALAR TYPE
Declaration" later in this section. Also see "DESCRIPTOR [DESCRIPTOR]" and
"WORD [WORD]" in Section 9, "UNSAFE Mode."

ARRAY REFERENCE Declaration
<array reference declaration>

ARRAY - REFERENCE -----,-+
L DIRECT -1 L<array class~

£rray referen~e identifier>:-L [-<lower bounds>--] ~
<array reference identifier>

----<identifier>--1

<lower bounds>

i<lowerbo~

Explanation

The ARRAY REFERENCE declaration in NEWP has the same syntax and semantics as
the ARRAY REFERENCE declaration in ALGOL, except that in NEwp, array references
can be declared to have scalar types.

In addition, each dimension of it NEWP array reference can be specified to have a scalar
type. The scalar type must be an ordered, bounded discrete type. If the lower bound of
a dimension is defined by a < scalar type expression>, the type of the dimension is the
type of the expression. When an array reference is used, a subscript that corresponds to
a scalar type dimension must be of the same type as was used in the declaration for that
dllDension.

5044233.380 4-3

Declarations

For more information on scalar types, see "SCALAR TYPE Declaration" later in this
section and "Scalar Type Expressions" in Section 6, "Expressions and Functions."

CONSTANT Declaration

4-4

<constant declaration>
---..--------~ CONSTANT --__________ -t~

DOUBLE ------I
. DESCRI PTOR -----I

INTEGER ----I
REAL -----I
type identifier WORD _. ___ -J

~~<constant identifier>
L- = --<constant value~

<constant identifier>

--<identifier>--1

<constant value>

--.-<constant arithmetic expression~
L-<constant scalar type expression~ ,

Explanation

The CONSTANT declaration can be used to declare arithmetic or enumerated constants.
This decl8ration is particularly useful for declaring a series of INTEGER constants where
each value is to be one greater than the previous value. If no type is provided in the
< constant declaration >, REAL is assumed.

The declaration and use of WORD and DESCRIPTOR constants do not require the use
of the UNSAFE WORD or DESCRIPTOR block directives because constants are treated
as literals.

If a < constant identifier> appears with a < constant value>, the identifier is associated
with the specified value. If no constant value is given, the compiler assigns the identifier
a value one greater than the value of the previous identifier. The compiler assigns
the value 0 (zero) to the identifier if it is the first identifier in the list. If the type
of a CONSTANT declaration is an enumerated type identifier, or a subtype of one,
any constant value must be a < constant scalar type expression>. All other types of
CONSTANT declarations can use only a <"Constant arithmetic expression> as the
constant value.

The constant value is evaluated in the context of the CONSTANT declaration (unlike
defines, for which the text is expanded in the context of the invocation).

If the type identifier is a subtype, it must be a descendant type of INTEGER or an
enumerated type. Each constant scalar type expression ~must be of the same type as the
type identifier. If the type identifier is a bounded type, the constant value assigned to
the < constant identifier> is checked to verify that the value falls within the valid range
for the type.

5044233.380

Examples

CONSTANT
TASKMSCW, % AUTOMATICALLY ASSIGNED 0
TASKPARAMS, % 1
CODEHEADERINDEX = 0, % STARTS AGAIN AT 0
RUNNINGCOUNT, % 1
CODELINKS, % 2
MARKER = CODELINKS, % 2 ALSO
COMPILERINFO, % 3
TOFFSET = MARKER+5, % 7
NEXTWORD; % 8

TYPE SUBCLASS = SUBTYPE INTEGER B •• 63;
SUBCLASS CONSTANT

UNSPECIFIED = B,
BY_VALUE, % 1
BY_NAME, % 2
BY_REFERENCE, % 3
EXTERNAL_PROC, % 4
FORWARD _PROC, % 5
LIBRARY_PROC, % 6
INLINE_PROC, % 7
ORDINARY_PROC; % 8

TYPE COLOR = (RED,GREEN,BLUE,YELLOW);
COLOR CONSTANT

MYFAVORITE = BLUE,
YOURFAVORITE = RED,
SCREENCOLOR = GREEN;

EXCEPTION PROCEDURE Declaration
<exception procedure declaration>

-- EXCEPTION PROCEDURE --<exception procedure identifier>-- ; -----~

~-<compound statement>-> -------------------i

<exception procedure identifier>

--<ident;fier~

Explanation

Declarations

Using the < exception procedure declaration> , you can specify a procedure to be
invoked automatically before any abnormal exit of the block in which the EXCEPTION
PROCEDURE declaration is contained. An exception procedure is not invoked
automatically for a normal exit of the containing block, but you can invoke it directly.

In most respects, an exception procedure is like any other untyped procedure. It can be
exported from a module or library and it can be called directly. However, an exception
procedure is invoked automatically by the MCP when an abnormal exit of the containing
block occurs. This special capability is available only to the containing block. Abnormal

5044233.380 4-5

Decla rations

exits are all terminations of the block, except in cases of normal completion of the block,
or the RETURN and EXIT statements.' Examples of abnormal exits include unhandled
faults, a DS system command, and going to a label global to the block in which the
exception procedure is declared.

If a fault occurs, and an < on declaration> exists to handle the fault, the exception
procedure is invoked only if an abnormal exit of the block occurs. Thus, the exception
procedure is not invoked if the ON declaration includes a GO TO clause linked to a label
inside the block in which the EXCEPTION PROCEDURE declaration occurs.

Usually, an exception procedure is subject to interrupts, including a DS system
command. However, you can use the PROTECTED block directive with exception
procedures for which an interruption is not acceptable. For more information on the
PROTECTED block directive, see "PROTECTED" in Section 8, "Compiler Controls."

The following restrictions apply to exception procedures:

• The body of an exception procedure can contain a < compound statement>
only. The exception procedure body cannot be a NULL, EXTERNAL, a < library
entry point specification> , or a < dynamic procedure specification>. Exception
procedures are not permitted to have parameters.

• Bad GO TO clauses are not allowed. Any attempt to exit the procedure by the way
of a GO TO clause to an outer block is flagged as a syntax error.

• The INLINE block directive cannot be used for an exception procedure. If this block
directive is used, a syntax error is issued.

• An exception procedure cannot contain an EXCEPTION PROCEDURE declaration.
A block or procedure cannot have more than one EXCEPTION PROCEDURE
declaration.

• An exception procedure cannot be specified as a formal parameter. It can be passed
as an actual parameter, however, if the corresponding formal parameter is declared
as an untyped procedure, without parameters.

• Exception procedures can be exported from modules by declaring them as
FORWARD in the < module head> , exactly as in any other procedure. When
the exception procedure is imported, it acts like any other untyPed procedure;
an abnormal exit in the importing module does not cause the MCP to 'invoke the
exception procedure automatically. Automatic invocation can occur only in the block
in which the exception procedure is originally declared.

• If the MCP option is set, the exception procedure cannot be declared in such a way
that its Program Control Word (Pew) is placed in the segment dictionary, since this
block is never exited. This means that an exception procedure cannot be declared in
the outer block (lexica1level 0) of the MCP.

When the MCP option is not set, an exception procedure in the outer block is
permitted.

• An exception procedure cannot, be address equated.

• An exception procedure identifier can be included in a library EXPORT list.
However, any programs that import this entry point must declare it as a normal,
untyped procedure without parameters, not as an exception procedure. The
following export is an example:

4-6 5044233.380

EXCEPTION PROCEDURE CLEANUP;
BEGIN
%procedure body

END; % of exception procedure
EXPORT

CLEANUP;

Declarations

Any programs that import this entry point must include the following declaration,
assuming library MYLffi has already been declared:

PROCEDURE CLEANUP;
LIBRARY MYLIB;

Considerations for Use

One stack cell is saved if the exception procedure has no FORWARD declaration and is
declared as the last item in the block. This is because the exception procedure Program
Control Word (PCW) must be directly below the Software Control Word (Sew) for
the block, and the compiler generates a second pew, when necessary, to ensure this
ordering. The use of duplicate PCW s is a concern only in an environment in which the
conservation of stack cells is important.

It is possible that an exception procedure might be invoked automatically while the
program is in the middle of a direct call to the same exception procedure. For example, if
a program calls CLEANUP (an exception procedure) and is terminated by a DS system
command, the exception procedure is invoked a second time because of the abnormal
exit of the block in which the exception procedure was declared. Exception procedures
that are called directly need to be written with this possibility in mind

Example

5044233.380

PROCEDURE PI;
BEGIN
REAL A, B;
FILE MYFILE (KIND=DISK);
EXCEPTION PROCEDURE CLEANUP;

BEGIN
CLOSE (MYFI LE, LOCK);
END; % of exception procedure cleanup

IF MYFILE.AVAlLABLE THEN
BEGIN
OPEN (MYFI LE) ;
CLEANUP; % a direct call to the exception procedure
END;

A := 17 * (B + 4);
END; % of procedure Pl. The procedure cleanup will be

% invoked automatically if PI is exited abnormally.

4-7

Declarations

EXCEPTION PROCEDURE FORWARD Declaration
<exception procedure forward declaration>

-- EXCEPTION PROCEDURE --<exception procedure identifier> ~

~- FORWARD --------------------~

Explanation

An exception procedure can be declared forward in the same manner as in other
procedures. If an < exception procedure forward declaration> exists, then references to
the procedure can occur before the EXCEPTION PROCEDURE declaration.

EXPORT Declaration

4-8

<export dec1aration~

-- EXPORT -,------------------,------
L [-- PROTECTED --r------~]]

C=<linkage class>:]

r+- •
~<export object specification>

<linkage class>

--<integer>--j

<export object specification>

~export options~

C
<procedure identi!flieerr~
<array identifier~ L AS --<EBCDIC string literal~
file identifier>>--......

<export options>

- (-- LINKCLASS - = .- PROTECTED >J)--1
L<l i nkage c1 ass

Explanation

The EXPORT declaration in NEWP is similar to the EXPORT declaration in ALGOL,
except that NEWP allows different export objects, and the LINKCLASS can be provided
in two ways. If the linkage class for all objects exported in the EXPORT declaration is
the same, the linkage class can be specified just after EXPORT; it then applies to the
entire list of objects. If the objects in the export list have different linkage classes they
can be specified individually after each < export object specification> .

The < linkage class> is an integer between 0 and 15. A library entry point can be
exported with protection by including the PROTECTED clause in the EXPORT
declaration for that entry point. Only programs belonging to appropriate linkage classes
can be linked to a protected entry point. The linkage classes are defined in a table
maintained by MCP LmRARIAN. If the PROTECTED clause is not included, the linkage
class is 0 (zero).

5044233.380

Declarations

There are 16 linkage classes ranging from 0 to 15. Classes 0 and 1 are used by the MCP
such that tasks of linkage class 0 can link only to objects of linkage class 0 and tasks of
linkage class 1 are allowed to link to objects of any linkage class. The remaining classes
are reserved for use by Unisys systems software.

EXPORT declarations are not allowed within module alternatives.

In-line procedures, procedures that are declared to have a scalar type, and procedures
with scalar type parameters cannot appear in an EXPORT declaration.

Note: The keyword EXPORT is interpreted as a module < export list>
when it appears in the module head of a MODULE declaration (old).
EXPORT in any other context is interpreted as a library < export
declaration> .

For information related to the EXPORT declaration, see "LIBRARY Declaration, "
"MODULE Declaration (Old)," and "In-Line Procedures" later ,in this section.

Examples

EXPORT MYPROG;

EXPORT [PROTECTED] YOURPROC, THEIRPROC;

EXPORT [PROTECTED 1] OURPROC;

EXPORT THEPROC (LINKCLASS = 2),
APROC (LINKCLASS = 6);

INTERLOCK and INTERLOCK ARRAY Declarations
<interlock declaration>

r+-- • I
- INTERLOCK --L.:interlock identifier~

<interlock identifier>

---<identifier>--i

<interlock array declaration>

- INTERLOCK - ARRAY ----------------~-+

ftinterlOck arr~y identifieri [-<bound pair list>-] OL
<interlock array identifier>

---<identifier>--i

Explanation

An < identifier> declared t~ be an < interlock identifier> or an element of an interlock
array can be used to protect a resource that is shared among several participating

5044233.380 4-9

Declarations

processes. In many respects, the use of an interlock identifier or < interlock array
identifier> is similar to the use of an event with the PROCURE and LmERATE
statements. However, using interlocks can improve significantly the run-time
performance when compared with using the PROCURE and LmERATE statements
on events. For more information on PROCURE and LmERATE statements, see the
A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation.

The initial state of an interlock is FREE. For a complete list of the possible states of an
interlock, refer to "LOCKSTATUS Function" in Section 6, "Expressions and Functions."

INTRINSIC Declaration

4-10

<intrinsic declaration>

- INTRINSIC ~intr;nsic identifier;
~equation part~

Explanation

INTRINSIC declarations are provided especially for use in the MCp, where implicit
references to MCP addresses can cause problems. The compiler is directed to use
the address associated with the INTRINSIC declaration in place of a newly allocated
cell in the segment dictionary (normal program) or to use a direct reference to the
global environment within the MCP. This direct reference is disallowed and results in a
compilation error.

Each intrinsic declared is assigned a stack cell. If you do not use an address equation,
the cell is stored in the segment dictionary and contains an appropriate intrinsic binding
word. If you supply an address through address equation, that address is us~d for
references and no initialization is done by the compiler. The < equation part> is an
UNSAFE construct; see "Address Equation" in Section 9, "UNSAFE Mode," before
proceeding.

INTRINSIC declarations are associated by name to the references made by the compiler
for implicitly called MCP intrinsics. When the compiler generates code to refer to an
MCP intrinsic, it looks for a specified identifier, derived from the intrinsic name in the
scope of the code being compiled. A list of these recognized intrinsic identifiers is shown
in Table 4-1.

If the identifier is fOtuld and is of type INTRINSIC, the compiler uses the address
associated with the identifier. If no useable intrinsic identifier is fOlUld, a compilation
error is issued for MCP compilations. For non-MCP compilations, an intrinsic binding
word is allocated in the segment dictionary.

The following table shows the recognized intrinsic identifiers, along with associated MCP
identifiers and MCP intrinsic numbers, in hexadecimal form.

5044233.380

Declarations

Table 4-l. Intrinsic Identifiers

Intrinsic Identifier MCP Identifier Number

INTRINSIC _ STACKVECTOR STACKVECTOR 02

INTRINSIC_MEMORY MEMORY 04

INTRINSIC _ ARRAYDEC ARRAYDEC 07

INTRINSIC _ BLOCKEXIT BLOCKEXIT OA

INTRINSIC _ BADGOTO GOTOSOLVER OB

INTRINSIC -,NTRINSICINFO INTRINSICINFO 11

INTRINSIC_MYJOB MYJOB 12

INTRINSIC FREEZELIBRARY FREEZELIBRARY 16

INTRINSIC PROGRAMDUMP PROGRAMDUMP 17

INTRINSIC_TIME TIMEINTRINSIC 18

INTRINSIC_CLOSE CLOSE IB

INTRINSIC_POTL POTl 23

INTRINSIC _POTC POTC 24

INTRINSIC POTH POTH 25

INTRINSIC_ATTRIBUTEGRABBER ATTRIBUTEGRABBER 29

INTRINSIC _ TRUTHSETS TRUTHSETS 26

INTRINSIC _ ATTRIBUTEHANDLER ATTRIBUTEHANDLER 2A

INTRINSIC _ USERIOERROR USERIOERROR 2E

INTRINSIC _ LOADCONTROL lOADCONTROL 32

INTRINSIC_SET _GET _ L1BRARYSTATUS SET_GET _ LlBRARYSTATUS 36

INTRINSIC_SORT SORT 45

INTRINSIC _ RESIZEANDDEALLOCATE RESIZEANDDEALLOCATE 46

INTRINSIC _ CANCELLIBRARY CANCELLIBRARY 4C

INTRINSIC_OPENP OPENP 4E

INTRINSIC_DELIVERY DELIVERY 4E

INTRINSIC DESCRIPTORSIZE DESCRIPTORSIZE 5D

INTRINSIC _LlNKLlBRARY LlNKLlBRARY 63

INTRINSIC _EBCTOHEX EBCTOHEX 65

continued

5044233.380 4-11

Declarations

Table 4-l. Intrinsic Identifiers (cont.)

Intrinsic Identifier MCP Identifier Number

INTRINSIC_UNRAVEL UNRAVEL 66

INTRINSIC_MUTATE MUTATE 67

INTRINSIC _ MYSELFER MYSELFER 68

INTRINSIC_CONTINUER CONTINUER 69

INTRINSIC _ CLOSEP CLOSEP 70

INTRINSIC _FORKCONTROLCARD FORKCONTROLCARD 76

INTRINSIC_FIXHANDLER FIXHANDLER 8E

INTRINSIC_DIRECTOR DIRECTOR 95

INTRINSIC _ CAUSEP CAUSEP 96

INTRINSIC _ SETORRESET SETORRESET 99

INTRINSIC _PROCUREP PROCUREP 9A

INTRINSIC _ LlBERATEP LlBERATEP 9C

INTRINSIC _ COMBINEPPBS COMBINEPPBS AB

INTRINSIC _FORKHANDLER FORKHANDLER AF

INTRINSIC _EBCTOASC EBCTOASC B1

INTRINSIC _ASCTOHEX ASCTOHEX B2

INTRINSIC _ ASCTOEBC ASCTOEBC B4

INTRINSIC _ HEXTOEBCDIC HEXTOEBCDIC BD

INTRINSIC _ HEXTOASCII HEXTOASCII BE

INTRINSIC _ READLOCKTI MEOUT READ.LOCKTIMEOUT C2

INTRINSIC _ CLOCKOFFPCW CLOCKOFFPCW C3

INTRINSIC _ CLOCKONPCW CLOCKONPCW C4

JNTRINSIC _ CLOCKRESUMEPCW CLOCKRESUMEPCW C5

INTRINSIC _ CLOCKSUSPENDPCW CLOCKSUSPENDPCW C6

INTRINSIC _ GETSTRINGAREA GETSTRINGAREA C9

INTRINSIC _ GETSTRINGPOOLSIZE GETSTRINGPOOLSIZE CC

INTRINSIC_RESETSTRINGPOOLSIZE RESETSTRINGPOOLSIZE CD

continued

4-12 5044233.380

Declarations

Table 4-l. Intrinsic Identifiers (cont.)

Intrinsic Identifier MCP Identifier

INTRINSIC _ARRAYSEARCHP ARRAYSEARCHP

INTRINSIC _ GETLIBATTRIBUTES GETLIBATTRIBUTES

INTRI NSIC _ SETLI BATTRI BUTES SETLI BATTRI BUTES

INTRINSIC _HIGHESTPNUM HIGHESTPNUM

INTRINSIC _ HAPPENEDP HAPPENEDP

INTRINSIC _AVAILABLEP AVAILABLEP

INTRINSIC_MULTIWAIT MULTIWAIT

INTRINSIC _ SIMPLEWAIT SIMPLEWAIT

INTRINSIC _ DELlNKLlBRARY DELI N KLiBRARY

INTRINSIC_DESC_HIDING DESC_HIDING

INTRINSIC JLOK_ OK I LOK_OK

INTRINSIC JLOK _STATUS I LOK_STATUS

INTRINSICJLOK_BREAK I LOK_BREAK

INTRINSICJLOK_ARROGATE ILOK ARROGATE

INTRINSICJLOK_LOCKING ILOK_LOCKING

INTRINSIC JLOK_ UNLOCKING I LOK_ UNLOCKING

INTRINSIC_fA_JACKET fA_JACKET

Note: Address equating another declaration to a declared intrinsic
identifier has one unusual effect. If the stack cell was associated with
the intrinsic (the intrinsic was the first declaration assigned to the
cell), the normal initialization is overridden and the new declaration
is used to initialize the cell.

Examples

PROCEDURE CAUSEP=(0,150) (E,HOW);

INTRINSIC INTRINSIC_CAUSEP = CAUSEP;

INTRINSIC INTRINSIC_EBCTOHEX;

TRANSLATETABLE EBCTOHEX = INTRINSIC EBCTOHEX (•••);

5044233.380

Number

05

05

DA

DE

E4

E5

E9

EA

EB

EE

fO

fl

f2

f3

f4

f5

fA

4-13

Declarations

LABEL Declaration·
<label declaration>

- LABEL [~<label id~ntifier~
L [BAD] ~

Explanation

In NEwp, a bad GO TO is a GO TO statement that branches out of the segment or
procedure in which the GO TO statement appears. A label that is the object of a bad GO
TO statement must be declared ifl a label declaration that includes the [BAD] syntax.

Example

LABEL [BAD] ENDITALL, ERROREXIT;

LIBRARY Declaration

4-14

<library declaration>

- LIBRARY ------------------------+

-+~<l i bra ry i dent i fi er>
L (<library attribute specifications>) ~

<library attribute specifications>

~Boolean library attribute specification>-....-'--I
<string library attribute specification
<mnemonic library attribute specification

<Boolean library attribute specification>

-<Boolean-valued library attribute name>
L = -r TRUE -1

L FALSE .J

<Boolean-valued library attribute name>

- SYSTEMLIB --1

(All other syntax is identical to ALGOL.)

Explanation

In NEwp, a value for the Boolean-valued library attribute SYSTEMLI~ can be specified.
When SYSTEMLIB is TRUE, the associated library is to be initiated as a system library,
which allows it to access protected library entry points. For more information, see
"EXPORT Declaration" in this section. Use of this attribute requires that the MCP
compiler control option be set.

In NEwp, a maximum of 150 libraries can be declared in a single program.

5044233.380

Declarations

For more information related to the LffiRARY declaration, see "EXPORT Declaration"
in this section and Section 8, "Compiler Controls."

MODULE Declaration
Note: Wherever possible, use this version of the MODULE declaration. If

you are unable to use this version for work on previous releases, use
the version described in "MODULE Declaration (Old)" later in this
section.

<module declaration>

- MODULE -<module identifier>- ; --r---------,.------t
L<modu 1 e head~

+- BEGIN --<module identifier>- ;

+-<module body>->--------------------~

~- END --<module identifier>-

<module identifier>

--<identifier>--1

<module head>

--I:<declaration>-- ~

<module body>

Lr<declaration>-- ; ;]

Lt - <initialization procedure>J

~<alternativeJJ
<interface declaration>

- INTERFACE .-L<interfa~

<interface>

--<interface identifier>-<interface bodY>--1

<interface body>

-- (~<exportable identifier>=:=l-) --1
---r=<interface identifier~

5044233.380 4-15

Decla rations

4-16

<moduleexport declaration>

-- MODULEEXPORT -.L<i nterface i denti fi er>=L,

<moduleimport declaration>

-- MODULE IMPORT -.L<interface identifier>=L,

<remote module declaration>

-- INCLUDE --<module identifier>--1

<interface identifier>

--<identifier>--1

<exportable identifier>

--<identifier>--1

Explanation

A module, in NEwp, is a self-contained package that includes a number of declarations.
By default, none of its declarations is visible outside the bounds of the module, and no
identifiers declared in any other modules (nested, sibling, or enclosing) are visible within
the module. The module import and export declarations provide the means to allow
visibility of declarations across module boundaries.

On the export side, INTERFACE declarations collect items declared within the module
and group them under the interface identifier. The interface can then be exported with
the MODULEEXPORT declaration, which makes it available for import into modules
outside the scope of the exporting module. No MODULEEXPORT declaration is
necessary to import an interface into a nested module.

The following restrictions govern the items that can appear in an interface:

• Items imported from outside the module cannot be reexported.

• The enwnerated literals of an enumerated data type cannot themselves be included
in an interface but are automatically included when the type, descendant of the
enumerated type, or structure type variable descended from the enumerated type is
included.

An item can appear in more than one interface. An item imported by a nested module
can be included in an interface formed by the parent or grandparent, for example. An
item must be declared before it can be included in an interface.

If an interface identifier appears in the list of items (for another interface), all the items
contained in the referenced interface are also contained in the interface being declared.
This provides a convenient mechanism for building a large interface out of smaller ones.
Components of a composite interface can also be overlapped. Only interfaces already
defined within the same module, or imported from a nested module, can be used to build
this kind of composite interface.

5044233.380

Declarations

If an interface identifier from a nested submodule appears in the MODULEEXPORT
declaration, the entire interface is reexported, under its own name, from the parent
module. This provides a mechanism for grouping modules, while still retaining their
individual identities.

The MODULEIMPORT declaration makes the items collected in the named interface
visible within the importing module. An interface appears as a window across the
boundary between two modules. If a module imports several interfaces exported from
another module and items appear in more than one of these interfaces, there is no
conflict or ambiguity. The windows simply overlap.

A MODULEIMPORT declaration is required for all uses of an identifier within a
module different from that in which it was declared. This means that interfaces must
be declared and imported from parent to child, child to parent, and sibling to sibling.
Alternatives within modules are not considereq. to be nested modules for this pw-pose,
and therefore the alternatives directly inherit the environment of the containing module.

Interfaces exported from a nested module can be imported by the parent or a sibling.
Items exported from a nested module, in the head of the parent, can be included in
interfaces exported from the parent. In addition, entire submodule interfaces are
available for reexport under the original interface name.

The REMOTE MODULE declaration is a feature intended for use on large modularized
programs, such as the MCP. This declaration reorganizes the relationships among the
modules without physically reorganizing the source files. It is not intended as a tool for
construction of new programs.

The effect of the REMOTE MODULE declaration is as if the actual text of the
designated module appeared at the point of the INCLUDE portion of the declaration. All
scope rules are applied as if this were the case. The module included is then no longer
eligible for compilation again either through another INCLUDE portion or in the normal
location defined by the physical order of appearance. The included module is effectively
removed from the source. The REMOTE MODULE declaration is not related to the
compiler control option $INCLUDE.

The target module must appear in the source as a member of the same contiguous
group of modules as the module that invokes the REMOTE MODULE declaration. The
REMOTE MODULE declaration can appear only as a declaration in the heading or the
body of the host module, not within a nested module or procedure. However, a nested
module can include another nested module from its own contiguous group.

5044233-001 4-17

Declarations

4-18

Scope Rules

The declaration of an interface makes the interface identifier known throughout the
rest of the module declaring it. This includes any later nested modules. The export
of an interface identifier makes that identifier known throughout the rest of the
environment containing the exporting module. The exporting module includes later
sibling modules. If the exporting module is an outermost module, the interface name is
known throughout the rest of the program. If a module is declared within a procedure or
block, the scope rules restrict the visibility of any exported interfaces to the rest of the
body of the procedure or block.

The ALGOL rules apply to the declaration of interfaces with the same name. A potential
conflict can arise if two or more interfaces with the same name appear in the same scope.
This can occur by local declaration, by export from a nested or sibling submodule, or
by import from the outer environment. If one of the conflicting declarations appears
within a scope properly nested within the scope containing the other interface, the outer
name becomes invisible in the inner scope. If the conflicting declarations arise in the
same scope, the situation is flagged as a compilation error. For more information on
scope, refer to the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

The declaration and export of an interface does not, however, make the items collected in
the interface automatically visible outside of the declaring module, or within any nested
submodules. When an interface identifier appears in a MODULEIMPORT declaration,
the identifiers contained within the interface become visible through the rest of the
scope within which the import declaration appears. These identifiers appear to belong to
that scope. The ALGOL scope rules apply to the point of import.

MODULE, INTERFACE, MODULEEXPORT, and MODULEIMPORT declarations are
true declarations. As such, they can appear anywhere that declarations are allowed.
However, if an interface is to be exported, its declaration must appear in the heading of
the module, not nested within any procedure or block.

The order of compilation and the scope definition of after in NEWP is first line to last
line, with the following exception related to modules: contiguous sibling modules are
compiled as a group. Within the group, the order of compilation is heads (first to last),
then bodies. Nested submodules, including groups of adjacent sibling submodules,
are compiled where they appear within this order. If a group of modules is nested in
the head of the parent module, the compilation of the bodies of the nested modules is
deferred to the begirurlng of the body of the parent.

Imports must be specified before they are used, when establishing a compilation order.
Appearance of an identifier within a DEFINE body does not constitute a use. However,
an invocation of such a DEFINE would be a use. A given interface can be imported
safely more than once into the same environment.

5044233-001--

Declarations

MODULE Declaration (Old)
Note: Do not use this version of the MODULE declaration unless your work

on previous releases requires it. Wherever possible, use the version
described in "MODULE Declaration" in this section.

<module declaration>

- MODULE -<module identifier>- ; -"T""-------,-------+
~dule head~

~ BEGIN -<module identifier>- i -------------t
~dule body>>--------------------~~

~ END -<module identifier>- ; ---------------1

<module identifier>

--<identifier>--1

<module head>

L:<export list>- ;:J L:<supply declaration):]

~declaration>-. --'----------.---------~

<export list>

- EXPORT ~tif~

<module body>

~declaration>- ; ~
· tJt<a ~ <initialization procedure>=]

lternative

504423~Ol 4-18A

Declarations

4-188 5044233-001

Declarations

<alternative>

- ALTERNATIVE -<alternative ident;fier:>>-----------~

~ [SELECT -<constant Boolean expression>J
-------~

~- BEGIN -<alternative identifier>-- ; ----------.~

~~cr:--d-e-cl-a-r-at-i-on->----;-:lJ~----------------.~

~ END -<alternative identifier>-- ; -------------1

<alternative identifier>

--<identifier>--1

<initialization procedure>

-~---------.- INITIALIZATION PROCEDURE --------+
L-<procedure type::o-J

~-<procedure headi ng>--<procedure body» -----------;

Explanation

The MODULE declaration allows logically related declarations to be grouped together.
Items declared within a module are protected, in the sense that they are not visible to
other modules unless specified in an EXPORT list.

Exported identifiers must be declared in the < module head>. The form of the
declarations for p~ocedures to be exported depends on whether or not the procedure
is declared to be INLINE (see "In-Line Procedures" in this section). Non-in-line
procedures to be exported are declared in the module head as they would be declared
anywhere else, except that the < procedure body> must be LIBRARY, EXTERNAL,
NULL, or FORWARD; if the procedure body is FORWARD, the procedure must be fully
declared in the < module body>. In-line procedures to be exported cannot be declared
EXTERNAL, NULL, or FORWARD and must be fully declared in the module head

Note: The keyword EXPORT is interpreted as a module <export list>
when it appears in the module head of a MODULE declaration.
EXPORT in any other context is interpreted as a library EXPORT
declaration. When a library entry point is declared in the module
head by using the < library entry point specification>, any other
entry points to the library to be used in the module must also be
declared in the module head. If no entry points are to be used in the
module head, then this restriction is inapplicable.

MODULE < module identifier>, BEGIN < module identifier>, and END < module
identifier> must be the first tokens on the records on which these module identifiers
appear. In a single < module declaration>, the three occurrences of the module
identifier must all be the same identifier. The BEGIN < module' identifier> and the
END <module identifier> cannot be part of an INCLUDE file, nor part ofa define.

Modules can be nested up to 50 deep. Selectable modules can be used at any point
in the nesting. For more information, see the "SELECT Statement" in Section 5,
"Statements. "

5044233.380 4-19

Declarations

4-20

Within a given outer level module, the code for all initialization procedures is placed in
one single segment. For example, the initialization procedure of a selectable submodule
is in the same segment as the initialization procedure of its selectable parent when
modules are configured as such.

Items declared to have scalar types can be exported by and imported into modules.

Alternatives

The specification of alternatives allows the compile-time or run-time selection of one
group of declarations from a list of one or more alternative groups. The selection is made
at compile-time by providing a SELECT clause on the alternative declaration whose
Boolean expression evaluates to TRUE. Only one alternative can be selected at compile
time. Run-time selection is made by an < initialization procedure>, which must be
declared if alternatives are declared (and can be declared even if no alternatives are
declared).

EXPORT declarations are not allowed within alternatives.

If an initialization procedure occurs in a module, all items declared in the module,
except the initialization procedure, are unavailable until the initialization procedure is
entered. At that time, the items declared in the module but outside any alternatives
are initialized. Items declared in an alternative are not available until, and unless,
a SELECT statement for that alternative is executed. For more information, see
"SELECT Statement" in Section 5, "Statements."

Items declared in a module but outside all alternatives are available inside all
alternatives in that module.

If a procedure is declared inside the alternatives but is visible outside the alternatives,
either because it is exported or because it is declared FORWARD, its actual declaration
must appear in every alternative in the module and must have the same procedure
heading in every declaration. That is, the procedure type, number of parameters, type of
parameters, and all other information contained in the procedure heading (except formal
parameter identifiers) must be identical.

In a single < alternative> specification, the three occurrences of < alternative
identifier> must all be the same identifier. Alternatives cannot contain procedures
declared to be EXTERNAL. .

The NEWP compiler attempts to reuse D[O] cells for different alternatives within the
same module. Cells that cannot be reused are those holding segment descriptors, value
arrays, library templates and markers, and double-precision items. The attempt to reuse
D[O] cells occurs only when the MCP control option is set.

Initialization Procedures

An initialization procedure is declared much like a standard procedure, except that the
keyword INITIALIZATION must follow the procedure type (if any) and must precede
the keyword PROCEDURE. Initialization procedures are the only procedures that can
contain SELECT statements.

5044233.380

Declarations

Initialization procedures are subject to the following restrictions:

• An initialization procedure can occur only as the last declaration in a module body.

• An initialization procedure can be executed only once. An INVALID OPERATOR
fault occurs if an attempt is made to execute an initialization procedure a second
time.

• The SEGMENT block directive cannot be specified in the block directives for an
initialization procedure.

• The INLINE block directive cannot be specified in the block directives for an
initialization procedure.

For more information related to the MODULE declaration, see "EXPORT Declaration,"
"In-Line Procedures," and "SUPPLY Declaration" in this section and "SELECT
Statement" in Section 5, "Statements."

Example

5044233.380

BEGIN
MODULE PHYSICALIO;

EXPORT PHYSICALIO_INITIALIZATION,
DOCHARIO,
T;

BOOLEAN INITIALIZATION PROCEDURE
PHYSICALIO_INITIALIZATION(WHICHONE);
VALUE WHICHONE; BOOLEAN WHICHONE; FORWARD;

PROCEDURE DOCHARIO; 'FORWARD;
INTEGER T;

BEGIN PHYSICALIO;
REAL R;
ALTERNATIVE MLIP_PHYSICALIO;
BEGIN MLIP_PHYSICALIO;

INTEGER I;
PROCEDURE DOCHARIO;

BEGIN
END DOCHARIO;

END MLIP~PHYSICALIO;
ALTERNATIVE MPX_PHYSICALIO;
BEGIN MPX_PHYSICALIO;

PROCEDURE DOCHARIO;
BEGIN
END DOCHARIO;

REAL PROCEDURE IOFINISH68;
BEGIN
END IOFINISH~8;

END MPX_PHYSICALIO;
BOOLEAN INITIALIZATION PROCEDURE

PHYSICALIO_INITIALIZATION(WHICHONE);
VALUE WHICHONE; BOOLEAN WHICHONE;

BEGIN
IF WHICHONE THEN

SELECT(MLIP_PHYSICALIO)

4-21

Declarations

ELSE
SELECT(MPX_PHYSICALIO);

PHYSICALIO_INITIALIZATION:=WHICHONE;
END PHYSICALIO_INITIALIZATION;

END PHYSICALIO;
MODULE INITIALIZERj

EXPORT GETITGOING;
PROCEDURE GETITGOINGj
FORWARD;

BEGIN INITIALIZERj
IMPORT FROM PHYSICALIO(PHYSICALIO_INITIALIZATION);
BOOLEAN WHICHONEj
PROCEDURE GETITGOING;
BEGIN

PHYSICALIO_INITIALIZATION(WHICHONE);
END GETITGOING;

END INITIALIZER;
GETITGOING;

END.

ON Declaration

4-22

<on declaration>

- ON -<fault Hst> • -<statement>--1
L-<fault information part~

Explanation

The ON declaration provides a fault-handling mechanism similar to the mechanism
available through the ALGOL ON statement. When a fault named in the fault list
occurs, control is transferred to the fault-handling statement appearing in the ON
declaration. To resume normal execution, a GO TO statement to a label outside of
the < statement> in the ON declaration must be performed (except in the case of an
EXPONENT UNDERFLOW fault). The execution ofa bad GO TO statement can
cause the invocation of an EXCEPTION procedure. For more information, refer to
"EXCEPTION PROCEDURE Declaration" in this section.

If a GO TO statement is not performed, the MCP searches down the program's
execution stack for another enabled fault-handling declaration. This process continues
until either a GO TO statement is performed or the entire execution stack has been
searched. In the latter case, if the fault was EXPONENT UNDERFLOW, the program
continues processing with a zero substituted for the result of the operator that caused
the underflow. Otherwise, the program is terminated by a DS system command, which
causes any EXCEPTION PROCEDURES to be executed. Refer to "EXCEPTION
PROCEDURE Declaration" in this section for more information.

The fault numbers must be only single-precision, arithmetic < simple variable> s, while
the fault names include all those available in ALGOL. For more information on < fault
number> and < fault name>, see the A Series ALGOL Programming Reference
Manual, Volume 1: Basic Implementation.

5044233.380

Declarations

In addition, the following faults are available in NEWP:

• LOCKEDFAULT(20)

• LIBLINKFAULT(2l): Occurs if an attempted library linkage is unsuccessful

• MEMORYFAIL1(23): B 7900 fault

• PRIVILEGEDINSTRUCTION(24): B 7900 fault

• PARITYFAILl(25): B 7900 fault

If the B 7900 compiler control option is TRUE, the following faults are not included in
ANYF AULT fault list, although they can be specified as individual fault names:

• LOOP

• MEMORYPARITY

• INV ALIDADDRESS

• SCANP ARITY

• INV ALIDPROGRAMWORD

• MEMORYFAILl

• P ARITYF AILl

For information about the ANYFAULT fault name, see theA Series ALGOL
Programming Reference Manual, Volume 1: Basic Implementation. For information
about the B 7900 compiler control option, see Section 8, "Compiler Controls."

ON ANYFAULT,
BEGIN
RUNSTATUS := FIRSTPROC_FAULT;
GO TO ERRLABEL;
END;

OUTPUTMESSAGE ARRAY Declaration
Outputmessage arrays are declared as in ALGOL except for the following differences:

• Implicit string concatenation in NEWP requires at least one blank, or the use of a
< string concatenation operator> .

• NULL or EMPTY strings are not allowed, but a string of one or more blanks is .
allowed.

For example:

II

• A < numeric constant> is accepted at all places where a number is accepted.

5044233.380 4-23

Declarations

POINTER Declaration
-,------..- POINTER -----------------

ASCII
BCl
EBCDIC
HEX

~-.r:.<pointer identifier>
L-<lexical level restriction part~

Explanation

Pointers can be declared with a size specification (for example, HEX). If the character
size is not specified, the default is EBCDIC.

The < lexical level restriction part> construct has the same syntax and semantics in
NEWP as it does in ALGOL. Up-level pointers are allowed only if the MCP compiler
control option is set or the block is in UNSAFE (UP LEVEL) mode.

Syntax errors are given for pointer and string size mismatches. For example, if PTR is
declared as an EBCDIC pointer, the following statement causes a syntax error:

REPLACE PTR BY 4" FFBB"; % SHOULD BE 48" FFBB"

Example

EBCDIC POINTER PTRIN, PTROUT;

PROCEDURE Declaration

4-24

<procedure declaration>

___ r---------,-- PROCEDURE -<procedure headi ng>­
~procedure type~

---,~

+-<procedure body>>----------------------i

<procedure type>

-<type>--j

<procedure heading>

-<procedure identifier> t:cro rma 1 parameter part>-j

<formal parameter part>

- (-<formal parameter list>-) - ; ~-------~--'

~<value part>=J-J

rEo ,--,
~ , <specification>>--L'-----------I

~<name part>=J-J

5044233.380

<name part>

- NAME -.L<i dent i f~ -j

<formal parameter list>

i<forma 1 p;ramete'r~

<sped fi cat; on>

E
specif;er~<identifier

<procedure sped fi cati on>--------I
<procedure reference array specification
<array sped f; cati on>--·----------'

<sped fi er>

EVENT -----.....---1
1------.- FI LE

1------.- POINTER
ASCII
BCL
EBCDIC
HEX

<set identifier>----I
TASK -------1
type>-----------~

<procedure specification>

---,~-----------....,.- PROCEDURE -<i dent i fi er»-------~
L-<procedure type~

-+'-.---------------,.- ; - FORMAL -----------1
~~0~a1 parameter part>:J

<procedure reference array sped ficati on>

--r-----------,- PROCEDURE REFERENCE ARRAY -<i dent i fi er>--+
C=<procedure type>:]

-+- [-<lower bound 1 i st>-] .- () ; ---+
L-<forma1 parameter part~

-+- FORMAL ----------------------------------1

<array specification>

ARRAY --L:<array id~ntifier>=L [~
L- DIRECT.J ka rray type~

-+-<lower bound list>-] -------------------(

<array type>

5044233.380

l1
rray class

EVENT ---I
INTERLOCK
TASK ---....

Declarations

4-25

Declarations

<lower bound list>

~<i nteger>-> ----. --------r--1..--f

t=<:onstant scalar type expression>:J

<procedure body>

1
<compound statement

EXTERNAL ----------l
<library entry point specification
<dynamic procedure specification

(All other syntax is identical to ALGOL.)

Explanation

Procedures in NEWP are similar to procedures in ALGOL, with the following exceptions:

• Parameters can be passed as ca11-by-reference, ca11-by-value, or call-by-name.
Parameters passed as call-by-name are permitted only for in-line procedures.

• Procedures can be declared INLINE through the INLINE block directive.

• The procedure value of a typed procedure can be accessed explicitly within the scope
of the procedure through the <procedure identifier>. VALUE construct.

• Use of < name part> is supported for INLINE procedures.

• The names of formal parameters to a procedure cannot be used again as local
identifier declarations in the outer block of the procedure.

Call-by-name parameters cannot be used in the FOR specification of POINTER
declarations.

REAL, INTEGER, BOOLEAN, DOUBLE, POINTER, DESCRIPTOR, and WORD can
be call-by-name parameters. DESCRIPTOR and WORD parameters can be used only in
the appropriate UNSAFE mode.

Parameter Passing

4-26

Parameters can be passed as ca11-by-value, call-by-reference, or call-by-name. The
default is ca11-by-reference. No more than 63 parameters are allowed on one procedure.
Thunks are not implemented in NEWP. To pass a parameter as call-by-value, the < value
part> must appear in the procedure heading. To pass a parameter as ca1l-by-name, the
< name part> must appear in the procedure heading of an INLINE procedure.

Actual parameters passed to ca1l-by-reference formal parameters must generate address
references. Constants and arithmetic expressions do not generate address references.
However, conditional and case expressions are allowed if each branch generates an
address reference. For parameters passed as call-by-reference, the types of the actual
and formal parameters must agree. For example, a variable of type REAL cannot be
passed as ca1l-by-referenc~ to a formal parameter of type DOUBLE or INTEGER.

5044233.380

Declarations

If a ca1l-by-reference formal parameter has a scalar type, the actual parameter passed
to that formal parameter must be of the same type as the formal parameter. If a
ca1l-by-value formal parameter has a scalar type, the type of the actual parameter passed
to that formal parameter must be assignment-compatible with the type of the formal
parameter.

Ifa ca1l-by-reference formal parameter is a set type, the actual parameter and the formal
parameter must have been declared with the same < set identifier>. Sets cannot be
passed as ca1l-by-value.

Call-by-name parameters do not cause anything to be stacked upon entry to the INLINE
procedure. Instead, the actual parameter is evaluated each time the formal parameter is
used.

If you store into a given ca1l-by-name formal parameter or you use the parameter
as the subject of nonevaluative type transfer (for example, WORD AT X), then its
corresponding actual parameter must be of a form suitable for the actual parameter to a
ca1l-by-reference formal parameter. The actual parameter must be capable of generating
an address reference. Implicit type coercion because of type mismatch is allowed to
the same extent as for ca1l-by-reference parameters and is handled with nonevaluative
type transfer, producing the same semantics. For example, if WORD W is passed to
BOOLEAN parameter B, it is treated as if BOOLEAN AT W had been passed. For
information on implicit type coercion, see the A Series ALGOL Programming Reference
Manual, Volume 1: Basic Implementation.

If you do not store into a given ca1l-by-name formal parameter or you do not use the
parameter as the subject of nonevaluative type transfer, then its corresponding actual
parameter must be in a form suitable for the actual parameter to a ca1l-by-value formal
parameter. The actual parameter need not be capable of generating an address
reference. Implicit type coercion because of type mismatch is allowed to the same extent
as for call-by-value parameters and is handled with evaluative type transfer, producing
the same semantics. For example, if WORD W is passed to BOOLEAN parameter B, it is
treated as if BOOLEAN(W) had been passed.

The syntax. for specifying procedures as formal parameters differs between NEWP
and ALGOL. NEWP does not support run-time parameter checking; therefore, all
parameters of formal procedures must· be specified.

Each dimension of a formal array parameter can be a scalar type. The scalar type
must be a bounded, discrete type. If the lower bound of a dimension is specified by
a < constant scalar type expression> , the type of the dimension is the type of the
expression. When the procedure is invoked, the dimension of the actual array passed to
the formal array must have the same scalar type as the corresponding dimension of the
formal array. A lower bound specified by an asterisk (*) is of type INTEGER.

In NEWP (unlike in ALGOL), DEFINEs are not expanded when the compiler is
processing the individual identifiers in the < value part> or < specification part> of a
procedure heading.

5044233.380 4-27

Declarations

In-Line Procedures

In-line procedures combine some of the efficiency of DEFINEs with the semantics of
procedures. Each invocation of an in-line procedure results in an in-line expansion of its
code at the point of the invocation.

In-line procedures with local ARRAY or EVENT declarations are executed as
procedures, that is, as block. entry by means of a Program Control Word (PCW). Unlike
normal procedures, the code for an enterable in-line procedure is always placed in the
same segment as the code that invokes the in-line procedure. There is a performance
penalty associated with enterable in-line procedures, so the declaration of local arrays
and events in in-line procedures is discouraged.

An in-line procedure is declared by including the keyword INLINE as a block directive
associated with the first BEGIN of the procedure body (see "Block Directives" in
Section 8, "Compiler Controls"). In-line procedures are subject to the following
restrictions:

• An in-line procedure that is exported from a module must be fully declared in the
module head. For more information, refer to "MODULE Declaration" in this
section.

• The only imported items an exported in-line procedure can use are those exported
from modules declared prior to the module containing the exported in-line
procedure.

• In-line procedures must not be recursive.

• An in-line procedure cannot be passed as a formal parameter to a procedure that is
not an in-line procedure. However, both in-line and other procedures can: be passed
as formal parameters to in-line procedures.

• The < procedure identifier> referred to in a RUN, PROCESS, or FORK statement
must not be that of an in-line procedure.

• The procedure identifier referred to in the CONTROL form of the < freeze
statement> must not he that ofan in-line procedure.

• An in-line procedure cannot be exported as a library entry point.

• N oninvocation references to in-line procedures (such as in a MAKEPCW
or LEX OFFSET call) are, in general, not allowed. However, <procedure
identifier> . VALUE is a noninvocation reference that can reference an in-line
procedure from within the body of the procedure.

• The RETURN and EXIT functions for NEWP are not allowed within the body of
an in-line procedure. For more information, refer to "Intrinsics (UNSAFE)" in
Section 9, "UNSAFE Mode."

• An in-line procedure caImot be declared FORWARD, EXTERNAL, or NULL.

• . An initialization procedure cannot be an in-line procedure. For more information,
see "MODULE Declaration" in this section.

• An in-line procedure cannot be used in a SORT statement.

4-28 5044233.380

Declarations

In-line procedures are similar in many respects to both DEFINEs and regular
procedures. However, there are differences that should be taken into accoWlt when you
are deciding which should be used.

The primary difference between an in-line procedure and a DEFINE is that in-line
procedures apply regular scope rules, evaluate parameters like regular procedures
do (except for NAME parameters), and are treated as procedures for LINE INFO
and XREF. For information on LINEINFO and XREF, see the A Series ALGOL
Programming Reference Manual, Volume 1: Basic Implementation.

In-line procedures differ from regular procedures in several ways. Functionally, in-line
procedures provide NAME parameters and the INHERITSTATE block directive.
Regular procedures always require a pew, while in-line procedures generally do not;
therefore, no stack cell is allocated for one. The code of an in-line procedure is always
present in the segment that contains the call, so you do not need to think about where to
take presence bits (pbits). The TADS option can be used with regular procedures, but
not with in-line ones (a syntax error is received), though in many cases simply omitting
the [INLINE] block directive when TADS is set can help you to avoid receiving an error.

Because all the code for an in-line procedure exists in each place it is invoked (rather .
than just having the procedure entry code), using a large in-line procedure in many
places affects the code file size.

The cost of doing an ENTR/EXIT operation is avoided with an in-line procedure
(except when ARRAY or EVENT declarations are used), but having a large number of
parameters or locals offsets this advantage. This is because each parameter and local
must be deleted off the stack at the end of the in-line. The point at which the cost of
deleting the parameters and locals exceeds the saVings from not doing the ENTR/EXIT
operations differs on each machine.

Finally, in-line procedures cannot be passed as parameters, and if exported from a
module, these procedures must be fully declared in the module head.

In general, you must consider a number of these factors when you are deciding whether
to use a define, in-line, or regular procedure. The functionality (that is, the use of NAME
parameters, the use of INHERITS TATE block directives, the acceptability ofp-bits, the
use of TADS, and so on) should be considered first. This should be weighed against the
PCW requirement of a regular procedure (some primitive software can have problems
addressing PCW s). The final factor should be the size and performance of the code file.
IT you take all these factors into account, you can make an appropriate choice.

The LINEINFO references for an expanded in-line procedure include both the sequence
number or numbers of the invoking code and the sequence number of the invoked code.
These sequence nmnbers are listed in order from most recently invoked procedure
or block to least recently invoked procedure or block. For more information on
LINEINFO, see the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

5044233.380 4-29

Declarations

More efficient code is emitted for certain typed in-line procedures. The value returned is
generated on top of the stack and no cell to hold the value is pushed to the stack when
the following conditions apply:

• No parameters to the in-line procedure need be stacked. Call-by-name parameters
never stack their actual parameters. Call-by-reference parameters do not stack
their actual parameters when simple variables are passed to them. Call-by-value
parameters do not stack their actual parameters when constants are passed to them.

• The in-line procedure has no local variables requiring stack cells. (DEFINEs and
CONSTANTs are acceptable.)

• The only reference to the procedure value is the final statement, which stores to it.
This statement must be executed unconditionally and must not be sparmed by a
looping structure or followed by a label.

Note: If the in-line procedure ends with a combination of IF THEN.. .
ELSE statement constructs that depend on a constant expression or
expressions, then only the statement or compound statement that is
executed need meet these constraints.

Procedure Value

4-30

. Within the body of a typed procedure, the value of the procedure can be accessed
through the following syntax:

<procedure identifier>.VALUE

This construct is treated as a primary of the same type as the declared procedure and, as
such, can be used in expressions, assignments, and address equations.

The value returned by a scalar type procedure is undefined if no value is assigned to the
procedure during the execution of the procedure.

Example

REAL PROCEDURE PROC;
BEGIN
BOOLEAN B;
PROC.VALUE := 10;
IF PROC.VALUE=20 THEN

END PROC;

5044233.380

Declarations

Dynamic Procedure Specification

Dynamic procedure specification is the same in NEWP as it is in ALGOL, except that
the < selection procedure identifier> must specify an untyped procedure with three
parameters. The first parameter must be a real array, specified with a constant (not
star-bounded) lower bound. The second parameter must be a caIl-by-value integer. The
third parameter must be a fully specified untyped procedure with one parameter that is
a task. When the MCP invokes the selection procedure, the task variable passed to its
procedure parameter must already be associated with a library that has been processed
using this task variable.

The following example shows the use of a < dynamic procedure specification>. The
example assumes that its object file is named OBJECT/SAMPLE/DYNAMICLm
and that a library called OBJECT/SAMPLE/LmRARY that exports the procedure
DATEANDTIME as DAYTIME also must be available.

Examples

The following NEWP library, compiled as OBJECT/SAMPLE/LmRAR-Y: provides its
entry points directly.

BEGIN
ARRAY MSG[0:120];

INTEGER PROCEDURE FACT(N);
INTEGER N;

BEGIN
IF N LSS 1 THEN

FACT := 1
ELSE

FACT := N * FACT(N - 1);
END; % OF FACT

PROCEDURE DATEANDTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

5044233-001

BEGIN
REAL T;
POINTER PTR;

T := TIME(7);
PTR := POINTER(TOARRAY,8) + WHERE;
CASE T. [5:6] OF

BEGIN
0: REPLACE PTR:PTR BY "SUNDAY, ";
1: REPLACE PTR:PTR BY "MONDAY, ";
2: REPLACE PTR:PTR BY "TUESDAY, ";
3: REPLACE PTR:PTR BY "WEDNESDAY, ";
4: REPLACE PTR:PTR BY "THURSDAY, ";

4-31

Declarations

4-32

5: REPLACE PTR:PTR BY "FRIDAY. ";
6: REPLACE PTR:PTR BY "SATURDAY, ";
END;

REPLACE PTR BY T.[35:6] FOR 2 DIGITS. "_".
T. [29:6] FOR 2 DIGITS. "_".
T.[47:12] FOR 4 DIGITS. ". ".
T. [23:6] FOR 2 DIGITS. ": ".
T.[17:6] FOR 2 DIGITS. ":".
T.[11:6] FOR 2 DIGITS;

END; % OF DATEANDTIME

EXPORT FACT.DATEANDTIME AS "DAYTIME";
REPLACE POINTER(MSG) BY

II _ SAMPLE LIBRARY STARTED",
" II FOR 94;

DATEANDTIME(MSG,60);
FREEZE(TEMPORARY);

END.

The fonowing NEWP library, compiled as OBJECT/SAMPLE/DYNAMICLIB, illustrates
dynamic and indirect library linkage.

BEGIN [UNSAFE (FORK)]
TASK LIB1TASK, LIB2TASK;

PROCEDURE DYNLIB1;
% LIBRARY PROVIDED DYNAMICALLY AND INDIRECTLY

BEGIN % PRINTS DATE WITH TIME
LIBRARY SAMLIB (TITLE = "0BJECT/SAMPLE/LIBRARY.");
PROCEDURE DAYTIME (TOARRAY, WHERE);

ARRAY TOARRAY [*];
INTEGER WHERE;
LIBRARY SAMLIB;

EXPORT DAYTIME;
FREEZE (TEMPORARY);
END; % OF DYNLIB1

PROCEDURE DYNLIB2;
% LIBRARY PROVIDED DYNAMICALLY

BEGIN % PRINTS OUT DATE WITHOUT TIME
PROCEDURE DAYTIME (TOARRAY, WHERE);

ARRAY TOARRAY [*];
INTEGER WHERE;

BEGIN
REAL T;
T := TIME (7);
REPLACE POINTER (TOARRAY, 8) + WHERE

BY T.[35:86] FOR 2 DIGITS, "_",
To [29 :86] FOR 2 DIGITS, "_",
T. [47: 12] FOR 4 DIGITS;

END; % OF DAYTIME

5044233-001

EXPORT DAYTIME;
FREEZE (TEMPORARY);
END; % OF DYNLIB2

% THE SELECTION PROCEDURE
PROCEDURE THESELECTIONPROC (LIBPARAM, LIBPARAMLEN, NAMINGPROC);

VALUE LIBPARAMLEN;
ARRAY LIBPARAM [0];
INTEGER LIBPARAMLEN;
PROCEDURE NAMINGPROC (LIBTASK);

TASK LIBTASK; FORMAL;

BEGIN
IF POINTER(LIBPARAM) EQL "WITH TIME" THEN

BEGIN

ELSE

IF LIB1TASK.STATUS NEQ VALUE (FROZEN) THEN
PROCESS DYNLIB1 [LIB1TASK];

NAMINGPROC (LIB.1 TASK) ;
END

BEGIN
IF LIB2TASK.STATUS NEQ VALUE (FROZEN) THEN

PROCESS DYNLIB2 [LIB2TASK];
NAMINGPROC (LIB2TASK);
END;

END; % OF THE SELECTION PROCEDURE

PROCEDURE DAYTIME (TOARRAY, WHERE);
ARRAY TOARRAY [*];
INTEGER WHERE;
BYCALLING THESELECTIONPROC;

EXPORT DAYTIME; % PROVIDED DYNAMICALLY
FREEZE (TEMPORARY);
END.

The following example invokes the library in the preceding example:

BEGIN
LIBRARY MYLIB (TITLE = "OBJECT /SAMPLE/DYNAMICLIB.") ;

PROCEDURE DAYTIME (At W);
ARRAY A [*];
INTEGER W;
LI BRARY MY LI B ;

REAL T;
INTEGER X,Y;
ARRAY DATIME [0:120];

REPLACE MYLIB. LIBPARAMETER BY "WITH TIME.";

5044233-001

Declarations

4-33

Declarations

X .:= 13;
Y := 40;
DAYTIME (DATIME [*]~ Y);
END.

PROCEDURE REFERENCE Declaration
<procedure reference declaration>

r I PROCEDURE REFERENCE
L-<procedure type>--J

+-<procedure reference identifier> ; ~
L-<forma1 parameter part~

~- NULL--~

Explanation

A < procedure reference identifier> can appear anywhere that an element of a
procedure reference array can appear. For information on the < procedure reference
array declaration> see the A Series ALGOL Programming Reference Manual,
Volume 1: Basic Implementation ..

Before a procedure reference identifier can be used as a parameter, as a primary, or
in a procedure reference statement, the identifier must. be initialized in a procedure
reference assignment. If no initialization is done, a run time error occurs.

A < procedure reference declaration> cannot appear in the formal parameter part
of a procedure declaration, of a procedure reference array declaration, or of another
procedure reference declaration. However, a procedure reference identifier can be
passed as an actual parameter to a formal procedure that is of the same type and that
has the same parameter descriptions. .

SEGMENT Declaration

4-34

<segment declaration>

-- SEGMENT ~segment identifier>=I--,

<segment identifier>

--<identifier>--1

Explanation

The SEGMENT declaration defines one or more identifiers for use in referring to code
segments. OUTERBLOCK is a predeclared segment identifier that refers to the code
segment containing the code for the outer block of the program.

Segment identifiers can be used in the SEGMENT block directive to specify the segment
into which the compiler is to put the code for that block. For more information, refer to
"Block Directives" in Section 8, "Compiler Controls."

5044233-001

Declarations

Example

SEGMENT SCANSEG,
PARSESEG,
EMITTERSEG;

SIMPLE VARIABLE Declaration
<simple variable declaration>

l
Boolean deClaration~
double declaration>- d

. integer dec 1 a rat ion
<real declaration>
<scalar type variable declaration

<scalar type variable declaration>

A < structure type variable declaration> used to declare subtype variables or
enumerated type variables.

Explanation

For information on the semantics of a < simple variable declaration> , refer to its
definition in the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation and to the definition of the < scalar type declaration> in this section.

STRUCTURE TYPE Declarations
<structure type declaration>

~<scalar type declaration~
L-<set type declaration~ .

Explanation

A < structure type declaration> defines a user-specified data type by associating a type
definition with an identifier.

SCALAR TYPE Declarations
<scalar type declaration>

- TYP.£ .-.L:type identifier.>- = ~enumerated type>>-~~
L<subtype>>-----'

<type identifier>

-<identifier>--1

Explanation

A SCALAR TYPE declaration defines a user-specified data type by associating a type
definition with a < type identifier>. The type identifier can then be used in contexts

5044233.380 4-35

Decla rations

in which a data type must be specified, such as in declarations of variables, arrays,
procedures, constants, and formal parameters. The type identifier can also be used in
such contexts as declarations of array dimensions, other SCALAR TYPE declarations,
and STRUCTURE TYPE VARIABLE declarations.

The SCALAR TYPE declaration allows the creation of entirely new types and allows
types to be defined in terms of the predefined types (REAL, INTEGER, and BOOLEAN)
and types from previous SCALAR TYPE declarations.

Two kinds of type definition are possible: enwnerated types and subtypes. Each is
discussed in this section under its own heading.

Enumerated Types

4-36

<enumerated type>

[ORDERED]
(--<enumerated literal list>--) --1

<enumerated literal list>

--.r:enumerated 1 i tera 1> " I
L- = --<nonnegative constant integer expression~

<enumerated literal>

--<identifier>--1

<nonnegative constant integer expression>

A < constant integer expression> that evaluates to an integer greater than or equal
to 0 (zero). .

Explanation

An < enumerated type> declaration defines a new, bounded, discrete data type. An
enumerated type is unordered by default, or it can be declared as an ORDERED
enumerated type.

The purpose of an enumerated type is to enable you to declare a data type that has a
range of valid values that can be enumerated specifically. For example, valid values of an
enumerated type called DEVICES might include DISKPACK, FLOPPY, GCRTAPE, and
TERMINAL.

Each < enumerated literal> in an enumerated type declaration has a unique
. nonnegative integer value associated with it. You can assign these associated values

explicitly in the enumerated type declaration. Those enumerated literals to which you do
not assign values are given associated values by the compiler. The associated values are
considered to be constants of the enumerated type being declared, and the enumerated
literals denote these constant values.

The associated values assigned to the literals by the compiler are assigned to all the
literals from left to right in ascending order; that is, the associated value assigned by the

5044233.380

Decla rations

compiler is the associated value of the preceding literal incremented by one. When you
do not assign a value to the first literal in the list, the compiler assigns it a value of 0
(zero).

If you assign an associated value to a literal, the value must be exactly one greater than
the associated value of the preceding literal. If the literal is the first in the list, the value
must be 0 (zero) or greater.

The values of ordered enumerated types can be compared using the following relational
operators:

• <

• LSS

• <=

• LEQ

•
• .EQL

• "=

• NEQ

• >

• GTR

• >=

• GEQ

If X and Y are two literals of an ordered enumerated type, th~n X is less than Y if and
only if the value associated with X is arithmetically less than the value associated with Y.
The other relations are similarly defined.

Unordered enumerated types can be compared for equality and inequality only by the
following operators:

•
• EQL

•
•. NEQ

No other relational operators are defined for unordered enumerated types.

Example

BEGIN
TYPE COIN = ORDERED (NICKEL, DIME, QUARTER),

BILL = ORDERED (TEN, TWENTY, FIFTY, HUNDRED),
DAY = ORDERED (MON=l, TUE, WED, THU, FRI, SAT, SUN),
FLOWER = (JASMINE, LILY, ROSE); % UNORDERED

5044233.380 4-37

Declarations

4-38

COIN BIT, CHANGE;
BILL WAD;
FLOWER BOUQUET;
BOOLEAN RELATION;

INTEGER PROCEDURE HOURS_WORKED (WORKINGDAY);
VALUE WORKINGDAY;
DAY WORKINGDAY;

BEGIN
IF WORKINGDAY <= FRI THEN

ELSE
HOURS WORKED := 0;

END HOURS_WORKED;

WAD : = FI FTY;
BIT := QUARTER;
CHANGE := DIME;
BOUQUET := ROSE;

WAD := NICKEL; % SYNTAX ERROR

RELATION := TEN < TWENTY AND
NICKEL < DIME AND
DIME > QUARTER AND
LILY > ROSE;

RELATION := BOUQUET = JASMINE;

RELATION := CHANGE < BIT;
END.

% TRUE
% TRUE
% FALSE
% SYNTAX ERROR

% FALSE

% TRUE

5044233.380

Subtypes

<subtype>

-- SUBTYPE --<base type identifier>--1

<base type identifier>

1
:~~tEAN -------------------1

<subtype i denti fi er .. >----------------!
<enumerated type identifier . I !
<enumerated subtype identifier~ L-<enumerated range>­
<integer subtype identifier I

~<integer subtype range>­
L- INTEGER -..-------------------1

L<i nteger range>--------------'

<enumerated range>

--<enumerated endpoint>-- •• --<enumerated endpoint>--1

<enumerated endpoint>

~
enumerated typed. constant identifier>-r-1
enumerated 1 i tera 1 >->-------,---1

<constant scalar type expression>->---'

<integer subtype range>

--<integer subtype endpoint>-- •• --<integer subtype endpoint>--1

<integer subtype endpoint>

--,-<number>
L-<constant scalar type expression~

<integer range>

--<integer endpoint>-- •• --<integer endpoint>--1

<integer .endpoint>

-<number>--1

Explanation

Declarations

A < subtype> declaration defines a data type that takes its characteristics and valid
operations from the < base type identifier>. In certain cases, the valid values for the
subtype can be less than the valid values for the base type identifier. However, the range
for the subtype being created cannot be larger than the valid range for the base type
identifier.

A subtype is not a new type; its type is the same as that of the base type identifier.
When the base type identifier is a discrete, ordered type, the range of valid values can be
limited by the inclusion of a range. The valid operators for a subtype are those allowed
for the specified base type.

The primary purpose of subtypes is to enable you to separate different types of data that
might have similar fundamental characteristics. For example, a height and a weight are
both numbers and they share a set of valid operators (addition, subtraction, and so on).

5044233.380 4-39

Declarations

However, height might be measured in inches, and weight might be measured in pounds.
In this case, HEIGHT and WEIGHT could be declared as subtypes descended from
INTEGER. In this way, the programmer informs the compiler that the two types are
conceptually different, and the compiler must ensure that the types are not accidentally
mixed.

A range can be specified if the base type identifier is INTEGER, an ordered enumerated
type, or a subtype of either of these two. The range endpoint specifications must be of
the base type or of a direct ancestor of the base type. If a constant identifier is used
as an < integer endpoint> , the constant must have been declared as an INTEGER
CONSTANT.

Example

BEGIN
TYPE MONEY = ORDERED (PENNY, NICKEL, DIME, QUARTER,

DOLLAR, FIVEDOLLAR, TENDOLLAR),
COINS = SUBTYPE MONEY PENNY •• QVARTER,
BILLS = SUBTYPE MONEY DOLLAR •• TENDOLLAR;

TYPE TOTAL_MONEY = SUBTYPE INTEGER,
POCKET_CHANGE = SUBTYPE TOTAL_MONEY 2 •• 15;

COINS YOUR_LARGEST, MY_LARGEST;
TOTAL_MONEY YOUR_TOTAL, MY_TOTAL;
POCKET_CHANGE YOUR_CHANGE, MY_CHANGE, TOTAL_CHANGE;

YOUR_LARGEST := QUARTER;
MY_LARGEST := DIME;
YOUR_CHANGE := 15;
MY_CHANGE := 7;
TOTAL_CHANGE := MY_CHANGE + YOUR_CHANGE;

END.

Descendant Types

4-40

An enumerated type is a completely new type, but a subtype descends from its base type.
A base type can, in turn, descend from yet another type. This chain of ancestry can
be followed all the way up to. the root type, which is not descended from another type.
The root type is either a predefined type (INTEGER, REAL, and BOOLEAN) or an
enumerated type. A subtype is said to be a descendant type of its root type.

Examples

In the following examples, all of the types declared are descendant types of INTEGER;

5044233.380

Declarations

TYPE FIRST = SUBTYPE INTEGER,
SECOND = SUBTYPE FIRST,
THIRD = SUBTYPE SECOND;

TYPE A = SUBTYPE THIRD;

Assignment Compatibility

Two types are said to be assignment compatible if a value of one type can be assigned
directly to a variable of the other type. Among the scalar types, the following are the
only cases of assignment compatibility:

• A type is always assignment compatible with itself.

• A subtype or typed constant is assignment compatible with any of its ancestor types.

• A constant or enumerated literal is assignment compatible with its base type or with
any descendant of its base type.

If an assignment is to be made between two types that are not assignment compatible,
. explicit type conversion using the mapping function is necessary. For more information,
see "MAPPING Function" in Section 6, "Expressions and Functions."

Range Checking

By default, range checking is performed whenever there is a chance of assigning to a
variable a value that is not defined for the type of that variable.

No run-time range checking is performed on the simple assignment of types that are
assignment compatible (that is, a direct assignment not involving any kind of expression).
Therefore, it is possible for the < structure type identifier> to assume a value that is
outside its range without any interrupt occurring if the source of the assignment was
never initialized.

A range error is reported whenever a range check fails. Range errors can occur during
expression evaluation or during an assignment operation.

The manner in which range errors are reported depends on the target computer
f~y for which the code is compiled. (See the discussion of the < target option>
block directive in Section 8, "Compiler Controls.") If a range error occurs within code
compiled for LEVELl machines, a false assertion is reported. If a range error occurs
within code compiled for LEVELO machines, a divide-by-zero fault is reported.

The error message indicates only that the value is not in range; it does not indicate
whether the value is too large or too small.

Range checking can be disabled through the use of the block directive
NORANGECHECK. Within a block for which range checking is disabled, range checking
can be enabled through the use of the block directive RANGE CHECK

5044233.380 4-41

Declarations

SET TYPE Declaration

4-42

<set type declaration>

-.t · ~I - TYPE <set; dent; fi er>- = - SET [OF J <set base type>-'--1

<set identifier>

-<identifier>--1

<set base type>

t
<type identifier

(--<enumerated literal list>-) INTEGER __________J

Explanation

A < set type declaration> defines a structured type for which the range of values is
all possible subsets of the specified < set base type>. In mathematical terms, a < set
identifier> defines the powerset of its set base type. A variable of set identifier type can
contain any subset of the set, including the null set and the entire set.

The ordinal numbers associated with the set base type must be within the range 0
through 1000.

When the set base type is a type identifier, then the type of the type identifier must
be an enumerated type, a subtype descended from an enumerated type, or a subtype
descended from INTEGER.

When the set base type is an < enumerated literal list >, the enumerated literals must
not have been declared previously. The literals are treated as unordered enumerated
literals. If a < nonnegative constant integer expression> is present for the first
< enumerated literal>, the expression· must be a nonnegative number less than or equal
to 1000. If the nonnegative constant integer expression is present for literals other
than the first one in the list, the expression must be equal to one more than the value
associated with the previous literal.

When the set base type is INTEGER, the maximum possible range (0 through 1000) is
assumed. An assignment to a set is allowed if the root type of the right-hand side and
the left-hand side are the same. For example, INTEGER values or values with a type
descended from INTEGER can be assigned to a set variable that has a set base type of
INTEGER.

If the maximum value in the set is 47 or less, a single word is allocated for set variables of
that set type. If the maximum value in the set is greater than 47, an array is allocated
for set variables of that set type. As a result, set variable of a set type with a maximum
value greater than 47 should not be used in places that cannot handle a p-bit.

5044233.380

Declarations

Example

TYPE COLOR = {RED, BLUE, GREEN, YELLOW);
TYPE COLORSET = SET OF COLOR;
TYPE MONEY = ORDERED (PENNY, NICKEL, DIME, QUARTER,

TYPE COINS
BILLS

TYPE COINSET
CARDSET

DOLLAR, FIVEOOLLAR, TENDOLLAR);
= SUBTYPE MONEY PENNY •• QUARTER,
= SUBTYPE MONEY DOLLAR •• TENDOLLAR;
= SET OF COINS,
= SET OF (CLUB = 2, DIAMOND, HEART = 4,

SPADE),
WEIGHTS = SET OF INTEGER;

STRUCTURE TYPE VARIABLE Declaration
<structure type variable declaration>

--<structure type identifier~<identif~

<structure type identifier>

--.-<set identifier~
L-<type ident;fier~ .

Explanation

The < structure type variable declaration> defines variables of data types that have
been declared previously in < structure type declaration> s.

The initial value of a SET structure type variable is the null set. The initial value of a
scalar type variable is undefined.

The identifier declared in a structure type variable declaration is referred to in this
document as a < set variable identifier>, < enumerated variable identifier>, or
< subtype variable identifier> , depending on the type of the declared variable.

Example

5044233.380

TYPE MONEY = ORDERED (PENNY, NICKEL, DIME, QUARTER,
DOLLAR, FIVEDOLLAR, TENDOLLAR);

TYPE COINS = SUBTYPE MONEY PENNY •• QUARTER;
TYPE COINSET = SET OF COINS;
COINSET POCKETCHANGE; % POCKETCHANGE is a <set variable identifier>
MONEY PAY'; % PAY is an <enumerated variable identifier>
COINS SPARECHANGE; % SPARECHANGE is a <subtype variable identifier>

4-43

Declarations

SUPPLY Declaration

4-44

<supply declaration>

r"'--,~
- SUPPLY -1-<identifier>-L--1

Explanation

The SUPPLY declaration allows a module nested within another module to supply the
body of a procedure declared in the outer module.

Each identifier must be that ofa procedure that has been declared FORWARD. and
that could have occurred at the same syntactic location as the module containing the
SUPPLY declaration. The specified procedures must occur within the module containing
the SlJPPLY declaration.

Example

MODULE PHYSICALIO;
INTERFACE PHYSICALIO_INTERFACE (IOFINISH);
MODULEEXPORT PHYSICALIO_INTERFACE;
PROCEDURE IOFINISH (...); ... FORWARD;

BEGIN PHYSICALIO;
MODULE CPIO;

SUPPLY IOFINISH;
BEGIN CPIO;

PROCEDURE IOFINISH (..•); •••
BEGIN

END IOFINISH;

END CPIO;

END PHYSICALIO;

5044233.380

Declarations

VALUE ARRAY Declaration
In addition to the VALUE ARRAY declarations permitted in ALGOL, NEWP allows
the VALUE ARRAY declaration to be used to declare value arrays ofa scalar type.
The elements of a scalar type value array are specified by < constant scalar type
expression> s of the same type as the value array.

String literals that are less than 48 bits long are left-justified and padded with zeros on
the right to make them 48 bits long when they are used in the < constant list> of a
< value array declaration>. Note that this practice differs from that of the ALGOL
compiler, which right-justifies string literals less than 48 bits long when used in value

. arrays. If the type of the value array is DOUBLE, the low-order word is all zeros.

For information related to this type of declaration, see "Scalar Type Expressions" in
Section 6, "Expressions and Functions. "

5044233.380 4--45

4-46 5044233.380

Section 5
Statements

NEWP provides several kinds of statements that are not supported by ALGOL. These
NEWP-specific forms of statement are discussed in this section and in "Statements '
(UNSAFE)" in Section 9, "UNSAFE Mode."

The following table briefly describes some of the differences in statements that are
supported in both NEWP and ALGOL. More extensive differences in statements are
described in the rest of this section. For information on ALGOL statements that are
not supported in NEwp, refer to Appendix B, "ALGOL Features Not Implemented in
NEWP."

Statement

ACCEPT

ASSIGNMENT

CASE

CLOSE

FOR

FREEZE

GO TO

I/O

5044233.380

NEWP Information

Only the <pointer expression> form of the <accept statement> is
supported.

For information on differences in all forms of the <assignment
statement>, refer to "ASSIGNMENT Statement" later in this section.

NEWP does not allow a <string literal> to be used as an
<arithmetic primary>. Numeric constants should be used instead.
In addition, CASE labels in ALGOL are limited to the range 0
through 1023. NEWP does not have this restriction. However, in
NEWp, the difference between the highest and lowest valued labels
cannot exceed 1023. For example, if the smallest label is 100, the
largest label can be no more than 1123.

Uke ALGOL, the NEWP compiler emits code to call the MCP for
non-MCP programs that do not use the CLOSE statement as a
function. In the MCp, no additional code is emitted; but at compile
time a message is issued, which warns that the result is not
handled. In addition, NEWP does not support the REWIND clause
of the <close option> for the CLOSE statement. Instead, NEWP
provides a RETAIN clause for the CLOSE option,' as shown in the
following:

CLOSE «file designator>. RETAIN);

In the <iteration part>, NEWP allows the STEP phrase to be
omitted, even if an UNTIL clause is present. If you omit the STEP
<arithmetic expression> phrase, a default of STEP 1 is assumed.

This statement has more options than are available in ALGOL. Refer
to "FREEZE Statement" later in this section.

NEWP does not allow branching into FOR loops or THRU loops.
Note that branching within FOR and THRU loops is allowed, as iong
as you declare the label within the loop.

NEW? does not allow the <rewind statement> and <space
statement> forms of the I/O statement. For more information, refer
to Appendix S, "ALGOL Features Not Implemented in NEWP."

5-1

Statements

~2

Statement

MLSaccept

ON

OPEN

PROCEDURE
INVOCATION

PROCESS

READ

REPLACE

REPLACE
POINTER-VALUED
ATTRIBUTE

RESET

NEWP Information

NEWP does not support a <string variable> or <subscripted string
variable> as part of this statement. Use the <pointer expression>
form of the statement.

NEWP provides a declaration instead of a statement. Refer to "ON
Declaration" in Section 4, "Declarations."

Like ALGOL, the NEWP compiler emits code to call the MCP for
non-MCP programs that do not use the OPEN statement as a'
function. In the MCp, no additional code is emitted; but at compile
time a message is issued, which warns that the result is not
handled.

NEWP does not support the following types of <actual
parameters> :

• <string array designator>

• <direct switch file identifier>

• <switch file identifier>

• <format designator>

• <switch label identifier>

• < list designator>

• <switch list identifier>

• < picture identifier>

In NEWP, the <process statement> is unsafe. Refer to "PROCESS
Statement" in Section 9, "UNSAFE Mode," for information on the
differences between NEWP and ALGOL.

NEWP does not support several features that ALGOL allows. Note
that all limitations mentioned here also apply to the NEWP WRITE
statement. NEWP does not allow the <core-to-core part> of the file
part. In addition, the <format and list part> cannot be a format
designator, editing specification, asterisk (*), or <free field part>.
The <format and list part> cannot include a string variable. The list
cannot include an <iteration clause> that includes a WHILE loop
embedded in a FOR loop. The update replacement construct (:=*)
cannot be used on the variable of a FOR iteration clause.

There are a number of differences between ALGOL and NEWP
< replace statement> syntax and semantics. Refer to "REPLACE
Statement" later in this section and to "REPLACE Statement" in
Section 9, "UNSAFE Mode."

Only the <simple source> form of this statement is supported in
NEWP. If a pointer-valued attribute is to be replaced by the value of
another pointer-valued attribute, replace the value into a temporary
array, and then replace the destination attribute with the contents of
the array.

The RESET statement has been renamed the RESETEVENT
statement in NEWP.

5044233.380

Statement

RESIZE

SEEK

SET

SWAP

WAIT

WAITANDRESET

WRITE

Statements

NEWP Information

NEWP does not support a <string array designator> as a <special
array resize parameter>. However, NEWP does allow an interlock
array to be resized, provided you do not specify DISCARD.

NEWP allows the keyword SPACE to appear before the <arithmetic
expression>. This form of the SEEK statement is used to perform
the function of the ALGOL <space statement> .

The SET statement has been renamed the SETEVENT statement in
NEWP to avoid conflicts with the data type SET.

Refer to "SWAP Statement" later in this section for information on
the differences between NEWP and ALGOL.

NEWP does not require parentheses around the <time>
specification as ALGOL does. NEWP does not support the form of
the WAIT statement that includes no parameters (wait for interrupt).
Refer to "WAIT statement" in Section 9, "UNSAFE Mode," for
information about unsafe options for the <wait statement>.

NEWP does not require parentheses around the <time>
specification as ALGOL does. Refer to "WAIT Statement" in
Section 9, "UNSAFE Mode," for information about unsafe options
for the <waitandreset statement>.

Refer to the discussion of the <read statement> earlier in this table.

ASSIGNMENT Statement
The ASSIGNMENT statement causes the item on the right-hand side of the assignment
operator (: =) to be evaluated and the resulting value to be assigned to the item on the
left-hand side of the assignment operator.

Differences between ALGOL and NEWP ASSIGNMENT Statements

The following are some differences between ALGOL and NEWP in regard to various
kinds of ASSIGNMENT statements:

• NEWP does not support the < complex assignment> and < string assignment>
forms of the ASSIGNMENT statement. However, in NEwp, every < string-valued
library attribute> is treated as a < pointer-valued attribute>. For more
information, refer to "REPLACE Statement" later in this section.

• NEWP allows a < partial word part> on the left-hand side of an < arithmetic update
assignment>, but ALGOL does not.

• NEWP requires that parameters for attributes follow the attribute name (ALGOL
requires that the parameters be placed before the attribute name).

The following is the NEWP syntax for the < arithmetic file attribute> :

504423~Ol 5-3

Statements

<arithmetic file attribute>

--<file designator>-- • --<arithmetic-valued file attribute name~

~ L:<attribute parameter specification>=J

<attribute parameter specification>

-- (--<attribute parameter list>--) --1
<attribute parameter list>

COpy~ = --<a~ithmetic expression~
ROW
STATION
SUBFILE

The differences between the ALGOL and the NEWP syntax are shown in the
following example:

I := DISKFILE(COPYNUM).ERRORTYPE;
I := DISKFILE.ERRORTYPE(COPY=COPYNUM);

% ALGOL syntax
% NEWP syntax

Data comm file attributes must include the phrase STATION = as part of the
<:: attribute parameter specification >:

I := TERMFILE(l).WIDTH;
I := TERMFILE.WIDTH(STATION=l);

% ALGOL syntax
% NEWP syntax

In addition, keywords are needed to identify some types of attribute parameters.
For example, the ALGOL statement REPLACE MYFILE(1). TITLE BY PTR would
be REPLACE MYFILE. TITLE(SUBFILE = 1) BY PTR in NEWP.

• NEWP does not allow the < arithmetic update assignment> form (: = *) of the
ASSIGNMENT statement to be used with file or task variables.

• NEWP does not fully support the use of an < arithmetic type transfer variable> on
the left-hand side of an < arithmetic assignment> . "

Array Reference Assignment

Array reference assignment in NEWP is similar to that in ALGOL. The differences are
as follows.

In the ARRAY REFERENCE ASSIGNMENT statement, the corresponding dimension of
the < array reference variable> and the < array designator> must have the same type.

In addition, the element size of the array designator must match that of the array
reference variable. In the context of ARRAY REFERENCE ASSIGNMENT statements,
subtypes and enumerated types are considered to have an element size of a single word.

Procedure Reference Assignment

5-4

A procedure reference assignment associates a procedure reference with a procedure
reference identifier. The identifier can then be used to refer to the procedure.

5044233-001

Statements

<procedure reference assignment>

-<procedure reference identifier>-- .- ----------

-+1 NULL <procedure i denti fi er>------i
<procedure reference array element
<procedure reference identifier

Explanation

The procedure reference identifier on the left-hand side of the assignment operator (: =)
and the procedure, the procedure reference array element, or the procedure reference
identifier on the right-hand side must be of the same type and have the same parameter
descriptions.

The procedure reference identifier on the left-hand side of the assignment operator
cannot be global to the procedure, the procedure reference array element, or the
procedure reference identifier on the right-hand side.

If the procedure reference array element or procedure reference identifier on the
right-hand side of the assignment operator is uninitialized, then a later attempt to use
the statement on the left-hand side will result in an error.

If NULL is specified and there is an environment called NULL, then a reference to the
procedure called NULL is assigned. If NULL is specified and there is no environment
called NULL, then a NULL value is assigned to the procedure refer.ence array element.
When a NULL reference is assigned, the previous contents are overwritten with a tag 0
(zero). If the procedure reference array element is invoked while it is NULL, a program
interrupt occurs.

Example

In the following example, P is a REAL procedure and RA is a REAL procedure identifier.
Neither P nor RA have parameters. The program sample assigns a reference to
procedure P to the procedure reference identifier RA.

BEGIN
REAL PROCEDURE P;

BEGIN
REAL A;
A := T * T;
P := A;
END;

REAL PROCEDURE REFERENCE RA;
NULL;

RA := P;
END.

5044233.380 5-5

Statements

Procedure Reference Array Assignment

5-6

A procedure reference array assignment associates a procedure reference with a
procedure reference array element. The element can then be used to refer to the
procedure.

<procedure reference array assignment>

-<procedure reference array element>- := ---------

1
NULL

<procedure identifier>------;
<procedure reference array element
<procedure reference identifier

Explanation

The procedure reference array element on the left-hand side of the assignment operator
(: =) and the procedure, the procedure reference array element, or the procedure
reference identifier on the right-hand side must be of the same type and have the same
parameter descriptions.

The procedure reference array on the left-hand side of the assignment operator cannot
be global to the procedure, the procedure reference array element, or the procedure
reference identifier on the right-hand side. If the procedure reference array element
on the left-hand side of the assignment operator is a formal parameter, a procedure
reference array element on the right-hand side can only be another element ofthe.same
procedure reference array that appears on the left-hand side.

A procedure reference array that is declared to be part of a library cannot appear on the
left-hand side of a procedure reference array assignment. An attempt to assign into such
a procedure reference array results in an error at compile time or at run time.

If the procedure reference array element on the right-hand side of the assignment
operator is uninitialized, then a later attempt to use the statement on the left-hand side
will result in an error.

If NULL is specified and there is an environment called NULL, then a reference to the
procedure called NULL is assigned. If NULL is specified and there is no environment
called NULL, then a NULL value is assigned to the procedure reference array element.
When a NULL reference is assigned, the previous contents are overwritten with a tag 0
(zero). If the procedure reference array element is invoked while it is NULL, a program
interrupt occurs.

Example

In the following example, P and Q are REAL procedures and RA is a REAL procedure
reference array. Neither P, nor Q, nor RA have parameters. The program sample
assigns references to elements 1 through 4 of the procedure reference array RA.

5044233.380

BEGIN
REAL PROCEDURE P;

BEGIN
REAL A;
A := T * T;
P := A;
END;

REAL PROCEDURE Q;
BEGIN
INTEGER A;
A := T * T * T;
IF A > 0 THEN

Q := A
ELSE

Q .- -1;
END;

REAL PROCEDURE REFERENCE ARRAY RA[1:10];
NULL;

RA[l] := P; %RA[l] CONTAINS A REFERENCE TO PROCEDURE P
RA[2] := Q;
RA[3] := NULL; %RA[3] CONTAINS A NULL VALUE
RA[4] := RA[3]; %RA[4] CONTAINS A REFERENCE TO RA[3]

END.

Set Assignment

Statements

Set assignment can be accomplished by assigning a < set expression> or a < set update
expression> to a set variable. The < set variable identifier> and the set expression or
set update expression must be of compatible types.

<set assignment>

--<set variable identifier>--- := ~<set expression> ~
L-<set update expression>-J

<set expression>

For information on < set expression>, see Section 6, "Expressions and Functions."

<set update expression>

- * --<set operator>--, [--<variable ordinal>---] r
L<simple set expression>-> _----1_

<set operator>
<simple set expression>
<variable ordinal>

For information on these constructs, see Section 6, "Expressions and Functions."

5044233.380 5-7

Statements

Example

TYPE COLORSET = SET OF (RED, BLUE, GREEN, YELLOW);
COLORSET C1,C2;

C1 := [RED, YELLOW];

C2 := * + [GREEN];

Cl := [];

% Cl is assigned the set whose
% members consist of the elements
% "RED" and "YELLOW".
% The element "GREEN" is added as a
% member to the previous value of C2.
% Cl is assigned the NULL set.

CASE Statement
In addition to the ALGOL syntax for the CASE statement, NEWP allows extensions
to < case head> and to < number list>. For more information on the CASE
statement, see the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

<case head>

-- CASE --<scalar type expression>-- OF --1

<number list>

~constant scalar type expression>-y- : ~
----c~ELSE --------------1

Explanation

The < constant scalar type expression> s in the number list must be
assigmnent-compatible with the < scalar type expression> s in the case head.

FOR Statement

5-8

In addition to the ALGOL syntax for the FOR statement, NEWP allows extensions
to the < for statement> ,the < initial part> , and the < iteration part>. For more
information on the FOR statement, see the A Series ALGOL Programming Reference
Manual, Volume 1: Basic Implementation.

<for statement>

-- FOR --<scalar type variable>---- := -I:<for list'element>=1- DO ~
-+-<statement>>-----------------------I

<initial part>

--<scalar type expression>--1

·5044233.380

Statements

<iteration part>

- STEP --r<arithmetic expression>--y- UNTIL ---------+
L-<scalar type expression~

-+-<scalar type expression>->---------------i

Explanation

When a < scalar type variable> is used in the FOR statement, the < scalar type
expression> s specified in the < for list element> part must be assignment-compatible
with the scalar type variable. An exception to this is that an < arithmetic expression>
that is not assignment-compatible can be used following the STEP clause.

Example

TYPE COLOR = ORDERED (RED, BLUE, GREEN, YELLOW);
COLOR COLORVAR;

FOR COLORVAR := BLUE STEP 1 UNTIL YELLOW DO

FREEZE Statement
<freeze statement>

- FREEZE - (1 PERMANENT) ~
TEMPORARY ~
~~~TROL - • ---<procedure identifier 

Explanation 

In addition to the values supported by ALGOL, the MCP option is allowed as a value for 
the parameter to the FREEZE statement. If you specify the MCP option, the compiler 
control option MCP must be set. 

Unlike the other forms of the FREEZE statement, FREEZE(MCP) is allowed in a 
block with no library EXPORT declarations. FREEZE(MCP) exports all entry points 
appearing in library EXPORT declaration that occur at D[O] up to the FREEZE 
statement in the symbolic. No subsequent library EXPORT declarations are allowed. 

The options TEMPORARY: PERMANENT, and CONTROL work exactly as they do in 
ALGOL. 

The < procedure identifier> required in the CONTROL form of the FREEZE statement 
must be a previously declared untyped procedure with no parameters. 

If a D[O] library EXPORT declaration is changed during a Separately Compiled 
Procedure (SEPCOMP), all procedures containing FREEZE(MCP) statements must be 
recompiled. For more information on SEPCOMP, refer to Section 7, "Compiling NEWP 
Programs. " 

5044233.380 5-9 



Statements 

PROCEDURE REFERENCE Statement 
A PROCEDURE REFERENCE statement causes the procedure referenced by the 
specified procedure reference identifier to be executed as a procedure invocation. 

<procedure reference statement> 

--<procedure reference identifier> 
L-<actual parameter part~ 

Explanation 

If the procedure reference identifier has not been assigned a procedure reference in a 
procedure reference assignment, the program is terminated with the message Invalid 
Stack Argument. 

When a typed procedure reference identifier is used in a PROCEDURE REFERENCE 
statement, the value returned by the procedure reference identifier is discarded. 

The actual parameter part of a PROCEDURE REFERENCE statement must have the 
same number of entries as the formal parameter list in the declaration of the procedure 
reference. The formal and actual parameters are compared in the manner in which the 
formal and actual parameters are compared in a procedure invocation statement. 

Invoking a procedure through a procedure reference identifier in a PROCEDURE 
REFERENCE statement is equivalent to invoking the procedure directly in a procedure 
invocation statement. 

Example 

The following example assigns a reference to procedure SW APPER into the procedure 
reference identifier PROCREF and then invokes SW APPER through PROCREF. 

BEGIN 

REAL 
SORTI, 
SORT2; 

PROCEDURE REFERENCE PROCREF (A,B); 
REAL A,B; 
NULL; 

PROCEDURE SWAPPER(X,Y); 

BEGIN 
X :=: Y; 
END; 

REAL X, Y; 

PROCREF .- SWAPPER; 

5-10 5044233.380 



Statements 

READ(MYFILE,*,SORTI,SORT2); 
IF SORT2 > SORTI THEN 

PROCREF (SORTI,SORT2); 
END. 

REPLACE Statement 
NEWP does not support the SDIGITS (signed digits) clause of the < replace 
statement>. Instead., you can simply test the value that is being replaced and use the 
REPLACE statement to put in the appropriate sign. Then use the DIGITS clause to add 
the absolute value of the item. 

When an < arithmetic expressi9n> appears as the < source part> in a REPLACE 
statement, and no FOR clause is included, exactly 48 or 96 bits of data (depending on 
whether the < arithmetic expression> is single-precision or double-precision) are 
transferred as characters. The size of the characters is determined by the < destination 
part>. This differs from the ALGOL implementation in which either 6 or 8 characters 
are transferred, depending on the value of the BCL compiler control option. 

NEWP does not support the < intrinsic translate table> s that refer to BCL. If such 
translate tables are need~ they can be declared directly. 

Note: The BeL data type is not supported on all A Series and B 7900 
systems. The appearance of a BeL construct that can cause the 
creation of a BeL descriptor, such as a BeL string literal more than 
96 bits long, causes the program to receive a compile-time warning 
message. 

NEWP provides an extension to the < transfer part> of the REPLACE statement. The 
syntax for the extension to the transfer part is as fonows: 

<transfer part> 

-- FOR --<length>-- WITH --<edit micros>--1 

<length> 

--<arithmetic expression>--i 

<edit micros> 

-- INSERT -- ( -<i nsert character>-- ) --I 

<insert character> 

--<EBCDIC cons~ant>--1 

The transfer part of the REPLACE statement has been extended to include the INSERT 
option. INSERT ( < insert character> ) translates and transfers < length> characters 
from the source string to successive character positions in the destination string. Each 
leading zero source character is replaced with an insert character; the remaining 
characters are transferred unchanged. 

5044233-001 5-11 



Statements 

The source and destination pointer expressions must denote 8-bit characters. 
Furthermore, the resulting destination string is undefined if the source string contains 
characters other than the EBCDIC digits 0 through 9. 

In NEwp, every < string-valued library attribute> (TITLE, FUNCTIONNAME, 
INTNAME, and LIBP ARAMETER) is treated as a < pointer-valued attribute>. As a 
result, the REPLACE statement is used to assign values to these attributes, rather than 
the < string assignment> form of the ASSIGNMENT statement. 

Example 

REPLACE LIBRARY1.FUNCTIONNAME BY POINTERVAR; % NEWP sett;ng of 
% FUNCTIONNAME attribute 

LIBRARY1.FUNCTIONNAME := STRINGVAR; % ALGOL sett;ng of 
% FUNCTIONNAME attribute 

It is required that the value contained in the array pointed to by the pointer variable 
must contain a termination character, or period (.). Therefore, the termination character 
cannot be part of the array value for LIBP ARAMETER except as the terminating 
character. 

SELECT Statement 
<select statement> 

-- SELECT -- ( -- <alternative identifier> -- ) --1 

<alternative identifier> 

--<identifier~ 

The SELECT statement initializes an alternative module, which includes the items 
you declare inside the alternative specified by the < alternative identifier>. For more 
information, see "MODULE Declaration (Old)" in Section 4, "Declarations." 

A SELECT statement can occur only in an initialization procedure. Only one SELECT 
statement can be executed in an initialization procedure; an INVALID OPERATOR fault 
occurs if a second SELECT statement is executed. You must declare in the same module 
the initialization procedure and the alternative identifier it selects . 

. 
SWAP Statement 

The SWAP statement is implemented with the same syntax and semantics as in ALGOL, 
with the following exceptions: 

• The < complex variable> s are not supported by NEWP and therefore cannot appear 
in the SWAP statement. 

• The < enumerated variable identifier> s and < subtype variable identifier> s can be 
swapped as long as the variables on both sides of the swap operator (: =:) are of the 
same type. 

5-12 5044233-001 



Section 6 
Expressions and Functions 

NEWP provides several kinds of expressions and functions that are not supported by 
ALGOL. These NEWP-specific expressions and functions are discussed in this section 
and in "Expressions and Functions (UNSAFE)" in Section 9, "UNSAFE Mode." 

The following table describes some of the differences in expressions and functions that 
are supported in both NEWP and ALGOL. For information on ALGOL functions and 
expressions that are not supported in NEwp, refer to Appendix B, "ALGOL Features 
Not Implemented in NEWP." 

Expression or Function 

ARITHMETIC FUNCTION 
DESIGNATOR 

ARITHMETIC OPERATOR 

ARITHMETIC PRIMARY 

BOOLEAN FUNCTION 
DESIGNATOR 

BOOLEAN OPERATOR 

BOOLEAN PRI MARY 

CASE EXPRESSION 

CONDITIONAL EXPRESSION 

DESIGNATIONAL 
EXPRESSION 

DINTEGER FUNCTION 

EXPRESSION 

5044233.380 

NEWP Information 

NEWP provides the <packdecimal function>, which is not 
supported by ALGOL. For more information, refer to 
"PACKDECIMAL Function" later in this section. 

The keyword TIMES as a synonym for an asterisk (*), or 
multiplication sign, is not supported in NEWP. 

The NEWP definition of <arithmetic primary> is different 
from that in ALGOL. For the NEWP definition, refer to 
"Arithmetic Expressions" later in this section. 

NEWP provides the Boolean <decimalconvert function>, 
which is not supported by ALGOL. For more information, 
refer to "DECIMALCONVERT Function" later in this section. 

The NEWP definition of <Boolean operator> is different 
from that in ALGOL. For more information, refer to "Boolean 
Expressions" later in this section. 

The <complex relatiQn> form of <Boolean primary> is not 
supported by NEWP. 

The <complex case expresSion> and <designational case 
expression> forms of the <case expression> are not 
supported in NEWP. 

The <conditional complex expression> and <conditional 
designational expression> forms of <conditional 
expression> are not supported in NEWP. 

The only valid <designational expression> in NEWP is a 
<label identifier>. 

NEWP does not support the form of this function that 
accepts a <pointer expression>. The DOUBLE function can 
be used instead. 

The <complex expression> form of <expression> is not 
supported in NEWP. 

6-1 



Expressions and Functions 

6-2 

Expression or Function 

FUNCTION EXPRESSION 

INTEGER FUNCTION 

LABEL DESIGNATOR 

LlSTlOOKUP FUNCTION 

NORMALIZE FUNCTION 

POINTER EXPRESSION 

REAL FUNCTION 

SIZE FUNCTION 

STRING EXPRESSION 

NEWP Information 

The <complex function designator> and <string function 
designator> forms of the <function expression> are not 
supported in NEWP. However, NEWP supports <interlock 
function>s and <scalar type function>s, which are not 
supported by ALGOL. For more information, refer to 
"INTERLOCK Functions" and "SCALAR TYPE Functions" 
later in this section. 

In addition to the parameters accepted by the ALGOL 
<integer function>, NEWP accepts the following as 
parameters: 

• <enumerated literal> 

• An expression of an enumerated type 

• An expression of a subtype that has an enumerated type 
or a root type of INTEGER or REAL 

The only valid <label designator> in NEWP is a <label 
identifier> . 

This function is unsafe in NEWP. Refer to Section 9, 
"UNSAFE Mode," for more information. 

The syntax of the <normalize function> is identical to the 
ALGOL syntax, but the semantics are slightly different. 
NORMALIZE is an arithmetic-valued procedure that returns 
the result of the normalize (NORM) machine operator. If the 
parameter is single-precision, the result returned is of type 
REAL. If the parameter is double-precision, the result 
returned is of type DOUBLE. 

Refer to "POINTER Expressions" later in this section .. 

The <complex expression> is not supported as a parameter 
to the <real function> in NEWP. In addition to the other 
parameters supported by ALGOL, the NEWP REAL 
function accepts parameters listed earlier for <integer 
function> and a <string expression> as a parameter (see 
"String Expressions"). The function returns, as a REAL value, 
the bit image of the string expression. The bit image is 
right-justified with binary-zero fill. All bits in each character 
are used. The string expression cannot exceed 48 bits in 
length. 

Folfowing are examples of valid REAL functions: 

R:=REAL (48"04 11 & S"NAME" & 4S"aa"); % NEWP 
R:=REAL (4S Ua4D5CID4CSaa); % ALGOL Equ;valent 

The <pointer identifier> is not supported as a parameter to 
the <size function> in NEWP. 

The definition of <string expression> is different in NEWP 
than it is in ALGOL. Refer to "String Expressions" later in this 
section. 

5044233.380 



Expressions and Functions 

Arithmetic Expressions 
Arithmetic expressions in NEWP function just as in ALGOL, except for the specifics 
outlined as follows: 

<arithmetic primary> 

ari thmet i c concatenation express i on>--------4 
<arithmetic variable>-- := --<arithmetic expression>­
<arithmetic operand I . l

unSi9ned number 

~part i a 1 word part>-----I 
<numeri c constant>---------------1 
<constant identifier'>---------------' 

I 
I 

U n1ike ALGOL, NEWP does not allow a < string literal> to be used as an < arithmetic 
primary>. However, you can achieve the same functionality by using a < numeric 
constant>. In addition, NEWP allows < constant identifier> s to be used as constant 
arithmetic primaries. 

Note: In NEwp, an <arithmetic operand> can be <subtype variable 
identifier> descended from INTEGER or REAL in addition to any of 
the elements allowed in ALGOL. 

For more information on < arithmetic primary>, see the discussion of < constant 
identifier>, < numeric constant> , and < structure type variable identifier> in 
Section 4, "Declarations." 

Boolean Expressions 
<Boolean operator> 

~~~ditional oper.tor~ 
<conditional operator>

5044233.380

t CAND-r
COR
CIMP

6-3

Expressions and Functions

<Boolean primary>

In NEwp, a < set relation> is allowed as a < Boolean primary> in addition to those
items allowed by ALGOL.

<set relation>

l
s;mPle set express;on~ ~;~s;mple set eXP:JeSSion

variable ordinal>-- IN ~<simple set expression
L-<variable set expression

<variable set expression>

~
<set operator>

<set primary>
<variable set constructor~

Explanation

NEWP includes < conditional operator> s, which are similar to their corresponding
standard < Boolean operator> s. However, when a conditional operator is used, a second
operand is not evaluated if the value of the first operand is sufficient to determine
the value of the expression. The value returned is either 1 (TRUE) or 0 (FALSE) in
the low-order bit of the resulting operand; the remaining 47 bits of the operand are
undefined. The following table illustrates the functions of these conditional operators:

Operands

L R

TRUE bool
FALSE bool

L CAND R

-boo 1
FALSE

Operations

L COR R

TRUE
bool

L CIMP R

bool
TRUE

CAND has the same precedence as AND, while COR has the same precedence as OR,
and CIMP has the same precedence as IMP.

Following are examples of Boolean operators:

B := Rl NEQ 0 CAND R2/Rl EQL R3;
B := Rl GEQ 0 AND Rl LSS SIZE(A) COR R2 NEQ A[Rl];
B := Rl GTR 0 CIMP A[Rl-l] NEQ Rl;

Precedence in Boolean Expressions

6-4

Occasionally, the precedence of terms within primary parts of expressions should be
specified by parentheses. For example, when you use the < pointer table membership>
primary, enclose it in parentheses whenever it is followed by a Boolean operator. In
ALGOL, the following statement compiles;

IF PTR_ID IN TRUTH_ID FOR 1 AND BOOLEAN_ID THEN

5044233.380

Expressions and Functions

In NEwp, to get the statement to compile you need to change it as follows:

IF (PTR_ID IN TRUTH_IO FOR 1) AND BOOLEAN_ID THEN

Set Relation

There are two kinds of set relations; both return a Boolean value. The first compares
the two < simple set expression> s for equality (= or: EQL) or inequality (" = or NEQ).
The second determines whether or not the value of the specified < variable ordinal> is a
member of (is IN) the set specified by the set expression. When simple set expressions
are compared, they must be of compatible types. Equality or inequality is determined by
doing a bit-by-bit comparison of two sets. Two sets of different lengths are considered
equal if every bit that is set in one is also set in the other.

Example

TYPE COLOR
TYPE COLORSET

= (RED, BLUE, GREEN, YELLOW, ORANGE);
= SET OF COLOR;

COLORSET CSET1, CSET2, CSET3;
BOOLEAN Bl, B2;

CSETI := [RED] + [BLUE];
CSET2 := CSETI * [YELLOW, BLUE, GREEN]; % CSET2 IS [BLUE]
CSETI := CSETl - CSET2; % CSETI IS [RED]
CSET3 := UNIVERSE (COLOR);

B1 :=.CSETl EQL [RED, BLUE];
82 := BLUE IN CSET2;

% FALSE
% TRUE

Function Expressions
<function expression>

t <arithmetic function deSigna~Or
<Boolean function designator
<pointer function designator

Arithmetic Function Designator
<arithmetic function designator>

5044233.380

1
<procedure identifier>
<arithmetic intrinsic name> ~
<procedure reference array element
<procedure reference identifier

-+ [<actual parameter part>:]

6-5

Expressions and Functions

Explanation

The procedure specified by the procedure identifier, the procedure reference array
element, or the procedure reference identifier must be of type INTEGER, REAL,
DOUBLE, or of a subtype descended from INTEGER or REAL.

Boolean Function Designator

<Boolean function designator>

l
procedure identifier> I

<Boolean intrinsic name> ~
<procedure reference array element
<procedure reference identifier

~ [<actual parameter part>:]

Explanation

The procedure specified by the procedure identifier, the procedure reference array
element, or the procedure reference identifier must be of type BOOLEAN or of a
subtype descended from BOOLEAN.

Pointer Expressions

6-6

Unlike ALGOL, NEWP does not allow a fully subscripted, noncharacter array that is
used as a <pointer primary>. ·For example, the following program block compiles in
ALGOL, but causes a syntax, error on the REPLACE statement in NEWP:

BEGIN
ARRAY B [0: 10] ;
REPLACE B[0] BY 0 FOR 11 WORDS;
END;

An alternative is to use the POINTER type transfer function as follows:

BEGIN
ARRAY B[0: 10];
REPLACE POINTER(B[0]) BY 0 FOR 11 WORDS;
END;

5044233.380

Expressions and Functions

Scalar Type Expressions
<scalar type expression>

An expression that evaluates to a scalar type value.

<simple scalar type expression>

A < scalar type expression> that consists only of scalar type variables and scalar
type constants.

<constant scalar type expression>

A < scalar type expression> that consists only of scalar type constants.

Explanation

The operands in a scalar type expression must have the same root type. The resulting
type of the expression is based on the operation and the two operands. If all the
operands are the same type, the resulting type of operations involving addition (+),
subtraction (-), multiplication (*), MOD, and the Boolean operators is that of the
operands.

For those operations involving operands of different types and union, difference,
intersection, MOD, and the Boolean operators, the resulting type is that of the common
ancestor between the operands. An exception to this ocCurs when one of the operands is
a constant. In this case, the resulting type is that of the nonconstant operand. For all
other operations, the resulting type is INTEGER, REAL, or BOOLEAN, based on the
type of operation.

Enumerated types and subtypes descended from enumerated types are not allowed in
arithmetic expressions. Exceptions to this are in the CASE and FOR statements. For
more information on CASE and FOR statements, see Section 5, "Statements."

5044233.380 6-7

Expressions and Functions

Set Expression

6-8

<set eXpression>

~simple set expression>
. L<vari abl e set constructor:-J

<simple set expression>

r~-<set o~erator>:J .
--L<set prl rna ry>>------'----l

<set operator>

<set primary>

t (--<simple set expression>--) -,--1
<set variable identifier> =j

simp 1 e set constructor>>---O-----J

<simple set con~tructor>

-- [L<ordinal>->t-----r--l-.] -- UNIVERSE -- C--.-<type identifier>-r-) ----i
~<range expression~ L<set identifier~

<ordi nal >

l
enumerated literal
<number>----------------------~
<short enumerated variable identifier
<short subtype variable identifier
short scalar type expression;>-------'

<short enumerated variable identifier>
<short subtype variable identifier>
<short scalar type expression>

A variable or scalar expression for which the highest valid value is 47 or less, and for
which the lowest valid value is 0 (zero) or greater.

<range expression>

--<ordinal>-- •• -...<ordinal>--1

<variable set constructor>

-- [r---:variable ordi~al>
~variable range expression~

]-1

5044233.380

<variable ordinal>

l
<f~~!~:~ variable>------l
<integer expression
enumerated variable

<subtype variable>------l
<scalar type expression

<variable range expression>

Expressions and Functions

~var~able ordinal>-y- •• -r-<var~able ordinal~
L.:orcll na 1 > - L.:ordl na 1 >-> ____ -..I

Explanation

A < set expression> generates a set. The < set operator> s perform the set operations
. of union (+), difference (-), and intersection (*).

The operators can be applied to declared < set variable identifier> s or to sets that are
defined within the expression by the use of the < simple set constructor> syntax (these
sets are referred to as anonymous sets). The < set primary> s within a set expression
must be of compatible types.

A set constructor defines a value of an implied set type (an anonymous set). The
members of the anonymous set are specified by the list of ordinal and range expressions,
which must all be of the same type or subtypes of the same base types.

The associated value of an enumerated literal carmot be used in place of the literal;
integers can be used only when the base type of the set being constructed is INTEGER
or a subtype of INTEGER. Ifa range expression is used, the base type must be a
discrete, ordered data type; that is, an ordered enumerated type, INTEGER, or one of
their descendant types. The members denoted are those values from the first ordinal
through the second ordinal. If the second ordinal is less than the first ordinal, the range
expression evaluates to the null set.

The UNIVERSE function returns a set in which all possible members of the type
indicated by the type identifier or set identifier are present. The type must be a
discrete data type; that is, an enumerated type, a subtype of INTEGER, or one of their
descendant types.

The result of a set constructor takes its type from the elements used. In the case of the
UNIVERSE function, it is the type of the type identifier or set identifier. Otherwise, the
result is the type of the ordinals. An empty set constructor (that is, []) has no specific
type and can be used in any set expression.

If the MCP compiler option is set, <variable range expression>s cannot be used in set
expressions.

5044233.380 6-9

Expressions and Functions

Stri'ng Expressions
<string expression>

~<st:ing c?ncatenation operator>:J
<st rlng prl ma ry>-> ----------'---l

<string concatenation operator>

<string primary>

~<string constant>
L- (--<string expression>--) ~

Explanation

You can concatenate two or more string constants by using the < string concatenation
operator>. The concatenation of two strings yields a new string whose length is the
sum of the lengths of the two original strings. The value of the new string is formed by
joining the second string immediately onto the end of the first string.

Only < string constant> s of the same character type can be concatenated. For more
information on string constants, see "String Constants" in Section 3, "Language
Components. "

Examples of string expressions are as follows:

"LONG STRING CONSTANT"
"NUMBER" & 48"Fl"
47"3138/1 !! 7"ASCII CHARACTERS"
"" CAT "DOESNT DO MUCH"

DECIMALCONVERT Function

6-10

<decimalconvert function>

- OECIMALCONVERT -- (-<operand to be converted>- , ----~~

~<number of digits>- , -<packed-decimal result>--) ------I

<operand to be converted>

-<arithmetic expression>--i

<number of digits>

-<arithmetic expression>--i

<packed-decimal result>

---<arithmetic variable>--1

DEClMALCONVERT is a Boolean function that takes three arguments. The
first argument, V, is asingIe- or double-precision value that is to be converted to

5044233.380

Expressions and Functions

packed-decimal form. The second argument, SF, specifies the number of packed-decimal
digits to be converted. SF must be in the range 0 through 24. The third argument,
D, must be a variable of type REAL or DOUBLE. The remainder of V DIV lO··SF
is returned by way of D as a left-justified, packed-decimal operand; if D is a
double-precision value, the value returned is first extended to double precision. The
function result is TRUE if the quotient V DIV lO··SF is nonzero; otherwise, the result is
FALSE. The value returned in D can later be converted to a string of EBCDIC numeric
characters by using the UNPACK intrinsic.

DINTEGERT Function
The DINTEGERT function has the following syntax:

- DINTEGERT - (-<ar;thmet;c express;on>-) ---1

DINTEGERT is a DOUBLE function that returns the value of the arithmetic expression
as a double-precision integer value, with truncation. It differs from INTEGERT in that it
returns a double value and differs from DINTEGER in that it uses truncation instead of
rounding. For more information on INTEGERT, see the A Series ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

I NTERLOCK Functions
INTERLOCK functions use interlocks or interlock array elements to protect a resource
that is shared between several participating processes. The use of these functions is
similar to the use of an event with the PROCURE and LIBERATE statements except
that interlock functions are often considerably faster than PROCURE and LIBERATE
statements. The initial state of an interlock is FREE. For a complete list of the possible
states of an interlock, refer to the "LOCKSTATUS Function" later in this section.

ARROGATE Function
<arrogate funct;on>

- ARROGATE - (-<;nterlock des;gnator>-) ---1

The < arrogate function> claims the specified interlock for the caller, regardless
of the previous state, but does not modify the contender list. At the completion
of the ARROGATE function the interlock owner is the process that issued the
ARROGATE function, and the state is either LOCKED _ UNCONTENDED or
LOCKED_CONTENDED. The ARROGATE function is of type REAL, and the prior
status of the interlock is returned as the result of an ARROGATE function. Refer to the
LOCKSTATUS function for the format of the result of the ARROGATE function.

This operation can be used in several different circumstances. First, it can be used to
"steal" the interlock. This might be desirable when you detect a correctable problem

5044233-001 6-11

Expressions and Functions

with the protected resource. A process can steal the interlock, correct the condition, and
then return the interlock to normal use with the < unlock interlock function>. In this
case, some action must be taken to notify or eliminate the process that held the interlock
when the interlock was stolen. Otherwise, both the original owner and the new owner
(after the interlock is returned to use) would believe that they were the owner. Because
the contender list is not modified, an ARROGATE function should be used instead of a
< break function> if the condition is correctable.

A second use of the ARROGATE function is to return a BROKEN interlock to normal
use. You can accomplish this by issuing an ARROGATE function followed by an
UNLOCK INTERLOCK function on an interlock whose state is BROKEN.

If the interlock is FREE when the ARROGATE function is issued, it becomes
LOCKED _ UNCONTENDED.

If the interlock is LOCKED _ UNCONTENDED or LOCKED_CONTENDED, the state
remains unchanged, but the owner process identifier is changed to reflect the new owner.

If the interlock is BROKEN, it becomes LOCKED _ UNCONTENDED.

The ARROGATE function should be used primarily when you can determine that the
entity protected by the interlock is temporarily corrupted or unavailable, but can be
corrected. The ARROGATE function can be used to force acquisition of the interlock
so that the condition can be corrected before any other contender is given access to the
interlock (and the protected resource).

Caution

Few complications should arise if the lock is not held by any process when the
ARROGATE function is used. Otherwise, extreme caution should be exercised. In
many cases, it might be desirable to terminate the process that owned the lock.
This action prevents the original owner from interfering with recovery efforts.

Examples of ARROGATE functions are as follows:

I := ARROGATE (MYLOCK)

ARROGATE (YOURLOCKS [3])

BREAK Function

6-12

<break function>

- BREAK - (-<interlock designator>-) ~

The < break function> is used to remove an interlock from normal use and to cause an
error to be returned to all contenders for the interlock. This function is desirable if the
resource that the interlock is protecting becomes permanently unavailable or hopelessly

5044233-001

Expressions and Functions

corrupted. You can use this function regardless of the state of the interlock at the time
the operation is performed.

When a BREAKfunction is executed, the state of the interlock is set to BROKEN,
regardless of the prior state. In addition, any contenders waiting for the interlock
receive an error result. The interlock is marked as owned by the process that issued the
BREAK function.

The BREAK function is of type REAL, and the prior status of the interlock is returned
as the result of a BREAK function. Refer to the "LOCKSTATUS Function" for the
format of the result of the BREAK function.

The only way to return a BROKEN interlock to normal use is by using the ARROGATE
function, followed by the UNLOCK INTERLOCK function.

Refer to "ARROGATE Function" for information on temporarily removing an interlock
from normal operation. The BREAK function should be used only if it is desirable to
have all contenders return from the < lock interlock function> with an error.

Caution

Few complications should arise if the lock is not held by any process when the
BREAK function is used. Otherwise, extreme caution should be exercised. In.
many cases, it might be desirable to terminate the process that owned the lock
when the lock was broken. This action prevents the original owner from further
corrupting the protected resource.

Following are examples of the BREAK function:

I := BREAK (MY LOCK)

I := BREAK (YOURLOCKS [3])

LOCK Function
<lock function>

- LOCK - (-<interlock designator>)--1
L- • -<timeout~

<timeout>

-<arithmetic expression>--1

The < lock function> attempts to acquire the interlock. If you use the LOCK function
as a statement, the process is discontinued when the result is not 1 (successfully
acquired). The < timeout> , if present, specifies the amount of time the caller can wait if
the interlock cannot be acquired immediately. The timeout is specified in seconds, and
a value less than zero indicates that the program can wait indefinitely. If no timeout is

5044233.380 6-13

Expressions and Functions

supplied, a timeout of -1 is assumed. If the timeout is 0 (zero), the caller cannot wait,
and the lock succeeds only if the interlock is FREE.

The LOCK fWlction is of type INTEGER, and the following values can be returned:

Value Meaning

1 The interlock was successfully acquired.

2 The timeout elapsed before the interlock could be acquired.

4 The interlock has a state of BROKEN and cannot be acquired. This occurs
when the BREAK operation is used on the interlock. Refer to "BREAK Function"
earlier in this section for more information on BROKEN interlocks.

The following conditions cause various values to be returned:

• If the interlock has a state of FREE, it becomes LOCKED _ UNCONTENDED and a
result of 1 is returned.

• If the interlock is LOCKED _ UNCONTENDED, it becomes
LOCKED _CONTENDED and the caller is placed in the contender list.
When the owner Wllocks the interlock, and the caller is at the head of the contender
list, a result of 1 is returned. If the timeout expires before the caller can acquire the
interlock, then a result of 2 is returned.

Note: If the caller that timed out is the only contender, the interlock becomes
LOCKED _ UNCONTENDED.

• If a BREAK operation is performed on the interlock ,while the caller is in the
contender list, a result of 4 is returned.

• If the interlock is LOCKED _CONTENDED, its state does not change, and the caller
is added to the contender list. A result of 4 is returned.

• If the interlock has a state of BROKEN, its state does not change, and a result of 4 is
returned.

Examples of the LOCK function are as follows:

I := LOCK' (MYLOCK,17)

I : = LOCK (MYLOCKS [3])

LOCK (MYLOCK)

LOCK (OURLOCKS [2],4)

LOCKSTATUS Function

6-14

<lockstatus function>

-- LOCKSTATUS -- (--<interlock designator>--) --1

The < lockstatus fWlction> returns the status of the specified interlock. If the
LOCKSTATUS fWlction is used as a statement, a warning is issued at compile time, and
no code is generated for the LOCKSTATUS. The LOCKSTATUS function is of type
REAL, and the result has the following subfields:

5044233.380

Expressions and Functions

[47:24]
[23:22]
[en :02]

Owner's process 10; 0 if none
Undefined
Current state:

o FREE
1 LOCKED UNCONTENDED
2 LOCKED CONTENDED
3 BROKEN

The owner portion of the interlock status can be compared to the task attribute
STACKNUMBER and the function PROCESSID.

Examples of the LOCKSTATUS function are as follows:

UNLOCK Function

R := LOCKSTATUS (MYLOCK);

IF I := LOCKSTATUS (YOURLOCKS [3]).[47:24] = PROCESSID THEN
GOFORIT;

<unlock function>

-- UNLOCK -- (--<interlock designator>--) --1

The < unlock function> is normally used to relinquish an interlock that was used earlier
in a LOCK function. If the UNLOCK function is used as a statement, the process is
discontinued when the result is not 1. The UNLOCK function is of type INTEGER, and
the following values can be returned:

Value Meaning

1 The interlock was successfully unlocked.

4 The interlock has a state of BROKEN and cannot be unlocked. Refer to
"ARROGATE Function" for information on how to return a BROKEN interlock in
normal operation.

6 The interlock has a state of FREE and therefore cannot be unlocked.

The following conditions cause various values to be returned:

• If the interlock is FREE, the state is not changed and a result of 6 is returned.

,. If the interlock is LOCKED _ UNCONTENDED when this operation is performed,
the state is changed to FREE and a result of 1 is returned.

• If the interlock is LOCKED _ CONTENDED, a result of 1 is returned, and the
interlock is given to the first contender in the contender list. If there is only
one contender in the list, the state is changed to LOCKED _ UNCONTENDED;
otherwise, it is not changed.

• If the interlOck is BROKEN, the state is not changed and a result of 4 is returned.

Examples of the UNLOCK function are as follows:

5044233.380
\

6-15

Expressions and Functions

I := UNLOCK (MYLOCK)

UNLOCK (YOURLOCKS [2])

PACKDECIMAL Function
- PACKDEClMAL -,- (-<arithmetic expression>- • ------~

4-<arithmetic expression>-) --------------1

PACKDECIMAL takes two arguments: a dividend V and a scale factor S. Each
argument is first converted to an integer, if necessary. The resulting value of S must
then be an integer in the range 0 through 12. PACKDECIMAL then returns a
single-precision, left-justified, packed-decimal operand that represents the remainder of
the following equation:

V DIV 10**S

The rightmost 12 - S digits are undefined.

SCALAR TYPE Functions
The following functions return scalar type values. The function value is undefined
whenever any of its arguments has an undefined value.

LOWER BOUND Function
<lower bound function>

-<type identifier>- . - LBOUND --1

The < type identifier> must denote one of the following discrete, ordered data types
that has a defined lower bound:

• Ordered enumerated types

• Subtypes of ordered enumerated types

• Subtypes of INTEGER that include a range specification

For a subtype, the LOWER BOUND function returns the smallest value permitted in
that type. For an ordered, enumerated type, this function returns the literal with the
lowest associated value. The type of the function value is the same as the type identifier.

MAPPING Function

6-16

<mapping function>

-<type identifier>- (-<expression>-) --1

The MAPPING function is a type transfer function that changes the type of the
< expression> to the type of the type identifier. Within the valid combinations given in
the following paragraphs, if the value of the expression is not valid for the type identifier,
the result of the MAPPING function is undefined.

5044233.380

Expressions and Functions

The expression provided as a parameter to the MAPPING function must evaluate to a
value that is valid for the type identifier. The valid range for an enumerated type ranges
from the numeric value associated with the first literal for the type to the numeric value
associated with the last literal for the type. The valid range for a subtype is either
specified with the declaration of the subtype or inherited from the parent type.

Example

As an example, assume the following declarations and assignments:

TYPE COLOR = (RED=1, GREEN, BLUE, BLACK, WHITE, YELLOW=6);
TYPE MONEY = ORDERED (PENNY=6, NICKEL, DIME, QUARTER, DOLLAR);
TYPE COINS = SUBTYPE MONEY PENNY •• QUARTER;
TYPE WEIGHTS = SUBTYPE INTEGER;
TYPE LARGEWEIGHTS = SUBTYPE WEIGHTS 1000 •• 10000;
INTEGER I;
COLOR MYFAVORITE, YOURFAVORITE, THEIRFAVORITE;
MONEY TOTALWORTH, DESIREDWORTH;
COINS POCKETCHANGE;
WEIGHTS BABYWEIGHT;
LARGEWEIGHTS HEAVY;

I := 2;
MYFAVORITE := BLUE;
YOURFAVORITE := YELLOW;
TOTALWORTH := DOLLAR;
POCKETCHANGE := DIME;
BABYWEIGHT := 10;
HEAVY := 1001;

In this particular case, the valid numeric ranges for the various types are as follows:
('

Type Valid Range

COLOR 1 through 6

MONEY 6 through 10

COINS 6 through 9

WEIGHTS Range for INTEGERs

LARGEWEIGHTS 1000 through 10000

Given these valid rahges and the initial assi~ents shown in the previous example, the
following uses of the MAPPING function all return valid results:

THEIRFAVORITE := COLOR (3); % THEIRFAVORITE gets BLUE = 3
THEIRFAVORITE := COLOR (PENNY); % Ok because PENNY = 6 = YELLOW
THEIRFAVORITE := COLOR (I); % THEIRFAVORITE gets GREEN = 2
DESIREDWORTH := MONEY (YELLOW); % Ok because YELLOW = 6 = PENNY
DESIREDWORTH := MONEY (BABYWEIGHT); % Ok because BABYWEIGHT = 9

% which equals QUARTER
BABYWEIGHT := WEIGHTS (COINS); % COINS = DIME, which is 8

5044233.380 6-17

Expressions and Functions

The following assignments produce syntax errors because the compiler can detect that
they all produce values outside the valid range for the type identifier in the MAPPING
function:

THEIRFAVORITE := COLOR (15);
THEIRFAVORITE := COLOR (QUARTER)

DESIREDWORTH := MONEY (GREEN);
POCKETCHANGE := COINS (DOLLAR);

THEIRFAVORITE := COLOR (HEAVY);

% Maximum COLOR is 6
)

% QUARTER is a literal = 9;
% too large for COLOR
% GREEN = 2; too small for MONEY
% DOLLAR is a literal = 10;
% too large for COINS
% HEAVY is of type LARGEWEIGHTS,
% and the valid range for COLOR
% does not overlap the valid
% range for LARGEWEIGHTS, so
% a syntax error can be given.

By contrast, the following assignment is valid but produces a run-time error because a
variable, rather than a constant, is involved. In addition, the valid ranges of the types
involved overlap:

THEIRFAVORITE := COLOR (POCKETCHANGE); % POCKETCHANGE contains
% DIME = 8; too large

for COLOR

PREDECESSOR Function
<predecessor function>

-<type identifier>- • - PRED -

~<simple scalar type expression>-) ----------------1

The type identifier must denote a discrete, ordered data type. The type of the function
value is the same as type identifier.

If type identifier is a descendant type of INTEGER, then the < simple scalar type
expression> must be an expression of type identifier. If the value of the expression is
higher than the lowest value defined for that type (if any), the function returns the next
lowest value of that type. This function is undefined if the value of the expression is less
than or equal to the lowest value defined for that type (ifany).

If type identifier is an ordered enumerated type or a deScendant of an ordered
enumerated type, then the simple sca1ar type expression must be an enumerated literal
of that type. If the literal does not denote the lowest associated value for that type, the
function returns the next lowest associated value of that data type. This function is
undefined for the literal with the lowest associated value.

SUCCESSOR Function
<successor function>

-<type identifier>- • - succ - ----------------~

~<simple scalar type expression>--) -------------1

6-18 5044233.380

Expressions and Functions

The type identifier must denote a discrete, ordered data type. The type of the function
value is the same as type identifier.

If type identifier is a descendant type of INTEGER, then the simple scalar type
expression must be an expression of type identifier. If the value of the expression is
less than the highest value defined for that type (if any), the function returns the next
highest value of that type. This function is undefined if the value of the expression is
higher than or equal to the highest value defined for that type (if any).

If type identifier is an ordered enumerated type or a descendan~ of an ordered
enumerated type, then the simple scalar type expression must be an enumerated literal
of that type. If the literal does not denote the highest associated value for that type, the
function returns the next highest associated value of that data type. This function is
undefined for the literal with the highest associated value.

UPPER BOUND Function
<upper bound function>

--<type identifier>-- • -- UBOUND --1

The type identifier must denote one of the following discrete, ordered data types that
has a defined upper bound:

• Ordered enumerated types

• Subtypes of ordered enumerated types

• Subtypes of INTEGER that include a range specification

For a subtype, the UPPER BOUND function returns the largest value permitted in that
type. For an ordered enumerated type, this function returns the literal with the highest
associated value. The type of the function value is the same as type identifier.

5044233.380 6-19

6-20 5044233.380

Section 7
Compiling NEWP Programs

In NEwp, as in ALGOL, you can perform three kinds of compilations. The general term
compile refers to any of these three types:

• A full compilation, which parses all source lines and translates them into object code.
This default compilation type occurs unless you set the control option MAKEHOST
orSEPCOMP.

• A host compilation, which is performed when you set the control option
MAKEHOST. A host compilation is a superset of a full compilation. In addition to
processing all source lines, it puts extra information in the code file that is necessary
for the use of SEPCOMP.

• A SEPCOMP, which is performed when you set the control option SEPCOMP. A
SEPCOMP compiles only the minimum necessary source lines, primarily those
areas changed by a patch. The code and symbol files from a host compilation are
used as the basis for a SEPCOMP. SEPCOMP is considerably faster than either a
full compilation or a host compilation, but cannot be used in all cases. For further
information on the limitations of SEPCOMP, see "SEPCOMP Guidelines" later in
this section.

This section provides information about all three types of compilations and states the
rules for using each one.

Note: The term host compile is often used as a general term for both full
and host compilations. Because the host compilation takes longer
and produces a larger code file, you should use a SEPCOMP or a full
compilation whenever possible.

For information about the input and output files for each type of compile, refer to the
A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation.

Full Compilations
A full compilation is performed by default if you do not set the control options
MAKEHOST or SEPCOMP. This type of compilation accepts one or more source files
and, if there are no syntax errors, produces a code file.

Host Compilations
A host compilation is performed if you set the control option MAKEHOST. This type
of compilation accepts one or more source files and, if there are no syntax errors,
produces a code file that contains both the object code and the additional information
that is necessary to do a SEPCOMP. This object code file is often referred to as a host
file. Because of the inclusion of extra information, the code file produced by a host

5044233.380 7-1

Compiling NEWP Programs

compilation is always larger than the code file produced by a full compilation. However,
the actual object code produced is identical in both cases.

The amount of information saved during a host compi4ltion is under your control
through the block directive SEPCOMPLEVEL. This block directive includes an integer
that is the highest lexical level for which declaration information is stored in the host file.
Each declaration for which this information exists can be separately compiled during a
SEPCOMP. As a result, the value of the SEPCOMPLEVEL block directive during a
host compilation determines the "granularity" of the separate compilation done during
a SEPCOMP. A small value causes larger areas to be recompiled during a SEPCOMp,
and a large value causes smaller areas to be recompiled. For more information about
SEPCOMPLEVEL, refer to "SEPCOMP Background" in this section.

One piece of information stored in a host file is the title of a symbolic associated with the
compile. This information is required during a SEPCOMP and is determined as follows.

If a new symbolic is being produced during the host compilation (that is, the control
option NEW is set), the title of the symbolic is saved. Otherwise, if you set the MERGE
option, the title associated with the TAPE file is saved because the bulk of the symbolic
is usually found there. However, if you set neither the NEW option nor the MERGE
option, the title associated with the CARD file is saved because that file contains the only
input.

Note: When the MERGE option is set, but the NEWoption is not, the symbol
file associated with the host is not complete, because it does not
contain the changes made by the patch file (CARD J. In this case,
you should do one of two things when a SEPCOMP is performed
with the host. You should either include the host-compiled patches
with those to be compiled, or you should use the SEPCOMP merge
capability. More information on both SEPCOMP and SEPCOMP
merge is provided later in this section.

Compiling with SEPCOMP

7-2

A SEPCOMP is performed when you set the SEPCOMP control option. This type of
compilation requires at least three input files: a patch, a base symbol file, and the host
file (object) from a previous host compile or SEPCOMP. The result is a complete code file,
produced by taking a copy of the host file and changing only the sections modified by the
patch. The base symbol file is necessary to allow the recompilation of the source code
that was changed.

Performing a SEPCOMP is not difficult, and it offers significant savings in time when
compared to full and host compiles. However, some types of changes cannot be compiled
with SEPCOMP, and you should become familiar with the rules of SEPCOMP to ensure
a reliable result. For information on these rules, see "SEPCOMP Guidelines" later in
this section.

SEPCOMP is implemented by the NEWP compiler itself and does not require invocation
of BINDER, as it does in ALGOL.

5044233.380

Compiling NEWP Programs

Note: The object file produced by a NEWP SEPCOMP is a host file;
another SEPCOMP can be done against it. However, the object code
contained in the file might not be identical to the object code that
would have been produced by a full or host compile.

Certain types of syntax errors cannot be detected by a SEPCOMP because of the limited
nature of the compilation. Although these errors are unusual, they do occasionally occur.
In addition, if the guidelines listed under "SEPCOMP Guidelines" are not followed, a
full or host compile and a SEPCOMP can produce code files that are different. These
problems can be avoided by following the guidelines.

Because of the limited compilation that is done during a SEPCOMP, certain other control
options cannot be used. For example, neither a new symbol file ($NEW) nor xref files
($XREF) can be produced by a SEPCO:MP. Both these options require that all the source
input be processed; therefore, these options have no meaning during a SEPCOMP.

The user compiler control options that had a TRUE value when the host file was created
are preserved and reinstated during a SEPCOMP. The VERSION option supplied for the
host is also reinstated. -

As mentioned earlier, it is possible to use the output from one SEPCOMP as a host file
for another one. The title of the default symbolic file is updated, as previously described
for host compiles. Because there is not a symbol file that matches the host file exactly,
you should read the information on the NEWP SEPCOMP merge capability later in this
section before using the output of a SEPCOMP as a host file.

SEPCOMP Background

The NEWP SEPCOMP facility is based on the concept of a region, which is a section of
the program that can be separately compiled. Any change within a region causes the
entire region to be recompiled. The size of a region is determined by the value of the
SEPCOMPLEVEL block directive during a host compile.

The executable statements of the outer block are always a region. In addition, a
declaration list (for example, REAL A,B,C;), a procedure heading, and a procedure body
can be regions, depending on their lexical level and the value of the SEPCOMPLEVEL
block directive.

An easy way to Wlderstand what is and is not a region is to consider the leXica1level
portion of the address of an item. If the lexica1level is less than or equal to the
SEPCOMPLEVEL, then the declaration is a region. Otherwise, the item is part of some
other region.

For example, if a declaration in the outer block of a non-MCP program is REAL A,B;,
then A and B are assigned the addresses (2,x) and (2,x + 1) respectively. Therefore, this
deClaration list is a region if SEPCOMPLEVEL is 2 or higher. On the other hand, if the
same declaration appeared inside a procedure, the Program Control Word (Pew) of the
procedure would be at (2,x), but A and B would be at lexica1level3 (for example, 3,x).
If the SEPCOMPLEVEL is 2, the procedure woUld be a region, and the declaration of

5044233.380 7-3

Compiling NEWP Programs

A and B would ~imply be part of that region. Any change to the declaration of A and B
causes a recompilation of the entire region (the procedure).

The default value of SEPCOMPLEVEL is 2 when the MCP control option is not set; the
default value is 0 (zero) when the MCP option is set.

NEWP records the starting and ending sequence numbers of each region. A declaration
list begins on the line where the type (REAL, BOOLEAN, and so forth) is stated, and
includes everything up to the semicolon (;). A procedure heading region begins on
the line where the keyword PROCEDURE appears, and includes all the parameter
declarations. A procedure body begins on the line where the BEGIN appears, and
includes everything until the procedure END statement.

In some cases, the recompilation of one region causes the recompilation of another
region, even though the regions can be compiled separately. For example, if a declaration
in a procedure is changed, the body of the procedure is also recompiled because the
stack building code for the declarations needs to be regenerated. This recompilation
occurs even when the nested declaration is at or below the lexical level specified by
the SEPCOMPLEVEL block directive. The determination of that which needs to be
recompiled is therefore based primarily on the patch and the SEPCOMPLEVEL, but is
also affected by the relationships between regions.

During SEPCOMP, if the LIST compiler control option is set, this option causes a source
listing to be generated for every patched region. Since any given area of a program can
be made up of a number of regions, a complete listing of the area occurs only if every
region in the area is changed. For example, at or below the lexical level specified by the
SEPCOMPLEVEL block directive, a procedure heading and the body of the procedure
are two different regions. If a SET LIST is placed before the start of the procedure
declaration and if a POP LIST is placed after the end of the procedure, then a complete
listing is obtained only if both the heading and the body are changed. To get a listing of
the procedure body, you must put the SET LIST just after the procedure BEGIN and
the POP LIST just before the procedure END.

The level of the SEPCOMP information is stored in the host file. This level determines
the contents and format of the SEPCOMP information. The level of the SEPCOMP
information produced during the host compile must match the level of the information
expected by the compiler doing the SEPCOMP. Since it is periodically necessary to
improve the SEPCOMP information, not all combinations of host file, patch, and
compiler succeed. If such a mismatch occurs, an error message is issued to indicate the
mismatch and provide more information to resolve the error. In general, there are
two choices: use the same version of the compiler for the SEPCOMP that was used
for the host compile, or recompile the host· with the compiler that will be used for the
SEPCOMP.

Performing a SEPCOMP

7-4

Performing a SEPCOMP consists of providing the necessary input files and ensuring
that the SEPCOMP option is set. The compiler can supply default titles for all of the
required files, but ordinarily you supply the actual titles. Although SEPCOMPs can
be performed from Command and Edit (CANDE), they are generally started from
Work Flow Language (WFL) instead. Therefore, WFL examples are used here. For

5044233.380

Compiling NEWP Programs

further information on the WFL programs, see the A Series Work Flow Language (WFL)
Programming Reference Manual.

The internal names for the three required input files are as follows:

CARD

TAPE or SOURCE

HOST

The patch file.

The name of the base symbolic associated with the host file.

The name of the host file (the object). The host file must be
compatible with NEWP.

If you do not supply names, the compiler uses the names CARD and HOST for the patch
and host file respectively. If the name of the base symbolic has been file-equated to
SOURCE or TAPE, then that name is used. Otherwise, the base symbolic file name is
taken from the host file, where it is stored during the creation of the host.

As an example, assume that the following program has been compiled to produce a host
file (the object) and a base symbolic:

100 $ SET MAKEHOST
200 $ SET NEW "SYMBOL/MYPROGRAM"
300 BEGIN [SEPCOMPLEVEL = 2]
400
500 REAL X, Y, Z;
600
700 PROCEDURE P;
800 BEGIN
900 BOOLEAN B;
1000 X := Y * Z;
1100 IF X EQL 7 THEN
1200 B := TRUE
1300 ELSE
1400 B : = FALSE;
1500 END P;
1600 Y := 12;
1700 Z := 14;
1800 P;
2000 END; % OF PROGRAM

The compilation of this program produces both a host file named
SYSTEM/MYPROGRAM and a new base symbolic file named SYMBOL/MYPROGRAM.
The name of the new symbolic is stored in the host file, along with information about all
the regions that occur at lexical level 2 and below.

If a program patch is developed that includes $ SET SEPCOMP and is named
MYPROGRAM/PATCH, the following WFL deck can be used to do a SEPCOMP:

5044233-001

BEGIN JOB SEPCOMP;
TASK T;
COMPILE SYSTEM/MYPROGRAM/SEPCOMPED WITH NEWP [T] LIBRARY;

NEWP FILE CARD (KIND = DISK, TITLE = MYPROGRAM/PATCH);
NEWP FILE HOST (TITLE = SYSTEM/MYPROGRAM);

END JOB;

7-5

Compiling NEWP Programs

Because the deck does not file-equate a TAPE file title, the default title
SYMBOL/MYPROGRAM stored in the host file is used. The output is a host file
named SYSTEM/MYPROGRAMISEPCOMPED that is a copy of the original host file
(SYSTEM/MYPROGRAM), except in those areas changed by the patch.

Note that it is possible to supply the name of the host file with the SEPCOMP option.
In that case, the patch could include the following card and the file equation to the file
HOST in the WFL deck could be dropped:

$ SET SEPCOMP "SYSTEM/MYPROGRAM"

A host file title provided this way has precedence over any file equation to the HOST file.

SEPCOMP Guidelines

Though SEPCOMP can be very useful, it does have some limitations. Certain types of
changes can be compiled only with a full or host compilation. Other kinds of changes can
be compiled with SEPCOMP, but require extra attention. Note that these restrictions
only apply to changes at or below the SEPCOMPLEVEL. Any changes above this level
are completely recompiled; therefore, the restrictions have no impact.

The following types of changes at or below the SEPCOMPLEVEL cannot be compiled
with SEPCOMP; a full or host compilation must be done:

• Changes to library entry points.

• The addition of executable statements in front of the first executable statement in a
region.

• Reordering of declaration regions.

• Modification of a TYPE declaration.

• Modification of the beginning or ending sequence numbers of a region. You can
change the text on the beginning and ending lines of a region as long as the change
follows the other rules listed here.

• Modification or addition of multiple regions on the same line (for example REAL A;
BOOLEAN B).

• Modification of the type of a region (for example, REAL X, Y is changed to
BOOLEANX,Y).

• Deletion of a module.

7-6 5044233-001

Compiling NEWP Programs

• Addition of any text between adjacent modules (members of the same group of
modules).

• The setting of the INLINE block directive; you cannot change a regular procedure to
an in-line procedure, or vice versa, during a SEPCOMP.

Note: If the patch being compiled with SEPCOMP includes changes to an
area that are not omitted in the host, testing cannot be completed
until the patch is compiled with SEPCOMP and tested against
another host in which that area was included. Note that during
SEPCOMp, a warning is issued if the patch includes changes to
omitted areas.

During a SEPCOMP, NEWP reads the xref files for the HOST and uses any that are
present to recompile references to any changed or deleted declarations.

5044233-001 7-6A

Compiling NEWP Programs

7-68 5044233-001

Compiling NEWP Programs

To accomplish this, the compiler automatically looks for the following files:

XREFFILES/<hostname>/REFS
XREFFILES/<hostname>/DECS

If present, they are used to ensure that all references to changed and deleted
declarations are recompiled. If they are not present, you must follow the rules.listed for
changes at or below the SEPCOMP level.

When a patch to a declaration is encountered and the xref files are loaded, the old
declaration is compared to the new declaration. If the declaration has changed enough to
invalidate the references to the original declaration, the xref files are used to mark the
referenced lines. Each of these line~ is then recompiled. Some types of variables are not
yet supported in this implementation. These include format variables, type variables,
type declarations, translate tables, truthsets, files, and items in an export or interface
list. When the xref files are loaded and one of these declarations is changed, a warning
that the xref files were not used is generated, and the old SEPCOMP rules, shown in the
following guidelines, apply.

The following guidelines must be observed if the designated types of changes occur at or
below the SEPCOMP level and the xref files are not available. In most cases, you are
responsible for ensuring that specific areas are recompiled. One way to accomplish this is
to use the Editor command CHANGE to mark the specified lines as changed, even if no
actual change was made. Another method is to include a $% card in each region that
needs recompilation.

• If an identifier is deleted, you must ensure that all references to it are also deleted.
If all references are not deleted, a run-time error occurs when the code for the
undeleted reference is executed.

• If the type of an identifier is changed, or its declaration is moved from one region to
another, you must ensure that all references to the identifier are recompiled. If
this is not done, the host file will contain sections of code that handle the variable
according to the old type as well as code that generates code based on the new type.

• If the declaration of any of the following types of items is changed, you must ensure
that all references to the identifier are recompiled. If this guideline is not followed,
the resulting code file will not execute as expected, because some areas will use the
old definition of the item and some will use the new.

Value array

Array botulds

Constant

Define

File

In-line procedure

Translate table

Truthset

• In the MCP, ifa D[O] library EXPORT declaration is changed, you must ensure that
all procedures containing a FREEZE(MCP) statement are recompiled.

5044233.380 7-7

Compiling NEWP Programs

SEPCOMP MERGE

7-8

NEWP provides a capability known as SEPCOMP MERGE that allows a SEPCOMP to
be done, even when no complete symbolic exists. The need for SEPCOMl? MERGE
could arise in two different instances.

First, if a new symbol file is not created during the host compile, and a patch was
included in the compilation, then no symbol file exists that includes the patch.

Second, since a new symbol file cannot be created during a SEPCOMp, using the results
of a SEPCOMP as the host file for a later SEPCOMP leads to the same problem: no
symbol file exists that includes the patch originally compiled with SEPCOMP.

SEPCOMP MERGE is very similar to SEPCOMp, except that it creates a virtual symbol.
You provide two patch files: one patch that is used only to create a virtual symbo~
and one normal SEPCOMP patch that is used to determine which regions are to be
recompiled. Note that the virtual symbol patch does not need to be compiled, since it is
already part of the host file.

The SEPCOMP MERGE capability saves time because there is no need to compile over
and over again patches previously compiled with SEPCOMP. It is particularly useful
when several patches are developed that patch the same area Each one can be compiled
in turn with SEPCOMP and then can be used to create the virtual symbol when the next
patch is compiled with SEPCOMP.

The following WFL deck assumes that a second patch named MYPROGRAMJP ATCH/2
is developed for the example program discussed earlier. The second patch includes the
card $ SET SEPCOMPMERGE.

BEGIN JOB SEPCOMPMERGE;
TASK T;
COMPILE SYSTEM/MYPROGRAM/SEPMERGED WITH NEWP [T] LIBRARY;

NEWP FILE CARD (KIND = DISK, TITLE = MYPROGRAM/PATCH/2);
NEWP FILE SOURCEP (TITLE = MYPROGRAM/PATCH);
NEWP FILE HOST (TITLE = SYSTEM/MYPROGRAM/SEPCOMPED);

END JOB;

Because no title is equated for the TAPE file (base symbolic), the title stored in the host
file is used as the default. The actual patch (CARD file) is applied against the base
symbolic updated with the virtual source patch.

; .

The SOURCEP file is the patch that is applied first to the base symbolic to obtain the
virtual source. The title of this file can be provided as part of the control option, if
desired. In that case, the second patch should include the following and the file equation
to the SOURCEP file can be dropped from the WFL deck:

$ SET SEPCOMPMERGE "MYPROGRAM/PATCH"

A file title provided in this way has precedence over any file equation to the SOURCEP
file.

5044233.380

Compiling NEWP Programs

The SEPCOMP MERGE capability is subject to the same rules and guidelines listed
earlier for SEPCOMP.

Compiling for Syntax Only
WFL provides an option that can be used with some compilers to check only the syntax
of a source program. However, NEWP does the same work during a syntax compilation
as it does for any other type of compilation. The only difference is that the object file is
removed just before the compilation terminates. Therefore, there is no point in setting
this option in a NEWP compilation. For more information on compiling for syntax, see
the A Series Work Flow Language (WF'L) Programming Reference Manual.

5044233.380 7-9

7-10 5044233.380

Section 8
Compiler Controls

Compiler Control Options
Compiler control options in NEWP are similar in format and function to compiler
control options in ALGOL. A list of ALGOL compiler control options not recognized in
NEWP can be found in Appendix B, "ALGOL Features Not Implemented in NEWP."
Any compiler control option item not listed in this section can be used as a user-control
option. Option expressions are evaluated from right to left, unless parentheses are
used to force a particular evaluation order. The following features differ from those in
ALGOL:

• The specification of an option without including SET, RESET, or POP causes no
action other than setting that option. Standard options are not reset. For example,
$MERGE does not reset LIST. The CLEAR option, as shown in the following
example, can be used to reset all standard options:

$ MERGE
$ SET MERGE

$ CLEAR MERGE
$ MERGE

% IN NEWP HAS THE SAME EFFECT AS:
% IN ALGOL OR NEWP

% IN NEWP HAS THE SAME EFFECT AS:
% IN ALGOL

• The dollar sign ($) must appear in 'column 1, 2, or 3.

• The simple T ADS option and other compiler-provided Boolean options are
recognized as < option primary> s for use in option expressions. The following
expression with the use of AND sets the user option TADSLIST by including the
current values of the compiler options TADS and LIST:

$SET TAOS LIST = TAOS AND LIST

The ALGOL definition of < option primary> is extended as follows:

<option primary>

5044233.380

---r----r--r-<user opti on>---------r---I:
<Boo 1 ean opti on>--------1
<s i mp 1 e TAOS opt i on'>-------I
<TRUE>--..-----------I
FALSE>-----------1
*------------/
(-<option expression>-) -

8--1

Compiler Controls

ALGOL Options Duplicated in NEWP
The following compiler control options are implemented in NEWP exactly as they are in
ALGOL:

• AScn
• CODE

• DELETE

• ERRLIST, ERRORLIMIT, ERRORLIST

• INCLNEW, INCLSEQ, INCLUDE

• LIMIT, LINEINFO, LISTDOLLAR, LISTINCL, LISTOMITTED, LISTP

• MAP
• NEWSEQERR

• NOBINDINFO

• OMIT

• PAGE

• SEGS, SEQ, SEQUENCE, < sequence base>, < sequence increment>

• SHARING, STACK, STRINGS

• TARGET

• TIME

• < user option>

• VOIDT

Additional NEWP Options

ASD

8-2

The following options either are in ALGOL but are different in NEWP or are not in
ALGOL and have been added to NEWP.

- ASD -1

(Type: BOOLEAN,'Default: FALSE)

This option is meaningful only if you set the MCP or STANDALONE option. If you set
the ASD option, the code that is produced should be used only on a machine capable 'of
supporting Master Control Program/Advanced Systems (MCP/AS). If you also set the
MCP option, but not the ASD option, the resulting MCP can be used only on a non-ASD
system. This condition is enforced when an attempt is made to change MCPs using the
CM system command.

5044233.380

CLEAR

Compiler Controls

If you set both the ASD and STANDALONE options, the code can be used only on
a machine capable of supporting MCP/AS. The memory image that the compilation
produces in this case is tailored for ASD systems.

When the compiler control option ASD is set, memory access uses the Absolute Store
Reference Word (ASRW). This setting builds the ASRW for stand-alone programs.

This option can appear only before the first source statement.

- CLEAR-1

(Type: IMMEDIATE)

The CLEAR option resets all compiler-provided options that can be set.

INClllST
- INCLLlST -1

(Type: BOOLEAN, Default: FALSE)

This option is a synonym in NEWP for the LISTINCL option.

INSTALLATION
- INSTALLATION [=] <numeri c constant» ---------+

-+ E :. -<numeri c constant]

(Type: BOOLEAN, Default: FALSE)

When TRUE, the INSTALLATION option causes the compiler to recognize a group 9f
installation intrinsics so that they can be referred to in a NEWP program.

The < numeric constant> must be an unsigned integer from 1 through 2047. The first
numeric constant must be less than the second numeric constant. Numbers larger than
2047 are treated as if they were equal to 2047. Numbers less than 1 are treated as if
they were equal to 1.

INTERlOCKOPS
- INTERLOCKOPS -- = ~ HARDWARE]

L CONDITIONAL

(Type: VALUE, Default: CONDITIONAL)

You can use this option to specify that when the <lock function> or <unlock function>
is used, only hardware locking code is to be generated, or that the conditionaIlocking

5044233.380 8-3

Compiler Controls

LIST

LISTO

LISTl

8-4

code is desired. The HARDWARE option is effective only when the TARGET is
LEVELL If the TARGET is not LEVEL!, then INTERLOCKOPS = HARDWARE is
ignored. Conditional locking code is generated by default,so the CONDITIONAL option
explicitly states the default. This option can appear only before the first statement in
the program.

The HARDWARE option should be used only on machines that support the LOK and
UNLK operators.

The actual locking code generated depends on both the use of this control option
and the use of the INTERLOCKOPS block directive. The most local setting of
INTERLOCKOPS has precedence, regardless of whether the control option or the block
directive is used.

-- LIST I
[" --<fi 1 e name>-- II J

(Type: BOOLEAN, Default: FALSE for compiles originated in CANDE; TRUE
otherwise)

The LIST option in NEWP is identical to the LIST option in ALGOL except that NEWP
allows you to specify a file name, which is used to set the TITLE attribute of the file
LINE of the compiler. The < file name> must not include embedded quotation marks
(").

-- LISTO -/

(Type: BOOLEAN, Default: FALSE)

If LISTO is TRUE, all records from the secondary input file (TAPE) that are voided or
replaced and all records from the primary input file (CARD) that are omitted are printed.

-- LIsn
L " -<fi 1 e name>-- " -.J

(Type: BOOLEAN, Default: FALSE)

If LIST! is TRUE, a listing is produced during the first pass that the compiler makes
while it is compiling module headings. The LIST! option allows you to specify a file
name,' which is used to set the TITLE attribute of the file LINE! of the compiler. The
< file name> must not contain any embedded quotation marks (").

5044233.380

Compiler Controls

MAKEHOST

MCP

MERGE

- MAKEHOST ---1

(Type: BOOLEAN, Default: FALSE)

The MAKEHOST option in NEWP is similar to the MAKEHOST option in ALGOL. It
must be set before the first source statement. This option controls the collection of
information necessary for a SEPCOMP. When this option is set, compilation takes longer
and produces a larger code file than when it is reset. Therefore, the MAKEHOST option
should be set only when the result of the compilation is to be used as input to a later
SEPCOMP.

For more information about the use of this option and about SEPCOMP, refer to
Section 7, "Compiling NEWP Programs."

- MCP ---1

(Type: BOOLEAN, Default: FALSE)

The MCP option indicates whether the program being compiled is an MCP. If the MCP
option is TRUE, the compiler allocates the segment dictionary and global variables
at lexical level o. Also, the code file generated when this option is TRUE contains a
bootstrap in segment zero.

This option can appear only before the first source statement.

- MERGE --r-----------'T--I
[II -<fil e name>- •]

(Type: BOOLEAN, Default: FALSE)

The MERGE option in NEWP is identical to the MERGE option in ALGOL except that
NEWP allows you to specify a file name, which is used to set the TITLE attribute of the
file SOURCE of the compiler. The < file name> must not include embedded quotation
marks (").

MODSTRICT
- MODSTRICT ---1

(Type: BOOLEAN, Default: FALSE)

Setting the MODSTRICT option disables the automatic import of interfaces or
user-defined types and values. The MODSTRICT option can be set only before the first
source statement. This option controls automatic import of interfaces into module bodies
when the interfaces were explicitly imported into the corresponding module head. The
option also controls the automatic import of user-defined types and enumerated values

5044233-001 8-5

Compiler" Controls

NEW

into a module when only a variable or the user-defined type itself was explicitly placed
into the interface.

- NEW
L II -<fi 1 e name>-- II -1

(Type: BOOLEAN, Default: FALSE)

The NEW option in NEWP is identical to the NEW option in ALGOL except that NEWP
allows you to specify a file name, which is used to set the TITLE attribute of the file
NEWSOURCE of the compiler. The < file name> must not include embedded quotation
marks (").

NOCOUNT
- NOCOUNT -I

(Type: BOOLEAN, Default: FALSE)

The NOCOUNT option is used to control the accounting of statistical information when
the STATISTICS option is TRUE. IT NOCOUNT is TRUE at the end of the compilation
of a procedure, the compiler emits code to cause the statistics handlers not to add the
accumulated time for the execution of that procedure into the accumulated time for the
procedure that called it.

This option applies only to MCP gathering statistics.

PROCREF
- PROCREF -I

(Type: BOOLEAN, Default: FALSE)

If PROCREF is TRUE, each source record that references a procedure is listed with the
line number of the declaration of that procedure. IT the procedure body has not yet
been compiled, the line number of the FORWARD declaration of the procedure is listed,
preceded by an E IT LIST is FALSE, the setting ofPROCREF is ignored.

READLOCK

8-6

- READlOCK -I

(Type: BOOLEAN, Default: FALSE)

The READLOCK option, when TRUE, changes the value that th~ BUZZ and BUZZ47
intrinsies exchange with the contents of the variables specified in the BUZZ intrinsic.
Instead of exchanging a value of all zeros except for one bit, the BUZZ intrinsic with
READLOCK TRUE exchanges a modified Program Control Word (Pew) that identifies

5044233-001

Compiler Controls

the task, and location within the task, where the BUZZ task is being performed. The
following is an example:

[31:12]
[19: 3]

[16: 13]

[e: 1]

Stack number of the BUZZ task
Program Syllable Index for the location
at which the BUZZ appears
Program Word Index for the location
at which the BUZZ appears
(BUZZ) or [47: 1] (BUZZ47)
= 1, to lock the lock

In addition, if READLOCK is TRUE, the contents of the variable specified in the BUZZ
intrinsic, which were obtained during the first interchange operation, are left on the top
of the stack. for the duration of the BUZZ loop.

When the READLOCK and/or READLOCKTIMEOUT MCP compile time options are
set, diagnostic information is placed in the word used when performing a BUZZ task on a
lock. The format of that information is as follows:

~ G G
A A
R R

STACK N N
SOl PWI NUMBER

H L
I 0

r--- -
~ BIT

Figure 8-1. Diagnostic Information Format

The following is an explanation of the fields and bits of the word:

Field or Bit

Stack number

GARN

SOl and PWI

Lock bit

5044233~Ol

Contents

This field contains the value of the Stack Number Register (SNR), right
justified.

This field contains the Global Activation Record Name (GARN). The GARN
specifies the multiple MCP 01 activation records that contain the code
segment descriptor to which the SOl field refers. This 6-bit name is split
into two 3-bit fields. The high-order 3-bit field is in the GARN HI field, and
the low-order 3-bit field is in the GARN LO field. .

These fields contain the Segment Dictionary Index (SOl) of the code
segment and the Program Word Index (PWI) of the first operator of the
BUZZ intrinsic code, respectively. Note that the low-order bit of the PWI
field has been truncated to allow space for the lock bit.

This bit is a constant 1 and indicates the state of the hard lock. The
location and use of this bit is identical to previous implementations.

8-6A

Compiler Controls

8-68 5044233-001

Compiler Controls

READLOCKTIMEOUT
-- READLOCKTIMEOUT --1

(Type: BOOLEAN, Default: FALSE)

IfREADLOCKTIMEOUT is TRUE, the MCP procedure READLOCKTIMEOUT is
called whenever the BUZZ or BUZZ47 intrinsic returns the contents of the variable
specified in the BUZZ intrinsic with the tested bit (bit 0 or bit 47, respectively) equal to
1. If the option is FALSE, the BUZZ intrinsic loops internally.

SEPCOMP
-l.. SEPCOMP -,----------r---i

[II --<fH e name>- II J

(Type: BOOLEAN, Default: FALSE)

The SEPCOMP option allows you to use the separate compilation capability, thus
reducing the amount of time required to compile. This option must be set before the
first source statement. You can specify a file name, which is used to set the TITLE
attribute of the HOST file. The < file name> cannot include embedded quotation
marks (").

For more information about the use of this option, refer to Section 7, "Compiling NEWP
Programs." .

SEPCOMPMERGE

SINGLE

-- SEPCOMPMERGE ~--------..---I
[II --<fHe name>- II .J

(Type: BOOLEAN, Default: FALSE)

The SEPCOMPMERGE option allows you to use an extended form of the separate
compilation capability. This option should be used when no symbol file exists that exactly
matches the host file. You can specify a file name, which is used to set the TITLE
attribute of the SOURCEP file. The < file name> cannot include embedded quotation
marks ("). (

For more information about the use of this option and about the SOURCEP file, refer to
Section 7, "Compiling NEWP Programs."

-- SINGLE --1

(Type: BOOLEAN, Default: TRUE)

The < single option> causes the printout of a listing to be single-spaced. When the
< single option> is FALSE, the printout is double-spaced.

5044233--001 8-7

Compiler Controls

STANDALONE
- STANDALONE --r----------r--t:

L = ALPHA -----;

1 BETA
BETAINTERLEAVEO -
ASOX ------'

(Type: VALUE, Default: NONE)

STANDALONE is used to specify that a stand-alone memory image is to be generated
when the program is compiled. An example of a program requiring a stand-alone
memory image is SYSTEM/LOADER. To take effect, this option must be assigned a
value prior to the beginning of the program, and the MCP compiler control option must
be TRUE. When the MCP option is TRUE, the OUTERBLOCK segment descriptor is
placed at segment (0,5) by default (that is, unless overridden by a SEGMENT block
directive). If STANDALONE is set to BETA or BETAINTERLEA VED, the Actual
Segment Descriptor (ASD) or Actual Segment Descriptor Extended (ASDX) should also
be set. Otherwise, the resulting program cannot be executed.

The STANDALONE option causes the compiler to prepare a complete memory image of
the program so that the program is ready to rWl when loaded into the system (starting at
memory location zero). The maximum size of this memory image is 22,000 words.

The STANDALONE option implicitly resets the LINEINFO option. If the LINEINFO
option is subsequently set, an additional code file with a suffix of ILISTCODE is
generated. This file can be used by the Editor in conjunction with its LOAD CODE, GO
RCW, WHERE Rew, and LISTCODE commands.

When STANDALONE is used by itself and is ,not assigned a value, STANDALONE
assumes the value BETA if the ASD option is set. If ASD is reset, STANDALONE
assumes the value ALPHA. All other values must be specified explicitly.

When STANDALONE is specified to a setting of ALPHA, the compiler sets ASD equal to
FALSE. For all other settings of STANDALONE the compiler sets ASD equal to TRUE.
The compiler setting of ASD overrides the user's setting of ASD. This relationship
avoids the nonexecutable code files being generated by incompatible settingS for the two
options.

Depending on the value that is assigned to STANDALONE, different memory images
and code files are generated. The following items are common to all variants in the
memory image:

• The D[O] stack image

• .All code segments

• .All value arrays

• .All pool data items (for example, translate tables and truthsets)

• The storage space for all SAVE arrays declared at a D[O] location

• The proper entry PCW for the outer block at location (0,3)

• A memory descriptor at location (0,4)

8-8 5044233-001

Compiler Controls

The memory image does not include allocated data storage for any array declared within
a procedure or any D[O] array not declared to be either VALUE or SAVE. No errors or
warnings are given for these conditions, as it is assumed that you will provide a proper
presence-bit handling routine. No memory links are provided to separate any of the
allocated storage areas.

Depending on the value that is assigned to STANDALONE, the code file and memory
image generated by the NEWP compiler differ substantially.

• If STANDALONE is set to ALPHA, the code file format is as follows:

- A bootstrap is in· code segment O.

- A valid segment 0 (SEGO) is in code segment 1.

- The memory image starts in code segment 2 and continues to the end of the
file. The SEGO[18] word (the segment dictionary pointer) properly describes
the D[O] image. The SEGO[1].[23:4] (MCP/stand-alone type) field contains the
number 0, indicating a non-ASD code file.

• If STANDALONE is set to BETA, the code file format is as follows:

- A valid SEGO is in code segment o.
- An ASD table starts in code segment 1. The table is formatted as contiguous

vectors of ASD1, ASD2, and ASD3. Following the ASD table is the memory .
image.

- The SEGO[1].[23:4] (MCP/stand-alone type) field contains a 1, indicating anASD
code file that uses a 3-word linear ASD table.

• If STANDALONE is set to BETAINTERLEAVED, the code file format is the same
as that for BETA, except for the following:

- The ASD or ASDX table starts in code segment 1. The table is formatted as
interleaved vectors of ASD1, ASD2, ASD3, and ASD4, so that all ASD or ASDX
table elements for a given entry are contiguous rather than all ASD or ASDX
entries for a given element being contiguous.

- The stand-alone stack contains not only all D[0] variables, but also a correctly
formatted Dl frame with a Return Control Word (RCW) at the beginning of the
outer block on top of the stack. The Dl frame contains a properly formatted and
entered D1 Mark Stack Control Word (MSCW), a dummy Rcw, and two words
of zero before the Rcw. The Top of Stack Control Word (TOSCW) at the base of
the stack points at the RCW and the D1 MScw.

- The SEGO[1].[23:41 <MCP/stand-alone type) field contains a 2, indicating an ASD
or ASDX code file that uses a 4-word interleaved ASD or ASDX table.

• H STANDALONE is set to ASDX, the code file format is the same as for the
. BETAINTERLEA VED option, except for the following:

5044233-001

- All word formats found in the STANDALONE code file meet the MCP/AS
(Extended) specifications.

- The TOSCW and copy TOSCW in the base of the stand-alone stack contain an
MCP/AS (Extended) TOSCW word with the number 1 (SNR) in the [46:15]
field.

8-9

Compiler Controls

- The stand-alone stack contains not only all the D[O] variables but also a correctly
formatted Dl frame and D2 frame. The Dl frame contains an entered Dl
MSCW and a dummy Rcw. The D2 frame contains an entered D2 MSCW, an
RCW that points to the code stream. to be executed, and an FCW on top of the
stack.

- The SEGO[1].[23:4] (MCP/stand-alone type) field contains a 3, indicating a
MCP/AS (Extended) code file that meets all requirements for the code file to run
on an ASDX system.

The code file does not contain any SEPCOMP information, BINDINFO, or LINEINFO.
For information on BINDINFO and LINEINFO, see the A Series ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

If the STACK option is TRUE, the STANDALONE option prints a table of the code
segment descriptors and data descriptors in the D[0] location, indicating which
ones remain absent and showing the memory locations of the ones made present.
Additionally, if STANDALONE is set to BETA, BETAINTERLEAVED, or ASDX, the
ASD table is printed to indicate which ASDs are in use and to indicate their contents.

Note: STANDALONE = BETAINTERLEA VED must be used on the
Unisys A 17 system.

STATISTICS

8-10

- STATISTICS ~-------------,.---I

L (l' [LABELSr-> J
t: ~~~E~ PBITS

(Type: BOOLEAN, Default: FALSE)

When the MCP option is FALSE, the STATISTICS option functions exactly as it does in
ALGOL, with the following exceptions:

• When the STATISTICS option is TRUE, the NOBINDINFO option is assigned the
value TRUE. A warning is given.

• When the STATISTICS option is TRUE, the MAKEHOST option is assigned the
value F ALBE. A warning is given.

• When the TADS option is TRUE, the STATISTICS option cannot be assigned the
value TRUE. A warning is given.

• Statistics are not generated separately for in-line procedures, but are included with
the normal statistics gathering for the procedures in which they are invoked ..

When the MCP option and the STATISTICS option are TRUE, the code to accumulate
MCP statistics is added to each procedure entry, exit, and invocation. The code
consists of calls on procedures at fixed address couples; these procedures accumulate
the statistical information and must be declared in the MCP. Calls on the statistics
procedures are also emitted at the entry ,and exit of each block in which the block
directive STATSUMMARYappears.

5044233-001

TAOS

Compiler Controls

The LABELS and PBITS options do not apply to MCP statistics and are therefore
ignored when the MCP control option is set.

The STATSUMMARY block directive applies to MCP gathering statistics only.

- <simple TAOS option> ----------------+

· [(4 /1\- FREQUENCY')]
/1\- REMOTE -<file identifier~

<simple TAOS option>

- TAOS --1

(Type: BOOLEAN, Default: FALSE)

When the TADS option is set, special debugging code and tables are generated as part of
the object code file. The use of the TADS option is incompatible with the use of certain
other options, including MCp, SEPCOMP, and STATISTICS.

Caution

Use caution when you run the TAOS option on a program that contains
UNSAFE blocks. Avoid stepping through or executing breakpoints in unsafe
CONTROLSTATE blocks, as this can cause the running program to lose
CONTROLSTATE.

The semantics for this option are the same as for ALGOL, with the exception that the
TADS option is supported only for ALGOL type constructs in NEWP.

UNDERLINE
- UNDERLINE --1 .

(Type: BOOLEAN, Default: FALSE)

If UNDERLINE is TRUE, all procedure names in procedure decJara.tions are underlined
on the output listing. The setting of the UNDERLINE option is ignored if the IJST
option is FALSE.

5044233-001 8-11

Compiler Controls

VERSION

VOID

8-12

- VERSION -<release number>- • -<cycle number>- • -----+
-+-<patch number>::>----------------------t

(Type: VALUE, Default: 00.000.000)

The < version option> enables you to specify a version number for a source program
or to replace an existing version number. Each occurrence of the < version option> in
the CARD file updates the value of the version number. A warning is issued if the new
version number is lower than the old version number.

If the current value of the version number is 00.000.000, the version number is set to the
value specified by the < version option>. Otherwise, the occurrence of the < version
option> is updated with the current value of the version number.

The updated record then replaces the original SOURCE record in the NEWSOURCE
file (if the < new option> is TRUE) and in the program listing (if the control option
LISTDOLLAR is TRUE or if the compiler control record begins in column 2 or 3). A
warning is issued if the current value of version number is lower than the value originally
specified by the < version option> .

Note: All occurrences of < version option> in INCLUDE files are ignored.
Unpredictable results occur if you attempt to specify a version number
that exceeds 99.999.9999.

During a compilation, the current value of each component of the version number can be
accessed through the arithnietic functions COMPILETIME(20), COMPILETIME(21),
and COMPILETIME(22), which return the release, 'cycle, and patch numbers,
respectively.

- VOID --I

(Type: BOOLEAN, Default: FALSE)

If the < void option> is TRUE, all input other than compiler control records from the
SOURCE and CARD files is ignored by the compiler until the VOID option is disabled
The ignored input is neither listed nor included in the updated symbolic file, regardless of
the values of the < list option> and the < new option>. Once the VOID option is set to
TRUE, it can be recalled using RESET or POP in a compiler control record in either the
SOURCE or CARD file.

5044233-001

XREF

Compiler Controls.

-- XREF ~

(Type: BOOLEAN, Default: FALSE)

Cross-reference generation is performed by the NEWP compiler itself and is controlled
by two compiler options, XREF and XREFFILES. IT XREF is TRUE, a cross-reference
listing is produced (the listing is written to the file XREFLINE). If XREFFILES
is TRUE, cross-reference files are generated. These options can be set or reset
independently of each other.

Alternatives within modules are cross-referenced in the same manner as modules are
cross-referenced. IT a procedure has its FORWARD declaration withiri a module- but
outside any alternatives-and its actual body is in each alternative, each alternative
procedure body is cross-referenced as an alias of each of the other alternative procedure .
bodies.

Summary information, including the number of references and sort times, is printed if
either XREF or both XREFFILES and TIME are set.

XREFFILES

$

-- XREFFILES --1

(Type: BOOLEAN, Default: FALSE)

XREFFILES controls the generation of cross-reference information in disk file form .. For
more information, see "XREF" earlier in this section.

--$-1

(Type: BOOLEAN, Default: FALSE)

If both the LIST option and the $ option are TRUE, the printer listing includes all
compiler control options. If the LIST option is TRUE but the $ option is FALSE, only
compiler control records with an initial dollar sign ($) in any column from 2 through 72
appear in the printer listing. If the LIST option is FALSE, the value of the $ option is
ignored. The $ option can appear only in columns 4 through 72, inclusive. The control
option LISTDOLLAR is the preferred synonym for the $ control option.

5044233-001 8-12A

Compiler Controls

8-128 5044233-001

Block Directives
--[

<construct>

--(

Explanation

.
ACE -- = --<integer' . ASOSP

CONTR
FIRST
FIRST
INHER
INLIN
INTER

OLSTATE
FREE00CELL -- = --<integer
SEGOESC -- = --<integer
ITSTATE
E
LOCKOPS -- = ~ HARDWARE

CONDITIONAL -
MEMIMA
NORAN
NORMA
PROTE
RANGE
SAFE
SEGME

GEBOUNO -- = --<integer
GECHECK
LSTATE
CTED
CHECK

NT
~ = --<procedure ;dent;f;er>-

= --<segment identifier>---
= --<i nteger'

NTLEVEL -- = --<integer' SEGME
SEPCOM
STATS

PLEVEL -- = --<integer'
tM1ARY

arge
UNSAF

t option'
E-- --<construct>--

Compiler Controls

I]~

Through the use of block directives, you can control segmentation, the use of potentially
dangerous constructs, and other compilation concerns. Block directives can occur inside
brackets immediately after any BEGIN statement. In the following discussion, the word
block is used for the concept of block or procedure.

In general, block directives are inherited by nested blocks unless overridden by block
directives appearing in the nested blocks. However, CONTROLSTATE is inherited only
by blocks, not by procedures.

5044233-001 8-13

Compiler Controls

Example

BEGIN [SEGMENT=OUTERBLOCK, SEPCOMPLEVEL=5]

PROCEDURE P(X);

END.

VALUE X; REAL X;
BEGIN
[UNSAFE(MEMORY,WORD),SEGMENT=5,CONTROLSTATE]

END P;

The following keywords are recognized as directives to the compiler.

ASDSPACE

The < integer> specifies the number of ASDs to be allocated in addition to the
preallocated data and code segments and reserved ASD slots. Additional ASDs are
necessary for any program that contains arrays. The default number of additional ASDs
allocated is 0 (zero).

CONTROLSTATE

This directive can be used when the block must be run in control state.
CONTROLSTATE is inherited by all nested nonprocedure blocks, except those explicitly
specifying NORMALSTATE. It is not inherited by procedures, including in-line
procedures.

Explicit use of the CONTROLSTATE block directive causes the block to be a new
environment, resulting in the usual limitations: a GO TO statement from outside the
block cannot branch to a label within the block, and a GO TO statement to a label
outside the block is considered a bad GO TO. All bad GO TO statements outside of a
CONTROLSTATE block cause a loss of control, even when the statements are branching
to another CONTROLSTATE block.

If the CONTROLSTATE block directive is used, the code file is marked as
nonexecutable and unsafe.

FIRSTFREEDOCELL

8-14

FIRSTFREEDOCELL specifies the first location (displacement) at lexical level 0 that
can be allocated freely by the compiler. Locations below the FIRSTFREEDOCELL are
reserved and can be allocated by means of an address equation.

The default value of FIRSTFREEDOCELL is 10 (decimal), and it cannot be assigned a
value less than 10. FIRSTFREEDOCELL is valid only when the MCP compiler control
optio~ is TRUE and only in the outer block of the program.

5044233-001

Compiler Controls

FIRSTSEGDESC

FIRSTSEGDESC is valid only for the outer block of a program being compiled with
the MCP compiler control option set to TRUE. FIRSTSEGDESC accepts a constant
integer value. The < integer> is used as the D[O] location where allocation for segment
descriptors is to begin (similar to the ALGOL SEGDESCABOVE compiler control
option).

When this directive is set, segment descriptors (except those declared by an explicit
SEGMENT declaration) are placed at D[O] locations, starting at FIRSTSEGDESC and
proceeding to higher addresses. All other items placed in the D[O] stack are allocated as
usual, starting at FIRSTFREEDOCELL.

If, in the course of compilation under this block directive, the allocation point for normal
items (not segment descriptors) reaches the beginning of the segment descriptors, a
warning is issued and all further D [0] allocation occurs above the area currently occupied
by segment descriptors.

The MAKEHOST/SEPCOMP facilities in NEWP preserve the allocation points from
the host and continue allocation in the same way. The BINDER adds only segment
descriptors to the D[O] location and always adds them to the end, or top. The BINDER
also preserves the MAKEHOST information for the SEPCOMP of a bound host.

FIRSTSEGDESC is designed to relieve crowding in the addressable portion of the
D[O] stack, to allow adding new variables to the D[O] stack during a SEPCOMP, and to
encourage breaking up of large MCP code segments to improve memory utilization.

This block directive allows items that must be addressed from lexica1levels higher than 1
to be given stack addresses that·are visible from those higher lexica1levels, even if the
items are added by a separate compilation. The value given for FIRSTSEGDESC should
be high enough to allow some spare D[O] cells below the segment descriptors. No benefit
results from using a value higher than 4096.

INHERITSTATE

INLINE

INHERITSTATE is allowed only for in-line procedures. It specifies that each invocation
of the in-line procedure should run in the CONTROLSTATE/NORMALSTATE
environment of the invoking code.

INLINE specifies that the procedure is to be compiled as an in-line procedure. For more
information, see "In-Line Procedures" in Section 4, "Declarations."

INTERLOCKOPS

This block directive can be used to specify that when the < lock function> or < unlock
function> is used, only hardware locking code is to be generated, or that conditional
locking code is needed. The INTERLOCKOPS = HARDWARE option takes effect

5044233.380 8-15

Compiler Controls

only when the TARGET is LEVELl. HTARGET is not LEVELl, the block directive is
~ored. .

The HARDWARE option should be used only when the code file is to be run on a
machine that supports the LOK and UNLK operators.

The INTERLOCKOPS block directive is inherited, and conditional locking code
is generated by default. The CONDITIONAL option is required only when the
HAiIDw ARE option is set and conditional code is needed for a block that would normally
inherit the HARDWARE option.

The actual locking code generated depends on both the use of this block directive
and the use of the INTERLOCKOPS control option. The most local setting of
INTERLOCKOPS has precedence, regardless of whether the block directive or control
option is used.

MEMIMAGEBOUND

, MEMIMAGEBOUND specifies the maximum size allowed for the memory image of
a starid-alone program. If the size of the memory image exceeds the size specified by
the block directive, a syntax error is given. This block directive is allowed only for the
outer block and can be used only if the compiler control option STANDALONE is set. If
the MEMIMAGEBOUND block directive is not used, the maximum size allowed for a
memory image is 8192 words.

NORANGECHECK

When this directive is used, dynamic range checking for scalar types and sets, which is
done by default, is disabled in the block. Code is not emitted to check ranges at run
time.

Dynamic range checking can be enabled for a block nested within this block through the
use of the block directive RANGECHECK.

When the NORANGECHECK block directive is set, range checking code is not emitted
for the DIGITS phrase of the REPLACE statement. You should verify that the
< arithmetic expression> that provides the number of digits is in the range 0 through
24. In addition, no dynamic range checking is done for user-defined scalar types and sets.

NORMALSTATE

8-16

The block is run in normal state by default, unless nested in other blocks for which the
CONTROLSTATE block directive is specified. Explicit use of the NORMALSTATE
block directive causes the block to be a new environment, resulting in the usual
limitations: a GO TO statement from outside the block cannot branch to a label within
the block, and a GO TO statement to a label outside of the block is considered a bad GO
TO.

5044233.380

Compiler Controls

PROTECTED
PROTECTED is valid only for an EXCEPTION PROCEDURE and is not inherited.
This block directive indicates that the EXCEPTION PROCEDURE is protected from an
entire class of interruptions,' when it is invoked automatically by the system.

Interruptions from which the EXCEPTION PROCEDURE is protected include software
interrupts, a DS system command, a STOP command, and stack stretching. You should
be particularly aware of the system's inability to stretch the stack during execution of a
protected EXCEPTION PROCEDURE. Use of this block directive makes the code file
unsafe and nonexecutable.

For more information about EXCEPTION PROCEDURES ~d the way in which
they can be invoked, see "EXCEPTION PROCEDURE Declaration" in Section 4,
"Declarations. "

RANGECHECK

SAFE

This block directive is used to enable dynamic range checking for scalar types and sets.
Code is emitted to check ranges at run time.

Dynamic range checking is done by default for scalar types and sets. The block directive
RANGECHECK is necessary only to enable range checking within a block for which
range checking has been disabled by the block directive NORANGECHECK.

The compiler generates syntax errors for all UNSAFE constructs used in this block,
except those enabled by subsequent UNSAFE specifications. Such syntax errors are
generated by default, and this directive is necessary only to enable the unsafe feature
checking within a block for which the checks have been disabled by the block directive
UNSAFE.

SEGMENT
Segmentation information for the block can be specified by one of the following phrases:

• SEGMENT

Makes a new segment.

• SEGMENT < procedure identifier>

Adds the code for this block to the segment that contains the specified procedure.
The < procedure identifier> must have appeared previously in a PROCEDURE
declaration or a < forward procedure declaration> .

• SEGMENT < segment identifier>

5044233.380

Adds the code for this block to the segment associated with this segment name. The
< segment identifier> must have appeared previously in a SEGMENT declaration.

8~17

Compiler Controls

• SEGMENT < integer>

Adds to the segment number < integer> .

SEGMENTLEVEL

The SEGMENTLEVEL block directive specifies the highest lexical level at which
procedure declarations cause the compiler to generate a separate code segment. At
lexical levels higher than the specified < integer> , procedure declarations are compiled
into the code segment of their containing block or procedure (unless overridden by a
SEGMENT block directive). For example, SEGMENTLEVEL = 2 causes all procedures
declared at or below lexical level 2 to ~e put in separate code segments; all procedures
declared above level 2 are, by default, compiled into the same segment as the block or
procedure in which they are declared. The default SEGMENTLEVEL is 15.

SEPCOMPLEVEL

The SEPCOMPLEVEL block directive is valid only when MAKEHOST or SEPCOMP
is also set. This block directive specifies the highest lexical level at which information
is collected for use during a SEPCOMP. When the MCP option is reset, the default
SEPCOMPLEVEL is 2. When the MCP option is set, the default is 0 (zero).

For more information about this block directive, refer to the Section 7,"Compiling
NEWP Programs."

STATSUMMARY

The STATSUMMARY block directive causes the compiler to emit calls on the statistics
procedures at the entry and exit of the block in which the directive appears. For more
information, refer to "STATISTICS" earlier in this section.

Compound statements that specify STATSUMMARY are treated as blocks, or new
environments.

<target option>

This compiler control option can also be used as a block directive. The < target option>
specifies the computer family for which the generated .code is to be optimized. There is
no code generated to verify that the machine on which the code is running is compatible
with the code generated.

Note: Use of this construct is considered safe as long as none of the
families is incompatible with the compilation option. See the
A Series ALGOL Programming Reference Manual, 'Volume 1: Basic
Implementation for a description of the compiler control option. If
this use is not considered safe, then UNSAFE(MACHINEOPS) must
be in effect. Without the UNSAFE declaration, an error is issued.

8-18 5044233.380

Compiler Controls

UNSAFE

UNSAFE specifies that certain potentially dangerous constructs can be used in the
block. UNSAFE is inherited by nested blocks and procedures. The following keywords
are used to specify the particular type of unsafe constructs permitted.

Keyword

DESCRIPTOR

FORK

MACHINEOPS

. MEMORY

MISC

REFERENCE

REGISTERS

UPLEVEL

WORD

5044233.380

Table 8-1. Unsafe Constructs Permitted

Unsafe Construct

Allows the DESCRIPTOR data type, DESCRIPTOR expressions, and
DESCRIPTOR type transfer function.

Allows FORK statements and PROCESS statements.

Allows the FLOAT option in the REPLACE statement and the use of the
intrinsics requiring MACHINEOPS, which are listed in "Intrinsics (UNSAFE)"
in Section 9, "UNSAFE Mode."

Allows the MEMORY array intrinsic.

Allows address equations, NULL as a <procedure body>, <option list>s
on WAIT and WAITANDRESET statements, the OVERWRITE option on the
REPLACE statement, SAVE ARRAY declarations, extensions to the
SETACTUALNAME function, and the following intrinsics: BUZZ, BUZZ47,
DAWDLE, LEXLEVEL, and LEXOFFSEt

Allows the REFERENCE TO intrinsic, VIA intrinsic, and AT intrinsic.

Allows the REGISTERS intrinsic and the DLL intrinsic.

Allows up-level pointer aSSignments and up-level procedure reference
assignments.

Allows the WORD data type, WORD type transfer function,
POINTER«word expression», and TAG.

8-19

8-20 5044233.380

Section 9
UNSAFE Mode

Some constructs that are required in order to perform hardware-related functions are
considered unsafe for general use. NEWP requires you to specify when and which
unsafe constructs are to be used. You can make this specification on a block-by-block
basis through the use of the UNSAFE block directive. For more information on block
directives, see "Block Directives" in Section 8, "Compiler Controls."

Declarations (UNSAFE)
Two additional data types are available in UNSAFE mode: DESCRIPTOR and WORD.
In addition, address equation, NULL procedures, SAVE arrays, and special uses of
segment identifiers are allowed in UNSAFE mode.

Address Equation
<equation part>

-- = tidentifier>
L- + --<unsigned integer> =J

address couple>
INTRINSIC -- (----<installation>---- • ----<;ntr;nsic>--)

<address couple>

-- (..... <lexical level>-- • ----<displacement>----) --i

<lexical level>

L<~nsigned integer~

<displacement>

----<unsigned integer>--1

<installation>

-- <unsigned integer> --i

<intrinsic>

-- <unsigned integer> --i

Explanation

Address equation in NEWP is much more powerful than in ALGOL and is allowed only
in UNSAFE(MISC) mode. In declarations of variables, procedures, and arrays, the
identifier being declared can be followed by the < equation part>. Address equation to
call-by-name parameters is not allowed.

5044233.380 9-1

UNSAFE Mode

9-2

If you use the = < identifier> form of address equation, the item being declared is
assigned the same address as the identifier following the equal sign. The identifier
must have been declared previously and must have an associated stack address. If the
identifier is followed by the + < unsigned integer> syntax, the item being declared is
assigned to the address at the same lexical level as the specified identifier. However, the
declared item has a displacement that is < unsigned integer> words higher in the stack;
the unsigned integer must be in the range 1 through 15.

Note: If the identifier that specifies the address is a call-by-reference
parameter, the identifier being declared is assigned the address of the

. formal parameter, not the actual parameter.

You can use the < address couple> form of address equation to specify directly the
lexical level and displacement to be assigned to the item being declared. If you specify
the < lexical level > as a simple unsigned integer, the item is assigned an address at that
lexical level; the Wlsigned integer specified must be less than or equal to the current
lexical level. If you specify the lexical level with an asterisk (*), the item is assigned an
address at the current lexical level. The < displacement> determines the offset of the
item within the specified lexica1level.

For non-MCP programs, the INTRINSIC form of address equation allows direct access to
a stack cell containing an intrinsic descriptor for the appropriate intrinsic. If the intrinsic
has already been referred to, the existing address is used. Otherwise, a new cell is
allocated and initialized with the appropriate intrinsic descriptor.

Note: Most uses of the EVENT declaration, other than those allowed by
ALGOL, might be incompatible with a change to the format of events.
For example, neither of the following is acceptable:

• The use of a variable declared by address equation to an EVENT
or an EVENT ARRAY, for example:

EVENT E; DOUBLE 0 = E; 0:=0;

• The use of an EVENT or EVENT ARRAY declared by address
equation. For example:

DOUBLE 0; EVENT E = 0; CAUSE(E); .

For more information on EVENT declaration, see the A Senes ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

Examples

BOOLEAN BCOUNTER = (3,92);
ARRAY COUNTS = BCOUNTS [0];
INTEGER PROCEDURE COUNTONE = (*,15) (P1,P2);

5044233.380

UNSAFE Mode

DESCRIPTOR Declaration
<descriptor declaration>

r+-- t

-- DESCRIPTOR ~descriptor identifier>
L.<equation part~

<descriptor identifier>

--<identifier>--1

Explanation

Variables of type DESCRIPTOR are used to store original or copy descriptors. Simple
variables of type DESCRIPTOR are declared in a DESCRIPTOR declaration. Arrays,
procedures, and formal parameters can also be specified as type DESGRIPTOR. All uses
of type DESCRIPTOR require the block directive UNSAFE(DESCRIPTOR).

Before being assigned a value, descriptor variables contain the uninitialized operand
value: all zeros with a tag of 6. If a descriptor variable is referenced while it is
uninitialized, an INVALID OPERAND fault occurs. Descriptor variables are accessed
with the LOAD (as opposed to the LODT) operator. When a descriptor is evaluated,
copy-bit action occurs if the target is a data descriptor.

The type transfer function DESCRIPTOR can be applied to both WORD variables and
arrays. Implicit type transfers, or coercions, allow array references to be assigned
from DESCRIPTOR values and DESCRIPTOR data types to be assigned from array
references or arrays. The same coercions are applied between formal and actual
parameters. WORDs and DESCRIPTORs are mutually coerced.

An array or DESCRIPTOR can be passed by-value to a formal parameter of type
DESCRIPTOR. In either case, a copy descriptor is passed, and the original descriptor
cannot be modified through the formal parameter.

If an array or DESCRIPTOR is passed by-reference to a formal parameter of type
DESCRIPTOR, a reference to the one-word descriptor for the array (that is, a Stuffed
Indirect Reference Word (SIRW) or indexed data descriptor to the descriptor) is passed.
In this case, the descriptor itself is the object and can be modified directly.

If an array is passed by-reference to a formal array parameter, the compiler ensures that
the formal and actual parameters have the same number of dimensions and then passes
a copy descriptor.

For information on descriptor declarations, see "WORD Declaration," "DESCRIPTOR
Expressions," and. "Intrinsics (UNSAFE)" later in this section.

5044233.380 9-3

UNSAFE Mode

PROCEDURE Declaration
<procedure declaration>

-r----------r- PROCEDURE -<procedure headi ng>- ; ---~
~procedure type~

~-.-<procedure body>
L NULL ------'

Explanation

In UNSAFE(MlSC) mode, a < procedure body> can be specified as NULL. The
procedure being declared must be address-equated. A null procedure declaration
defines a calling sequence, but has no associated code. Before calling such a procedure,
a Program Control Word (PCW) or a reference to a PCW must be provided at the
address-equated location. For information on procedure declarations, see" Address
Equation" earlier in this section.

SAVE ARRAY Declaration
<save array declaration>

---- SAVE --<array declaration>--1

Explanation

In UNSAFE(MISC) mode, arrays can be declared SAVE, which causes the compiler to
mark the arrays so that they cannot be overlaid.

SEGMENT Declaration

9-4

<segment declaration>
- SEGMENT _____________ .,--_____ ----:;;0....._-+

~<segment identifier>
L<segment equate~ ~segment MPCWSDI~

<segment equate>

---- = -<00 address couple>--1

<00 address couple>

---- (---- 0 ---- • --<00 di sp 1 acement>-) --f

<00 displacement>.

---- <unsigned integer> --1

<segment MPCWSDI>

---- [- MPCWSDI - = -<address couple>-] --1

5044233.380

UNSAFE Mode

Explanation

In UNSAFE mode, segment identifiers can be used in address eqUations. For more
information, refer to "Address Equation" earlier in this section. In addition, a < segment
identifier> can be address-equated itself, but only to a literal < address couple> with
lexical level 0 and displacement less than the FIRSTFREEDOCELL.

The < segment MPCWSDI> construct can be used to specify the Segment Dictionary
Index (SDI) value used for Make Program Control Word (MPCW) operators that are
generated during stack building code for the < segment identifier> .

A < segment identifier> can be used as the parameter to the LEXOFFSET intrinsic
and as the < address primary> in the < type> AT < address primary> construct. For
more information, see "Intrinsics (UNSAFE)" later in this section and "SEGMENT
Declaration" in Section 4, "Declarations."

Examples

SEGMENT SEGI = (B,l) % legal
SEGA = (B,lBBB), % syntax error if 100B is

% above the FIRSTFREEDBCELL
SEGB = {l,2}, % syntax error because it's

% not at lex level 0
SEGC = REALID; % syntax error because it's

% relative, not absolute,
% address equation

SEGMENT GETITGOING_SEG [MPCWSDI =(0,l)];
PROCEDURE GETITGOING;

BEGIN [CONTROLSTATE, UNSAFE (MEMORY), SEGMENT=GETITGOING_SEG]
END GETITGOING;

WORD WSEGI = SEGl; % legal
REALID := LEXOFFSET{SEGl);
WORDID := WORD AT SEGl;

WORD Declaration

. - WORD ~<word identifier>
L<equation part~

Explanation

Type WORD is used for transparent examination and manipulation of arbitrary bit
patterns, including machine control words. A value of type WORD is treated as an
entity with 48 bits of data plus tag information, with no additional type significance.
When values of type WORD are evaluated, the exact bit pattern in memory is returned.
No copy-bit action occurs if the word accessed is a descriptor, and the second word is
undefined if the word is Part of a double-precision operand.

Simple variables of type WORD are declared in a WORD declaration. Arrays,
procedures, and formal parameters can also be specified as type WORD. All uses of type
WORD require the block directive UNSAFE(WORD).

5044233.380 9-5

UNSAFE Mode

Variables of type WORD are stored with overwrite operators and are accessed with
the LODT operator. For information related to WORD declaration, see "WORD
Expressions" later in this section.

Note: Most uses of the EVENT declaration, other than those allowed by
ALGOL, might be incompatible with a change to the format of events.
User programs should avoid the implicit coercion of an EVENT or
EVENT ARRAY element to a WORD, whether by direct assignment or
as an actual parameter passed to a formal parameter of type WORD.

Statements (UNSAFE)
The FORK statement is available in UNSAFE mode. In addition, extensions to the
PROCESS, REPLACE, and WAIT statements are ~owed.

FORK Statement
<fork statement>

-- FORK --<procedure invocation statement>-- [~

-+-<arithmetic expression>--. --<arithmetic expression>-- t ~

~-<arithmetic expression> L . . ;oJ]
t --<polnter expressl0n

Explanation

The FORK statement is used in the MCP to initiate independent runners. The
< procedure invocation statement> specifies the procedure to be initiated and its actual
parameter list.

The parameters in brackets are passed to the MCP procedure FORKHANDLER, which
interprets these parameters as the box number of the box in which the task is to run,
the size of the stack in which the task is to M.Ul, the priority of the task, and if the last
parameter is present, the name to be displayed in the system mix entry for the task.
The name defaults to the < procedure identifier> if the last parameter is omitted. Note
that on an ASD system the box nUmber is ignored.

The FORK statement is allowed only in UNSAFE (FORK) mode, and when the MCP
dollar option is set and the STANDALONE option is not.

PROCESS Statement

9-6

The PROCESS statement is implemented with the same syntax as in ALGOL. You
cannot invoke in-line procedures with a PROCESS statement.

The use of this construct requires the UNSAFE (FORK) block directive. In addition,
unlike the ALGOL implementation, you must establish and maintain the necessary
critical block linkages between the parent and any processed tasks.

5044233.380

UNSAFE Mode

REPLACE Statement

OVERWRITE Option

<unit count>

- FOR -<arithmetic expression>->-.-------.---4

t ~~~~~Rrn-J
Explanation

In NEwp, the OVERWRITE option of the REPLACE statement is allowed in
UNSAFE(MISC) mode. OVERWRITE appears in place of the WORDS specification in
the syntax for < unit count> .

The default unit size for the < replace statement> is expressed in characters. WORDS
and OVERWRITE both indicate writs of one word. OVERWRITE also overrides
memory protection (odd tags) on both the source and the destination and suppresses
memory parity errors on any prior contents of the destination.

FLOAT Option

<transfer part>

-- FOR -<length>-- WITH --<edit micros>--1

<length>

--<arithmetic expression>--1

<edit micros>

~ INSERT - (--<insert character>--) =r--1
L FLOAT -<FLOAT parameters>->-----......

<FLOAT parameters>

-- (-<insert character>-- • --<float character>--) --1

<float character>

-<EBCDIC constant>--1

Explanation

In UNSAFE(MAClllNEOPS) mode, the FLOAT option is allowed as an extension
to the < transfer part> of the REPLACE statement. In contrast, INSERT does not
require UNSAFE mode. The INSERT option is described in "REPLACE Statement" in
Section 5, "Statements."

Like INSERT, the FLOAT option replaces the leading zero character. In addition, < float'
character> is inserted in the destination string before the first nonzero character
transferred from the source. If the source string consists of the number of zeros defined
in the < length> construct, only that number of insert characters is transferred to the
destination string. No characters are transferred if < length> is zero or less.

5044233.380 9-7

UNSAFE Mode

The source and destination pointer expressions must denote 8-bit characters.
Furthermore, the resulting destination string is undefined if the source string contains
characters other than the EBCDIC digits 0 through 9.

WAIT and WAITANDRESET Statements

9-8

<wait statement>

--r WAIT ----r-..,..-------------..------+
L WAITANDRESET ~ L [-<wait option list>-]]

-+- (-<wait parameter list>-) -------------1

<wait option list>

~
.

/1\--r DSABLE
L NOTDSABLE

/1\1 SWAPNOW
DELAYSWAP
NOSWAP

Explanation

In UNSAFE(MISC) mode, the WAIT and W AITANDRESET statements can include an
< option list> to specify whether the waiting process can be terminated by a DS system
command or be swapped out while waiting. The following options can be included in the
option list:

• DSABLE: This option causes the process not to wait if it is already terminated by a
DS system command and not to continue to wait if it is externally terminated by a
DS system command while waiting. The value returned by the WAIT function (if it
occurs in an arithmetic expression) is zero in either- case.

• NOTDSABLE: This option causes the process to wait even if it is or becomes
terminated by a DS system command.

• DELAYSW AP: This option causes the process to be swapped out if it waits longer
than an interval defined by the MCP.

• SWAPNOW: This option causes the process to be swapped out as soon as the waiting
starts.

• NOSW AP: This option forces the process not to be swapped out while waiting.

IT an· < option list> is not given, default values are assigned according to the type of
process. System processes (D[O] and pseudo D[O] relative code) default to NOTDSABLE
and NOSWAP. User processes default to DELAYSWAP and DSABLE if the processes
are not already terminated by a DS system command. If the process has already been
terminated by a DS command, it must wait.

5044233.380

UNSAFE Mode

Expressions and Functions (UNSAFE)
The expressions and functions described in this section are allowed in UNSAFE mode.

DESCRIPTOR Expressions
<descriptor expression>

~<simple descriptor expression>
L-<conditiona1 descriptor expression~

<simple descriptor expression>

--<descriptor primarY>--1

<descriptor primary>

1
<descri Ptor variable

L- := --<descriptor expression>­
<descri ptor function des i gnator>----------~

(--<descriptor expression>--)
<descri ptor case express i on .. >-------------J

<descriptor case expression>

--<case head>-- (-I:<descriptor ~xpression>=1-) --1

<conditional descriptor expression>

J
I

--<i f c1 ause>--<descri ptor expressi on>-- ELSE ---------+~

-+-<descri ptor express i on>-> -----------------1

Explanation

DESCRIPTOR expressions generate values of type DESCRIPTOR. UNSAFE
intrinsic functions that return values of type DESCRIPTOR include DESCRIPTOR
AT < address primary> , the DESCRIPTOR type transfer function, and
DESCRIPTOR VIA < word primary>. Descriptor expressions are valid only in
UNSAFE(DESCRIPTOR) mode.

For information related to DESCRIPTOR expressions, see "DESCRIPTOR Declaration"
and "Intrinsics (UNSAFE)" in this section.

SETACTUALNAME Function
<setactualname function>

5044233.380

-- SETACTUALNAME -- (]librar.r ent~Yl?oint identifi

3
er • --+

array , dent' f1 er>>-------~
file identifier>->--------f

<formal procedure identifier

~-<pointer expression>--) ------------------1

9-9

UNSAFE Mode

Explanation

In UNSAFE (MIS C) , a < file identifier> , an < array identifier>, or a procedure
identifier that is a formal parameter can be used as an alternative to the < library
entrypoint identifier>. However, you must ensure that the file, array, or formal
procedure is a library object.

SIZE Function
<size function>

---- SIZE - (-garray designator>-----------..-) -I
<procedure reference array designator
<descri ptor express i on >--------1
<word express i on>-----------'

Explanation

In UNSAFE (WORD) and UNSAFE (DESCRIPTOR) a < word expression> and a
< descriptor expression> can be used with the < size function>. The descriptor
expression or word expression must evaluate to an unindexed, touched data descriptor.
IT the expression does not, a run-time error can result.

WORD Expressions

9-10

<word expression>

~simple word expression>
L-cconditional word expression~

<simple word expression>

-<word primarY>--1

<word primary>

-cord variable>-- := -<expression
<variable>-r----------~-r----------------~

<update symbols <partial word part
intrinsic .TAG ----------'

t (-<expression>--)
<word case express i on>-----'

~ ~ & --<expreSSion>-r-<Concatenation~ I
. L TAG ----~--'

<word case expression>

-<case head>- (~ord exp~ession>=1-) -I

<conditional word expression>

-<if clause>-<word expression>- ELSE -<word expression>--1

5044233.380

UNSAFE Mode .

Explanation

WORD expressions are extremely general because almost any type is implicitly
type-transferred, or coerced, to type WORD when a WORD expression is expected.
While no operators are defined for type WORD, an expression of any other type,
including types with defined operators (such as addition in arithmetic expressions), can
be assigned to a word variable.

The . TAG clause can be used in place of the < partial word part> or in place of the
< concatenation>, and refers to the tag bits of the operand.

Although the result of any intrinsic can be assigned to a WORD variable, the following
UNSAFE intrinsics specifically return values of type WORD:

• WORD (< expression>)

• WORD VIA < word primary >

• REFERENCE TO <primary>

• EVAL

• MAKEPCW

• MEMORY

• WORD AT <address primary>

Word expressions are valid only in UNSAFE(WORD) mode.

For information related to WORD expressions, see "WORD Declaration" and "Intrinsics
(UNSAFE)" in this section.

Note: Most uses of the EVENT declaration, other than those allowed by
ALGOL, might be incompatible with a change to the format of events.
User programs should avoid the implicit coercion of an EVENT or
EVENT ARRAY element to a WORD, whether by direct assignment or
as an actual parameter passed to a formal parameter of type WORD.

Intrinsics (UNSAFE)
The intrinsics described in the following text are recognized only in UNSAFE mode; the
UNSAFE category for each intrinsic is shown in brackets.

5044233.380

Caution

Intrinsics in the MACHINEOPS category are often available only on certain
machine types. You should ensure that the operator generated by the intrinsic is
supported on the machine on which the program is to run.

9-11

UNSAFE Mode

For further information on the use of machine operators, see the A Series System
Architecture Reference Manual, Volume 2.

In UNSAFE mode, a broader range of data types and expressions is allowed than is
defined in safe mode. The following diagrams describe syntactic categories that are used
to define valid parameters to the UNSAFE intrinsics:

<addressable identifier>

<array identifie
<descriptor iden
<event identifie
exception proce

<file identifier
<interlock ident
<library identif
output message

<pointer identif

r
tifier
r'
dure identifier

i fier
ier'
array identifier'
ier

<procedure ident
<procedure refer
<procedure refer
<segment identif
<set variable id
<simple variable>

i fier'
ence identifier'
ence array identifier>-
ier
entifier

<task identifier>>-----------I
<transl atetabl e i denti fi er>>--" ------I

Etruthset identifier>
type variable identifier>>--------i

<value array identifier>->-------t
<word identifier>->----------l

ASDTABLE [MACHINEOPS]

I
I

- ASDTABLE - [-<integer expression>- • ---------.~

~-<constant integer express i on>-] -------------i

Explanation

ASDT ABLE is an intrinsic that accesses the ASD table using the RASD (read) and
WASD (write) operators. The first parameter indicates the ASD index, which is found
in the lower 20 bits of data and code descriptors. The second parameter is the ASD
specifier, which must be a constant in the range 0 through 3 and must correspond to
ASDI through ASD4.

Use of the ASD table is restricted in the folloWing ways:

• The first parameter must evaluate to an integer.

• The second parameter must be an integer constant in the range of 0 through 3. In
addition, if the reference is to the left of an assignment, a negative zero is valid and
can be used to ensure the integrity of the unaltered bit when writing ASDl.

• The ASD table cannot appear to the left of an embedded assignment.

• The ASD control option must be set.

9-12 5044233.380

Examples

AT [REFERENCE]

W := ASDTABLE[K, 2];

ASDTABLE[K,-0] := W;

ASDTABLE[K,3} := * & 1[47:1] & 0[43:1];

ASDTABLE[K,l]. [47:1] := 1;

--<type>-- AT --<address primarY>--1

<address primary>

~<addressable identifier
c=<subscripted variable

<array rOw>-------..l

<type>

BOOLE
OESCR
OOUBL
EVENT
FILE
INTEG
INTER
POINT
REAL
TASK

<type
WORD

Explanation

AN I
I

IPTOR
E

ER
LOCK
ER

identifier>-

UNSAFE Mode

The < type > AT < address primary> syntax allows the item at the location specified by
the. < address primary> to be referred to or assigned to as if it had been declared of the
specified < type>. If the AT syntax is used in an expression, the item is retrieved from
the location in the manner appropriate for a value of the target < type> .

For example, if D is a variable of type DESCRIPTOR, the syntax WORD(D) causes
D to be retrieved as a DESCRIPTOR, and copy-bit action is performed. The syntax
WORD AT D, on the other hand, causes the item at D to be fetched as a WORD, and no
copy-bit action is performed. The WORD AT < address primary> syntax is valid only in
UNSAFE (WORD) mode. The DESCRIPTOR AT < address primary> syntax is valid
only in UNSAFE(DESCRIPTOR) mode.

Note that if the specified < address primary> is a formal parameter, the < type > AT
< address primary> syntax references the actual parameter, not . the reference (SIRW
or indexed data descriptor) that was passed.

5044233.380 9-13

UNSAFE Mode

Note: Except within the event·handling routines of the MCP, programs
should avoid the use of the EVENT AT < address primary> or
the <type> AT <address primary> syntax where the <address
primary> has type EVENT, EVENT ARRAY, REFERENCE, or
REFERENCE ARRAY.

Examples

WORD W;
DESCRIPTOR D;
W := WORD AT D;

BMASKSEARCH [MACHINEOPS]
-- BMASKSEARCH -- (--<arithmetic expression>-- • ~

~-<arithmeti c express; on>-- • --,-<array row> >J • --~
L-<subscripted variable

~-<arithmetic expression>--) --------------1

Explanation

The integer function BMASKSEARCH is a bounded MASKSEARCH intrinsic that uses
the BMS operator. This function is similar to MASKSEARCH, except that it requires
a fourth argument to specify the word limit of the search. For more information on
MASKSEARCH, see the A Series ALGOL Programming Reference Manual, Volume 1:
Basic Implementation.

The fourth argument is the length, in words, to be searched within the domain specified
by the third argument. The length must be less than or equal to 2**20-1.

The result returned is the same as for MASKSEARCH. A failure result is returned
under the following additional conditions:

• If the search length is initially zero or negative.

• If the search exhausts the search length.

• If the search has examined word zero of the virtual segment or word zero of memory.

BUZZ [MISC]
-- BUZZ -- (--<variable>--) --1

Explanation

BUZZ is a REAL procedure that disables external interrupts and then uses the Read
with Lock (RDLK) operator to exchange continually the following:

• A value whose low-order bit (bit 0) is equal to 1

• The current contents of the location specified by < variable>

9-14 5044233.380

UNSAFE Mode

BUZZ continues exchanging until bit 0 of the value of the location is O. This value is
returned as the procedure value. BUZZ can be used only in CONTROLSTATE blocks.

The semantics of BUZZ are affected by the values of the READLOCK and
READLOCKTIMEOUT compiler control options.

For information related to the BUZZ intrinsic, see "Compiler Control Options" in
Section 8, "Compiler Controls."

BUZZ47 [MISC]

BUZZ47 performs the same function as the BUZZ intrinsic, except that bit 47 of
the parameter is tested and set instead of bit 0 (zero). BUZZ47 can be used only in
CONTROLSTATE blocks.

CALLIO [MACHINEOPS]
- CALLIO - (.,-<array row>)-i

L-<descriptor expression~

Explanation

CALLIO is an untyped procedure that places the parameter on the top of the stack and
executes the Communicate with Universal I/O (CUIO) operator.

CHECKHASH [MACHINEOPS]
- CHECKHASH - (-<array row>- • -<1 ength>-) -i

Explanation

CHECKHASH generates the HASH operator. This procedure is of type REAL, with
two parameters. The first parameter specifies an array row of type REAL. The second
parameter is an integer.

The result is defined by the following relation:

hash [0] = 0
hash[i] = (hash[i-l] EQV word[l]).[46:48]

Word[l] is the first word of the array row.

DAWDLE [MISC]
- DAWDLE - (-<integer constant>-) -l

5044233.380 9-15

UNSAFE Mode

Explanation

DAWDLE is an untyped intrinsic that executes an arbitrary series of operators that do
not access memory. The number of operators executed is directly proportional to the
value of the < integer constant> . DAWDLE is used in the MCP to delay an operation
without accessing memory. On A Series machines, DAWDLE generates the Delay
(DLAY) operator.

DESCRIPTOR [DESCRIPTOR]
- OESCR! PTOR - (-r<word express; on>--r-) --j

L-<array designator~

Explanation

DESCRIPTOR is a type transfer function that can be applied to a WORD expression or
array.

DLL [REGISTERS]
- OLL -I

Explanation

DLL refers to the REGISTERS[LL] intrinsic, where LL is the current lexical level. This
level is known by the compiler at compile time.

DREADMEMORYCONTROL [MACHINEOPS]

9-16

-- OREAOMEMORYCONTROL -- (-<function definition>--) -I

Explanation

DREADMEMORYCONTROL is an intrinsic that returns a type DOUBLE, which is
the result of executing the Read External Memory Control (REMC) operator. The
< fWlction definition> must also be of type REAL.

5044233.380

')

EVAL [MACHINEOPS]
- EVAL -

Explanation

(l' <array identifierr--------r-) -I
<descriptor identffier>
<event identifier>----------l

~
<excePtion proce
<file identifier
<interlock ident

~
<outPut message
<pointer identif
<procedure array

~
<procedure ident
<procedure refer
<procedure refer

dure identifier

ifier>
array identifier
ier>
identifier

i fi er
ence array identifier>-
ence identifier>

~
<set variable identifier>
<s imp 1 e vari ab 1 e>'----------;
<task identifier>>----------I

~
<translatetable identifier>
<truthset i denti fi er>----------i
<type variable identifier>>------i

t<value array identifier>>--------I
<word i denti fi er>'-----------I

MEMORY -- [<expression>]

UNSAFE Mode

EV AL creates a reference to the location specified by the parameter and executes
an Evaluate (EV AL) operator. EV AL is an intrinsic that returns a WORD data type
cont~g the last reference in the chain (the reference that points to the final target).

You cannot use the EV AL operator with call-by-name parameters.

EXIT [MACHINEOPS]
- EXIT -I

Explanation

EXIT generates the EXIT machine operator. The MCP procedure BLOCKEXIT is not
called when an EXIT operator is executed. The EXIT intrinsic cannot be used in the
body of an in-line procedure.

FAILREGISTER [MACHINEOPS]
-- FAILREGISTER - (--<arithmetic expression>--) -I

Explanation

F AILREGISTER returns a type REAL, which is the result of executing the Fetch Main
Memory Fail Register (FMFR) operator. The parameter is the memory module number,
which is changed to an integer prior to use.

5044233.380 9-17

UNSAFE Mode

FMMRREADLOCK [MACHINEOPS]

Explanation

FMMRREADLOCK performs the same function as the READLOCK option except
that the compiler emits the Fetch Main Memory Reference (FMMR) operator prior to
emitting the Read with Lock (RDLK) operator.

IGNOREPARITY [MACHINEOPS]
-- IGNOREPARITY --1

Explanation

IGNOREPARITY generates the Ignore Parity (IGPR) operator.

INTERRUPTCHANNEL [MACHINEOPS]
-- INTERRUPTCHANNEL -- (--<arithmetic expression>--) --1

Explanation

INTERRUPTCHANNEL generates the Interrupt Channel (INCN) operator. The
parameter is a mask indicating the channel that is to be interrupted. A parameter of 0
causes the STORE queue to be purged.

INTERRUPTCOUNTZERO [MACHINEOPS]
-- INTERRUPTCOUNTZERO --1

Explanation

INTERRUPT~OUNTZERO generates the Zero Interrupt Count (ZIC) operator. The
interrupt counter of the processor (which is used to detect interrupt loops) is reset to 0
(zero). If a Stack Overflow interrupt is pending, that interrupt is generated.

LEXLEVEL [MISC]

9-18

-- LEXLEVEL -- (~<addressable identifier>~) --1
L-<set variable identifier>-l

Explanation

LEXLEVEL is an integer-valued procedure that returns the lexical level of the
specified < addressable identifier>. For example, if X is declared at location (1,9), then
LEXLEVEL(X) returns the value 1. The lexical level is known to the compiler at compile
time.

5044233.380

UNSAFE Mode

LEXOFFSET [MISC]
-- LEXOFFSET -- (~<addressable identifier~) --i

L-<set variable identifier~

Explanation

LEXOFFSET returns an integer that is the offset (displacement) of the specified
<addressable identifier> relative to the Mark Stack Control Word (MSCW). For
example, if X is declared at location (1,9), then LEXOFFSET(X) returns the value 9.
The offset is known by the compiler at compile time. The < addressable identifier>
must not reference an in-line procedure.

You cannot use the LEXOFFSET operator with call-by-name parameters.

LISTLOOKUP [MACHINEOPS]
-- LISTLOOKUP -- (--<arithmetic expression>-- , --<array row>-----~

~- , --<arithmetic expression>--) --------------1

Explanation

The syntax and semantics of LISTLOOKUP in NEWP are similar to LISTLOOKUP in
ALGOL except that the array must be present, the array must not be segmented, and
the Linked List Lookup (LLLU) operator is used instead of an MCP call.

LOADEVENT [MACHINEOPS]
-- LOADEVENT -- (--<event designator>--) --i

Explanation

LOAD EVENT is a word procedure that creates a reference to the < event identifier>
and applies a Load Protected Object Word (LPOW) operator to it. If the < event
identifier> is a formal parameter of a procedure, a LOAD operator is applied to the
reference to < event identifier> before the LPOW is applied.

MAKEPCW [MACHINEOPS]
-- MAKEPCW -- (1<procedure identifier·>------r-) -l

<exception procedure identifier
<label identifier>--------'

Explanation

MAKEPCW returns a'VORD value containing a hardware PCW that points to the code
for the specified procedure or label. This PCW has the NCSF field set to 1 for control
state procedures and for labels declared in control state environments. The operator
MPCW is generated by this intrinsic.

5044233.380 9-19

UNSAFE Mode

If you specify a < procedure identifier> or an < exception procedure identifier>, the
identifier must not reference a procedure declared EXTERNAL, NULL, LIBRARY, BY
CALLING, or INLINE. In addition, the procedure must not be declared FORWARD at
the time of the MAKEPCW invocation. The MAKEPCW invocation cannot occur within
the body of the procedure being passed as the parameter to MAKEPCw.

If you specify a < label identifier> , the declaration of the label must not be more global
than the beginning of the code segment in which the label is used as a MAKEPG\¥
parameter. The generated PCW points to the actual label occurrence, rather than to any
hidden label generated for optimizations of bad GO TO statements.

MEMORY [MEMORY]

Explanation

MEMORY can be used only when the MCP compiler control option is set. MEMORY is
an intrinsic WORD array identifier referencing a one-dimensional array that maps all
of memory. MEMORY can be used anywhere that a WORD array identifier is valid;
however, NEWP does not allow a character-oriented pointer to be assigned to the
memory array. For example, the syntax POINTER(MEMORY[O},8) is invalid. The
default character size for pointers to the MEMORY array is 0 (word), not 8 (EBCDIC) as
it is for other arrays; that is, the syntax POINTER(MEMORY[Ij) is synonymous with
POINTER(MEMORY[Ij,O).

When the compiler control option ASD is set, MEMORY access uses the Absolute Store
Reference Word (ASRW) operator. This change builds the ASR'¥ for stand-alone
programs.

MOVESTACK [MACHINEOPS]
---- MOVESTACK ---- (----<arithmetic expression>--) --1

Explanation

MOVESTACK places the parameter on the top of the stack and performs the Move
Stack (MVST) operator. The parameter is changed to an integer before use.

PAUSE [MACHINEOPS]

9-20

~ PAUSE -.--------------------------------~~ c= (----<expression1>-- , ----<expression2>----) :J

Explanation

PAUSE generates the IDLE machine operator. If the parameters are present, they
are loaded onto the stack as the top and next-to-top items before the IDLE operator is
executed, and these parameters are deleted afterward.

5044233.380

UNSAFE Mode

POINTER [DESCRIPTOR or WORD]
-- POINTER -- (~<descriptor e~pression>=r-) --1

L<word express 1 on>'---.-J

Explanation

This form of the POINTER intrinsic performs a type transfer from type DESCRIPTOR
or type WORD to type POINTER.

Note: If the parameter is a subscripted descriptor or word array, POINTER
generates a pointer to that array element instead of performing the
type transfer. For example, if DA is declared as an array of type
DESCRIPTOR, the syntax POINTER(DA[O]) generates a pointer to
array DA instead of type transferring element 0 of the array to type
POINTER.

READANDCLEAREXTERNALS [MACHINEOPS]
-- READANOCLEAREXTERNALS -- (--<identifier>-- , --<p2>--) --1

Explanation

READANDCLEAREXTERNALS is an untyped procedure that executes the Read
External Interrupt Identification (RDID) operator. Both < identifier> and < p2 >
are < variable> s of type REAL. The interrupt literal of the highest priority external
interrupt is assigned to < identifier>. The P2 parameter of the highest priority external
interrupt is assigned to < p2 >. The interrupt condition reported is reset. If no external
interrupts are outstanding, both items are assigned the value 0 (zero).

READMEMORYCONTROL [MACHINEOPS]
-- READMEMORYCONTROL -- (--<function definition>--) --1

Explanation

READMEMORYCONTROL returns a type REAL that contains the result of executing
the Read External Memory Control (REMC) operator. The < function definition> must
be of type REAL.

READPROCESSORSTATE [MACHINEOPS]
-- READPROCESSORSTATE -- (--<status identifier>--) --1

Explanation

READPROCESSORSTATE returns a type REAL that contains the result of executing
the Read Internal Processor State (RIPS) operator. The < status identifier> must be of
type INTEGER and is the internal status identification for the processor.

5044233.380 9-21

UNSAFE Mode

READTIMEOFDAY [MACHINEOPS]
-- READTIMEOFOAY --1

Explanation

READTIMEOFDAY returns an INTEGER that contains the result of executing the Read
Time of Day (RTOD) operator.

READXMEMORYTABLE [MACHINEOPS]
-- READXMEMORYTABLE -- (--<function definition>--) --1

Explanation

READXMEMORYT ABLE returns a type REAL that contains the result of executing the
Read External Memory Table (REMT) operator. The < function definition> must be of
type REAL.

The < function definition> has the following layout:

[31: 12J
[19 :03J
[03 :04J

Environment Number
Virtual Page Number
MSM mask

RECEIVEFROMREQUESTOR [MACHINEOPS]
-- RECEIVEFROMREQUESTOR -- (--<real>--) --1

Explanation

RECEIVEFROMREQUESTOR takes a type REAL parameter, which is the function
definition, and returns a type DOUBLE. RECEIVEFROMREQUESTOR loads the
parameter value onto the top of the stack and executes the Receive (RECV) operator.

REFERENCE TO [REFERENCE and WORD]

9-22

-- REFERENCE -- TO --<primarY>--1

Explanation

The REFERENCE TO function returns a WORD that is equivalent to the value
that would be generated to access the < primary> construct if the primary were
a call-by-reference parameter. For example, valid WORDs include an SIR'V for
simple data type, a data descriptor for array rows, and an indexed data descriptor for
subscripted variables. The < primary> construct can be of any data type that NEWP
allows to be passed as a call-by-reference parameter.

5044233.380

UNSAFE Mode

Note: If the specified <primary> is a call-by-reference parameter, the
REFERENCE TO < primary> s),nta."(returns a reference to the
actual parameter, not the formal parameter. For example, if X is the
actual parameter passed by reference to the formal parameter R, then
REFERENCE TO R returns a reference to X.

Most uses of the EVENT declaration, other than those allowed by
ALGOL, might be incompatible with a change to the format of events.
Except within the event handling routines of the Mep, programs
should avoid the use of REFERENCE TO <address primary>
syntax where the < address primary> has type EVENT, EVENT
ARRAY, REFERENCE, REFEREJllCE ARRAY, or INTERLOCKS.

Example

WORD W;
REAL A;
W:=REFERENCE TO A;

REGISTERS [REGISTERS]
-- REGISTERS -- [--<constant integer expression>--] --1

Explanation

The REGISTERS intrinsic returns the contents of the processor register specified by the
< constant integer expression> .

RETURN [MACHINEOPS]
-- RETURN -- (--<express i on>--) ---l

Explanation

RETURN generates the RETN machine operator, leaving the value of the
< expression> on the top of the stack. The MCP procedure BLOCKEXIT is not called
when a RETURN is performed. The RETURN intrinsic cannot be used in the body of an
in-line procedure.

RETURNORIGINALS [MACHINEOPS]
-- RETURNORIGINALS -- (--<double_the_cache_size>--) --1

<double_the_cache_size>

-- <numeric constant> ---l

5044233.380 9-23

UNSAFE Mode

Explanation

RETURN ORIGINALS generates code that forces the processor to contain only copies of
data in its cache and no originals.

RUNNINGLIGHT [MACHINEOPS]
-- RUNNINGLIGHT --1

Explanation

RUNNINGLIGHT generates the Running Light (RUN!) operator ..

SCALERIGHTS [MACHINEOPS]
-- SCALERIGHTS -- (--<arithmetic expression>- • ------~

~-<arithmetic expression>-- • -<arithmetic variable>-) --~

Explanation

The SCALERIGHTS function is an integer intrinsic that takes three parameters and
generates the Scale Right Save (SCRS) operator and the Dynamic Scale Right Save
(DSRS) operator. The first parameter is a single- or double-precision value to be scaled
(V). The second parameter is the scale-factor (SF), which must be in the range 0 through
12. The third parameter is an output parameter. The function returns the following
result as the integer procedure value:

V DIV 10**SF

The remainder of V DN lO**SF is returned in packed decimal form, left-justified, in the
third (output) parameter.

SCANIN [MACHINEOPS]
-- SCANIN -- (--<arithmetic expression>--) --1

Explanation

SCANIN is an intrinsic of type REAL that causes the parameter to be placed on the top
of the stack and causes the Scan In (SCND operator to be performed. The range of valid
parameter values is dependent on the system type.

SCANOUT [MACHINEOPS]
-- SCANOUT -- (--<expression>- • --<express;on>-) --1

9-24 5044233.380

UNSAFE Mode

Explana tion

SCANOUT causes the two parameters to be placed on the top of the stack and causes
the Scan Out (SCNO) operator to be performed. The range of valid parameter values is
dependent on the system type.

SENDTOREQUESTOR[MACHINEOP~

-- SENOTOREQUESTOR -- (--<function definition>-- • --<data>--) --1

Explanation

SENDTOREQUESTOR is an untyped intrinsic that applies the Send to External
Processing Element (SEND) operator to the two parameters. Both parameters are of
type REAL.

The < function definition> has the following layout:

[43:08J
[07 :08J
[07 :04J
[03:04J

SETINHIBIT [MACHINEOPS]

Function code
Source or destination routing
Destination requestor number
Address of link or MSM (8 7900 machines)

-- SETINHIBIT -- (-<arithmetic expression>- • -------~

~-<arithmetic expression>--) ---,--------------;

Explanation

SETINHIBIT generates the Set Memory Inhibits (SINH) operator where the low-order
8 bits of the first parameter contain the inhibit mask, and the low-order 4 bits of the
second parameter represent the memory module. The second parameter is changed to
an integer before it is used.

SETLIMITS [MACHINEOPS]
- SETLIMITS -- (-<arithmetic expression>- • ------,---~

~-<arithmetic expression>--) ---------------;

Explanation

SETLIMITS generates the Set Memory Limits (SLMT) operator. The first parruneter
contains the availability mask and the upper and lower addresses. The second
parameter is the memory module nunlber; this parameter is changed to an integer
before use.

5044233.380 9-25

UNSAFE Mode

SETTIMEOFDAY [MACHINEOPS]
-- SETTIMEOFDAY -- (--<arithmetic expression>--) --1

Explanation

SETTIMEOFDAY changes the paranleter to an integer, places it on the top of the stack,
and executes the Write Time of Day (WTOD) operator.

SHOW [MACHINEOPS]

9-26

-- SHOW -- (-<SHOW source>--) --1

<SHOW source>

t
<EBCDIC string constant>
<arithmetic expression>- FOR --<arithmetic expresSion>-1
<EBCDIC pointer expression>--------------'

Explanation

SHOW is an untyped intrinsic that uses the Primitive Display (SHOW) operator to
display text, without involving the Input/Output subsystem.

If the SHOW invocation occurs in a CONTROLSTATE block and the program is not
compiled with the STANDALONE option, the length of the < EBCDIC string constant>
is restricted to 12 characters; a longer string in this context results in a syntax error.
(The compiler enforces this restriction to prevent control-state code from incurring a
presence-bit interrupt on an absent string-pool array.)

The number of characters actually displayed is limited by the machine; any additional
characters in the source are ignored. A system with no primitive display mechanism
disregards the SHOW operator; if a display mechanism exists, it must accommodate at
least 24 characters. Depending on the implementation, a SHOW statement can erase
a previous SHOW display. The < SHOW source> cannot cross a page boundary in a
paged array. .

The display mechanism can restrict the character set that can be displayed. At least the
following characters and blank can be displayed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789 ,./+-=()

The token SHOW is recognized but not reserved; the SHOW statement cannot be used
if you have declared the identifier SHO\V.

Examples

SHOW("MCP STARTING"); % 12 characters: valid anywhere

SHOW("UTILOADER STARTING");% Not valid in CONTROLSTATE
% except in STANDALONE program

5044233.380

UNSAFE Mode

SHOW (e FOR e); % Erase previous SHOW display

REPLACE P BY ••• ;

SHOW(P FOR L);

SHOW(DOUBLE(.(IF WHOAMI > 9 THEN WHOAMI + 'A'-1e
ELSE WHOAMI + Ie'

) & 'PROC ' [47:4e]
" ALARM'

) FOR 12);

SIGNALPROCESSOR [MACHINEOPS]
- SIGNALPROCESSOR - (-<;nteger express;on>- • ------t
-+-<ar;thmet;c express;on>-) --------------1

Explanation

SIGNALPROCESSOR is an iriteger intrinsic that uses the Signal Processor (SPES)
operator to send a signal to a processing element. The first parameter supplies the signal
type in the range 0 through 7. The second parameter is a bit vector of type REAL that
specifies the set of potential receiver processing elements. For example, subport S of
port P is in the set ifbit [2*P + 8:01] = 1.

The possible result values are as follows:

Value Meaning

o No exception; a receiver is to be signaled.

3 None of the designated receiver ports were available.

5 A receiver processing element was not in the sender partition. (This exception
might not be noted by aU systems.)

STACKNUMBER [MACHINEOPS]

The intrinsic 8TACKNUMBER is no longer available. The intrinsic function
PROCE8SID should be used instead. For more information on the < processid
function>, see the A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

5044233-001 9-27

UNSAFE Mode

STOP [MACHINEOPS]
-STOP--~

~ [«expression>,<expression> --,-----------r-) J
L: ,<variable>,<variable> J

Explanation

STOP generates the 'Conditional Halt (HALT) operator. If the first two parameters are
present,' the two values are loaded onto the stack as the top and next-to-top items before
the HALT operator is executed. If the third and fourth parameters are present, they
are interpreted as addresses into which the top-of-stack values are to be stored following
execution of the HALT operator. The third and fourth parameter addresses receive the
first and second parameter values, respectively; these values might have been modified
by a user while the machine was stopped.

STOP77,[MACHINEOPS]

Explanation

The STOP77 intrinsic is similar to the STOP intrinsic except that the STOP operator is
generated.

SUSPEND [MACHINEOPS]

Explanation

The SUSPEND intrinsic is similar to the PAUSE intrinsic except that the Pause Until
Interrupt (P AUS) operator is generated.

SYSTEMCONTROL [MACHINEOPS]

9-28

- SYSTEMCONTROl - (-<arithmetic expression>- , ---------4
~ord expression>-) -------------------------1

Explanation

SYSTEMCONTROL is a REAL intrinsic that uses the CSCP operator to communicate
with the System Control Subsystem (SCS). The SCS is the subsystem responsible for
system initialization and maintenance. The < arithmetic expression> parameter is of
type REAL and specifies a function to the SCS. The < word expression> parameter is of
type WORD and provides a word of data. The result value is the response from the SCS.

5044233-001

UNSAFE Mode

TESTRASD [MACHINEOPS]
- TESTRASD - (-<arithmetic expression>- • --------+
~integer expression>-) ---------------1

Explanation

TESTRASD is a word procedure that returns the result of executing the RASD Test
(RAST) operator to the two parameters. The RAST operator is intended only for debug
use on Level Gamma machines.

TESTWASD [MACHINEOPS]
- TESTWASD - (--<word express i on>- • -<real express i on>- • --+

~;nteger express;on>-) ---------------1

Explanation

TESTW ASD is an untyped procedure that applies the W ASD Test (WAST) operator to
the three parameters. The WAST operator is intended only for debug use on Level
Gamma maclUnes. .

TIMER [MACHINEOPS]
- TIMER - (--<arithmetic express;on>-) --I

Explanation

TIMER loads the parameter value onto the top of the stack and executes the Set
Interval Timer (SlNT) operator. The < arithmetic expression> defines the time value in
microseconds. The default is 512; the maximum value is 2047.

5044233-001 9-28A

UNSAFE Mode

9-288 5044233-001

UNSAFE Mode

VECTOR INTRINSICS [MACHINEOPS]

The following constructs apply to the syntax diagrams for vector intrinsics:

<vector>

~<array row>
L-<subscripted variable>~

<xvector>

~<vector>~
L-<sca 1 a r>.-l '

<scalar>

--<arithmetic expression>--1

<length>

--<arithmetic expression>--1

<stride>

-<arithmetic expression>--1

Untyped Intrinsics That Act on Two Vectors

VCPV (-<vector>- , -<xvector>- , -<length>- , ---7

VCPVN
VCPVA
vCPvs
VCPVD
VVPV
VVMV
VVMVN
VVTV
vvov
vvuv

.;-<stride>- , -<stride>-)

Explanation

As is shown in Table 9-1, these untyped intrinsics act on two vectors. The first five
intrinsics copy a function of B into A; the remaining six replace A by a function of A and
B. A is the vector defined by the first < vector> and first < stride> ; B is the vector or
scalar defined by the second < vector> or < xvector > and second < stride> .

Intrinsic

VCPV

VCPVN

5044233.380

Table 9-1. Untyped Intrinsics: Two Vectors

Operator

CPV (Copy Vector)

CPVN (Copy Vector Negated)

Function

A:= 8

A:= -8

continued

9-29

UNSAFE Mode

Table 9-1. Untyped Intrinsics: Two Vectors (cont.)

Intrinsic Operator Function

VCPVA CPVA (Copy Vector Absolute) A:= I B I

VCPVS CPVS (Copy Vector Single) A := single (B)

VCPVD CPVD (Copy Vector Double) A := double (B)

VVPV VPV (Vector Plus Vector) A:= A + B

VVMV VMV (Vector Minus Vector) A:= A - B

VVMVN VMVN (Vector Minus Vector Negated) A:= -A + B

VVTV VTV (Vector Times Vector) A:= A * B

VVOV VOV (Vector Over Vector) A:= AI B

VVUV VUV (Vector Under Vector) A:= BI A

Untyped Intrinsics That Act on Two Vectors and a Scalar

9-30

1
vVPS =r (-<vector>- • -<vector>- • -<1 ength>- • --~
VVTS
VVPVS
VVSPV

~-<stride>- • -<stride>- • -<scalar>--:-) ---------1

Explanation

As shown Table 9-2, these untyped intrinsics act on two vectors and a scalar.

Intrinsic

VVPS

VVTS

VVPVS

VCSPV

Table 9-2. Untyped Intrinsics: Two Vectors and a Scalar

Operator

VPS (Vector Plus Scalar)

VTS (Vector Times Scalar)

VPVS (Vector Plus Vector Times Scalar)

VSPV (Vector Times Scalar Plus Vector)

Function

A:= B + S

A:= B * S

A:= A + B * S

A:= A * S + B

5044233.380 '

UNSAFE Mode

VSCAT Intrinsic
.-- VSCAT -- (--<vector>-- , --<xvector>-- , --<'ength~ , ~

~-<vector>-- , --<stride>--) --------------1

Explanation

This untyped intrinsic accepts vector I with an implicit stride of + 1 in place of the stride
of A. The VSCAT intrinsic generates the Scatter (SCAT) operator to compute the
following:

A[I (i)] .- B(i)

VGATH Intrinsic
-- VGATH -- (--<vector>-- , --<vector>-- , --<'ength~ , ~

~-<stride>-- • --<vector>--) -----------------i

Explanation

This untyped intrinsic accepts vector I with an implicit stride of + 1 in place of the stride
ofB. The VGATH intrinsic generates the Gather (GATH) operator to compute the
following:

A(i) := B[I(i)]

VSUM and VSUMA Intrinsics
----r VSUM ---r (--<vector>-- • --<length>-- , --<stride>-- • --~

'- VSUMA --l

~-<expression~·) --------------------i

Explanation

These REAL or DOUBLE intrinsics compute the sum of the elements of a vector. The
type of the result (REAL or DOUBLE) is the same as the type of the < expression> ,
which represents the initial sum. The value of the result is the initial sum in addition
to the sum of each element (or, for VSUMA, the absolute value of each element) of the
vector.

VDOT and VDOTX Intrinsics
---r VDOT --r-- (--<vector>-- • --<1 ength>-- , --<stri de>-- •

L VDOTX --l
---1

-1-<expression>--) --------------------i

5044233.380 9-31

UNSAFE Mode

Explanation

VDOT is a REAL intrinsic that computes the dot (inner) product of two vectors. The
value this intrinsic returns is the sum of the < expression> and the dot product.
VDOTX is a similar double intrinsic.

VSEQ Intrinsic
- VSEQ - (-<vector>- • -<xvector>- • -<1 ength>- • -7

-7-<stride>- • -<stride>- • -<expression>-) ----------1

Explanation

VSEQ is an untyped intrinsic that generates the Sequential Occurrence (SEQ) operator
to compute A as a function of B and an initial < expression> Z as follows:

A(i) := Z + B(i)

VPOLY Intrinsic
- VPOLY - (-<vector>- • -<xvector>- » -<1 ength>- • -7

-7-<stride>- • -<stride>- • -<expression>-) --------;

Explanation

VPOLY is a REAL or DOUBLE intrinsic that generates the Polynomial Recurrence
(POLy) operator to compute a result as a function of A, B, and an initial < expression>
Z as follows:

result := Z .- A(i) + B(i) * Z

VCHEK Intrinsic

9-32

- VCHEK - (-<vector>- • -<length>- • -<stride>- • -7

-7-<expression>-)

Explanation

VCHEK is a Boolean intrinsic that generates the Compute Check Hash (CHEK)
operator to conlpute a result as a function of A and an initial single-precision
< expression> H as follows:

result := H := (H EQV A(i)).[46:48]

5044233.380

UNSAFE Mode

VFMX, VFMN, and VFMXA Intrinsics

t VFMX ~ (-<vector>- • -<length>- • -<stride>- • --~
VFMN
VFMXA

~-<expression>-- -<express ion> L
-<va ri ab 1 e>-.l

Explanation

These REAL intrinsics find the index of either the nlaximum (VFMX), minimum
(VFMN), or maxinluln absolute (VFMXA) value within a vector. The first
< expression> is returned as the intrinsic value if 110 vector elenlent exceeds the second
< expression>, which is an initial comparison value. If the < variable> is specified, it is
set to the maximum (minimum or maximum absolute) value.

VIA [REFERENCE]
-<type>- VIA -<word primarY>--1

-,-<procedure identifier> VIA --<wordprimary>>----·~
L-<exception procedure identifier>~

~ [<actual parameter part>]

Explanation

The syntax < type> VIA < word primary> is used to access the item referenced by
< word primary> as if the item were a value of the specified < type>. The word
primary is first evaluated as a value of type WORD; the resulting value is then used as a
reference, which is evaluated as a value of the specified type. Refer to the AT intrinsic
for a description of < type>. The REFERENCE TO intrinsic generates word primaries
that are appropriate for use with the VIA constructs.

The form <procedure identifier> VIA < word primary> applies to procedure
invocation. The word primary is used as a reference to effect a procedure entry; the
contents of word primary should result in an Indirect Reference Word (IRW) to a PCW
for the desired code in the appropriate environment. All type checking and parameter
matching is performed according to the declared procedure heading, but the address
couple of the procedure is irrelevant.

The use of the EVENT VIA < word primary> syntax should be avoided except within
the event-handling routines of the MCP.

Examples

W := WORD VIA M[I]
T := PROC VIA REFERENCE TO W (PARAM)
MYGEORGE VIA WORDSPIB[SNR,SIRWTOPALACE] (WHY)

5044233.380 9-33

UNSAFE Mode

WHATAMI [MACHINEOPS]
- WHATAMI -l

Explanation

WHATAMI generates the Read Machine Identification (WATI) operator and returns a
type DOUBLE containing information about the machine type. Specifically, bits [07:08]
of the most significant word define the machine type.

WHOAMI [MACHINEOPS]
- WHOAMI -l

Explanation

WHOAMI is an integer intrinsic that returns the result of executing the Read Processor
Identification (WHO!) operator.

WORD [WORD]
- WORD - (-<express;on>-) --l

Explanation

The WORD intrinsic performs a type transfer from the type of the < expression> to
type WORD. Note that the type transfer is performed after the < expression> is fully
evaluated. For example, the construct WORD(D), where D is of type DESCRIPTOR,
evaluates D as a DESCRIPTOR and performs the copy-bit action before performing the
type transfer to type WORD.

WRITEMEMORYCONTROL [MACHINEOPS]
- WRITEMEMORYCONTROL - (-<function definition>-- , -<data>---~

~-) --~

Explanation

WRITEMEMORYCONTROL is an untyped intrinsic that applies the Write External
Memory Control (WEMC) operator to the two parameters. Both parameters are of type
REAL.

WRITEPROCESSORSTATE [MACHINEOPS]
- WRITEPROCESSORSTATE - (-<status identifier>-- , -<data>---~

~-) ------------------------------1

9-34 5044233.380

UNSAFE Mode

Explanation

WRITEPROCESSORSTATE is an untyped intrinsic that applies the Write Internal
Processor State (WIPS) operator to the two parameters. The < status identifier> is of
type INTEGER and is the internal status identification of the processor. The < data>
construct is of type WORD and is the value to which the specified status is set.

WRITEXMEMORYTABLE [MACHINEOPS]
-- WRITEXMEMORYTABLE -- (--<function definition>-- • --<data>-----~

~-) --~

Explanation

WRITEXMEMORYTABLE is an untyped intrinsic that applies the Write External
Memory Table (WEMT) operator to the two parameters. Both parameters are of type
REAL. The < function definition> identifies where < data> is to be written and has the
following layout:

[39 :08] RQIN (mask of requests that are inhibited from
initiating control information)

Function Definition Parameter Word:

[31:12]
[19: 03]
[15 :08]
[03 :04]

Data Word:

5044233.380

[07 :06]
[01 :01]
[00:01]

Environment Number
Virtual Page Number
Mask of requestors to be affected
MSM mask

Table Data (what is to be written in table)
Validity Bit
Parity Bit

9-35

9-36 5044233.380

Appendix A
Reserved Words

A < reserved word> in NEWP has the same syntax as an identifier. The reserved words
are divided into three types.

Types of Reserved Words
A reserved word of type 1 can never be declared as an identifier; that is, the reserved
word has a predefined meaning that cannot be changed. For example, because DO is a
type 1 reserved word, the declaration is flagged with a syntax error as follows:

ARRA Y DO [0: 999]

A reserved word of type 2 can be redeclared as an identifier; the reserved word then
loses its predefined meaning in the scope of that declaration. For example, because IN is
a type 2 reserved word, the following declaration is legal:

FILE IN(KIND = READER)

However, in the scope of the declaration, the following statement is flagged with a syntax
error on the word IN:

SCAN P WHILE IN ALPHA

IT a type 2 reserved word is used as a variable but is not declared as one, then the error
message that results is not the expected UNDECLARED IDENTIFIER. Instead, the
message might be the following:

NO STATEMENT CAN START WITH THIS

A reserved word .of type 3 is context-sensitive. This reserved word can be redeclared as
an identifier, and if it is used where the syntax calls for that reserved word, it carries the
predefined meaning. Otherwise, it carries the user-declared meaning. The different
meanings for the type 3 reserved word TIMELIMIT are illustrated in the following
example:

5044233.380 A-I

Reserved Words

BEGIN

END.

FILE F (KIND=REMOTE);
REAL TIMELIMIT;
ARRAY A[0:49];
% IN THE NEXT STATEMENT, "TIMELIMIT" I~ A REAL VARIABLE
TIMELIMIT := 4.5;
% IN THE NEXT STATEMENT, "TIMELIMIT" IS A READ OPTION
IF READ (F[TIMELIMIT 60],50,A) THEN

% IN THE NEXT STATEMENT, "TIMELIMIT" IS A REAL VARIABLE
TIMELIMIT := 60;

All file attributes, direct array attributes, and mnemonics described in the A Series I/O
Subsystem Programming Reference Manual are type 3 reserved words in NEWP. All
task attributes and mnemonics described in the A Series Work Flow Administration and
Programming Guide are type 3 reserved words in NEWP.

Reserved Words List

A-2

The following is an alphabetical list of reserved words for NEWP. The number in
parentheses following each word indicates the type of the reserved word. For example,
FOR (1) indicates that FOR is a type 1 reserved word.

Note that the presence of a reserved word in this list does not necessarily imply that the
feature is fully supported. Some words appear in this list because they are reserved for
future implementation, or for consistency with ALGOL or the predecessor of NEWP
(ESPOL).

ACCEPT (2) ACTUALNAME (3)

AFTER (3) ALL (3)

ALTERNATIVE (2) AND (2)

ANYFAULT (3) ARRAY (1)

ARRAYS (3) ARROGATE (2)

AS (3) ASCII (2)

ASDSPACE (3) AT (1)

ATEND (3) ATTRIBSEARCHER (2)

AVAILABLE (3) AVAILATEND (3)

BASE (3) BCL (2)

BEFORE (3) BYFUNCTION (3)

BITS (2) BOOLEAN (1)

BREAK (2) BUZZ (2)

BUZZ47 (2) BY (2)

BYINITIATOR (3) BYTITLE (3)

CALL (2) CALLING (3)

CALLIO (2) CANCEL (2)

5044233.380

Reserved Words

CAND (2) CASE (1)

CAT (2) CAUSE (2)

CAUSEANDRESET (2) CHECKHASH (2)

CIMP (2) CLOSE (2)

CODE (2) COMBINEPPBS (2)

COMMENT (1) CONDITIONAL (3)

CONSTANT (1) CONTINUE (2)

CONTROL (3) CONTROLSTATE (3)

COpy (3) COR (2)

CRUNCH (3) DAWDLE (2)

DBS (3) DEALLOCATE (2)

DEFINE (1) DELAYSWAP (3)

DELlNKLIBRARY (2) DESCRIPTOR (1)

DETAIL (2) DIGITS (2)

DIRECT (l) DISCARD (3)

DISPLAY (2) DIV (2)

DO (1) DONTWAIT (3)

DOUBLE (1) DREADMEMORYCONTROL (2)

DSABLE (3) OSWAlT (2)

DSWAITANDRESET (2) EBCDIC (2)

EQL (2) EaV (2)

ESTABLISH _ ASDS (2) EVENT (1)

EXCEPTION (2) EXIT (2)

EXPONENTOVERFLOW (3) EXPONENTUNDERFLOW (3)

EXPORT (2) EXTERNAL (2)

EXTERNALFUNCTION (2) FAILREGISTER (2)

FALSE (1) FI (1)

FILE (1) FILES (3)

FIRSTFREEDOCELL (3) FIRSTSEGDESC (3)

FIX (2) FMMRREADLOCK (2)

FOR (1) FORK (2)

FORMAL (2) . FORMAT (1)

FORWARD (2) FREE (2)

FREEZE (2) FROM (2)

5044233.380 A-3

Reserved Words

FUNCTIONAME (3) GEQ (2)

GO (2) GTR (2)

HARDWARE (3) HEX (2)

HEYOU (2) IGNOREPARITY (2)

IMP (2) IN (2)

INHERITSTATE (3) INITIALIZATION (1)

INLINE (3) INTEGER (1)

INTEGEROVERFLOW (3) INTERFACE (2)

INTERLOCK (2) INTERLOCKOPS (3)

INTERRUPTCHANNEL (2) INTERRUPTCOUNTZERO (2)

INTNAME (3) INTRINSIC (2)

INVALIDADDRESS (3) INVALIDINDEX (3)

INVALIDOP (3) INVALIDPROGRAMWORD (3)

IS (2) ISNT (2)

LABEL (2) LBOUND (2)

LEQ (2) LlBACCESS (3)

LIBERATE (2) LlBLINKFALULT (3)

LlBPARAMETER (3) LIBRARIES (3)

LIBRARY (2) LIMITED (1)

LINE (3) LlNKCLASS (3)

LlNK~IBRARY (2) LOCK (2)

LOCKSTATUS (2) LONG (2)

LOOP (3) LSS (2)

MACHINEOPS (3) MCP (3)

MEMIMAGEBOUND (3) MEMORY (3)

MEMORYFAILl (3) MEMORYPARITY (3)

MEMORYPROTECT (3) MESSAGESEARCHER(2)

MISC (3) MLSACCEPT (2)

MLSDISPLAY (2) MOD (2)

MODULE (2) MODULEEXPORT (2)

MODULEIMPORT (2) MOVESTACK (2)

MUX (2) NAME (2)

NEQ (2) NO (3)

NORANGECHECK (3) NORMALSTATE (3)

A-4 5044233.380

Reserved Words

NOSWAP (3) NOT (2)

NOTDSABLE (3) NULL (2)

NUMERIC (2) 00 (1)

OF (2) OFFER (3)

ON (2) OPEN (2)

OR (2) ORDERED (2)

OUTPUTMESSAGE (l) OVERWRITE (2)

PAGE (3) PAGED (3)

PARITYFAILl (3) PAUSE (2)

PERMANENT (3) PICTURE (l)

POINTER (l) PRED (2)

PRIVATELIBRARIES (3) PRIVILEGEDINSTRUCTION (3)

PROCEDURE (l) PROCESS (2)

PROCURE (2) PROGRAM DUMP (2)

PROGRAMMEDOPERATOR (3) PROTECTED (3)

PURGE (3) RANGECHECK (3)

READ (2) READ LOCK (2)

READMEMORYCONTROL (2) READNANDCLEAREXTERNALS (2)

READPROCESSORSTATE (2) READXMEMORYTABLE (2)

REAL (l) RECEIVEFROMREQUESTOR (2)

REFERENCE (l) REGISTERS (3)

REPLACE (l) RESETEVENT (2)

RESIZE (2) RESUME (2)

RETAIN (3) RETURN (2)

RETURN2 (2) RETURNORIGINALS (2)

ROW (3) RUN (2)

RUNNINGLIGHT (2) SAFE (3)

SAVE (2) SCAN (1)

SCANIN (2) SCANOUT(2)

SCAN PARITY (3) SEEK (2)

SEGMENT (2) SEGMENTLEVEL (3)

SELECT (2) SENDTOREQUESTOR (2)

SEPCOMPLEVEL (3) SET (l)

SETACTUALNAME (2) SETEVENT (2)

5044233.380 A-5

Reserved Words

SETINHIBIT (2) SETLIMITS (2)

SETTIMEOFDAY (2) SHOW (2)

SIBS (3) SIGNALPROCESSOR (2)

SKIP (3) SORT (2)

SPACE (3) STACKER (3)

STACKOVERFLOW (3) STATION (3)

STATSUMMARY (3) . STEP (2)

STOP (2) STOP77 (2)

STRING (1) - STRINGPROTECT (3)

STRUCTURE (1) SUBFILE (3)

SUBTYPE (2) SUCC (2)

SUPPLY (2) SUSPEND (2)

SWAPNOW(3} SYNCHRONIZE (3)

SYSTEMCONTROL (2) SYSTEMLIB (3)

TAG (2) TARGET (3)

TASK (2) TEMPORARY (3)

TESTWASD (2) THRU (1)

. TIMELIMIT (3) TIMER (2)

TITLE (3) TO (2)

TODISK TOPRINTER

TRANSLATETABLE(2) TRUE (1)

TRUTHSET (2) TYPE (2)

UBOUND (2) UNIVERSE (1)

UNLOCK (2) UNPACK (2)

UNSAFE (3) UNTIL (1)

UPLEVEL (3) URGENT (3)

VALUE (1) VCPV (2)

VCPVA (2) VCPVD (2)

VCPVN (2) VCPVS (2)

VGATH (2) VIA (1)

VSCAT (2) VSEQ (2)

VVMV (2) WMVN (2)

VVOV (2) VVPS (2)

·VVPV (2) VVPVS (2)

A-6 5044233.380

WSPV (2)

VVTV (2)

WAIT (2)

WHILE (1)

WORD (2)

WRITE (2)

WRITEPROCESSORSTATE (2)

ZAP (2)

ZIP (2)

5044233.380

Reserved Words

VVTS (2)

WUV (2)

WAITANDRESET (2)

WITH (2)

WORDS (2)

'NRITEMEMORYCONTROL (2)

WRITEXMEMORYTABLE (2)

ZERODIVIDE (3)

A-7

A-8 5044233.380

Appendix B
ALGOL Features Not Implemented in
NEWP

This appendix lists the ALGOL features that are not implemented in NEWP. Some of
these features have been replaced by NEWP features that perform the same function or
a similar function, while others are considered inappropriate in the context of NEWP.

General Features
The following general ALGOL features are not available in NEWP:

• COMPLEX type

• STRING type

• INTERRUPT declarations

• OWN variables

• SWITCH declarations

Specific Features
The following specific items are not implemented in NEWP. Information about these
items is available in the A Series ALGOL Programming Reference Manual, Volume 1:
Basic Implementation.

The following tables include information about the NEWP features that can be used
instead of the unsupported ALGOL features.

Declarations
Feature Not Available

<array row equivalence>

<complex declaration>

<direct array row
equivalence>

<dump declaration>

<format declaration>

<forward interrupt
decla ration>

5044233.380

Altemative

<array reference declaration> and <array reference
aSSignment>

<array reference declaration> and <array reference
aSSignment>

TAOS

Format the data directly by using the various clauses of the
REPLACE statement.

8-1

ALGOL Features Not Implemented in NEWP

Feature Not Available

<forward switch label
decla ration>

< interrupt declaration>

'<list declaration>

< monitor decla ration>

< picture declaration>

<string declaration>

<string array declaration>

<switch file declaration>

<switch format declaration>

<switch label declaration>

<switch list declaration>

Statements

B-2

Feature Not Available

<attach statement>

<changefile statement>

<checkpoint statement>

<detach statement>

<disable statement>

<enable statement>

<exchange statement>

<fill statement>

Alternative

Include the elements directly in the READ and WRITE
statements.

TAOS

Format the data directly using the various clauses of the
REPLACE statement.

EBCDIC arrays

EBCDIC arrays

Use a DEFINE with parameters to select the proper file
instead of a switch file. For example:

FILE Fl. F2. F3 (KIND = DISK);
DEFINE SWITCH_FL [INX] =
(CASE INX OF (Fl. F2, F3» #;

Format the data directly using the various clauses of the
REPLACE statement. The switching can be simulated with a
define similar to the one shown under <switch file
declaration> .

Use a DEFINE with parameters similar to the one shown
under <switch file declaration>.

Use a DEFINE with parameters similar to the one shown
under <switch file declaration> to select a READ or WRITE
statement with the appropriate elements included directly.

Alternative

Open the file, change the TITLE attribute, and then close the
file again with LOCK. Note that this process is slower than
the <changefile statement> because of the need to open
the file.

Open both files, read the appropriate information into
buffers, and then write the information out to the opposite
files.

<assignment statement>

5044233.380

Feature Not Available

< merge statement>

<multiple attribute
assignment statement>

<on statement>

< removefile statement>

< rewind statement>

<space statement>

<when statement>

Expressions
Feature Not Available

<complex case expression>

<complex expression>

<complex function
designator>

<complex relation>

< conditional complex
expression>

<conditional designational
expression>

<designational case
expression>

<dmin function> and <dmax
function>

<dnormalize function>

<string function designator>

ALGOL Features Not Implemented in NEWP

AHernative

Use individual attribute assignment statements.

Use an <on declaration> in place of the <on statement>.
NEWP provides more fault names than ALGOL does. For
more information, refer to the "ON Declaration" in Section 4,
··Oeclarations."

Use the CLOSE with PURGE statement. Note that if the file
is not already open, it must be opened before the CLOSE can
be done.

<close option> RETAIN statement

SEEK statement, for example:

SEEK «fiie designator>[SPACE <arithmetic expr>]);

WAIT statement

AHernative

These functions are unnecessary in NEWP because the MIN
and MAX functions handle both Single-precision and
double-precision values.

This function is unnecessary in NEWP because the
NORMALIZE function accepts either a single or a double
arithmetic exp~ession as its parameter.

The following ALGOL intrinsics are not directly supported in NEWP:

5044233.380 8-3

ALGOL ·Features Not Implemented in NEWP

• CHECKSUM, COMPLEX, CONJUGATE

• DABS, DECIMAL, DELTA, DIMP, DNABS, DALPHA, DSCALELEFr,
DSCALERIGHT, DSCALERIGHTT

• FIRST

• !MAG

• LNGAMMA

• SCALELEFT, SCALERIGHT, SCALERIGHTr

The following ALGOL intrinsics are not directly supported in NEwp, but their
functionality can be obtained by declaring GENERALSUPPORT as a library and
importing the needed entry points:

• ARCCOS, ARCSIN, ARCTAN, ARCTAN2, ATANH

• CABS, CCOS, CExp, CLN, COS, COSH, COTAN, CSIN, CSQT

• DARCCOS, DARCSIN, DARCTAN, DARCTAN2, DCOS, DCOSH, DERF, DERFC,
DEXP, DGAMMA, DLGAMMA, DLN, DLOG, DSIN, DSINH, DSQRT, DTAN,
DTANH

• ERF, ERFC, EXP

• GAMMA

• LN,LOG

• RANDOM

• SIN, SINH, SQRT

• TAN,TANH

The following < string function> s are not supported by NEwp, but the same
functionality can be accomplished by using EBCDIC arrays or EBCDIC pointers or both:

• DROP

• HEAD

• REPEAT

• STRING, STRING4, STRING7, STRINGS

• TAIL, TAKE, TRANSLATE

Compiler Control Options

The following ALGOL compiler control options are not implemented in NEWP:

• AUTOBIND

• BCL, BEGINSEGMENT, BIND, BINDER

• CHECK

• DONTBIND, DUMPINFO

• ENDSEGMENT, EXTERNAL

B-4 5044233.380

ALGOL Features Not Implemented in NEWP

• FORMAT

• GOTO

• HOST

• INITIALIZE, INTRINSICS

• LEVEL, LmRARy, LISTDELETED, LOADINFO

• NOBCL, NOSTACKARRAYS, NOXREFLIST

• OLDRESIZE, OPTIMIZE

• PURGE

• SEGDESCABOVE, SEQERR, STOP

• USE

• WARNSUPR, WRITEAFrER

• XDECS, XREFS

Miscellaneous

The following miscellaneous ALGOL features are not supported in NEWP:

• Identifiers, numbers, and strings continued. across card images.

• LB and RB as synonyms for the square brackets ([D.

• Multicharacter operators with embedded blanks. However, the Update Replacement
operator (: = *) is allowed to have an arbitrary number of blanks between the equal
sign (=) and the asterisk (*).

• The KIND = READER file attribute for the compiler file CARD; CARD must be
file-equated to a disk file.

• Batch facility.

• Compile-time facility.

Product Interfaces

The following products can interface with ALGOL but not with NEWP:

• Advanced Data Dictionary System (ADDS)

• Communications Management System (COMS)

• Data Management System II (DMSm

• DMSII Transaction Processing System (TPS)

• Screen Design Facility Plus (SDF Plus)

• Semantic Information Manager (SIM)

5044233.380 8-5

8-6 5044233.380

Appendix C
Understanding Railroad Diagrams

What Are Railroad Diagrams?

Railroad diagrams are diagrams that show you the rules for putting words and symbols
together into commands and statements that the computer can understand. These
diagrams consist of a series of paths that show the allowable structure, constants, and
variables for a command or a statement. Paths show the order in which the command or
statement is constructed. Paths are represented by horizontal and vertical lines. Many
railroad diagrams have a number of different paths you can take to get to the end of the
diagram.

Example

- REMOVE ~----,---i
[SOURCE J
L OBJECT --1

If you follow this railroad diagram from left to right, you will discover three acceptable
commands. These coriunands are

REMOVE

REMOVE SOURCE

REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here. However,
because the allowed ways of communicating with the computer can be complex, railroad
diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual representations of
commands and, statements. Railroad diagrams are intended to

• Show the mandatory items

• Show the user-selected items

• Present the order in which the items must appear

• Show the number of times an item can be repeated

• Show the necessary punctuation

To familiarize you with railroad diagrams, this explanation describes the elements of the
diagrams and provides examples.

5044233.380 C-l

Understanding Railroad Diagrams

C-2

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules. 'They
all consist of paths that represent the allowable structure, constants, and variables for
commands and statements.

By following railroad diagrams, it is easy to understand the correct syntax for commands
and statements. Once you become proficient in the use of railroad notation, the
diagrams serve as quick references to the commands and statements.

Constants and Variables

A constant is an item that cannot be altered. You must enter the constant as it appears
in the diagram, either in full or as an allowable abbreviation. If a constant is partially
underlined, you can abbreviate the constant by entering only.the underlined letters. In
addition to the underlined letters, any of the remaining letters can be entered. If no part
of the constant is underlined, the constant cannot be abbreviated. Constants can be
recognized by the fact that they are never enclosed in angle brackets « » and are in
uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular .command or
statement. Variables appear in railroad diagrams enclosed in angle brackets « ».

In the following example, BEGIN and END are constants while < statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially Wlderlined. Valid
abbreviations for BEGIN are BE, BEG, and BEG!.

-- RfGIN --<statement list>-- END --1

Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

5044233.380

Understanding Railroad Diagrams

-- SECONDWORD -- (--<arithmetic expression>--) --1

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

-- STOP --%

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit on one
line and must continue on the next. A right arrow appears at the end of the first line and
another right arrow appears at the beginning of the next line.

-- SCALERIGHT -- (--<arithmetic expression>-- t ------~

-+-<arithmetic expression>--) ---------------1

Required Items

A required item can be either a constant, a variable, or punctuation. A required item
appears as a single entry, by itself or with other items, on a horizontal line. Required
items can also exist on horizontal lines within alternate paths or nested Clower-level)
diagrams. If the path you are following contains a required item, you must enter the
item in the command or statement; the required item cannot be omitted.

In the following example, the word EVENT is a required constant and < identifier> is a
required variable:

-- EVENT --<identifier>--i

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose anyone
of the items from the list. If the list also contains an empty path (solid line), none of
the choices are required. A user-selected item can be either a constant, a variable, or
punctuation. In the following railroad diagram, either the plus sign (+) or minus sign (-)
can be entered before the requifed variable < arithmetic expression> , or the symbols
can be disregarded because the diagram also contains an empty path.

~t:---~-~-r-.<arithmetic expression>--1

Loop

A loop represents an item or group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertica1lines. The top line is a right-to-Ieft path
that contains information about repeating the loop.

5044233.380 C-3

Understanding Railroad Diagrams

C-4

Some loops include a return character. A return character is a character (often a comma
or semicolon) required before each repetition of a loop. If there is no return character,
the items must be separated by one or more blank spaces.

Bridge

Sometimes a loop also includes a bridge, which is used to show the maximum number of
times the loop can be repeated. The bridge can precede the contents of the loop, or it
can precede the return character (if any) on the upper line of the loop.

The bridge determines the number of times you can cross that point in the diagram. The
bridge is an integer enclosed in sloping lines (J \). Not all loops have bridges. Those that
do not can be repeated any number of times until all valid entries have been used.

or

-L/2\-. LINKAGE ~
L RUNTIME

--L[+--/2\
LINKAGE

. RUNTIME ~
In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more
than three times.

In some bridges an asterisk follows the number. The asterisk means that you must
select one item from the group.

-L/1*\-. liNKAGE ~
L RUNTIME

The following figure shows the types of constraints used in railroad diagrams.

5044233.380

Understanding Railroad Diagrams

SYMBOL/PATH EXPLANATION

Vertical bar. Indicates that the
I cOlll1land or statement can be followed

by another cOlll1land or statement.

0/0
Percent sign. Indicates that the
cOlll1land or statement must be on a
Hne by itself.

:> Ri ght arrow. Indicates that the

>
di agram occupi es moore than one
1 i nee

Required items. Indicates the
-< required >- constants, variables, and

punctuation that must be entered
in a conmand or statement.

tv:: J
User-se 1 ected items". Indicates the
items that appear one below the
other in a vertical list. You
se 1 ect whi ch item "or Hems to include.

1< I A loop. Indicates an item or group
of items that can be repeated.

~/2\~
A bridge. Indicates the maximum
numb"er of times a loop can be
repeated.

Figure C-l. Railroad Constraints

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from
begirurlng to end. Some railroad diagrams have only one path, while others have several
alternate paths. The following railroad diagram indicates there is only one path that
requires the constant LINKAGE and the variable < linkage mnemonic> :

-- LINKAGE --<linkage mnemonic>-1

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user selected items, or a combination of both.
More complex railroad diagrams can consist of many alternate paths, or nested
(lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes an ampersand (&) and the constants (that are

5044233.380 C-5

Understanding Railroad Diagrams

C-6

user-selected items) in the vertical list. These constants are within a loop that can be
repeated any number of times until all options have been selected. The first alternate
path requires the ampersand (&) and the required constant ADDRESS. The second
alternate path requires the ampersand (&) followed by the required constant ALTER
and the required variable < new value> .

-- & IY P E • ---,--'------.---1

ASCII
BCl
DECIMAL
fBCDIC
HEX
QCTAl

ADDRESS -----I
ALTER --<new value

Railroad Diagram Examples

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

-- LOCK -- (-- <file identifier> --) --1

Sample Input

LOCK (Fl)

LOCK (FILE4)

Explanation
(

LOCK is a constant and cannot be altered. Because no part of the word is underlined,
the entire word must be entered. The parentheses are required punctuation and Fl and
FILE4 are sample < file identifier> s.

Example 2

<open statement>

-- OPEN <database name>--1
L INQUIRY .J
L UPDATE -.J

Sample Input

OPEN DATABASEl

OPEN INQUIRY DATABASEl

OPEN UPDATE DATABASEl

5044233.380

Understanding Railroad Diagrams

Explanation

The first sample input shows the constant OPEN followed by the variable DATABASE!,
which is a database name. The railroad diagram shows two user-selected items,
INQUIRY and UPDATE. However, because there is an empty path (solid line), these
entries are not required.

The second sample input shows the constant OPEN followed by the user-selected
constant INQUIRY and the variable DATABASE!.

The third sample input shows the constant OPEN followed by the user-selected constant
UPDATE and the variable DATABASE!.

Example 3

<generate statement>

-- GENERATE --<subset>-- = ~ NULL
L<subset~-------I

Sample Input

GENERATE Z = NULL

GENERATE Z = X

GENERATE Z = X AND B

GENERATE Z = X + B

Explanation

AN

3
<subset

OR
+

The first sample input shows the GENERATE constant followed by the variable Z, an
equal sign, and the user-selected constant NULL.

The second sample input shows the GENERATE constant followed by the variable Z, an
equal sign, and the user-selected variable X.

The third sample input shows the GENERATE constant followed by the variable
Z, an equal sign, the user-selected variable X, the AND command (from the list of
user-selected items in the nested path), and a third variable, B.

The fourth sample input shows the GENERATE constant followed by the variable Z, an
equal sign, the user-selectable variable X, the plus sign (from the list of user-selected
items in the nested path), and a third variable, B.

5044233.380 C-7

Understanding Railroad Diagrams

C-8

Example 4

<entity reference declaration>

-- ENTITY REFERENCE ~entity ref 10>-- (·--<class 10>--) ~

Sample Input

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR)

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR), ADVISOR2 (ASST_INSTRUCTOR)

Explanation

The first sample input shows the required item ENTITY REFERENCE followed by the
variable ADVISOR1 and the variable INSTRUCTOR. The parentheses are required.

The second sample input illustrates the use of a loop by showing the same input as
in the first sample followed by a comma, the variable ADVISOR2, and the variable
ASST _INSTRUCTOR. The parentheses are required.

Example 5

- PS -- MQUIFY --------------------+

U request number>---·-------............ --.------·-+
<request number>-- - --<request number

All ~-----------------~
.EXCEPTIONS ---------~

~_r_-__r_-<fi 1 e att~i bute phrase>-r--'---'

~---"r-<pri nt modi fi er phrase

Sample Input

PS MODIFY 11159

PS MODIFY 11159,11160,11163

PS MODIFY 11159-11161 DESTINATION = ILP7"

PS MOD ALL EXCEPTIONS

Explanation

The first sample input shows the constants PS and MODIFY followed by the variable
11159, which is a < request number> .

5044233.380

Understanding Railroad Diagrams

The second sample input illustrates the use of a loop by showing the same input as in
the first sample followed by a comma, the variable 11160, another comma, and the final
variable 11163.

The third sample input shows the constants PS and MODIFY followed by the
user-selected variables 11159-11161, which are < request number> s, and the
user-selected variable DESTINATION = "LP7", which is a < file attribute phrase> .

The fourth sample input shows the constants PS and MODIFY followed by the
user-selected constant ALL, followed by the user-selected constant EXCEPTIONS. Note
that in this sample input, the constant MODIFY has been abbreviated.

5044233.380 C-9

C-IO 5044233.380

Glossary

A
address couple

A representation of the address of an item in a program. An address couple consists
of two numbers: the first number is a lexical level, and the second number is a
displacement (offset) within that lexical level.

address equation
The process of declaring an identifier to have the same address as a previously declared
identifier or a specifically supplied address.

Address Space Number (ASN)

ADDS

On systems using the Master Control Program (MCP) operating system, a number that
refers to a particular address space in memory.

See Advanced Data Dictionary System.

Advanced Data Dictionary System (ADDS)

AScn

ASN

B

A software product that allows for the centralized definition, storage, and retrieval of
data descriptions.

American Standard Code for Information Interchange. A standard 7-bit or 8-bit
information code used to represent alphanumeric characters, control characters, and
graphic characters on a computer system.

See Address Space Number.

bad GO TO
A GO TO statement in an inner block that transfers control to a label that is global to
that block. The block in which a bad GO TO statement occurs is exited abruptly and
local variables are deallocated immediately.

bootstrap
A collection of data and machine instructions capable of loading another program into
memory.

5044233.380 Glossary-l

Glossary

c
call-by-name

Pertaining to one method of passing a parameter to a procedure. The system substitutes
the actual parameter wherever the formal parameter is mentioned in the procedure
body. Any assignments to the actual parameter immediately change the value of the

. formal parameter, and vice versa.

call-by-reference
Pertaining to one method of passing a parameter to a procedure. The system evaluates
the location of the actual parameter and replaces the formal parameter with a reference
to that location. Any change made to the formal parameter affects the actual parameter,
and vice versa.

call-by-value
Pertaining to one method of passing a parameter to a proc~dure. A copy of the value of
the actual parameter is assigned to the formal parameter, which is thereafter handled
as a variable that is local to the procedure body. Any change made to the value of a
call-by-value formal parameter has no effect outside the procedure body.

Communicate with Universal I/O (CUIO) operator
An operator on A 9 systems that passes the address of an I/O Control Block (IOCB)

CUIO operator
See Communicate with Universal I/O operator

G
global identifier

L

Within a given block of an ALGOL, NEwp, or Pascal program, an identifier that is
declared in an outer block. Th~ value of the global identifier can be modified by any
block to which it is global Wlless a local variable of the same name has been declared.

lexical level
A number that indicates the relative level of an addressing space within the stack of an
executing program. Lexical levels range from 0 through either 15 or 31, depending on
the computer family. A lower lexical level indicates a more global addressing space.

local identifier

N

An identifier that is declared within a given block of a program. The value or values
associated with that identifier inside the block are not associated with that identifier
outside the block.

nonnumeric constant
A constant identifier whose root type is an enumerated scalar type.

Glossary-2. 5044233.380

Glossary

numeric constant

p

p-bit

PCW

A constant identifier whose root type is REAL, INTEGER, DOUBLE, DESCRIPTOR,
and WORD.

See presence bit.

See Program Control Word.

presence bit (p-bit)
A bit in a descriptor that indicates whether the address in the descriptor references a
location in main memory ·or on a disk. If the presence bit is equal to 1, the address is in
physical memory. If the presence bit is equal to 0, the address is either on a disk, or no
memory or disk area is assigned for the descriptor yet. A p-bit is used in all descriptors
on Address Space Number (ASN) systems, but is used only in the Actual Segment
Descriptor (ASD) table on ASD systems because of the memory architecture.

Program Control Word (PCW)

R
RCW

A word that is used to transmit processing information from a control program to the
operational programs, or between operational programs.

See Return Control Word.

Return Control Word (RCW)

s

A tag-3 word created by the processor when the processor calls a procedure, function, or
subroutine. The RCW contains program address information describing where to return
in the program when the subroutine exits.

Screen Design Facility Plus (SDF Plus)

SCS

sew

SDFPlus

A Unisys product used for creating user interface systems (UISs) for online,
transaction-based application systems.

See System Control Subsystem.

See Software Control Word.

See Screen Design Facility Plus.

5044233.380 Glossary-3

Glossary

separately compiled procedure (SEPCOMP)
A procedure that is compiled on its own, rather than as part of a program. It uses a
patch, a base symbol file, and a host file from a previous host compile or SEPCOMP to
perform a compilation.

SEPCOMP
See separately compiled procedure.

SIRW
See -Stuffed Indirect Reference Word.

Software Control Word (SCW)
A word that is used to transmit processing information from the control program to the
operational programs, or between operational programs.

Stuffed Indirect Reference Word (SmW)
A word that references a location in an addressing environment. The form of the
reference is such that the SIRW always points to the same location, no matter what the
state of the current addressing environment.

System Control Subsystem (SCS)

T
TPS

The hardware and software on A Series Entry and Mediwn Systems (EMS) that control
maintenance functions. For example, on an A 5 system, the User Interface Processor
CUIP) has programmable read-only memory (PROM) code that enables it to act as
the SCS. As the SCS, it performs a maintenance subsystem self-test and loads the
maintenance subsystem software.

See Transaction Processing System.

Transaction Processing System (TPS)

u

A U nisys system that provides methods for processing a high volume of transactions,
keeps track of all input transactions that access the database, enables the user to batch
data for later processing, and enables transactions to be processed on a database that
resides on a remote system.

up-level pointer assignment
In ALGOL, any construct that could result in a pointer pointing to an array declared
at a higher lexical level than that at which the pointer is declared. Such a construct is
disallowed by the compiler, because the array can be deallocated, leaving the pointer
pointing to an invalid portion of memory.

Glossary-4 5044233.380

Bibliography

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation
(form 1169844). Unisys Corporation.

A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces (form
1170099). Unisys Corporation.

A Series I/O Subsystem Programming Reference Manual (form 1169984). Dnisys
Corporation.

A Series System Architecture Reference Manual, Volume 2 (form 5014954). Unisys
Corporation.

A Series Work Flow Administration and Programming Guide (form 1170149). Dnisys
Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual (form 1169802).
U nisys Corporation.

5044233.380 Bibliography-l

Bi bl iogra phy....,2 5044233.380

Index

A

abnormal exit, 4-5
Absolute Store Reference Word (ASRW), 8-3
Absolute Store Reference Word (ASRW)

operator, 9-20
ACCEPT statement, 5-1,5-2,5-3
<accept statement>, 5-1, 5-2, 5-3
< address couple>, 9-1
address equation

in INTRINSIC declarations, 4-13
Address Equation Declaration (UNSAFE),

9-1
< address primary>, 9-13
< addressable identifier>, 9-12
ALGOL

compared with NEwp, 1-1
~ alternative identifier>, 4-19, 5-12
< alternative> , 4-19
anon~ousset,6-9

< arithmetic constant declaration>, 4-4
arithmetic expression, 6-3
arithmetic function designator, 6-1, 6-2, 6-5
< arithmetic function designator> , 6-1, 6-2,

6-5
arithmetic operator, 6-1
< arithmetic operator>, 6-1
< array class>, 4-2
ARRAY declaration, 4-2
< array declaration> , 4-2
ARRAY REFERENCE ASSIGNMENT

statement, 5-4
ARRAY REFERENCE declaration, 4-3
< array reference declaration> , 4-3
< array reference identifier> , 4-3
< array specification>, 4-25
< array type>, 4-26
ARROGATE function, 6-11
< arrogate function> , 6-11
< ASCII COI:lStant> , 3-2
< ASCII numeric character>, 3-2
< ASCII string character>, 3-4
< ASCII string constant> , 3-4

5044233-001

ASD compiler control option, 8-2
ASDSP ACE block directive, 8-14
ASDTABLE [MACHINEOPS] intrinsic

(UNSAFE), 9-12
ASRW, (See Absolute Store Reference Word

(ASRW))
assignment compatibility, 4-41
ASSIGNMENT statement, 5-3
< assignment statement>, 5-3
AT [REFERENCE] intrinsic (UNSAFE),

9-13

B

< base type identifier> , 4-39
basic symbols, 3-1
< BCL character>, 3-4
< BCL constant>, 3-2
< BCL numeric character>, 3-2
< BCL string constant'> , 3-4
< binary character> , 3-3
< binary constant>, 3-3
block directives

ASDSPACE, 8-14
CONTROLSTATE, 8-14
FmsTFREEDOCELL, 8-14
FmsTSEGDESC, 8-15
INHERITSTATE, 8-15
INLINE, 8-15
INTERLOCKOPS, 8-15
MEMIMAGEBOUND, 8-16
NORANGECHECK, 8-16
NORMALSTATE, 8-16
PROTECTED, 8-17
RANGECHECK, 8-17
SAFE, 8-17
SEGMENT, 8-17
SEGMENTLEVEL, 8-18

Index-1

Index

SEPCOMPLEVEL, 8-18
STATSUMMARY, 8-11, 8-18
< target option>, 8-18
UNSAFE, 8-19

BMASKSEARCH [MACHINEOPS] intrinsic
(UNSAFE),9-14

Boolean declaration, 4-1
< Boolean declaration> , 4-1
Boolean expression, 6-3

precedence in, 6-4
Boolean function designator, 6-1, 6-6
< Boolean function designator>, 6-1, 6-6
< Boolean library attribute specification> ,

4-14
Boolean primary, 6-1
< Boolean primary>, 6-1
< Boolean-valued library attribute name> ,

4-14
< bound pair>, 4-2
BREAK function, 6-12
< break function>, 6-12
BUZZ [MISC].intrinsic (UNSAFE), 9-14 .
BUZZ47 [MISC] intrinsic (UNSAFE), 9-15

c
call-by-name parameter, 4-27
call-by-reference parameter, 4-26
call-by-value parameter, 4-27
CALLIO [MACHINEOPS] intrinsic

(UNSAFE), 9-15
CARD input file, 7-5
case expression, 6-1
< case expression>, 6-1
< case head>, 5-8
CASE statement, 5-1, 5-8
< case statement>, 5-1
character representation, 3-5
CHECKHASH [MACHINEOPS] intrinsic

(UNSAFE), 9-15
CLEAR compiler control option, 8-3
CLOSE statement, 5-1
< close statement>, 5-1
coercion, 9-3
Communicate with Universal I/O (CUIO)

operator, 9-15
compilation order, 4-18
compiler control options

ASD,8-2
CLEAR, 8-3
INCLLIST, 8-3

Index-2

INSTALLATION, 8-3
INTERLOCKOPS, 8-3
LIST, 8-4
LISTO,8-4
LIST1, 8-4
MAKEHOST, 8-5
MCp, 8-5
MERGE, 8-5
MOD STRICT, 8-5
NEW, 8-6
NOCOUNT, 8-6
not implemented in NEwp, B-4
PROCREF, 8-6
READLOCK, 8-6
READLOCKTIMEOUT, 8-7
SEPCOMP, 8-7
SEPCOMPMERGE, 8-7
SINGLE, 8-7
STANDALONE, 8-2, 8-8, 8-9
STATISTICS, 8-10
TADS, 8-11
UNDERLINE, 8-11
VERSION, 8-12
VOID, 8-12
XREF, 8-12C
XREFFILES, 8-12C
$,8-12C

COMPILETIME (20),8-12
COMPILETIME (21), 8-12
COMPILETIME (22), 8-12
Compute Check Hash (CHEK) operator, 9-32
< conditional descriptor expression> , 9-9
conditional expression, 6-1
< conditional expression>, 6-1
Conditional Halt (HALT) operator, 9-28
< conditional operator>, 6-3
< conditional word expression>, 9-11
CONSTANT declaration, 4-4
< constant declaration>, 4-4
< constant identifier> , 4-4
< constant scalar type expression>, 6-7
< constant value> , 4-4
constants

numeric, 3-2
string,3-4

CONTROLSTATE block directive,8-14

D

DAWDLE [MISC] intrinsic (UNSAFE), 9-15
DECIMALCONVERT function, 6-10

5044233-001

< decimalconvert function>, 6-10
declarations

ARRAY, 4-2
ARRAY REFERENCE, 4-3
CONSTANT, 4-4
EXCEPTION PROCEDURE, 4-5
EXCEPTION PROCEDURE FORWARD,

4-8
EXPORT, 4-8
INTERLOCK, 4-9
INTERLOCK ARRAY, 4-9
INTRINSIC, 4-10
LABEL, 4-14
LffiRARY, 4-14
MODULE, 4-15
MODULE (old), 4-18C
not implemented in NEwp, B-1
ON, 4-22
OUTPUTMESSAGE ARRAY, 4-23
POINTER, 4-24
PROCEDURE, 4-24
PROCEDURE REFERENCE, 4-34
SCALAR TYPE, 4-35
SEGMENT, 4-34
SET TYPE, 4-42
SIMPLE VARIABLE, 4-35
STRUCTURE TYPE, 4-35
STRUCTURE TYPE VARIABLE, 4-43
SUPPLY, 4-44
VALUE ARRAY, 4-45

Delay (DLAY) operator, 9-16
DELAYSWAP option, 9-8
descendant types, 4-40
DESCRIPTOR [DESCRIPTOR] intrinsic

(UNSAFE), 9-16
< descriptor case expression> , 9-9
DESCRIPTOR declaration (UNSAFE), 9-3
< descriptor declaration> , 9-3
< descriptor expression>, 9-9
DESCRIPTOR expressions (UNSAFE), 9-9
< descriptor identifier> , 9-3
< descriptor primary>, 9-9
designational expression, 6-1
< designational expression>, 6-1
< dimension specs>, 4-2
dinteger function, 6-1
< dinteger function> , 6-1
DINTEGERT function, 6-11
DIRECT ARRAY declaration, 4-1
< direct array declaration> , 4-1
< displacement> , 9-1

5044233-001

Index

DLL [REGISTERS] intrinsic (UNSAFE),
9-16

DOUBLE declaration, 4-1
< double declaration>, 4-1
< double_the _cache_size> , 9-24
DREADMEMORYCONTROL

[MACHINEOPS] intrinsic
(UNSAFE),9-16

DSABLE option, 9-8
dynamic procedure specification, 4-31
Dynamic Scale Right Save (DSRS) operator,

9-24
< DO address couple>, 9-5
< DO displacement> , 9-5

E

< EBCDIC constant>, 3-2
< EBCDIC numeric character> , 3-2
< EBCDIC string character>, 3-4
< EBCDIC string constant> , 3-4
< edit micros>, 5-11, 9-7
enclosing module, 4-16
< enumerated endpoint> , 4-39
< enumerated literal list > , 4-36
< enumerated literal>, 4-36
< enumerated range>, 4-39
< enumerated type>, 4-36
enumerated types, 4-36

ordered, 4-37
unordered, 4-37

< equation part>, 9-1
EV AL [MACHINEOPS] intrinsic (UNSAFE),

9-17
Evaluate (EV AL) operator, 9-17
exception procedure

automatic invocation, 4-7
restrictions, 4-6

EXCEPTION PROCEDURE declaration, 4-5
< exception procedure declaration> , 4-5
EXCEPTION PROCEDURE FORWARD

declaration, 4-8
< exception procedure forward declaration>,

4-8
< exception procedure identifier> , 4-5
EXIT [MACHINEOPS] intrinsic (UNSAFE),

9-17
EXPORT declaration, 4-8
< export declaration>, 4-8
< export list>, 4-18C
< export object specification> , 4-8

Index-3

Index

< export options> , 4-8
< exportable identifier>, 4-16
< expression>, 6-1
expressions

F

arithmetic, 6-3
Boolean, 6-3
DESCRIPTOR (UNSAFE), 9-9
function, 6-5
not implemented in NEwp, B-3
pointer, 6-6
scalar type, 6-7
set, 6-8
string,6-9
WORD (UNSAFE), 9-10

F AILREGISTER [MACHINEOPS] intrinsic
(UNSAFE),9-17

. fault handling, 4-22
fault names, 4-22.
fault numbers, 4-22
Fetch Main Memory Reference (FMMR)

operator, 9-18
Fetch Main Memory Register (FMFR)

operator, 9-17
FIRSTFREEDQCELL block directive,. 8-14
FIRSTSEGDESC block directive, 8-15
< float·character >, 9-7
FLOAT option (UNSAFE), 9-7
< FLOAT parameters>, 9-7
FMMRREADLOCK [MACHINEOPS]

intrinsic (UNSAFE), 9-18
FOR statement, 5-1, 5-8
< for statement>, 5-1, 5-8
FORK statement (UNSAFE), 9-6
< fork statement> , 9-6 .
FORKHANDLER MCP procedure, 9-6
< formal parameter list>, 4-25
< formal parameter part>, 4-24
FREEZE statement, 5-9
< freeze statement>, 5-9
FREEZE(MCP), 5-9
full compilation, 7-1
function expression, 6-1, 6-5
< function expression>, 6-1, 6-5
functions

ARROGATE, 6-11
BREAK, 6-12
DECIMALCONVERT, 6-10
DINTEGERT, 6-11

Index-4

G

INTERLOCK, 6-11
LOCK, 6-13
LOCKSTATUS, 6-14
LOWER BOUND, 6-16
MAPPING, 6-16
PACKDECIMAL, 6-16
PREDECESSOR, 6-18
SCALAR TYPE, 6-16
SUCCESSOR, 6-18
UNLOCK, 6-15
UPPER BOUND, 6-19

Gather (GATH) operator, 9-31
GO TO statement, 5-1
< go to statement>, 5-1

H

HARDWARE option, 8-4
< hexadecimal character> , 3-4
< hexadecimal constant>, 3-3
< hexadecimal string constant>, 3-4
host compilation, 7-1
HOST input file, 7-5

I/O statement, 5-1
<I/O statement>, 5-1
Ignore Parity (lGPR) operator, 9-18
IGNOREP ARITY [MACmNEOPS] intrinsic

(UNSAFE), 9-18
implicit string concatenation, 4-23
implicit type transfer, 9-3
in-line procedures, 4-28

restrictions on, 4-28
INCLLIST compiler control option, 8-3
Indirect Reference Word (lRW), 9-33
INHERITSTATE block directive, 8-15
< initial part>, 5-8
< initialization procedure> , 4-19
INLINE block directive, 7-6C, 8-15
< insert character>, 5-11
INSERT option, 5-11
INSTALLATION compiler control option,

8-3

5044233-001

< installation>, 9-1
< integer constant identifier> , 4-39
INTEGER declaration, 4-1
< integer declaration> , 4-1
integer endpoint, 4-40
< integer endpoint> , 4-39, 4-40
INTEGER function, 6-2
< integer function>, 6-2
< integer range> , 4-39
< integer subtype endpoint>, 4-39
< integer subtype range> , 4-39
< interface body> , 4-16
< interface declaration> , 4-16
< interface identifier>, 4-16
< interface> , 4-16
interlock

compared with PROCURE and
LIBERATE statements, 4-10

INTERLOCK ARRAY declaration, 4-9
< interlock array declaration> , 4-9
< interlock array identifier> , 4-9
INTERLOCK declaration, 4-9
< interlock declaration> , 4-9
< interlock designator>, 6-11
INTERLOCK function, 6-11
< interlock identifier> , 4-9
INTERLOCKOPS block directive, 8-15
INTERLOCKOPS compiler control option,

8-3
Interrupt Channel (INCN) operator, 9-18
INTERRUPTCHANNEL [MACHINEOPS]

intrinsic (UNSAFE), 9-18
INTERRUPTCOUNTZERO

[MACHINEOPS] intrinsic
(UNSAFE),9-18

interruption protection, 8-17
INTRINSIC declaration, 4-10
<intrinsic declaration>, 4-10
intrinsic identifiers, 4-10
< intrinsic>, ~1
intrinsics (UNSAFE), 9-11
introduction to NEwp, 1-1
mw, (See Indirect Reference Word (IRW»
< iteration part> , 5-8

L

LABEL declaration, 4-14
< label declaration> , 4-14
label designator, 6-2
< label designator>, 6-2

5044233-001

LABELS option, 8-10
<length>, 9-7
< level 2 procedure heading> , 2-1
< level 2 procedure type> , 2-1
<lex level> , 9-1

Index

LEXLEVEL [MISC] intrinsic (UNSAFE),
9-18

LEXOFFSET [MISC] intrinsic (UNSAFE),
9-19

< library attribute specs> , 4-14
LIBRARY declaration, 4-14
library declaration limit, 4-14
< library declaration>, 4-14
< linkage class> , 4-8
Linked List Lookup (LLLU) operator, 9-19
LIST compiler control option, 8-4
USTLOOKUP [MACHINEOPS] intrinsic

(UNSAFE), 9-19
USTLOOKUP function, 6-2
<listlookup function>, 6-2
USTO compiler control option, 8-4
LIST1 compiler control option, 8-4
Load Protected Object Word (LPOW)

operator, 9-19
LOADEVENT [MACHINEOPS] intrinsic

(UNSAFE), 9-19
LOCK function, 6-13
< lock function>, 6-13
LOCKSTATUS function, 6-14
< lockstatus function> , 6-14
LOWER BOUND function, 6-16
< lower bound function>, 6-16
< lower bound list> , 4-26
<lower bound>, 4-2
< lower bounds>, 4-3

M

Make Program Control Word (MPCW)
operator, 9-5

MAKEHOST compiler control option, 8-5
MAKEPCW [MACHINEOPS] intrinsic

(UNSAFE),9-19
MAPPING function, 6-16
< mapping function> , 6-16
Mark Stack Control Word (MSCW), 8-9,

9-19
MCP compiler control option, 8-5
MEMIMAGEBOUND block directive, 8-16
MEMORY [MEMORY] intrinsic (UNSAFE),

9-20

Index-5

Index

MERGE compiler control option, 8-5
MLSaccept statement, 5-2
< MLSaccept statement>, 5-2
MODSTRICT compiler control option, 8-5
< module body> , 4-15
<module body> (old),4-18C
MODULE declaration, 4-15

restrictions, 4-16
MODULE declaration (old), 4.-18C
< module declaration> , 4-15
<module declaration> (old),4-18C
module export, 4-16
< module head> , 4-15
<module head> (old),4-18C
< module identifier>, 4-15
<module identifier> (old),4-18C
module import, 4-17
< moduleexport declaration>, 4-16
< moduleimport declaration>, 4-16
Move Stack (MVST) operator, 9-20
MOVESTACK [MACHINEOPS] intrinsic

(UNSAFE), 9-20
MScw, (See Mark Stack Control Word

(MSCW))
multidimensional array, 4-2

N

<name part>, 4-25
nested module, 4-16
NEW compiler control option, 8-6
NEWP program essentials, 2-1
NOBINDINFO option, 8-10
NOCOUNT compiler control option, 8-6
< nonnegative constant integer expression>,

4-36
NORANGECHECK block directive, 8-16
NORMALIZE function, 6-2
< normalize function>, 6-2
NORMALSTATE block directive, 8-16
NOSWAP option, 9-8
NOTDSABLE option, 9-8
< number list> , 5-8
< number of digits >, 6-10
numbers, 3-1
numeric constants, 3-2

Index-6

o
< octal character>, 3-3, 3-4
< octal constant>, 3-3
ON declaration, 4-22
< on declaration>, 4-22
ON statement, 5-2
< on statement>, 5-2
one-dimensional array, 4-2
< open statement>, 5-2
<operand to be converted>, 6-10
< option expression>, 8-1
< option primary>, 8-1
< ordinal> , 6-8
OUTPUTMESSAGE ARRAY declaration,

4-23
< outputmessage array declaration>, 4-23
OVERWRITE option (UNSAFE), 9-7

p

PACKDECIMAL function, 6-16
< packed-decimal result>, 6-10
parameter passing, 4-26
PAUSE [MACHINEOPS] intrinsic

(UNSAFE), 9-20
Pause Until Interrupt (PAUS) operator, 9-28
PBITS option, 8-10
pew, (See Program Control Word (PCW))

0 POINTER [DESCRIPTOR or WORD]
intrinsic (UNSAFE), 9-21

POINTER declaration, 4-24
< pointer declaration> , 4-24
pointer expression, 6-6
Polynomial Recurrence (POLy) operator,

9-32
POP LIST, 7-4
precedence in Boolean expressions, 6-4
PREDECESSOR function, 6-18
< predecessor function> , 6-18
Primitive Display (SHOW) operator, 9-26
< procedure body>, 4-26
PROCEDURE declaration, 4-24
PROCEDURE declaration (UNSAFE), 9-3
< procedure declaration>, 4-24, 9-3
< procedure beading>, 4-24
< procedure identifier>, 5-5
PROCEDURE INVOCATION statement, 5-2
< procedure invocation statement>, 5-2
procedure reference array assignment, 5-6

5044233-001

PROCEDURE REFERENCE ARRAY
ASSIGNMENT statement, 5-6

< procedure reference array assignment> ,
5-6

PROCEDURE REFERENCE ARRAY
declaration, 4-1

< procedure reference array declaration> ,
4-1

< procedure reference array element>, 5-6
< procedure reference array specification> ,

4-25
ptocedure reference assignment, 5-5
PROCEDURE REFERENCE ASSIGNMENT

statement, 5-4
< procedure reference assignment> , 5-5
PROCEDURE REFERENCE declaration,

4-34
< procedure reference declaration> , 4-34
< procedure reference identifier>, 5-6
PROCEDURE REFERENCE statement,

5-10
< procedure reference statement>, 5-10
< procedure specification>, 4-25
< procedure type> , 4-24
procedure value, 4-30
PReCESS statement (UNSAFE), 9-6
PROCREF compiler control option, 8-6
product interfaces

not implemented in NEwp, B-5
Program Control Word (PCW), 4-6
program unit, 2-1
PROTECTED block directive, 8-17
PROTECTED clause, 4-8

Q

< quaternary character> " 3-3
< quaternary constant> , 3-3

R

Railroad diagrams, explanation of, C-1
range checking, 4-41
< range expression>, 6-8
RANGECHECK block directive, 8-17
Rcw, (See Return Control Word (RCW)
Read External Interrupt Identification

(&DID) operator, 9-21

5044233-001

Index

Read External Memory Control (REMC)
operator, 9-16, 9-21

Read External Memory Table (REMT)
operator, 9-22

Read Internal Processor State (RIPS)
operator, 9-21

Read Machine Identification (W ATI)
operator, 9-34

Read Processor Identification (WHOI)
operator, 9-34

READ statement, 5-2
< read statement> , 5-2
Read Time of Day (RTOD) operator, 9-22
Read with Lock (RDLK) operator, 9-14
READANDCLEAREXTERNALS

[MACHINEOPS] intrinsic
(UNSAFE), 9-21

READLOCK compiler control option, 8-6
with BUZZ intrinsics, 8-6

READLOCKTIMEOUT compiler control
option, 8-7

READMEMORYCONTROL
[MACHINEOPS] intrinsic
(UNSAFE), 9-21

READMEMORYTABLE [MACIDNEOPS]
intrinsic (UNSAFE), 9-22 '

READPROCESSORSTATE
[MACHINEOPS] intrinsic
(UNSAFE), 9-21

READTIMEOFDAY [MACHINEOPS]
intrinsic (UNSAFE), 9-22

REAL declaration, 4-1
< real declaration> , 4-1
REAL function, 6-2
< real function>, 6-2
Receive (RECV) operator, 9-22
RECENEFROMBEQUESTOR

[MACHINEOPS] intrinsic
(UNSAFE), 9-22

REFERENCE TO [REFERENCE and
WORD] intrinsic (UNSAFE), 9-22

REGISTERS [REGISTERS] intrinsic
(UNSAFE),9-23

< remote module declaration>, 4-16
REPLACE POINTER-VALUED

ATTRIBUTE statement, 5-2
< replace pointer-valued attribute

statement>, 5-2
REPLACE statement, 5-11
REPLACE statement (UNSAFE), 9-7
<replace statement>, 5-11
reserved words, A-1

Index-7

Index

RESET statement, 5-2
< reset statement>, 5-2
RESETEVENT statement, 5-2
< resetevent statement>, 5-2
RESIZE statement, 5-2
< resize statement>, 5-2
RETURN [MACHINEOPS] intrinsic

(UNSAFE), 9-23
Return Control Word (RCW), 8-9
RETURNORIGINALS [MACHINEOPS]

intrinsic (UNSAFE), 9-23
Running Light (RUND operator, 9-24
RUNNINGLIGHT [MACHINEOPS] intrinsic

(UNSAFE),9-24

s
SAFE block directive, 8-17
SAVE ARRAY declaration (UNSAFE), 9-4
< save array declaration>, 9-4
< scalar type declaration> , 4-35
SCALAR TYPE declarations, 4-35
scalar type . expression, 6-7
< scalar type expression> , 6-7
SCALAR TYPE function, 6-16
scalar types

in array references, 4-3
Scale Right Save (SCRS) operator, 9-24
SCALERIGHTS [MACInNEOPS] intrinsic

(UNSAFE), 9-24
Scan In (SCNI) operator, 9-24
Scan Out (SCNO) operator, 9-25
SCANIN [MACHINEOPS] intrinsic

(UNSAFE), 9-24
SCANOUT [MACHINEOPS] intrinsic

(UNSAFE),9-24
Scatter (SCAT) operator, 9-31
Sew, (See Software Control Word (SCW))
SEEK statement, 5-3
< seek statement>, 5-3
SEGMENT block directive, 8-17
SEGMENT declaration, 4-34
SEGMENT declaration (UNSAFE), 9-4
< segment declaration> , 4-34, 9-4
Segment Dictionary Index (SDD value, 9-5
< segment equate> , 9-5
< segment identifier> , 4-34
<segment~~SDI>,9-5
segmentation, 2-1
SEGMENTLEVEL block directive, 8-18
SELECT statement, 5-12

Index-8

< select statement>, 5-12
Send to External Processing Element

(SEND) operator, 9-25
SENDTOREQUESTOR [MACHINEOPS]

intrinsic (UNSAFE), 9-25
SEPCOMP

background, 7-3
compiling with, 7-2
guidelines, 7-6
performing a, 7-4

SEPCOMP compiler control option, 8-7
SEPCOMP MERGE, 7-8
SEPCOMPLEVEL block directive, 7-3, 8-18
SEPCOMPMERGE compiler control option,

7-2,8-7
Sequential Occurrence (SEQ) operator, 9-32
set assignment, 5-7
< set base type>, 4-42
set expression, 6-8
< set expression> , 6-8
< set identifier> , 4-42
Set Interval Timer (SINT) operator, 9-28A
SET LIST, 7-4
Set Memory Inhibits (SINH) operator, 9-25
Set Memory Limits (SLMT) operator, 9-25
< set operator> , 6-8
< set primary>, 6-8
set relation, 6-5
< set relation>, 6-4
SET statement, 5-3
< set statement>, 5-3
SET structure type variable, 4-43
SET TYPE declaration, 4-42
< set type declaration>, 4-42
SETACTUALNAME function (UNSAFE),

9-9
< setactuaIname function>, 9-9
SETEVENT statement, 5-3
< setevent statement, 5-3
SETINHIBIT [MACHINEOPS] intrinsic

(UNSAFE), 9-25
SETLIMITS [MACHINEOPS] intrinsic

(UNSAFE), 9-25
SETI'IMEOFDAY [MACHINEOPS] intrinsic

(UNSAFE), 9-26
< short enumerated variable identifier>, 6-8
< short sca1ar type expression> , 6-8
< short subtype variable identifier>, 6-8
SHOW [MACHINEOPS] intrinsic

(UNSAFE), 9-26
< SHOW source>, 9-26
sibling module, 4-16

5044233-001

Signal Processor (SPES) operator, 9-27
SIGNALPROCESSOR [MACHINEOPS]

intrinsic (UNSAFE), 9-27
.< simple descriptor expression>, 9-9
< simple scalar type expression>, 6-7
< simple set constructor>, 6-8
< simple set expression>, 6-8
SIMPLE VARIABLE declaration, 4-35
< simple variable declaration> , 4-35
< simple word expression> , 9-10
SINGLE compiler control option, 8-7
SIZE function, 6-2
SIZE function (UNSAFE), 9-10
< size function>, 6-2, 9-10
Software Control Word (SCW), 4-7
SOURCE input file, 7-5
< specification>, 4-25
< specifier> , 4-25
stack cell, 4-10
STACK option, 8-10
Stack Overflow interrupt, 9-18
STANDALONE compiler control option, 8-2,

8-8
ALPHA, 8-9
BETA, 8-9
BETAINTERLEAVED,8-9

statements
ARRAY REFERENCE ASSIGNMEm

5-4
ASSIGNMENT, 5-3
CASE, 5-8
FOR, 5-8
FORK (UNSAFE), 9-6
FREEZE, 5-9
not implemented in NEwp, B-2
PROCEDURE REFERENCE, 5-10
PROCEDURE REFERENCE ARRAY

ASSIGNME~ 5-6
PROCEDURE REFERENCE

ASSIGNME~ 5-4
PROCESS (UNSAFE), 9-6
REPLACE, 5-11
SELE~5-12
SET ASSIGNMEm 5-7
SWAP, 5-12
WAIT (UNSAFE), 9-8
WAITANDRESET (UNSAFE), 9-8

STATISTICS compiler control option, 8-10
STATSUMMARY block directive, 8-11, 8-18
STOP [MACHINEOPS] intrinsic (UNSAFE),

9-28

5044233-001

STOP77 [MACHINEOPS] intrinsic
(UNSAFE), 9-28

string concatenation
implicit, 4-23

< string concatenation operator>, 6-9
string constants, 3-4
string expression, 6-9
< string expression>, 6-9
< string primary>, 6-9

Index

< structure type declaration> , 4-35
STRUCTURE TYPE declarations, 4-35
STRUCTURE TYPE VARIABLE declaration,

4-43
< structure type variable declaration> , 4-43
< subtype>, 4-39
subtypes, 4-39
SUCCESSOR function, 6-18
< successor function>, 6-18
SUPPLY declaration, 4-44
< supply declaration>, 4-44
SUSPEND [MACHINEOPS] intrinSic

(UNSAFE), 9-28
SWAP statement, 5-12
< swap statement>, 5-12
SWAPNOWoption, 9-8
SYSTEMCONTROL [MACHlNEOPS]

intrinsic (UNSAFE), 9-28
SYSTEMLIB attribute

in LIBRARY declarations, 4-14

T

TADS compiler control option, 8-11
TAPE input file, 7-5
< target option> block directive, 8-18
TESTRASD [MACHINEOPS] intrinsic

(UNSAFE), 9-28A
TESTW ASD [MACHINEOPS] intrinsic

(UNSAFE), 9-28A
< timeout>, 6-13
TIMER [MACHINEOPS] intrinsic

(UNSAFE), 9-28A
Top of Stack Control Word (TOSCW), 8-9
TOScw, (See Top of Stack Control Word

(TOSCW»
< transfer part>, 9-7

of <replaCe statement>, 5-11

Index-9

Index

u
UNDERLINE compiler control option, 8-11
< unit count> , g.:...7
UNLOCK function, 6-15
< unlock function>, 6-15
UNSAFE block directive, 8-19
unsafe constructs permitted, 8-19
untyped intrinsics, 9-29
UPPER BOUND function, 6-19
< upper bound function>, 6-19
<upper bound>, 4-2

v
VALUE ARRAY declaration, 4-45
< value array declaration> , 4-45
< variable ordinal>, 6-8
< variable range expression> , 6-8
< variable set constructor>, 6-8
VCHEK intrinsic, 9-32
VDOT intrinsic, 9-31
VDOTX intrinsic, 9-31
VECTOR INTRINSICS [MACmNEOPS]

(UNSAFE),9-29
VERSION compiler control option, 8-12
< version option>, 8-12
VFMN intrinsic, 9-33
VFMX intrinsic, 9-33
VF:MXA intrinsic, 9-33
VGATH intrinsic, 9-31
VIA [REFERENCE] intrinsic (UNSAFE),

9-33
VOID compiler control option, 8-12
< void option>, 8-12
VPOLY intrinsic, 9-32
VSCAT intrinsic, 9-31
VSEQ intrinsic, 9-32
VSUM intrinsic, 9-31
VSUMA intrinsic, 9-31

w
WAIT statement, 5-3
WAIT statement (UNSAFE), 9-8
< wait statement>, 5-3
WAITANDRESET statement, 5-3
WAITANDRESET statement (UNSAFE),

9-8

Index-lO

< waitandreset statement>, 5-3
WHATAMI [MACHINEOPS] intrinsic

(UNSAFE),9-34
WHOAMI [MACHINEOPS] intrinsic

(UNSAFE), 9-34
WORD [WORD] intrinsic (UNSAFE), 9-34
< word case expression>, 9-11
WORD declaration (UNSAFE), 9-5
< word expression>, 9-10
WORD expressions (UNSAFE), 9-10
< word primary> , 9-10
Write External Memory Control (WEMC)

operator, 9-34
Write External Memory Table (WEMT)

operator, 9-35
Write Internal Processor State (WIPS)

operator, 9-35
WRITE statement, 5-3
< write statement>, 5-3
Write Time of Day (WTOD) operator, 9-26
WRITEMEMORYCONTROL

[MACHINEOPS] intrinsic
(UNSAFE),9-34

WRITEPROCESSORSTATE
[MACHINEOPS] intrinsic
(UNSAFE),9-34

WRITEXMEMORYTABLE [MACHINEOPS]
intrinsic (UNSAFE), 9-35

x
XREF compiler control option, 8-12C
XREFFILES compiler control option, 8-12C

z
Zero Interrupt Count (ZIC) operator, 9-18

.LBOUND value, 4-3

.TAG clause, 9-11

.UBOUND value, 4-3
$ compiler control option, 8-12C

5044233-001

III~ ~~ IIIII~ 11111111111111111111111111111 ~IIIIII
5044233000000380

