
• UNISYS A Series
SORT Language
Programming
Reference Manual

Release 3.8.0

Priced Item

May 1989
Distribution Code SE
Printed in U S America
1169794.380

• UNISYS A Series
SORT Language
Programming
Reference Manual

Copyright © 1989 Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation

Release 3.8.0
Priced Item

May 1989
Distribution Code SE
Printed in U.S.A.
1169794.380

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product Liscense or Agreement to purchase or lease·
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded using the Remarks form at the back
of this manual, or may be addressed directly to Unisys, Technical Publications, 460 Sierra Madre
Villa, Pasadena, CA 91109

• UNISYS Product Information
Announcement
o New Releac;e 0 Revision • Update 0 New Mail Code

Title
A Series SORT Language Programming Reference Manual

. This Product Infa-mation Announcement announces the release of Update 2 to the A Series SOFfT Language
PrO{Tamming Reference Manual, dated May 1989, relative to the Mark 3.8.0 System Scltware Releac3e.

This manual describes the details d desi91ing. coding and running Sort progams using the SORT lang..Ja~.

Upclate 2 adds the instructioos fa the COUATE statement. The OOLLATE statement is a new q::iional SORT
statement. Upclate 2 also corrects the examples for sorting l:¥ integer.

Chan~ to the text are indcated ~ vertical bars in the margnsd the replacement paQ3S.

Remove

iii through xvi
3-1 through 3-2
4-1 through 4-2

4-3 through 4-4
A-I through A-2
C-l through C-2
0-5 through I>-6
E-3 through E-4
E-9 through E-12
E-49 through E-50
Bibliography-1 through 2
Index -1 through 22

Insert

iii through xvi
3-1 through 3-2
4-1 through 4-2
4-2A through 4-2B
4-3 through 4-4
A-I through A-2
C-1 through C-2
0-5 through 0-6
E-3 through E-4
E-9 through E-12
E-49 through E-50
Bibliography-1 through 2
Index-l through 22

Retain this Product Information Announcement as a reoord of chan~ made to the basic publication.

To order additional copies cI these manuals,

• United States customers call Unisys Direct at 1-800-448-1424.

• All ether customers contact your Unisys Subsidiary Ubrarian.

• Unisys personnel use the 8ectronic Uterature Ordering (ELO) system.

To receive the update packag3 only, ader 1169794-002. To receive the complete gJide, ader 1169794.380.

Announcement only: Announcement and attachments: $tstem: A Series
PS207 Release: 3.9.0 SeJ:Xernber 1991

Part Number: 1169794-002

Printed on recycled paper

Page Status

Page Issue

iii through ix -002
x Blank
xi through xv -002
xvi Blank
xvii .380
xviii Blank
xix .380
xx Blank
1-1 through 1-6 .380
2-1 through 2-13 .380
2-14 Blank
3-1 through 3-2 -002
3-3 through 3-5 .380
3-6 Blank
4-1 through 4-2A -002
4-2B Blank
4-3 through 4-4 -002
4-5 through 4-13 .~80
4-14 Blank
5-1 through 5-13 .380
5-14 Blank
A-I th rough A-2 -002
A-3 through A-4 .380
B-1 through B-2 .380
C-l through C-2 -002
0-1 through 0-4 .380
0-5 through D-6 -002
0-7 through 0-11 .380
0-12 Blank
E-l through E-2 .380
E-3 through E-4 -002
E-5 through E-8 .380
E-9 through E-12 -002
E-13 through E-48 .380
E-49 through E-50 -002
E-5l .380
E-52 Blank
F-l through F-11 .380
F-12 Blank
G-l through G-9 .380
G-I0 Blank

1169794-002 iii

Page Status

iv

Glossary-I through 9
Glossary-I 0
Bibliography-l
Bibliography-2
Index-1 through 22

.380
Blank
~02
Blank
-002

1169794-002

Page Status

Page

iii through xx
1-1 through 1-6
2-1 through 2-13
2-14
3-1 through 3-5
3-6
4-1 through 4-13
4-14
5-1 through 5-13
5-14
A-I through A-4
B-1 through B-2
C-1 through C-2
0-1 through 0-11
0-12
E-1 through E-51
E-52
F-1 through F-ll
F-12
G-l through G-9
G-IO
Glossary-l through 9
Glossary-l0
Bibliography-l
Bibliography-2
Index-l through 22

1169794.380

Issue

Original
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Original
Original
Original
Blank
Original
Blank
Original
'Blank
Original
Blank
Original
Blank
Original
Blank
Original

iii

Page Status

iv 1169794.380

About This Manual

Purpose

Scope

This manual describes the details of designing, coding, and running Sort programs using
the SORT language.

This manual concentrates on the components, syntax, and semantics of the SORT
language, as well as how to create, compile, and run Sort programs.

Audience
This manual is intended primarily for applications programmers and individuals with
backgrounds in advanced-level programming who want to sort files. However, the text
and examples should make it possible for a novice programmer to write, compile, and run
a Sort program.

Prerequisites
A working knowledge of the MCP SORT procedure is helpful in understanding the
information presented in this manual.

A user should know how to use the A Series Editor and the Command and Edit
(CANDE) Message Control System (MCS) to enter code. The user should also know
how to use CANDE and the Work Flow Language (WFL) to compile and run jobs.

How to Use This Manual
This manual bas been designed both as a learning text for users who are lmVtmma r with
the SORT language or B 1000 Series Sort programs and as a reference document for
experienced users.

This manual is structured so that users can select and read only those sections meeting
their specific needs.

1169794-002 v

About This Manual

• Users who are unfamiliar with the A Series SORT language and who will be working
on A Series systems should read the entire manual except for the "B 1000 SORT
Conversion" appendix.

• Users who are familiar with B 1000 Series Sort programs but uDramiliar with
the A Series SORT language will find it useful to refer to the "B 1000 SORT
Conversion" appendix before reading other sections of this manual.

• Users who are familiar with the A Series SORT language will find this manual most
helpful as a reference manual.

• Users who are unfamiliar with railroad diagrams (a Unisys method of depicting
syntax) should refer to "Understanding Railroad Diagrams" before reading the body
of the manual.

The following conventions are used in this manual:

• Throughout this manual, A Series is used to refer collectively to A Series and B 7900
systems.

• In references to the SORT language itself, the SORT procedure, and the SORT
compiler, the word SORT is in uppercase.

• In references to a program. produced using the SORT language, such as a Sort
program or Sort job, the word Sort has the initial letter capitalized.

• Programs andjobs coded to run with the GSORT compiler control record set to
TRUE are identified as GSORT programs and GSORT jobs.

Unless otherwise noted, all references to related documentation within the text is for
A Series product information.

Organization

vi

This manual contains five sections and six appendixes. In addition, a glossary,
bibliography, and index appear at the end of the manual.

Section 1. Creating and Compiling Sort Programs

This section contains both explanations and examples of how to create Sort programs,
invoke the SORT compiler from both WFL and CANDE, and run compiled Sort
programs from WFL and CANDE.

Section 2. Sort Program Structure

The overall structure of a Sort program is described and diagrammed in this section. In
addition, the basic language components and Sort language keywords are presented.

1169794-002

About This Manual

Section 3. SORT Statements

This section describes, syntactically and semantically, the required SORT statements and
their associated attributes.

Section 4. Optional SORT Statements

SORT statements that are optional to the Sort program but useful for improving
efficiency are described syntactically and semantically in this section.

Section 5. SORT Compiler Control Records

The use of compiler control records (also referred to as CCRs) within a Sort program
are discussed in this section. The compiler options recognized by the SORT compiler
are described syntactically and semantically. The GSORT compiler control record is
introduced here, but detailed in its own appendix.

Appendix A. SORT Language Keywords

Appendix A lists all the keywords recognized by the SORT compiler, including accepted
keyword abbreviations and indication of compatibility with B 1000 Series systems.

Appendix B. SORT Compiler Files

Appendix B describes the various files used by the SORT compiler.

Appendix C. SORT Program Files

Appendix C describes the files that a compiled Sort program can use.

Appendix D. B 1000 SORT Conversion

Sort programs written for Unisys B 1000 Series systems can be easily converted to
the Unisys A Series systems SORT language. Appendix D details the changes and
compatibility between the two series of systems.

Appendix E. Using GSORT to Code and Run Sort Programs

Appendix E covers the differences in designing, coding, and executing Sort programs
that use the GSORT option fixed-format specifications and statement.

Appendix F. Using the Standard Collating Sequence

Appendix F explains the standard collating sequence used to sort items of data into a
particular order.

Appendix G. Understanding Railroad Diagrams

Appendix G explains how to read railroad diagrams.

1169794-002 vii

About This Manual

Related Product Information

viii

A Series CANDE Operations Reference Manual (form 8600 1500)

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

A Series Editor Operations Guide (form 8600 0551)

This guide describes the operation of the Editor, an interactive tool for creating
and modifying text and program files. This guide is written for experienced and
inexperienced users who are responsible for creating and maintaining text and program
files.

A Series File Attributes Programming Reference Manual (form 8600 0064).
Formerly A Series I/O Subsystem Programming Reference Manual.

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute.

A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide (form 8600 0288)

This guide describes how to use the MLS environment, which encompasses many Unisys
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in
a multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and
user interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personne~ system managers, programmers, and customers who
wish to create customized application systems.

A Series System Software Installation Guide, Volume 2: System Initialization
(form 1170263)

This guide provides the various step-by-step system initialization procedures for most
A Series Entry and Medium Systems. This guide is written for installation managers,
support analysts, and operators.

A Series System Software Support Reference Manual (form 8600 0478)

This manual describes a number of facilities used for system monitoring and debugging,
including BARS, DUMP ANALYZER, LOGANALYZER, and LOGGER. It also describes
the format of the SUMLOG file. This manual is written for system support personnel
and operators.

1169794-002

About This Manual

A Series System Software Utilities Operations Reference Manual
(form 8600 0460)

This manual provides information on the system utilities, such as DCSTATUS,
FILECOPY, and DUMP ALL. This manual is written for applications programmers and
operators.

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform

. library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

1169794-002 ix

x 1169794-002

Contents

About This Manual . v

Section 1. Creating and Compiling Sort Programs

Creating Sort Programs. • . .. 1-1
Compiling and Running Sort Programs. 1-2

Compiling and Running Sort Programs from CANOE .. 1-3
Compiling and Running Sort Programs from WFL 1-4
Compiler Control Options. 1-5

Using the TASKVALUE Task Attribute ..•................ 1-6

Section 2. Sort Program Structure

Overall Sort Program Structure 2-1
Sort Program Record Format. 2-2
Comments ~ • 2-2
Basic Syntax Components " • 2-3

Integer. . • . 2-3
Displacement. • . • . • 2-3
Type.. • . •. 2-5
Length. • . • • • 2~9
Literal • • 2-9

Literal Conversions. • • . 2-11
Literals in DIGIT and ZONE Fields. 2-11
Hex Literal Conversion. • 2-12
Integer Literal Conversion. • 2-12

Section 3. SORT Statements

FILE Statement 3-1
File Attributes•............................ 3-2
KEY Statement. • • • . . . 3-3

Section 4. Optional SORT Statements

SORT Processing Statements ,. 4-1
COLLATE Statement. • . • • . • . . 4-1
DISKANDTAPE Statement. • . • . . 4-2
DISKSORT Statement . • . • • . • . • • 4-2
MEMORYONLY Statement. • . . . • 4-3
MERGE Statement. • 4-3
STABLE Statement. • 4-4
TAGSORT Statement . 4-5

1169794-002 xi

Contents

TAPESORT Statement 0 0 0 0 0 • 0 • 0 0 0 0 0 0 ••• 0 0 • 0 0 • 4-6
SORT Parameter Statements 0000. 0 • 0 0 0 0.00. 0 • 0 0 • 0 0 0 0 0 0 4-7

MEMORY Statement 0 0 • 0 0 0 • 0 0 • 0 0 •••• 0 ••• 0 0 0 0 4-7
PARITY DISCARD Statement 0 0 • 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 4-8
RECORDS Statement 0 0 0 0 0 0 0 0 0 • 0 0 0 ••• 0 • 0 0 0 0 • 0 4-9
TAGSEARCH Statement. 0 •• 0 •••• 0 •••• 0 • 0.0000 4-9
WORKFAMILY Statement. 0 0000.0000. 0.000. 0 0 0 4-10
WORKSIZE Statement 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 4-10

INCLUDE and DELETE Record Selection Statements 0000. 000 4-11

Section 5. SORT Compiler Control Records

Types of Compiler Control Records 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0 5-1
Types of Options 0 • 0 0 • 0 0 0 • 0 • 0 •• 0 0 0 • 0 0 0 0 0 ~ • 0 0 0 0 0 0 • 0 • 0 5-1
Using TASKSTRING to Submit Compiler Control Records 0 • 0 • 0 • 5-2
Compiler Control Record Syntax . 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 5-2
Compiler Control Options 0 0 0 0 •• 0 0 • 0 0 •• 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 5-4

CLEAR (Immediate) 000. 0 0 0 • 0 0 0 • 0 000 ••• 0 .000. 5-4
CODE (Boolean) 0 • 5-4
DELETE (Boolean) 00. 0 0 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 • 0 • 0 • 5-4
ERRORLIMIT (Value) 0 0 • 0 • 0 ••• 0 0 • 0 0 •• 0 • 0 • 0 • • • 5-5
ERRORLIST (Boolean) .• 0 • 0 •••••• 0 0 •• 0 • 0 0 0 • 0 • 5-6
GSORT (Boolean) . 0 ••• 0 • 0 •••• 0 • 0 0 •• 0 • 0 • • • • • 5-6
LIST (Boolean) 0 0 ••••• 0 • 0 ••• 0 0 0 • 0 0 0 ••• 0 0 • • • 5-7
LlSTDELETED (Boolean) 0 • 0 •••• 0 • 0 0 ••••• 0 0 • • • 5-7
LlSTDOLLAR (Boolean) .0. 0 •••• 0 • • • • • • • • • • • • • 5-8
LlSTP (Boolean) .• • • • • . . . • . • • . • . . • • . . . • 5-8
MAP (Boolean) . . . • • • . . . • • . • • . • . . • . 5-8
MERGE (Boolean) • • . • . • • • • • . . • • • . . . • . • . 5-9
NEW (Boolean) ..••..•... 0 0 •••• 0 ••• 0 • • • • • • 5-9
NEWSEQERR (Boolean) •....••......••..••.• 5-10
REFORMAT (Boolean) ..•.•......•..••...•.• 0 5-11
SEQUENCE (Boolean) .••..........•...•.... 0 5-11
Sequence Base (Value) 0 ••• 0 • 0 0 ••• 0 ••• 0 • • • • • • 5-12
Sequence Increment (Value) ...•.. '. • . • • • . • . . . • . 5-12
SINGLE (Boolean) . • . . . • • • • . • • • . • • • . . • . . 5-12
VERSION (Value) •.••.••••••••..••••••.•... 5-12

Appendix A. SORT Language Keywords

Appendix B. SORT Compiler Files

Appendix C. SORT Program Files

Appendix D. B 1000 SORT Conversion

B 1000 Statements Accepted but Ignored •..• 0 •••• 0 0 0 0 • • • 0-1
B 1000 Statements Not Supported by the SORT Compiler 0 • 000 0-1

xii 1169794-002

Contents

8 1000 File Statement . 0-1
B 1000 File Input Part. 0-2
B 1000 File Output Part D-4
B 1000 File Name .. 0-5

8 1000 Data Type . 0-7
B 1000 INCLUDE and DELETE Statement. 0-9
8.1000 MEMORY Statement. 0-9
81000 MERGE Statement. 0-9
B 1000 NOPRINT Statement. 0-9
B 1000 RECORDS Statement. 0-10
B 1000 SORT Statement 0-10
B 1000 SYNTAX Statement. • . . • . 0-10
B 1000 TAGSORT Statement ...••...........•........ 0-10
B 1000 TAPESORT Statement .•...................... 0-11
B 1000 WORKPACK1 and WORKPACK2 Statements 0-11

Appendix E. Using GSORT to Code and Run Sort Programs

How GSORT Programs Are Similar to Sort Programs. E-1
How GSORT Programs Differ from Sort Programs ...•....... E-2

Creating Output Records by Remapping Input Records. E-2
Using Alternate Collating Sequences. E-3
Coding GSORT Programs • . E-4
Executing a GSORT Program E-5

Determining the Content of the Output File ..•............ E-6
Criteria for Regularly Sorted Output (SORTR) E-6
Criteria for Sorted Files with Accumulated Totals

(SORTRS) ••.•. '0' • E-7
Criteria for Files of Record Numbers (SORTA) . • . • . . . E-7
Selecting the Fields in an Output Record .•.•...... E-8

Coding Header Information. . • • . . • • • . • . • • . . • . . E-8
Sequence Number (Columns 1 through 5) • • . . . • . • • E-10
Header Specification (Column 6)••• '. . . . • • . . E-10
Type of Job (Columns 7 through 12) • • • • . . • • . E-11
Identical, or Equal, Key Fields (Column 12) • E-11
Key Field Lengths (Columns 13 through 17) ••.••.. E-11
Record-Sorting Order (Column 18) •..•..••..•••. E-12
Columns 19 through 25. . • • . • • • • . • . • . • E-12
Collating Sequence (Column 26) . • • . • . . . • . • • . • . . E-12
Print Option (Column 27) . • • • • . . . • • • . E-13
Output Option (Column 28) . • . • E-13
Output Record Length (Columns 29 through 32) .••. E-13
Columns 33 through 35. • • . . • • • . • . • . . . • . • E-14
Null Output (Column 36) • • • . E-14
Columns 37 through 43. • • • E-14
Comments (Column 44 through 72) • . E-14

Coding ALTSEQ Statements. E-14
Name of Statement (Columns 1 through 6) E-15
Double Asterisks (Columns 1 and 2) • E-15
(Columns 7 and 8) • • E-16
Character Being Taken Out (Columns 9 and 10) E-16
Character Being Inserted (Columns 11 and 12) .•... E-16

1169794-002 xiii

Contents

Using Alternate Collating Sequences for an Entire Key
Field. E-16

Using Alternate Collating Sequences for Specified Key
Fields•........................ E-17

Using the ALTSEQ Statement to Make Characters Equal E-17
Coding Record Selection Information. E-18

Sequence Number (Columns 1 through 5) E-20
Include/Omit Specifications (Column 6) E-20

Using the Include-All Option E-20
Using the Conditional Include Option. E-20
Mixing the Include and Omit Options. • . E-20

Continuation or Comments (Column 7)•. E-21
Interpretation of Data (Column 8) . . . • E-25
Factor 1 Location (Columns 9 through 16) E-26
Relation (Columns 17 and I8) . . • E-27
Factor 2 Compare Data (Column 19) E-28
Factor 2 Location (Columns 20 through 27) E-28
Compare Field Name (Columns 28 through 39) E-28
Compare Literal or Constant (Columns 20 through 39) E-29
Compare Date Keyword (Columns 20 through 39) ... E-30
Comments (Column 40 through 72) E-30

Coding Field Selection Information E-30
Sequence Number (Columns I through 5) ~ . . E-32
Field Selection Specifications (Column 6) E-32
Field Type or Comments (Column 7) E-33

Defining Types of Key Fields E-33
Normal Key Fields. • E-34
Opposite Key Fields. E-34
Forced Key Fields. . . . • E-34
Unconditional Forced Field. E-34
Conditional Forced Field. E-34
Force-All Field. E-35

Specifying Types of Data Fields. E-35
Normal Data Fields. E-35
Summary Data Fields•...•.... E-35
Forced Data Fields .•............... E-36

Data Type (Column 8) • E-36
Field Location (Columns 9 through 16) E-38
Compare Character (Column 17). • • • E-39

For a Forced Key Field E-39
For a Summary Overflow Indicator Field. • . E-39

Forced Character (Column 18) • E-39
Continued Forced Character in Forced Key Field

(Column 19). • . . E-40
Overflow Field Length (Columns 20 through 22) . . • . • E-40

. Preventing Summary Data Overflow. E-4I
Detecting Summary Data Overflow•. E-41

Alternate Collating Sequences (Column 20)•... E-41
Columns 23 through 39. • • . . . • . . . • • . • . . • E-41
Comments (Columns 40 through 72)••..... E-42

Examples of GSORT Programs . E-42
Sorting without Record Selection Specifications. E-42

xiv 1169794-002

Contents

Sorting a File with Selected Records E-43
Sorting a File with Conditional Include and Omit E-44
Sorting a File by Record Number. E-47
Sorting for Selected Information E-48
Sorting by Integer E-49

GSORT System Error Messages ~ E-50

Appendix F. Using the Standard Collating Sequence

Comparing Both the Zone and Digit Portions. F-1
Comparing Only the Zone Portion -. F-3
Comparing Only the Digit Portion. F-7

Appendix G. Understanding Railroad Diagrams

Glossary. 1

Bibliography. 1

Index. 1

1169794-002 xv

xvi 1169794-002

Figures

G-l. Railroad Constraints G-5

1169794.380 xvii

xviii 1169794.380

Tables

1-1. TASKVALUE Task Attribute Values. 1-6

2-1. Key and Data Field Storage 2-8
2-2. Allowable Literal Types 2-12

A-I. Category 1 Keywords. A-I
A-2. Category 2 Keywords. A-2

B-1. SORT Compiler Files . B-1

C-1. Sort Program Files. C-1

D-1. Equating B 1000 File Names and A Series TITLE Attributes. D-6

E-1. Header Specification" Entry Table. E-9
E-2. ALTSEQ Statement Entry Table. E"'::15
E-3. Record Selection Specification Entry Table. E-18
E-4. Coding for Include Sets E-21
E-5. Coding for Omit Sets . E-24
E-6. Coding for Negative Unpacked Numbers E-30
E-7. Field Selection Specification Entry Table. E-32
E-8. Possible Entry Combinations (Columns 7 and 8) E-38
E-9. Maximum Field Lengths for Input Data Types. E-41

F-1. EBCDIC Collating Sequence for Comparing Both the Zone and Digit Portions F-2
of a Character .. .

F-2. EBCDIC Collating Sequence for Comparing Only the Zone Portion of a F-4
Character

F-3. EBCDIC Collating Sequence for Comparing Only the Digit Portion of a F-8
Character

1169794.380 xix

xx 1169794.380

Section 1
Creating and Compiling Sort Programs

The SORT language allows users to write programs for sorting or merging files on
U nisys A Series systems. A single Sort program can sort up to 99 files or merge from
two to eight files. Files can be sorted in main memory, on tape, on disk, or on tape and
disk, depending on the type of sort specified in the sort program. However, files are
always merged in main memory, because merges require much less memory than sorts.

The SORT language (and associated compiler) simplifies the use of the Master Control
Program (MCP) SORT procedure because the procedure no longer has to be accessed
through other programming languages, such as ALGOL or COBOL.

Sort programs can specify one or many key fields (up to 200) for p'rocessing input data
records. The key field or fields can begin at any location within the input record, and can
be of any specified length not exceeding the length of the record. Individual keys can be
sorted or merged in ascending or descending order. Specific records can be included or .
excluded from the sort or merge process through optional sort selection expressions.

Sort programs can be written using the Command and Edit (CANDE) Message Control
System (MCS) or the Editor. They can be compiled and run from either CANDE or the
WorkFlow Language (WFL).

The SORT compiler supports the MultiLingual System (MLS). Through the Message
Translation utility, a component of the MLS, you can translate all error, warning, header,
and trailer messages issued by the compiler.

This section explains how to create and compile Sort programs.

Creating Sort Programs
Sort programs can be created and modified by using CANDE directly or by using the
Editor, which is accessed through CANDE.

Sort program files can be created, modified, and saved using the CANDE MAKE, GET,
and SAVE commands. The MAKE command creates a new file. The GET command
retrieves a previously created and saved file from the user's program library. The SAVE
command saves a new or modified file in the user's program library.

When writing Sort programs via CANDE, the programmer must enter statement
numbers. When the Editor is used, statement numbering is done automatically.

Note: Sort programs must be written using uppercase characters only.
·The SORT compiler will generate a syntax error(INV ALID
CHARACTER) if a lowercase character is encountered in the
program file.

1169794.380 1-1

Creating and Compiling Sort Programs

For more information on creating, modifying, and saving files using CANDE, refer to the
CA1VDE Operah·ons Reference J.\1anual. For information on using the Editor, refer to the
Editor Operations Guide. .

Example: Creating and Saving a Sort Program Using CANDE

This example shows how to create and save a Sort program file using CANDE. Lines
beginning with a number sign (#) are displayed by CANDE; all other lines are entered
by the user.

MAKE SRTPROG SORT

#WORKFILE SRTPROG: SORT

100 DISKSORT
200 FILE IN (TITLE ="INPUT/FILE")
300 FILE OUT (TITLE ="OUTPUT/FILE")
400 KEY (1 5 D)
SAVE

#UPDATING
#WORKSOURCE SRTPROG SAVED

In the MAKE command line, the keyword SORT, specifies that the file SRTPROG is
to be of type SORT. (Sort program files can also be created as type SEQUENTIAL or
type TEXT. However, doing so changes the form of the COMPILE command. These
differences are described in "Compiling and Running Sort Programs from CANDE" later
in this section.)

The program code, written in all uppercase, designates that a disk sort is to be
performed on the input file INPUT/FILE and the sorted output should be placed in
the file OUTPUT/FILE. By default, the key field is of type ALPHA. The key field has a
stated displacement of 1 and a length of 5. The key should be sorted in descending order.

The SAVE command saves the new file SRTPROG.

Compiling and Running Sort Programs

1-2

The SORT compiler can be initiated from either the Work Flow Language (WFL) or
CANDE, and the object code files generated by the SORT compiler can be run from
either CANDE or WFL.

Programs compiled by the SORT compiler use the system SORT procedure in the
Master Control Program (MCP). For more information about the capabilities and
mechanism of the procedure, refer to the System Software Utilities Operations
Reference Manual.

1169794.380

Creating and Compiling Sort Programs

Compiling and Running Sort Programs from CAND£

When accessed from CA.'N'DE, the SORT compiler can compile programs either for
syntax only (the COMPILE SYNTAX command) or for storage in the program library
and immediate execution (the COMPILE command). Additionally, ifa Sort program file
is the current CANDE work file, it can be both compiled and run using only the CANDE
RUN command.

If a Sort program file has been created as a SEQUENTIAL or TEXT file, then the
COMPILE command must explicitly state which compiler is to be used (in this case it is
the SORT compiler). The COMPILE command would then be either of the following:

COMPILE WITH SORT

COMPILE SRTPROG WITH SORT

If a syntax error is diagnosed during the comp~tion of a Sort program, the compilation .
is halted and no object code file is produced. The compiler sends messages to the screen
indicating the lines that contain errors, along with an explanation of each error.

For more information on compiling and running files using CANDE commands, refer to
the CANDE Operations Reference Manual.

Example: Compiling with CANDE for Syntax Only

The following example shows how to compile, for syntax only, a Sort program file named
SRTPROG that has been saved in the user's file library. The compilation does not create
an object code file.

COMPILE SRTPROG SYNTAX

#COMPILING 2345
#ET=8.2 PT=0.4 10=0.5

SRTPROG contains no syntax errors. It can now be compiled and run using either of the
following command sequences. Both compilations produce an object code file.

Combined Compile and Run

GET SRTPROG

#WORKFILE SRTPROG:SORT, 4 RECORDS,
SAVED

RUN

#COMPILING 1234

#ET=4.0 PT=O.4 10=0.8

#RUNNING 5678

#ET=1.5 PT=0.3 10=0.5

SAVE

#WORKOBJECT SRTPROG SAVED

1169794.380

Separate Compile and Run

GET SRTPROG

#WORKFILE SRTPROG:SORT, 4 RECORDS,
SAVED

COMPILE

#COMPILING 2345

#ET=3.6 PT=O.4 10=0.7

SAVE

#WORKOBJECT SRTPROG SAVED

1-3

Creating and Compiling Sort Programs

Combined Compile and Run Separate Compile and Run

RUN

#RUNNING 3456

#ET=2.9 PT=0.5 10=0.6

Example: Using File Attributes in a CANDE Job

This example shows how to run the previously compiled and saved Sort program,
SRTPROG, using optional file attribute equations to specify different input and output
files to be used by the program. Notice that in a file attribute equation the title of the
file does not need to be enclosed by double quotation marks (").

RUN SRTPROG; FILE IN(TITLE=NEW/INPUT); FILE OUT(TITLE=NEW/OUTPUT)

#RUNNING 9012
#ET=5:04.3 PT=4:21.3 10=2:48.1

Compiling and Running Sort Programs from WFL

1-4

When accessed through WFL, depending on what code file job disposition is specified,
the SORT compiler can compile programs for syntax only (SYNTAX), for storage in the
program library (LIBRARY), for immediate execution (GO), or for storage in the library
and immediate execution (LIBRARY GO).

The following examples show only some of the basic constructs for compiling and running
Sort programs from WFL. For complete information about the WFL COMPILE and
RUN commands, refer to the Work Flow Language (WFL) Programming Reference
Manual.

Example: WFL Compilation for Storage in a Library

In the following example, the Sort program SORTPROG is compiled under the WFL job
COMPILE/SORT. The Sort program is contained in a Local Data Specification (the lines
beginning with SORT DATA CARD and ending with the question mark), and the object
code is to be written to a file named SORTPROG. The keyword SORT on the second line
is the call to the SORT compiler. The keyword LIBRARY specifies that SORTPROG is
to be stored in the user's file library.

Once compiled, SORTPROG can be run at any time. The question marks (?) preceding
the BEGIN JOB and END JOB statements, and the question mark following the KEY
statement (it closes the Local Dat:a Specification) must be placed in column 1.

1169794.380

Creating and Compiling Sort Programs

? BEGIN JOB COMPILE/SORT;
COMPILE SORTPROG WITH SORT LIBRARY;
SORT DATA CARD

FILE IN (TITLE = "INPUT/FILE")
FILE OUT (TITLE = "OUTPUT/FILE")
KEY (1 5)

? % END OF SORT COMPILER DATA
? END JOB

Example: WFL Compilation for Immediate Execution

This example shows a compilation for immediate execution of a Sort program. The Sort
program ALPHASORT had been previously written and saved in the user's file library.
The object code file is to be named OBJ/ALPHASORT.

? BEGIN JOB COMPILE/SORT;
COMPILE OBJ/ALPHASORT WITH SORT GO;
COMPILER FILE CARD (TITLE="ALPHASORT");

? END JOB

Example: Use of File Attributes in WFL Jobs

Below are two different runs of the Sort program SORTPROG, compiled in the example
"WFL Compilation for Storage in a Library." The first run uses the file attributes
specified when the program. was compiled; the second run respecifies the file attribute,
TITLE, for FILE OUT to be NEW/OUTPUT/FILE rather than OUTPUT/FILE.
Comnients can be added to the JOB file by preceding them with a percent symbol (%).

? BEGIN JOB RUN/SORT;
RUN SORTPROG; % sorts INPUT/FILEt producing OUTPUT/FILE

RUN SORTPROG; % sorts INPUT/FILE, producing NEW/OUTPUT/FILE
FILE OUT (TITLE = NEW/OUTPUT/FILE);

? END JOB

Compiler Control Options

The SORT compiler accepts the following compiler control options:

CLEAR CODE DELETE

ERRORLIMIT ERRORLIST GSORT

LIST LlSTDELETED L1STP

L1STDOLLAR MAP MERGE

NEW NEWSEQERR REFORMAT

SEQUENCE SINGLE VERSION

For complete information about the compiler control options listed above, refer to the
"Compiler Control Records" section in this manual.

1169794.380 1-5

Creating and Compiling Sort Programs

Using the TASKVALUE Task Attribute

1-6

Sort programs use the TASh.'VALUE task attribute to return information about
program execution. Table 1-1 shows the values that can be returned.

Table 1-1. TASKVALUE Task Attribute Values

Value Meaning

1

o

-1

-2

The Sort program terminated normally.

Either the Sort program is not yet initiated, or the Sort program is still
running.

The Sort program terminated because of a run-time error condition.

The Sort program was discontinued for some external reason (for
example, by the system operator).

The T ASh.'V AL UE of a Sort program can be tested in a WFL job that uses a task
variable. The following example shows how the TASKV ALUE can be used to provide
Sort program information.

Example: Providing Sort Program Information with TASKVALUE

In the example, the WFLjob RUN/SORT can produce one of two messages. If the
program SORTPROG terminates normally, the message "SORT RAN OK" will be
displayed. Otherwise, the message "SORT DID NOT WORK" is displayed.

? BEGIN ~OB RUN/SORT;
TASK T;
RUN SORTPROG [T] ;
IF T(TASKVALUE) = 1 THEN

DISPLAY "SORT RAN OK"
ELSE

ABORT "SORT DID NOT WORK";
? END JOB

1169794.380

Section 2
Sort Program Structure

This section describes the structure of a Sort program and the basic syntax components
of SORT statements.

Overall Sort Program Structure
A Sort program is composed of a series of statements that define both the files to be
sorted or merged and the data fields to be used as keys within the records of those files.

Shown below are the valid SORT statements. The statements specify the actions of the
Sort program. A Sort program must have one FILE statement and one KEY statement.
A Sort program can be written using only these required statements. However, most
Sort programs contain optional statements that refine the sort or improve sorting
efficiency. Note that the statements do not have to appear in any specific order.

For detailed information about individual statements, refer to the "SORT Statements"
and "Optional SORT Statements" sections in this guide. For information describing the
compatibility of SORT statements with the BlOOD Sort program, refer to the "B 1000
SORT Conversion" appendix.

Syntax

<sort program>

-<sort statements>>------------------------l

<sort statements>

~-----------------------------~

1169794.380

/l\l<disksort statement
<di skandtape statement>-----l
<memoryonly statement>-----i
<tapesort statement>'-----1
<merge statement>-------l
<8 1000 tapesort statement

/l*\-.-<file statement
L<8 1000 fil e statement>----I

/l\-<include and delete statement
/1 *\-<key statement>---------i
11 \-<memory statement>------I
11\-<parity discard statement>----I
11\-.-<records statement

L<8 1000 records statement
/1 \-<stab 1 e statement>-------I
11\-r-<tagsearch stateme~t

L<tagsort statement>-----i
11 \-<workfami 1 y statement>------I
11\-<worksize statement>--------i
11\-<8 1000 noprint statement>-----I
11\-<8 1000 syntax statement>-----I
12\-<8 1000 workpack statement

2-1

Sort Program Structure

Below is a basic outline for a Sort program. Following the outline makes the program
code easier to read.

Sort Processing Statements
File Statement

Input files (up to 99)
Output file (one only)

Record Selection Statement
Include/Delete statement

(up to 200)
Key Statement

Key field (up to 200)
Sort Parameter Statements

opt i ona 1
REQUIRED

-- optional

REQUIRED

optional

Compiler control records (CCRs) are not shown in the outline because their locations
within a Sort program depend on what the programmer is trying to control.

Note: GSORT programs do not use the SORT statements; they use the
GSORT statement and specifications. These elements must be
entered in a specific order. See Appendix E, "Using GSORT to Code
and Run Sort Programs. "

Sort Program Record Format
Sort program input records must contain SORT language statements in columns 1
through 72. Optional sequence numbers can appear in columns 73 through 80. The
sequence number field is used in conjunction with the $MERGE and $SEQUENCE
compiler control options. Optional version (or patch) information can appear in columns
81 through 90. The version field is used by the $VERSION compiler control option;
however, if the $VERSION option is not used, then the version field is not used by the
SORT compiler and can contain any textual information.

More than one SORT statement can appear on a single input record; however, each
statement must be separated from the next by a semicolon (;).

Sort keywords, integers, and literals cannot be split across an input record boundary.

Note: Program input records for GSORT programs have a different format
and different rules. Appendix E, "Using GSORT to Code and Run
Sort Programs, " details the GSORT program input record.

Comments

2-2

Comments can be included in a Sort program. The comments are preceded by a percent
sign (%) or a colon (:). When either symbol is encountered by the SORT compiler,
scanning is terminated on that input record. However, if the percent sign or colon
appears within a quoted string, it is not treated as a comment indicator.

Note: Comments are column-dependent in GSORT programs. See
Appendix E, "Using GSORT to Code and Run Sort Programs, " for
information.

1169794.380

Sort Program Structure

Basic Syntax Components

Integer

Certain syntactical elements can be termed basic because of their repeated occurrence
in SORT statements. These elements are discussed in detail now to reduce repetition.
Later sections of the manual will refer the reader to this section instead of repeating
syntax diagranls and detailed explanations.

Integers are contained in many SORT statements. An < integer> is a whole number
value having a maximum of 11 digits.

An < integer> should not be confused with an < integer literal>. An < integer literal >
is a data item used for comparison with key fields, or for storage into data fields within
the records that are being sorted or merged.

Syntax

<integer>

i l1 l\-<di gi t>--'------------------------l

<digit>

o -r----------------------------~
1
2
3
4
5
6
7
8
9

Explanation

<integer>

Contains 1 to 11 digits and cannot be split across an input record boundary.

< digit>

Any character in the range of 0 through 9, inclusive.

Displacement

A displacement specifies the position of the first, or most significant~ element in a key
or data field. The first unit of a record is considered to be relative position 1. Unless
explicitly specified, the position of a data or key field within a record is determined with
the default units that apply to the < type> of the key or data field. The default units
are bytes for all types except PACKED and HEX, which have 4-bit default units. If the

1169794.380 2-3

Sort Progra m Structu re

2-4

type of the field includes a LEADING SEPARATE sign, the displacement points to this
sign character.

If a specified displacement is greater than the record size of any record to be sorted, a
run-time error results.

Syntax

<displacement>

BYTE ~<offset>
DIGIT ~ 1

<offset

WORD -<offset>--.--------~
BYTE ~<offset-2
DIGIT ~
BIT ---<bit number

<offset>

-<integer>~----------------------~

<offset-2>

-<i nteger>------------------------l

Explanation

< offset>, < offset-2 >

Specifies the position of the first, or most significant, element in the key or data field.

BYTE < offset>

Specifies bytes as the displacement units. The offset value is the number of bytes to
displace from position 1. BYTE is the default displacement for all data types except
PACKED, HEX, and BIT.

DIGIT < offset>

Specifies 4-bit digits as the displacement units. The offset value is the number of 4-bit
units to displace from position 1. DIGIT is the default displacement for PACKED and
HEX data types.

WORD < offset>

Specifies 48-bit words as the displacement units. The offset value is the number of
48-bit units to displace from position 1. If a WORD displacement is specified, a further
displacement specification of BYTE, DIGIT, or BIT can be declared. For example,
WORD 2 BYTE 3 specifies a displacement to the third byte within the second word of
the record.

BIT < bit number>

Specifies single bit displacement units. A BIT -displacement can be used only when BIT
is the specified type. When specifying a BIT -displacement, WORD < offset> must be

1169794.380

Typ~

Sort Program Structure

declared first, followed by BIT < bit nunlber>. The leading, or leftmost, bit in a word
is nunlbered bit 47. The trailing, or rightnlost, bit in a word is numbered bit O. For
example, WORD 3 BIT 47 specifies that the key field is to begin at the leftmost bit of the
third word of each record. BIT is the default displacement for the BIT data type.

< bit number>

Specifies an integer within the range 0 through 47, inclusive.

A type defines the format of a data item. ALPHA is the default type.

Syntax

<type>

INTE
REAL
DOUB
BIT

GER

LE

AL
DI

PHA
SPLAY ~ t NO COLLATE

NUMERIC
L-<s;gn clause>-

CKED

MP

PA

CO
HEX
ZONE
DIGI

L DECIMAL -1 L<sign clause>-

T
00 data t <B 10 yp e'"

<sign clause>

I
I

-- SIGN -r--...--.------..--..------..--..--..--..------..--..--..------...--.--...--..--.~--..~

Explanation

INTEGER

SEPARATE -r-------j

CHARACTER
ZONE .--.-----~

Specifies that the key or data field is a 48-bit value, maintained with an exponent of
o and no fractional part. A < length> of 1 must be specified in the < key field> ;
otherwise, a syntax error results. The default displacement wlits are bytes.

REAL

Specifies that the key or data field is a 48-bit value that can have an exponent and a
fractional part. A < length> of 1 must be specified in the < key field>; otherwise, a
syntax error results. The default displacement units are bytes.

1169794.380 2-5

Sort Program Structure

2-6

DOUBLE

Specifies a 96-bit entity. internally carried as two 48-bit words, for the key or data field.
A < length> of 1 must be specified in the < key field> ; otherwise, a syntax error
results. The default displacement units are bytes.

BIT

Specifies the key or data field to be a sequence of bits. The bit sequence size is specified
by the < length> parameter, which must be a value in the range 1 through 48, inclusive.

ALPHA, DISPLAY

Specifies 8-bit EBCDIC characters for the key or data field. ALPHA is the default type
for key fields in Sort programs. When the key field type is ALPHA, a displacement is not
assumed by default; the BIT displacement must be e~plicitly specified.

NO COLLATE

Used for program documentation. NO COLLATE is ignored by the SORT compiler.

ALPHA NUMERIC, DISPLAY NUMERIC

Specifies 8-bit numeric units for the key or data field. Only the digit portion, which is the
low-order four bits of each 8-bit character, is used to determine the numeric value of the
field. The zone portion, which is the high-order four bits, is ignored. The digit portion of
each character can contain values only in the range 0 through 9. The values A through F
are not allowed. The displacement units are bytes.

< sign clause>

Indicates the presence, location, and type of a sign for a numeric quantity (positive or
negative). If a sign is present, the key field is evaluated based on the algebraic value of
the digits in the field after the sign has been applied.

PACKED, COMP

Specifies 4-bit numeric units. Only the digit values 0 through 9 are allowed when the
numeric value of a PACKED data or key item is computed. The values A through F are
not acceptable. If the PACKED key field is unsigned, the sort comparison is performed
in such a way that it allows the full range of hexadecimal values to be used in the key
field. (This comparison is done to ensure B 1000 data compatibility.) For PACKED
SIGN key or data fields, the hex digits A to F cannot appear in the digit portion of the
field. The value D in the sign position represents the negative sign (-); any other value
found in the sign position represents the positive sign (+). The sign of a PACKED field
is always in a separate character; therefore. the keyword SEPARATE is ignored by the
SORT compiler if used in a PACKED field designation. The displacement units are 4-bit
digits for PACKED fields. (Refer to "Displacement" in this section.)

1169794.380

Sort Program Structure

DECIMAL

Used for program documentation. DECIMAL is ignored by the SORT compiler.

HEX

Specifies 4-bit, hexadecimal characters for the key or data field. The default
displacement is 4-bit units, and all hexadecimal characters (0 through 9 and A through F)
are allowed.

ZONE

Specifies bytes for the key or data field. Only the zone portion, which is the high-order
four bits of each byte, determines the value of the field. The default displacement units
are bytes.

DIGIT

Specifies bytes for the key or data field. Only the digit portion, which is the low-order
four bits of each byte, is used during sorting. The default displacement units are
bytes. A DIGIT type is equivalent to an unsigned ALPHA NUMERIC option in a key
statement, but has a slightly different meaning if it is used with a literal. (Refer to
"Literal"in this section.)

< B 1000 data type>

Specifies that a B 1000 Sort program data representation will be used and that the
compiler should accept it. For information about B 1000 data types and compatibility
refer to the "B 1000 SORT Conversion"appendix.

IS, IS CHARACTER

U sed for program documentation. Both the IS and the IS CHARACTER are ignored by
the SORT compiler.

TRAILING ZONE, RIGHT ZONE

For ALPHA data types, specifies that the sign is in the digit portion of the last character
in the field. For PACKED or COMP data types, this option specifies that the sign is in
the rightmost four bits of the field. A hexadecimal D in this position signifies a negative
sign (-). Any other value in this position represents a positive sign (+). TRAILING is
the defaulflocation of the sign character for ALPHA NUMERIC fields when only SIGN
is specified.

The keyword ZONE can be omitted. For example, TRAILING ZONE and TRAILING
have the same meaning.

LEADING ZONE, LEFT ZONE

For ALPHA data types, specifies that the sign is in the zone portion of the first character
in the field. For PACKED or COMP data types, this option specifies that the sign is in
the leftmost four bits of the field. A hexadecimal D in this position signifies a negative

1169794.380 2-7

Sort Program Structure

2-8

sign (-). Any other value in this position represents a positive sign (+). LEADING is
the default location of the sign character for PACKED fields when only SIGN is specified.

The keyword ZONE can be omitted. For example, LEADING ZONE and LEADING
have the same meaning.

LEADING SEPARATE, LEFT SEPARATE

Specifies that the sign is a separate 8-bit character immediately preceding the first
numeric character in the field. The displacement must point to the sign, and the length
must include the sign character. (Refer to "Displacement" in this section.) The negative
sign is the EBCDIC minus sign (-). Any other value is treated as a positive sign (+).
For PACKED or CaMP data types, SEPARATE is used for progrrun documentation
and is ignored by the SORT compiler. The sign of a PACKED field is always a separate
character.

TRAILING SEPARATE, RIGHT SEPARATE

Specifies that the sign is a separate 8-bit character immediately following the last
numeric character in the field. The length must include the sign character. The negative
sign is the EBCDIC minus sign (-). Any other value is treated as a positive sign (+). For
PACKED or CaMP data types, SEPARATE is used for documentation purposes only. A
PACKED field sign is always a separate character.

Table 2-1 lists how each data type is represented and stored internally, and gives the
method of comparing key fields with record fields for each data type.

Table 2-1. Key and Data Field Storage

Data Type Item Storage Method of Comparison

INTEGER 1 word, 48 bits byte-aligned Full arithmetic.

REAL 1 word, 48 bits byte-a ligned Full arithmetic.

DOUBLE 2 words, 96 bits Full arithmetic.
byte-aligned

BIT n bits, n< =48, 1 word only n-bit binary.

ALPHA n bytes, 8 bits byte-aligned Full 8-bit.

ALPHA NUMERIC n bytes, 8 bits byte-aligned Numeric value of digits.
with optional sign Hex digit values A through F

are illegal. Sign either
separate or zone.

PACKED SIGNED n digits, 4 bits digit-aligned Numeric value of digits.
Hex digit values A through F
are illegal. Separate sign.

PACKED (unsigned) n digits, 4 bits digit-aligned Full 4-bit.

continued

1169794.380

Length

Literal

Sort Program Structure

Table 2-1. Key and Data Field Storage (cont.)

Data Type

HEX

ZONE

DIGIT

Item Storage

n digits, 4 bits digit-aligned

n bytes, 8 bits byte-aligned

n bytes, 8 bits byte-aligned

Method of Comparison

Full 4-bit.

Hex value of zone bits.

Hex value of digit bits.

The length specifies the number of units in the key or data field and includes the sign
character if the < sign clause> is specified with the field type. The length plus the
displacement of the field cannot exceed the record size of any record being sorted;
otherwise, a run-time error occurs.

Syntax

<length>

-<integer>>-------------------------I

A literal is a character string whose value is specified by an ordered set of characters.
This character string is a word, number, or symbol that names, describes, or defines itself
and not something else that it might represent. A literal cannot cross an input record
boundary.

Syntax

<literal>

~<graphic litaral

t<hex 1 i tera 1
<integer literal
<real literal

1169794.380 2-9

Sort Program Structure

2-10

<graphic literal>

- II ~/70\-<graphic>lll ------------------1

<graphic>

~ ~~ny EBCDIC character except double quotes>

<hex literal>

- @ .-L/70\-<hex digit>l @ ----------------1

<hex digit>

o ~---------------------------__l
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

<integer literal>

- # ~/11\-<di9it>l #

t= ~ ~ (
<real literal>

-# E ::J L L/24\-<d~
+ /1\- • E~~ E:::J Lt :ir /5\-<digit

~- # --------------------------1

Explanation

< graphic literal >

Specifies a literal composed of EBCDIC characters that is left-justified and padded with
blanks on the right.

< hex literal >

Specifies a literal composed of hex digits (numbers 0 through 9 and alphabetic characters
A through F). The literal is right-justified and, when necessary, padded with hexadecinlal
zeros on the left.

1169794.380

Sort Program Structure

< integer literal>

Specifies a literal that is based on an integer arithmetic value. The associated length
must have the value of one word, which is 6 bytes or 12 digits.

< real literal >

Specifies a literal that is based on a real arithmetic value. The associated length must
have the value of 1, which represents one single-precision word (6 bytes or 12 digits)
or one double-precision word (12 bytes or 24 digits). Also, a real literal allows a full
floating-point literal to be used as a data item.

E

Specifies that the < real literal > is a single-precision word.

D

Specifies that the < real literal > is a double-precision word.

<digit>

Specifies the power of 10 by which the number is to be multiplied when used after E or D
in a < real literal >. A digit is syntactically defined under "Integer" in this section.

Literal Conversions
Literals can be converted to other literal types based on the type of field with which the
literal is compared. This feature allows programmers to express literals in the most
convenient form. Table 2-2, later in this section, lists the fields that can be used with
each literal type.

Literals in DIGIT and ZONE Fields

When a literal is associated with a field of type ZONE or DIGIT, the actual length of the
literal must be exactly one graphic character or two hex characters; otherwise, a syntax
error occurs. When using these types, the SORT compiler builds a literal value of the
specified length by using either the zone or digit bits from the specified literal.

For type ZONE, each byte in the constructed literal is first filled with the bit
configuration 01000000 (hex 40) for the specified length, and then the zone portion of
the literal is moved to the zone portion of each character in the field.

For type DIGIT, each byte in the constructed literal is first filled with the bit
configuration 11110000 (hex FO) for the specified length, and then the digit portion of
the specified literal is moved to the digit portion of each character in the field.

1169794.380 2-11

Sort Program Structure

Hex Literal Conversion

When a hex literal is associated with a field of type ALPHA or ALPHA NUMERIC, each
pair of hex characters is interpreted as one alphanumeric character. \Vhen a hex literal
is used with an INTEGER field and the value is greater than @. 7FFFFFFFFF@., the
value of the literal is truncated by discarding the high-order characters.

If a hex literal is specified with a BIT field and has a value that contains more significant
bits than those specified for the bit field, then the value of the literal is truncated by
discarding the high-order characters.

If a hex literal specifies a value that is smaller than the specified field, then hexadecimal
zeros are added to the most significant, or left, end of the literal to ensure the proper
length.

Integer Literal Conversion

2-12

When an integer literal is associated with a field of type ALPHA NUMERIC or
PACKED, the arithmetic value of the integer literal is first converted to a graphic
literal or a hex literal. This new literal has the same number of digits as the original
integer literal and, if necessary, the character for a SEPARATE sign is added. Any
explicitly specified leading zeros in the integer literal are retained when the length of the
constructed graphic literal or hex literal is determined.

The length of the constructed literal is used as the default length of the field associated
with the literal if no specific field length is specified. However, if an explicit field length is
given, the constructed literal can be truncated if it is too long, or padded if it is too short.
When truncation takes place, the high-order (leftmost) characters are discarded. When
padding takes place, zero characters are added to the high-order (or leftmost) end. If
the field is of type SIGNED IS LEADING, the sign is properly preserved after either
truncation or padding.

Table 2-2 illustrates which literals are allowed in each field. An X indicates allowable
combinations; all other combinations result in syntax errors.

Table 2-2. Allowable Literal Types

Field Type· Literal Type

Graphic Hex Integer Real

ALPHA X X

ALPHA X X X
NUMERIC

PACKED X X

continued

1169794.380

Sort Program Structure

Table 2-2. Allowable Literal Types (cont.)

Field Type Literal Type

Graphic Hex Integer Real

ZONE X X

DIGIT X X X

HEX X

INTEGER X X

REAL X X

DOUBLE X X

BIT X X

1169794.380 2-13

2-14 1169794.380

Section 3
SORT Statements

This section describes the required statements for a Sort program. A Sort program must
have one < file statement> and one < key statement>, but only one of each.

FILE Statement
A FILE statement describes and defines both the files to be used as input to a Sort
program and the one output file. A Sort program can either sort up to 99 files or merge
from two to eight files.

Syntax

<fil e statement>

~~ [Eo- FI LE]
-- FILE /99*\-<input part~

/l*\-<output part

<input part>

-- IN
L (--<fi 1 e attri butes>--) --1 L PURGE --1

<output part>

-- OUT
L (--<fil e att ri butes>--) --1 L RELEASE --1

Explanation

< input part >

Describes an input file.

< output part >

Describes the one required output file. By default, the output file assumes all the
file attributes of the first input file except the file attributes TITLE, MYUSE, and
NEWFILE. -

IN

Specifies the definition of an input file. The internal file name of the first input file is
IN. Any subsequent internal file names are INn, where nis 2 for the second internal
file name and is incremented by 1 for each successive internal file name. For example, '
a merge of three files involves internal files named IN, IN2, and IN3. However, the file
attribute INTNAME can be used to specify a different internal file name.

1169794-002 3-1

SORT Statements

< file. attributes >

For the syntax and explanation of this option, refer to "File Attributes" in this section.

PURGE

Closes, purges, and releases the input files to the system. By default, input files are
closed with RELEASE. PURGE cannot be specified when the TAGSORT statement is
used; otherwise, a syntax error results.

OUT

Specifies the definition of the output file. The internal file name of the output file is
OUT. However, the file attribute INTNAME can be used to specify a different internal
filename.

RELEASE

Returns control of the tape to the system. By default, the file is closed with lock (saved).
This option is used only for tape files.

File Attributes

3-2

File attributes appear only in a < file statement>. They can also be specified with the
compile and run commands of the Work Flow Language (WFL) and the Command and
Edit (CANDE) Message Control System (MCS).

At run time, the record sizes of the input files and that of the output file may not all be
the same. The following rules apply:

• The record size of the Sort work file is based on the maximum of all the declared
input and output MAXRECSIZE values and the actual MAXRECSIZE of the input
file or the maximum of all input merge files.

• If the record size of the output file is not the same as the work file, records are
truncated or left-justified with blank. fill on the right before being written to the
output file.

For more information concerning file attribute values, refer to the "Sort Program Files"
appendix. Detailed explanations about each file attribute can be found in the File
Attributes Reference Manual.

Syntax

<file attributes>

1
integer file attribute ~ame>-- = ~intege~

L<mnemonlc
Boolean file attribute name>--.-------t

= -.- TRUE
L FALSE

pointer file attribute name>-- = --<string

1169794-002

SORT Statements

Explanation

. < integer file attribute name>

Specifies the attributes that can be expressed as integers or mnemonics.

< Boolean file attribute name>

Specifies the attributes that can be expressed as Booleans. If only the attribute name is
listed, its value is set to TRUE.

< pointer file attribute name>

Specifies the attributes that can be expressed as strings. The < string> consists of one
or more characters enclosed in quotation marks. The < string> values do not need to
end with a period (.).

Sort can read input files with FILE ORGANIZATION = NOTRESTRICTED or
FILE ORGANIZATION = INDEXEDNOTRESTRICTED. Sort output files must have
FILE ORGANIZATION = NOTRESTRICTED.

Files that have FILE ORGANIZATION = RELATIVE or FILEORGANIZATION =
INDEXED cannot be used as Sort input or output files. Files with variable-length
records carmot be used as Sort input files; furthermore, a Sort program does not produce
output files with variable-length records.

Example: Using the Pointer File Attribute Name

In the following example, the file attributes TITLE and F AMIL YNAME both have
< pointer file attribute name > s:

MAXRECSIZE = 15,
NEWFILE = TRUE,
KIND = TAPE,
TITLE = "A/B",
FAMILYNAME = "TGFSOFTDOC"

KEY Statement
A KEY statement contains information defining the sort or merge keys. This
information consists of a displacement, a length, a processing order~ and a type. Only one
KEY statement can appear in a Sort program.

A single KEY statement can contain up to 200 key fields. When multiple key fields are
specified, the first one listed is the primary (or most significant) key. Before the sort or
merge is performed, all subsequent keys are concatenated to the primary key in the
order in which they are listed.

1169794.380 3-3

SORT Statements

3-4

The processing of the input files during a sort or merge occurs as follows:

• Records are sorted or merged according to the specifications of the primary key.

• Subsequent keys are used to further sort or merge any records that were identical
from the previous key.

Syntax

<key statement>

1
KEY
KEYS
FIELD
FIELDS

<key field>

~-----.---------r----~

~- KEY
~- KEYS
~- FIELD
~- FIELDS

(-/200\-<key fi e 1 d>-) -l...-------------...1

-<displacement>-<length>
L-<order~ L-<type>~

<order>

-,- ASCENDING --r--------------------i
L QESCENDING ~

Explanation

KEY, KEYS, FIELD, FIELDS

Any of these words can be used to signify the start of a KEY statement.

<key field>

Specifies a field within a record to be used to sort the input files.

< displacement>

Specifies the position of the first element in the key field.

<length>

Specifies the number of units in the key field.

<order>

Specifies whether the key is to be sorted in ascending or descending order.
ASCENDING is the default order.

ASCENDING order sorts from the lowest value to the highest value. DESCENDING
order sorts from highest value to lowest value.

1169794.380

SORT Statements

Refer to the explanation of type in the "Sort Program Structure" section. ALPHA is the
default type.

Example: Using a Single Key Field

The following Sort program uses a single key to sort the input file. The field type is
ALPHA (by default). The key begins at position 3 of each record and has a length of 1.
The sort is performed in ascending order.

DISKSORT
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (3 1 A)

Example: Using Multiple Key Fields

In the following Sort program, input records are to be sorted using multiple key fields,
each of type ALPHA. The primary key begins at position 4, has a length of 2, and uses
descending order. Any records having identical primary key fields are then sorted based
on the second key, which begins in position 10, has a length of 3, and uses ascending
order. The third key is then used to sort any remaining unresolved identical records in
ascending order based on position 20.

DISKSORT
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (4 2 D) (10 3 A) (20 1 A)

The previous Sort program can also be written in the following form:

1169794.380

DISKSORT
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (4 2 D)

(10 3 A)
(20 1 A)

3-5

3-6 1169794.380

Section 4
Optional SORT Statements

This section describes the optional SORT statements that can appear in Sort programs.
These statements are divided into three types:

• SORT processing statements

• SORT parameter statements

• Record selection statements

SORT Processing Statements
SORT processing statements specify whether a merge or a specific type of sort is to
be performed. SORT processing statements are optional; however, some defaults are
assumed by the compiler if a Sort program lacks a processing statement. When a Sort
program has only one input file, a disk sort is assumed; when the program specifies two
or more inpu~ files, a merge is assumed.

COLLATE Statement

The COLLATE statement specifies that a Sort program is to use the system default
internationalization collating sequence when the program is run. This optional
statement initiates a collating sequence in which records are sorted or merged by any
type of sort, enabling the compiler to handle correctly the sort and compare operations
for the alphanumeric literals.

Syntax

<collate statement>

---COL~TE--~

Example

The following example shows a program that uses the system default
internationalization collating sequence to sort an input file on disk.

1169794-002

COLLATE
DISKSORT
FILE IN(TITLE="IN",KIND=DISK,DEPENDENTSPECS)
FILE OUT(TITLE="OUTPUT",KIND=DISK,DEPENDENTSPECS)
KEY (1 10)

4-1

Optional SORT Statements

DISKANDTAPE Statement

An Integrated Tape and Disk (lTD) sort is performed when the DISKANDTAPE
statement is used. An lTD allows input files to come from both tape and disk sources.

The disk pack family used for the temporary disk sort space is normally the family DISK
This allocation can be modified by using the WORKF AMILY statement. (For more
information, refer to the WORKFAMILYand WORKSIZE statements in this section.)

Only one DISKANDTAPE statement can be specified in a Sort program. A syntax error
results if the DISKANDTAPE statement is specified in conjunction with any of the
following SORT statements:

• MERGE

• DISKSORT

• TAPESORT

• MEMORYONLY

Syntax

<diskandtape statement>

~ DISKANDTAPE =y-<integer> LITO ____ -..J

Explanation

<integer>

Specifies the number of tapes to be used for the lTD sort. This number must be
between 3 and 8, inclusive.

Example

In the following example, three Sort work tapes are used. The input file is sorted using
an INTEGER key field in position 2 for a length of 1, in ASCENDING order. (The length
must be 1 for type INTEGER.)

DISKANDTAPE 3
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (2 1 INTEGER)

DISKSORT Statement

4-2

The DISKSORT statement specifies that a disk sort is to be performed, meaning that
the temporary file space required for the SORT procedure is allocated on disk. The disk.
pack family used for this temporary file space is DISK; however, this specification can
be modified by using the WORKFAMILY statement. (Refer to the WORKF AMlLY
statement in this section.)

1169794-002

Optional SORT Statements

Only one DISKSORT statement can be specified in a Sort program. A syntax error
results if the DISKSORT statement is specified in conjunction with any of the following
SORT statements:

• DISKANDTAPE

• MEMORYONLY

• MERGE

• TAPESORT

Syntax

<d;sksort statement>

- DISKSORT ----------------------1

Example

The following example shows a program that sorts the input file on disk. Note that
because there is only one input file, a disk sort would be assumed by the SORT
compiler if the DISKSORT statement had been omitted. Also, because ALPHA and
ASCENDING are default values, the key statement could be written as KEY (2 3).

1169794-002

DISKSORT
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (2 3 A ALPHA)

4-2 A

Optional SORT Statements

4-28 1169794-002

Optional SORT Statements

MEMORYONLY Statement

The MEMORYONLY statement specifies that a sort is to be performed completely in
memory, without using disk or tape work files.

Only one MEMORYONL Y sort statement can be specified in a Sort program. A syntax
error results if the MEMORYONLY statement is specified in conjunction with any of the
following SORT statements:

• DISKANDTAPE

• DISKSORT

• TAPESORT

• MERGE

The WORKSIZE statement has no effect when specified with the MEMORYONL Y sort
statement; if it appears, the compiler ignores it.

Syntax

<memoryonly statement>

- MEMORYONLY ---------------------\

Example

In the following example, an input file residing on tape is to be sorted in main memory,
using a PACKED key field in position 10 for a length of 4, in ASCENDING order:

MEMORYONLY
FILE IN (TITLE = "INPUT", KIND = TAPE)
FILE OUT (TITLE = "OUTPUT")
KEY (10 4 A PACKED)

MERGE Statement

The MERGE statement specifies that a merge is to be performed on the input files.
At least two but not more than eight input files must be declared; otherwise, a syntax
error results. A merge is assumed by the SORT compiler if more than one input file is
specified in the Sort program and it contains no other SORT processing statements.

Merges cannot be made more efficient by including any of the SORT parameter
statements in the Sort program.

1169794-002 4-3

Optional SORT Statements

Only one MERGE statement can be specified in a Sort program. A syntax error results
if the MERGE statement is specified in conjunction with any of the following SORT
statements:

• DISKANDTAPE

• MEMORYONLY

• DISKSORT

• TAPESORT

• TAGSORT

• TAGSEARCH

• STABLE

Syntax

<merge statement>

- MERGE -----------------------1

Examples

This example shows a Sort program that specifies a merge is to be performed on the four
input files using an ALPHA key field starting at position 2. Because there is more than
one input file, the MERGE statement does not have to be included.

MERGE
FILE IN (TITLE = "INPUTl")

IN (TITLE = "INPUT2")
IN (TITLE = "INPUT3")
IN (TITLE = "INPUT4")

FILE OUT (TITLE = "OUTPUT")
KEY (2 3 A ALPHA)

In the following example, the default values for the input files and the key statement are
assumed. In regard to the input files, the SORT compiler will search for files named
IN, IN2, IN3, and IN4. Usually this type of program construct is used when the same
program will be used with many different files, the names of which can be specified with
the RUN statement through file attribute equations.

FILE IN
IN
IN
IN

FILE OUT (TITLE = "OUTPUT")
KEY (2 3)

STABLE Statement

4-4

The STABLE statement causes records that have equal key values to be placed into the
sorted output file in the order in which they appeared in the input file. Equal records are

1169794-002

Optional SORT Statements

defined as having identical key fields. If a STABLE statement is not specified, the order
of equal records in the output file cannot be predicted.

During the input phase, an extra implicit key is appended to the keys to be used to
determine the sorting order for records having equal keys. The extra implicit key has
the value of the relative record number in the input file. During the output phase, this
implicit key is removed.

Only one STABLE statement can be specified in a Sort program, and a STABLE
statement cannot be used with a MERGE statement; otherwise, a syntax error results.

Syntax

<stable statement>

- STABLE -------------------------l

TAGSORT Statement

The TAGSORT statement sorts a file and creates an output file containing indexes that
point to the relative locations of records in the original file. An index value of 0 indicates
the first record in the original file.

Only one TAGSORT statement can be specified in a Sort program. A syntax error
results if the TAGSORT statement is specified in conjunction with any of the following
SORT statements: .

• MERGE statement

• TAGSEARCH statement

If a TAGSORT statement is specified, there must be only one input file. The input file
need not be a disk file, but the usefulness of indexes to a nondisk file is limited.

When the TAGSORT statement is specified, the MAXRECSIZE of the output file is
changed to < length>. The value of the UNITS attribute is changed to reflect the units
of < tag-type>. The FILE KIND of the output file is set to DATA. The BLOCKSIZE of
the output file is changed to the largest value that is a multiple of < length> and less
than 2520 bytes.

If an overflow occurs when the index value is created, the sort aborts with a run-time
error.

1169794.380 4-5

Optional SORT Statements

Syntax

<tagsort statement>

- TAG SORT [(-r-----,.--
J J <tag-type>-) :J
L<l ength>-l

<tag-type>

--r- INTEGER I
r REAL --------1-

ALPHA ~ NUMERIC ~OUBLE 1
DISPLAY ...J

L PACKED ~
[DECIMAL =j

COMP -------.....

Explanation

<length>

Specifies the size of the indexes to be created. The default index size is 1. If both length
and tag-type are omitted, the resulting output file is in the proper form for a Report
Program Generator (RPG) ADDROUT file.

< tag-type>

Specifies the index < type>. Refer to the explanation of type in the "Sort Program
Structure" section for a complete explanation. (The explanation for < type> is the same
as for < tag-type>.) The default value for tag-type is INTEGER.

Example

The following example shows a Sort program that creates an output file containing
indexes (of tag-type INTEGER and length 3) of the relative record locations within the
input file:

OISKSORT
TAGSORT (3 INTEGER)
FILE IN (TITLE = "INPUT")
FILE OUT (TITLE = "OUTPUT")
KEY (3 1 0 COMP)

TAPESORT Statement

The T APESORT statement specifies that a tape sort is to be performed, meaning that
the temporary file space required for the Sort procedure is allocated on tape.

Only one T APESORT statement can be specified in a Sort program. A syntax error
results if the T APESORT statement is specified in conjunction with any of the following
SORT statements:

• DISKANDTAPE

• 11E:MORYONLY

4-6 1169794.380

Optional SORT Statements

• DISKSORT

• MERGE

The WORKSIZE statement is ignored by the SORT compiler if it is specified in a Sort
program containing a T APESORT statement.

For example, if tape is specified as both the input and the output medium, and the
system has exactly the same number of tape drives as are specified for use as work files,
one of those tape drives is available for use in the final output pass. If there are three
tape drives on the system, the sort input can come from tape and the sort output can go
to tape while still using only three Sort work tapes.

Syntax

<tapesort statement>

- TAPESORT -<work tapes>-------------------i

<work tapes>

- <i nteger> ------------------------l

Explanation

< work tapes>

Specifies an integer value indicating the number of work tapes to be used during the
TAPESORT procedure. The number of work tapes must be between 3 and 8, inclusive;
otherwise, a syntax error results.

Example

The following example program uses the T APESORT procedure, with three work tapes,
to sort the input file, which resides on tape:

TAPESORT 3
FILE IN (TITLE = "INPUT", KIND=TAPE)
FI LE OUT (TITLE = "OUTPUT")
KEY (4 1)

SORT Parameter Statements
SORT parameter statenlents are used to increase sorting efficiency.

MEMORY Statement

The MEMORY statement allocates additional memory to the compiled Sort program.

Each type of Sort procedure has a memory size default value based on an expected
maximum record size. For a disk sort, memory for 1200 records is requested. For a

1169794.380 4-7

Optional SORT Statements

tape sort. memory for 200 records for each work tape is requested. For a tape and disk
sort, memory for 600 records plus 200 records for each \vork tape is requested. For a
memory-only sort, memory for the entire sort input is requested.

Only one :MEl\10RY statement can be specified in a Sort program; otherwise, a syntax
error results.

Increasing the memory available to the Sort procedure is the most significant way
to increase sorting efficiency. However, if the memory size is increased beyond the
optimum size, the sort might run slower rather than faster. The optimum memory size
to allocate varies according to file size, which involves the record size, the number of
records, and the blocking factor. The number of other jobs in the mix at the time of
the sort can also affect the optimum. memory size. Information about how to calculate
optimum memory sizes for the various Sort procedures can be found in the System
Software Utilities Operations Reference Manual.

Syntax

<memory statement>

- MEMORY -<; nteger> [WORDS]

Explanation

<integer>

Specifies the number of words to which memory is increased. The integer value must be
within the range 3,500 through 1,000,000.

WORDS

Used for program documentation. WORDS is ignored by the SORT compiler.

PARITY DISCARD Statement

4-8

The PARITY DISCARD statement causes input file records to be discarded if an
irrecoverable parity error is detected while the input file is being read. If the PARITY
DISCARD statement is specified, all the records in the block of data in which the error
occurred are discarded. The Sort program displays notification of each record discarded
and its relative record position in the input file. The program is discontinued if a parity
error occurs when the PARITY DISCARD statement has not been specified.

When the TAGSEARCH statement is used with the PARITY DISCARD statement in a
Sort program, input records having parity errors are discarded during the first pass in
which the file is read. During the output phase of the ~ort, when the input records are
read again, any parity error detected will abort the Sort program.

Only one PARITY DISCARD .statement can be specified in a Sort program; otherwise, a
syntax error results.

1169794.380

Optional SORT Statements

Syntax

<parity discard statement>

- PARITY - DISCARD --------------------1

RECORDS Statement

The RECORDS statement optimizes the sort operation by supplying an estimate of the
total number of records to be sorted.

Only one RECORDS statement can be specified in a Sort program; otherwise, a syntax
error results. The RECORDS statement is ignored by the compiler if it appears in
conjunction with the WORKSIZE statement or the MERGE statement.

Syntax

<records statement>

- RECORDS -<record estimate>----------------I

Explanation

< record estimate>

Estimates the number of records to be sorted after the application of an INCLUDE and
DELETE statement. If a record estimate is not specified and the input file is on disk,
the value is supplied from the LASTRECORD file attribute. If a record estimate is not
specified and the file does not reside on disk, a default value of 20,000 records is used.

The record estimate must not be smaller than the actual number of records or the Sort
program will fail at run time. Alternately, making the record estimate too large increases
the size of the work file and causes the sort to use more disk space than necessary.

TAGSEARCH Statement

The TAGSEARCH statement performs a tag sort. The resulting indexes are used to
build a sorted output file. A TAG SEARCH sort can attain a greater sorting speed
than other types of sorts depending on the number of records to be sorted and other
characteristics of the file.

A T AGSEARCH statement can accept only one input file, and that file must be a disk
file. Only one TAGSEARCH statement can be specified in a Sort program, and it
cannot be specified in conjunction with a MERGE statement or a TAGSORT statement;
otherwise, a syntax error results.

Syntax

<tagsearch statement>

- 'TAGSEARCH -----------------------1

1169794.380 4-9

Optional SORT Statements

Example

The following example shows the inclusion of the TAGSE~-\RCH statement in a Sort
program. A tagsearch can be specified with any of the Sort processing options except the
MERGE statement. There must be only one input file.

DISKSORT
TAGSEARCH
FILE IN (TITLE = IIINPUT II)
FILE OUT (TITLE = IIOUTPUT II)
KEY (8 1 0 REAL)

WORKFAMILY Statement

The WORKF AMlLY statement assigns a specific disk pack family for use by the Sort
program work files.

Only one WORKFAMILY statement can be specified in a Sort program; otherwise, a
syntax error results. The WORKF AMIL Y statement is ignored by the compiler if used
with any of the following:

• MEMORYONLY sort statement

• T APESORT statement

• MERGE statement

Syntax

<workfamily statement>

- WORKFAMILY -<family name>'-----------------l

Explanation

< family name>

Specifies the name of a disk pack family to be used by the Sort program work files.

WORKSIZE Statement

4-10

The WORKSIZE statement specifies the number of words to use for the Sort work
file. By default, the SORT compiler calculates the size of the work file based on the
number of input file records. However, if a DISKANDTAPE sort is specified without an
accompanying WORKSIZE statement, the work file size defaults to 900,000 records.

Only one WORKSIZE statement can be specified in a Sort program; otherwise, a syntax
error results. The RECORDS statement is ignored by the compiler when declared with
the WORKSIZE statement.

1169794.380

Optional SORT Statements

Syntax

<worksize statement>

- WORKSIZE -<i nteger> [WORDS]

Explanation

<integer>

Refer to the explanation of integer in the "Sort Program Structure" section.

WORDS

U sed for program documentation. WORDS is ignored by the SORT compiler.

INCLUDE and DELETE Record Selection Statements
The record selection statement (INCLUDE and DELETE statement) defines which
records are to be included or excluded from the input files being sorted or merged.

The INCLUDE and DELETE statement allows the inclusion and exclusion of certain
records by comparing portions of each record either with other portions of the same
record or with specified literals. If multiple INCLUDE and DELETE actions are
specified (up to 200 are allowed), each successive INCLUDE or DELETE action creates
further subsets of the records selected by previous INCLUDE or DELETE actions.

1169794.380 4-11

Optional SORT Statements

4-12

Syntax

<include and delete statement>

--.t/200\-r INCLUDE ~<condition>--'---------------i
L DELETE --.J

<condition>

r
~------"-- AND --r--------,

L~_ OR -.J
I I (-r<simple condition>-r) ---'-------------1
L NOT -I L<condition> I

<simple condition>

-<disp-l> L<litera~
L<re 1 at i on:-J <di sp-2 L<l ength~ L<type:-J

<disp-l>

-<di splacement>;>------------------------I

<disp-2>

-<displacement>-----------------------i

<relation>

~ EQL -r1~1-------------------------~

~~;~
Ic~S~
h= LEo=ri

~~T~
~~~QI 

Explanation 

< condition> 

Specifies the conditions under which records are included or excluded. The precedence 
of operators is NOT, AND, OR, and < relation> , in that order. The evaluation of 
operators proceeds from left to right. A < simple condition> within parentheses is 
evaluated before the remainder of the < condition> is evaluated. 

< simple condition> 

Specifies the operands and the relations used to compare portions of the record with 
other portions of the same record or with specified literals. 

<relation> 

1169794.380 



Optional SORT Statements 

Specifies a relational operator for comparing operands. Valid entries are EQL (equal), 
NEQ (not equal), GTR (greater than), GEQ (greater than or equal), LSS (less than), and 
LEQ (less than or equal). The default value is EQL. 

<literal> 

Refer to the explanation of literal in the "Sort Program Structure" section. 

<length> 

Specifies the length of the operands to be compared. If < disp-2 > is used, the default 
length is 1. If < literal> is used, the default length is the length of the literal. If an 
explicit type is not given, the length represents bytes. (Refer to the explanation of type 
in the "Sort Program Structure" section.) 

<type> 

Refer to the explanation of type in the "Sort Program Structure" section. 

< disp-l >, < disp-2 > 

Expresses the first or second operand in a simple condition as a displacement. 

Examples 

The following example shows how displacements are used to compare portions of each 
input file record with other portions of the same input file record. All records in the 
input file in which the real value in word 8 does not equal the real value in word 10 or 
word 11 are deleted. Then, all records in which the real value in word 2 is greater than 
the real value in word 5 are included. The records fitting these restrictions are sorted 
using a REAL key field in word 2, for a length of 1, in ascending order. 

FILE IN (TITLE = "INPUT") 
FILE OUT (TITLE = "0UTPUT") 
KEY (WORD 2 1 REAL) 
DELETE «WORD 8 = WORD 10 REAL) OR (WORD 8 = WORD 11 REAL» 
INCLUDE (WORD 2 GTR WORD 5 REAL) 

The next example shows how literals are used to compare portions of each input file 
record with other portions of the same input file record. All input file records having an 
alphanumeric value in character position 5 greater than 3 and less than or equal to 9 are 
included. Then, all records in which the alphanumeric value in positions 10 through 12 
is equal to AAA are deleted. The records fitting these restrictions are sorted using an 

. ALPHA key field in character position 2 for a length of 3, in descending order. 

1169794.380 

DISKSORT 
FILE IN (TITLE = "INPUT") 
FILE OUT (TITLE = "OUTPUT") 
KEY (2 3 D ALPHA) 
INCLUDE «5 GTR "3") AND (5 LEQ "9"» 
DELETE (10 EQL "AAA" 3) 

4-13 



4-14 1169794.380 



Section 5 
SORT Compiler Control Records 

Compiler control records (CCRs) provide a mechanism by which the programmer 
controls options provided by the compiler. These options fall into one of six categories, 
and control the following: 

• Source language inputs 

• Source language output 

• Optional compilation mechanisms 

• Printed outputs 

• Compiler diagnostic messages 

• Compiler debugging 

A CCR contains compiler control statements made up of options or groups of options and 
their associated parameters (if any). If no compiler control statements appear on a CCR, 
the CCR is considered null. 

Types of Compiler Control Records 
CCRs are of two types: 

• Permanent CCRs, which may remain associated with the source language 

• Temporary CCRs, which are only relevant to a given compilation 

Types of Options 
Compiler control options are of three types: 

• Boolean 

• Immediate 

• Value 

A Boolean option is either SET or RESET. (SET is synonymous with TRUE, RESET 
with FALSE.) When the value of a Boolean option is TRUE, the SORT compiler applies 
the associated function to all subsequent processing until the value of the Boolean option 
is changed to FALSE. Boolean options can also have associated parameters, which are 
related to the function the Boolean option affects. 

An immediate option causes the compiler to apply a function that is independent of 
subsequent processing. Immediate options can also have associated parameters. 

A value option causes the compiler to store a value associated with a given function. 

1169794.380 5-1 



SORT Compiler Control Records 

Using TASKSTRING to Submit Compiler Control 
Records 

The SORT compiler also accepts compiler control records supplied by the TASKSTRING 
task attribute at compile time. The following WFL example sets the ERRORLIST and 
ERRORLIMIT options for a SORT compilation: 

COMPILE OBJECT/SORTPROG WITH SORT LIBRARY GO; 
COMPILER FILE CARD (TITLE = ALPHASORT ON DPMST); 
COMPILER TASKSTRING = "SSET ERRORLIST ERRORLIMIT = 20"; 

Compiler Control Record Syntax 

5-2 

CCRs are interpreted from left to right, beginning at the first text position following the 
dollar sign ($) and continuing until the last text position. 

The keywords SET, RESET, and POP affect the setting of Boolean options. Each of the 
Boolean options has an associated stack in which up to 48 previous values of the option 
are saved. The management of the current value and the stack of previous values of the 
option are described in the following paragraphs. 

Depending on the syntax used, the status of Boolean options is determined in one of the 
following three ways: 

• If a Boolean option appears on a CCR and is not the object of an explicit SET or 
RESET, then it is implicitly set to TRUE. The previous setting of the option is 
pushed onto the top of the stack. 

• If a Boolean option appears on a CCR as the object of an explicit SET or RESET, 
then the specified Boolean option is set to TRUE or FALSE, respectively. The 
previous setting of the option is pushed onto the top of the stack. 

• If the immediate option CLEAR appears on a CCR, then all Boolean options are 
set to FALSE, except for the MERGE option, SINGLE option, and, conditionally, 
the NEW option. All previously stacked settings are discarded. Refer to "CLEAR 
(Immediate)" in this section. 

Individual compiler control options are further defined under "Compiler Control 
Options" in this section. 

1169794.380 



SORT Compiler Control Records 

Syntax 

<compiler control record> 

( 
-- S ~~j----------------~I ~------------------------------~ 

~
<BOOlean oPtioS 
<immediate option 
<value option> 

SET I 
RESET POP _____ -1. 

<Boolean option> 

-r=
<code option> 
<delete option>~ 
<errorlist option>---1 

~
<list oPtion~ 
<listdeleted option> 
<listp option 

~
<l;stdollar>o:t;on~ 
<map optlon 
<merge option 

~
<new opt i on >------1 
<newseqerr option 
<reformat option 
<sequence option>----j 
<single option>>------J 

<immediate option> 

--<clear option~>--------------------------------------------~ 

<value option> 

-r=
<errorlimit option> 
<sequence base option>~ 
<sequence increment option>-1 

L-<version option> I 

Explanation 

$ 

A dollar sign ($) in column 1 indicates a temporary CCR; in column 2 it indicates a 
permanent CCR. Placing a $ in both columns 1 and 2 is not allowed. 

< Boolean option> 

An option that has a value of TRUE or FALSE. 

< immediate option> 

An option causing the compiler to apply a function that is independent of subsequent 
processing. 

< value option> 

An option that causes the compiler to store a value associated with a given function. 

1169794.380 5-3 



SORT Compiler Control Records 

SET/RESET 

Assigns a value of TRUE or FALSE, respectively, to a given Boolean option. The current 
value of the option is pushed onto the stack for that option. 

POP 

Assigns the next stack value to a Boolean option and discards the current setting. Each 
Boolean option has an associated stack. When a Boolean option is set to TRUE or 
FALSE, either explicitly by a SET or RESET or implicitly, then the previous setting is 
pushed onto the stack. 

Compiler Control Options 
The options that can appear on CCRs are defined as follows. 

CLEAR (Immediate) 

The CLEAR option causes the compiler to disable (set to FALSE) all Boolean options 
except the MERGE option, the SINGLE option, and, conditionally, the NEW option. 

If a source-language image has been written to the new symbolic file (NEWSOURCE) 
because the NEW option is TRUE, then the NEW option is not set to FALSE. 

Syntax 

<clear option> 

- CLEAR -------------------------i 

CODE (Boolean) 

The CODE option causes the compiler to produce a listing of the object code produced 
by the compilation. The code listing is generated after the successful compilation of 
the SORT statements. A code listing is not produced if syntax errors result. Also, only 
the most recent setting of the CODE option has an effect because the code listing is 
produced at the end of the compilation. The LIST option must be TRUE to produce the 
listing. The default value for the CODE option is FALSE. 

Syntax 

<code option> 

- CODE ----------------------------~ 

DELETE (Boolean) 

5-4 

The DELETE option causes the compiler to discard source-language images from the 
secondary input file (SOURCE) until the option is set to FALSE. 

1169794.380 



SORT Compiler Control Records 

This option can only appear on a CCR in the primary source-language input file (CARD). 

This option is ignored if the :MERGE option is FALSE. The DELETE option does not 
alter the normal merging process; however, it causes the compiler to unconditionally 
discard all source-language images selected from the secondary input file, including 
CCRs. This discarding of SOURCE file records begins with the first record in the 
SOURCE file that has either the same sequence number as the CARD file record that 
sets the DELETE option to TRUE or the next higher sequence number. The last record 
discarded from the SOURCE file has either the same sequence number as the CARD file 
record that sets the DELETE option to FALSE or the next lower sequence number. 

The source-language records discarded when this option is set to TRUE are not carried 
forward to the output symbolic file (NEWSOURCE) if the NEW option is TRUE. In 
addition, these records are not listed unless the LISTDELETED option is TRUE. 

The default value for the DELETE option is FALSE. 

Syntax 

<delete option> 

- DELETE ----------------------------j 

ERRORLIMIT (Value) 

The ERRORLIMIT option specifies the maximum number of errors for the compiler to 
detect before the compilation is terminated. 

The default value for the ERRORLIMIT option is 10 if the program is initiated through 
Command and Edit (CANDE) and 100 if the program is initiated through the Work Flow 
Language (WFL). A value of 0 causes the compiler to tolerate an unlimited number of 
errors. 

If the error limit is exceeded, the compiler produces a listing of the errors and informs 
the user that the compilation was terminated because the error limit was exceeded. 

If the error limit is exceeded and the NEW option is TRUE, the new file being created is 
locked. (Refer to the explanation of "NEW (Boolean)" in this section.) 

Syntax 

<errorlimit option> 

- ERRORLIMIT [ = ] <; nteger> 

Explanation 

<integer> 

Any unsigned integer. 

1169794.380 5-5 



SORT Compiler Control Records 

Used only for program documentation. The equal sign (=) is ignored by the SORT 
compiler. 

ERRORLIST (Boolean) 

The ERRORLIST option controls the destination of the error messages that are 
generated by the SORT compiler. 

If the ERRORLIST option is TRUE, the compiler error messages go to a file entitled 
either ERRORFILE or ERRORS. If the SORT compiler was invoked from CANDE, the 
destination file for the compiler error messages is entitled ERRORS. The error messages 
also go to the LINE file if a LINE file is used. The LINE file is in use if either the LIST 
option, LISTDELETED option, LISTP option, or LISTDOLLAR option is TRUE when 
the error is detected, or if earlier in the compilation, any of these options were TRUE 
and then set to FALSE. If the LINE file is not in use when the compiler detects the error 
condition, the error message does not go to the LINE file. 

The default setting for the ERRORLIST option is FALSE for Sort compilations initiated 
from WFL, and TRUE for compilations initiated from CANDE. The default setting 
for the ERRORFILE (or ERRORS) file for the file attribute KIND is PRINTER for 
compilations initiated from WFL and REMOTE for compilations initiated from CANDE. 

Syntax 

<errorlist option> 

- ERRORLIST ----------------------l 

GSORT (Boolean) 

The GSORT option makes sort programs compatible with the industry-standard GSORT 
syntax and capabilities. (The program must be coded in a fixed, column-oriented format 
similar to programs coded in RPG.) 

The GSORT option defaults to FALSE for SORT compilations submitted from CANDE 
orWFL. 

• Once the GSORT option is set, it cannot be reset. Any subsequent statements that reset 
GSORT are treated as errors. 

'Vhen the GSORT option is set to TRUE, the following additional sort features are 
available: 

• Output records can be remapped to have a different format than the input records. 
For example, the remapped output records can be constructed out of selected parts 
of an input record. 

• Multiple sets of input records can be selected according to specific criteria. Different 
sorting and remapping criteria can be applied to each set. 

5-6 1169794.380 



SORT Compiler Control Records 

• Special characters can be used to force related types of records to be grouped 
together in the output. 

• Alternate collating sequences can be specified to permit sorting of records in an 
order different from that of the standard EBCDIC collating sequence. You can 
change the collating sequence for all or selected characters. 

• Sorted data can be totaled by adding up fields in records. 

• Data can be selected and an output file can be created without performing a sort. 

• Records selected from a single file can be sorted to produce a record number file that 
reflects the new order, similar to a tag sort. 

See the appendix "Using GSORT to Code and Run Sort Programs" for details of how to 
design, code, and run Sort programs using the GSORT option. 

Syntax 

<gsort option> 

- GSORT ---------------------------1 

LIST (Boolean) 

If the LIST option is TRUE, the SORT compiler produces a listing of the CARD file 
input records in the LllfE file. If the MERGE option is TRUE, the SORT compiler also 
produces a listing of the SOURCE file records. Any CCRs having a dollar sign ($) in 
column 1 are not listed. (Refer to "LISTDOLLAR (Boolean)" in this section.) However, 
if the LIST option is set to TRUE, the CCRs having a dollar sign in column 2 are listed. 
Records from the SOURCE file that have been discarded, either by the action of the 
DELETE option or by a matching record from the CARD file, are not listed unless the 
LISTDELETED option is also TRUE. 

If both the LIST option and the ERRORLIST option are FALSE, all the error messages 
in the LINE file are listed. If the LIST option is FALSE and the ERRORLIST option is 
TRUE, the error messages are written to the ERRORFILE (or ERRORS) file. Ifboth 
the LIST option and the ERRORLIST option are TRUE, the error messages are written 
to both the LINE and the ERRORFILE (or ERRORS) files. 

The default value for the LIST option is FALSE for compilations initiated from CANDE, 
and TRUE for compilations initiatgd from WFL. 

Syntax 

<list option> 

- LIST -------------------------------~ 

LISTDELETED (Boolean) 

The LISTDELETED option causes the compiler to produce a listing of the 
source-language input records that are deleted when the DELETE option is TRUE. The 
deleted source-language input records are identified on the listing with a D. 

1169794.380 5-7 



SORT Compiler Control Records 

The default value for the LISTDELETED option is FALSE. 

Syntax 

<listdeleted option> 

- LlSTDELETED ---------------------; 

LISTDOLLAR (Boolean) 

If the LISTDOLLAR optioIl: and the LIST option are TRUE, the compiler produces a 
listing of all temporary CCRs encountered during the compilation. The temporary CCRs 
are identified by a dollar sign ($) in column 1. 

The default value for the LISTDOLLAR option is FALSE. 

LIST$ is a synonym for LISTDOLLAR. 

Syntax 

<listdollar option> 

--,-- LISTDOLLAR --'--1 ---------------------1 
L LISTS ----.J 

LISTP (Boolean) 

The LISTP option causes the compiler to produce a listing of the source-language 
records that appear in the primary input file (CARD). Source-language records from the 
secondary input file (SOURCE) are not listed. 

If the LIST option is TRUE, then the LISTP option has no effect. The default value for 
the LISTP option is FALSE. 

Syntax 

<listp option> 

- LlSTP ------------------------1 

MAP (Boolean) 

5-8 

The MAP option causes the compiler to include, as part of the output listing, address 
couples that indicate the storage locations of variables within the code file produced by 
the compilation. The MAP option has no effect if the LIST option is FALSE. 

The default value for the MAP option is FALSE. 

1169794.380 



SORT Compiler Control Records 

Syntax 

<map option> 

- MAP ----------------------------------------------~ 

MERGE (Boolean) 

The MERGE option controls how the SORT compiler handles the secondary 
source-language input file, SOURCE. The compiler reads only from the input file, CARD, 
if the MERGE option is FALSE. 

If the MERGE option is TRUE, records from the CARD file are merged with the 
. SOURCE file input records. The merge is based on the value of the sequence number 

field (columns 73 through 80) in the input records. A record is taken from the SOURCE 
file if the sequence number is less than the sequence number of the next record in the 
CARD file. 

However, if both files contain records that have identical sequence numbers, the record 
from the CARD file is used. The record from the SOURCE file is then discarded. Also, 
whole groups of records can be discarded from the SOURCE file by using the DELETE 
option. 

All records in the SOURCE and CARD files must have ascending sequence numbers for 
the merge action to work correctly. 

On the CCR, the keyword MERGE can be followed by a file title. This title is the disk 
file title of the SOURCE file to be used. Alternatively, the disk file title of the SOURCE 
file can be specified to the compiler by using either a WFL or a CANDE file attribute 
equation. 

The default value for the MERGE option is FALSE. 

Syntax 

<merge option> 

- MERGE 
C=<file title~ 

Explanation 

< file title> 

A quoted string specifying the name of the file containing secondary source-language 
records. If < file title> is not specified, then SOURCE is assumed unless pre-empted by 
a file equation. 

NEW (Boolean) 

The NEW option generates a disk file containing the input records read by the SORT 
compiler. If the value of this option is FALSE. a NEWSOURCE file is not generated. 

1169794.380 5-9 



SORT Compiler Control Records ,j 

If the value of the NE\V option is TRUE. the input records of the compiler are written to 
the NE\VSOURCE file. Temporary CCRs and the records discarded from the SOURCE 
file are not written to the NEWSOURCE file. This NE\VSOURCE file can then be used 
as the SOURCE file for compiling the Sort program in the future. The NEWSOURCE 
file is created and locked on disk even if syntax errors are detected by the SORT 
compiler, or if the compiler aborted the compilation because the specified ERRORLIMIT 
value was exceeded. 

If the REFORMAT option is TRUE, the records that are written to the NEWSOURCE 
file are modified to use A Series SORT compiler syntax rather than B 1000 syntax. 
New sequence numbers can be given to records in the NEWSOURCE file by using the 
SEQUENCE option. < sequence base option> , and < sequence increment option> . 

On a CCR, the keyword NEW can be followed by a file title. This title is the disk file 
title of the created SOURCE file. Alternatively, the disk file title of the NEWSOURCE 
file can be specified to the compiler by using either a WFL or a CANDE file attribute 
equation. 

The default value for the NEW option is FALSE. 

Syntax 

<new option> 

- NEW 
L-<file title~ 

Explanation 

< file title> 

A quoted string specifying the name of the symbolic file to which accepted records 
are written. If < file title> is not specified, then NEWSOURCE is assumed unless 
pre-empted by a CANDE or WFL file attribute equation. 

NEWSEQERR (Boolean) 

5-10 

If TRUE, the NEWSEQERR option interacts with the NEW option to ensure that 
the records written to the NEWSOURCE file have sequence numbers (in columns 
73 through 80) that are strictly in ascending order. A syntax error is given for each 
occurrence of a record in the NEWSOURCE file that is not in ascending order. The 
NEWSOURCE file is locked on disk even if sequence errors are detected in the file. 

The default value for the NEWSEQERR option is FALSE. 

Syntax 

<newseqerr option> 

- NEWSEQERR -----------------------i 

1169794.380 



SORT Compiler Control Records 

REFORMAT (Boolean) 

The REFORMAT option causes acceptable (to the SORT compiler) B 1000 Sort syntax 
to be translated into A Series SORT compiler syntax in the NE\\"rAPE and LINE files. 
Even A Series SORT compiler syntax can be reformatted; the result is that statements 
are reordered, and missing defaults are replaced \\ith explicit syntax items. 

If used, the REFORMAT option must be TRUE before the beginning of the source 
program and remain TRUE throughout the compilation. 

If the LIST option is TRUE, the reformatted B 1000 syntax is written to the LINE 
file following the listing of the unmodified input records. If the NEW option is TRUE, 
the reformatted text (instead of the unmodified input records) is written to the 
NEWSOURCE file. 

The default value for the REFORMAT option is FALSE. 

Syntax 

<reformat option> 

- REFORMAT -------------------------\ 

SEQUENCE (Boolean) 

The SEQUENCE option causes the compiler to assign new sequence numbers to the 
source-language images accepted for compilation. 

This option assigns new sequence numbers to the NEWSOURCE file. The sequence 
numbers are based on the values of the < sequence base option> and < sequence 
increment option> . 

New sequence numbers are assigned to input records as follows: 

• After the record has been accepted by the merge action if the MERGE option is 
TRUE, and before the record is written to the LINE file if the LIST option is TRUE 

• Before the sequence number order is checked if the NEWSEQERR option is TRUE 

• Before the record is written to the NEWSOURCE file if the NEW option is TRUE 

The SEQUENCE option affects only input source-language records that the compiler 
encounters after the merging process. 

The default value for the SEQUENCE option is FALSE. 

Syntax 

<sequence option> 

- .s..E..QUENCE ------------------------1 

1169794.380 5-11 



SORT Compiler Control Records 

Sequence Base (Value) 

The < sequence base option> contains the sequence number that is assigned to the next 
source-language record when the SEQUENCE option is TRUE. After each record is 
sequenced, the value of the < sequence base option> is increased by the value of the 
< sequence increment option> . 

The default value of the < sequence base option> is 1000. 

Syntax 

<sequence base option> 

i/S\-<di9it>>-....r..I----------------------t 

Sequence Increment (Value) 

The value of the < sequence increment option> increments the value of the < sequence 
base option> when records are being sequenced because the SEQUENCE option is 
TRUE. 

The default value of the < sequence increment option> is 1000. 

Syntax 

<sequence increment option> 

- + --I:/S\-<di gi t>......r.....-------------------i 

SINGLE (Boolean) 

If TRUE, the SINGLE option single-spaces the listing in the LINE file. If the SINGLE 
option is FALSE, the listing is double-spaced. 

The default value for the SINGLE option is TRUE. 

Syntax 

<single option> 

- SINGLE ------------------------i 

VERSION (Value) 

5-12 

The VERSION option specifies a Sort program version number to be used during 
compilation for setting the version information field (columns 83 through 90). If the 
version information field contains a < patch number> and a VERSION option has 
been encountered, the version information field is changed to the following form in the 
NEWSOURCE file if the NEW option is TRUE, and in the LINE file if the LIST option is 
TRUE: 

1169794.380 



SORT Compiler Control Records 

<release number>. <cycle number>. <version number> 

The version number specified on the first VERSION option record replaces the version 
number on any subsequent VERSION option records. The < patch number> found in 
the version information field of the record being updated is retained. If the NEW option 
is TRUE, the version number in the NEWSOURCE file is updated. If the LIST option is 
TRUE, the version number in the LINE file is updated. 

Syntax 

<version option> 

- VERSION -<release number>- . -<cycle number>- . ------~ 

~-<patch number>------------------------i 

<release number> 

--.r.:/2\-<di g; t>,--'-----------------------l 

<cycle number> 

--.r.:/3\-<di9it>~~--------------------------___i 

<patch number> 

--.r.:/3\-<digit>~~-----------------------___i 

Explanation 

< release number> 

Specifies a two-digit integer that updates the value of the release number. 

< cycle number> 

Specifies a three-digit integer that updates the value of the cycle number. 

< patch number> 

Specifies a three-digit integer that updates the value of the patch number. 

1169794.380 5-13 



5-14 1169794.380 



Appendix A 
SORT Language Keywords 

The words listed in this appendix are recognized by the SORT compiler and fall into the 
following three categories: 

category I 

category 2 

category 3 

Words that begin a SORT language statement. {See Table A-I below.} 

Words that appear within a SORT language statement to select various 
optional actions of that statement. (See Table A-2 below.) 

File attribute names and attribute value mnemonics that are not listed in 
this manual. (For complete information regarding the words included in 
this category, refer to the File Attributes Reference Manual.) 

Table A-1 alphabetically lists Category 1 words, their synonyms, and their compatibility 
with B 1000 Series Sort programs. Table A-2 alphabetically lists Category 2 words, their 
synonyms, and their compatibility with B 1000 Series Sort programs. 

Keyword 

BIAS 

DELETE 

DISKANDTAPE 

DISKSORT 

FILE 

INCLUDE 

KEY 

MEMORY 

MERGE 

NOPRINT 

PARITY DISCARD 

RECORDS 

STABLE 

SYNTAX 

TAGSEARCH 

Table A-I. Category 1 Keywords 

Synonym or Synonyms 

ITO 

KEYS, FIELD, FIELDS 

ME 

U nisys Restricted Proprietary 

B 1000 Compatibility 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

No 

continued 

This Document Was Generated With an Unofficial Typedef A-I 



SORT Language Keywords 

Table A-I. Category I Keywords (cont.) 

Keyword Synonym or Synonyms B 1000 Compatibility 

TAGSORT No 

TAPESORT No 

TIME Yes 

TIMING Yes 

WORKFAMILY No 

WORKPACKI Yes 

WORKPACK2 Yes 

WORKSIZE No 

Table A-2. Category 2 Keywords 

Keyword Synonym or Synonyms B 1000 Compatibility 

ALL No 

ALPHA No 

AND No 

ASCENDING A No 

BIT No 

BYTE BYTES No 

CARD CARDS Yes 

CHARACTER No 

COMP No 

DECIMAL No 

DEFAULT YeS 

DESCENDING D No 

DIGIT DIGITS No 

DISK Yes 

DISPLAY No 

DOUBLE No 

EQL No 

EVEN E Yes 

continued 

U nisys Restricted Proprietary 
A-2 This Document Was Generated With an Unofficial Typedef 



SORT Language Keywords 

Table A-2. Category 2 Keywords (cont.) 

Keyword Synonym or Synonyms B 1000 Compatibility 

FIRST No 

GEQ No 

GTR No 

HEX No 

IN No 

INTEGER No 

IS No 

LAST No 

LEADING LEFT No 

LEQ No 

LSS No 

MULTI Yes 

NC No 

NEQ No 

NO COLLATE No 

NOT No 

NUMERIC No 

ODD a Yes 

OR No 

OUT No 

PACKED No 

PAPER Yes 

PRINTER Yes 

PURGE No 

REAL No 

RELEASE No 

REMAPS No 

REMOVE No 

RSA Yes 

RSN Yes 

continued 

1169794.380 A-3 



SORT Language Keywords 

Table A-2. Category 2 Keywords (cont.) 

Keyword Synonym or Synonyms B 1000 Compatibility 

SA Yes 

SAVE Yes 

SEPARATE No 

SIGN No 

SN Yes 

TAPE Yes 

TRAILING RIGHT No 

UA Yes 

UN Yes 

V Yes 

VARIABLE Yes 

WORD WORDS No 

ZONE No 

A-4 1169794.380 



Appendix B 
SORT Compiler Files 

The SORT compiler uses the files listed in Table B-l. The table lists the files with their 
respective declarations and explains the function of each file. 

File Name 

CARD 

SOURCE 

NEWSOURCE 

LINE 

ERRORFILE 

1169794.380 

Table 8-1. SORT Compiler Files 

File Declaration 

CARD (KIND = READER, FILETYPE 
= 8); 

SOURCE (KIND = PACK, 
FAMILYNAME = "DISK.", FILETYPE 
= 8, MYUSE = IN); 

NEWSOURCE (KIND = PACK, 
FAMILYNAME = "DISK.", AREAS = 
60, AREASIZE = 1008, FILEKIND = 
SORTSYMBOL, MAXRECSIZE = 15, 
BLOCKSIZE = 420, SAVEFACTOR = 
999); 

LINE (KIND = PRINTER); 

ERRORFILE (KIND = PRINTER, 
NEWFILE = TRUE, MAXRECSIZE = 
14); ERRORS (KIND = PRINTER, 
NEWFILE = TRUE, MAXRECSIZE = 
14); 

Explanation 

Used for SORT statement 
input. 

Used as the secondary 
source file for statements 
when the MERGE option 
value is TRUE in the CARD 
file. 

Used to create a new 
symbolic file when the NEW 
option value is TRUE. 

Used to print SORT 
specifications and error 
messages when the LIST 
option value is TRUE. 

Used to print error 
messages when the 
ERROR LIST option value is 
TRUE. If the SORT compiler 
was invoked from CANOE 
the file name ERRORS is 
used. Also, if the SORT 
compiler was invoked from 
CANOE, the KIND of this 
file is set to REMOTE; 
otherwise, the KIND is 
PRINTER. 

continued 

8-1 



SORT Compiler Files 

File Name 

CODE 

B-2 

Table B-1. SORT Compiler Files (cont.) 

File Declaration 

CODE (KIND = PACK, FAMILYNAME 
= "DISK.", MYUSE = OUT, AREAS = 
40, AREASIZE = 504, FILEKIND = 
SORTCODE, FLEXIBLE, BUFFERS = 
2, MAXRECSIZE = 3D, BLOCKSIZE 
= 270, SAVEFACTOR = 999); 

Explanation 

The resulting object code 
file from the SORT compiler. 
This file is produced only if 
the compilation is error-free. 

1169794.380 



Appendix C 
SORT Program Files 

Sort programs are compiled to use some or all of the files shown in Table C-l. 

File Name 

IN 

IN2 
through 
IN99 

OUT 

DISKC 

DISKF 

Table C-l. Sort Program Files 

File Declaration 

IN (KIND = PACK, FAMILYNAME = 
"DISK.-, FILETYPE = 8, NEWFILE = 
FALSE); 

INn (KIND = PACK, FAMILYNAME = 
"DISK.", FILETYPE = 8, NEWFILE = 
FALSE); 

OUT (KIND = PACK, FAMILYNAME = 
-DISK", NEWFILE = TRUE, SAVEFACTOR 
= 99); 

DISKC (KIND = PACK, FAMILYNAME = 
"DISK.", TITLE = "SORT/DISKCM); 

DISKF (KIND = PACK, FAMILYNAME = 
"DISK. A, TITLE = "SORT/DISKP); 

Explanation 

Identifies the first input file to 
be sorted or merged. 

Identifies the second through 
ninety-ninth input files. 

Identifies the sorted or merged 
output file. 

Used by the system SORT 
procedure as its control file. 
Changing any attribute other 
than TITLE or FAMILYNAME 
can cause the sort to fail. 

Used by the system SORT 
procedure as its work file. 
Changing any attribute other 
than TITLE or FAMILYNAME 
can cause the sort to fail. 

Note: Using FILETYPE = 8 indicates that certain attribute values are to be 
obtained from the permanent file even if these attributes are specified 
in the Sort program (for example, MAXRECSIZE). To change the 
value of these attributes, change the FlLETYPE attribute. For more 
information concerning the attributes affected by FILETYPE = 8, 
refer to the File Attributes Reference Manual 

The file attributes for the files IN, IN2 through IN99, and OUT can be left as the default 
values specified in the appropriate SORT statements, or can be changed by file attribute 
assignments at the time the Sort program is initiated from WFL or CANDE. 

1169794-002 C-1 



SORT Program Files 

C-2 

If an explicit value is not declared, the OUT file assumes the values associated with the 
IN file for the following file attributes: 

AREASIZE 

FAMILYNAME 

INTMODE 

SECURITYTYPE 

BLOCKSIZE 

FILEKIND 

MAXRECSIZE 

SECURITYUSE 

EXTMODE 

FILffiPE 

SECURITYGUARD 

UNITS 

If both WFL file equations and internal file specifications are present, the WFL file 
equations override the internal file specifications. 

1169794-002 



Appendix D 
B 1000 SORT Conversion 

The A Series SORT compiler accepts most B 1000 Sort syntax, thus easing the migration 
ofB 1000 Series system users to A Series systems. This appendix explains the 
differences between the SORT compiler and the B 1000 Sort program. The additional 
syntax accepted by the compiler for conversion is also described. 

B 1000 Statements Accepted but Ignored 
The following BlOOD SORT statements are accepted but ignored by the A Series SORT 
compiler. A warning is issued by the compiler when the following statements are used: 

• BIAS 

• TIME 

• TIMING 

B 1000 Statements Not Supported by the SORT 
Compiler 

A syntax error occurs when the following B 1000 SORT statements are used: 

COLLATE 

INPLACE 

TAGCOBOL 

ZIP 

DUPCHECK 

OVERRIDE 

TAGRPG 

The B 1000 TEACH statement has been replaced by the $REFORMAT compiler control 
option. The B 1000 NOPRINT statement has been replaced by the $LIST compiler 
control option. 

The B 1000 handling of embedded comments, which are unrecognized words the Sort 
program ignores, is not supported by the A Series SORT compiler. A Series SORT 
syntax requires that comments follow a percent sign (%) or a colon (:) if they are used on 
an input record. 

BO 1000 File Statement 

The B 1000 FILE statement is composed of the reserved word FILE followed by 1 to 99 
input files and one output file. The A Series SORT compiler allows up to 99 input files to 
be sorted and up to eight files to be merged. Comparatively, the B 1000 Sort program 
allows up to 16 input files to be sorted. 

1169794.380 D-1 



B 1000 SORT Conversion 

Note: If the <B 1000 file name> is IN or OUT, the left parenthesis and the 
device (DISK, CARD~ CARDS, PAPER, or TAPE) must be on the 
same input record; otherwise, A Series SORT syntax is assumed. 

Syntax 

<B 1000 file statement> 

-- FILE -I:/99\-<B 1000 file input part>=1-<B 1000 file output part>---1 

8 1000 File Input Part 

The < B 1000 file input part> describes an input file. 

Syntax 

<8 1000 file input part> 

-- IN -<B 1000 file name>- ( ---------------~ 

~bD I SK 1 ( -<rpa>-- ) --<rsz> L<r. b>~ 
DEFAULT --------~_I 

CARD <rsz> L 
CARDS <r.b>,----' 

PAPER -------! 
TAPE --,----_1 

L PURGE ] L MULTI ] ~ 

~--r-L-v (---<m-a-x ;-m-um-b-'-oc-k-s ;-z-e>---) -j-r-
L VARIABLE _________ .....J 

<rpa> 

-<; nteger>'------------------------i 

<rsz> 

--<; nteger>'------------~-----------i 

<r.b> 

-<;nteger>-----------------------; 

<maximum block size> 

-<integer>-----------------------; 

Explanation 

DISK 

Specifies that the input file is a disk or disk pack file. 

D-2 1169794.380 



B 1000 SORT Conversion 

CARD. CARDS 

Specifies that the input file is a card reader file. 

PAPER 

Specifies that the input file is a paper tape reader file. 

TAPE 

Specifies that the input file is a tape file. If the parity specifier is included after the 
keyword, TAPE, then 7-track tape is implicitly specified. A parity specifier is enclosed in 
parentheses. ODD, or 0, specifies odd parity. binary mode. EVEN, or E, specifies even 
parity with Burroughs Common Language (BCL) translation. If even-parity, 7-track 
magnetic tape is specified, the SORT compiler issues a warning about the incompatibility 
of BCL characters with EBCDIC-only machines. 

<rpa> 

Specifies the number of records per area. This number must be enclosed in parentheses. 
An < rpa > specification is used when the input file is located on disk and the DEF AUL T 
option is not used. 

<rsz> 

Specifies the actual record size, in bytes; of the records to be sorted. Unless the 
DEFAULT option is specified, the < rsz > is a required entry. 

<r.b> 

Specifies the number of logical records in a block. By default, < r.b > is 1. 

DEFAULT 

Specifies that the B 1000 Sort program is to obtain the input file specifications from the 
disk file header, if the input file is on disk. The input file specifications include records 
per area ( < rpa> ), record size ( < rsz > ), and records per block ( < r. b > ). 

PURGE 

Specifies that the input file is to be removed from the disk directory if the input file is a 
disk file. However, if the input file is a magnetic tape file, the tape is purged. This option 
can affect only disk and tape input files. 

MULTI 

Specifies that the file occupies more than one disk pack. The SORT compiler does not 
recognize this option and ignores it. 

1169794.380 0-3 



B 1000 SORT Conversion 

VARIABLE 

Specifies that the file contains variable-length records. The SORT compiler recognizes 
the B 1000 syntax for variable-length records, but issues a syntax error because 
variable-length record capability is not implemented. 

B 1000 File Output Part 

D-4 

The < B 1000 file output part> describes the one required output file. The elements 
of the < B 1000 file output part> have the same functions for the output file as the 
elements of the < B 1000 file input part> have for the input file. 

Syntax 

<8 1000 file output part> 

---- OUT ----<8 1000 file name>---- --------------------------------------------------~ 

DISK 1 ( ----<rpa>~L-·---I~ ) -<rsz>-r-------------r-,...----~~ 
<areas>.....! 

DEFAULT --------------------1 
CARD <rsz>......,......----------~ 
CARDS <r.b>--------~ 

PAPER ------I 
PRINTER ----i 
TAPE -,-----1 

(ODD) 
(0) 
(EVEN) 
(E) 

~ [ MULTI ] L V( -<maximum block size>- ) j 
L VARIABLE -----------'-

<areas> 

----<; nteger>>------------------------------------------------------t 

Explanation 

DISK 

Specifies that the output file is a disk file. 

CARD,CARDS 

Specifies that the output file is a card punch file. 

PAPER 

Specifies that the output file is a paper tape punch file. 

TAPE 

Specifies that the output file is a tape file. 

1169794.380 



B 1000 SORT Conversion 

DEFAULT 

Causes the records per area ( < rpa> ), record size ( < rsz > ), and records per block 
«r.b» of the output file to be identical to those of the first input file. 

<areas> 

Specifies the maximum number of disk areas allowed in the output file. 

RELEASE 

Specifies that the tape is to be closed with release. This option is valid only for tape files. 

VARIABLE 

Specifies that the file contains variable-length records. The SORT compiler recognizes 
the B 1000 syntax for variable-length records, but issues a syntax error message because 
variable-length record capability is not implemented. 

Example 

FILE IN X (TAPE 80 1) 
OUT X/VIZ (DISK (90e 25) se 9) 

B 1000 File Name 

Each level of a < B 1000 file name> can consist of any character. The characters 
comma (,), blank space ( ), asterisk (*), slash (J), and quotation mark (") each have a 
particular meaning. The quote character can be represented by a pair of quotation 
marks (" ") and each level of the < B 1000 file name> can be enclosed in quotes. If the 
< B 1000 file name> is enclosed in quotes, the blank and slash lose their associated 
meanings; the asterisk, the left parenthesis, and the right parenthesis retain their 
associated meanings. 

Two forms of the < B 1000 file name> cannot be completely handled on A Series 
systems: 

• On B 1000 Series systems, a usercode enclosed in parentheses and preceded by an 
asterisk indicates that no family substitution is to be performed and that the file is 
found on the system resource disk. 

• The normal usercode form, which is not preceded by an asterisk, indicates that the 
referenced disk file is to be found on the default family for the usercode that owns 
the file. . 

These actions cannot be simulated by the SORT compiler. Instead, the SORT compiler 
translates the < B 1000 file name> forms as best it can and issues a warning indicating 
that the family substitution action is different. 

1169794-002 0-5 



B 1000 SORT Conversion 

D-6 

Syntax 

<B 1000 file name> 

~----~---------------r~B 1000 name>-------------~~ 
<B 1000 user~ / 
<B 1000 name>--1 

<B 1000 pack>- / L * ] 

Explanation 

< B 1000 name> 

Specifies the file name. This specification can contain no more than ten EBCDIC 
alphanumeric characters, not counting the enclosing quotes. Any embedded quotation 
characters (") are counted as one character. An asterisk (*) can be used along with a 
maximum of nine additional characters, which indicates that a usercode is not applied to 
the file name. 

<B 1000 user> 

Specifies the usercode under which the file resides. This. specification can include no 
more than eight EBCDIC alphanumeric characters enclosed in parentheses. If an 
asterisk (*) precedes the < B 1000 user> specification, a family substitution does not 
take place, and only seven alphanumeric characters can be used. 

<B 1000 pack> 

Specifies the pack. This specification can include up to ten EBCDIC alphanumeric 
characters. 

Examples 

Table D-1 shows example B 1000 file names and their compatible TITLE attribute values 
on A Series systems. 

Table 0-1. Equating B 1000 File Names and A Series TITLE Attributes 

B 1000 File Name TITLE 

A AON DISK 

NB NBON DISK 

NBf BONA 

NBIC BlC ON A 

N(B)/C (B)C ON A 

*A *AON DISK 

continued 

1169794-002 



B 1000 SORT Conversion 

Table 0-1. Equating B 1000 File Names and A Series TITLE Attributes (cont.) 

B 1000 File Name 

*A/S 

A/*B/ 

A/*B/C 

A/*(B)/C 

(A)/B 

*(A)/B 

B 1000 Data Type 

TITLE 

*A/B ON DISK 

*8 ON A 

*B!C ON A 

(B)C ON A 

(A)B ON DISK 

(A)B ON DISK 

The < B 1000 data type> defines the format of a data item. 

Syntax 

<8 1000 data type> 

Explanation 

ALPHA, UA, Nt 

Indicates that the data is alphanumeric and that the key location in the input record 
is counted in bytes from the beginning of the record. The comparison is based on the 
character value of the field. ALPHA is the default data type for B 1000 Series systems. 
This type is equivalent to the ALPHA < type> of the SORT compiler. 

NUMERIC, UN 

Indicates that the data is 4-bit numeric and that the relative position of the field is 
counted in 4-bit units. The comparison is based on the numeric value of the field. This 
type is equivalent to the PACKED < type> of the SORT compiler. 

1169794.380 0-7 



B 1000 SORT Conversion 

0-8 

SA 

Indicates that the data is 8-bit alphanumeric and that the key or data field contains a 
sign field. The minus sign (-) is represented by a hexadecimal D in the most significant 
four bits, or zone portion, of the first byte of the field. Any other value in the sign 
represents a plus sign (+). This type is similar to, but not the same as, ALPHA 
NU~IERIC SIGN LEFT. 

An SA field uses all bits of all characters in the field for the key comparison. In contrast, 
an ALPHA NUMERIC SIGN LEFT field uses only the digit portion of each character 
and the zone portion of the first cnaracter for the key comparison. The same literals and 
literal conversions used for ALPHA NUMERIC fields are used for SA fields. (Refer 
to the explanations of literal and literal conversions in the "Sort Program Structure" 
section.) 

SN 

Indicates that the data is 4-bit numeric and that the key or data field contains a sign in 
the first digit of the field. The minus sign (-) is represented by a hexadecimal D. Any 
other value represents a plus sign (+). SN is the B 1000 equivalent of the PACKED 
SIGN LEFT data type. 

RSA 

Specifies that the data is signed 8-bit alphanumeric, and that the minus sign (-) is 
represented by a hexadecimal D. The sign is located in the first four bits, or zone portion, 
of the rightmost byte of the key. Any other value represents a plus sign ( + ). This data 
type is similar to, but not the same as, ALPHA NUMERIC SIGN RIGHT. 

An RSA field· uses all bits except the zone portion of the firs~ character for key 
comparison; an ALPHA NUMERIC SIGN RIGHT field uses only the digit portion of 
each character and the zone portion of the first character for key comparisons. The 
same literals and literal conversions used for ALPHA NUMERIC fields are used for RSA 
fields. (Refer to the explanations of literal and literal conversions in the "Sort Program 
Structure" section.) 

RSN 

Indicates that the data is signed 4-bit numeric, and that the minus sign (-) is represented 
by a hexadecimal D in the rightmost digit of the key. Any other value represents a plus 
sign (+). RSN is equivalent to the PACKED SIGN RIGHT data type. 

ZONE 

Equivalent to the A Series ZONE data type. 

DIGIT 

Equivalent to the A Series DIGIT data type. 

1169794.380 



8 1000 SORT Conversion 

B 1000 INCLUDE and DELETE Statement 
The IN option of the < B 1000 include and delete statement> is not supported on 
A Series systems~ however. SYSTEM/DUMP ALL provides sinlilar capabilities. 

The B 1000 Sort program specifies that multiple AND and OR operations are evaluated 
from left to right. The SORT compiler, like the B 1000 Sort program, specifies that the 
order of precedence is NOT, AND, and OR. Some B 1000 Sort programs may need to be 
modified by adding parentheses so that the desired evaluation of Boolean conditions is 
obtained. 

With the B 1000 Sort program, ifa DELETE is followed by an INCLUDE and both 
statements select the same record for inclusion and deletion, the record is retained. 
The SORT compiler, however, uses the same rule as the B 1000 Sort program: each 
successive INCLUDE or DELETE creates further subsets of the input records. 

B 1000 MEMORY Statement 
The < B 1000 memory statement> specifies memory in units of bytes. The SORT 
language < memory statement> specifies memory in units of 48-bit words. The number 
specified in a < B 1000 memory statement> should remain unchanged in a SORT 
language < memory statement>. A sort that runs on B 1000 Series systems in 15,000 
bytes will run on A Series systems in 15,000 words. 

B 1000 MERGE Statement 
A <merge statement> is assumed by the B 1000 Sort program if more than one 
input file is specified in the absence of other SORT processing statements. The SORT 
compiler accepts the absence of the < merge statement> or < disksort statement>, but 
does issue a warning message. 

B 1000 NOPRINT Statement 
The < B 1000 noprint statement> performs the same function as resetting the LIST 
compiler control option. For example, the statements NOPRINT and $ RESET LIST 
have the same effect. 

Syntax 

<8 1000 noprint statement> 

- NOPRINT -----------------------i 

1169794.380 D-9 



B 1000 SORT Conversion 

B 1000 RECORDS Statement 
The SORT language < records statement> can be specified on B 1000 Series systems 
using the following syntax. 

Syntax 

<8 1000 records statement> 

-<record estimate>- RECORDS ------------------i 

B 1000 SORT Statement 
The B 1000 Sort program performs a disk sort in the absence of a < tapesort 
statement> or a < B 1000 tapesort statement> when only one input file is specified. 
The SORT compiler generates a < disksort statement> if only one input file exists 
and a < merge statement>, < disksort statement>, < diskandtape statement> , 
< memory only statement> , or < tapesort statement> is not specified. A warning 
message is generated by the SORT compiler. 

B 1000 SYNTAX Statement 
. The < B 1000 syntax statement> forces the SORT compiler to suppress production 
and output of the CODE file. The effect of the command is the same as a syntax only 
compilation. 

Syntax 

<8 1000 syntax statement> 

- SYNTAX -------------------------i 

B 1000 TAGSORT Statement 

D-10 

The B 1000 Sort program creates 4-byte, or 8-digit, index records if the < B 1000 tagsort 
statement> is specified. Conversely, the SORT compiler creates this type of index 
record only for a PACKED SORT type with a < length> of 8. A one-word record is 
created by default. 

The Report Program Generator (RPG) ADDROUT files supported by the A Series RPG 
compiler consist of one-word records. Therefore, ADDROUT files taken directly from 
a B 1000 Series system are incompatible with A Series RPG. However, Sort programs 
taken from B 1000 Series systems and run on A Series systems create ADDROUT files 
that are compatible with A Series RPG. 

1169794.380 



B 1000 SORT Conversion 

B 1000 TAPESORT Statement 

The SORT language < tapesort statement> can be specified on B 1000 Series systenlS 
using the syntax illustrated in the following diagram. 

Syntax 

<8 1000 tapesort statement> 

-<work tapes>- TAPESORT -----------------i 

B 1000 WORKPACK1 and WORKPACK2 Statements 

The SORT compiler recognizes and accepts the B 1000 WORKP ACKI and 
WORKP ACK2 statements. The last < B 1000 workpack statement> encountered in 
an A Series Sort program is changed to a < workfamily statement> , and a warning is 
issued. 

Syntax 

<8 1000 workpack statement> 

~jl\- WORKPACK1 ~<8 1000 pack> 
Lj 1 \- WORKPACK2 .-I 

Explanation 

WORKP ACKl, WORKP ACK2 

Specifies that a particular disk pack family is to be used by the Sort program work files. 

<B 1000 pack> 

Specifies the disk pack to be used. 

1169794.380 D-ll 



0-12 1169794.380 



Appendix E 
Using GSORT to Code and Run Sort 
Programs 

A GSORT program is a Sort program where the GSORT option is set to TRUE. Once 
the option is set, it cannot be reset. 

How GSORT Programs Are Similar to Sort Programs 
Every Sort program, whether the GSORT option is set or not, identifies the records to 
be sorted and the key fields for sorting. The following example shows how a Sort and 
GSORT program can use the same input file to produce the same output file. 

Example: Sort and GSORT Programs Producing the Same Result 

For this example, assume that your input file consists of the following five records: 

Input Records 

1 2 3 4 567 
123456789012345678901234567890123456789012345678901234567890123456789012 

first I last name I customer I item I quantity I status 
name number number ordered of order 

Henry Molloy 222 4444 333W 
James Meehan 111 3333 2225 
Nancy Jones 333 5555 222W 
Don Meehan 555 5555 1115 
Iri s Johnson 444 5555 111W 

Now assume you want to sort the records alphabetically, by last name. You want the 
entire input record, as is, to be in your output file; you want your output file to have the 
following order and format: 

Iris Johnson 444 5555 111W 
Nancy Jones 333 5555 222W 
James Meehan 111 3333 222S 
Don Meehan 555 5555 1115 
Henry Molloy 222 4444 333W 

1169794.380 E-1 



Using GSORT to Code and Run Sort Programs 

The following Sort program produces this result: 

DISKSORT 
FI LE IN (TITLE ="GSORT /MAN/WORKFLOW") 
FILE OUT 
STABLE 
KEY(10 29) 

The following GSORT program produces the same result: 

00000$SET GSORT 
00200HSORTRE 20A 
00300FNC 10 29 
00350FOC 1 60 

0X 60 REGULAR SORT, FI FO EQUAL KEY 
KEY FLO: LAST NAME 10 •• 29 
DATA FLO: ALL OF INPUT RECORD 

Note: Unless the sort process has specific instructions for handling 
identical (equal) key fields, each sort process c.an have a different 
outcome. In these examples the instructions state equal key fields 
should be handled on a first in, first out (FIFO) basis; therefore, since 
the record for James Meehan is read first, it comes before the record 
for Don Meehan in the output file. 

How GSORT Programs Differ from Sort Programs 
There are four major differences between GSORT programs and Sort programs: 

• With GSORT you can remap output records. 

• With GSORT you can use alternate collating sequences. 

• With GSORT you must use a column-oriented syntax 

• With GSORT you must specify the names of the input and output files at run time 
using the standard file-equation syntax. 

Creating Output Records by Remapping Input Records 

E-2 

For Sort programs where the GSORT option is not set, the input and output records 
have the same fields and format. 

However, when GSORT is set, you can remap the input record to create output records 
where fields are excluded or repositioned. For instance, using the sample input record, 
you could create an· output record that contained only the customer number, item 
number, quantity ordered, and statuS of order; the first and last name fields could be 
excluded. And, you could rearrange the remaining fields so that the status was first, the 
item number second, the quantity third, and the customer number last. 

1169794.380 ~ 



Using GSORT to Code and Run Sort Programs 

Input Record 

1234567 
123456789012345678901234567890123456789012345678901234567890123456789012 

first I last name I customer I item I quantitYI status 
name -number number ordered of order 

Output Record 

1234567 
123456789012345678901234567890123456789012345678901234567890123456789012 

status of I item I quant;tyl customer I ----not used----
of order number ordered number 

Remapping does not change the content of the fields, nor does it change the input record. 

Additional information on creating output records can be found under "Determining the 
Content of the Output File" in this appendix. The actual syntax used to select data and 
key fields and to remap records is covered in the detailed discussions of the GSORT 
specifications in this appendix. 

Using Alternate Collating Sequences 

Collating sequences are logical sequences used to sort items of data into a particular 
order. A collating sequence is used to compare characters in the key fields in the input 
records to determine whether one character is equal to, greater than, or less than 
another character. 

By default, output is ordered according to the standard EBCDIC collating sequence. 
(See Appendix F, "Using the Standard Collating Sequence" for details of the EBCDIC 
collating sequence.) However, when the GSORT option is set, you can change the 
collating sequence for all or selected characters, the entire key field, or specified key 
fields. 

With an alternate collating sequence you can insert a character between two existing 
characters, (such as a dollar sign between the letters A and B), you can take a character 
out of the usual sequence (such as BAC instead of ABC), or you can exchange 
characters (put B where W is and W where B is). You can also use the system default 
internationalization collating sequence to process alphanumeric data. 

For more detailed information see "Coding Header Information," "Coding ALTSEQ 
Statement," and "Coding Field Selection Information." 

1169794-002 E-3 



Using GSORT to Code and Run Sort Programs 

Coding GSORT Programs 

E-4 

Instead of using SORT statements, a GSORT program is coded using GSORT 
specifications and statements. The GSORT syntax is similar to RPG IT syntax and is 
compatible with the indu~try-standard GSORT language. 

• The sort specifications, including key fields, are entered through Header, Record 
Selection, and Field Selection records. 

• An alternate collating sequence statement (AL TSEQ) is available. 

• No FILE statement can appear within the GSORT program. Instead, the names of 
the input and output files are specified at run time. 

• All GSORT specifications and statements use fixed-format, 72-column entries. 

• Only one specification or statement can be coded on each program record. 

• There are no semicolons (;) between specifications and statements. 

• Comments are not preceded by a percent sign (%) or a colon (:). Instead, they are 
identified as comments by the columns they appear in (for specifications, columns 44 
through 72). 

• Sequence numbering is in columns 1 through 5, not columns 73 through 80. 

The GSORT specifications and statement allow you to identify the operations to be 
performed and the records and fields to be used in the sorting process. The valid 
GSORT specifications and statement are 

• A required Header specification that describes the type of sort you want to run 

• An optional ALTSEQ statement that describes any alternate collating sequence 

• One or more optional Record Selection specifications that describe the input file 
records you want to include in or omit from the sort 

• One or more required Field Selection specifications that indicate how you want the 
input records to be sorted and identify the data and key fields you want written into 
the output file 

In a GSORT program, the specifications and statement must be entered in a specific 
order. The Header specification must precede any ALTSEQ statement. ALTSEQ 
statements must precede any Record Selection specifications. Record Selection 
specifications must precede any Field Selection specifications. However, you might not 
have to complete all the specifications or statements. For example, if you want to sort all 
the records in a file and they all are of the same type, you do not need Record Selection 
specifications. You need only Header and Field Selection specifications. Or, if you want 
to use the standard collating sequence, do not code an AL TSEQ statement. 

In a GSORT program, you can create subsets of records. These subsets are known 
as types. For example, you might define one type as all payroll records with a D in 
column 7, another type as all payroll records with a Y in column 7, and a third type 
as all payroll records with a 3 in column 4 and a T in column 20. All record types are 
user-determined. 

1169794-002 



Using GSORT to Code and Run Sort Programs 

Refer to "Coding Header Information," "Coding ALTSEQ Statements," "Coding 
Record Selection Information," and "Coding Field Selection Information" for more 
details. 

Executing a GSORT Program 

When you execute a GSORT job, the program first compiles your sort specifications. 
Each specification is processed as it is encountered in the program. If the Sort compiler 
detects errors, error messages are displayed and can be printed. . 

For an explanation of run-time errors, see "GSORT System Error Messages." 

To run a GSORT job, after compiling the program use the CANDE RUN command. 
Default input and output file names are used unless other file names are entered using a 
FILE equation. (No FILE statement appears within the program.) 

A maximum of eight files can be input to a GSORT program. Each named input file must 
be associated with a unique number. The valid entries are 

• INPUT or INPUTl (but not both) 

• INPUT2 

• INPUT3 

• INPUT4 

• INPUT5 

• INPUT6 

• INPUT7 

• INPUTS 

If no input file name is specified, a default input file named INPUT is used. 

You can enter the input files in any sequence; regardless of the order of the FILE 
equation, the input files are processed serially. First, the file with the lowest number is 
processed fully, then the file with the next lowest number, and so on until each input file 
has been processed individually. For example, a job could have the file names entered in 
the order of INPUT2, INPUT7, and INPUT3, but the order of the actual sort would be 
INPUT2, INPUT3, and INPUT7. 

As with Sort programs, by naming more than one input file, you can merge files; that is, 
you can combine the records from two or more input files into one output file. However, 
with GSORT programs, the records in each input file can be in a different order and the 
input data can be rearranged, reformatted, or dropped in the output record. 

Only one output file is produced. If no output file name is specified, the default file name 
is OUTPUT. 

1169794.380 E-5 



Using GSORT to Code and Run Sort Programs 

Example: Specifying No Input or Output File 

In the following example, the GSORT program ASCENDING is executed. Because 
neither an input nor an output file is specified, the defaults are used. The system 
assumes there is one input file, named INPUT. The output file is named OUTPUT. 

RUN ASCENDING 

Example: Specifying an Output File 

Shown below, the GSORT program ACCTNO is executed. The system asswnes there is 
one input file named INPUT. The output file is named ACCTOUT. 

RUN ACCTNO; FILE OUTPUT (TITLE=ACCTOUT) 

Example: Specifying Four Input Files and an Output File 

The GSORT program PAYROLL is executed in the next example. The input files 
REGPAYROLL, SPCLP AYROLL, HOLPAYROLL, and VACAP AYROLL are specified. 
The output file is named PAYROLLOUT. 

RUN PAYROLL; 
FILE INPUT(TITLE=REGPAYROLL); 
FILE INPUT3 (TITLE=HOLPAYROLL ON PACK); 
FILE INPUT2 (TITLE=SPCLPAYROLL ON PACK); 
FILE INPUT4 (TITLE=VACAPAYROLL ON PACK); 
FILE OUTPUT (TITLE=PAYROLLOUT) 

Determining the Content of the Output File· 
Through the GSORT specifications and statement, you identify the type of sorted output 
you want and the records and the key fields to sort on. The sorted output file can 
contain 

• Parts or all of the records in the input file. This is known as a regularly sorted 
output file or SORTR. 

• Summarized fields for each unique key field in the input file. This is known as an 
accumulated totals output file or SORTRS. 

• The relative record numbers of records in the input file. This is known as a record 
numbers output file or SORTA at is also known as a tag sort or an ADDROUT 
sort.) 

Criteria for Regularly Sorted Output (SORTR) 

E-6 

In regularly sorted output (SORTR), a single output record containing the data you 
selected from the input record is created for each input record and written to the output 
file in the order you specified. SORTR is the most common type of output file. 

1169794.380 



Using GSORT to Code and Run Sort Programs 

SORTR output files can consist of records containing the following information: 

• Both key and data fields 

• Key fields only 

• Data fields only 

You must provide the key field identification. 

You can also remap the output records. You must identify each field by its starting and 
ending positions. The sort specifications assign each field an order; this order determines 
how the input fields are to be placed in the output record. 

You can arrange the data in regularly sorted files from the lowest value to the highest 
value (ascending order), or from the highest value to the lowest value (descending 
order). 

Criteria for Sorted Files with Accumulated Totals (SORTRS) 

To add data from particular fields and produce a file containing the totals, use output 
. files with accumulated totals or summary data (SORTRS). 

Output files of summary data can contain any of the following kinds of records: 

• Data fields with accumulated totals only 

• Both data fields with accumulated totals and key fields 

• Data fields with accumulated totals, key fields, and other data fields 

Criteria for Files of Record Numbers (SORTA) 

You can use a GSORT program to sort records selected from a single file and produce a 
reCord number file that reflects the new order. The record number file contains 3-byte 
relative record numbers only of some or all the records in the input file. Relative record 
numbers identify the physical location of records in the original input file. The relative 
record number of the first record in an input file is always zero (000000). The data 
from the input file are not written to the output file. 

The SORTA output can be used by a Report Program Generator (RPG) program as an 
ADDROUT file or by programs that process files of relative record numbers. A single 
output record is created for each selected input record. Only one input file at a time can 
be used to produce this type of output. 

You must provide the GSORT program with the following information: 

• Record identification information. Different record types are user-determined and 
can be used in the same sort. 

• Key fields. 

Any Field Selection specifications you enter are ignored. No data fields are output. 

1169794.380 E-7 



Using GSORT to Code and Run Sort Programs 

Selecting the Fields in an Output Record 

Use the Field Selection specification to identify the fields in the input records that are to 
be written into the output records. The order in which they are specified in the program 
records determines the order in which they are written to the output record. 

A key field can be either normal, opposite, or forced. A normal key field is sorted in the 
order specified in the Header record. An opposite key field is sorted in the opposite 
order. A forced key field forces the record to be placed in a particular sequence, 
regardless of any other specified order. 

A data field can be normal data, summary data, or forced data. A normal data field is 
included in the output record, but not used in the sorting process. A summary data field 
holds accumulated totals. A forced data field forces a character constant at selected 
locations in the output data. 

All data fields noted in a Field Selection record are included in the output file. To specify 
that key fields should be written into the output file as well as data fields: 

• Enter the field as a key field in a Field Selection record and leave the Output Option 
column of the Header record blank. 

• For normal key fields with packed or zone data, opposite key fields, or an alternate 
collating sequence, the key fields must be described twice in different Field Selection 
records: once as key fields and again as data fields. Place an X in the Output Option 
column of the Header record. 

• If you use equal key field ordering, describe the field twice: once as a key field and 
again as a data field Place an X in the Output Option column of the Header record. 
(Otherwise, the output file includes the 3-byte relative record number GSORT uses 
to order the records that have equal key fields.) 

To have the key field appear in the output record, you must describe it once as a key 
field and once as a data field. The GSORT program uses the key field description 
to transform the contents of key fields for sorting efficiency. (The transformed key 
fields might not be the same as the original input fields. If they are not the same, the 
description is invalid as a data field in the output record.) 

Unless you write the key field into the output file, the output record length includes only 
the data fields from the input file. 

See "Coding Field Selection Information" for a more detailed explanation of the types of 
key and data fields. 

Coding Header Information 

E-8 

The Header specification is used to state the type of sort and some of the sort 
parameters. Each GSORT job must have one, and only one, Header specification. The 
Header specification must come before any other specification or statement. 

1169794.380 



s.-...., 

1 2 3 4 5 

IJJl 

Using GSORT to Code and Run Sort Programs 

The following is an example of the fixed format of the required Header specification. 
Table E-l summarizes the column entries. The entries are described more fully in the 
text that follows the table . 

.Job 
IYDII 

SOlITa !; Canuel 
_IRS 

i~ 
Field 

_IA l .... tII 
: ... 
b: 
j" 

7 8 91811:12 1314251617 

SIDIRh I : IIII 

Columns 

1-5 

6 

7-12 

12 

13-17 

18 

19-25 

26 

27 

;S 

; Mot lIMIt L c IIutDut llat 5 IIat Co-u 

I~~ 
.: RIconI lIMIt .. lIMIt 

i ~LIIIItII 1= p ... 
= .: o~ .: 

~37:11311.414Z43 18192121222324251zj iz'I 2129313132 333435 ~~"~.~~g~g~$~~m~.QQQ~~"Q.~~nn~~~u"~~. 

J I I I I I III II 111111 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Table E-l. Header Specification Entry Table 

Valid Entries 

00001-99999 

H 

SORTR 

SORTRS 

SORTA 

E 

1-256 

A 

D 

Blank 

N 

S 

F 

o or blank 

Purpose of Entry 

Sequence number of the specification. 

Indicates this is a Header specification. 

Indicates a regular sort is requested. 

Indicates a summary sort is requested. 

Indicates a record address sort is requested. 

Indicates the original sequence of the input files is 
maintained when records with equal key fields are 
encountered . 

Designates the length of the key field. 

Indicates records are written to the output file in 
ascending order by key field. 

Indicates records are written to the output file in 
descending order by key field. 

Not used. 

Designates the standard collating sequence for use 
in compare operations. 

Designates the system default internationalization 
collating sequence for use in the compare 
operations for alphanumeric fields. 

Designates an alternate collating sequence for use 
in the compare operations for the entire key field. 

Designates an alternate collating sequence for use 
in the compare operations for specified key fields. 

Print: Sort specifications, diagnostic messages, 
and program status messages. 

continued 

1169794-002 E-9 



Using GSORT to Code and Run Sort Programs 

Table E-l. Header Specification Entry Table (cont.) 

Columns Valid Entries Purpose of Entry 

Display: Action and error messages. 

1 Print: Program status messages. 

Display: Action and error messages. 

2 Print: Action messages only. 

Display: Error messages. 

3 Display: Error messages. 

28 Blank Indicates key field data are written in the output 
file. Valid for SORTR and SORTRS. 

X Indicates key field data are not to be written into 
the output file. Valid for SORTR and SORTRS. 

29~32 1-4096 Indicates the length of the output record. Required 
for SORTR and SORTRS. 

33-35 Not used. 

36 Blank Specifies that a warning message be printed or 
displayed when no records are selected for sorting. 

N Specifies that a warning message not be printed or 
displayed when no records are selected for sorting. 

37-43 Not used. 

44-72 Any characters Comments. 

Sequence Number (Columns 1 through 5) 

Sequence numbers are optional. If entered, they must be in ascending order. If the 
numbers are not in ascending order, when the specifications are being processed an error 
message is placed next to the statement that is out of sequence. 

Any item in these columns that is not a number is ignored by the program. 

Header Specification (Column 6) 

An H must appear in column 6 to identify a Header specification. 

E-I0 1169794-002 



Using GSORT to Code and Run Sort Programs 

Type of Job (Columns 7 through 12) 

Three types of sort output files can be produced with GSORT. Use columns 7 through 12 
to specify the type of GSORT output you want. 

Enter SORTR for regularly sorted output. 

Enter SORTRS for sorted output with accumulated totals, or a summary Sort. 

Enter SORTA for sorted output in the form of relative record numbers. 

Identical, or Equal, Key Fields (Column 12) 

When key fields in different input records have identical values, it is not possible to 
predict the order in which these records will be written into the output file unless you 
specifically state the order. 

For SORTR or SORTAjobs, to maintain records with equal key fields in their original 
input sequence, place an E in column 12. Otherwise, for ascending sorts, records with 
equal key field values are placed in the output file in the order in which they appear in 
the input file. For descending sorts, records with equal key field values are placed in the 
output file in reverse order from their order in the input file. (See column 18 for an 
explanation of ascending and descending sorts.) 

To merge two or more input files, use the equal key field ordering. When merging 
multiple input files, SORTA (ADDROUT sort) is not allowed. 

Key Field Lengths (Columns 13 through 17) 

Enter the sum of all key field lengths, taken from columns 9 through 16 of the Field 
Selection specifications. (The total cannot exceed 256.) Right-justify the entry. 

The following steps summarize the way to calculate key field lengths: 

1. Calculate the total key field length for each record type defined, in the following 
way: 

Add the lengths of all normal and opposite key fields defined for the record type (N 
or 0 in the Field Type column of the Field Selection specification). 

Add 1 to the sum for each forced key field (F in the Field Type column and a blank 
in the Continuation column of the Field Selection specification). The additional 
character is needed to reserve space for the single character constant that is forced 
into the key field. 

Add a to the sum if you are sorting identical key fields and you specify equal key 
field ordering (E in the Equal Fields column of the Header specification). The 
additional a characters are needed to reserve space for the a-character record 
number used by the GSORT program. 

2. Enter the largest sum of all the record types in the Key Field Length columns of the 
Header specification. Right-justify the entry. 

1169794-002 E-l1 



Using GSORT to Code and Run Sort Programs 

Record-Sorting Order (Column 18) 

To indicate the order in which you want your input records sorted, enter either of the 
following: 

Entry Request 

A Ascending order by key field. 

o Descending order by key field. 

Ascending order means that the record placed first in the output file contains the item 
with the lowest value (lowest to highest value). Descending order means that the record 
placed first in the output file contains the item with the highest value (highest to lowest 
value). 

To specify how to sort records with equal values in key fields, use column 12. 

Columns 19 through 25 

These columns are not used. 

Collating Sequence (Column 26) 

E-12 

Use this column to specify if you are using the standard collating sequence or an 
alternate collating sequence. 

The available options for this column are 

Entry Meaning 

Blank Use the standard collating sequence. 

N Use the system default internationalization collating sequence for alphanumeric 
fields. 

S Use an alternate sequence on the entire key field. 

F Change the standard collating sequence for specified key fields only. 

If you specify an alternate collating sequence, you must also provide ALTSEQ 
statements immediately after the Header specification. 

If you put an F in column 26, it changes the standard collating sequence for normal 
and/or opposite key fields only. 

Place an A in column 20 of the key field line on a Field Selection specification to change 
a normal or opposite key field. You must also supply ALTSEQ statements immediately 
following the Header specification. 

1169794-002 



Using GSORT to Code and Run Sort Programs 

Print Option (Column 27) 

This column indicates the types of messages that will be automatically printed for a job, 
as needed. The options for column 27 are 

Entry 

o or Blank 

1 

2 

3 

Meaning 

GSORT specifications 

Diagnostic messages 

Program status messages 

Action messages 

Displayed messages 

Program status messages 

Action messages 

Displayed messages 

Action messages 

Displayed messages 

Displayed messages 

When you are testing your GSORT job, use a 0 (zero) or a blank. After you have run the 
job successfully, use a 3 for displaying messages. 

Output Option (Column 28) 

This entry indicates whether key field data should appear in the output file. (Valid only 
for SORTR and SORTRS output.) The options are as follows: 

Entry Request 

Blank Write key field data into the output file. 

X Do not write key field data into the output file. 

Output Record Length (Columns 29 through 32) 

This entry specifies the length of records in the output file. The output records can be 
from 1 to 4096 characters long. Note that 

• If you do not drop key fields, the output record length should inClude both the length 
of the key fields and the length of the specified data fields. 

• If you drop key fields, the output record length includes only the length of the 
specified data fields. 

• This entry is valid only for SORTR or SORTRS output. 

1169794.380 E-13 



Using GSORT to Code and Run Sort Programs 

• If you specify E (in column 12 of the Header specification) for equal fields, the key 
field length is increased by 3 bytes and the output record length is increased by 3 
bytes because the key field is added to the output data fields. 

Columns 33 through 35 

These columns are not used. 

Null Output (Column 36) 

If the GSORT program reads all the input records and no records are selected for 
processing, the entry in this column determines whether an error message should be 
displayed. 

Entry Meaning 

Blank Display and print warning messages. 

N Do not display or print warning messages. 

If a warning message is displayed while your GSORT job is rwming, at a terminal you 
can enter one of the following GSORT standard options using the ? < mix number> AX 
command. 

Entry Request 

o Continue running the job without creating an output file. 

3 cancel the job without creating an output file. 

Columns 37 through 43 

These columns are not used. 

Comments (Column 44 through 72) 

These columns can be used to enter optional comments and to document the program. 
If you specify that the GSORT job print your specifications (the column 27 entry of the 
Header specification is zero or blank), the comments you include in these columns are 
printed. 

Coding ALTSEQ Statements 

E-14 

An alternate collating sequence changes the collating sequence for all or selected 
characters, for the entire key field, or for specified key fields. It never changes the 
collating sequence for data fields or forced key field characters. 

An AL TSEQ statement, consisting of one or more records, defines the new collating 
sequence. In the statement, both the character you want to shift and the character 
you want to replace it with are identified by their hexadecimal values. Each record can 

1169794.380 



Using GSORT to Code and Run Sort Programs 

specify a maximum of 18 pairs of hexadecimal equivalents. A maximum of 96 pairs can 
be designated. Regardless of how you alter the sequence, you must specify every pair of 
characters to be changed . 

. Notes: 

• When you use packed or unpacked fields with an alternate 
collating sequence, a portion of the packed or unpacked 
characters could be translated and become invalid numbers. 

• Defining an alternate collating sequence also requires an entry 
in column 26 of the Header specification, and, as needed, entries 
in column 20 of the Field Selection specifications. 

Table E-2 summarizes the column entries for an ALTSEQ statement. The entries are 
described more fully in the textthat follows the table. 

Columns 

1-6 

1-2 

, 7-8 

9-10 

11-12 

13-14 

15-16 

Table E-2. ALTSEQ Statement Entry Table 

Valid Entries 

ALTSEQ 

** 

Hexadecimal 
equivalent 

Hexadecimal 
equivalent 

Hexadecimal 
equivalent 

Hexadecimal 
equivalent 

Purpose of Entry 

Identifies the record as part of the ALTSEQ 
statement. 

Identifies the end of ALTSEQ statement. 

Not used. 

Hexadecimal equivalent of the character being 
taken out of its normal sequence. 

Hexadecimal equivalent of the character being 
inserted into the sequence. 

Hexadecimal equivalent of next character being 
taken out of its normal sequence. 

Hexadecimal'equivalent of next character being 
inserted into the sequence. 

17-72 Hexadecimal 
equivalents 

Pairs of hexadecimal equivalents (characters being 
taken out of sequence and characters being 
inserted into sequence). 

Name of Statement (Columns 1 through 6) 

The word ALTSEQ must appear in columns 1 through 6 to identify it as part of the 
ALTSEQ statement. 

Double Asterisks (Columns 1 and 2) 

Enter two asterisks (**) to end the ALTSEQ statement. 

1169794.380 E-15 

/ 



Using GSORT to Code and Run Sort Programs 

(Columns 7 and 8) 

These cohnnns are not used. 

Character Being Taken Out (Columns 9 and 10) 

Enter the hexadecimal equivalent of the character you are taking out of its normal 
sequence. 

Character Being Inserted (Columns 11 and 12) 

Enter the hexadecimal equivalent for the character being inserted into the sequence in 
place of the character noted in columns 9 through 10. The inserted character assumes 
the value of the character being taken out. 

Note: Continue entering the pairs of the characters you are taking out of 
normal sequence. Leave no spaces between sets of hexadecimal 
numbers. When you reach the end of one record line, you can 
continue on the next statement line. 

Using Alternate Collating Sequences for an Entire Key Field 

E-16 

For an alternate collating sequence on the entire key, place an S in column 26 of the 
Header specification and enter an AL TSEQ statement. During processing, the GSORT 
program first changes the entire input record to the specified alternate sequence of 
characters. Doing so establishes the new collating sequence. Any include or omit record 
type checks are run against the alternate sequence data. 

The AL TSEQ statement also changes the following: 

• Factor 1 and factor 2 (Factor 1 and factor 2 are used in compare operations. The 
GSORT program compares the data in the field specified as factor 1 with the data 
noted as factor 2.) 

• Normal and opposite key fields 

• Input field characters that condition forced key fields 

Note: With an alternate collating sequence on the entire key field, do not use 
packed or unpacked decimal fields as factor 1 and factor 2 in an 
Include or Omit Record Selection specification (P or U should not 
appear in column 8). 

See "Coding Record Selection Information" for information on factor 1 and factor 2. See 
"Coding Field Selection Information" for details about types of key and data fields. 

1169794.380 



Using GSORT to Code and Run Sort Programs 

Using Alternate Collating Sequences for Specified Key Fields 

When you use an alternate collating sequence on specified key fields, the AL TSEQ 
statement changes only specified normal and opposite key fields. 

For normal and opposite key fields, enter an F in column 26 of the Header specification. 
Then enter your AL TSEQ statement. Enter an A in column 20 of the key field 
statement of the Field Selection specification. 

Use the following guidelines when planning to use an alternate collating sequence on 
specified key fields: 

• Record selection (including and omitting records) and conditional force (replacing one 
or all characters) are based on an input record that has not been changed by the 
alternate collating sequence. 

• A key field that has an A specified in column 20 should not be packed or unpacked (P 
or U should not appear in column 8). 

• You can specify that factor 1 and factor 2 be packed or unpacked in the Include and 
Omit Record Selection specifications by entering P or U in column 8. 

• When you specify an alternate collating sequence for a particular field, that field is 
changed according to the alternate collating sequence whenever it is used again as a 
key field for that record type. This repetition occurs only if the same input field is 
specified more than once as a key field. 

See "Coding Record Selection Information" for information on omit and include sets as 
well as factor 1 and factor 2. See "Coding Field Selection Information" for details about 
types of key and data fields. 

Using the ALTSEQ Statement to Make Characters Equal 

When you move a character into the sequence position normally assigned to another 
character, both the new and the original character occupy the same position and 
are considered equal. If you do not want the two characters to be equal, move the 
character that normally occupies that position. However, if you want one character to be 
considered the same as another character, both characters must hold the same position 
in the collating sequence. 

For example, you might want a blank to be considered a zero. You need to define an 
alternate collating sequence in which the blank is the same as the zero because it holds 
the same position in the sequence. The ALTSEQ statement would be 

1111111 
1 2 3 4 5 6 7 8 9 0 1 234 5 6 
A l T SEQ 4 0 F 0 

In this situation, whenever a blank is read and used in a comparison, it is considered a 
zero. Thus, if you were comparing numbers to 0017 to find an equal condition, 0017 and 
bb17 (where b = blank) both compare as equal to 0017. 

1169794.380 E-17 



Using GSORT to Code and Run Sort Programs 

Note: Be careful when you use packed or unpacked fields to make 
characters equal with an alternate collating sequence. A portion of 
the packed or unpacked characters could be translated and become 
invalid numbers. 

Coding Record Selection Information 

Seauenca 
IuIoIIer 

1 2 3 4 5 

II II 

E-18 

The Record Selection specification is used to determine the records that are included in 
the GSORT job. All Record Selection specifications must precede any Field Selection 
specification. 

Note: No Record Selection specification is needed if both of the following 
conditions are true: 

• All the records in a file are to be sorted. 

• All the records are the same type. 

The following is an example of the fixed format of the Record Selection specification. 
Table E-3 summarizes the column entries. The entries are described more fully in the 
text that follows the table. 

FICtor 1 

F18ld 
I.acIttan 

s~jl EM 
911U 13142514 

II I I /I I 

Columns 

1-5 

6 

7 

.. 
~ 
:a 

Ii:; 
!~ 

~; 
11111 

I 

c-n Literal 

C--'-d 

~ FICtGr 2 

c-ta 

~ lIcetlaft 
:; c:--. F1Ild 

~ ~j, EM ... ~ 
~aQa.~~~._mu~~~~"~m~aQQQ~&"Qa.~nnn~~~"~~. 1193~~ ~~~~3~»n~~~~~~»~ 

1111111 11111111111 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Table E-3. Record Selection Specification Entry Table 

Valid Entries 

00001-99999 

I 

o 
Blank 

A 

o 

Purpose of Entry 

Sequence number of the specification. 

Indicates this record is to be included in the sort. 

Indicates this record is to be omitted from the sort. 

Indicates this is the first specification in a set of 
Include or Omit Record Selection specifications. 

Indicates an AND relationship with the previous 
include or omit option. 

Indicates an OR relationship with the previous 
include or omit option. 

continued 

1169794.380 



Columns 

8 

9-12 

13-16 

17-18 

19 

20-23 

24-27 

20-39 

40-72 

1169794.380 

Using GSORT to Code and Run Sort Programs 

Table E-3. Record Selection Specification Entry Table (cont.) 

Valid Entries 

* 
c 

z 

o 

p 

u 

1-4096 

1-4096 

EQ 

NE 

LT 

GT 

LE 

GE 

C 

F 

K 

1-4096 

1-4096 

Any characters 

Any characters 

Purpose of Entry 

Comments. 

Designates comparison of both zone and digit 
portions of each character. 

Designates comparison of only the zone portion of 
each character. 

Designates comparison of only the digit portion of 
each character. 

Designates that data are in packed decimal format 
and are signed. 

Designates that data are in unpacked decimal 
format and are signed. 

Indicates the starting position of the factor 1 field 
in the input record. These columns can be blank if 
the factor 1 field is only one position long. 

Indicates the ending position of the factor 1 field in 
the input record. 

Factor 1 is equal to factor 2. 

Factor 1 does not equal factor 2. 

Factor 1 is less than factor 2. 

Factor 1 is greater than factor 2. 

Factor 1 is less than or equal to factor 2. 

Factor 1 is greater than or equal to factor 2. 

Factor 2 is a constant. 

Factor 2 is another field in the same input recor~. 

Factor 2 is a keyword. 

Designates the starting position of the factor 2 field 
in the input record. These columns can be blank if 
the factor 1 field is only one position long. 

Designates the ending position of the factor 2 field 
in the input record. 

Identifies the characters that make up the factor 2 
constant. 

Comments. 

E-19 



Using GSORT to Code and Run Sort Programs 

Sequence Number (Columns 1 through 5) 

Sequence numbers are optional. If entered, they must be in ascending order. If the 
numbers are not in ascending order, when the specifications are being processed an error 
message is placed next to the statement that is out of sequence. 

Any item in these columns that is not a number is ignored by the program. 

Include/Omit Specifications (Column 6) 

This column identifie~ the include or omit action to be taken by the GSORT job. 

To specify an include option, enter an I in column 6. To specify an omit option, enter the 
letter O. When sorting a file containing only one type of record, if you want to include all 
records, leave columns 7 through 39 blank. 

The include option identifies which records in a file should be sorted. You can specify 
either an include-all or a conditional include option. 

The omit option indicates which records are not to be sorted. The option is useful when 
you have many types of records to sort and only a few to exclude. 

Using the Include-All Option 

An include-all option usually follows an omit option to indicate to the GSORT program 
that all records not described by any preceding omit option are to be included and sorted. 
An include-all is usually used when all the records in a file have the same record type. 
Such records must have the same Field Selection specifications. 

Each GSORT job can use only one include-all option. If it is used, it must be the last 
Record Selection option for that job. 

Using the Conditional Include Option 

Use the conditional include option to cause the GSORT program to test data in the input 
records to see if they meet a particular condition before they are included. In the Record 
Selection specification, you must describe the fields in the record to be tested. 

Mixing the Include and Omit Options 

E-20 

When you mix include and omit options you should be particularly careful about their 
order. The GSORT program processes the options in the order in which they are coded. 
You must define the omit option before you define the include option for a record type. 
The include-all option tells the GSORT program to sort all the records that are not 
specified by the omit option. 

Often the records in a record type have at least one characteristic in common. To sort 
all but a few records in a file, use an omit option followed by an include option and other 
associated Record Selection specification options for each type of record you want to sort. 

1169794.380 



Using GSORT to Code and Run Sort Programs 

The following are four guidelines for using both the include and omit options: 

• A Field Selection specification must end all sets of include options. 

• The last option specified must be an include option. 

• Every group of omit options, also known as an omit set, must be followed by an 
include option. 

• Omit options are never followed directly by Field Selection specifications. 

See "Sorting a File with Conditional Include and Omit" for examples of programs that 
use conditional include, conditional omit, and a mixture of include and omit options. 

Continuation or Comments (Column 7) 

An include or omit set consists of one or more records where each record specifies one 
include or omit option. The entry in column 7 indicates the relationship of a record to 
other include or omit records within the set. 

Entry 

Blank 

A 

o 

* 

Meaning 

Indicates the first of a series of include or omit entries. 

Indicates an AND relationship with the previous include or omit option. 

Indicates an OR relationship with the previous include or omit option. 

Indicates a comment line, and the line is to be ignored by the program. 
Comments are printed only if ,column 27 of the Header specification contains a 
zero or a blank. 

For the continuation entries, noted by the letter A or 0 in column 7, the entry in 
column 6 must match all other records in the set. 

Table E-4 shows the valid combinations in columns 6 and 7 for the include option. 
Column 6 identifies the set type: include. The relationship of the record to other records 
in the set (first in a series, a Boolean AND or OR) is given in column 7. 

Relation 

AND 

1169794.380 

Table E-4. Coding for Include Sets 

Entry in 
Column 6 

H, F,or·O 

F 

Entry in 
Column 7 

Blank 

A 

Explanation 

Header specification, Field 
specification, or Omit Record Selection 
specification. 

Indicates a new record type. 

Indicates that this specification 
describes the same record type as the 
previous specification. 

Field specification or specifications. 

continued 

E-21 



Using GSORT to Code and Run Sort Programs 

Table E-4. Coding for Include Sets (cont.) 

Entry in Entry in 
Relation Column 6 Column 7 Explanation 

OR H, F, orO Header specification, Field 
specification, or Omit Record Selection 
specification. 

Blank Indicates a new record type. 

0 Indicates that this specification 
describes a different record type than 
the previous specification. 

F Field specification or specifications. 

AND and OR H, F, or 0 Header specification, Field 
specification, or Omit Record Selection 
specification. 

Blank Indicates a new record type. 

0 Indicates that this specification is 
different from the record type of the 
previous specification, but has the 
same Field specifications as the 
previous specification. 

A Indicates that this specification is the 
same as the previous specification or 
specifications and has the same Field 
specifications as the previous 
specifications. A record type with 
different Field specifications must be 
defined in a new include set. 

F Field specification or specifications for 
the record types. 

Including H Header specification. 
only one 
record type 
(implies 
include-all 
records) 

No Record Selection specifications are 
included. 

. F Field specification or specifications . 

continued 

E-22 1169794.380 



Using GSORT to Code and Run Sort Programs 

Table E-4. Coding for Include Sets (cont.) 

Relation 

Include-all 
records 

Entry in 
Column 6 

H, F, or 0 

F 

Entry in 
Column 7 

Blank 

Explanation 

Header specification, Field 
specification, or Omit Record Selection 
specification. 

Indicates all records that have not been 
described in any of the preceding 
Record Selection specifications should 
be sorted. Records identified in this 
manner must have identical Field 
specifications. 

Field specification or specifications. 

Records not described in include sets are not sorted. All include sets must end with one 
or more Field specifications. An include set can be followedby another include set or an 
omit set. 

Example: Include Set with an OR Relationship 

Input records must meet one of two criteria to be included in the output record: they 
must have either a status of S or a quantity of less than 200. The Field specifications 
note the sort field and the fields in the output record. 

1 234 5 6 
1234567890123456789012345678901234567890123456789012345678901234567890 

$GSORT 
HSORTR 
I C 60 
IOU 50 
FNU 40 
FDC 60 

20A 
60EQCS 
59LTC 
49 
60 

FDU 40 49 
FDC 10 29 

0X 40 

200 
INCLUDE 'S'HIPPED RECORDS 
OR WHERE QTY <200 
SORT ON ITM NBR 40 .• 49 
1ST DATA FLO: STATUS FLAG 
2ND DATA FLO: ITM NBR 
3RD DATA FLO: LAST NAME 

Example: Include Set with an AND and OR Relationship 

In this example, there are two include sets. The first set states that records with a 
status of S and a quantity less than 200 or greater than 500 should appear in the output 
file. Each include option applies to the same record type. For the second set, all records 
with a status of W also appear in the output file. For each set, the Field specifications 
note the sort field and the fields in the output record. 

1169794.380 E-23 



Using GSORT to Code and Run Sort Programs 

E-24 

123 456 
1234567890123456789012345678901234567890123456789012345678901234567890 

$GSORT 
HSORTR 
I C 60 
IAU 50 
IOU 50 
FNU 40 
FDC 60 
FOU 40 
FOC 10 
I C 60 
FON 10 
FOC 10 
FOC 60 

20A 
60EQCS 
59LTC 
59GTC 
49 
60 
49 
29 
60EQCW 
29 
29 
60 

0X 40 

200 
500 

INCLUDE 'S'HIPPED RECORDS 
WHERE QTY <200 
WHERE QTY >500 
SORT ON ITM NBR 40 •• 49 
1ST DATA FLO: STATUS FLAG 
2ND DATA FLO: ITM NBR 
3RD DATA FLO: LAST NAME 
INCLUDE 'W'AITING RECORDS 
SORT ON LAST NAME 
1ST DATA FLO: LAST NAME 
2ND DATA FLO: STATUS FLG 

See "Sorting a File with Conditional Include and Omit" for other examples of using 
include sets .. 

Table E-5 shows the valid combinations in columns 6 and 7 for the omit option. 
Column 6 identifies the set type: omit. The relationship of the record to other records in 
the set (first in a series, a Boolean AND or OR) is given in column 7. 

Relation 

AND 

OR 

AND and OR 

Table E-5. Coding for Omit Sets 

Entry in 
Column 6 

H or F 

o 

o 

H or F 

o 
o 

H or F 

o 

Entry in 
Column 7 

Blank 

A 

Blank 

o 

Blank 

Explanation 

Header specification or Field 
specification. 

Indicates a new record type. 

Indicates that this specification 
describes the same record type as the 
previous specification. 

Header specification or Field 
specification. 

Indicates a new record type. 

Indicates that this specification 
describes a different record type than 
the previous specification. 

Header specification or Field 
specification. 

Indicates a new record type. 

continued 

1169794.380 



Relation 

Using GSORT to Code and Run Sort Programs 

Table E-5. Coding for Omit Sets (cont.) 

Entry in 
Column 6 

o 

o 

Entry in 
Column 7 

A 

o 

Explanation 

Indicates that this specification 
describes the same record type as the 
previous specification. 

Indicates that this specification 
describes a different record type than 
the previous specification. 

There are no Field specifications in omit sets. Each omit set must be followed by one or 
more include sets or an include-all set. 

See "Sorting a File with Con?itional Include and Omit" for examples of using omit sets. 

Interpretation of Data (Column 8) 

The entry in this column specifies whether the conditions for inclusion or deletion 
compare alphanumeric characters or numeric data. The entry also determines if a 
GSORT program compares zones, digits, or both. 

GSORT sees characters as EBCDIC characters composed of 8 bits that make up a byte 
of data. Each 8-bit character has two parts: the high-order 4 bits are the zone portion 
and the low-order 4 bits are the digit portion. For example, the character B appears to 
the system as follows: 

Zone Digit 

1100 0010 

For alphanumeric data, choose from the following options: 

Entry 

C 

z 

1169794.380 

Meaning 

Use both the zone and digit portions of 
the characters. 

Use only the zone portion of the 
character. All characters with identical 
zone portions look alike and compare 
as equal. 

Maximum Field Length 

256 characters 

1 character 

E-25 



Using GSORT to Code and Run Sort Programs 

Entry 

o 

Meaning 

Use only the digit portions of the 
characters. All characters with 
identical digit portions look alike and 
compare as equal. 

Maximum Field Length 

16 characters 

For numeric data, choose from the following options: 

Entry 

P (packed 
data) 

U (zone data) 

Meaning 

Use both the zone and digit portions of 
the number, with each zone and digit 
representing a value from 0 through 9. 

Use the digit portions of numbers only, 
with a sign in the last digit. 

Maximum Field Length 

8 bytes or 15 digits and a 
sign 

15 digits and a sign 

The letter P or the letter U must not be specified if an alternate collating sequence is 
specified in the Header specification. 

To select records based on a binary value, you can use one or both of the following 
methods of inclusion. 

For binary values whose hexadecimal equivalents can be represented by one or two / 
characters in the 64-character set, use an include option a in column 6) and either of the 
following two methods: 

• Place a C in column 8 of the Record Selection specification to indicate that both the 
zone and digit portions of a character should be compared. 

• Place a Z in column 8 of the Record Selection specifications to indicate that only the 
zone portion should be compared, and use an AND option (place lAD in columns 6 
through 8 of the Record Selection specification) to indicate that the digit portion 
should then be compared. 

For binary values whose hexadecimal zone portions do not appear in the 
64-character set, use two include options for the zone portion, using an AND option 
with an include digit for the digit portion. 

Factor 1 Location (Columns 9 through 16) 

E-26 

Factor 1 fields are used in compare operations. Factor 1 indicates the location of fields in 
the input records that the GSORT program tests to see if a condition exists. Factor 2 
specifies the data against which these fields are tested. The GSORT program compares 
the value in the factor 1 field with the data in factor 2. 

You specify in these columns the locations of the factor 1 fields in the input records. 

In columns 9 through 12, identify where the factor 1 field starts in the record. 

In columns 13 through 16, identify where the factor 1 field ends. 

1169794.380 



Using GSORT to Code and Run Sort Programs 

If you have more than one factor 1 for the records you are describing, identify the 
location of each and do the following: 

• Use a separate line in the Record Selection specification to describe each test the 
GSORT program will do. 

• Put the letter 0 (for OR) in column 7 of each statement that defines a different 
record type from that defined in any previous statement. 

• Put the letter A (for AND) in column 7 of every specification except the first, to tell 
the GSORT program that all the specifications apply to the same record type. 

You must right-justify the factor 1 field entries: End the Start-location entry in column 
12; end the End-location entry in column 16. 

If factor 1 is only I-character long, you need identify only the end position. Leave 
columns 9 through 12 (Start) blank and enter the number of the record position that 
contains the character in columns 13 through 16 (End). 

The length of the field must match the length of the second operand in the comparison. 
Numeric fields cannot have more than 23 digits. 

Factor 1 can contain from 1 to 256 characters. However, factor 1 cannot be longer than 
the length of the records being sorted or reformatted. The column 8 entry controls the 
length of factor 1, as follows: 

Column 8 

c 
z 
o 
p 

u 

Maximum Factor 1 Field Length 

256 characters 

1 character 

16 characters 

8 characters 

16 characters 

The length of factor 1 fields is also controlled by factor 2 in the following situations: 

• When factor 2 is a constant, the length of factor 1 must be 20 characters or fewer. 

• When factor 2 is a keyword, the length of factor 1 must be 6 if the keyword is 
UDATE, and 2 if the keyword is UMONTH, UDAY, or UYEAR. 

Relation (Columns 17 and 18) 

These columns specify the criteria for the relationship between the value in factor 1 
fielq.s and the data in factor 2. 

Entry 

EQ 

NE 

LT 

GT 

LE 

1169794.380 

Meaning 

Factor 1 must equal factor 2. 

Factor 1 must not equal factor 2. 

Factor 1 must be less than factor 2. 

Factor 1 must be greater than factor 2. 

Factor 1 must be less than or equal to factor 2. 

E-27 



Using GSORT to Code and Run Sort Programs 

Entry Meaning 

GE Factor 1 must be greater than or equal to factor 2. 

The entries EQ and NE are the only entries you can use to compare zone portions of 
characters (Z in column 8). 

If you specify an alternate collating sequence and place an S in column 26 to indicate that 
the alternate collating sequence is to be applied on the entire key field, both factor 1 and 
factor 2 are changed to the alternate collating sequence before the comparison is made. 

Factor 2 Compare Data (Column 19) 

The entry in column 19 specifies whether the data in factor 2 is a literal or a constant, a 
field in the input record, or a date keyword. 

Entry 

C 

F 

K 

Meaning 

Factor 2 is either a literal 
or a consta nt. 

Factor 2 is a field in the 
input record. 

Factor 2 is a keyword. 

Related Entries 

Enter the constant in columns 20 through 39, 
starting in column 20. 

Use columns 20 through 27 to identify the 
location of the factor 2 field in the records. As 
desired, enter the name of the factor 2 field in 
columns 28 through 39. 

Start the keyword in column 20. Enter a C in 
column 8 so that both the zone and digit portions 
are compared. 

Factor 2 Location (Columns 20 through 27) 

This entry identifies the location of factor 2 when it is another field in the input records. 

Use columns 20 through 23 to identify the starting position (Start-location) of the field. 
Use columns 24 through 27 to identify where the field ends (End-location). Both the 
End-location and Start-location entries must be right-justified,. 

Factor 2 can be used to compare a field containing 1-character. In that case, enter the 
End-location (columns 24 through 27) only; leave the Start-location blank. 

Compare Field Name (Columns 28 through 39) 

E-28 

If factor 2 is a field in the input record, columns 28 through 39 can contain the name of 
the field. This entry is optional and treated as documentation. 

1169794.380 



Using GSORT to Code and Run Sort Programs 

Compare Literal or Constant (Columns 20 through 39) 

If factor 2 is a literal, enter the literal in columns 20 through 39 using the following 
guidelines: 

• If the literal is alphanumeric, the data must be left-justified. 

• If the literal is numeric, it can be entered anywhere in columns 20 through 39. 

• The literal must be the same length as the value with which it is compared 

• When you use signed packed (numeric) literals, the leftmost or rightmost character 
(but not both) can contain its sign (+ or -). 

When you use signed ALPHA literals, the sign can be the leftmost character. For 
negative signed ALPHA literals, the rightmost character (number) appears as shown 
in Table E-6. (The zone portion contains the negative sign of the entire number. 
The digit portion contains the numeric value of the last digit of the number.) 

Table E-6. Coding for Negative Unpacked Numbers 

Hexadecimal 
Number Replace by Equivalent Zone Portion Digit Portion 

0 (blank) AO 0110 0000 

1 J 01 1101 0001 

2 ·K 02 1101 0010 

3 L 03 1101 0011 

4 M 04 1101 0100 

5 N 05 1101 0101 

6 0 06 1101 0110 

7 P 07 1101 0111 

8 Q 08 1101 1000 

9 R 09 1101 1001 

If factor 2 is a constant, it can be unsigned (character, zone, and digit data types) or 
signed (unpacked and packed data types). You can use any arrangement of characters 
and blanks as entries. Enter the constant in columns 20 through 39, starting in 
column 20. Determine the length of the constant as follows: 

• The constant must be the same length as the factor 1 field. If the constant is longer 
than the factor 1 field, GSORT prints a warning message. 

• If factor 1 contains a packed decimal number, the length of the constant, including 
the sign, must be twice the length of the factor 1 field. 

• If the constant is an 8Iphanumeric constant, it must be the same length as factor 1 
and must start in colUIIUi 20. For alphanumeric constants, a D in column 8 indicates 
that only the digit portion of a character is to be used in the compare operations. 

1169794.380 E-29 



Using GSORT to Code and Run Sort Programs 

• Numeric constants (U or P in column 8) must be right-justified within the field 
length specified in factor 1, or within twice the field length if factor 1 is a packed 
decimal number. 

If factor 1 is a packed decimal number, the last character in the constant must be its 
sign, plus ( + ) or minus (-). 

If factor 1 is an unpacked decimal number and the constant is a negative number; the 
last character in the constant must indicate both the numeric value of the last digit 
and the negative sign for the entire constant. (See Table E-6.) 

Compare Date Keyword (Columns 20 through 39) 

When factor 2 is a date keyword, the date keyword starts in column 20; all unused 
columns through column 39 should be left blank. The factor 2 keyword can be a 
maximum of 6 characters long. 

The factor 2 keyword can be one of the following: 

Keyword 

UDATE 

UMONTH 

UDAY 

UYEAR 

Part of Program Date 

Entire program date 

Month portion of program date 

Day portion of program date 

Year portion of program date 

Factor 1 Field Length 

6 characters 

2 characters 

2 cha racters 

2 characters 

If the UDATE keyword is used, the program date must be in the same format as that of 
the date contained in the input records. Use the international date format (yymmdd). 

If the program date and the input records date are not in the international date format, 
you must use the keywords UYEAR, UMONTH, and UDAY to compare the three 
elements separately. 

Comments (Column 40 through 72) 

These columns can be used to enter optional comments and to document the program. 
If you specify that the GSORT job print your specifications (the column 27 entry of the 
Header specification is zero or blank), the comments you include in these columns are 
printed. 

Coding Field Selection Information 

E-30 

The Field Selection specification is used to define the key and data fields. These 
specifications identify how to arrange and format input records in the work and output 
files. 

For all types of sorted output, Field Selection specifications describe the fields the 
GSORT program uses to sort the records (the key fields). For regular sorts (SORTR) 
and summary sorts (SORTRS), Field Selection specifications describe the data that 

1169794.380 



: 
s.- ; IUIiIr 

!] 
~. 

~~ 
1 2 3 • 5 , 7 

I II I F 

Using GSORT to Code and Run Sort Programs 

are written into the output file. For SORTRS sorts, Field Selection specifications also 
describe the fields that are added together. . 

The following is an example of the fixed-format of the Field Selection specification. 
Table E-7 summarizes the column entries. The entries are described more fully in the 
text that follows the table. 

Fill. 
I..IcItllll 

Li 

~ s~jl [r& 
•• 1111 131USU 

11111 II 

Columns 

1-5 

6 

7 

8 

F __ 

~ Flald 
IlJ..! 

... ~ 
~ 

~= ~ 
.10: ~ 

.. 
li~ :. => 

~:. =15 .. 
11 19~ 2U2 

I 

lilt ..... c-u 

~~~~~a3.n~m~s~~.~ .u~a.~~~._.DR~~&~~ •• aQQGM~"Qa~~n~n~~~"~~. 
I II I I I I I I I I I I I

Table E-7. Field Selection .Specification Entry Table

Valid Entries

0000 1-99999

F

N

o
F

o
S

*
c

z

o

p

u

v

Purpose of Entry

Sequence number of the specification.

Indicates this is a Field Selection specification.

Indicates this is a normal key field.

Indicates this is an opposite key field.

Indicates this is a forced key field.

Indicates this is a data field.

Indicates this is a summary data field.

Comments.

Designates use of both zone and digit portions of
characters in the field.

Designates use of only the zone portion of
characters in the field.

Designates use of only the digit portion of
characters in the field.

Designates that data are in packed decimal format
and are signed.

Designates that data are in unpacked decimal
format and are signed.

Indicates that a data character is forced into the
data field.

continued

1169794.380 E-31

Using GSORT to Code and Run Sort Programs

Table E-7. Field Selection Specification Entry Table (cont.)

Columns Valid Entries Purpose of Entry

9-12 1-4096 Indicates the starting position of the field in the
input record. These columns can be blank if the
factor 1 field is only one position long.

13-16 1-4096 Indicates the ending position of the field in the
input record.

17 Any character Identifies either the character that is to be changed
during the GSORT, or the overflow inQicator when
a summary field is used.

18 Any character Identifies either the forced character that replaces
the character identified in column 17, or the
initialized value of the overflow field.

19 Blank If the preceding specification has an F in column
7, indicates that this is not a continuation of that
specification.

Any character If the preceding specification has an F in column
other than blank 7, indicates that this is a continuation of that

specification.

20-22 1-256 Indicates the field length of the overflow field in a
summary GSORT.

A (column 20 Indicates the use of an alternate collating
only) sequence.

23-39 Blank Not used.

40-72 Any characters Comments.

Sequence Number (Columns 1 through 5)

Sequence numbers are optional. IT entered, they must be in ascending order. IT the
numbers are not in ascending order, when the specifications are being processed an error
message is placed next to the statement that is out of sequence. .

Any character in these columns that is not a number is ignored by the program.

Field Selection Specifications (Column 6)

An F must appear in column 6 to identify a Field Selection specification.

E-32 1169794.380

Using GSORT to Code and Run Sort Programs

Field Type or Comments (Column 7)

The entry in this column identifies the field type and subtype.

Entry Meaning

N Indicates a normal key field. Sort this field so that the data from the field are in
the order specified in column 18 of the Header specification.

o Indicates an opposite key field. Sort this field so that the data from the field is in
the order opposite that specified in column 18 of the Header specification.

F Indicates a forced key field. Before sorting, change the key field according to the
entries in columns 9 through 19. Use one of the following forced key fields:

D

S

*

Forced without condition: Forces a character into a key field before the records
are sorted.

Forced with conditions: Forces a character into a key field only when a condition
is met.

Force-all. Forces a character into a key field before the records are sorted if the
key field does not contain one of several entries.

Indicates a data field. Use this entry for SORTR and SORTRS jobs only. If you
use a 0 entry in a SORTA job, the specification is treated as a comment.

Indicates a field containing data that is to be totaled for all records with identical
key fields. Use this entry for SORTRS sorts only. If you use an S entry in a
SORTA sort, the statement is treated as a comment. If you specify an S in a
SORTR sort, the field is treated as a normal data field.

Indicates a comment line; the comment is ignored by the program.

Defining Types of Key Fields

You can define the following types of key fields:

• N onnal key fields

• Opposite key fields

• Forced key fields

Any field, containing 1 to 256 oharacters, in the input reCord can be used as a key field to
control the sorting of the records. You can use one or several key fields in a GSORT job.
When you sort the records using more than one key field, the major key field is always
the first key field you define for a record type. It is used first in the sorting process.
Minor key fields are the other key fields you define for a record type. You determine the
hierarchy of the key fields by the order in which you define them.

To include normal key fields and opposite key fields in the output file, you must describe
the field twice: once as a key field and once as a data field.

1169794.380 E-33

Using GSORT to Code and Run Sort Programs

When the input file has more than one type of record, you can do one of the following:

• You can make the key fields the same or different for each type of record. However,
be sure you 'specify the correct data type, such as numeric or character data, in the
Field Selection specifications.

• You can make the length of the key field the same or different for each type of
record. (See the explanation for the Key Field Lengths columns in the Header
specification for more information.)

Normal Key Fields

A normal key field (N) is any field in the input records that the GSORT program uses to
sort the records. The data in that particular field are sorted in ascending or descending
order, whichever is specified in the Header record.

Opposite Key Fields

Use opposite key fields (0) to define a field sequence that is the opposite of the sequence
specified for other fields in the Header record. For example, the field sequence will be in
ascending order if you specified descending order in the Record-Sorting Order column of
the Header specification.

Forced Key Fields

Use forced key fields (F) to force a record to take a particular position when it is sorted.
For example, if you were sorting by three criteria (last name, first name, and middle
name), you could use a forced key field to determine how to sort records without middle
names.

Each forced key field can be only I-character long, but you can specify more than one
forced key field for a given field. To do so, you define a Field Selection specification for
each single character constant you want forced into a key field.

You can specify three types of forced key fields:

• Unconditional

• Conditional

• Force-all

Unconditional Forced Field

Use an unconditional forced field to automatically place a specified character constant
into the first position of the GSORT key field work record.

Conditional Forced Field

E-34

Use a conditional forced field to test a character in the input records and then to force
a character constant into the GSORT key field only if the test is successful. You can

1169794.380

Using GSORT to Code and Run Sort Programs

make the test on any character in the input record. You can compare the entire input
character or just the zone or digit portion.

As you define a conditional forced field, you can specify that the GSORT program
force the constant either into the previously defined key field position or into the next
available key field position.

Force-All Field

Use a force-all field after a series of Field Selection specifications that contain conditional
forced fields. This feature allows you to specify a character constant to be forced into
the key field when you already have a forced condition but when none of the preceding
conditional force test conditions are met.

At least one conditional force specification must come before the force-all specification.

Specifying Types of ~Data Fields

Data fields are not involved in the sorting process and are not changed by the GSORT
program. You can specify one of three types of data fields:

• N onnal data fields

• Summary data fields (fields containing data to be totaled)

• Forced data fields

Normal Data Fields

Normal data fields apply to regular (SORTR) and summary (SORTRS) GSORT jobs only.
These fields are included in the sorted records, but are not used in the sorting process.
Data are written into the output records in the order in which you define the fields on
the Field Selection specification. Always specify data fields after key fields.

When you give a file more than one type of record, you can

• Have different numbers of data fields.

• Have different total lengths of all data fields for all record types. GSORT places
blanks t? the right of shorter records so that all records are the same length.

If you specify data fields for a SORTAjob, these specification statements are ignored.

Summary Data Fields

Summary data fields are used to hold accumulated totals. These fields can be specified
only in summary (SORTRS) sort jobs.

If you have multiple input record types, you must ensure that the summary output data
for each record type is defined to match any summary data fields defined in the other
record types.

1169794.380 E-35

Using GSORT to Code and Run Sort Programs

You define summary data fields like normal output data fields:

• Column 6 must be an F to indicate a Field Selection specification.

• Column 7 must be an S to indicate a summary field.

• Column 8 defines the data type of the field to be added.

You can accumulate totals for a maximum of 24 different output fields in SORTRS job.

The data types (selected in column 8) used for normal data fields are also used for
summary data fields. The data type entry you use determines the method of adding the
data.

The Field Location field, columns 9 through 16, must indicate the start and end positions
of the summary data field in the input record. As with normal data fields, you do not
need to specify the start position for a field that is only one position long.

Forced Data Fields

When you run a regular sort (SORTR) or a summary sort (SORTRS), you can force a
character constant at selected locations in the output data.

Data Type (Column 8)

E-36

The entry in this column indicates what portion of the input record characters you want
the GSORT program to use .when sorting records.

When you compare letters, numbers, and special characters, you must designate either
unsigned or signed data in column 8.

Unsigned data is made up of alphanumeric or alphabetic data and includes special
characters such as mathematical symbols and punctuation marks. For unsigned
alphanumeric data, choose from the following options:

Entry Meaning Maximum Field Length

C Use both the zone and digit portions of 256 characters
the characters.

Z Use only the zone portion of the 1 character
character.

0 Use only the digit portions of the 16 characters
characters.

Signed data consist of either positive or negative numbers. Signed numbers are ordered
by both their numeric values and their signs, either plus (+) or minus (-). Signed
numbers are of two types: unpacked or packed.

For signed numeric data, choose from the following options:

1169794.380

Entry·

P (packed
data)

U (zone
data)

Using GSORT to Code and Run Sort Programs

Meaning

Use both the zone and digit portions
of the number, with each zone and
digit representing a value from 0
through 9.

Use the digit portions of numbers
only, with a sign in the last digit.

Maximum Field Length

8 characters (15 digits and a sign)

16 cha racters

Unpacked decimal numbers are made up of 8 bits. Each character in an unpacked data
field has its numeric value in the digit portion of the character. The sign of the number is
in the zone portion of the rightmost character in the field.

Each digit of a packed decimal number is represented by 4 bits. A numeric value
is placed in both the zone and digit portions of each character in a field, except the
rightmost character. The sign of the number is placed in the rightmost digit of the field.

For forced data, the following option applies:

Entry

V

Meaning

Force a data character constant into
the data field.

Maximum Field Length

1 character

Table E-8 shows the combinations of entries you can make in columns 7 and 8.

Table E-8. Possible Entry Combinations (Columns 7 and 8)

Column 7 Column 8 Maximum Field Length

N orO C 256

Z 1

0 16

P 8

U 16

F C 1

Z 1

0 1

o C 256

Z 1

0 16

P 8

U 16

V 1

continued

1169794.380 E-37

Using GSORT to Code and Run Sort Programs

Table E-8. Possible Entry Combinations (Columns 7 and 8) (cont.)

Column 7 Column 8 Maximum Field Length

S C 256

Z 1

0 16

P 8

U 16

V 1

* Comments

Note: Packed or zone data cannot be used if an alternate collating sequence
is specified in the Header specification.

For a summary data field, the data type entry determines the method of adding the data:

• For P (packed) data type, both the zone and digit portions of the input data are
added, along with an optional sign.

• For U (unpacked) data type, only the digit portions of the input data are added,
along with an optional sign.

• For D (digit) data type, only the digit portions of the input data are added, without a
sign involved.

• For C (character) data, the entire character is added, without a sign involved.

• For Z (zone) data type, the zone portion of the input data is added, without a sign
involved.

Field Location (Columns 9 through 16)

E-38

The entries in these columns give the Start- and End-locations of the fields in the input
record to be included in the output record. The fields can be either key fields and data
fields. The order in which you list the field locations determines their order in the sorted
output records.

In columns 9 through 12, identify where the field starts. In columns 13 through 16,
identify where the field ends. Entries for the Start- and End-locations should be
right-justified.

If you describe fields that are only 1 character long, leave columns 9 through 12 blank;
enter only the End-location of the character in columns 13 through 16. Right-justify the
entry.

1169794.380

Using GSORT to Code and Run Sort Programs

The length of the field depends on the entry in column 8. For the maximum field lengths
allowed for each entry, see the column 8 description earlier in this section.

Compare Character (Column 17)

Use an entry in this column to conditionally force a character into a key field or to define
a character as a summary overflow indicator.

For a Forced Key Field

If column 7 contains the letter F, the forcing should be done only if the value of the
l-character-Iong field, whose End-location is noted in columns 13 through 16, is equal to
the character in column 17.

The GSORT program checks to see if the field in the input record contains the character
given in column 17. If it does, the character in column 18 replaces the specified character
in the key field.

A series of l-character-Iong fields can be compared and replaced by the entry of a
continuation character in column 19.

For a Summary Overflow Indicator Field

H column 7 does not contain the letter F, a nonblank value in column 17 specifies a
summary overflow character. Enter the character you want to place in the output record
if overflow occurs.

A blank in this column indicates that the summary overflow indicator is an asterisk (*).

As an additional feature, you can use column 18 to specify the ~acter to use if an
overflow does not occur. (See "Detecting Summary Data Overflow".) Summary overflow
indicator fields are valid only for summary (SORTRS) jobs ..

Forced Character (Column 18)

This column contains the character to be forced. An entry should be made in this column
only when the letter F is in column 7, or the letter D in colwnn 7 is accompanied by the
letter V in column 8.

The character in column 18 either replaces the key field character specified in column 17,
adds a new character to the key field, or adds a new character to the data field.

You can force a character constant into the output to indicate when an overflow occurs
and when it does not occur. The character in column 17 is used when overflow occurs.
The character in column 18 is used when the overflow does not occur. (See "Detecting
Summary Data Overflow".)

Any character can be used. Summary overflow indicator fields are valid only for
summary (SORTRS) jobs.

1169794.380 E-39

Using GSORT to Code and Run Sort Programs

Continued Forced Character in Forced Key Field (Column 19)

You can only force (replace) one character at a time. However, you can replace a series
of characters in the same key field by using continuation records. Each character must
have its own continuation record that defines the character and the character to replace
it. To create a continuation record, enter any character in column 19.

The first forced character in the key field always has an F in column 7, its End-location
in colwnns 13 through 16, and entries in columns 17 and 18. Any subsequent forced
character has an F in column 7, its End-location in colwnns 13 through 16, and entries in
columns 17, 18, and 19.

Overflow Field Length (Columns 20 through 22)

E-40

These columns contain the length of the overflow field. Use these colwnns with a
GSORT job that accumulates totals (SORTRS) to prevent the occurrence of an overflow
condition in a summary data field. You can increase the length of the field by placing the
entry for the new length in these columns.

In these columns, define the amount of memory the GSORT program should reserve for
any summary data totals. The length of this field cannot be longer than the maximum
length allowed for the input data type specified in column 8, as shown in Table E-9.

Table E-9. Maximum Field Lengths for Input Data Types

Data Types Maximum Field Length

C (character) 256 cha racters

o (digit) 16 characters

Z (zone) 1 character

U (unpacked) 16 characters

P (packed) 8 characters

The overflow field length entry should

• Equal the length of the summary data field plus the expected overflow length

• Be right-justified to column 22

• Not exceed the maximum field length

For each record type in a GSORT job, a maximum of 24 fields can be totaled.

If packed decimal fields are summarized, columns 20 through 22 should specify the
number of bytes of packed data contained in the field.

1169794.380

Using GSORT to Code and Run Sort Programs

Preventing Summary Data Overflow

If the length of the field that will hold the total is not big enough, any higher order
digits are lost, with no indication of the loss. To prevent this situation from occurring,
designate the largest output area that could be needed for a particular total.

Detecting Summary Data Overflow

With GSORT, you can force a character constant into the output to indicate when
overflow occurs. Subsequent programs can then read the GSORT output file and test
for the presence of this character constant to see if overflow occurred for the summary
field.

You can specify only one summary overflow indicator per record type. If you specify
more than one per record type, only the first one has any effect on the output record.

To specify an overflow indicator field, do the following:

1. Fill in columns 1 through 6 on the Field Selection specification.

2. Enter an S (for summary) in column 7 of the Field Selection specification.

3. Enter a V (for forced field) in column 8 of the Field Selection specification.

4. Leave columns 9 through 16 of the Field Selection specification blank.

5. Enter the character to which the overflow indicator field will be set (column 17) if
overflow occurs in any summary data field.

If overflow occurs and no overflow character is identified (that is, column 17 contains
a blank) the system sets the overflow indicator field to an asterisk (*).

6. Enter a character in column 18 to which the overflow indicator field is set if an
overflow does not occur in any summary data fields.

If none of the summary data fields overflows, the overflow indicator field contains the
character specified in column 18. If column 18 contains a blank, the overflow indicator
field is set to a blank.

Alternate Collating Sequences (Column 20)

When column 26 of the Header specification contains an F, column 20 must contain an
A for any normal or opposite key field that is to be sorted by the alternate collating
sequence.

If you specify an alternate collating sequence for a particular field, that field is changed
according to the alternate collating sequence whenever the field is used again as a key
field for that record type.

Columns 23 through 39

These columns are not used.

1169794.380 E-41

Using GSORT to Code and Run Sort Programs

Comments (Columns 40 through 72)

These columns can be used to enter optional comments and to document the program.
If you specify that the GSORT job print your 'specifications (the column 27 entry of the
Header specification is zero or blank), the comments you include in these columns are
printed.

Examples of GSORT Programs
The following examples demonstrate how to code using the GSORT compiler control
record syntax.

In the examples, numeric data is coded as unpacked data All other data is coded as
character data. This means that fields such as customer number or item number are
unpacked data and fields such as customer name or status are character data.

Unpacked data is output with leading zeroes. If a customer number is 222 and the field
is 9 characters long, the output is "000000222". For readability, leading zeroes are
replaced by blanks in all input and output examples.

Sorting without Record Selection Specifications

E-42

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890~2

10000$GSORT
12000HSORTR 6A
14000FNU 2 7
16000FDC 1 128

Header Specification

X 128 SORT PAYROLL ASCENDING
CONTROL FIELD IS EMPLOYEE 10
PUT ALL DATA INTO OUTPUT FILE

In the Header specification, the job is defined as a regular sort (SORTR). The length of
the key field is 6. The items are to be sorted in ascending order. Although the key field
is dropped in column 28, its contents are specified as a data field in the Field Selection
specification. Columns 30 through 32 show the number of characters in each record of
the output file. The comments, starting in column 44, clarify what the sort will do.

Record Selection Specification

Because all records from the input file are included in the sort, there are no Record
Selection specifications. This situation is referred to as an implied include-all.

Field Selection Specifications

There are two Field Selection specifications. The first identifies the key field for the sort.
The second indicates which fields should be included in the output records.

The first Field Selection specification identifies a normal key field whose data the
GSORT program should interpret as character data (both the zone and digit portions are

1169794.380

Using GSORT to Code and Run Sort Programs

compared). The entries in column 12 and 16 identify the location of the key field. (The
GSORT program compares the zone and digit portions of each character in positions 2
through 7 to determine the order of the records in the output file.) A comment begins iri
column 40.

In the second Field Selection specification, the D in column 7 specifies that the fields in
positions 1 through 128 are data fields in the output file. The GSORT program should
interpret the data as character data. The entries in columns 9 through 16 indicate the
location of the fields in the input record that are considered data fields in the output file.
In this case, all the data in the input records are written into the output file. A comment
begins in column 40.

Sorti ng a File with Selected Records

1234567
123456789012345678901234567890123456789012~45678901234567890123456789012

$GSORT
HSORTR
I U 16
FNU 3
FDU 3
FDU 16

3A X 1.0
22GEC0003.000

5
5

22

N SORT CHARGEREC INFO
INCLUDE AMOUNTS OF $3.0.00 OR MORE
CONTROL FIELD IS CHARGE CODE
FIRST DATA FIELD IS CHARGE CODE
SECOND DATA FIELD IS AMOUNT

In this example the records in the input file have the following format:

IRecord CodelCharge CodelDescriptionlAmountlGuest Name I
1 2 3 5 6 15 16 22 23 4.0

For this GSORT job, you want to select only items that are charged for an amount of $30
or more. You want to sort the items in ascending order, with the charge code as the key
field. For each item over $30, you want only the information in the charge code and
amount columns included in the output file.

Header Specification

The Header specification identifies this as a regular sort (SORTR), in ascending order.
The 3 in column 17 indicates the number of characters in the field in the input records
that are to be used to sort the records (the Charge Code field). Information in the key
field is to be dropped from the output file. The output record will contain 10 characters.
An error message will not be displayed if there are.po input records that meet the
conditions you specify in the Record Selection Statements. The comment begins at
column 44.

Record Selection Specification

The Record Selection specification indicates that the GSORT program should include
only those records whose contents in positions 16 through 22 of the input records
are equal to or more than $30. The letters GE in columns 17 and 18 specify that the
amounts to be selected should be greater than or equal to the amount given beginning at
column 20.

1169794.380 E-43

Using GSORT to Code and Run Sort Programs

Column 8 specifies that data in positions 16 through 22 of the input records are
unpacked data. Columns 11 and 12, and 15 and 16 respectively, show the startiIig
and ending positions of the field to be examined in the input record. The letter C in
column 19 identifies Factor 2 as a constant. The optional comment begins at colWlUl 40.

Field Selection Specifications

You need three Field Selection specifications for this job. The first identifies the field as
a normal key field whose data the program should interpret as character data. The
entries in columns 12 and 16 show the location of the key field in the input file. The
GSORT program compares the zone and digit portions of each character in positions 3
through 5 of the input records to determine its position in the output file. An optional
comment begins in column 40.

In the second and third Field Selection specifications, the fields are identified as data
fields in the output file that contains character data. The entries in columns 9 through
16 specify the location of the fields in the input record to be shown as a data field in the
output file. Optional comments for these fields begin at column 40.

Sorting a File with Conditional Include and Omit

E-44

The next three example programs use the input file and records ,described below. In
each program, the input record is remapped for the output record.

Input Records

1 2 345 6 7
123456789012345678901234567890123456789012345678901234567890123456789012

first I last name I customer I item I quantitYI status
name number number ordered of order

Henry Molloy 222 4444 333W
James Meehan 111 3333 222S
Nancy Jones 333 5555 222W
Don Meehan 444 5555 IllS
Iris Johnson 555 5555 111W

The status of an order is either shipped (S) or waiting to be shipped (W).

1169794.380

Using GSORT to Code and Run Sort Programs

Example: Conditional Include Program

1 2 345 6
1234567890123456789012345678901234567890123456789012345678901234567890

$GSORT
HSORTR 20A
I C 60 60EQCW
FNU 40 49
FNU 50 59
FDC 1 9
FDU 30 39
FDU 40 49
FDU 50 59

0X 39
INCLUDE RECS WITH 60 •• 60 = 'WI
1ST KEY FLO: ITM NBR 40 .• 49
2ND KEY FLO: QTY ORO 50 .• 59
1ST DATA FLO: FIRSTNAME 1 .. 9
2ND DATA FLO: CUST NBR 30 •• 39
3RO DATA FLO: ITM NBR 40 .• 49
4TH DATA FLO: QTY ORO 50 .• 59

This example produces a regular sort (SORTR), in ascending order. Each output record
contains 39 characters in four fields: first name, customer number, item number, and
quantity ordered. Only records with a status of W are included in the output file. The
first key for sorting is item number, and the second is quantity ordered.

The conditional include program produces the following output file:

1 2 3 456
1234567890123456789012345678901234567890123456789012345678901234567890
Henry 222 4444 333
Iris 555 5555 111
Nancy 333 5555 222

Example: Conditional Omit Program

1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567890

$GSORT
HSORTR 20A 0X 39
o C 50 59LTC 200 OMIT RECORDS WITH QTY ORO < 200
I INCLUDE ALL OTHER RECORDS
FNU 40 49 1ST KEY FLO: ITM NBR 40 •• 49
FNU 50 59 2ND KEY FLO: QTY ORO 50 •• 59
FDC 1 9 1ST DATA FLO: FIRSTNAME 1 .• 9
FDU 30 39 2ND DATA FLO: CUST NBR 30 •• 39
FDU 40 49 3RD DATA FLO: ITM NBR 40 .• 49
FDU 50 59 4TH DATA FLO: QTY ORO 50 .• 59

This example produces a regular sort (SORTR), in ascending order. Each output record
contains 39 characters in four fields: the first name, the customer number, the item
number, and the quantity ordered. If the quantity ordered is less than 200 items, the
record is omitted. All other records are sorted and included in the output file.

The conditional omit program produces the following output file:

1169794.380 E-45

Using GSORT to Code and Run Sort Programs

E-46

1 2 345 6
1234567890123456789012345678901234567890123456789012345678901234567890
James 111 3333 222
Henry 222 4444 333
Nancy 333 5555 222

Example: Mixed Include and Omit Program

1 2 3 456
1234567890123456789012345678901234567890123456789012345678901234567890

$GSORT
HSORTR
o C 50
I C 60
FNU 40

20A
59GTC
60EQCS
49

FDC 60 60
FDU 40 49
FDC 10 29
I C 60 60EQCW
FNC 10 29
FDC 60 60
FDC 10 29
FOC 1 9
FDU 50 59

0X 40
500 OMIT RECORDS WITH QTY ORO > 500

INCLUDE 'S'HIPPED RECORDS
SORT ON ITM NBR 40 .• 49
1ST DATA FLO: STATUS FLAG
2ND DATA FLO: ITM NBR
3RD DATA FLO: LAST NAME
INCLUDE 'W'AITING RECORDS
SORT ON LAST NAME
1ST DATA FLO: STATUS FLAG
2ND DATA FLO: LAST NAME
3RD DATA FLO: FIRST NAME
4TH DATA FLO: QTY ORO

This example produces a regular sort (SORTR), in ascending order. All output records
contain 40 characters. There are two types of output records contained in the same
output file.

For the first type of output record, all input records with an order quantity greater than
500 are omitted. From the remaining input records, all records with a status of S are
sorted by item number and placed in the output file. The output records have three
fields: status, item number, and last name.

The second type of output record consists of all input records with a status of W. They
are sorted by customer number. The output record has four fields: status, last name,
first name, and quantity ordered.

The mixed include and omit program produces the following output file:

1 2 345 6
1234567890123456789012345678901234567890123456789012345678901234567890
S 3333Meehan
S 5555Meehan
WJohnson
WJones
WMolloy

Iris
Nancy
Henry

111
222
333

1169794.380

Using GSORT to Code and Run Sort Programs

Sorting a File by Record Number

If you do not want to duplicate all the input data in the output file, you can produce a file
that contains only relative record numbers. In this case, you do not specify any data
fields in the Field Selection specifications. You specify only the key fields.

1234567
123456789012345678901234567890123456789012345678901234567890123456789012

$GSORT
HSORTA
I
FNU 26 32

70 3 N TAG SORT
INCLUDE-ALL SORT
CONTROL FIELD IS HOURLY WAGE

For this example, the format of the input records is as follows:

IRecord Code I Employee IDIEmployee NamelHourly WageIFT/PTI
1 2 3 7 8 25 26 32 33 36

The Hourly Wage is the key field and you want to sort in descending order.

Header Specification

The Header specification indicates that this is a record number sort (SORTA) and the
key field is 7 positions long. The input records are to be sorted in descending order. The
output file will contain only relative record numbers that are 3 characters long. No error
message will be displayed if none of the input records meet the specified conditions in the
Record Selection specifications. An optional comment begins at column 44.

Record Selection Specification

Because this program has no Record Selection specification, the program defaults to an
include-all sort. In other SORTA programs yoti can use Record Selection specifications
to specify include or omit options.

Field Selection Specification

In the one Field Selection specification, the key field is identified as a normal key field
containing character data. The entries in columns 9 through 16 show the location of the
key field in the input record. An optional comment begins at column 40.

1169794.380 E--47

Using GSORT to Code and Run Sort Programs

Sorting for Selected Information

E-48

1234567
123456789012345678901234567890123456789012345678901234567890123456789012
00100$GSORT
00500HSORTR
010000 C 33
015001 C 33
02000FNU 3
02500FDU 3 7

5A
36EQCFFFF
36EQCQQQQ
7

03000FDC 8 25

X 23 SORT TO SELECT INFO
OMIT RECORDS
INCLUDE RECORDS
CONTROL FIELD IS EMPLOYEE 10
DATA FIELD IS EMPLOYEE 10
DATA FIELD IS EMPLOYEE NAME

In this example, you want to sort by employee ID and in ascending order. In your output
file you want to show all part time employees by employee ID and name only. The format
of the input records is

IRecord CodelEmployee IDIEmployee NamelHourly WageIFT/PTI
1 2 3 7 8 25 26 32 33 36

Header Specification

A regularly sorted output (SORTR) file, sorted in ascending order, will be generated.
There are 5 characters in the field in the input records used in sorting the records.
Information in the key field will not be written into the output file. There will be 23
characters in the output records. An optional comment·begins at column 44.

Record Selection Specifications

For this job, you need two Record Selection specifications. The first identifies criteria
for omitting records. The second identifies criteria for including records. In both cases,
the C in column 8 means compare both the zone and digit portions of the character.
Factor 1, the location of the field to be tested, starts in column 33 of the input record and
ends in column 36. If the input record has FFFF in columns 33 through 38, the record is
omitted. If the input record has QQQQ, it is included.

Field Selection Specifications

For this job, there are three Field Selection specifications. The first specifies a normal
key field whose contents should be compared as whole characters. The entries in
columns 12 and 16 show the starting and ending positions of the key field in the input
file. The second and third Field Selection specifications are for data fields·that contain
character data where both the zone and digit portions are compared.

1169794.380

Using GSORT to Code and Run Sort Programs

Sorting by Integer

1234567
123456789012345678901234567890123456789012345678901234567898123456789012

$GSORT
HSORTR
I C
FF
FNC
FOC

8A
1LEC"

2
1 7
1 58

Header Specification

X 58

This is a regular sort where the tota1length of the key field for either a positive or
negative integer is 7 bytes. The sort will be in ascending order. The smallest negative
integer comes first; the largest positive integer comes last in the sort sequence. For
example, the sorted output would show numbers in this order: -1, 0, 1, 2.

The key field is dropped when data are written into the output file; only the data portion
remains. A1l58 characters in the input records are written into the output records.

Record Selection Specifications

Two record types are specified: positive and negative integers. Both record types are to
be included in the sort. Therefore, two sets of include specifications are required.

The first Record Selection specification identifies a conditional include. If position 1, the
leftmost byte of the 7 -byte key field from the input record, is less than or equal to the
character constant for a double quotation mark ("), the record is included in the sort.
The character constant indicates that the record contains a positive integer.

The second Record Selection specification is an include-all option; all records not
previously selected should be included in the sort. Because the first specification
selected records with positive integers only, this specification selected the records
remaining: those containing negative integers.

Field Selection Specifications

The Field Selection specifications show that if the input records meet the conditions
defined in the conditional option - the contents of position 1 equals the double quotation
mark (") character-the GSORT program should force a 2 into the first position of the
key field.

An Alternate Method of Sorting by Integer

If the Field Selection specifications had been the following, all the data in positions 1
through 58 would have been written into the output file:

1169794-002 E-49

Using GSORT to Code and Run Sort Programs

1234567
123456789012345678901234567890123456789012345678901234567890123456789012

$GSORT
HSORTR 8A X 58
I C 1LEC"
FF 1
FNC 1 7
FOC 1 58

The first Field Selection specification indicates that the character 1 will be forced into
the first position of the work record for each record with a negative integer. All records
with a negative integer will be forced in front of all records with positive integers when
the records are sorted.

The next specification defines the key field as a 7 -character field in positions 1 through
7 of the input records; the last Field Selection specification defines data fields that are
written into the output file.

GSORT System Error Messages

. E-50

A run-time error is either an invalid entry or an invalid combination of two or more
entries. Run-time error messages for GSORT jobs are displayed on the terminal.

BOTH INPUT AND INPUTl FILE STATEMENTS PRESENT

Cause: You have specified both an INPUT and INPUTl file in the same file
statement. Either one can be specified, but not both of them.

Response: Specify either INPUT or INPUTl, INPUT2, INPUT3, and so on, for
multiple input files.

SORTA INVALID WITH MULTIPLE INPUT FILES

Cause: You have specified more than one input file when performing a sort for
relative record numbers or addresses.

Response: Specify only one file for the sort.

NO RECORDS INCLUDED: O=CONTINUE, 3 = QUIT

Cause: You have not included any records to be sorted.

1169794-002

Using GSORT to Code and Run Sort Programs

Response: Using the command? <mix number> AX, enter a 0 (zero) to continue
the job or a 3 to stop the program.

Note: The entries 0 and 3 are GSORT standards.

1169794.380 E-51

E-52 1169794.380

Appendix F
Using the Standard Collating Sequence

Collating sequences are logical sequences used to sort items of data into a particular
order. A collating sequence is used by all sort programs' to compare characters in the
input records to determine whether one character is equal to, greater than, or less than
another character.

The standard EBCDIC collating sequence is an ordering of the EBCDIC character set by
bit representation. Variations occur in the standard collating sequence, depending on
which of the following you use:

• Both the zone and digit portions of characters used in the compare operation

• Only the zone portions of characters in compare operations

• Only the digit portions of characters in compare operations

In most Sort and GSORT jobs, both the zone and digit portions are compared when
using the CHARACTER data type. Just the zone or digit is compared in cases in which
only the zone or digit of a byte contains valid data.

Note: 'When the Sort program compares just the zone or the digit portion of
characters, different characters can be evaluated as equals; more than
one character can have an identical zone portion or digit portion. For
example, the zone portion of the letters a, b, c, d, e, f, g, h, and i are
considered equal. The digit portion of the letters b, k, s, B, K, and S
are considered equal. However, two different characters cannot have
both identical zone and identical digit portions.

Comparing Both the Zone and Digit Portions
Table F-l shows the standard EBCDIC collating sequence used for comparing the entire
character, both the zone and digit portions. If you are comparing entire characters,
look at the Character column. If you are comparing either zone or digit, look at the
appropriate digit in the Hex column shown in Tables F-2 and F-3.

1169794.380 F-1

Using the Standard Collating Sequence

Table F-l. EBCDIC Collating Sequence for Comparing Both the Zone and Digit
Portions of a Character

Order Char. Hex Order Char. Hex

1 t,6 40 48 Al

2 ¢ 4A 49 s A2

3 4B 50 A3

4 < 4C 51 u A4

5 40 52 v A5

6 + 4E 53 w A6

7 4F 54 x A7

8 & 50 55 Y A8

9 5A 56 z A9

10 $ 5B 57 { CO

11 * 5C 58 A Cl

12 50 59 B C2

13 5E 60 C C3

14 5F 61 0 C4

15 - (minus 60 62 E C5
sign)

16 / 61 63 F C6

17 ,6A 64 G C7

18 , (comma) 6B 65 H C8

19 % 6C 66 C9

20 60 67 } DO
(underscore)

21 > 6E 68 J 01

22 ? 6F 69 K 02

23 \ 79 70 L 03

24 7A 71 M 04

25 # 7B 72 N 05

26 @ 7C 73 0 06

27 70 74 P 07
(apostrophe)

28 7E 75 Q 08

continued

F-2 1169794.380

Using the Standard Collating Sequence

Table F-l. EBCDIC Collating Sequence for Comparing Both the Zone and Digit
Portions of a Character (cont.)

Order Char. Hex Order Char. Hex

29 7F 76 R 09

30 a 81 77 \ EO

31 b 82 78 S E2

32 c 83 79 T E3

33 d 84 80 U E4

34 e 85 81 V E5

35 86 82 W E6
I

36 g 87 83 X E7
I

37 h 88 84 Y E8
I

38 89 85 Z E9

39 91 86 0 FO

40 k 92 87 1 F1

41 93 88 2 F2

42 m 94 89 3 F3

43 n 95 90 4 F4

44 0 96 91 5 F5

45 P 97 92 6 F6

46 q 98 93 7 F7

47 99 94 8 F8

95 9 F9

Comparing Only the Zone Portion
Table F-2 shows the standard EBCDIC collating sequence used for comparing only the
zone portions of characters.

Note: When several characters share the same position in the sequence, they
are considered equal. For example, if you are using only the zone
portions of characters, the letters a, b, c, d, e, f, g, h, and i (position 5)
are considered equal.

1169794.380 F-3

Using the Standard Collating Sequence

F-4

Table F-2. EBCDIC Collating Sequence for Comparing Only the Zone Portion of a
Character

3

4

5

/

, (comma)

%

(underscore)

>

?

\

@

, (apostrophe)

a

Hexadecimal
Representation

4A

48

4C

40

4E

4F

5A

58

5C

50

5E

5F

61

6A

68

6C

60

6E

6F

79

7A

78

7C

70

7E

7F

81

continued

1169794.380

I

I

Using the Standard Collating Sequence

Table F-2. EBCDIC Collating Sequence for Comparing Only the Zone Portion of a
Character (cont.)

Hexadecimal
Order in Sequence Character Representation

b 82

c 83

d 84

e 85

86

g 87

h 88

89

6 91

k 92

93

m 94

n 95

0 96

p 97

q 98

99

7 - (tilde) Al

s A2

A3

u A4

v A5

w A6

x A7

y A8

z A9

8 & 50

continued

1169794.380 F-5

Using the Standard Collating Sequence

.F-6

Table F-2. EBCDIC Collating Sequence for Comparing Only the Zone Portion of a
Character (cont.)

Order in Sequence

9

10

Character

{

A

B

C

D

E

F

G

H

- (minus sign)

}

J

K

L

M

N

o
P

Q

R

\

S

T

U

V

W

Hexadecimal
Representation

CO

C1

C2

C3

C4

C5

C6

C7

C8

C9

60

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

E1

E2

E3

E4

E5

E6

continued

1169794.380

Using the Standard Collating Sequence

Table F-2. EBCDIC Collating Sequence for Comparing Only the Zone Portion of a
Character (cont.)

Hexadecimal
Order in Sequence Character Representation

X E7
y E8

Z E9

11 ij 40

0 FO

1 Fl

2 F2

3 F3

4 F4

5 F5

6 F6

7 F7

8 F8

9 F9

Comparing Only the Digit Portion
Table F -3 shows the standard EBCDIC collating sequence used for comparing only the
digit portion of characters.

Note: When several characters share the same position in the sequence, they
are considered equal. For example, if you are using only the digit
portions of characters, the letters b, k, s, B, K, B, and the numeric 2
(position 3) are all considered equal.

1169794.380 F-7

Using the Standard Collating Sequence

F-8

Table F-3. EBCDIC Collating Sequence for Comparing Only the Digit Portion of a
Character

Hexadecimal
Order in Sequence Character Representation

1 ~ 40

& 50

- (minus sign) 60

{ CO

} 00

0 FO

2 / 61

a 81

91

- (tilde) Al

A Cl

J 01

\ El

1 Fl

3 b 82

k 92

s A2

B C2

K D2

S E2

2 F2

4 c 83

93

t A3

C C3

L 03

T E3

3 F3

continued

1169794.380

I

Using the Standard Collating Sequence

Table F-3. EBCDIC Collating Sequence for Comparing Only the Digit Portion of a
Character (cont.)

Hexadecimal
Order in Sequence Character Representation

5 d 84

m 94

u A4

D C4

M D4

U . E4

4 F4 .

6 e 85

n 95

v A5

E C5

N D5

V E5

5 F5

7 86

0 96

w A6

F C6

0 D6

W E6

6 F6

8 g 87

P 97

x A7

G C7

P D7

continued

1169794.380 F-9

Using the Standard Collating Sequence

Table F-3. EBCDIC Collating Sequence for Comparing Only the Digit Portion of a
Character (cont.)

Hexadecimal
Order in Sequence Character Representation

X E7

7 F7

9 h 88

q 98

y A8

H C8

Q 08

y E8

8 F8

10 \ 79

89

99

z A9

C9

R 09

Z E9

9 F9

11 ¢ 4A

5A

6A

7A

12 48

$ 58

, (comma) 68

78

13 < 4C

continued

F-10 1169794.380

Using the Standard Collating Sequence

Table F-3. EBCDIC Collating Sequence for Comparing Only the Digit Portion of a
Character (cont.)

Order in Sequence Character

*
%

@

14

(underscore)

, (apostrophe)

15 +

>

16

- (hyphen)

?

1169794.380

Hexadecimal
Representation

5C

6C

7C

40

50

60

70

4E

5E

6E

7E

4F

5F

6F

7F

F-11

F-12 1169794.380

Appendix G
Understanding Railroad Diagrams

What Are Railroad Diagrams?

Railroad diagrams are diagrams that show you the rules for putting words and symbols
together into commands and statements that the computer can understand. These
diagrams consist of a series of paths that show the allowable structure, constants, and
variables for a command or a statement. Paths show the order in which the command or
statement is constructed. Paths are represented by horizontal and vertica1lines. Many
railroad diagrams have a number of different paths you can take to get to the end of the
diagram.

Example

- REMOVE,...---~-------------------l
[SOURCE]
L OBJECT -.J

IT you follow this railroad diagram from left to right, you will discover three acceptable
commands. These commands are

REMOVE

REMOVE SOURCE

REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here. However,
because the allowed ways of communicating with the computer can be complex, railroad
diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual representations of
commands and statements. Railroad diagrams are intended to

• Show the mandatory items

• Show the user-selected items

• Present the order in which the items must appear

• Show the number of times an item can be repeated

• Show the necessary punctuation

To familiarize you with railroad diagrains~ this explanation describes the elements of the
diagrams and provides examples.

1169794.380 G-1

Understanding Railroad Diagrams

G-2

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules. They
all consist of paths that represent the allowable structure, constants, and variables for
commands and statements.

By following railroad diagrams, it is easy to understand the correct syntax for commands
and statements. Once you become proficient in the use of railroad notation, the
diagrams serve as quick references to the commands and statements.

Constants and Variables

A constant is an item that cannot be altered. You must enter the constant as it appears
in the diagram., either in full or as an allowable abbreviation. If a constant is partially
underlined, you can abbreviate the constant by entering only the underlined letters. In
addition to the underlined letters, any of the remaining letters can be entered. If no part
of the constant is underlined, the constant cannot be abbreviated. Constants can be
recognized by the fact that they are never enclosed in angle brackets « » and are in
uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement. Variables appear in railroad diagrams enclosed in angle brackets « ».

In the following example, BEGIN and END are constants while < statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially underlined. Valid
abbreviations for BEGIN are BE, BEG, and BEG!.

- .B.£GIN -<statement list>- END ---------------;

Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
'Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A ~escription of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

1169794.380

Understanding Railroad Diagrams

- SECONDWORD - (-<arithmetic expression>-) ---------i

Percent Sign

The percent sign (%) represents the end ofa railroad diagram and indicates the
command or statement must be on a line by itself.
- STOP ________________________ -:r-.0~

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit on one
line and must continue on the next. A right arrow appears at the end of the first line and
another right arrow appears at the beginning of the next line.

- SCALERIGHT - (-<arithmetic expression>- • --------~

~-<ar;thmet;c express;on>-) -----------------1

Required Items

A required item can be either a constant, a variable, or punctuation. A required item
appears as a single entry, by itself or with other items, on a horizontal line. Required
items can also exist on horizontal lines within alternate paths or nested (lower-level)
diagrams. If the path you are following contains a required item, you must enter the
item in the command or statement; the required item cannot be omitted.

In the following example, the word EVENT is a required constant and < identifier> is a
required variable:

- EVENT -<identifier>>-----------------""""---i

User-Selected Items

User-selected items appear one below the other in a vertica1list. You can choose anyone
of the items from the list. If the list also contains an empty path (solid line), none of
the choices are required.· A user-selected item can be either a constant, a variable, or
punctuation. In the following railroad diagram, either the plus sign (+) or minus sign (-)
can be entered before the required variable < arithmetic expression> , or the symbols
can be disregarded because the diagram also contains an empty path.

~E-~-j--r-·<arithmet;c expression>->---------------i

Loop

A loop represents an item or group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertica1lines. The top line is a right-to-Ieft path
that contains information about repeating the loop.

1169794.380 G-3

Understanding Railroad Diagrams

G-4

Some loops include a return character. A return character is a character (often a comma
or semicolon) required before each repetition of a loop. If there is no return character,
the items must be separated by one or more blank spaces.

~<field ~a~~~------------------------------------~

Bridge

Sometimes a loop also includes a bridge, which is used to show the maximum number of
times the loop can be repeated. The bridge can precede the contents of the loop, or it
can precede the return character (if any) on the upper line of the loop.

The bridge determines the number of times you can cross that point in the diagram. The
bridge is an integer enclosed in sloping lines (/ \). Not all loops have bridges. Those that
do not can be repeated any number of ti,mes until all valid entries have been used.

~/2\-r LINKAGE -,~-----------------i
L RUNT IME --l

or

-L[-/2\
LI NKAGE -r--'--i
RUNTIME OJ

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more
than three times.

In some bridges an asterisk follows the number. The asterisk means that you must
select one item from the group.

~/1*\-r liNKAGE -,..--1-1-------------------1
L RUNTIME --l

The following figure shows the types of constraints used in railroad diagrams.

1169794.380

Understanding Railroad Diagrams

SYMBOL/PATH EXPLANATION

Vertical bar. Indicates that the
I cOl1lTland or statement can be followed

by .another cOllll1and or statement.

0/0
Percent sign. Indicates that the
cOl1lTland or statement must be on a
1 i ne byi tse 1 f.

> Right arrow. Indicates that the

>
diagram occupies more than one
line.

Required items. Indicates the
-< required >- constants. variables. and

punctuation that must be entered
in a command or statement.

tv:: j User-selected items. Indicates the
items that appear one below the
other in a vertical list. You
select which item ·or items to include.

1< I A loop. Indicates an item or group
of items that can be repeated.

~/2\-L
A bridge. Indicates the maximum
number of times a loop can be
repeated.

Figure G-l. Railroad Constraints

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path, while others have several
alternate paths. The following railroad diagram indicates there is only one path that
requires the constant LINKAGE and the variable < linkage mnemonic> :

- LINKAGE -<linkage mnemonic»-----------------I

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user selected items, or a combination of both.
More complex railroad diagrams can consist of many alternate paths, or nested
(lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes an ampersand (&) and the constants (that are

1169794.380 G-5

Understanding Railroad Diagrams

G-6

user-selected items) in the vertical list. These constants are within a loop that can be
repeated any number of times until all options have been selected. The first alternate
path requires the ampersand (&) and the required constant ADDRESS. The second
alternate path requires the ampersand (&) followed by the required constant ALTER
and the required variable < new value> .

»
- & IYPE --,--'--.,----------------1

ASCII
BCL
12ECIMAL
.EBCDIC
HEX
.oCTAL

AnDRESS -----I
ALTER -<new value'

Railroad Diagram Examples

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

- LOCK - (- <file identifier> -) --------------i

Sample Input

LOCK (Fl)

LOCK (FILE4)

Explanation

LOCK is a constant and cannot be altered. Because no part of the word is underlined,
the entire word must be entered. The parentheses are required punctuation and Fl and
FILE4 are sample < file identifier> s.

Example 2

<open statement>

- OPEN <data base name>>-------------I
L INQUIRY .J
L UPDATE ~

Sample Input

OPEN DATABASE!

OPEN INQUIRY DATABASEl

OPEN UPDATE DATABASE!

1169794.380

Understanding Railroad Diagrams

Explanation

The first sample input shows the constant OPEN followed by the variable DATABASE!,
which is a database name. The railroad diagram shows two user-selected items,
INQillRY and UPDATE. However, because there is an empty path (solid line), these
entries are not required.

The second sample input shows the constant OPEN followed by the user-selected
constant INQUIRY and the variable DATABASEl.

The third sample input shows the constant OPEN followed by the user-selected constant
UPDATE and the variable DATABASEl.

Example 3

<generate statement>

---- GENERATE ----<subset>-- = ~ NULL
L<subset:>--,.--------;

Sample Input

GENERATE Z = NULL

GENERATE Z = X

GENERATE Z = X AND B

GENERATE Z = X + B

Explanation

AN~D <subset
OR
+

The first sample input shows the GENERATE constant followed by the variable Z, an
equal sign, and the user-selected constant NULL.

The second sample input shows the GENERATE constant followed by the variable Z, an
equal sign, and the user-selected variable X.

The third sample input shows the GENERATE constant followed by the variable
Z, an equal sign, the user-selected variable X, the AND command (from the list of
user-selected items in the nested path), and a third variable, B.

The fourth sample input shows the GENERATE constant followed by the variable Z, an
equal sign, the user-selectable variable X, the plus sign (from the list of user-selected
items in the nested path), and a third variable, B.

1169794.380 G-7

Understanding Railroad Diagrams '

G-8

Example 4

<entity reference declaration>

r+- • I .
- ENTITY REFERENCE -L<entity ref 10>- (-<class 10>-) ~. ----l

Sample Input

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR)

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR), ADVISOR2 (ASST_INSTRUCTOR)

Explanation

The first sample input shows the required item ENTITY REFERENCE followed by the
variable ADVISOR1 and the variable INSTRUCTOR. The parentheses are required.

The second sample input illustrates the use of a loop by showing the same input as
in the first sample followed by a comma, the variable ADVISOR2, and the variable
ASST _INSTRUCTOR. The parentheses are required.

Example 5

- PS - MQIlIFY -------------------~

~TI<request number>--·-------......--L..-r------~
<request number>- - --<request number

ALL -r----------~----~
.EXCEPT! ONS ------'--------'

~~---------------~---------~

'---'--r----,-<file att;ibute phrase>-,-~

t---.....-<print modifier phrase

Sample Input

PS MODI FY 11159

PS MODIFY 11159,11160,11163

PS MODIFY 11159-11161 DESTINATION = "LP7"

PS MOD ALL EXCEPTIONS

Explanation

The first sample input shows the constants PS and MODIFY followed by the variable
11159, which is a < request number> .

1169794.380

Understanding Railroad Diagrams

The second sample input illustrates the use of a loop by showing the same input as in
the first sample followed by a comma, the variable 11160, another comma, and the final
variable 11163.

The third sample input shows the constants PS and MODIFY followed by the
user-selected variables 11159-11161, which are < request number> s, and the
user-selected variable DESTINATION = "LP7", which is a <file attribute phrase>.

The fourth sample input shows the constants PS and MODIFY followed by the
user-selected constant ALL, followed by the user-selected constant EXCEPTIONS. Note
that in this sample input, the constant MODIFY has been abbreviated.

1169794.380 G-9

G-10 1169794.380

Glossary

In this glossary, definitions taken from outside sources are preceded by an abbreviation enclosed in
parentheses. Definitions from the Dictionary of Computing are preceded by (DOC).

A
address

The identification ofa location in storage (memory).

address couple
A representation of the address of an item in a program. An address couple consists
of two numbers: the first number is a lexical level, and the second number is a
displacement (offset) within that lexica1level.

ADDROUT file

ALGOL

ALPHA

In RPG, a record-address file produced by a Sort program or procedure. Each
record in the ADDROUT file is a binary integer, which is the relative record number
(zero-relative) of a record in its corresponding data file.

Algorithmic Language. A structured, high-level programming language that provides
the basis for the stack architecture of the Unisys A Series systems. ALGOL was the
first block-structured language developed in the 1960s and served as a basis for such
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily
for systems programming.

In the A Series SORT, a data type that includes the letters of the alphabet (A through
Z and a through z) and special characters. In B Series SORT, ALPHA also includes the
numerals 0 through 9.

alphanumeric data
The letters of the alphabet (A through Z and a through z), special characters, and the
numerals 0 through 9.

alternate collating sequence
A user-defined collating sequence that causes records or characters to be arranged in an
order different from the order permitted by the standard collating sequence.

ascending order

B
BeL

An arrangement of items in which the order progresses consecutively from the
lowest-valued item to the highest-valued item.

See Burroughs Common Language.

1169794.380 Glossary -1

Glossary

bit

Boolean

The most basic unit of computer information. The word bit is a contraction of binary
digit. A bit can have one of two values: binary 0 (sometimes referred to as OFF) and
binary 1 (sometimes referred to as ON).

Pertaining to variables, data items, and attributes having a value of TRUE or FALSE.

Burroughs Common Language (BCL)

byte

c
CANDE

An obsolete code using 6-bit character representation.

On U nisys A Series systems, a measurable group of eight consecutive bits having a single
usage. In data communications, a byte is often referred to as a character or an octet.

See Command and Edit.

CARD file

CCR

COBOL

code file

In RPG, the first file that the compiler reads for program data.

See compiler control record.

Common Business-Oriented Language. A widely used, procedure-oriented language
intended for use in solving problem$ in business data processing. The main
characteristics of COBOL are the easy readability of programs and a considerable degree
of machine independence. COBOL is the most widely used procedure-oriented language.

See object code file.

collating sequence
(DOC) A set of rules establishing the order in which items will be arranged in a set.
Common collating sequences are alphabetic order and numerical order with, often,
additional rules for dealing with symbols, punctuation, and spaces.

Command and Edit (CANDE)

compiler

A time-sharing Message Control System (MCS) that allows a user to create and edit files,
and develop, test, and execute programs, interactively.

A computer program that translates instructions written in a source language, such as
COBOL or ALGOL, into machine-executable object code.

compiler control option
An individual compiler directive that appears in a compiler control record (CCR).
Compiler control options are also referred to as compiler dollar options or dollar options.

Glossary -2 1169794.380

Glossary

compiler control record (CCR)

constant

A record in a source program that begins with a dollar sign ($) and contains one or
more options that control various compiler functions. These specifications can appear
anywhere in the source program unless otherwise specified. The term compiler control
image (CCl) is a nonpreferred synonym.

An object whose value is assigned during program compilation and cannot be changed
during program execution.

control field
A field that identifies the relationship of a record to other records.

D
data field

An area in a data record that contains one particular piece of information.

data item
An element of data.

descending order

digit

An arrangement of items in which the order progresses consecutively from the largest
item to the smallest item.

(DOC) A graphic character that represents an integer; for example, any of the characters
o through 9 in the decimal system.

digit portion
The low order, or least significant, bits in a byte.

disk file header
A data structure that contains information about a disk file, such as the physical location
of the file on the disk and various file attributes. A disk file header is also referred to as
a header.

displacement
(DOC) A numerical difference between two values, one of which is a base or reference
value. In a Sort or GSORT program, the value that specifies the position of the first, or
most significant, element in the field.

double-precision
Pertaining to an arithmetic value that is represented internally as a signed-magnitude
mantissa and exponent and is contained in two words.

1169794.380 Glossary -3

Glossary

E
EBCDIC

Editor

F
family

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe
systems.

A U nisys utility program designed to create and modify program source and data files.

The name of the disk or disk pack on which a physical file is located.

Field Selection Specification
A format used to define the control and data fields for a GSORT job.

file attributes
Elements that describe characteristics of a file and provide information the system needs
to handle the file. Examples of file attributes are the file title, record size, number of
areas, and date of creation. For disk files, permanent file attribute values are stored in
the disk file header.

In the SORT language, file attributes can be specified only in the FILE statements.

floating-point literal

H

The value of a literal shown with the decimal part of a number multiplied by the power of
10 and used as an alternative for a standard numeric literal.

Header Specification

hex

A format used to indicate the type of GSORT job to be performed and some of the sort
parameters.

See hexadecimal.

hexadecimal (hex)
Pertaining to the base 16 numbering system. Decimal digits 0 through 9 are represented
by the characters 0 through 9. Decimal digits 10 through 15 are represented by the
characters A through F.

hexadecimal character
One of a set of characters that includes 0 (zero) through 9 and A through F used to
represent quantities in base 16. The characters A through F represent the decimal
values 10 through 15, respectively.

Glossary -4 1169794.380

Glossary

hexadecimal literal

I

(1) In RPG, an item used in the formation of alphanumeric characters. It can be used to
form a bit pattern that cannot otherwise be represented in the RPG source image. (2)
In COBOL, a character-string bounded by at signs (@). The string of characters must
consist of one or more characters chosen from the set of hexadecimal characters.

include set

index

A combination of a Header specification, Record Selection specifications, and Field
Selection specifications that indicates types of records to be sorted. Contrast with omit
set.

A value used to specify a particular element of an array variable.

input record boundary

integer

The begirming or end of an input record. For Sort files, records begin in column 1 and
end in column 90. Sort language statements are in columns 1 through 72.

A whole number.

Integrated Tape and Disk (lTD)
A procedure that allows input files for a SORT job to come from both tape and disk
sources.

internal file name

lTD

K
key

key field

keyword

The name used to declare a logical file in a program. The internal name of a file is given
by the value of its INTNAME file attribute. Work Flow Language (WFL) file equation
statements can reference the file by implicitly or explicitly specifying an INTNAME value
that matches the INTNAME attribute of a file in a program.

See Integrated Tape and Disk.

A field in a record that is used to sort a file.

A field that identifies the relationship of a record to other records and determines the
order of records in a sorted file. A key field is also used to locate or identify a record.

In programming languages, a reserved word that must be present when the format in
which the word appears is used in a source program.

1169794.380 Glossary -5

Glossary

L
literal

M

A character string enclosed by a pair of special characters whose value is implied by the
ordered set of characters that compose the string.

Master Control Program (MCP)
An operating system on A Series systems. The MCP controls the operational
environment of the system by performing job selection, memory management, peripheral
management, virtual memory management, and dynamic subroutine linkage.

MAXRECSIZE

MCP

MCS

A file attribute that gives the maximum size, in frames, of records in a logical file. For
port files, MAXRECSIZE specifies the maximum text size for all subfiles in the port file.

See Master Control Program.

See Message Control System.

Message Control System (MCS)
A program that controls the flow of messages between terminals, application programs,
and the operating system. MCS functions can include message routing, access control,
audit and recovery, system management, and message formatting.

Message Translation' Utility

MLS

A software tool for translating compiled program output messages from one natural
language· to one or more others.

See MultiLingual System.

MultiLingual System (MLS)

N

A system for developing and accessing output messages, online help text, and menu
screens in different natural languages, such as English, French, and Spanish.

NEWSOURCE file
The output source file of the Pascal, RPG, or SORT language compiler that is either a
copy of the CARD input (if the MERGE option is FALSE) or the result of merging the
CARD and SOURCE files (if the MERGE option is TRUE).

Glossary -6 1169794.380

Glossary

o
object code file

omit set

operand

p

A file produced by a compiler when a program is compiled successfully. The file contains
instructions in machine-executable object code.

A combination of a Header specification, Record Selection specifications, and Field
Selection specifications that indicates types of records not to be sorted. Contrast with
include set.

An entity on which operations are performed. Operands are grouped with operators
(such as +, AND, and OR) to create expressions.

packed decimal format
A format in which each byte in a field represents two numeric digits. If the format is
right-signed, the rightmost byte contains a digit and a positive or negative sign. If the
format is left-signed, the leftmost byte contains a digit and a positive or negative sign.

parity bit

R
real

record

A bit appended to an array of bits to force the sum of all bits in the array to be odd (for
odd parity) or even (for even parity), as required by the convention established.

Pertaining to signed or unsigned, fractional or whole values in single-precision,
floating-point form.

A group of logically related items of data in a file that are treated as a unit.

Record Selection Specification
A format used to indicate the items to include or delete in a GSORT job.

relational operator

RPG

A reserved word, a relational character, a group of consecutive reserved words, or a
group of consecutive reserved words and relational characters used in the construction of
a relation condition.

Report Program Generator. A high-level, commercially oriented programming language
used most frequently to produce reports based on information derived from data files.

run-time error
An error occurring during the execution of a program, which causes the system software
to terminate execution of that program abnormally.

1169794.380 Glossary -7

Glossary

s
single-precision

An arithmetic value that is represented internally as a signed-magnitude mantissa and
exponent and is contained in one word.

SORT language
A language that allows the user to write programs for sorting and merging files on the
A Series system.

SOURCE file
The secondary input file from which the compiler reads previously stored source images.

source program

stack

string

A program coded in a language that must be translated into machine language before
execution. The translator program is usually a compiler.

A region of memory used to store data items in a particular order, usually on a last-in,
first-out basis.

A connected sequence or group of characters.

summary data field
When the GSORT option of Sort is specified, a data field used for accumulated totals in
summary (SORTRS) jobs.

symbolic file
A file that contains a source program.

syntax error

T
tag sort

An error that occurs when the rules or grammar of a language is violated.

A type of sort that uses only the key and the address of each record. The data records
remain in place until the final merge of the tag begins. At that time, the addresses
contained within the tags are used to retrieve the records in the correct sequence. Also
known as a record address sort.

task attribute
Any of a number of items that·describe and control various aspects of the execution of a
process.

task variable
An object that is used to interrogate or modify the task attributes of a particular process.

Glossary -8 1169794.380

Glossary

u
unpacked decimal format

v

A format in which numbers are represented by both their zone and digit. For each
character in an unpacked data field, a numeric value is placed in the digit portion. A
positive or negative sign is placed in the zone position of the rightmost character in the
data field.

version information field

w
WFL

word

work file

The field that consists of columns 81 through 90 of SORT language records:

See Work Flow Language.

A unit of computer memory. On A Series systems, a word consists of 48 bits used for
storage, plus tag bits used to indicate how the word is interpreted.

A file that the user accesses using the Command and Edit (CANDE) GET command or
creates using the CANDE MAKE command. All editing commands entered through
CANDE can make changes only to the current work file.

Work Flow Language (WFL)
A Unisys language used for constructing jobs that compile or run programs on A Series
systems. WFL includes variables, expressions, and flow-of-control statements that offer
the programmer a wide range of capabilities with regard to task control.

1169794.380 . Glossary -9

Glossary -10 1169794.380

Bibliography

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys Corporation. . I

A Series Editor Operations Guide (form 8600 0551). Unisys Corporation.

A Series File Attributes Programming Reference Manual (form 8600 0064). Unisys
Corporation. Formerly A Series I/O Subsystem Programming Reference Manual.

A Series MultiLingual System (MLS) Administration, Operations, and Programming
Guide (form 86000288). Unisys Corporation.

A Series System Software Installation Guide, Volume 2: System Initialization (form
1170263). Unisys Corporation.

A Series System Software Support Reference Manual (form 86000478). Unisys
Corporation.

A Series System Software Utilities Operations Reference Manual (form 8600 0460).
Unisys Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual
(form 86001047). Unisys Corporation.

Dictionary of Computing. Frank J. Galland (ed.). New York: John Wiley and Sons,
1982.

1169794-002 Bibliography-l

Bibliography-2 1169794-002

Index

A

A Series, converting to, D-1
acceptable syntax, 5-11 .
accepted, ignored statements, D-l
changes required in file statement, D-1
comments, handling o~ D-1
equating file names, examples o~ D-6
statements not supported, list o~ D-1

accumulated totals, E-7
accumulated totals sort, (See .SORTRS)
actual record size, D-3

in B 1000 FILE statement, conversion o~
D-3

adding a new character to a key or data field
in GSORT job, E-39

address couple
definition of, Glossary-1
inclusion of; in listing, 5-8

address, definition of, Glossary-1
ADDROUT file

definition of, Glossary-1
effect on conversion, D-10
in GSORT job, E-7

ADDROUT sort, (See SORTA)
ALGOL, definition of, Glossary-l

- allocation of memory, default, 4-7
ALPHA

data type
in B 1000 statements, conversion of,

D-7
internal representation of, 2-8
use of, 2-6

definition of, Glossary-1
. hexadecimal literal conversion, associating,

2-12
list of valid literal types, 2-12

ALPHA NUMERIC, 2-6
data type

internal representation of, 2-8
hexadecima1literal conversion,associating,

2-12
integer literal conversion,associating, 2-12

1169794-002

list of valid literal types, 2-12
alphanumeric data

comparing and interpreting, E-25
defining in B 1000 statements, D-7
definition of, Glossary-1

alternate collating sequence
coding Field Selection for normal or

opposite key fields, E-41
coding Header record, E-12
definition of, Glossary-1
differences from standard collating

sequence, E-3
for entire key field, E-16

effect on factor 1 and factor 2, E-28
for specified key fields, E-17
making characters equal, E-17
using ALTSEQ statement to define, E-14
with GSORT option, 5-7

ALTSEQ statement, E-4, E-14
coding, E-15
ending the statement, E-15
for an entire key field, E-16
for specified key fields, E-17
identification of an ALTSEQ statement,

E-15
identifying records in the statement, E-15
making characters equal, E-17
purpose and order of; E-4
relationship to alternate collating

sequence, E-14
relationship to Header record, E-12
specifying hexadecimal equivalents, E-16
table of entries, E-15
use of hexadecimal when shifting to a

different order
zone and digit comparison, E-14

AND relationship
for binary values, E-26

Index-1

Index

for include or omit option of Record
Selection, E-21

area, disk, D-5
area, records per, (See records)
< areas>, D-5
ascending order

definition in GSORT job, E-7
definition in Sort job, 3-4
definition of, Glossary-1
designating in key field, 3-4
selecting by key field in GSORT job, E-12

attribute

B

for files, (See file attributes)
for task, (See task attribute)

< B 1000 file input part> , D-2
< B 1000 file name> , D-5
< B 1000 file output part> , D-4
< B 1000 file statement>, D-2
B 1000 data type, declaration of, 2-7
<B 1000 data type>

declaration of, 2-7
defining format of data item, D-7

< B 1000 name>, D-6
< B 1000 pack> , D-6
B 1000 statements

accepted but ignored by A Series, D-1
B 1000 statements, conversion of, D-1

accepted, but ignored, D-1
comments, D-1
data type, D-7
DELETE, D-9
FILE,D-1

actual record size element, D-3
CARD element, D-3
DEFAULT element, D-5
DISK element, D-2
examples of, D-6
file input element, D-2
file name element, D-5
file output element, D-4
header information, D-3
logical records element, D-3
MULTI element, D-3
pack name element, D-6
PAPER element, D-3
records per area element, D-3
RELEASE element, D-5
removing input file, D-3

Index-2

TAPE element, D-3
user name element, D-6
VARIABLE element, D-4, D-5

INCLUDE, D-9
MEMORY,D-9
MERGE,D-9
NOPRINT, 1}-1, D-9
not supported, D-1
RECORDS, D~10
SORT, 1}-10
SYNTAX, 1}-10
syntax for, 5-11
TAGSORT, 1}-10
TAPESORT, D-11
TEACH,D-1
WORKP ACK, 1}-11

< B 1000 user>, D-6
basic syntax components, 2-3
BCL, (See Burroughs Common Language,

definition of)
BIAS statement, conversion of, 1}-1
binary values, as basis of selecting records in

GSORT,E-26
bit

defining key location in, D-7
definition of, Glossary-2
number, allowable values, 2-5

BIT
data type

internal representation of, 2-8
use of, 2-6

hexadecima1literal conversion,associating,
2-12

list of valid literal types, 2-12
syntax of in displacement, 2-4, 2-5

< bit number> , 2-5
Boolean

compiler control record, use of, 5-1
definition of, Glossary-2
operators, order of evaluation, D-9
option in compiler control record, 5-3

Boolean compiler control option
CODE, 5-4
DELETE, 5-4
ERRORLIST, 5-6
GSORT,5-6
LIST, 5-7
LIST$,5-8
LISTDELETED, 5-7
LISTDOLLAR, 5-8
LISr:fP, 5-8
MAP, 5-8

1169794-002

MERGE, 5-9
NEW, 5-9
NEWSEQERR, 5-10
REFORMAT, 5-11
SEQ,5-11
SEQUENCE, 5-11
SINGLE, 5-12

Boolean expression of file attribute, 3-3
< Boolean file attribute name>, 3-3
Burroughs Common Language, definition ot

Glossary-2
byte

defining key location in, D-7
definition of, Glossary-2

BYTE, syntax of in displacement; 2-4

c
calculating key field length in GSORT job,

E-11
calculating output record length in GSORT

job, E-13
CANDE, (See Command and Edit)
CARD

file
definition ot Glossary-2
description ot B-1
restricting read to, 5-9

in B 1000 FILE statement, conversion ot
D-3

category 1 keywords, A'-1
category 2 keywords, A-2
category 3 keywords, A-I
CCI, (See compiler control record)
CCR, (See compiler control record)
CHARACTER data type, use ot 2-7
character data, as EBCDIC characters, E-25
CLEAR compiler control option, use ot 5-4
< clear option>, 5-4
closing tape with B 1000 FILE RELEASE

option, D-5
COBOL, definition ot Glossary-2
CODE compiler control option, use ot 5-4
code file, (See object code file)
CODE file

description ot B-2
suppression, method ot D-I0

< code option>, 5-4
code, producing listing of object file, 5-4
coding

AL TSEQ statement, E-15

1169794-002

Field Selection specifications, E-30
GSORT program, E-4
Header specifications, E-8
negative unpacked numbers, E-29
Record Selection specifications, E-18

Index

coding differences between Sort and GSORT
programs, E-4

collate, (See NO COLLATE data type, use
of)

COLLATE B 1000 statement, not supported
by A Series, D-l

COLLATE processing statement, 4-1
< collate statement>, 4-1
collat~sequence

alternate sequence with GSORT option,
5-7

definition ot Glossary-2
inALTSEQ statement, E-14
in Header record, E-12

colon, use of to denote comments, 2-2
Command and Edit, 1-1

defaults for
ERRORLIMIT compiler control option,

5-5
GSORT compiler control option, 5-6
LIST compiler control option, 5-7

definition of, Glossary-2
initiating

compilation from, 1-2
syntax-only compilations from, 1-3

use of
COMPILE command, 1-3
COMPILE SYNTAX c0II1II¥Uld, 1-3
RUN command, 1-3

use of commands, 1-1
comments

converting B 1000 to A Series, D-l
in Field Selection record, E-33, E-42
in Header record, E-14
in Record Selection record, E-21, E-30
inWFL, 1-5
including in Sort program, 2-2

COMP data type, use ot 2-6
compare character, in Field Selection record,

E-39
compare constant, in Record Selection record,

E-28
compare date keyword, in Record Selection

record, E-30
compare field name, in Record Selection

record, E-28

Index-3

· Index

compare field, in Record Selection record,
E-28

compare keyword, in Record Selection record,
E-28

compare literal, in Record Selection record,
E-29

comparing characters
alphanumeric data, E-25

digit only, E-36
specifying digit only, E-25
specifying zone and digit, E-25
specifying zone only, E-25
zone and digit, E-36
zone only, E-36

for a forced key field, E-39
for a summary overflow indicator field,

E-39
numeric data, E-26

packed, E-36
specifying digit only, E-26
specifying zone and digit, E-26
specifying zone only, E-26
unpacked, E-36

signed, E-36
table of digit only comparison, F-7
table of zone and digit comparison, F-l
table 'of zone only comparison, F-3
unsigned, E-36

CO:MP~ command, use of, 1-3
CO:MPILE SYNTAX command, use of, 1-3
compile time, defining file attributes in WFL,

1-5
compiler control image, (See compiler control

record)
compiler control option

available, list of, 1-5
definition of, Glossary-2
use of, 5-4

CLEAR immediate option, 5-4
CODE Boolean option, 5-4
DELETE Boolean option, 5-4
ERRORLIMIT value option, 5-5
ERRORLIST Boolean option, 5-6
GSORT Boolean option, 5-6
LIST Boolean option, 5-7
LIST$ Boolean option, 5-8
LISTDELETED Boolean option, 5-7
LISTDOLLAR Boolean option, 5-8
LISTP Boolean option, 5-8
MAP Boolean option, 5-8
MERGE Boolean option, 5-9
NEW Boolean option, 5-9

Index-4

NEWSEQERR Boolean option, 5-10
REFORMAT Boolean option, 5-11
SEQ Boolean option, 5-11
Sequence Base value option, 5-12
SEQUENCE Boolean option, 5-11
Sequence Increment value option, 5-12
SINGLE Boolean option, 5-12
VERSION value option, 5-12
$MERGE in record format, 2-2
$SEQUENCE in record format, 2-2

compiler control record
definition of, Glossary-3
designator ($), use of, 5-3
list of options, 1-5
position in Sort program, 2-2
producing listing of temporary, 5-8
submitting through TASKSTRING

attribute, 5-2
syntax of, 5-2, 5-3
types of, 5-1
use of, 5-1

Boolean option, 5-1, 5-3
immediate option, 5-1, 5-3
pennanent~,5-1
temporary type, 5-1
value option, 5-1, 5-3

use of POP statement, 5-4
use of RESET statement, 5-4
use of SET statement, 5-4

< compiler control records>, 5-3
compiler, definition of, Glossary-2
compiling, 1-2

combined compile and run, example of, 1-3
effect of syntax errors, 1-3
explanation of, 1-2
files of type

SEQUENTIAL, 1-3
TEXT, 1-3

for immediate execution, 1-3
for syntax-only, 1-3

example of, 1-3
from CANDE, 1-3
inWFL,I-4

example of, 1-4
for immediate execution, 1-5

separate compile and run, example of, 1-3
condition for record selection, 4-12
< condition> , 4-12
conditional forced field, use of, E-34
conditional include, use of, E-20
conditionally forcing a character into a key

field, E-39

1169794-002

constant, definition of, Glossary-3
continuation entry, in Record Selection

record, E-21
control field, definition of, Glossary-3
control file, description of, C-1
conversion

effect of ADDROUT files, D-10
of B 1000 statements not supported by

A Series, D-1
of hex literal, 2-12
of integer literal, 2-12
of literal, 2-11

converting B 1000 programs, D-1
accepted, but ignored statements, D-1
comments, handling of, D-1
statements not supported, list of, D-1

creating Sort program
example of, 1-2
using CANDE, 1-1

cycle number, assigning, 5-13
< cycle number> , 5-13

D

D, as double-precision designator in a real
literal, 2-11

D, for deleted source-language input records
on listing, 5-7

data field
adding a new character, E-39
definition of, Glossary-3
types

forced, E-36
normal, E-35
summary, E-35

data field types, E-35
maximum lengths, E-40

data interpretation, in Record Selection
record, E-25

data item, definition of, Glossary-3
data length designation, 2-9
daU;i type

in A Series, use of
ALPHA, 2-6
ALPHA NUMERIC, 2-6
BIT, 2-6
CHARACTER, 2-7
COMP, 2-6
DECIMAL, 2-7
DIGIT, 2-7
DISPLAY, 2-6

1169794-002

DISPLAY NUMERIC, 2-6
DOUBLE, 2-6
HEX, 2-7
INTEGER, 2-5
IS,2-7
IS CHARACTER, 2-7
NO COLLATE, 2-6
PACKED, 2-6
REAL, 2-5
sign clause, 2-6
ZONE, 2-7

in B 1000 declarations, 2-7
in B 1000 statements, D-8

Index

in converting B 1000 statements, D-7
in Field Selection record, E-36
internal representation, table of, 2-8

DECIMAL data type, use of, 2-7
decimal number

packed, E-37
unpacked, E-36

DEFAULT in B 1000 FILE statement,
. conversion of, D-3

defining a character as a summary overflow
indicator, E-39

defining field type, E-33
DELETE

as record selection statement, 4-11
B 1000 statement, conversion 'of, D-9
Boolean compiler control option, use of,

5-5
< delete option>, 5-4
< delete statement>, (See < include and

delete statement>)
deleted records, method of listing, 5-7
descending order

definition in GSORT job, E-7
definition in Sort job, 3-4
designating in key field, 3-4
selecting by key field in GSORT job, E-12

destination of error messages, control of, 5-6
detecting summary data overflow, E-41
determining order input records are written

r to output file, E-11
differences of GSORT and Sort programs,

E-2, E-4
digit, 2-3

definition of, Glossary-3
syntax of, 2-3
use of with E or D designators, 2-11

. DIGIT .
data type

Index-5

Index

in B 1000 statements, conversion of,
D-8

internal representation of, 2-8
use of, 2-7

defining as displacement units, 2-4
field, associating with literal, 2-11
list of valid literal types, 2-12

digit only comparison
for binary values, E-26
specifying for alphanumeric data, E-25
specifying for numeric data, E-26
table of, F-7

digit portion, definition of, Glossary-3
< digit>, 2-3
disk area, designating for output file, D-5
disk file

altering sequence numbers, in, 5-10
containing sort input, generating, 5-9
header, definition of, Glossary-3

disk pack assignment, use of, 4-10
disk sort

associated syntax errors, 4-2
default memory allocation, 4-7
requesting, 4-2

DISK, in B 1000 FILE statement, conversion
of, D-2

DISKANDTAPE processing statement, 4-2
< diskandtape statement> , 4-2
DISKC file, description of, C-1
DISKF file, description of, C-1
DISKSORT processing statement, 4-2
< disksort statement> , 4-2
< disp-1> , 4-13
< disp-2> , 4-13
displacement

causing run-time error, 2-4
definition of, Glossary-3
in conditions, 4-13
in key fields, 3-4
syntax for, 2-4

BIT units, 2-5
BYTE units, 2-4
DIGIT units, 2-4
HEX units, 2-4
PACKED units, 2-4
WORD units, 2-4

use of, 2-3
< displacement>, 2-4, 3-4
DISPLAY data type, use of, 2-6
DISPLAY NUMERIC data type, use of, 2-6
dispositions allowed in WFL job, 1-4
dollar sign, 5-3

Index-6

in listing, meaning of, 5-8
DOUBLE

data type
internal representation of, 2-8
use of, 2-6

list of valid literal types, 2-12
double-precision

definition of, Glossary-3
designation of real literal, 2-11

DUPCHECK BlOOD statement, not
supported by A Series, D-1

E

E , as single-precision designator in a real
literal, 2-11 /

EBCDIC collating sequence
comparing digit only, F-8
comparing zone and digit, F-1
comparing zone only, F-4

EBCDIC, definition of, Glossary-4
Editor, definition of, Glossary-4
efficiency, increasing

using GSORT compiler control option, 5-6
using sort parameter statements, 4-7

ending an ALTSEQ statement, E-15
equal key field

in GSORT program, E-11
in Sort program, 4-4
when determining length of GSORT

output record, E-13
equal records, treatment of, 4-4
error

effect of parity error on sort, 4-8
in syntax associated with

DISKANDTAPE processing statement,
4-2

DISKSORT processing statement, 4-2
INVALID CHARACTER, 1-1
invalid literal types, 2-12
literal and DIGIT, 2-11
literal and ZONE, 2-11
MEMORY parameter statement, 4-8
MEMORYONLY processing statement,

4-3
MERGE processing statement, 4-3
PARITY DISCARD parameter

statement, 4-8
RECORDS parameter statement, 4-9
STABLE processing statement, 4-5

1169794-002

TAGSEARCH parameter statement,
4-9

TAGSORT processing statement, 4-5
TAPESORT processing statement, 4-6
WORKF AMILY parameter statement,

4-10
WORKSIZE parameter statement, 4-10

in syntax, effect on compilation, 1-3
run-time

caused by displacement size, 2-4
for GSORT jobs, E-50

error handling, in GSORT, E-5
error message

destination, control ot: 5-6 '
file used for, B-1
for no records selected in GSORT job,

E-14
ERRORFILE file

description ot: B-2
destination of error messages, 5-6

ERRORLIMIT compiler control option, use
of, 5-5

< errorlimit option> , 5-5
ERRORLIST compiler control option, use of,

5-6
< errorlist option>, 5-6
ERRORS file

description ot: B-2
destination of error messages, 5-6

executing a GSORT program, E-5
executing differences between Sort and

GSORT programs, E-4, E-5
Extended Binary Coded Decimal Interchange

Code, (See EBCDIC, definition of)

F

factor 1, E-26
noting length in Record Selection record,

E-27
noting location in Record Selection record,

E-26
relationship to factor 2, E-27
use in alternate collating sequence, E-28

factor 2, E-28
as a constant, E-29
as a date keyword, E-30
as an signed numeric constant, E-29
as an unsigned alphanumeric constant,

E-29

1169794-002

Index

noting location in Record Selection record,
E-28

relationship to factor 1, E-27
use in alternate collating sequence, E-28
use in comparing with factor 1, E-28

family
definition of, Glossary-4
designation of, 4-10

family name, 4-10
<family name>, 4-10
field

DIGIT, associating with literal, 2-11
key, (See key field)
ZONE, associating with literal, 2-11

field location, noting in input record, E-38
Field Selection record, (See Field Selection

specification)
Field Selection specification, E-4, E-30

alternate collating sequence, E-41
coding, E-30
comments, E-42
compare character, E-39
definition of, Glossary--4
field location, E-38
field type, E-33
fixed format, E-31
forced character, E-39
identification of a Field Selection record,

E-32
overflow field length, E-40

\ purpose and order of, E-4
relationship to include sets, B-23
relationship to omit sets, E-25
remaps,E--40
sequence nwnber, E-32
table of entries, B-31

FIELD statement, 3-3
< field statement>, 3-3
field type, in Field Selection record, E-33
file

ADDROUT
effect on conversion process, D-10

altering sequence numbers, in, 5-10
CARD, description of, B-1
CODE, description of, B-2
disk, (See disk file)
error messages, description of, B-1
IN, description of, C-1
input, (See input file)

designation of, 1--4
requesting removal of, D-3

LINE, description of, B-1

Index-7

Index

list of those used-by SORT compiler, B-1
NEWSOURCE

description of, B-1
organization required for input files, 3-3
output

designating maximum disk area, D-5
designation of, 1-4

requesting identical parameters in input
and output files, D-5

secondary source, description of, B-1
SOURCE

description of, B-1
symbolic

name of, B-1
title designation in

MERGE compiler control option, 5-9
NEW compiler control option, 5-10

type.
defining, 1-2
SEQUENTIAL use of COMPILE

command, 1-3
TEXT use of COMPILE command, 1-3

used as
control file, C-1
first input file, C-1
object code file, B-2
output file, C-1
secondary input file, C-1
sort programs, C-1
work file, C-1

file attribute equation, use of, 1-4
file attributes, 3-3

defaults, C-2
defining in WFL

at run time, 1-5
during compilation, 1-5

definition of, Glossary-4
designation of, example, 3-3
expressed as Boolean, 3-3
expressed as string, 3-3
FILE ORGANIZATION, input file

restriction, 3-3
FILE statement, use in, 3-2
FILETYPE, effect of, C-1
in FILE statement, 3-1
syntax of, 3-2

< file attributes>, 3-2
FILE B 1000 statement

VARIABLE element, conversion of, D-4
FILE B 1000 statement, VARIABLE

element, conversion of, D-5
file name, D-6

Index-8

B 1000 FILE statement
conversion of, D-5
syntax of, D-5

equating B 1000 to A Series, examples of,
D-6

FILE statement
changes required when converting, D-1
description, 3-1·
file attributes, use of, 3-2
input file, 3-1
output file, 3-1
PURGE option, 3-2
syntax, 3-1
tape release, 3-2
with GSORT, E-5

< file statement>, 3-1
< file title>, 5-10
FILEORGANIZATION attribute, 3-3
FILETYPE attribute, effect of, C-1
first input file, description of, 0-1
fixed format

of ALTSEQ statement, E-15
of Field Selection specification, E-31
of Header specification, E-9
of Record Selection specification, E-18

floating-point literal, definition of, Glossary-4
force-all field, use of, E-35
forced character, in Field Selection record,

E-39
forced data field

options, E-37
use of, E-36

forced key field, E-34
comparing characters, E-39
conditional, E-34

G

force-all, E-34
unconditional, E-34

GET command in CANDE, use of, 1-1
GO code file disposition, use of, 1-4
graphic literal, use of, 2-10
< graphic literal>, 2-10
GSORT compiler control option

coding a GSORT program, E-4
controlling results, E-36
default value, 5-6
error handling, E-5
executing a program, E-5
identifying include or omit action, E-20

1169794-002

key field types, E-33
list of additional sort features, 5-6
major key field, E-33
minor key field, E-33
preventing summary data overflow, E-41
program examples

producing same result as Sort program,
E-1

SORTA,E-47
with include, E-44
with include and omit, E-44
with omit, E-44
with record selection, E-43, E-48
with record selection and by integer,

E-49
without record selection, E-42

purpose and order of specifications and
statement, E-4

run-time error messages, E-50
running a GSORT job, E-5
selecting the fields in an output record,

E-8
sorting order, E-7
specifications

ALTSEQ statement, E-14
Field Selection, E-30
Header, E-8
Record Selection, E-18

syntax ot 5-7
use ot 5-6

< gsort option>, 5-6
GSORT programs

coding differences from Sort programs,
E-4

differences from Sort program, E-2
running differences from Sort programs,

E-5
similarities to Sort program, E-1

GSORT specifications
ALTSEQ statement, E-14
Field Selection, E-30
Header,E-8
Record Selection, E-18·

guidelines for mixing include and omit
options, E-21

H

header information, obtaining from B 1000
FILE statement, D-3

Header record, (See Header specification)

1169794-002

Header specification, E-4, E-8
coding, E-8
collatingsequence,E-12
comments, E-14
definition ot Glossary-4
equal key field, E-11
fixed format, E-9
identical key field, E-11
identification of Header record, E-10
key field length, E-11
null output, E-14
output option, E-13
output record length, E-13
print option, E-13
purpose and order of, E-4
record-sorting order, E-12
sequence number, E-10
table of entries, E-9
type of job, E-11

hex, (See hexadecimal)
HEX data type, (See hexadecimal)
< hex digit> , 2-10
< hex literal> , 2-10
hexadecimal, 2-7

definition ot Glossary-4
internal representation ot 2-8
list of valid literal types, 2-12
literal, 2-10
literal conversion, 2-12
syntax of

in displacement, 2-4
in literal, 2-10

hexadecimal character, definition of,
Glossary-4

Index

hexadecimal literal, definition of, Glossary-5

identical key field, in Header record, E-11
identifying a record

as a Field Selection specification, E-32
as a Header specification, E-10
as an ALTSEQ statement, E-15
as an include Record Selection

specification, E-20
as an omit Record Selection specification,

E-20
identifying the type of sorted output, in

Header record, E-11
image, source-language, (See

source-language image)

Index-9

Index

immediate compiler control option
CLEAR, 5-4
use of, 5-1, 5-3

< immediate option>, 5-3
IN files, use of, C-1
INCLUDE

as record selection statement, 4-11
B 1000 statement, conversion of, D-9

< include and delete statement>, 4-11
include option, E-20

AND relationship, E-21
conditional include, E-20
in Record Selection record, E-20
include-all, E-20
relationship to Field Selection record, E-23
table of include sets, E-21
use with omit option, E-20

include set, definition of, Glossary-5
< include statement>, (See < include and

delete statement>)
include-all, use of, E-20
index

definition of, Glossary-5
designating length in TAGSORT

processing statement, 4-6
index type, designating, 4-6
indexiilg record locations, 4-5
INPLACE B 1000 statement, not supported

by A Series, D-l
input file

designating for Sort program, 1-4
designation of, 1-4
in FILE statement, 3-1, E-5
processing, use of, 3-4
repeating parameters in output file, D-5
requesting removal of, in B 1000 FILE

statement, D-3
required organization, 3-3

input from both tape and disk sources,
allowing,4-2

< input part>, 3-1
input record boundary, definition of,

Glossary-5
input record format

for GSORT compiler control option, 5-6
. for Sort program, 2-2

. input statement, file used for, B-1
integer, 2-3

comp~ed to integer literal, 2-3
definition of, Glossary-5
literal

conversion of, 2-12

Index-l0

use of, 2-11
not splitting across input record boundary,

2-2
syntax of, 2-3

in literal, 2-10
INTEGER

data type
internal representation of, 2-8
use of, 2-5

hexadecimal literal conversion, associating,
2-12

list of valid literal types, 2-12
integer expression of file attribute, 3-3
< integer file attribute name> , 3-3
integer literal

compared to integer, 2-3
< integer literal>, 2-10
< integer> , 2-3
Integrated Tape and Disk, 4-2, (See

also DISKANDTAPE processing
statement)

definition of, Glossary-5
sort

designating number of tapes, 4-2 .
example of, 4-2
syntax errors, associated with, 4-2
syntax of, 4-2

internal file name, definition of, Glossary-5
internal representation of data types, 2-8
internationalization collating sequence, 4-1,

E-3, E-9, E-12
INVALID CHARACTER associated syntax

error, 1-1
IS CHARACTER data type, use of, 2-7
IS data type, use of, 2-7
lTD, (See Integrated Tape and Disk,

Integrated Tape and Disk)

J

job disposition, valid, 1-4

K

key
and data field storage, table of, 2-9
defining elements in, 2-3
definition of, Glossary-5
length designation, 2-9

1169794-002

location defining in
bits for B 1000 statements, D-7
bytes for B 1000 statements, D-7

key field
adding or replacing a character, E-39
ascending order designation, 3-4
conditionally forcing a character, E-39
defining position of first element, 3-4
definition of, Glossary-5
descending order designation, 3-4
designation, example ot; 3-5
determining presence in output file, E-13
displacement, use ot; 3-4
equal

in GSORT program, E-11
in Sort program, 4-4

identical, E-11
in GSOR~ E-33
length

in GSORT program, E-11
in Sort program, 3-4

order, use of, 3-4
replacing more than one character, E-40
type designation, 3-5
types in GSORT job

conditional forced, E-34
force-all, E-35
forced, E-33
major,E-33
minor, E-33
normal, E-33
opposite, E-33
unconditional forced, E-34

use of, 3-4
key field length, in Header record, E-11
< key field>, 3-4
KEY statement, 3-3
< key statement>, 3-3
keyword

definition of, Glossary-5
LIBRARY in WFL, use of, 1-4
not splitting across input record boundary,

2-2
recognized by GSORT compiler, list of,

E-80
recognized by SORT compiler, list of, A-1
SORT

in WFL, use of, 1-4
use of, 1-2

words
beginning statements, list of, A-1

. occurring in statements, list of, A-2

1169794-002

Index

L

LEADING SEPARATE sign positioning, use
of, 2-8

LEADING sign positioning, use of, 2-8
LEADING ZONE sign positioning, use of, 2-8
LEFT SEPARATE sign positioning, use of,

2-8
LEFT sign positioning, use of, 2-8
LEFT ZONE sign positioning, use of, 2-8
length, 2-9

comparing in Boolean conditions, 4-13
designating, 2-9
in key fields

GSORT program, E-11
Sort program, 3-4

of index designating in TAGSORT
proces~statement,4-6

< length>, 2-9, 3-4
LffiRARY

code file disposition, use of, 1-4
keyword in WFL, use of, 1-4

LIBRARY GO code file disposition, use of,
1-4

limiting input files with MERGE processing
statement, 4-3

LINE file
description of, B-1
destination of error messages, 5-6

LIST compiler control option, 5-7
file used with, B-1
replacing B 1000 NOPRINT statement,

D-1
< list option> , 5-7
LIST$ option, (See LISTDOLLAR compiler .

control option)
LISTDELETED compiler control option, 5-7
< listdeleted option>, 5-7
LISTDOLLAR compiler control option, 5-8
< listdollar option>, 5-8
listing

of object code, producing, 5-4
primary input file records, producing, 5-8
production of

single-spaced, 5-12
temporary CCRs, 5-8
to include address couples, 5-8

source-language input records, method of,
5-7

LISTP compiler control option, 5-8
< listp option>, 5-8
literal

, Index-II

Index

allowable types, table of, 2-12
conversion, 2-11
conversion of hexadecimal, 2-12
conversion of integer, 2-12
definition of, Glossary-6
graphic, (See graphic literal, use of)
in DIGIT fields, 2-11
in ZONE fields, 2-11
not splitting across input record boundary,

2-2
real

designation of double-precision, 2-11
designation of single-precision, 2-11

syntax, 2-10
use of, 2-9
hexadec~,2-10

integer, 2-11
real, 2-11

<literal>, 2-9, 2-11
Local Data Specification, use of, 1-4
logical records in B 1000 FILE statement,

conversion of, ~
lowercase characters, use of, 1-1

M

major key field, E-33
MAKE command in CANDE, use of, 1-1
making characters equal, ALTSEQ

statement, E-17
MAP compiler control option, 5-8
< map option> , 5-8
Master Control Program

definition of, Glossary-6
SORT procedure, use of, 1-2

maximum block size, syntax in B 1000 FILE
statement, D-2

MAXRECSIZE
calculation of, 3-2
definition of, Glossary-6

MCp, (See Master Control Program)
MCS, (See Message Control System,

definition of)
MEMORY

B 1000 statement, conversion of, D-9
memory allocation, default, 4-7
MEMORY parameter statement, 4-7
memory size, designating, 4-8
< memory statement> , 4-8
memory-only sorts, use of, 4-3
MEMORYONLY processing statement, 4-3

Index-12

< memoryonly statement>, 4-3
MERGE

A Series processing statement, 4-3
B 1000 statement, conversion of, D-9
compiler control option, 2-2, 5-9

syntax of, 5-9
< merge option>, 5-9
< merge statement> , 4-4
merging multiple input files

in GSORT programs
selecting records, E-18
use of equal key field ordering, E-11

in Sort programs, 1-1
selecting records, 4-11
use of DELETE option, 5-5
use of SEQUENCE option, 5-11

Message Control System, definition of,
Glossary-6

Message Translation Utility, definition of,
Glossary-6

messages
error when no records selected, E-14
printed, E-13
run-time error, E-50

messages file, error, (See error message)
minor key field, E-33
mixing include and omit options

guidelines, E-21
MLS, (See MultiLingual System)
mnemonic expression of file attribute, 3--3
modifying Sort programs using CANDE, 1-1
MULTI in B 1000 FILE statement,

conversion of, D-3
MultiLingual System

definition of, Glossary-6
for translation of messages, 1-1

N

name of files, B 1000, D-5
name of pack,~in B 1000 FILE statement, D-6
name of statement, in ALTSEQ statement,

E-15
names of user in B 1000 FILE statement,

D-6
NC data type in B 1000 statements,

conversion of, D-7
NEW compiler control option, 5-9

file used with, B-1
syntax of, 5-10

< new option>, 5-9

1169794-002

NEWSEQERR compiler control option, 5-10
< newseqerr option>, 5-10
NEWSOURCE file

definition of, Glossary-6
description ot; B-1

NO COLLATE data type, use of, 2-6
NOPRINT B 1000 statement, D-1

conversion of, D-9
normal data fields, use of, E-35
normal key field, E-34

alternate collating sequence, E-17
noting location of fields in input record, E-38
null output, in Header record, E-14
number sign, purpose of, 1-2
numbers, sequence, (See sequence number)
NUMERIC, 2-6

data type in B 1000 statements, conversion
of, D-7 "

numeric data
comp~g,E-25,E-26

o

defining in B 1000 statements, D-7
interpreting, E-25
signed, (See signed)

object code file
definition of, Glossary-7
description ot; B-2
disposition of, 1-4

object code, producing listing of, 5-4
offset-2, use of, 2-4
< offset-2> , 2-4
offset, use of, 2--4
<offset>,2-4, "(See also displacement)
omit option

in Record Selection record, E-20
OR relationship, E-21
relationship to Field Selection record, E-25
table of omit sets, E-24
use with include option, E-20

omit set, definition of, Glossary-7
operand, definition of, Glossary-7
operator

evaluation order
comparing B 1000 and A Series, D-9

opposite key field, E-34
alternate collating sequence, E-17

optimization
using GSORT compiler control option, 5-6

1169794-002

Index

using RECORDS parameter statement,
4-9

option
list of compiler control, 1-5
use of compiler control, 5--4

CLEAR, 5-4
CODE, 5-4
DELETE, 5-4
ERRORLIMIT, 5-5
ERRORLIS~ 5-6
GSOR~5-7
LIS~ 5-7
LIST$,5-8
LISTDELETED, 5-7
LISTDOLLAR, 5-8
LISTP, 5-8
MAP, 5-8
MERGE, 5-9
NEW, 5-9
NEWSEQERR, 5-10
REFORMA~ 5-11
SEQ,5-11
SEQUENCE, 5-11
Sequence Base, 5-12
Sequence Increment, 5-12
SINGLE, 5-12
VERSION, 5-12

optional SORT statement, use of, 2-1
OR relationship, in include/omit option of

Record Selection, E-21
order

in key field designating
ascending order, 3-4
descending order, 3-4

of evaluating operators, comparing B 1000
and A Series, D-9

order input record are written into output
file, E-11

order of GSORT specifications and
statement, E-4

< order> , "3-4
organization required for input file, 3-3
OUT file

description ot; C-1
in FILE statement, 3-1
in GSORT job, E-5

output file
associated file attributes, 3-1
default attributes, associated with, C-2
description of, C-1
designating for Sort program, 1-4
designating maximum disk area, D-5

Index-l 3

Index

designation of, 1-4
file statement,· definition in, 3-2
in FILE statement, 3-1, E-5
requesting identical parameters to input

file, D-5
SORTA, E-7
sorted, construction of, 4-9
SORTR, E-6
SORTRS,E-7
types for GSORT option, E-6

output option, in Header record, E-13
< output part>, 3-1
output record length, in Header record, E-13
output records, selecting fields, E-8
output, producing single-spaced listing, 5-12
overflow field length, in Field Selection

record, E-40
overftow indicators, E-41
OVERRIDE B 1000 statement, not supported

by A Series, D-l

p

pack name, in B 1000 FILE statement, D-6
PACKED

data type
internal representation of, 2-8
use of, 2-6

integer literal conversion,associating, 2-12
list of valid literal types, 2-12
syntax of in displacement, 2-4

packed data, specifying, E-26
packed decimal format, definition of,

Glossary-7
packed decimal number, E-37
PACKED SIGNED data type, internal

representation ot; 2-8
PAPER in B 1000 FILE statement,

conversion of, D-3
parameter statements

MEMORY, 4-7
PARITY DISCARD, 4-8
RECORDS, 4-9
TAGSEARCH,4-9
use of, 4-7
WORKFAMILY, 4-10
WORKSIZE, 4-10

parity
error, effect on sort, 4-8

parity bit, definition of, Glossary-7

Index-14

PARITY DISCARD parameter statement,
4-8

< parity discard statement>, 4-8
patch number, assigning, 5-13
< patch number>, assigning, 5-13
percent sign, using to

define comments in WFL, 1-5
denote comments, 2-2

permanent compiler control record, use of,
5-1 .

< pointer file attribute name> , 3-3
POP statement in compiler control record,

use of, 5-4
position

defining most significant, 2-3
of sign using

LEFT SEPARATE, 2-8
LEFT ZONE, 2-8
RIGHT SEPARATE, 2-8
RIGHT ZONE, 2-7

precision
double

definition of, Glossary-3
designation of in a real literal, 2-11

single
designation of in a real literal, 2-11

preventing summary data overflow, E-41
primary input file, producing listing of, 5-8
primary key, use of, 3-4
print option, in Header record, E-13
printed messages, specifying types, E-13
processing statements, 4-1

COLLATE, 4-1
DISKANDTAPE, 4-2
DISKSORT, 4-2
MERGE,4-3
STABLE,4-4
TAGSORT, 4-5
TAPESORT, 4-6
use of

MEMORYONLY, 4-3
program examples, using GSORT options,

E-42
program file, description of, C-1
PURGE

in B 1000 FILE statement, conversion of,
D-3

option in FILE statement, 3-2
purposes of GSORT specifications and

statement, E-4

1169794-002

Q

question mark, use of in WFL, 1-4
quotation marks, use of in file designation,

1-4

R

<r.b>, D-3
Railroad diagrams, explanation of, G-1
real

definition of, Glossary-7
literal

double-precision designation, 2-11
single-precision designation, 2-11
syntax of, 2-10
use of, 2-11

REAL
data type

internal representation of, 2-8
use of, 2-5

list of valid literal types, 2-12
< real literal > , 2-10
record

actual size, (See actual record size)
compiler control, (See compiler control

record)
definition of, Glossary-7
estimate in RECORDS parameter

statement, 4-9
format, (See Sort program)
input to SORT, creating a disk file of, 5-9
method of listing, 5-7
number file, use of, 5-7
producing listing for primary input file, 5-8
size, calculation of, 3-2
splitting across boundary, 2-2
treatment of equal key values, 4-4

record address sort, (See tag sort)
< record estimate statement> , 4-9
record number estimation, 4-9
Record Selection record, (See Record

Selection specification)
Record Selection specification, E-4, E-18

AND option, E-21
coding, E-18
comments, E-30
compare constant, E-28
compare date keyword, E-30
compare field, E-28

1169794-002

compare field name, E-28
compare keyword, E-28
compare literal, E-29
continuation, E-21
data interpretation, E-25
definition of, Glossary-7
factor 1 location, E-26
factor 2 location, E-28
fixed format, E-18

Index

guidelines for mixing include and omit
options, E-21

identification of a Record Selection record,
E-20

include option, E-20
include/omit specifications, E-20
OR option, E-21
purpose and order of, E-4
relationship of factor 1 and factor 2, E-27
relationship of include sets to Field

Selection record, E-23 .
relationship of omit sets to Field Selection

record, E-25
sequence number, E-20
showing relationship between Record

Selection specifications, E-21
table of entries, E-18
table of include sets, E-21
table of omit sets, E-24

record selection statement, in Sort program,
4-11

< record selection statement>, (See
< include and delete statement>)

record-sorting order, in Header record, E-12
record, compiler control designator, 5-3
records

logical, (See logical records in B 1000
FILE statement, conversion of)

per area in B 1000 FILE statement,
conversion of, D-3

RECORDS
A Series Sort parameter statement, 4-9
conversion of B 1000 statement, D-10

REFORMAT compiler control option
replacing B 1000 TEACH statement, D-1
use of, 5-11

<reformat option>, 5-11
regularly sorted output, (See SORTR)
relation, use of, 4-12
< relation> , 4-12
relational operator, definition of, Glossary-7
relative record locations, requesting, 4-5
relative record numbers

Index-15

Index

use in GSORT, E-7
use in Sort program, 5-7

RELEASE
conversion of in B 1000 FILE statement,

D-5
option in A Series FILE statement, 3-2

release number, assigning, 5-13
< release number>, 5-13
release of tape, requesting in file statement,

3-2
remapping records

creating output records with GSORT, E-2
program examples, E-44
with GSORT compiler control option, E-3

remaps, in Field Selection record, E-40
removing input file in B 1000 FILE

statement, request for, D-3
replacing a key field character, in GSORT job,

E-39,E-40
Report Program Generator, (See RPG,

definition of)
required SORT statements, 2-1
RESET LIST compiler control option, use of,·

D-9
RESET statement in compiler control record,

5-4
RIGHT option, use in sign positioning, 2-7
RIGHT SEPARATE option, use in sign

positioning, 2-8
RIGHT ZONE option, use in sign positioning,

2-7
<rpa>, D-3
RPG, definition of, Glossary-7
RSA data type in B 1000 statements,

conversion of, D-8
RSN data type in B 1000 statements,

conversion of, D-8
<rsz>, D-3
RUN command

use of, 1-3
with GSORT, E-5

run-time
defining file attributes in WFL, 1-5
error messages, GSORT, E-50

run-time error
caused by displacement size, 2-4
definition of, Glossary-7

running
GSORT program, E-5
Sort program, 1-2

from WFL, 1-4

Index-16

s
SA data type in B 1000 statements,

conversion of, D-8
SAVE command in CANDE, use of, 1-1
saving Sort program, example of, 1-2
secondary input file, description of, C-l
secondary source file, description of, B-1
secondary source-language input file, control

. of, 5-9
selecting

a record-sorting order, in GSORT job,
E-12

records based on binary values, in GSORT
job, E-26

records for sorting or merging, in GSORT
job, E-18

records for sorting or merging, in Sort
program, 4-11

the fields in an output record, in GSORT
job, E-8

semicolon, use of, 2-2
SEPARATE sign positioning, use of, 2-8
separating SORT statements, 2-2
SEQ compiler control option, use of, 5-11
Sequence Base compiler control option, use

of, 5-12
< sequence base option>, 5-12
SEQUENCE compiler control option, 2-2

use of, 5-11
< sequence increment option>, 5-12
Sequence Increment, compiler control option,

use of, 5-12
sequence number

assigning new values, 5-11
assigning values to, 5-12
in Field Selection record, E-32
in Header record, E-I0
in Record Selection record, E-20
method of altering, 5-10

sequence number field, use of, 2-2
< sequence option>, 5-11
SEQUENTIAL file type, compiling, 1-3
SET statement in compiler control record,

5-4
sign

clause, use of, 2-6
positioning of, 2-7

LEADING SEPARATE, 2-8
LEADING ZONE, 2-8
LEFT SEPARATE, 2-8
LEFT ZONE, 2-8

1169794-002

RIGHT SEPARATE, 2-8
RIGHT ZONE, 2-7
TRAILING SEPARATE, 2-8
TRAILING ZONE, 2-7

< sign clause>, 2-6
signed

alphanumeric data, defining in B 1000
state~ents,1}-8

numeric data, defining in B 1000
state~ents,1}-8

signed data, E-36
similarities of GSORT and Sort programs,

E-1
simple condition, use of, 4-12
< simple condition> , 4-12
SINGLE co~piler control option, use of, 5-12
< single option>, 5-12
single-precision

definition of, Glossary-8
designation of real literal, 2-11

single-spaced listing, producing, 5-12
size of

record, calculating, 3-2
work file, designating, 4-10

SN data type in B 1000 state~ents,
conversion of, 1}-8

SORT B 1000 state~ent, conversion of, 1}-10
SORT co~piler files, B-1

CARD,B-1
CODE,B-2
ERRORFILE, B-2
ERRORS, B-2
LINE, B-1
NEWSOURCE, B-1
SOURCE,B-1

SORT co~piler, method of record sub~sion,
5-2

SORT DATA CARD, use of, 1-4
sort efficiency, increasing, 4-7
SORT keyword

in WFL, 1-4
purpose of, 1-2

SORT language
definition of, Glossary-8
keywords, list of, A-I

sort optimization, 4-9
using RECORDS parameter state~ent,

4-9
SORT par~eter statements

MEMORY, 4-7
PARITY DISCARD, 4-8
RECORDS, 4-9

1169794-002

TAGSEARCH,4-9
use of, 4-7
WORKFAMILY, 4-10
WORKSIZE, 4-10

Index

sort perfor~ed in ~e~ory, request for, 4-3
SORT procedure, use of, 1-2
SORT processing state~ents

COLLATE,4-1
DIS~T}u?E,4-2

DISKSORT, 4-2
STABLE, 4-4
TAGSORT, 4-5
TAPESORT, 4-6
use of, 4-1

COLLATE, 4-1
DIS~T}u?E,4-2

MEMORYONLY, 4-3
MERGE, 4-3

Sort progr~ 2-1
co~piling

fro~CANDE, 1-3
fro~ WFL, 1-4

creating, 1-1
differences from GSORT program, E-2
example of

co~bined co~pi1e and run, 1-3
co~piling for syntax-only, 1-3
creating, 1-2
designating input file, 1-4
designating output file, 1-4
saving, 1-2
separate compile and run, 1-3
writing,I-2

files, description of, C-l
DISKC, C-l
DISKF, C-l
IN,C-l
OUT, C-l

including comments, 2-2
modifying, 1-1
position of co~piler control records, 2-2
record format, description of, 2-2
running

from CANDE, 1-3
from WFL, 1-4

similarities to GSORT program, E-l
structure of, 2-1
syntax, 2-1
syntax-only compilation, 1-3
TASKV ALUE task attribute, use of, 1-6
use of, 1-1
writing, 1-1

Index-17

Index

use of uppercase characters, 1-1
< sort program> , 2-1
SORT statements, 2-1

compiler control record, use of, 5-4
FIELD, use of, 3-3
FILE, use of, 3-1
KEY, use of, 3-3
numbers for, 1-1
optional, 2-1, 4-1
parameter statements, 4-7
processing statements, 4-1
record selection statement, 4-11
required,2-1,3-1
separation of, 2-2

< sort statements> , 2-1
sort, requesting use of

disk, 4-2
tape, 4-6

sort, tag, (See tag sort)
SORTA, E-7, E-50

order input records written into output
file, E-ll

program example, E-47
use ofField Selection records, E-31

sorted output files .
construction of in Sort program, 4-9
identifying type in Header record, E-ll
record addresses, (See BaRTA)
regular, (See SORTR)
summary, (See SORTRS)

sorting order, definition, 3-4, E-7
sorting with accumulated totals, E-7
SORTR,E-6

content of records, E-7
determining presence of key field in output

file, E-13
order input records written into output

file, E-ll
program example

by integer, E-49
with both include and omit, E-44
with conditional include, E-44
with conditional omit, E-44
with record selection, E-43, E-48
without record selection, E-42

selecting fields for output record, E-8
specifying length of output record, E-13
use of Field Selection records, E-31
use of forced data fields, E-36
use of normal data fields, E-35

SORTRS,E-7

Index-18

determining presence of key field in output
file, E-13

specifying length of output record, E-13
use of Field Selection records, E-31
use of forced data fields, E-36
use of normal data fields, E-35
use of summary data fields, E-35

SOURCE file
definition of, Glossary-8
description of, B-1

source program, definition of, Glossary-8
source-language image

assigning new sequence numbers, 5-11
deletion of, 5-4

spacing, producing single-spaced listing, 5-12
specification file, printing specifications and

messages, B-1
specifying

hexadecimal equivalents in an ALTSEQ
statement,E-16

overflow indicators, E-41
splitting

integer across record boundary, 2-2
keyword across record boundary, 2-2
literal across record boundary, 2-2

STABLE processing statement, 4-4
< stable statement> , 4-5
stack value, assigning to Boolean option, 5-4
stack, definition of, Glossary-8
standard collating sequence

coding Header record, E-12
use of, F-l

statement numbers, 1-1, (See also sequence
number)

storage locations, including information in
listing, 5-8

string expression of file attribute, 3-3
string, definition of, Glossary-8
structure

of GSORT program, E-4
of Sort program, 2-1

summary data, E-7
suinmary data field

data types, E-38
definition of, Glossary-8
use of, E-35

summary data overflow
defining indicator, E-39
detecting, E-41
field length, E-41
length of field, E-40
preventing, E-41

1169794-002

summary overflow indicator field
comparing characters, E-39

summary overflow indicator, in Field selection
record, E-39

symbolic file
definition of, Glossary-8
name of, B-1

syntax
error

caused by VARIABLE element of FILE
statement, D-4, D-5

SYNTAX
B 1000 statements, conversion of; D-10
code file disposition, use of, 1-4

syntax error
associated with DISKANDTAPE

processing statement, 4-2
associated with DISKSORT processing

statement, 4-2
associated with INVALID CHARACTER,

1-1
associated with invalid literal types, 2-12
associated with MEMORY parameter

statement, 4-8
associated with MEMORYONLY

processing statement, 4-3
associated with MERGE processing

statement, 4-3
associated with PARITY DISCARD

parameter statement, 4-8
associated with RECORDS parameter

statement, 4-9
associated with STABLE processing

, statement, 4-5
associated with TAGSEARCH parameter

statement, 4-9
associated with TAGSORT processing

statement, 4-5
associated with TAPESORT processing

statement, 4-6
associated with WORKF AMILY parameter

statement, 4-10
associated with WORKSIZE parameter

statement, 4-10
associating literal with DIGIT, 2-11
associating literal with ZONE, 2-11
definition of, Glossary-8
effect on compilation, 1-3

syntax of
ALTSEQ statement, E-14
B 1000 FILE statement, D-2

data type, D-7

1169794-002

file input part, D-2
file name element, D-5, D-6
maximum block size, D-2
output part, D-4

~ccomponents,2-3

BIT in displacement, 2-4, 2-5
BYTE in displacement, 2-4

Index

compiler control record, 5-2, 5-3
DELETE record selection statement, 4-11
digit, 2-3
DIGIT in displacement, 2-4
displacement, 2-4
Field Selection specification, E-30
FIELD statement, 3-4
file attributes, 3-2
FILE statement, 3-1
Header specification, E-8
HEX in displacement, 2-4
INCLUDE record selection statement,

4-11
integer, 2-3
Integrated Tape and Disk sort, 4-2
KEY statement, 3-4
literal, 2-10

graphic, 2-10
hex, 2-10
integer, 2-10
real, 2-10

offset, 2-4
offset-2, 2-4
PACKED in displacement, 2-4
parameter statements

MEMORY; 4-8
PARITY DISCARD, 4-8
RECORDS, 4-9
TAGSEARCH, 4-9
WORKFAMILY; 4-10
WORKSIZE, 4-11

processing statements
COLLATE, 4-1
DISKANDTAPE, 4-2
DISKSORT, 4-2
MEMORYONLY; 4-3
MERGE,'4-4
STABLE,4-5
TAGSORT, 4-6
TAPESORT, 4-7

Record Selection specification, E-18
record selection statement, 4-11
Sort program, 2-1
type, 2-5
WORD in displacement, 2-4

Index-19

Index

syntax statement in B 1000, translating to
A Series syntax, 5-11

syntax-only compilation
example of, 1-3
of SORT programs, 1-3

SYSTEM/DUMP ALL, use of, D-9

T

tag sort
definition of, Glossary-8
in GSORT, E-6

tag-type, use of, 4-6
<tag-type>, 4-6
TAGCOBOL B 1000 statement, not

supported by A Series, D-1
TAGRPG B 1000 statement, not supported

'by A Series, D-1
TAGSEARCH parameter statement, 4-9
< tagsearch statement>, 4-9
TAGSORT

B 1000 statement, conversion of, D-10
processing statement, 4-5

< tagsort. statement> , 4-6
~pe

designating number for
DISKANDTAPE processing statement,

4-2
Integrated Tape and Disk sort, 4-2

requesting closure with release, D-5
TAPE in B 1000 FILE statement, conversion

of, D-3 '
tape release

in FILE statement, 3-2
tape sort

default memory allocation, 4-7
designating number of, 4-7
designation of, 4-6

TAPESORT
A Series processing statement, 4-6
B 1000 statement, conversion of, D-11

< tapesort statement, 4-7
task attribute

definition of, Glossary-8
TASKSTRING, using to submit CCRs, 5-2
TASKV ALUE, meaning and testing of, 1-6

task variable, definition of, Glossary-8
TASKSTRING task attribute, accepting

CCRs,5-2
TASKV AL UE task attribute, meaning and .

testing of, 1-6

Index-20

TEACH B 1000 statement, (See
REFORMAT compiler control
option)

temporary compiler control record, use of,
5-1

TEXT file type, compiling of, 1-3
TIME statement, conversion of, D-1
TIMING statement, conversion of, D-1
totals, in SORTRS, E-7
TRAILING option, use in sign. positioning,

2-7
TRAILING SEPARATE option, use in sign

positioning, 2-8
TRAILING ZONE option, use in sign

positioning, 2-7
translating

B Series syntax to A Series syntax, 5-11
messages, with MultiLingual System, 1-1

type, 2-5, (See also data type)
default units of, 2-3
designating in key fields, 3-5
list of valid literal types, 2-12
offile,de~g, 1-2
SEQUENTIAL file, use of COMPILE

command, 1-3
syntax of, 2-5
TEXT file, use of COMPILE command, 1-3

type of job, in Header record, E-11
type, of record, E-4
<type>, 2-5
types of key fields, E-33
types of printed messages, designating, E-13
types of sorted output files when GSORT

option is set, E-6

u
UA data type in B 1000 statements,

conversion of, D-7
UDATE,E-30
UDAY,E-30
UMONTH, E-30
UN data type in B 1000 statements,

conversion of, D-7
unconditional forced field, use of, E-34
units

default type, 2-3
for MEMORY B 1000 statement, D-9
in key field, 3-4

unpacked data, specifying, E-26

1169794--002

unpacked decimal format, definition ot
Glossary-9

unpacked decimal number, E-36
unsigned data, E-36
uppercase characters, use of, 1-1
user name, including in BlOOD FILE

statement, D-6
using Sort programs, 1-1
UYEAR,E-30

v
valid literal types, table ot 2-12
value

assigning to sequence numbers, 5-12
compiler control record, use ot 5-1
compiler option, use of

Sequence Base, 5-12
Sequence Increment, 5-12
VERSION, 5-12

< value option> , 5-3
VARIABLE in B 1000 FILE statement,

conversion of, D-4
VERSION compiler control option, use of,

5-12
version information field

definition of, Glossary-9
method of setting, 5-12

< version option>, 5-13

w
WFL, (See Work Flow Language)
word, definition of, Glossary-9
WORD, syntax of in displacement, 2-4
WORDS, as element in MEMORY parameter

statement, 4-8
work file

definition of, Glossary-9
description ot C-1
size designation, 4-10

Work Flow Language
comments, use ot 1-5
compiling Sort program, example ot 1-4
defaults for

ERRORLIMIT compiler control option,
5-5

GSORT compiler control option, 5-6
LIST compiler control option, 5-7

1169794-002

Index

definition ot Glossary-9
immediate execution compilation, example

of, 1-5
initiating compilation from, 1-2
job disposition, list of, 1-4
Local Data Specification, use of, 1-4
SORT DATA CARD, use of, 1-4
using file attributes defined

at run time, 1-5
in compilation, 1-5

using to
compile Sort programs, 1-4
run Sort programs, 1-4
test TASKVALUE, 1-6

work tapes, designation ot 4-7
< work tapes>, 4-7
WORKF AMILY parameter statement, 4-10
<workfamily statement>, 4-10
WORKP ACK B 1000 statement, conversion

of, D-11
WORKSIZE parameter statement, 4-10
<worksize statement>, 4-11
writing Sort program, 1-1

z
ZIP B 1000 statement, not supported by

A Series, D-1
ZONE

data type
internal representation of, 2-8
use of, 2-7

data type in B 1000 statements, conversion
of,D-8

field associating with literal, 2-11
list of valid literal types, 2-12
use in sign positioning, 2-7

zone and digit comparison
specifying for alphanumeric data, E-25
specifying for numeric data, E-26
table of, F-1

zone only comparison
for binary values, E-26
specifying for alphanumeric data, E-25
specifying for numeric data, E-26
table of, F-3

Index-21

Index

?, (See question mark, use of in WFL)
:, (See colon, use of to denote comments)
", (See quotation marks, use of in file

designation)
$, (See dollar sign, dollar sign)
$MERGE, use of, 2-2
$SEQUENCE, use of, 2-2
%, (See percent sign, using to)
#, (See number sign, purpose of)

Index-22 1169794-002

NOTES

11~1111111~~III~II~I~nllmllllmg
1169794000000380

