
Distribution Code SE

Burroughs

Reference
Manual

Priced IIem
Printed In U.S.A.
December 1985

1169844

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material, including
direct, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/or information complies
with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document
should be submitted on a Field Communication Form
(FCF) with the Class specified as "2" (System
Software). the Type specified as "1" (F.T.R.), and
the Product specified as the seven-digit form number
of the manual (for example. "1169844"). The FCF
should be sent to the following address:

Burroughs Corporation
PA&S/orange County
19 Morgan
Irvine, CA 92 7 18

1

2

3

4

CONTENTS

INTRODUCTION .. • • • •
ORGANIZATION OF THIS MANUAL. .

Using the Manual . .
Finding Information.

RELATED DOCUMENTJ ..

PROGRAM STRUCTURE. •
PROGRAM UNnr . . .
SCOPE.

Local Identifiers ..
Global Identifiers .

LANGUAGE COXPONENTS.
BASIC SYMBOL .
IDENTIFIER .' • .
NUMBER

Number Ranges
Compiler Number Conversion .
Exponents., . .

REMARK ... ' .
STRING LITERAL .

DECLARATIONS ,0 •

ARRAY DECLARATION.
ARRAY REFERENCE DECLARATION ..
BOOLEAN DECLARATION ..
COMPLEX DECLARATION ..
DEFINE DECLARATION . .

Define Invocation ..
DIRECT ARRAY DECLARATION
DOUBLE DECLARATION
DUMP DECLARATION . • . .
EVENT AND EVENT ARRAY DECLARATIONS .
EXPORT DECLARATION . .
FILE DECLARATION
FORMAT DECLARATION . . .

Editing Phrase Letters
Editing Modifiers.

FORWARD REFERENCE DECLARATION
INTEGER DECLARATION ...
INTERRUPT DECLARATION.
LABEL DECLAR~TION ...
LIBRARY DECLARATION ..
LIST DECLARA.TION . . .
MONITOR DECLARATION ..
OUTPUTMESSAGE ARRAY DECLARATION ..
PICTURE DECLARATION ..
POINTER DECLARATION ..
PROCEDURE DECLARATION.

1
3
6
6

8

9
9

12
13
13

15
16
21
23
25
26
26
27
30

39
41
52
55
58
60
61
68
71
73
78
81
85
89
98

· . 120
· . 121
· • 123

126
· . 128
· • 129
• . 132

. 136
• • 141

. 147
· . 160

. • . 165

iii

5

iv

REAL DECLARATION
STRING DECLARATION . . .
STRING ARRAY DECLARATION
SWITCH FILE DECLARATION ..
SWITCH FORMAT DECLARATION.
SWITCH LABEL DECLARATION . .
SWITCH LIST DECLARATION ..
TASK AND TASK ARRAY DECLARATIONS .
TRANSLATETABLE DECLARATION
TRUTHSET DECLARATION . . .
TYPE DECLARATION
VALUE ARRAY DECLARATION ..

STATEMENTS
ACCEPT STATEMENT . . .
ASSIGNMENT STATEMENT . .

Arithmetic Assignment.
Array Reference Assignment .
Boolean Assignment
Complex Assignment
Mnemonic Attribute Assignment ..
POinter Assignment
String Assignment .. .
Task Assignment

ATTACH STATEMENT . . .
BREAKPOINT STATEMENT

· . 182
185

. 187

. 189
. 192

· . . 195
· . 197

199
202
207

· . . 212
· .. 214

· . . 219
· . . ~21

· . . 223
· . 225

231
· . 234

· . . 237
· .. 239

241
· . 243

246
248
250

Interaction with the Breakpoint Intrinsic ... · . . 251
CALL STATEMENT
CANCEL STATEMENT . . .
CASE STATEMENT . .
CAUSE STATEMENT.
CAUSEANDRESET STATEMENT ..
CHANGEFILE STATEMENT
CHECKPOINT STATEMENT

Checkpoint/Restart Messages.
CLOSE STATEMENT ...
CONTINUE STATEMENT .
DEALLOCATE STATEMENT .
DETACH STATEMENT .
DISABLE STATEMENT .. .
DISPLAY STATEMENT .. .
DO STATEMENT . .
ENABLE STATEMENT . .
EVENT STATEMENT ...
EXCHANGE STATEMENT .
FILL STATEMENT .
FIX STATEMENT ..
FOR STATEMENT ..
FREE STATEMENT .
FREEZE STATEMENT . .
GO TO STATEMENT.

Bad Go To ..
I/O STATEMENT. .

· . 259
· . 261

263
· . 266

· .. 268
.... 270

· . . 273
277
280

· 285
· . 287

288
· . 289

291

· 293
295

· 297
298

· 300
303

· 305
· . 311

312
. . . 313

· 313
315

6

Normal I/O • .
Direct I/O .

IF STATEMENT
INTERRUPT STATEMENT ..
INVOCATION STATEMENT .
LIBERATE S~rATEMENT .
LOCK STATEMENT . . .
MERGE STATEMENT ...
MESSAGESEARCHER STATEMENT. .
MULTIPLE ATTRIBUTE ASSIGNMENT STATEMENT. .
ON STATEMENT
OPEN STATEJIENT . . .
POINTER STATEMENT. .
PROCEDURE INVOCATION STATEMENT . .

Calling Procedures with Parameters .
PROCESS STATEMENT. • .
PROCURE STATEMENT. . . .
PROGRAMDUMP STATEMENT ...
READ S T A TE1J[ENT

Data Format for Free-field Input
REMOVEFILE STATEMENT
REPLACE STATEMENT. . . . • • . .

<source part> Combinations .
String Literal Source Parts ..

· 316
· . . 316

· . . . 319
· . . 322
• . • 323
· .. 324
· . . 325

· . 327
· . 329

· . . . 332
· 334
· 340

· . . 342
· . . 346
· . • 348

350
· 353

· • 355
· 359

· . 371
· 377

· . . 379
. 386

· . 387
Arithmetic Expression Source Parts. 392
Pointer Expression «source» Source Parts
Source Parts with Boolean Conditions ..
Other Source Parts . . • . . .

REPLACE FAMILY-CHANGE STATEMENT.

· 39q
403
407

· . • 409
REPLACE POINTER-VALUED ATTRIBUTE STATEMENT · 411
RESET STATEMENT. .
RESIZE STATEMENT
REWIND STATEMENT .
RUN STATEMENT ...
SCAN STATEMENT • .

<scan part> Combinations•
Scan Parts Without Count Parts
Scan Parts with Count Parts .•.

SEEK STATEMENT . .
SET STATEMENT ..
SORT STATEMENT .

Arrays in Sort Procedures.
SPACE STATEMENT.
SWAP STATEMENT .
THRU STATEMENT .
WAIT STATEMENT . .
WAITANDRESE~r STATEMENT .
WHEN STATEMENT . .
WHILE STATE11ENT.
WRITE STATEMENT. .
ZIP STATEMENT.

EXPRESSIONS.

· 414
· 415
· 423

425
· . . 427

428
· . 429

· 430
433

· . 435
· . • . 436

· . 443
· .. 445

· . 447
450

· . 452
456

· . 458
· . 459

· . . 461
470

· 473

v

6.1

6.2

7
7.1

7.2
7.3

vi

EXPRESSIONS: CONCEPTS AND TYPES .
ARITHMETIC EXPRESSION.

ArithmetiC Primaries
Arithmetic Operators.
Precedence of Arithmetic Operators ..
Precision of ArithmetiC Expressions.
Types of Resulting Values.

BIT MANIPULATION EXPRESSION ..
Concatenation Expression . .
Partial Word Expression ...

BOOLEAN EXPRESSION
Operators in Boolean Expressions .
Precedence in Boolean Expressions ..
Boolean Primaries ..

CASE EXPRESSION
COMPLEX EXPRESSION . . .
CONDITIONAL EXPRESSION .
DESIGNATIONAL EXPRESSION
FUNCTION EXPRESSION

473
475

· 477
· 478
· 480
· 481

482
· 484

. .. 484
489

· 491
· . 496

· 498
· . 499

504
· 506
· 510
· 512

· . 514
ArithmetiC Function Designator.
Boolean Function Designator.
Complex Function Designator.
Pointer Function Designator.
String Function Designator .

. 514
. 515

POINTER EXPRESSION .
STRING EXPRESSION.

INTRINSIC FUNCTIONS.
INTRINSIC NAMES BY TYPE RETURNED .

ArithmetiC Intrinsic Names .
Boolean IntrinsiC Names
Complex Intrinsic Names .. .
Pointer Intrinsic Names
String Intrinsic Names .

INTRINSIC FUNCTION DESCRIPTIONS ..

COMPILING PROGRAMS .
FILES USED BY THE COMPILER

INPUT FILES.
CARD File. . .
TAPE File. . . .
INCLUDE Files.
HOST File ..
INFO File.

OUTPUT FILES .
CODE File.
NEWTAPE File .
LINE File ...
ERRORFILE File . .
XREFFILE File.
INFO File. . . .

SOURCE RECORD FORMAT . .
COMPILER CONTROL OPTIONS

COMPILER CONTROL RECORDS . .

· 516
517

· 518
· 519

523
· . 528
· . 528

· 528
· 531
· 531

· . 531
531

· . 532

· 587
587

· . 589
· 589

· . 589
· . 590

590
· 590
· 591

· . 591
· . 591
· . 591

· 592
· 593
· 593
· 594
· 595

596

8

9

OPTION DESCRIPTIONS ..

INTERFACE TO 'THE LIBRARY FACILITY.
FUNCTIONAL DESCRIPTION OF LIBRARIES.

· . 603

• • • • • 655
· 656

Library Programs . 656
Calling Programs . . •
Library Directories arid Templates.
Library Initiation

· . 656
· 656

657
Linkage Provisions 659
Discontinuing Linkage. .
Error Handling

CREATING LIBRARIES
Library Sharing Specifications .

REFERENCING LIBRARIES
Library Attributes
Entry Point Type Matching.
Parameter Passing.

LIBRARY EXAM:PLES
Library: OBJECT/FILEMANAGER/LIB. .
calling Program #1
Library: OBJECT/SAMPLE/LIBRARY ..
Library: OBJECT/SAMPLE/DYNAMICLIB.
Calling Program #2 . . . • . .

DIISII INTERFACE.

· 660
· . 660
· • 662

662
· 664
· 665

· • 668
· . 669

· 671
· 671

· . 674
· . 675

676
• 678

• • 679
9.1 INVOKING A DA'rABASE. 680

DATABASE DECLARATION 680
DATABASE EQUATION. • 689

9.2 BDMSALGOL BASIC LANGUAGE CONSTRUCTS. . . . 691
9.2.1 BDMS IDENTIFIERS AND QUALIFICATION. 691

BDMS IDENTIFIERS • 691
IDENTIFIERS OF OCCURRING ITEMS 692
QUALIFICATION. 693

9.2.2 REFERENCING DATABASE ITEMS. . . . 695
INPUT MAPPING. 696
OUTPUT MAPPING 700

9.2.3 THE SELECTION EXPRESSION
9.3 BDMSALGOL STATEMENTS ..

ASSIGN STATEMENT . . .
BEGINTRANSACTION STATEMENT
BDMS CLOSE STATEMENT .
CREATE STATEMENT . . .
DELETE STATEMENT . . .
DMTERMINATE STATEMENT.
ENDTRANSACTION STATEMENT
FIND STATEMENT
BDMS FREE STATEMENT.
GENERATE STATEMENT
GET STATEMENT.
INSERT STATEMENT . . .
BDMS LOCK STATEMENT. .
MIDTRANSACT][ON STATEMENT . .
MODIFY STATEMENT

· 703
708

· . 709
. 712

. 715
. 718

721
· . 724
• . 726

· 729
732

· 734
· 737
· 739

. 741
. . . . 744

· 746

vii

9.4

9.5

9.6
9.7

10

11

A

B

viii

BDMS OPEN STATEMENT.
PUT STATEMENT
RECREATE STATEMENT .
REMOVE STATEMENT . .
BDMS SET STATEMENT . .
STORE STATEMENT .. .

BDMSALGOL FUNCTIONS
DMTEST FUNCTION ..
STRUCTURENUMBER FUNCTION

EXCEPTION PROCESSING .
DATABASE STATUS WORD . . .
EXCEPTION HANDLING . . .

BDMSALGOL COMPILER CONTROL OPTIONS
BINDING AND SEPGOMP OF DATABASES

BINDING ...
SEPCOMP ..

COKPILE-TIME FACILITY.
COMPILE-TIME VARIABLE. .
COMPILE-TIME IDENTIFIER.
COMPILE-TIME STATEMENTS.

. . 747
· 750

· . . 752
· . . 754

· 757
· . . • . 760
· 763

· . . 763
. 766
. 768

. 768
· 769
· 772
· 774
· 774
· 776

• 777
· . 777

· 779
· 780

'BEGIN Statement · . . 781
'DEFINE Statement · 781
'FOR Statement
'IF Statement ...
'INVOKE Statement.
'LET Statement .
'THRU Statement
'WHILE Statement

EXTENSION TO THE DEFINE DECLARATION ..
COMPILE-TIME COMPILER CONTROL OPTIONS.

BATCR FACILITY
BATCH SOURCE INPUT . .
IMPLEMENTATION SCHEME ..

RESERVED WORDS . •
RESERVED WORDS LIST ...
RESERVED WORDS BY TYPE

Type 1 Reserved Words.
'Type 2 Reserved Words.
Type 3 Reserved Words.

DATA REPRESENTATION •.. ~ .
FIELD NOTATION

.

CHARACTER REPRESENTATION
Character Values and Graphics ..
Default Character Type ..
Signs of Numeric Fields.

ONE-WORD OPERAND
Real Operand . . .
Integer Operand ..
Boolean Operand.

.
. · . ·

·

· 782
· 783
· 784

784
· 785
· 785
· 786
· 787

• 789
· 791
· 796

• 799
· 800

· 803

· 803

· 803
805

• 807
· . 807
· . 808
· . 811

· 817
· 819
· 820
· 820

· 821
. 823

TWO-WORD OPE~~ND .
Double-Precision Operand .
Complex Operand.

DATA DESCRIPTORS AND POINTER

c RUN-TIME FORllAT·-ERROR MESSAGES

UNDERSTANDING RAILROAD DIAGRAMS . .

GLOSSARY.

INDEX ..

• 824
• • 824
• • 826

• 827

· . 831

· 837

· . 847

ix

1

1. INTRODUCTION

Purpose of this Manual

~rhis reference manual is intended for use by the programmer who is
familiar with ALGOL. Both the org~nization and the presentation of the
material are designed to supply answers to well-conceived questions
regarding the syntax. semantiCS, and pragmatics of ALGOL as implemented
on A Series systems. This manual is not a tutorial text.

lBurroughs Extended ALGOL

Burroughs Extended ALGOL is a high-level. structured programming
language designed for A Series and B 5000/B 6000/B 7000 Series systems.
In addition to implementing virtually all of ALGOL 60, Burroughs
Extended ALGOL has provisions for communication between programs and
input/output (I/O) devices. the editing of data. and the implementation
of diagnostic facilities for program debugging.

'The Structure of ALGOL

The fundamental constituents of ALGOL are the language components.
These are the building blocks of the language and include, among other
things, letters, digits. and special characters such as the
semicolon (:).

At a level of complexity higher than language components are
declarations. statements. and expressions. These are the building
blocks of ALGOL programs. A declaration associates identifiers with
specific properties. For example. an identifier can be associated with
the properties of a rE!al number. A statement indicates an operation to
be performed. such as the assignment of a numerical value to an array
element or the tranSfE!r of program flow to a location in the program out
of the normal sequence. An expression describes operations that are
performed on specified quantities and return a value. For example. the
,expression "SQRT(100) III returns 10.0, the square root of 100.

Note: Burroughs Extended ALGOL is .based on the "Revised Report on the
Algorithmic Language ALGOL 60" (Communications of the ACM. Vol. 6.
No.1; January, 1963).

2
ALGOL REFERENCE MANUAL

At the highest level are program units. A program unit is any group of
ALGOL constructs that can be compiled as a whole by the ALGOL compiler.
An ALGOL program is, by definition. a program unit.

This manual describes the language components. declarations, statements,
expressions. and program units of Burroughs Extended ALGOL. Unless
otherwise stated. the word ALGOL refers to Burroughs Extended ALGOL.

3
Introduction

ORGANIZATION OF THIS MANUAL

The earlier chapters dE~scribethe fundamentals of ALGOL: the structure
of programs and the basic components of the language. The middle
chapters describe thE? major constructs of ALGOL: declarations,
statements, and expressions. The later chapters describe topics related
to compiling ALGOL programs, and interfaces between ALGOL and other
facilities such as libraries and Data Managem~nt System II (DMSII). The
appendixes contain refl?rence information about reserved words and about
the format used internally to store data.

The manual contains the following chapters and appendixes.

Chapters

2 PROGRAM STRUCTURE

This chapter defin,es the basic structure of an ALGOL program and the
scope of variables.

3 LANGUAGE COMPONENTS

This chapter defines the most elemental constructs in the ALGOL
language.

41 DECLARATIONS

This chapter defines the constructs that establish data structures
in an ALGOL program and associate identifiers with those data
structures. These constructs are ordered alphabetically by
declaration name.

STATEMENTS

This chapter defines the constructs that describe operations to be
performed in an ALGOL program. These constructs are ordered
alphabetically by statement name.

/.

4
ALGOL REFERENCE MANUAL

6 EXPRESSIONS

This chapter defines the constructs used to describe operations that
are performed on specified quantities and return a value. The first
part of the chapter describes the types of expressions. These types
are ordered alphabetically by expression name. The second part of
the chapter describes functions that are intrinsic to ALGOL. These
functions are ordered alphabetically by their names.

7 COMPILING PROGRAMS

This chapter describes the various input and output files used by
the ALGOL compiler and the compiler control options that control the
compiler's processing of ALGOL source input.

8 INTERFACE TO THE LIBRARY FACILITY

This chapter describes library creation,
initiation.

9 DMSII INTERFACE

use, sharing, and

This chapter describes the ALGOL interface with Data Management
System II (DMSII).

10 COMPILE-TIME FACILITY

This chapter describes how ALGOL source data can be compiled
conditionally and iteratively.

11 BATCH FACILITY

This chapter describes how the cost of system overhead may be
reduced by grouping programs together in a single run.

5
Introduction

Appendixes

A RESERVED WORDS

This appendix lists the identifiers that need not be declared in an
ALGOL program before they are used, if they appear in recognized
contexts.

B DATA REPRESENTATION

This appendix describes the internal form of the various operands,
the descriptor, the pointer, and the various character sets.

C RUN-TIME FORMAT-ERROR MESSAGES

This appendix interprets the error numbers given at run time when an
error occurs in a READ or WRITE statement.

An explanation of railroad diagrams, a glossary, and an index appear at
the end of this manual.

ALGOL REFERENCE MANUAL

Using the Manual

The chapters that describe declarations, statements, and expressions are
each divided into sections describing constructs appropriate to the
chapter. In the table of contents, sections are indicated by the major
unnumbered subheadings under the chapter titles. Within the chapters
that describe declarations and statements. and within the first half of
the chapter on express~ons, the sections are ordered alphabetically and
follow the same general format:

The syntax for the construct is presented in a railroad diagram.
This is a diagrammatic description of the acceptable ways of
using the construct in a program. For those unfamiliar with
railroad diagrams, a description of how they are read can be
found in "Understanding Railroad Diagrams."

Under the heading "Semantics" appears a description of the
function of the construct. If further explanation of the syntax
is required, it occurs here.

Under the heading "Pragmatics" appears information about the
implementation of the construct on A Series systems.

Examples of use of the construct usually appear at the end of the
section.

The chapter on expressions is divided into two sub-chapters. The first
sub-chapter describes the types of expressions. The second sub-chapter
describes functions that are intrinsic to ALGOL. The two sub-chapters
are ordered alphabetically by expression name and function name,
respectively. In the sub-chapter on functions. the syntax for each
function is presented, and the action of the function and data type
returned by the function are given.

Finding Information

Because of the alphabetical ordering of the chapters on declarations,
statements, and expressions, the reader can quickly find the description
of any of those language constructs.

While using the manual, the reader will find "See also" references.
These point to information related to the subject under discussion.
"See also" references do not include references to whole chapters or to
alphabetically ordered sections. These can easily be found using the
chapter tabs and the section headings that appear at the top of each
page in the alphabetized chapters. Neither do "See also" references
include the fundamental language constructs that appear in the "Language
Components" chapter. It is assumed that a reader will have an

7
Introduction

understanding of the contents of that chapter before trying to use the
rest of the manual.

"See also" references do include met~tokens (language constructs) below
the level of declarations, statements, and expressions that appear in a
section but that are not defined in ~hat section. "See also" references
also point the reader to other. less easily found, related information.

For example, the folloViring is the syntax for the CHANGEFILE statement, a
statement used to change the names of directories and files without
opening the files:

<changefile statement>

CHANGEFILE -- (--<directoryelement>-- , --<directory element>-)

>-) ---------------------------~----------------------------------1

<directory element>

----<pointer expresslon>----I
I 1

I-<array row>----------I
I 1

I-<string literal>-----I

St?e also
<array row> . 43

A cross reference to other syntax appears only for <array row> . It is
assumed the reader is familiar with the syntax for <string literal>
because it is a basic construct. The syntax for <pointer expression>
ca.n be found quickly by using the index tab for the "Expressions"
chapter. and then by paging through the alphabetical listing of
expressions to the "Poi,nter Expression" section.

8
ALGOL REFERENCE MANUAL

RELATED DOCUJlENTS

Document

ALGOL Test and Debug System (TADS) User's Guide

Binder Reference Manual

CANDE Reference Manual

DMSII DASDL Reference Manual

DMSII Transaction Processing System (TPS)
Programmer's Manual

DMSII User Language Interface
Softwar~ Operation Guide

Editor User's Guide

I/O Subsystem Reference Manual

Message Translation Utility User's Guide

Operator Display Terminal (ODT) Reference Manual

System Software Utilities Reference Manual

Work Flow Language (WFL) Reference Manual

Form No.

1169539

5014582' J"

1169869

1163805

1164043

1180536

1169976

1169984

1169554

1169612

1170024

1169802

9

2. PROGRAM STRUCTURE

A program unit is a group of ALGOL constructs that can be compiled as a
whole.

Syntax

<program unit>

----<block>---------------­
! 1

I-<compound statement>-!

. --------~---------------I

1 I

I~<level 2 procedure>--I
1

1

I
1<--------- ; -----~---I
1 1

I-------------------<separate procedure>----- .
1 1 1

I-<global part>-I 1-

<block>

1

1

1

1

1

1

1

-I
1

-I

-- BEGIN --<declaration list>-- --<statement list>-- END --I

<declaration list>

1<------ ; -----1
1 1

~---<declaration>----I

<statement list>

1<----- ; ----I
I 1

----<statement>----j

<compound statement>

-- BEGIN --<statement list>-- END --I

10
ALGOL REFERENCE MANUAL

<level 2 procedure>

--<procedure declaration>--I

<global part>

-- [--<declaration list>--] --I

<separate procedure>

--<procedure declaration>--I

Semantics

Program units can be blocks, compound statements, level 2 procedures. or
separate procedures that have a lexical (lex) level of three or greater
and that can have global declarations.

A block is a statement that groups one or more declarations and
statements into a logical unit by using a BEGIN-END pair. A compound
statement is a statement that groups one or more statements into a
logical unit by using a BEGIN-END pair. A compound statement is a block
without any declarations.

The definitions of a compound statement and a block are recursive: both
compound statements and blocks are made. in part. of statements. A
statement can itself be a compound statement or a block.

The structures of compound statements and blocks are illustrated below.

BEGIN
<statement>;
<statement>:

<statement>:
END

Compound Statements

BEGIN
<statement>;
(statement>;
BEGIN

<declaration>;
BEGIN

<statement>;
<statement>;

END;
END;
<statement>;

END

BEGIN
<declaration> ;
<declaration>;

<declaration>:
<statement>;
<statement>;

<statement>;
END

Program Structure

Block.s

BEGIN
<declaration>:
(declaration>:
<statement>:

END

BEGIN
<declaration>:
<statement>;

END;
BEGIN

<statement>:
<statement>;
<statement>;

END:

11

A program unit that is a separate procedure is typically bound to a host
program to produce a more complete program.

The <global part> construct allows global identifiers to be referenced
within a separate procedure. Any program unit that has a global part is
valid only for binding to a host.

A program unit can be preceded. but not followed, by a remark.

Pragmatics

A compound statement is executed in-line and does not require a
procedure entrance and exit. A block, however, is executed like a
procedure and requires a procedure ~ntrance and exit. Entering a block
costs extra processor resources; entering a compound statement does not.

12
ALGOL REFERENCE MANUAL

Examples

Compound Statement

BEGIN
DISPLAY("HI THERE");
DISPLAY("THAT'S ALL FOLKS");

END.

Level 2 Procedure

PROCEDURE S;
BEGIN

REAL X:
X .- SQRT(4956):

END.

Block.

BEGIN
REAL X;
X .- 100;

END.

Separate Procedure witb
Global Part

[REAL S;
ARRAY B[0:255);
FILE LINE;)

REAL ~ROCEDURE Q;
BEGIN

Q := S*B[4];
WRITE(LINE,/,"DONE~};

END.

Note that, according to the syntax, the last statement of a block or
compound statement is not followed by a semicolon (;). However, in the
above examples (and throughout this manual), the last statement is
always followed by a semicolon. This is valid because the statement
before the END is the "null statement."

The scope of an identifier is defined to be the portion of an ALGOL
program in which the identifier can successfully be used to denote its
corresponding values and characteristics.

In one part of an ALGOL program. an identifier can be used to denote one
set of values and characteristics, while in another part of the program,
the same identifier can be used to denote a different set of values and
characteristics.

For example, in one block the identifier EXAMPLE_IDENT can be declared
as a REAL variable. That is, the identifier can be used to store
single-precision, floating-poi~t arithmetiC values. Such an identifier
could be assigned the value "3.14159". In another block of the same
program. EXAMPLE_IDENT can be declared as a STRING variable. In this
block, EXAMPLE_I DENT could be assigned the value "BURROUGHS ALGOL IS A
HIGH-LEVEL. BLOCK-STRUCTURED LANGUAGE".

'. 13

'Program Structure

Although EXAMPLE_INDENT can be of type real and of type string in the
same program, w1thina specific block. EXAMPLE_IDENT has only one type
associated with it. In general, the scope of an identifier is always
such that within a given block, the identifier has associated with it at
most one set of values and characteristics.

The scope of an identifier is described by rules that define which parts
of the program are included by the scope, which parts of the program are
excluded by the scope, and the requirements for uniqueness placed on the
choice of identifiers. These general rules are described in the
following paragraphs.

Local Identifiers

An identifier that is declared within a block is referred to as "local"
to that block. The value or values associated with that identifier
inside the block are not aSSOCiated, with that identifier outside the
block. In other words, on entry to a block, the values of local
identifiers are undefined; on exit from the block, the values of local
identifiers are lost. An identifier that is local to a block is
"global" to blocks occurring within the block. When a block is exited,
identifiers that are global to that block do not lose the the values
associated with them. The properties of global identifiers are
described more completely below.

~;lobal Identifiers

An identifier that appears within a block and that is not declared
within the block. but is declared in an outer block, is referred to as
"global" to that block. A global identifier retains its values and
characteristics as the blocks to which .it is global are entered and
E?xi ted.

14
ALGOL REFERENCE MANUAL

As the following program illustrates, an identifier can be local to one
block but global to another block.

BEGIN
FILE PRTR(KIND = PRINTER);
REAL A;
A := 4.2 @ -1: % FIRST STATEMENT OF OUTER BLOCK
BEGIN

LIST Ll (A);
L~ .r.cG:t:R A..

LIST L2 (A):
A := 3; % FIRST STATEMENT OF INNER BLOCK
WRITE (PRTR. */, LI);
WRITE (PRTR. */, L2);

END; % OF INNER BLOCK
A := A*A;
WRITE (PRTR. */, A):

END. % OF PROGRAM

In the preceding example, the identifier A that is declared REAL is
global to the inner block. The A declared as type INTEGER in the inner
block is local to the inner block, so when the inner block is exited,
the integer A and its value. 3, are lost. Within the scope of integer
A, a reference to A is a reference to the integer A, not to the global,
real A. At the time the declaration for list LI is compiled. the
declaration for local A has not been seen, so list Ll contains the
global. real A. However, the list L2 contains the local. integer A.
The A referenced in the outer block is the A that was declared REAL and
assigned the value 4.2 @ -1. The result of the first WRITE statement is
"A=O.42". The result of the second WRITE statement is "A=3". The
result of the third WRITE statement is "A=O.1764". which equals
4.2 @ -1 * 4.2 @ -1.

Global identifiers are used in inner blocks for the following reasons:

1. To carry values that have been calculated in an outer block
into the inner block

2. To carry a value calculated inside the block to an outer block

3. To preserve a value calculated within a block for use in a
later entry to the same block

4. To transmit a value from one block to another block that does
not contain and is not contained by the first block

15

J LANGUAGE COMPONENTS

Language components are the building blocks of ALGOL. They consist of
basic symbols, such as digits and letters, and symbol constructs, which
are those groups of basic symbols that are recognized by the ALGOL
compiler.

Syntax

<language component>

----<basic symbol>--------I
I I
I-<symbol construct>-!

<symbol construct>

----<define invocation>----I
! I
I-<identifier>--------I
I !
I-<number>------------I
I I
I-<remark>------------I
I I
I-<reserved word>-----I
I I
I-<string literal>----I

Semantics

Basic symbols, identifiers, numbers~ remarks, and string literals are
described under separate headings in this chapter.

Because the
declaration,

define
the

invocation is closely
define invocation is

Declaration" in the chapter "Declarations."

linked to
explained

the
under

DEFINE
"DEFINE

Reserved words are described and listed in the appendix "Reserved
Words."

16

BASIC SnmQL

Syntax

<basic symbol>

----<letter>-------I
I I
I-<digit>-----I
I I
I-<delimiter>-I

<letter>

ALGOL REFERENCE MANUAL

Anyone of the uppercase (capital) letters A through Z.

<digit>

Anyone of the Arabic numerals 0 through 9.

<delimiter>

----<bracket>-----I
I I
I-<operator>-I
I I
I-<space>----I

<bracket>

I
I­
I
I­
I
1-]
1

1- "
/

1- BEGIN -
1

/- END ---
I
1- # -----
1

/- LB
1
1- RB

--I

<parameter delimiter>

Language Components

--)"<letter string>"(--I

<letter string>

Any character string not containing a quotation mark (").

<operator>

-<arithmetic operator>--------------I
I

-<logical operator>--------------I
I

-<relational operator>-----------I
1

-<string concatenation operator>-I
I

- := ----------------------------1
I

- :=: ---------------------------1
I

- & -----------------------------1

17

18
ALGOL REFERENCE MANUAL

<arithmetie operator>

+ --------1
1 1
1- - -----1
1 1
1- * -----1
1 1
1- TIMES -I
1 1
1- MUX ---I
1 1
1- / -----1
1 1
1- DIV ---I
1 1
1- MOD ---I
1 I

1- ** ----I

<logical operator>

NOT ----I
1 1
1- AND -I
1 1
1- OR --I
1 I
1- 1 ---I
1 1
1- EQV -I
I 1
1- IMP -I

<relational operator>

----<string relational operator>----I
1 I

1- IS -------------------------1
1 1

1- ISNT -----------------------1

Language Components

<string relational operator>

LEQ ----I
I 1
1- <= --I
I I
1- LSS -I
1 1
1- < ---I
1 I
1- EQL -I
/ I
1- = ---
I
1- NEQ -
/

/- "= --
/

1- GTR -
I
1- > ---
1
/- GEQ -
1
1- >= --

<string concatenation operator>

CAT ----I
1 1

/- II --I

<space>

/<---------------1
/ 1

----<single space>----I

<single space>

One blank character.

20

Semantics .

Only uppercase letters
specifically disallowed.

ALGOL REFERENCE MANUAL

are permitted. Lowercase letters are
Individual letters do not have particular

meanings except as used in pictures and formats.

Digits are used to form numbers, identifiers, and string literals.

Delimiters include operators. spaces, and brackets. An important
function of these elements is to delimit the various entities that make
up a program. Each delimiter has a fixed meaning, which, if not
obvious, is explained elsewhere in this manual in the syntax of
appropriate constructs. Basic symbols that are words, such as some
delimiters and operators, are reserved for specific use in the language.
A complete list of these words, called reserved words. and details of
the applicable restrictions are given in the appendix "Reserved Words."

In ALGOL ,60, spaces have no significance, because such language
components as BEGIN are construed as one basic symbol. However. in a
machine implementation of such a language. this approach is not
convenient for programmers. In ALGOL, for example, BEGIN is composed of
five letters, TRUE of four letters, and PROCEDURE of nine letters. No
space can appear between the letters of a reserved word; otherWise, the
reserved word is interpreted as two or more elements.

Reserved words and basic symbols are used, together with variables and
numbers, to form expressions. statements. and declarations. Because
some of these constructs place programmer-defined identifiers next to
delimiters composed of letters, these identifiers and delimiters must be
separated. Therefore. a space must separate any two language components
of the following forms:

1. Delimiter composed of letters

2. Ident if ier

3. Boolean value

4. Unsigned number

Aside from these requirements. the use of a space between any two
language components is optional. The meanings of the two language
components are not affected by the presence or absence of the space.

Language Components

IDENTIFIER

Syntax

<identifier>

--<letter>----------------------------I

Semantics

i I
1 I < ------------------ I I
1 I I I
1---/62\---<letter>-----1

I I
I-<digit)--I
1 1

!- - ------1

21

Identifiers have no intrinsic meaning. They are names for variables,
arrays, procedures·, and so forth. An identifier must start with a
letter, which can bE? followed by any combination of letters, digits. and
underscore characters (_).

pragmatics

The scopes of identifiers are described in "Scope" in the chapter
"Program Structure."

See also
Scope

Examples

Valid Identifiers

A
I
B5
YSQUARE
EQUITY
RETURN_RATE
D2R271GL
TEST_l

12

22

Invalid Identifiers

1776
2BAD
$
X-Y
NET GAINS
NO.

TEST
BEGIN

ALGOL REFERENCE MANUAL

Reason

Does not begin with a letter
Does not begin with a letter
"$It not an allowed character
,,_It not an allowed character
Blank spaces not allowed
".It not an allowed character
Does not begin with a letter
Reserved word

Language Components

NUlmER

Syntax

<number>

-------------<unsigned number>--I
I I
I-<sign>-I

<sign>

+ ----I
I 1

1- - -I

<unsigned number>

----<decimal number>----------------------I
I 1 I
1 I-<exponent part>-i
1

I-<exponent patt>--------------------I

<decimal number>

----<unsigned integer>--------~-----~----------I
I I I
I I-<decimal fraction>-I
I I I

1- . ----------------/
I

I-<decimal fraction>----------------------I

<unsigned integer>

I < -------- !
I I

----<digit>----I

<decimal fraction>

--<unsigned integer>--I

23

24
ALGOL REFERENCE MANUAL

<exponent part>

-- @ ---------<integer>--i
I 1

1- @ -I

<integer>

-------------<unsigned integer>--!
! 1

I-<sign>-I

Semantics

No space can appear within a decimal number. All numbers that do not
contain the double-precision exponent delimiter "@@" are considered to
be single-precision numbers.

Examples

Unsigned Integers

5
69

Integers

1776
-6225b
+548

Valid Numbers

o
+545627657893
1.75@-46
-4.31468
-@2
.375

Decimal Fractions

. 5

.69

.013

Exponent Parts

@8
@-06
@+54
@@lb

Decimal Numbers

69 .
.546
3.98

25

Unsigned Numbers

99.44
@-11
1354.543@48
.1864@4

Invalid Numbers

50 00.5@8 8
1,505,278
@63.4
1.667E-Ol

Number Ranges

Language Components

Reason

Blanks spaces are not allowed.
Commas are not allowed.
Exponent part must be an integer.
"E" is not allowed for exponent part.

25

The sets of numbers that can be represented in ALGOL are symmetrical
with respect to zero; that is, the negative number corresponding to any
valid positive number can also be expressed in the language and the
object program.

The largest and smallest integers and numb.ers that can be represented
are as follows (decimal versions are approximate):

1. Any integer between plus and minus 549755813887 = 8**13 - 1 =
4"007FFFFFFFFF", inclusive, can be represented in integer form.

2. For single-precision numbers:

a. The largest, positive, normalized, single-precision number
that can be represented is 4.31359146674@68 = (8**13 - 1)
* 8**63 = 4"lFFFFFFFFFFF".

b. The smallest, positive, normalized, single-precision
number that can be represented is 8.75811540204@-47 =
8**(-51) = 4"3F9000000000".

Zero and numbE~rs wi th absolute values between the largest and
smallest values given above can be represented as
single-precisj.on real numbers.

3. For double-precision numbers:

a. The largE~st, positive, normalized, double-precision number
that can be represented is
1.94882838205028079124467@@29603 = (8**13 8**(-13» *
8**32767 = 4"lFFFFFFFFFFFFFFFFFFFFFFF".

b. The smallest, positive, normalized, double-precision
number that can be represented is
1.9385458571375858335564@@-2958l 8**(-32755)
4"3F9000000000FF8000000000".

Zero and numbers with absolute values between the largest and
smallest values given above can be represented as
double-precision numbers.

26
ALGOL REFERENCE MANUAL

Compiler Number Conversion

The ALGOL compiler can convert into internal format a maximum of 24
significant decimal digits of mantissa in double precIsIon. The
"effective exponent," which is the explicit exponent value following the
"@@" sign minus the number of digits to the right of the decimal paint.
must be less than 29604 in absolute value. For example. the final
fractional zero cannot be specified in the smallest, positive,
normalized, double-precision number shown above: -29581 (23
fractional digits) -29604. Leading zeros are not counted in
determining the number of significant digits. For example, 0.0002 has
one significant digit, but 1.0002 has five significant digits.

The compiler accepts any value that can be represented in double
precision (not more than 24 significant decimal digits) as an unsigned
number. If this unsigned number does not contain an exponent part with
"@@" (specifying a double-precision value). then the single-precision
representation of that value is used. If the value represented by the
significant digits of such an unsigned number, when disregarding the
placement of the decimal point. is greater than 549755813887, then some
precision is lost if the unsigned number is converted to single
precision.

Exponents

The exponent part is a scale factor expressed as an integer power of 10.
The exponent part u@@ <integer>" signifies that the entire number is a
double-precision value.

If the form of the unsigned number used includes only an exponent part,
a deCimal number of 1 is assumed. For example, @-ll is interpreted as
l@-ll.

Language Components

REIIARK

Syntax

<remark>

----<end remark>--------I
I I
I-<comment remark>-/
I /
I-<escap~ remark>--I

<end remark>

27

Any sequence of letters, digits, and spaces not containing the
reserved words END, ELSE, or UNTIL.

<comment remark>

-- COMMENT --<COInment characters>-- --I

<comment characters>

Any sequence of EBCDIC characters not containing a semicolon (;).

<escape remark>

-- % --<escape text>--I

<escape text>

Any sequence of EBCDIC characters.

Semantics

Remarks are provided as methods of inserting program documentation
throughout an ALGOL source file.

The end remark can follow the language component END. The compiler
recognizes the termination of the end remark when it encounters one of
the reserved words ENrD. ELSE, or UNTIL. or any nonalphabetic, nonnumeric
EBCDIC character. Defines are not expanded within an end remark.

28
ALGOL REFERENCE MANUAL

The comment remark is delimited by the word "COMMENT" at the beginning
and a semicolon (;) at the end. The comment remark can appear between
any two language components except within editing specifications.

Because remarks, string literals, and define invocations are language
components, a comment remark is not recognized within a string literal,
a define invocation, or another remark. Comment remarks can contain the
dollar sign ($). but the comment remark must not contain a dollar sign
as the first nonblank character on a source record. If a dollar sign is
the first nonblank character on a source record, the compiler interprets
the source record as a compiler control record.

The percent sign (%) preceding escape text in an escape remark can
follow any language component that is not. contained in editing
specifications. The escape remark begins with the percent sign and
extends to the beginning of the sequence number field of the record.
The compiler does not examine the escape remark. When the percent sign
that precedes an escape remark is encountered, the compiler skips
immediately to the next record of the source file before continuing the
compilation.

Examples

The following program illustrates some syntactically correct uses of the
remark.

BEGIN
FILE F(KIND=PRINTER COMMENT;);
FORMAT COMMENT; FMT COMMENT; (A4,I6);
PROCEDURE P(X,COMMENT;Y,Z);

REAL X,Y COMMENT; ,Z; % PERCENT SIGN CAN BE USED HERE
X := Y + COMMENT: Z; % HERE TOe

IF COMMENT; 7 > 5 THEN
WRITE(F.<"OK"»:

IF 4 COMMENT; > 2 THEN
WRITE(F.<"OK"»;

IF 8 > 5 THEN
WRITE COMMENT; (F. <"OK"»;

END OF PROGRAM.

Language Components

The following program illustrates some invalid uses of the remark.

BEGIN
FILE F(KIND=PRINTER);
FORMAT FMT(13,FlO.3 COMMENT; ,A4);
ARRAY A[O:99];
REAL X;
FORMAT ("ABC", % CANNOT BE USED. "DEE");
WRITE(F.<"INVALID USE" COMMENT;»;
REPLACE POINTER(A) BY "ABCD COMMENT;EFGHIJ";
X := "AB,COMMENT;C";
COMMENT CANNOT BE USED HERE COMMENT; EITHER;

END.

29

30
ALGOL REFERENCE MANUAL

STRING LITERAL

Syntax

<string literal>

1<------------------------1
1 I

----<simple string literal>----I

<simple string literal>

----<numeric string literal>----I
1 I
I-<al~ha string literal>---I

<numeric string literal>

----<binary code>-- " --<binary string>-- " --------------1
I I
I-<quaternary code>-- " --<quaternary string>-- " ---I
1 1

I-<octal code>-- " --<octal string>-- " -------------1
1

I-<hexadecimal code>-- " --<hexadecimal string>-- " -I

<binary code>

1 ------1
I I
1- 10 --I
I \

1- 12 --I
I j

1- 120 -I
I I
1- 13 --I
I \

1- 130 -I
I I
1- 14 --I
I I
1- 140 -I
I 1

1- 16 --I
I I
1- 160 -I
I I
1- 17 --I
1 I
1- 170 -I
I I
1- 18 --I
I I
1- 180 -\

<binary string>

I < -------- I
I i

------ 0 ------1
I I
1- 1 -j

31
Language Components

32

<quaternary code>

2 ------1
1
1- 20 --I
1 I
1- 24 --I
1 I
- 240 -

- 26 --

- 260 -

- 27 --

- 270 -

- 28 --

- 280 -

<quaternary string>

1<--------1
I 1

------ 0 ------1
1 1

1- 1 -I
1 I

1- 2 -I
1 1

1- 3 -I

<octal code>

3 ------1
I I
1 - 30 --I
1 I

1- 36 --I

1- 36C -I

<octal string>

ALGOL REFERENCE MANUAL

1<------------------1
I I

----<octal character>----I

Language Components

<octal character>

0 ----I
I I
1- 1 -I
I I
1- 2 -I
I I
1- 3 -\
I I
1- 4 -I
I I
1- 5 -I
\ I
I- e -I
I 1

1- 7 -I

<hexadecimal code>

4 ------1
I I
\- 40 --I
I I
1- 47 --I
I I
1- 470 -I
I 1
\- 48 --I
I I
1- 480 -I

<hexadecimal string>

1<------------------------1
I

----<hexadecimal character>----I

33

34
ALGOL REFERENCE MANUAL

<hexadecimal character>

o ----I
1 1
1- 1 -I
1 1
1- 2 -I
/ 1

1- 3 -I
1 1
- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

- A -

- B -

- C -

- D -

- E -

- F -

<alpha string literal>

-------------------- " --<EBCDIC string>-- " ----I
I

I-<EBCDIC code>-/ 1

I /

1-------------- " --<BCL string>-- " -------1
I I I

I I-<BCL code>-/
I I
I-<ASCII code>-- " --<ASCII string>-- " ----I

<EBCDIC code>

8 -----1
1 1
1- 80 -I

<EBCDIC string>

Language Components

1<---1
1 1

------------ any <EBCDIC character> except quotation mark ------1
1 1 1

1- " -I I
1 1

1- " --1

<EBCDIC character>

Anyone of the 256 possible EBCDIC characters.

<BCL code>

6 -----1
1 1

1- 60 -I

<BCL string>

--<EBCDIC string>--I

<ASCII code>

7 -----1
1 1

1- 70 -I

<ASCII string>

1<--1
1 1

------------ any <ASCII character> except quotation mark ------1
1 1 1

1- " -I 1
1 1

1- " ---1

35

36
ALGOL REFERENCE MANUAL

<ASCII character>

Anyone of the 128 possible ASCII characters.

Semantics

Character Size

Strings can be composed of binary (I-bit) characters, quaternary (2-bit)
characters, octal (3-bit) characters, hexadecimal (4-bit) characters,
BCL (6-bit) characters, ASCII (7-bit in 8-bit format) characters, or
EBCDIC (8-bit) characters. The word formats of various character types
are described under "Character Representation" in the appendix "Data
Representation."

See also
Character Representation 808

String Code

The string code determines the interpretation of the characters between
the quotation marks (") of a string literal. The string code specifies
the character set and, for strings of less than 48 bits, the
justification. The first digit of the string code specifies the
character set in which the source string is written. The next nonzero
digit (if any) specifies the internal character size of the string to be
created by the compiler. If no nonzero digit is specified, the internal
size is the same as the source size. If the internal size is different
from the source size. the length of the string must be an integral
number of internal characters. For example, the string literal
48"CIC2C3C4" is an EBCDIC string expressed in terms of hexadecimal
characters.

If the string literal contains fewer than 48 bits. a trailing
the string code specifies that the string literal
left-justified within the word and that trailing zeros are to
the remainder of the word.

zero
is to
fill

in
be

out

If the string literal contains fewer than 48 bits, the absence of a
trailing zero in the string code specifies that the string literal is to
be right-justified within the word and that leading zeros are to fill
out the remainder of the word.

37
Language components

If the string literal contains 48 or more bits, the presence or absence
of a trailing zero in the string code has no effect.

If the string code is not specified, the source string and the internal
representation of the string are of the default character type. For
more information, refer to "Default Character Type" in the appendix
"Data Representation."

See also
Default Character Type 817

String Length

~rhe maximum length permitted for a simple string literal is 256
characters; the maximum length permitted for a string literal is 4095
characters. However, when a string literal is used as an arithmetic
primary, it must not €'xceed 48 bits in length.

Internally. a string literal of 48 bits or less is represented in the
object code as an 8-bit, 16-bit, or 48-bit literal. A string literal
more than 48 bits long is stored in a "pool array" created by the
compiler. An internal pointer carries the character size and address of
the string within the pool array.

BeL Strings

BCL strings can contain any EBCDIC character. However. any EBCDIC
character that does not have a BCL equivalent is translated by the
compiler into a BCL question mark (36"14").

NOTE

The BCL data type is not supported on all
A Series and B 5000/B bOOOiB 7000 Series
systems. The appearance of a BCL
construct that may cause the creation of
a BCL descriptor, sUCh as a BCL string
literal more than 96 bits long, will
cause the program to get a compi~e-time

warning message.

38
ALGOL REFERENCE MANUAL

ASCI I Str'lngs

The ASCII string code can be used only with ASCII strings composed
entirely of characters that have corresponding EBCDIC graphics. This is
because the compiler recognizes only ASCII characters that have
corresponding EBCDIC graphics.

The compiler translates each ASCII character into an 8-bit character.
The rightmost seven bits are the ASCII representation of that character;
the leftmost bit is o.

ASCII characters that are not in the EBCDIC
written as a hexadecimal string in which
characters represents the internal code of
right-justified with a leading 0 bit.

Quotation Mark

character set must be
each pair of hexadecimal

one ASCII character,

The quotation mark (") can appear only as the first character of a
simple string literal. Strings with internal quotation marks must be
broken into separate simple strings by using three quotation marks in
succession. For example, the string literal ""ABC" represents the
string "ABC, and the string literal "A"""BC" represents the string A"BC.

Dollar Sign

String literals can contain the dollar sign ($). The dollar sign must
not be the first nonblank character on a source record. If a dollar
sign is the first nonblank character on a source record, the compiler
interprets the source record as a compiler control record.

39

.4 DECLARATIONS

A declaration associateS's certain characteristics and structures wi th an
identifier. In an ALGOL program, every identifier must be declared
before it is used. The compiler ensures that subsequent usage of an
identifier in a program is consistent with its declaration.

Syntax

<declaration>

Each of the following metatokens represents a valid ALGOL declaration.

<array declaration>
<array reference declaration>
<Boolean declaration>
<complex declaration>
<define declaration>
<direct array declaration>
<double declaration>
<dump declaration>
<event array declaration>
<event declaration>
<export declaration>
<fi~e declaration>
<format declaration>
<forward interrupt declaration>
<forward procedure declaration>
<forward switch label declaration>
<integer deciaration>
<interrupt declaration>
<label declaration>

<library declaration>
<list declaration>
<monitor declaration>
<output message array declaration>
<picture declaration>
<pointer declaration>
<procedure declaration>
<real declaration>
<string array declaration>
<string declaration>
<switch file declaration>
<switch format declaration>
<switch label declaration>
<switch list declaration>
<task array declaration>
<task declaration>
<translate table declaration>
<truth set declaration>
<value array declaration>

AK&AI DECLARATION

Declarations
41

ARRAY

An ARRAY declaration dleclares one or more identifiers to represent
arrays of specified fixed dimensions.

Syntax

<array declaration>

-- ARRAY ------------------- >
1 1 1 1

1- LONG -I 1- OWN -I I-<array class>-I

1<----------------------- , ------~----------------I
I
1

1

1<----- . ------1
1 1

1

I
1

>-------<identifier>--- [--<bound pair list>--] -~---------------I
1 1
I-<array row equivalence>----------------------I

<array class>

----<type>--------------I
I 1
I~<character type>-I

<type>

BOOLEAN I ----I

I I
1- COMPLEX -I
I 1
1- DOUBLE --I

I
1- INTEGER -I
I 1

1- REAL ----I

42
ARRAY

<character type>

ASCII -----1
1 1

1- BCL ----I
1 1

1- EBCDIC -I
1 1

1- HEX ----I

carray identifier>

ALGOL REFERENCE MANUAL

An <identifier> that is associated with an array in an ARRAY
declaration.

<character array identifier>

An <array identifier>, <array reference identifier>, <direct array
identifier>, or <value array identifier> that was declared with a
<character type>.

<word array identifier>

An <array identifier>. <array reference identifier>. <direct array
identifier>. or <value array identifier> that was declared with a
<type> .

<bound pair list>

1 < ----- , ----- 1

1 I
----<bound pair>----I

<bound pair>

--<lower bound>-- --<upper bound>--I

<lower bound>

--<arithmetic expression>--I

<upper bound>

--<arithmetic expression>--I

Declarations

<array row equivalence>

--<identifier>-- [~-<lower bound>--] -- = --<array row>--1

<array row>

----cone-dimensional array name>----I
I 1

I-<arr~y name>--<row selecttir>-I

<one-dimensional array name>

43
ARRAY

An <array name> whose identifier was declared with one dimension.

<array name>

----<array identifj.er>--------------I
I I
I-<direct array identifier>----I
I I
I-<array referenceidentifier>-I
I I
I-<value array identifier>-----I

<row selector>

-- [-------------------------- * --] --I
I

1 1<-----------------1 I
I I I I
I---<subscript>-- . ---I

<subscript>

--<arithmetic expression>--I

<array designator>

--<array name>-~------------------------I
I I
I-<subarray selector>-I

44
ARRAY ALGOL REFERENCE MANUAL

<subarray selector>

-- [

See also

I
1<-----------------1 I
I 1 I

I---<subscript>-- • ---I

1<- . -I
I I

* ----

<array reference identifier> .. .
<direct array identifier>
<value array identifier>

Semantics

] --I

52
68

. . 214

After an array has been declared in an ARRAY declaration. values can be
stored in and retrieved from the elements of the array by the use of
subscripted variables. which are comprised of the array identifier and a
subscript list.

LONG Arrays

The LONG specification affects only array rows (see the description of
array row below). Normally. an array row longer than 1024 words is
automatically paged (segmented) at run time into segments of 256 words
each. "LONG" specifies that the array is not to be paged regardless of
its length.

The array size at which an ar~ay row is automatically paged can be
changed with the ODT command SEGARRAYSTART. (For more information on
the SEGARRAYSTART command, see the "Operator Display Terminal (ODT)
Reference Manual.") Arrays smaller than 1024 words are never paged.

OWN Arrays

If an array is declared to be OWN, the array and its contents are
retained on exit from the block in which the array is declared and are
available on subsequent re-entry into the block.

Own arrays are allocated only once, regardless of how many times entry
is made into the block in which the array is declared. If the own array
is declared with variable bounds, these bounds are evaluated once when

Declarations
45

ARRAY

the array is allocated, and the affected dimension retains these bounds
for the remainder of the execution of the program (unless the array is
resized~ refer to "RESIZE Statement").

Arrays not declared as own are deallocated on exit from the block in
'~hich they are declared and are reallocated on every entry into the
block in which they are declared.

Array Class

Arrays declared in the same ARRAY declaration are of the same array
class. If the array class is omitted, REAL is assumed.

Arrays not declared with a character type are called "word arrays."
Arrays declared with a character type are called "character arrays."

Word and character arrays can be passed as parameters and used as array
rows. Character arrays can be used as simple pointer expressions.

NOTE

The BCL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The appearance of a BCL
construct that may cause the creation of
a BCL descriptor. such as a BCL array.
will cause the program to get a
compile-time warning message.

IUement Width

The element width of an array is the number of bits used to contain each
element of the array. The element width is determined by the array
class. as follows:

DOUBLE, COMPLEX: 96 bits (double word)
INTEGER. REAL. BOOLEAN: 48 bits (single word)
EBCDIC. ASCII: 8 bits (6 characters per word)
BCL: 6 bits (8 characters per word)
HEX: 4 bits (12 characters per word)

46
ARRAY ALGOL REFERENCE MANUAL

Within the computer, arrays are manipulated by means of descriptors;
each descriptor specifies an element width appropriate to the array
class: single- and double-word descriptors are used for word arrays;
4-, 6-, and 8-bit descriptors are used for character arrays. Note that
6-bit descriptors are obsolete and are not supported on some systems.

Because complex and double array elements are composed of two 48-bit
words, the two words are allocated contiguously. The layout of a
complex array is as follows: the real part of the first element, the
imaginary part of the first element. the real part of the second
element, the imagina:y part of the second element, and so on.
Similarly. the layout of a double array is as follows: the first word
of the first element. the second word of the first element, the first
word of the second element, the second word of the second element, and
so on. For information on the internal representation of double and
complex operands, refer to "Two-Word Operand" in the appendix "Data
Representation."

See also
Two-Word Operand. 824

Bound Pair List

The subscript bounds for an array are given in the first bound pair list
following the array identifier. The bound pair list gives the lower and
upper bounds of all dimensions taken in order from left to right. In
all cases, upper bounds must not be less than their associated lower
bounds.

Arithmetic expressions used as array dim0nsion bounds are evaluated once
(from left to right) on entering the block in which the array is
declared. These expressions can depend only on values that are global
to that block or passed in as actual parameters. The results of the
arithmetic expressions are integerized. Arrays declared in the
outermost block must use constant or constant expression bounds.

Original and Referred Arrays

Every array identifier that is declared with a bound pair list is an
original array, which is distinct from all other original arrays.

There are three other ways to associate an identifier with an array:
array row equivalence. array reference assignment. and array
specification in a PROCEDURE declaration. In each of these cases, the
identifier refers to the same data as some original array. Such an

Declarations
47

ARRAY

identifier is called a "referred array." An array row equivalence or
array reference assignment can cause an array identifier of one array
class to refer to data in an original array of another array class.

Dimensionality

The dimensionality (number of dimensions) of an original array is the
number of bound pairs in the b.0und pair list with which the array is
declared. Arrays cannot have more than 16 dimensions.

The size (number of elements) of each dimension of an array declared
with a given bound pair is given by the following expression:

<upper bound> - <lower bound> + 1

The maximum size ofa dimension is 2**20-1 elements.

Array Row Equivalence

An array row equivalence causes the declared array identifier to refer
to the same data as the specified array row. That array row can be an
original array or another referred array. The declared identifier is an
equivalent array.

The size of the declar~d array is determined by the size and element
width of the array row and the element width for the array class of this
declaration. Let Sa and Wa be the size and element width of the array
row, and We be the element width for the equivalent array. The size of
the equivalent array, Se, is then

Se := (sa * Wa) DIV We

Because of the truncation implicit in the DIV operation, Se * We might
be less than Sa * Wa. In this case, indexing the equivalent array by
Se + <lower bound> causes an invalid index fault. Nevertheless, pointer
operations that use the equivalent array can access the entire area of
memory allocated to the original array to which the array identifier
ultimately refers: the memory area may hold more than Se elements of
width We.

48
ARRAY ALGOL REFERENCE MANUAL

The array r.ow equivalence allows the programmer to reference the same
array row with two or more identifiers. Each identifier can reference
the same data with different type, character type. or lower bound
specifications. For example, in the following program. after the
assignment 1[2J := 25.234 is executed, both I[2J and R[OJ contain the
value 25.0, but after the assignment R[O] := 25.234 is executed. both
I[2J and R[O] contain the value 25.234.

BEGIN
REAL ARRAY R[0:9J;
INTEGER ARRAY I[2J = R;

I[2J := 25.234;
R[OJ := 25.234;

END.

% Array row equivalence. The INTEGER
% array I refers to the same data as
% the REAL array R.

The array row equivalence part cannot appear in an ARRAY declaration
that declares an own array. For example,

OWN ARRAY A[OJ = B

is an invalid declaration. An array declared with an array row
equivalence part is own if and only if the array to which it is equated
is own.

Note: There are subtle restrictions on the correct declaration and use
of an array row equivalence where the array row of the declaration is a
row of an array reference, because the default state of an array
reference variable is uninitialized.

If the array reference is one-dimensional and has the same element width
as the new array. then the two identifiers become synonyms: whenever
the array reference variable is assigned a value, the equivalent array
describes the same data.

Otherwise, the array row equivalence is established from the value of
the array reference variable at the ~ime of entry into the block
containing the array row equivalence declaration; later assignments to
the array reference variable do not affect the array row equivalence.
Therefore, for the declaration to be useful. the array reference
variable must have been declared and initialized in a scope global to
the block declaring the array row equivalence.

Declarations

Subarray Selector

49
ARRAY

A subarray selector selects part of an array
for high-order dimensions and leaving
unspecified dimensions are indicated by
dimensionality of the subarray is the
subarray selector.

by specifying subscripts
others unspecified. The

an asterisk (*). The
number of asterisks in the

The total number of subscripts and asterisks in a subarray selector must
equal the dimensionality of the array identifier to which the subarray
selector is suffixed. In the degenerate case of no subscripts. the
number of asterisks equals that dimensionality, and the subarray is the
whole array. In all other cases, the subarray selector specifies a
subarray of reduced dimensionality.

For example, given the declarations

ARRAY A[O:9,1:40.0:99J;
INTEGER I,J; % (ASSUME 0 <= I <= 9 AND 1 <= J <: 40)

then

A and A[*.*.*J
A[I.*.*J

A[I,J.*]

Array Row

Denote the entire three-dimensional array
Denotes one of the ten two-dimensional arrays
that constitute A
Denotes one of the 40 one-dimensional arrays
(array rows) that constitute A[I,*.*J. and
one of the 400 one-dimensional arrays that
constitute A

An array row is a one-dimensional array designator.

Row Selector

A row selector is thE? limiting case of a subarray selector. with only
one asterisk.

50
ARRAY

Pragmatics-

ALGOL REFERENCE MANUAL

The maximum value of <lower bound> is 131.071; the minimum value of
<lower bound> is -131.071.

The maximum length of an array is 2~*20-l.

When "LONG" is specified, the maximum size of an array row is determined
by the overlay row size of the system. which is specified at cold-start
time.

For non-own arrays. an array is unreferenced from the time the program
enters the block in which the array is declared until the first
execution of a statement that refers to the array. Once such a
statement is encountered. the array is referenced or "touched" until the
program exits the block. For an array declared OWN, the array is
unreferenced from the time the program begins execution until the first
execution of a statement :eferencing the array is encountered. Once
such a statement is encountered. the array is referenced for the
remainder of program execution.

For character arrays, the actual storage area allocated is the number of
whole words sufficient to contain the specified number of characters.
Using pointer operations, the last portion of the last word in the· area
can be referenced. even if this portion is beyond the valid subscript
range. For example, if array Ais declared "EBCDIC ARRAY A[0:3]", the
characters corresponding to A[4] and A[5] can be referenced using a
pointer operation.

Examples

INTEGER ARRAY DOG[O:5.0:25,l:7,4:16]

Declares DOG. a four-dimensional array made up of b * 26 * 7 * 13 =
14196 integer elements.

OWN REAL ARRAY STUB[0:9]

Declares STUB. a one-dimensional own array made up of 10 real
elements.

Declarations

REAL ARRAY GROUP_REAL[0:17J. CAD[400:500,l:50J

51
ARRAY

Declares two real arrays: GROUP_REAL, which is a one-dimensional
array, and CAD, which is a two-dimensional array.

EBCDIC ARRAY GROUP_EBCDIC[OJ = GROUP_REAL[*J

Declares the EBCDIC array GROUP_EBCDIC. Array row equivalence
causes GROUP_EBCDIC to refer to the same data as the previously
declared real array GROUP_REAL. Note that the element width of
GROUP_REAL is 4,8 bits, whereas the element width of GROUP_EBCDIC is
eight bits. This means that a reference to a single element in
GROUP_REAL refers to 48 bits, and a reference to a single element in
GROUP_EBCDIC refers to eight bits.

ARRAY XRAY[X+Y+Z:3*A.+B]

Declares XRAY, a one-dimensional array. Because no array class is
specified, the array class of XRAY is real. The lower bound is the
integerized value of X + Y + Z, and the upper bound is the
integerized value of 3 * A + B.

LONG BOOLEAN ARRAY BIG_ARRAY[0:9999]

Declares BIG_ARRAY, a one-dimensional array made up of 10000 Boolean
elements. Because BIG_ARRAY is declared LONG, the array is not
paged (segmented). Because it is not paged. the array occupies
10000 contiguous words in memory.

ARRAY SEGARRAY[O:50000]

Declares SEGARRAY, a one-dimensional array made up of 50001 real
elements. Because SEGARRAY is not declared LONG and the array row
is longer than 1024 words, SEGARRAY is automatically divided at run
time into segments 256 words long.

COMPLEX ARRAY C[0:2,O:60]

Declares C, a two-dimensional array made up of 3 * 61 = 183 complex
elements. Note that the element width of a complex array is 96 bits
(two words).

52
ARRAY REFERENCE ALGOL REFERENCE MANUAL

ARRAY REFERENCE DECLARATION

An ARRAY REFERENCE declaration is used to establish an array reference
variable. The array reference assignment statement can then be used to
assign an array or part of an array to this variable.

Syntax

<array reference declaration>

--------------------------------- ARRAY -- REFERENCE --------------->

1- DIRECT -I I-<array class>-I

I<----------------~--- . -------------------1
I I

1 1 1<----- , -----1
I I I I

>-----<identifier>--- [--<lower bounds>--] -----------------------1

<array reference identtfier>

An <identifier> that is associated with an array reference in an
ARRAY REFERENCE declaration.

<direct array reference identifier>

An <identifier> that is associated with an array reference that is
declared DIRECT in an ARRAY REFERENCE d€:laration.

<lower bounds>

1<----------- , ----------1
I I

----<arithmetic expression>----I

See also
<array clas 5> • 41

Declarations

Semantics

53
ARRAY REFERENCE

Following an array reference assignment, any subsequent use of the array
reference identifier acts as a reference to the array assigned to it~

If the array class is not specified as COMPLEX. the array reference
variable can be declared DIRECT. This allows the array reference
variable to be used in direct I/O operations.

NOTE

The BCL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The appearance of a BCL
construct that may cause the creation of
a BCL descriptor. such as a BCL array
reference, will cause the program to get
a compile-time warning message.

If an array class is not specified, REAL is assumed.

The number of dimensions of the array reference variable
by the number of lower bounds in its declaration.
dimensions are allowed.

is determined
No more than 16

The initial state of an array reference variable is uninitialized. Any
attempt to use an uninitialized array ·reference variable as an array
results in a fault at run time.

See also
Array Reference Assignment.
Direct I/O.

Examples

ARRAY REFERENCE REFARRAY[3]

. . 231

. . 316

Declares REFARRAY', an array reference variable with a lower bound of
3. Because an array class is not specified. REFARRAY is a real
array reference variable.

54
ARRAY REFERENCE ALGOL REFERENCE MANUAL

DIRECT ARRAY REFERENCE DIRREFARRAY[N]

Declares DIRREFARRAY, a direct, real array reference variable with a
lower bound equal to the value of N. Because this array reference
variable is declared to be direct, it can be used in direct I/O.

COMPLEX ARRAY REFERENCE CREF1[0], CREF2[0,10.10]

Declares two complex array reference variables. CREFl is a
one-dimensional array reference variable with a lower bound of zero,
and CREF2 is three-dimensional with lower bounds of 0, 10. and 10.

Declarations

BOOLEAN DECLARATION:

55
BOOLEAN

A BOOLEAN declaration declares simple variables that can have Boolean
values of TRUE or FALSE.

Syntax

<Boolean declaration>

1 1

1- OWN -I

1<--------- . --------1
I 1

BOOLEAN -----<identifier)---------I
1 !
I-<equation part>-I

<Boolean identifier>

An <identifier> that is associated with the BOOLEAN data type in a
BOOLEAN declaration.

<equation part>

--<identifier>-- = --<identifier>--I

Semantics

A simple variable declared to be OWN retains its value when the program
exits the block in which the variable is declared, and that value is
again available when the program re-enters the block in which the
variable is declared.

The equation part causes the simple variable being declared to have the
same address as the simple variable associated with the second
identifier. This action is called "address equation." An identifier can
be address-equated only to a previously declared local identifier or to
a global identifier. The first identifier must not have been previously
declared within the block of the equation part.

Address equation is allowed only between integer. real, and Boolean
variables. Because both identifiers of the equation part have the same
address, altering th,e value of either variable affects the value of both
variables.

56
BOOLEAN ALGOL REFERENCE MANUAL

The following example demonstrates the effects of address-equating
Boolean and real variables.

BEGIN
REAL R;
BOOLEAN
R 4;

B .- B

B

OR
B .- TRUE:

END.

= R;
% B FALSE

B.[2:l]; 0'
70 B = TRUE
% B TRUE

The OWN specification has no effect on
The first identifier of an equation
identifier of the equation part is own.

R 4.0
R 5.0
R 1.0

an address-equated identifier.
part is own only if the second

A BOOLEAN declaration with an equation part is not allowed in the global
part of a program unit.

Pragmatics

The TRUE or FALSE value of a Boolean simple variable (and the value of
any other Boolean operand) depends only on the low-order bit (bit zero)
of the word. Each of the 48 bits of a Boolean simple variable contains
a Boolean value that can be interrogated or altered by using the partial
word part or conca teria t ion.

When a Boolean simple variable is allocated. it is initialized to FALSE
(a 48-bit word with all bits equal to zero). However, to ensure
compatibility with ALGOL 60, programmers should explicitly initialize
Boolean simple variables with appropriate assignment statements.

The appendix "Data Representation" contains additional information on
the internal structure of a Boolean operand as implemented on A Series
and B SOOOIB bOOO/E 7000 Series systems.

See also
Boolean Operand . 823

Declarations

Examples

BOOLEAN BOOL

Declares BOOL as a Boolean simple variable.

OWN BOOLEAN DONE, ENDOF!T

57
BOOLEAN

Declares DONE and ENDOFIT as Boolean simple variables. Because they
are declared OWN. th$se simple variables retain their values when
the program exits the block in which they are declared.

BOOLEAN FLAG, BINT = INTGR

Declares FLAG and BINT as Boolean simple variables. and
address-equates BINT to the previously declared simple variable
INTGR. BINT and INTGR share the same address.

58
COMPLEX

COMPLEX DECLARATION

ALGOL REFERENCE MANUAL

A COMPLEX declaration declares a simple variable that can have complex
values.

Syntax

<complex declaration)

1<----- . -----1
1

------------ COMPLEX ---<identifier>----I
1 1

1- OWN -I

<complex identifier>

An <identifier> that is associated with the COMPLEX data type in a
COMPLEX declaration.

Semantics

Complex variables allow for the storage and manipulation of complex
values in a program. The interpretation of complex values is the usual
mathematical one. The real and imaginary parts of complex values are
always stored separately as single-precision real values.

Because a real value is a complex value with an imaginary part equal to
zero, the set of real values is a subset of the set of complex values.
Therefore. arithmetic values can be assigned to complex variables. but
complex values cannot be assigned to arithmetic variables.

A simple variable declared to be OWN retains its value when the program
exits the block in which it is declared. That value is again available
when the program re-enters the block in which the variable is declared.

Declarations

Pragmatics

59
COMPLEX

The appendix "Data Representation" contains additional information on
the internal structure of a complex operand as implemented on A Series
and B 5000/B 6000/B 7000 Series systems.

See also
Complex Operand • 826

Examples

COMPLEX CIt C2

Declares CI and C2 as complex simple variables.

OWN COMPLEX CURRENT, VOLTAGE, IMP

Declares CURREN~r, VOLTAGE, and IMP as complex simple variables.
Because they are declared OWN. these simple variables retain their
values when the program exits the block in which they are declared.

60
DEFINE

. DEFINE DECLARATION

ALGOL REFERENCE MANUAL

The DEFINE declaration causes the compiler to save the specified text
until the associated define identifier is encountered in a define
invocation. At that point, the saved text is retrieved and compiled as
if the text were located at the position of the define invocation.

Syntax

<define declaration>

1<----- , -----1
1 1

-- DEFINE ---<definition>----I

<definition>

--<identifier>-------------------------- = --<text>-- # --I
1 I

I-<formal symbol part>-I

<define identifier>

An <identifier> that is associated with <text> in a
declaration.

<formal symbol part>

1 <------- . ------1
1 1

---<formal symbol>--- ----I
1

1 1 <------- , ------1 1
1 1 1
1- ---<formal symbol>---] -I

<formal symbol>

--<identifier>--I

DEFINE

Declarations

<text>

61
DEFINE

Any sequence of valid characters not including a free pound sign (#)
character.

Semantics

A define has two forms: simple and parametric. These forms are readily
differentiated because parametric defines have a series of parameters
(called formal symbols) enclosed in matching parentheses or brackets.

The formal symbols constitute the essential part of a parametric define.
Formal symbols function similarly to the formal parameters of a
PROCEDURE declaration. When a parametric define is invoked, wherever
formal symbols ~ppear in the text, a substitution of the correspondlng
closed text of the define invocation is made before that part of the
text is compiled. References to formal symbols cannot appear outside
the text of the corresponding parametric define. No more than nine
formal symbols are allowed in a parametric define.

Text is bracketed on the left by the equal sign (=) and on the right by
the pound sign (if). The equal sign is said to be "matched" with the
pound sign. The text can be any sequence of characters not containing a
"free" pound sign. A free pound sign is one that is not in a string
literal, not in a remark, and not matched with an equal sign in a define
declaration within the text. The compiler interprets the first free
pound sign as signaling the end of the text. That is, the first free
pound sign is matched with the equal sign that started the text.

Compiler control records occurring within the text are processed
normally if the dollar sign ($) is in column 1 or 2. If the dollar sign
is in column 3 or beyond. a syntax error is generated whenever the
define is invoked.

Define Invocation

A define invocation causes the occurrence of a define identifier to be
replaced by the text associated with the define identifier.

62
DEFINE ALGOL REFERENCE MANUAL

<define invocation>

--<define identifier>--------------------------I
1 1

I-<actual text part>-I

<actual text part>

I
I
I
1-

1<------ -----!

---<closed text>---

1<------ . -----1
I

---<closed text)---

<closed text>

----j

-!

Program text not containing mismatched or unmatched parentheses.
brackets, or quotation marks, and not containing any comma outside
of these bracketing symbols.

Semantics

The invocation of a parametric define causes textual substitution of the
closed text into the positions of the associated text indicated by the
corresponding formal symbol. The closed text need not be simple; for
example, given the DEFINE declaration

DEFINE FORJ(A,B.C) = FOR J := A STEP B UNTIL C #

the define invocation

FORJ(O.B*3.MAX(X,Y,Z))

expands to

FOR J := 0 STEP B*3 UNTIL MAX(X,Y,Z)

Declarations
63

DEFINE

The closed text can be empty in a define invocation. In this case, all
occurrences of the corresponding formal symbol in the text are replaced
by no text. For example, given the DEFINE declaration

DEFINE F(M. N) = M + N #

the define invocation

R:= F(. 1);

E?xpands to

R .- +1;

which is syntactically correct. However, the statement

R:=F(2,);

expands to

R:=2+;

which is syntactically incorrect.

A define identifier cannot be invoked as a part, rather than the whole,
of a language component such as a string literal or a number. For
e~ample, given the declarations

EBCDIC STRING S;
DEFINE EBCDIC_STR = 8 #;

the statement

S : = EBCDIC_STR"ABC";

is NOT interpreted by the compiler to be equivalent to

S := 8"ABC":

The invocation of define EBCDIC_STR is interpreted by the compiler as a
whole language component, specifically a number, and not as an EBCDIC
code preceding a quoted EBCDIC string. Thus, it appears that a number
is being assigned to a string variable. which is illegal. and the
compiler flags the statement with a syntax error.

64
DEFINE ALGOL REFERENCE MANUAL

In the same manner, given the declarations

the

is

is

and

REAL R;
DEFINE ITEM

statement

R . - ITEM;

legal, but the

R .- ITEM.30:

syntactically

R (15).30~

is illegal.

15 it:

statement

equivalent to

In the following contexts, the appearance of a define identifier does
NOT cause the define to be expanded:

1. Defines are not expanded in an end remark, a comment remark, or
an escape remark.

2. Defines are not expanded within quoted strings.
given the declaration

DEFINE ONE = THE FIRST it:

the string

"ONE WEEK"

is not equivalent to the string

"THE FIRST WEEK"

Defines are not expanded within identifiers.
given the declaration

DEFINE A = PREFIX #;

the identifiers

are not expanded to

PREFIX_B and PREFIXBC

For example,

For example,

Declarations
65

DEFINE

4. D.efine identifiers are not always expanded when they occur in
declarations. If the define identifier occurs in a position
where an identifier can appear, the define identifier is not
expanded. If the define identifier occurs in a position where
an identifier is not expected. the define identifier is
expanded. The following examples illustrate this rule:

DEFINE A = ARRAY #;
A B[O:lO]; % A IS EXPANDED
REAL A B[O:lO]; % A CAN BE INTERPRETED AS AN IDENTIFIER

% IN A REAL DECLARATION. A IS NOT
% EXPANDED. A SYNTAX ERROR RESULTS.

EBCDIC A B[O:lO]; % A IS EXPANDED

5. A define identifier is not expanded either in the format part
of a FORMAT' declaration or in the edi ting specif ications of a
READ statement or WRITE statement~ Furthermore, if a FORMAT
declaration or editing specifications are located within the
text of a parametric define, they cannot reference the formal
symbols of that define.

6. A define identifier is not exparided when used in place of a
file or taSK. attribute mnemonic. (Refer to the "I/O Subsystem
Reference Manual" for file attribute mnemonics and the "Work
Flow Language (WFL) Reference Manual" for task attribute
mnemonics.) In the following example. the define identifiers
are not expanded in the FILE declaration or in the VALUE
function.

Pragmatics

DEFINE NEVERUSED = NEWTASK #.
PRINTER = REMOTE #;

FILE F(KIND = PRINTER); % INTERPRETED AS PRINTER,
% NOT REMOTE

T.STATUS := VALUE(NEVERUSED); % INTERPRETED AS NEVERUSED,
% NOT NEWTASK

If the ALGOL compiler encounters a syntax error while compiling the
combination of the text, aqtual text part, and formal symbol part at the
occurrence of a define invocation. some or all of the expanded define is
given along with the appropriate error message.

66
DEFINE ALGOL REFERENCE MANUAL

To avoid problems with expanding a define, particularly when an
expression is passed in as actual text. each occurrence of a formal
symbol in the text of a parametric define should be enclosed in
parentheses. For example, consider the following program:

BEGIN
BOOLEAN BOOL;
DEFINE

LOGICl(A.B) = A AND B #.
LOGIC2(A.B) = (A) AND (B) #;

BOOL .- LOGICl(TRUE OR TRUE, FALSE);
BOOL .- LOGIC2(TRUE OR TRUE. FALSE);

END.

The invocation of LOGICl above expands to

BOOL := TRUE OR TRUE AND FALSE;

% INVOCATION OF LOGICl
% INVOCATION OF LOGIC2

which. because of the order of precedence of Boolean operators,
evaluates as

BOOL := TRUE OR (TRUE AND FALSE);

assigning a value of TRUE to BOOL.
LOGIC2 expands to

In contrast, the invocation of

BOOL := (TRUE OR TRUE) AND (FALSE);

which assigns a value of FALSE to BOOL.

Passing an updating expression to a parametric define should be done
cautiously. Multiple uses of the corresponding formal symbol cause
multiple updates. For example. given the DEFINE declaration

DEFINE Q(E) = E + 2 :Ie E 11

the define invocation

Q(X .- X + l)

expands to

X .- X + 1 + 2 :Ie X .- X + 1

Declarations

Examples

DEFINE BLANKIT = REPLACE POINTER(LINEOUT) BY " " FOR 22 WORDS #

67
DEFINE

Declares BLANKIT as a define identifier. Where BLANKIT appears as
an allowable define invocation, it is expanded to

REPLACE POINTER(LINEOUT) BY " " FOR 22 WORDS

when the program is compiled.

DEFINE SEC(X) = 1 / COS (X) #

Declares SEC as a define identifier with a formal symbol X. If
SEC(N) appears as an allowable define invocation, it is expanded to

1 / COS(N)

when the program is compiled.

DEFINE LENGTH(X,Y) = SQRT(X**2 + Y**2)#

Declares LENGTH as a define identifier with two formal symbols, X
and Y. If LENGTH(3,4) appears as an allowable define invocation, it
is expanded to

SQRT(3**2 + 4**2)

when the program is compiled.

/

68
DIRECT ARRAY ALGOL REFERENCE MANUAL

DIRECT ARRAY DECLARATION

A DIRECT ARRAY declaration declares arrays that can be used in direct
input/output (I/O) operations.

Syntax

<direct array declaration>

-- DIRECT ----------------------------- ARRAY -----------------.---->
I 1 1
1- OWN -/ I-<array class>-I

1<----------------------- . -----------------------1
1

1

1
1<----- , -----1
I 1

1

I
1

)-------<identifier>--- [--<bound pair list>--] -----------------1
I I
I-<direct array row equivalence>---------------I

<direct array identifier>

An <identifier> that is associated with a direct array in a DIRECT
ARRAY declaration.

<direct array row equivalence>

--<identifier>-- [--<lower bound>-- = --<direct array row>--I

<direct array row>

----<one-dimensional direct array name>----I
I
j-<direct array name>--<row selector>-I

<one-dimenSional direct array name>

A <direct array name> whose identifier was declared with one
dimen£ion.

DeClarations

<direct array name>

----<direct array tdentifier>--------------I
I I
I-<direct array reference identifier>-I

See also
<array class)
<bound pair list>
<direct array reference identifier> .
<lower bound>
<row selector> ..

Semantics

69
DIRECT ARRAY

41
42
52
42
43

A direct array can be a word array or a character array. Direct arrays
of type COMPLEX are not allowed.

NOTE

The BCL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The appearance of a BCL
construct that may cause the creation of
a BCL descriptor. such as a direct BCL
array, will cause the program to get a
compile-time warning message.

A direct array can be used in any way that a non-direct array can be
used. However, arbitrary use of direct arrays instead of normal arrays
can seriously degrade overall system efficiency.

A direct array has certain attributes, which
interrogated and aitered before, during.
operation that uses the array.

can
and

be programmatically
after an actual I/O

The semantics of the OWN specification are discussed under the "ARRAY
Declaration."

The dimensionality of a direct array is the number of bound pairs in its
declaration. No more than 16 dimensions are allowed.

70
DIRECT ARRAY ALGOL REFERENCE MANUAL

The warning about an array row equivalence declared using an array
reference identifier applies with equal force to the case of a direct
array row equivalence declared using a direct array reference
identifier.

Pragmatics

Because a direct array can be used in performing direct I/O operations,
a direct array is automatically unpaged (unsegmented).

See also
Direct I/O 316

Examples

DIRECT ARRAY DlRARY[0:29]

Declares DlRARY. a one-dimensional direct array. Because no array
class is specified, the array class of DlRARY is REAL.

DIRECT INTEGER ARRAY DIREQVARAY[5] = DIRARY

Declares the direct integer array DIREQVARAY.
causes the array DIREQVARAY to refer to
previously declared direct real array DIRARY.

Array row equivalence
the same data as the

Declarations

DOUBLE DECLARATION

A DOUBLE declaration declares simple variables that can
double-precision valuE~s (that is, 96-bit arithmetic entities).

Syntax

<double declaration>

1<----- , -----1
!

------------ DOUBLE ---<identifier>----!
1 I
1- OWN -I

<double identifier>

71
DOUBLE

have

An <identifier> that is associated with the DOUBLE data type in a
DOUBLE declaration.

Semantics

A simple variable declared to be OWN retains its value when the program
exits the block in which the variable is declared, and that value is
again available when the program re-enters the block in which the
variable is declared.

Pragmatics

When a double-precision simple variable is allocated, it is initialized
to a double-precision zero (two 48-bit words with all bits equal to
zero). However, to E~nsure compatibility with ALGOL 60, programmers
should explicitly initialize double-precision simple variables with
appropriate assignment statements.

The appendix "Data Representation" contains additional information on
the internal structure of a double-precision operand as implemented on
A Series and B 5000/B 6000/B 7000 Series systems.

See also
Double-Precision Operand. 824

72
DOUBLE

Examples

DOUBLE DUBL

ALGOL REFERENCE MANUAL

Declares DUBL, a double-precision simple variable.

DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION

Declares three double-precision variables:
and DUBLPRECISION.

BIGNUMBER, GIGUNDOUS,

Declarations

~YIE DECLARATION

73
DUMP

The DUMP declaration allows the display of the values of selected items
during the execution of a program.

Syntax

<dump declaration>

-- DUMP -->
I<--------------·---------~--- , ---------------------------1
1 1

>---<file identifiE~r>-- (--<dump list>--) --<control part>-------I

<dump list>

1<---------- . ---~------I
1 I

------<simple variable>-------I
I 1
I-<array identifier>-I
I 1
I~<label identifier>-I

<control part>

--<label identifier>--->
I 1

I-<label counter modulus>-I

>---1
i I
I-<dump parameters>-I

<label counter modulus>

: --<unsigned integer>--l

<dump parameters>

-- (--------------------------------------- --I

I-<label counter>-I I-<bounds part)-I

74
DUMP ALGOL REFERENCE MANUAL

<label counter>

--<simplevariable>--!

<bounds part>

, --<lower limit>-------------------------I
1 ! 1

I 1- • --<upper limit>-I
! !
1- , -- . --<upper limit>-----------------I

<lower limit>

--<arithmetic expression>--I

<upper limit>

--<arithmetic expression>--!

See also
<array identifier> ..
<file identifier> .
<label identifier> ..
<simple variable> ..

Semantics

42
85

128
. . . • 225

The file identifier specifies the name of the file to which the
displayed information is to be written, and the dump list specifies the
items whose values are to be displayed. The following types of
variables and arrays must NOT appear in the dump list:

1. Arrays with multiple dimensions

2. Character arrays

3. String variables

4. String arrays

The control part determines when the items are to be displayed. The
possible forms of the control part are described in the following
paragraphs.

7:
Declarations DUMP

<label identifier>

If the control part is simply a label identifier, the items in the dump
l~~t~ are dumped each time program execution encounters the statement

~'"l,~p~led by the specif iled label identif ier.

<:label identifier> <label counter modulus>

If a label counter modulus appears, the items in the dump list are
dumped every <label counter modulus> times that the statement labeled by
the label identifier is encountered. Specifically, if N is the label
counter modulus and E is the number of times that the labeled statement
has been encountered. then the items in the dump list are dumped
whenever E MOD N is equal to zero.

<label identifier> <dump parameters>

Dump parameters are used to restrict the dumping to a specified range of
encounters. All three parameters (the label counter, the lower limit,
and the upper limit) are optional.

If a label counter is given, this variable is used to count the number
of times that the labeled statement has been encountered. The specified
variable is incremented automatically each time the labeled statement is
E?ncountered; changing the value of this variable elsewhere in the
program affects the dumping process.

The items in the dump list are dumped when the number of times the
labeled statement is encountered (or the value of the label counter
variable, if specified) is greater than or equal to the lower limit and
less than or equal to the upper limit. If the lower limit is not
specified, it has a default value of zero. If the upper limit is not
specified, it has a default value of infinity (no limit).

<label identifiers> <label counter modulus> <dump parameters>

When both a label counter modulus and dump parameters are specified,
both the modulus check and the range check are performed. The items in
the dump list are dumped when all the following conditions are true for
the number of times that the labeled statement has been encountered (or
the value of the label counter variable, if specified):

1. It is greater than or equal to the lower limit and less than or
equal to the upper limit.

76
DUMP

2.

ALGOL REFERENCE MANUAL

It is evenly divisible by the label counter modulus.

Form of Output

The information produced when a dump occurs depends on the declared
types of the items to be dumped. When a dump occurs. the symbolic name
(up to six characters) of each item in the dump list is produced, along
with the following information:

Dumped Simple Variables

1. If the simple variable is of type REAL or DOUBLE, a real value
is printed (for example. "REEL = .10000000000" or
"DUBL = 0.0").

2. If the simple variable is of type INTEGER. an integer value is
printed (for example, "I = 2").

3. If the simple variable is of type BOOLEAN. the Boolean value is
printed (for example, "BOOL = .FALSE.").

4. If the simple variable is of type COMPLEX, it is printed as a
pair of numbers. The format consists of a left parenthesis,
the real part in REAL format, a comma, the imaginary part in
REAL format, and a right parenthesis (for example,
"COMP = (3.0000000000. 5.0000000000)").

Dumped Arrays

1. If the array is of type REAL. each element is printed as if the
value were operated on by an R editing phrase. (For more
information. refer to "FORMAT Declaration.")

2. If the array is of type BOOLEAN, the value of each element is
shown as ".TRUE." or ".FALSE.".

3. If the array is of type INTEGER. each element is printed as an
integer value.

4. If the array is of type COMPLEX, each element is printed in the
form used for complex variables (for example, "CA =
(2.0000000000. 3.0000000000), (5.0000000000. 7.0000000000)").

Dumped Labels

A dumped label shows the number of times execution control has
passed the specified label (for example. "L2 = 3").

Declarations

Examples

DUMP FYLE (A) LBL

Dumps the value of variable A to a file named FYLE each
statement labeled LBL is encountered during execution
program.

DUMP PRNTR (I.INFO,INDX) NEXT (DMPCOUNT, ,DPHIGH)

time
of

77
DUMP

the
the

Dumps the values of I, INFO, and INDX to a file named PRNTR when the
statement labeled NEXT is encountered. A label counter, DMPCOUNT,
counts the number of times the statement labeled NEXT is
encountered. Dumps occur until the value of DMPCOUNT exceeds
DPHIGH. Note that when a label counter is specified, the programmer
has the option of altering this counter elsewhere in the program.

DUMP FID (X,Y.ARRAYV.COUNTER) LOUP : 3

Dumps the values of X, Y, ARRAYV. and COUNTER to a file named FID.
Because a label counter modulus of 3 is specified, a dump of these
items occurs only every third time the label LOUP is encountered
during execution of the program.

DUMP LP (A.B,LBLl,ARRAYV) AGAIN: 5 (TALY.20,50)

Dumps the values of A, B, LBLl, and ARRAYV to a file named LP.
Because a label counter modulus of 5 is specified, a dump of these
items occurs only E~very fifth time the label AGAIN is encountered
during execution of the program. Dumps are further restricted to
those times when the label counter TALY has a value between 20 and
50. inclusive. Because +the dump occurs each time TALY MOD 5 = 0,
dumps occur when TALY has the values 20. 25, 30, 35. 40, 45. and 50.
Note that the programmer has the option of altering TALY elsewhere
in the program.

78
EVENT and EVENT ARRAY ALGOL REFERENCE MANUAL

EVENT AND EVENT ARRAY DECLARATIONS

An event provides a means to synchronize simultaneously executing
processes. An event can be used either to indicate the completion of an
activity (for example. the completion Of a direct I/O read or write
operation) or as an interlock between participating programs over the
use of a shared resource.

Syntax

<event declaration>

1<----- . -----1
! 1

-- EVENT ---<identifier>----I

<event identifier>

An <identifier> that is associated with an event in an EVENT
declaration.

<event array declaration>

EVENT -- ARRAY --->

1<--------------------- . ---------------------1
I I
1 1 (----- , ----- 1

1 1 1 i
>-----<identifier>--- --<bound pair list>-- -------------------1

<event array identifier>

An <identifier> that is associated with an event array in an EVENT
ARRAY declaration.

<event designator>

----<event identifier>-----------------------------------I

I < ----- • ---- I
1 I

I-<event array identifier>-- [---<subscript>---
1

1

1

1

-I
I

I-<event-valued task attribute>---------------------I

Declarations
79

EVENT and EVENT ARRAY

<event-valued task attribute>

--<task designator>-- . --<event-valued task attribute name>--i

<event-valued task attribute name>

-- EXCEPTIONEVENT --I

<event array designator>

--<event array identifier>--------------------------I
I I
I-<subarray selector>-I

See also
<bound pair list> .
<subarray selector> .
<subscript> ...
<task designator> ..

Semantics

42
44
43

• • 200

An event array is an array whose elements are events.
can have no more than 16 dimensions.

An event array

An event designator represents a single event.
designator represents an array of events.

An event array

Events can be used synchronously by explicitly testing the state of an
event at various programmer-defined points during execution. or they can
be used asynchronously by using the software interrupt facility.

Events have two Boolean characteristics. happened and available. Each
characteristic can be either TRUE or FALSE. Language constructs such as
the SET, RESET, and CAUSE statements can be used to change the happened
state· of an event. The HAPPENED function returns the value of the
happened state of an event. The FIX. FREE. and LIBERATE statements can
be used to change the available state of an event. The AVAILABLE
function returns the available state of an event.

The initial available state of an event is TRUE (available). and the
initial happened state of an event is FALSE (not happened). For more
information on events. refer to "Event Statement." For more information
on interrupts, refer to "INTERRUPT Declaration."

80
EVENT and EVENT ARRAY

See also
<available function>.
<happened function> .

Examples

EVENT FILEA

ALGOL REFERENCE MANUAL

Declares an event. FILEA.

EVENT ARRAY SWAPPEE[0:5]

. 535

. 555

Declares an event array, SWAPPEE. which can store up to six events.

Declarations

EXPORT DECLARATION

81
EXPORT

The EXPORT declaration declares procedures in a library program to be
entry points into that library. A procedure that is declared as an
entry point into a library can be accessed by programs external to the
library.

Syntax

<export declaration>

1<----------------------- ~ -----------------------1
I I

-- EXPORT ---<procedure identifier>------------------------------I
1 I
/- AS --<EBCDIC string>-I

See also
<procedure identifier> 165

Semantics

All procedure identifiers to be exported must be declared before the
appearance of the EXPORT declaration and must be declared in the same
block as the EXPORT declaration.

A program becomes a library by exporting procedures and then executing a
FREEZE statement. The code file for that program contains a structure
called a library directory, which describes the library and its entry
points. The directory's description of an entry point includes the
entry point's name, a description of the procedure's type, if any, and
descriptions of its parameters.

When a program calls a library entry point, the descriptic~ of the entry
point in the library template of the calling program is compared to the
description of the entry point of the same name in the library directory
of the library. If the called entry point does not exist in the library
or if the two entry point descriptions are not compatible, a run-time
error is given and the calling program is terminated.

The name given for an exported entry point in a library directory is the
procedure identifier from the EXPORT declaration. unless an AS clause
appears, in which case it is given by the EBCDIC string.

82
EXPORT ALGOL REFERENCE MANUAL

The EBCDIC. string in the AS clause cannot contain any leading, trailing,
or embedded blanks and must be a "valid identifier," where "valid
identifier" is defined to be any sequence of characters beginning with a
letter and consisting of letters. digits, hyphens (-), and
underscores (_).

A library entry point can be any of the following:

Untyped procedure
Boolean procedure
Double procedure
Real procedure
Integer procedure
Complex procedure
EBCDIC string procedure
ASCII string procedure
Hexadecimal string procedure

The parameters to a library entry point can be any of the following
types:

Boolean variable or array
Double variable or array
Real variable or array
Integer variable or array
Complex variable or array
EBCDIC string variable or array
ASCII string variable or array
Hexadecimal string variable or array
Task variable or array
Event variable or array
EBCDIC character array
ASCII character array
Hexadecimal character array
File
Pointer

A parameter to a library entry point can also be a fully specified
formal procedure (the <formal parameter specifier> construct of the
PROCEDURE declaration must be used) with the above restrictions on its
type and parameters.

Declarations

Pragmatics

83
EXPORT

If a library exports a procedure that is declared to be an entry point
in yet another library, then when a program calls this entry point, the
template of the library to which the procedure is deClared to belong is
searched for an entry point with the same name as that of the called
entry point in the directory for this library. For example, assume the
following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L:
EXPORT LIBPROC;

When another program calls entry point LIBPROC of this library, the
template for library L is searched for an entry point named "LIBPROC".
When found, the entry point LIBPROC of library L is then called.

On the other hand. if the following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L:
EXPORT LIBPROC AS "PH;

and another program calls entry point P of this library, the template
for library L is searched for an entry point named "PH. If it is found,
that entry point is called. If it is not found. a run-time message is
given and the calling program is terminated. In either case, procedure
LIBPROC of library L is not executed. For more information on
libraries, refer to the chapter "Interface to the Library Facility."

Examples

EXPORT EXPROC

Declares the procedure EXPROC as an entry point in this library
program.

EXPORT PROCI AS "LIBPROC3"

Declares the procedure PROel as an entry point in this library
program. The name exported for this procedure is LIBPROC3, so a
program calls PROCI in this library by using the name LIBPROC3.

Declarations

FILE DECLARATION

85
FILE

A FILE declaration associates a £ile identifier with a file and assigns
values to the file attributes of the file.

Syntax

<file declaration>

--------------- FILE ------~--------------------------------------->
1 1

1- DIRECT -I

1<-------------------------- t -------------------------1
1 1

>---<identifier>---1
1 1
1- (--<attribute specifications>--) -I

<file identifier>

An <identifier> that is associated with a file in
declaration.

<direct file identifier>

a FILE

An <identifier> that is associated with a file declared DIRECT in a
FILE declaration.

<attribute specifications>

1<---------------------- • ---------------------1
I

------<arithmetic attribute specification>-----------I
I 1

I-<Boolean attribute speclfication>---------I
1 1
I-<pointer attribute specification>---------I
I 1

I-<translate-table attribute specification>-I

86
FILE ALGOL REFERENCE MANUAL

<arithmetic attribute specification)

--<arithmetic-valued file attribute name>-- = ---------------------)

)---<arithmetic expression)---I
1 1

I-<mnemonic file attribute value>-!

<Boolean attribute specification>

--<Boolean-valued file attribute name)----------------------------->

)--1
I
1- = --<Boolean expression>-I

<pointer attribute specification>

--<pointer-valued file attribute name>-- = -------------------.-----)

>---<pointer expression>---I
I I
I-<string literal)-----I

<translate-table attribute specification>

--<translate-table-valued file attribute name>-- = ----------------)

)---<translate table identifier>--------------------------~--------I
I
I

I-<intrinsic translate table>--I

<arithmetic-valued file attribute name>
<Boolean-valued file attribute name)
<pointer-valued file attribute name>
<translate-table-valued file attribute name>
<mnemonic file attribute value>

ALGOL supports all file attributes and file attribute values
described in the "I/O Subsystem Reference Manual."

See also
< intrinsic translate table>
<translate table identifier> ..

383
. 202

Declarations

Semantics

i87
FIjLE

If "DIRECT" is specified, the file is declared as a direct file to the
used for direct I/O.

The attributes for a particular file need not be specified in the FILE
declaration. Attributes can be assigned values by using an appropri~te
assignment statement, by using the multiple attribute assignme~t

statement, by using compile-time or run-time file equation, or (~y

default) by the I/O subsystem. Refer to the "Work Flow Language (WFL)
Reference Manual" for file equation syntax.

Note that although the syntax allows more than one file identifier to
precede the optional attribute specifications, only the identifier
immediately before the attribute specifications is assigned the
specified file attribute values. The other identifiers are assigned
default file attribute values.

For example, the result of the declaration

FILE A,B,C(KIND=DISK)

is that the KIND attribute of file C is assigned the value DISK, and the
KIND attrib~tes of files A andS are as~igned the default value for the
KIND attribute, which mayor may not be DISK. For more information on
file attributes and their default values. refer to the "I/O Subsystem
Reference Manual."

A Boolean-valued file
attribute specification
assigned the value TRUE.

attribute
without

whose
the "=

name appears in a Boolean
<Boolean expression>" part is

A translate table identifier assigned to a translate-table-valued file
attribute name must have been declared previously and must reference the
first (or only) translate table declared in that particular
TRANSLATETABLE declaration.

88
FILE

Pragmatics

ALGOL REFERENCE MANUAL

In a FILE declaration. the attribute specifications cannot reference the
file identifier of the file being declared. For example. the following
is not valid:

FILE F(MAXRECSIZE=90, BLOCKSIZE=F.MAXRECSIZE*lO)

Examples

FILE F

Declares a file named F.

FILE NEWFILE(KIND=DISK. MAXRECSIZE=14. BLOCKSIZE=420, NEWFILE.
FILEUSE=OUT, AREAS=20, AREASIZE=450,
TITLE="DATA ON PACK.");

Declares a file named NEWFILE. This FILE declaration is the first
step in creating a new disk file with the title DATA on a pack named
PACK.

FILE SCREEN_OUTPUT(KIND=REMOTE)

Declares a file, SCREEN_OUTPUT, to be a remote file. Typically,
using this declaration in conjunction with a WRITE statement allows
a program to write to a computer terminal.

Declarations

FORMAT DECLARATION

89
FOR~T

A FORMAT declaration associates a format identifier with a set of
editing specifications. These editing specifications can then be u''Sied
in READ and WRITE statements.

Syntax

<format declaration>

1<------ , -----1
I 1

-- FORMAT --<in-out part>---<format part>----I

<in-out part>

-------------1
1 1
1- IN --I
1 1
1- OUT -I

<format part>

--<idGntifier>--- --<editing specifications>-­
I
1- < --<editing specifications>--

<format identifier>

An <identifier> that is associated with a
specifications in a FORMAT declaration.

----I
I

> -I

set of editing

90
FORMAT ALGOL REFERENCE MANUAL

<editing specifications>

---)
I I
1- / -I

1<--------------------------- . ---------------------------1
1 I 1 1

I 1 (- / -I 1
1 1

>-----<sirnple string literal>--------------------------------------)
I I
I-------------------<editing phrase>-------------------I
I 1 1 1

I-<repeat part>-I 1- (--<editing specifications>--) -I
I 1
1 1 <----1 1
II! 1

1--- / --1
)--1

1 1

1- / -I

<repeat part>

----<unsigned integer)----I
I 1

1- * ----------------j

Declarations
91

FORMAT

<editing phrase>

G ---1
I
/­
/

1 1

o -/ 1

/- A ---<field width>-------~--------------------------------------
1 1

I~ C -I
/ /

/- H -/

/ /

/- K-I
1 1

1- L -I
/ /

1- T -I
I I
1- X -I
I
1- u ---
/

I-
I
/

I

1

V -/ I-<field width>--
1

1- . <decimal places> ---------------------

1- S --<scale factor>--

I

/ /

1------------------------ D
1 / 1

I-<edi ting modif ie~r >-/ 1- E

---<field
I

-I
I 1

I­
I

F -I
I

1- R -I
I

width>-- . <decimal places> -

1- I ---<field width>-----------------------
I 1

1- J -I
/

1- Z -~<field width>------------------------I
I I
1- . <decimal places> -I

<field width>

----<unsigned integer>----I
I 1

1- * -----------------1 .

92
FORMAT

<decimal places>

ALGOL REFERENCE MANUAL

----<unsigned integer>----!
I 1

1- * ----------------\

<scale factor>

----<integer>----i
I \
1- * -------1

<editing modifier>

1<------------\
I I

------/1\- p ------!
I I
\-/1\- $ -\

Semantics

The editing specifications that appear in FORMAT declarations can be
used in READ and WRITE statements to format, respectively, the input and
output data.

Define identifiers. remarks, and formal symbols of parametric defines
cannot be used in formats.

A format identifier can be referenced in a READ statement, WRITE
statement. or SWITCH FORMAT declaration. In general, a list is
referenced in READ and WRITE statements to indicate a series of data
items (specified by the list) along with the formatting action
(specified by the format) to be performed on each of the data items.

Examples

The following examples illustrate the FORMAT declaration syntax:

FORMAT HDG("THIS REPORT SHOULD BE MAILED TO ROOM W-252")

FORMAT IN EDIT(X4, 216. 5E9.2. 3F5.1. X4)

FORMAT IN Fl(Ab. 5(X3, 2E10.2. 2Fb.l»),
F2(A6, G. A6)

Declarations

FORMAT OUT FORMl(X56, "HEADING", X57),
FORM2(XlO, 4A6 / X7, 5A6 / X2. 5A6)

FORMAT FMTl(*I*)

FORMAT FMT2(*V*.*)

<in-out part)

93
FORMAT

The in-out part affects the processing of simple string literals
appearing in the editing specifications. If the in-out part of a FORMAT
declaration is OUT or unspecified (in which case OUT is assumed), simple
string literals appearing in the editing specifications of the format
are read-only. If the in-out part is IN, such simple string literals
are read-write. (For more information, refer to the discussion of
<simple string literal> in this section.)

<format part>

Editing phrases in the editing specifications are separated by a
comma (,), a slash (I), or a series of slashes. A slash indicates the
end of a record. On input, any remaining characters in the current
record are ignored when a slash is encountered in the editing
specifications. On output, the construction of the current record is
terminated, and any subsequent output is placed in the next output
record. Multiple slashes can be used to skip several records of input
or to generate several blank records on output. The final right
parenthesis or right angle bracket (» of the editing specifications
also indicates the end of the current record.

A carriage control action occurs each time a slash appears in the
editing specifications. If a core-to-core part is specified in the file
part of a READ statement, a slash is ignored.

Example

BEGIN
FILE READER (KIND=READER),

LINE (KIND=PRINTER);
REAL A,B;
FORMAT FMT(I2./,I2);
READ (READER. FM'T ,A,B);
WRITE(LINE.FMT,A,B);
WRITE(LINE [SKIP l],FMT,A,B);

END.

94
FORMAT ALGOL REFERENCE MANUAL

Given the two input records

1234
5678

this program produces the following output:

12
56
12

56

[skip to channel 1J

If all editing specifications have been used before the list of data
items is exhausted, a carriage control action occurs, and the editing
specifications are reused. If the list of data items is exhausted
before all the editing specifications have been used, the I/O operation
is complete and the remaining editing specifications are ignored.

<simple string literal>

The presence of a simple string literal in the editing specifications
indicates that the characters enclosed in quotation marks (") are to be
used as the data. A simple string literal does not require a
corresponding list element.

To enable more efficient handling of string literals in formats. 1-, 2-,
and 7-bit strings are not allowed. The lengths of 3- and 4-bit strings
must be a multiple of 2, to facilitate packing into 6- or 8-bit
characters. respectively. BCL string literals are encoded as BCL
characters, not as EBCDIC characters.

If no string code appears in a string literal, the default character
type is used. The default character type can be designated by the
compiler control options ASCII and BCL. If no such compiler control
option is used. the default character type is EBCDIC. (For more
information, refer to "Default Character Type" in the appendix "Data
Representation.")

See also
Default Character Type 817

Declarations

Example

The statements

WRITE(LINE.<4"CIC2".8"ABC tt »;
$ SET BCL
WRITE(LINE.<3"646566",6"HIJ"»;

produce the following output:

ABABC
UVWHIJ

95
FORMAT

When a simple string literal appears in editing specifications, only the
first digit of the string code is used; if a second or third digit
appears, a warning is given at compile time.

Simple string literals appearing in editing specifications can be
read-only or read-write, depending on the in-out part specified in the
FORMAT declaration. If the in-out part is IN. simple string literals
appearing in the editing specifications are read-write. and the format
can be used in both READ statements and WRITE statements. When a format
used in a READ statement is declared witt an in-out part of IN and
contains a simple string literal in the editing specifications. then
data is read into the memory location of the simple string literal over
the original value. The number of pharacters read always equals the
length of the simple string literal as it is defined in the FORMAT
declaration. When the format is used in a subsequent WRITE statement.
the new data is written to the output record. If the in-out part is OUT
or unspecified (in which case OUT is assumed). any simple string
literals appearing in the editing specifications are read-only; any
attempt to change the value of a read-only simple string literal by
using that format in a READ statement results in a run-time error.

<repeat part>

The repeat part specifies the number of times an editing phrase or
E=diting specifications are repeated. If the repeat part is unspecified,
a value of I is assumed. A repeat part value greater than 4029 results
in a syntax error.

96
FORMAT ALGOL REFERENCE MANUAL

Editing specifications and their corresponding repeat parts can be
nested~ For example, in the WRITE statement

WRITE(F,<2(2(2I3»>,INTl,INT2,INT3,INT4.INT5,INT6,INT7.INT8)

the first repeat part specifies that the editing specifications
"(2(213»" are to be repeated twice, the second repeat part specifies
that the editing specifications "(213)" are to be repeated twice. and
the third repeat part specifies that the editing phrase "13" is to be
repeated twice, causing the editing phrase "13" to be used a total of
eight times.

The following examples show the correct syntax of repeat parts:

3FlO.4

3(A6/)

3(3A6,3(/I12)/)

<field width>

In general, the field width specifies, in characters, the width of the
field to be read or written. Because the field width specifies the
entire length of the field to be used, if <decimal places> is also
specified, then the field width value must allow for the number of
decimal places requested plus one for the decimal point. Any field
width value greater than 4029 results in a syntax error. Field width is
covered further in the discussions of the individual editing phrase
letters.

<decimal places>

The decimal places value specifies the number of characters following
the decimal point in the field that are to be read or written. On
input, <decimal places> can be overridden by an explicit decimal point.
A decimal places value greater than 4029 results in a syntax error. The
decimal places value is covered further in the discussions of the
individual editing phrase letters.

Declarations

<scale factor>

97
FORMAT

The scale factor is discussed with the S editing phrase letter in this
section.

Variable Edi ting Phras.~s

A variable editing phrase is one that is not fully specified at compile
time. The format is processed from left to right at run time. If "V"
is encountered in an editing phrase. the next list element is accessed
to provide an editing phrase letter. (For more information. refer to "V
Editing Phrase Letter" in this section). If an asterisk (*) is
encountered as the repeat part, field width, decimal places, or scale
factor, then the next list element is accessed to provide an integer
value for that specification. In addition to the list elements to be
read or written. the I/O list must contain one list element for each V
and asterisk encountered in the editing specifications. The WRITE
statements in the following examples use asterisks as both repeat parts
and field widths to produce varying I editing phrases.

Examples

WRITE(F, <1*>, IWIDTH, A);
WRITE(F, <31*>, IWIDTH, A, B. C);
WRITE(F, <3(1*», IWIDTHI, A. IWIDTH2, B,. IWIDTH3, C);

IREPEATI := 1;
IREPEAT2 := 2;
WRITE(F. <2(XI,*I*», IREPEATl, IWIDTHI. A.

IREPEAT2, IWIDTH2. B. C);

When an asterisk is used as the repeat part. the number of repetitions
performed depends on the value supplied by the list element. If the
value of the list element is greater than zero, that number of
repetitions is performed; if the value is equal to zero, an unlimited
number of repetitions is performed. If the value is less than zero, no
repetitions are performed, and control passes to the next editing
phrase.

'~hen an asterisk is used for the field width of an editing phrase. the
actual width of the field depends on the value supplied by the list
element. If the value of the list element is greater than zero. that
value is used as the width of the field; if the value of the list
element is less than or equal to zero, no editing is performed. the list
E?lements corresponding to the editing phrase are skipped, and control
passes to the next editing phrase.

98
FORMAT

Editing Phrase Letters

ALGOL REFERENCE MANUAL

Every valid path through the editing phrase syntax requires an "editing
phrase letter" (A, C, D. E. F, G. H. I. J. K. L. O. R, S. T, U. V. X, or
Z) that specifies how the data being read or written is to be edited.
An editing phrase that contains the editing phrase letter A is called an
A editing phrase. an editing phrase that contains the editing phrase
letter C is called a C editing phrase. and so on. Descriptions of the
editing specified by each editing phrase letter are arranged in
alphabetical order in the following paragraphs.

For ease of explanation. lowercase letters are used hereafter to refer
to the values for the repeat part, field width, and decimal places as
follows:

r = <repeat part>
w = <field width>
d = <decimal places>

A list element of type COMPLEX is always edited as if it were two list
elements of type REAL.

In the examples, "b" is used to denote a blank character.

A and C Editing Phrase Letters

The editing phrase letters A and C are used when
alphanumeric data. Valid list elements are
DOUBLE, COMPLEX. BOOLEAN. POINTER. and STRING.

reading or writing
of type INTEGER, REAL,

The action specified by the editing phrase letter C is identical to that
specified by the editing phrase letter A except for the portion of the
word from which characters are read or to which characters are written.
Details are given below.

The default character type applies to list elements other than pointers.
(For more information. refer to "Default Character Type" in the appendix
"Data Representation.") This feature allows BCL data to be read from or
written to an EBCDIC file (and vice versa) with translation, when
necessary. to preserve character data.

Declarations

For example, the program

BEGIN
FILE F(KIND=PRINTER, INTMODE=EBCDIC);
WRITE(F, <A3>, 8"ABC");
$ SET BCL
WRITE(F, <A3>. 6 "ABC") ;

END.

produces the following output:

ABC
ABC

99
FORMAT

In the explanations of the editing phrase letters A and C. Q is used. Q
is derived from the following table:

Default Character Type

BCL EBCDIC

Single 8 6

Precision -------------------------------
Double 16 12

If the list element is of the form

<pointer expression> FOR <arithmetic expression>

then the value of the arithmetic expression is used as the value of Q.

See also
Default Character Type 817

Pointers and Strlng Variables

On input, w characters are transferred from the input record to the
pointer-designated location or string variable. On output, w characters
are transferred from the pOinter-designated location or string variable
to the output record. The character size used is that of the pointer or
string variable.

100
FORMAT ALGOL REFERENCE MANUAL

On input, the editing phrase letters A and C specify that w characters
of data are to be read from the input record and assigned to the
corresponding list element.

For the editing phrase letter A, if w is greater than or equal to Q, the
rightmost Q characters of the input field are transferred to the list
element. If w is less than Q. w characters of the input field are
transferred right-justified to the list element. The unused high-order
bits of the list element are set to zero.

The action specified by the editing phrase letter C is identical to that
specified by the editing phrase letter A except that characters are read
to the leftmost portion of the word.

Input Examples

Default
Character

Type

8-bit
6-bit
8-bit
6-bit

(either)

8-bit

6-bit

8-bit
6-bi t
8-bit
6-bit
8-bi t

6-bit

External String

ABCDEFGHIJKL
ABCDEFGHIJKL
AbCbEbGblbK
ABCDEFGHIJKL

"

ABCDEFGHIJKL

ABCDEFGHIJKL

ABCDEFGHIJKL

ABCDEFGHIJKL
ABCDEFGHIJKL
ABCD
ABCDEFGHIJKL
ABCDEFGHIJKL

ABCDEFGHIJKL

Editing
Phrase

A9

A9

A4
A4
A12

A12

A12

C9

C9

C4
C4
C12

C12

Internal Value

8"DEFGHI"
6"BCDEFGHI"
4"0000"8"AbCb"
6"0000ABCD"
ABCDEFGHIJKL

(pointer as list element)
4"0000"8"ABCDEFGHIJKL"

(8-bit pointer FOR 14)
6"JKL"
(6-bit pointer FOR 3)

8"DEFGHI"
6"BCDEFGHI"
8"ABCD"4"0000"
6"ABCDOOOO"
8"ABCDEFGHIJKL"4"0000fl
(8-bit pointer FOR 14)

6"JKL"
(b-bit pointer FOR 3)

The editing phrase letters A and C do not round values before assigning
them to a list element. Therefore. a list element of type INTEGER is
not necessarily assigned an integer value. If w is greater than 4. the
exponent field of the list element is affected; the result can be a
noninteger value. The data representations of real and integer operands
are discussed in the appendix "Data Representation."

Output

Declarations
101

FORMAT

On output, the editing phrase letters A and C specify that the value of
the corresporiding iist element is to be written as a character string to
an output field w characters wide.

For the editing phrase letter A. if w is greater than or equal to 0 and
the list element is not a pointer expression, the 0 characters of the
list element are written right-justified with blank fill to the output
field. If w is less than 0, the rightmost w characters of the list
element are written to the output field. If the character size is eight
bits and any of the character fields in the word contain bit patterns
that do not correspond to ~n EBCDIC graphic, question marks (?) are
written to those positions.

rrhe action' specified by the editing phrase letter C is identical to that
specified by the editing phrase letter A except that characters are
written from the leftmost portion of the list element.

putput Examples

Default
Character Editing

Type Internal Value Phrase External String
--------- ---------------------- ------- ---------------

8-bit 8"DEFGHI" A9 bbbDEFGHI
6-bit 6"BCDEFGHI" A9 bBCDEFGHI
8-bit 4"OOOOOOOOOO"8"A" A4 ???A
6-bit 6 "OOOOABCD" A4 ABCD
8-bit 8"ABCDEFG" Al bbbbABCDEFG

(8-bi t pointer FOR 7)

6-bit b"ABCDEFG" A4 DEFG
(6-b:it pointer FOR. 7)

8-bit 8"DEFGHI" C9 bbbDEFGHI
6-bit 6"BCDEFGHI" C9 bBCDEFGHI
8-bit 8"ABCD"4"000O" C5 ABCD?
6-bit 6"ABClDOOOC" C4 ABCD
8-bi t 8"ABClDEFG" Cl bbbbABCDEFG

(8-bit pointer FOR 7)

6-bit 6 "ABCDEFG" C4 ABCD
(6-bit pointer FOR 7)

102
FORMAT

C Editing Phrase Letter

ALGOL REFERENCE MANUAL

Refer to "A and C Editing Phrase Letters" above.

D Editing Phrase Letter

The editing phrase letter D is used for reading or writing
floating-point values. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX. and BOOLEAN.

The editing phrase letter D specifies that w characters
are to be read, converted to a real value, and
corresponding list element. The input data must be in
data number; otherwise, a data error is returned.
defined syntactically as follows:

Qf input data
assigned to the

the form of a
A data number is

---;.,..-----------<decimal number>---------------------------I
I 1 1 I 1
I-<sign>-I 1 I-<data exponent part>-I

I 1

I-<data exponent part>--------------------I

<data exponent part>

D ---<integer>---------------I
1 1 I

1- E -I 1
I 1 1

1- @ -I I
1 1
I-<sign>--<unsigned integer>-I

The position of the decimal point in the internal value is determined by
its position in the input data or by the value of d. If a decimal point
appears in the input data, that position is used for the internal value.
If no decimal point appears in the input data. one is assumed either d
places to the left of the D, E. @. +. or - indicating the beginning of
the exponent field or, if an exponent is not present, d places to the
left of the right edge of the input field.

Declarations
103

FORMAT

For example, if the editing phrase D7.2 is used to read the data number
1000S.0, the resulting internal value is 1000S.0. However, if the same
editing phraSe is used to read the data number 1000S. the resulting
internal value is 100.0S.

The value of w must be greater than or equal to the value of d.
are interpreted as zeros.

Input Examples

External String

Output

bbbbbb2S046
bbbbb25.046
-bb2S046E-3
-bbb2S046-3
bb250.46D-3
bbb2S0.46-3
b-b2S.04678

Editing Phrase

Dll.4
Dll.4
Dll.4
Dll.4
Dll.4
Dll.4
Dll.4

Internal Value

+2.5046
+2S.046
-0.002S046
-0.002S046
+0.2S046
+0.2S046
-2S.04678

Blanks

On output, the editing phrase letter D specifies that the value of the
corresponding list element is to be converted to a string of characters
that expresses the value in exponehtial notation. The string is written
right-justified with blank fill to a field w characters wide. The value
of the mantissa is rounded to the number of decimal places specified by
d before it is written.

The value of w must be greater than or
allows for a four-character exponent
preceding the decimal point, and a sign.
field is filled with asterisks (*).

equal to d + 7. This width
part, a decimal point, a digit
If w is less than d + 7, the

The editing phrase letter D always uses four or seven characters to
represent the exponent of the list element being written. The magnitude
of the exponent determines which of the following three forms is used:

four-character: D+xx or D-XX (where ABS(XX) <= 99)

four-·character: +XXX or -XXX (where 100 <= ABS(XXX) <= 999)

seven-character: D+XXXXX or D-XXXXX
(where 1000 <= ABS(XXXXX) <= 99999)

104
FORMAT

Output Examples

Internal Value

+36.7929
-36.7929
-36.7929
+36.7929
1.234@@-73
-789@@1234
6.54@@321

E Editing Phrase Letter

ALGOL REFERENCE MANUAL

Editing Phrase

D13.5
D12.5
DIl.5
DIO.5
D14.5
D15.3
D9.2

External String

bb3.67929D+Ol
-3.67929D+01

bbb1.23400D-73
bb-7.890D+01236
b6.54+321

The action specified by the editing phrase letter E is identical to that
specified by the editing phrase letter D except that, when used for
output, an E, instead of a D,indicates the beginning of the exponent in .
the output string.

Output Examples

Internal Value

+36.7929
-36.7929

F Editing Phrase Letter

Editing Phrase

E13.5
E12.5

External String

bb3.67929EbOl
-3.67929EbOl

The editing phrase letter F is used when reading or writing
floating-point values. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN.

On input, the action specified by the editing phrase letter F is
identical to that specified by the editing phrase letter D.

Declarations

Output

105
FORMAT

On output, the editing phrase letter F specifies that the value of the
corresponding list element is to be converted to a string of characters
that expresses the value in simple decimal notation. The string is
written right-justified with blank fill to a field w characters wide.
The value of the list element is rounded to the number of decimal places
specified by d before it is written.

The value of w must be greater than or equal to d + 1. When writing
negative values. w must also allow for the minus sign. The field
contains asterisks (*) if the value to be written requires a field wider
than w characters.

Output Examples

Internal Value

+36~7929
+36.7934
-0.0316
0.0
0.0
+579.645
+579.645
-579.645

G Editing Phrase Letter

Editing Phrase

F7.3
F9.3
F6.3
F6.4
F6.2
F6.2
F4.2
F6.2

External String

b36.793
bbb3b.793
-0.032
0.0000
bbO.OO
579.65

If used to read a BCL file. the editing phrase letter G specifies that
eight 6-bit characters of the input data are to be skipped. If used to
write to a BCL file, the editing phrase letter G specifies that eight
BCL zeros are to be written to the output record ..

If used to read an EBCDIC file, the editing phrase letter G specifies
that six 8-bit characters of the input data are to be skipped. If used
to write to an EBCDIC file. the editing phrase letter G specifies that
six EBCDIC zeros are to be written to the output record.

106
FORMAT ALGOL REFERENCE MANUAL

Hand K Editing Phrase Letters

The editing phrase letters Hand K are used when reading or writing
hexadecimal and octal values, respectively. Valid list elements are of
type INTEGER, REAL. DOUBLE, COMPLEX, and BOOLEAN.

In the following explanation of the Hand K editing phrase letters. Q is
used. Q is derived from the following table:

Editing Phrase Letter

H K

Single 12 16
Precision ---------------------------------

Double 24 32

The editing phrase letter H specifies that w characters of input data
are to be read, converted to a hexadecimal value, and assigned to the
corresponding list element. The editing phrase letter K specifies that
w characters of input data are to be read. converted to an octal value,
and assigned to the corresponding list element. The input data must
consist only of characters from the set of hexadecimal characters, the
blank, or the minus sign when H is specified, or characters from the set
of octal characters. the blank, or the minus sign when K is specified;
otherwise, a data error is returned. Leading. trailing, and embedded
blanks are interpreted as zeros. If a minus sign appears in the input
string, 1 is assigned to bit 46 of the list element (bit 46 of the first
word of a double-precision list element).

If w is less than or equal to Q. the value is stored right-justified in
the storage location (both words of a double-precision variable are
included). Unused high-order bits are set to zero. If w is greater
than Q. the leftmost w - Q characters must be blanks, zeros, or minus
signs; otherwise, a data error is returned.

,Input Examples

External String

6F
lFFFFFFFFFFF
-16
1234b568
FFCb
00CIC2C3C4C5C6
-ABCD

123456789ABCDEF

16
1777777777777777
-16
1234b56
77b
-567

1234567654321234567

Output

Declarations
107

FORMAT

Editing
Phrase

H2
H12
H3
H8
H4
H14
H5

H15

K2
K16
K3
K7
K3
K4

K19

Internal Value

4"00000000006F"
4"lFFFFFFFFFFF"
4"400000000016"
4"000012340568 tt

4"00000000FFCO tt

4"CIC2C3C4C5C6 tt

4"4000000000QOOOOOOOOOABCD"
(double precision)

4"000000000123456789ABCDEF"
(double precision)

3"0000000000000016"
3"1777777777777777"
3"2000000000000016"
3"0000000001234056"
3"0000000000000770"
3"20000000000000000000000000000567"

(double precision)
3"00000000000001234567654321234567"

(double precision)

On output, the editing phrase letter H specifies that the value of the
corresponding list element is to be converted to a string of hexadecimal
characters. The editing phrase letter K specifies that the value of the
corresponding list element is to be converted to a string of octal
characters. The output string is written right-justified with blank
fill to a field w characters wide. If w is less than Q, only the
contents of the rightmost w * 4 bits (when H is used) or w * 3 bits
(when K is used) of the list element are converted. (A double-precision
list element is treated as 96 contiguous bits.) The output string does
not contain an explicit sign.

108
FORMAT

Output Examples

ALGOL REFERENCE MANUAL

Editing
Internal Value Phrase

4"0000E5551010" H5
4"0000E5551010" H12
4"0000E5551010" H16
8"123456" H12
4"000000000000000012345678 H4

(double precision)
8"l23456789bbb" H24

(double precision)
3"0005677701234445" K5
3"0005677701234445" K16
3"0005677701234445" Kl8
3"0000000000000000000000001234567" K4

(double precision)

I Editing Phrase Letter

External Value

51010
0000E5551010
bbbbOOOOE5551010
FIF2F3F4F5F6
5678

FIF2F3F4F5F6F7F8F9404040

34445
0005677701234445
bb0005677701234445
4567

The editing phrase letter I is used when reading or writing integer
values. Valid list elements are of type INTEGER, REAL. DOUBLE. COMPLEX.
and BOOLEAN.

The editing phrase letter I specifies that w characters of input data
are to be read. converted to an integer value, and assigned to the
corresponding list element. The data must be in the form of an ALGOL
integer: otherwise, a data error is returned. Blank characters are
interpreted as zeros. The magnitude of the value that can be read
depends on the type of the list element.

.Input Examples

External String

.output

567
bb-329
~bbbb27

27bbb
b-bb234

Declarations

Editing Phrase

13
16
17
15
17

Internal Value

+567
-329
-27
+27000
-234

109
FORMAT

On output. the editing phrase letter I specifies that the value of the
corresponding list element is to be converted to a character string in
the form of an ALGOL integer. The string is written right-justified
with blank fill to a field w characters wide. The value of the list
element is rounded to an integer before itis written.

Negative values are written with a minus sign; nonnegative values are
written without a sign.

If the value of the list element requires a field latger than w. then w
asterisks (*) are written .

.output Examples

Internal Value

+23
-79
+67486
-67486
+978
o
+3.6

Editing Phrase

14
I4
I5
I5
II
I3
12

External String

bb23
b-79
67486

'*
bbO
b4

110
FORMAT

J Editing Phrase Letter

ALGOL REFERENCE MANUAL

The editing phrase letter J is used when reading or writing integer
values. Valid list elements are of type INTEGER, REAL. DOUBLE, COMPLEX,
and BOOLEAN.

On input, the action specified by the editing phrase letter J is
identical to that specified by the editing phrase letter I.

Output

On output. the editing phrase letter J specifies that the value of the
corresponding list element is to be converted to a character string in
the form of an ALGOL integer. The string is written to a field equal in
width to the length of the string. The value of the list element is
rounded to an integer before it is written.

Negative values are written with a minus sign; nonnegative values are
written without a sign.

If w is less than the number of characters required to express the value
of the list element, wasterisks (*) are written.

Output Examples

Internal Value

+23
-23
+233
-233
o
3.14, -12

Editing Phrase

J5
J5
J3
J3
J3
2JIO

External String

23
-23
233

o
3-12

Declarations

K Editing Phrase Letter

111
FORMAT

Refer to "H and K Editing Phrase Letters" above.

L Editing Phrase Letter

The editing phrase 1etter L is used when reading or writing Boolean
values. Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX,
and BOOLEAN.

The editing phrase letter L specifies that w characters of input data
are to be read, converted to one of the Boolean values TRUE or FALSE,
and assigned to the corresponding list element. If the first nonblank
character of the input data is a "T". bit zero of the list element is
assigned the value 1: otherwise. bit zero is assigned the value zero.
All other bits in the list element are assigned the value zero. An
all-blank field yields the value FALSE. If the list element is a
double-precision variable, the first word is assigned a value according
to the rules just described, and the second word is set to zero.

Input Examples

External String

Output

T
bbF
bbbTRU
b
T

Editing
Phrase

Ll
L3
L6
Ll
Ll

Internal Value

TRUE (4"000000000001")
FALSE (4"000000000000")
TRUE (4"000000000001")
FALSE (4"000000000000")
TRUE (4"000000000001000000000000")

(double precision)

On output, the editing phrase letter L specifies that "TRUE" is to be
written to the outPUt record if bit zero of the corresponding list
element equals 1, and that "FALSE" is to be written if bit zero of the
corresponding list element equals zero. If w is less than 5, the first
w characters of "TRUE" or "FALSE" are written. If w is greater than 4,
"TRUE" or "FALSE" is written right-justified with blank fill.

112
FORMAT

Output Examples

Internal Value

a
1
2
3
4

o Editing Phrase Letter

ALGOL REFERENCE MANUAL

Editing Phrase

L6
L5
L4
L3
L2

External String

bFALSE
bTRUE
FALS
TRU
FA

The editing phrase letter 0 is used when data is to be read or written
without editing. Valid list elements are of type INTEGER. REAL, DOUBLE,
COMPLEX, BOOLEAN, and POINTER.

In the explanation of the editing phrase letter a below, Q is used. Q
is derived from the following table:

Default
Character
Type

BCL

EBCDIC

Precision

Single Double

8 16

6 12

Pointers

4-bit 6-bit 8-bit

12 8 6

12 8 6

The editing phrase letter 0 specifies that the input data is to be
assigned to the corresponding list element without editing. Q
characters of input data are read, unless the corresponding list element
is of the form

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of
the arithmetic expression -are compared, and the lesser value is the
number of characters read.

Declarations

Output

113
FORMAT

On output, the editing phrase letter a writes the value of the list
element as an unedited string of characters. Q characters are written
to the output record unless the corresponding list element is of the
form

<pointer expression> POR <arithmetic expression>

When the list elem4~nt is of this form, the value of Q and the value of
the arithmetic expression are compared. and the lesser value is the
number of characters written.

Example

This example shows the use of the editing phrase letter o.
and output data are also illustrated.

BEGIN
FILE TD(KIND=:REMOTE, MYUSE=IO) ;
REAL R;
READ (TD , < 0 >. R) ;
WR I TE (TD , < 0 >, R);

END.

Input

A
ABCDEFGH

Output

A
ABCDEF

R Editing Phrase Letter

The input

The editing phrase letter R is used when reading or writing REAL values
and can be used with the editing phrase letter S. Valid list elements
are of type INTEGER!, REAL, DOUBLE, COMPLEX, and BOOLtAN.

On input, the action specified by the editing phrase letter R 1s
identical to that specified by the editing phrase letter D except when
it is immediately preceded by an S editing phrase~

114
FORMAT

Output

ALGOL REFERENCE MANUAL

On output, the editing phrase letter R specifies that the value of the
corresponding list element is to be converted to a string that expresses
the value in either simple decimal or exponential notation. In general,
if w is greater than or equal to the number of characters required to
express the value of the list element using simple decimal notation,
then simple decimal notation is used; if w is less than the number of
characters required to express the value using simple decimal notation
and greater than or equal to the number of characters required to
express the value using exponential notation, then exponential notation
is used: if w is less than the number of characters required to express
the value using exponential notation. the field is filled with
asterisks (*).

Examples

List
External Element Editing External

Input String Type Phrase Output String
-------------------- ------- ------- --------------------
-.333333bb REAL RIO.4 bbb-0.3333
-.333333bb DOUBLE RIO.4 bbb-0.3333
-.333333bb INTEGER RIO.4 bbbbO.OOOO
3333.333E2 DOUBLE RIO.4 3.3333D+05
3333.333E2 INTEGER RIO.4 3.3333E+05
-.333bbbbb REAL RlO.9 *********1c
-.333bbbbb INTEGER RlO.9 .000000000
333.333E2b DOUBLE RIO.4 3.3333D+22
bbbbbbbbbbbbbl.23D12 REAL R20.4 bb1230000000000.0000
bbbbbbbbbbl.23D12345 DOUBLE R20.4 bbbbbbbl.2300D+12345
bbbb4.3@68 REAL RIO.4 4.3000E+68

S Editing Phrase Letter

The editing phrase letter S is used with an R editing phrase to provide
a scale factor.

If the next editing phrase in the editing specifications does not
contain the editing phrase letter R, the S editing phrase is ignored.
When more than one S editing phrase appears in the editing
specifications, eaCh subsequent S editing phrase takes precedence over
the preceding one.

Declarations
lIS

FORMAT

On input, the value of the input data corresponding to the subsequent R
editing phrase is divided by

10 ** <scale factor>

before it is assigned to the list element.

Input Examples

Editing
External String Specifications Internal Value
-------------_.- -------------- --------------

bbbblOOOO. S2,RlO.2 100.0
bbbbbb5.41 Sl,RI0.2 0.541
bbbbbb05.S Sl.RI0.2 0.55
bbb5.01521 S-1,RlO.2 50.1521
bbbbbbb541 Sl.RI0.2 0.541

Output

On output. the value of the list element corresponding to the subsequent
R editing phrase is multiplied by

10 ** <scale factor>

before it is written to the output field.

Output Examples

Internal Value

100.0
0.54
0.0056
1.55

Editing
Specifications

S2,RlO.2
Sl,RI0.2
Sl.RlO.2
S-1,RIO.2

External String

bblOOOO.OO
bbbbbb5.40
bbbbbbO.06
bbbbbbO.16

lIb
FORMAT

T Editing Phrase Letter

ALGOL REFERENCE MANUAL

The editing phrase letter T specifies that the buffer pointer is to be
moved to character position w of the input or output record. The value
of w must be greater than zero; if w is equal to zero, the buffer
pointer is moved to the first character position in the record. No list
element corresponds to this editing phrase letter.

Input Examples

External String

012345678910111213
012345678910111213
012345678910111213
ABCDEFGHIJKLMNOPQR

Output Example

BEGIN

Editing
Specifications

T13.I3
Tl. I4
T15,I4
T8,Ab

FILE DCOM(KIND=REMOTE.MYUSE=IO):
ARRAY A[0:9];
WRITE(DCOM, <Tll.I3,Tl,I3>, 123, 456):
WRITE(DCOM, <T4.A3.Tl,A2>, "ABC". "DE");

END.

The program above produces the following output:

WRITE statement 1:
WRITE statement 2:

U Editing Phrase Letter

b456bbbbbbl23
DEbABe

Internal Value

III
123
1213
HIJKLM

% WRITE STATEMENT 1
% WRITE STATEMENT 2

The editing phrase letter U specifies that output data is to be edited
as best suits the type of the corresponding list element. Valid list
elements are of type INTEGER. REAL. DOUBLE. COMPLEX. and BOOLEAN.

Declarations

The editing phrase letter U is not implemented for input.

Output

117
FORMAT

On output, real, integer, and double-preCision list elements are written
using a format that combines readability with maximum numerical
significance. Boolean values are written as "T" or "F" and occupy one
character position in the record. String literals are treated as real
values. If the number of characters required to express the list
element is greater than the number left in the current record, the
output is placed in the next record.

If w is specified and the number of characters required to express the
list element is greater than w, the field is filled with asterisks (*).

If d is specified and d is greater than w, then d - wleading blanks are
inserted before the field is written. Thus, when using the editing
phrase letter V, the number of characters actually written cannot be
less thaI. d and can be greater than w.

Output Examples

Internal Value

-123.4567
789
1.5@@275
1234567
1

123.456
I
123.456

v Editing Phrase Letter

Editing Phrase

U
V
VIO
U5
UlO.4
U10.4
U5.8
U5.8

External String

-123.4567
789
1.5D+275
1.2+6
bbbl
123.456
bbbbbbbl
bbb123.5

The editing phrase letter V allows the type of editing to be specified
at run time. The rightmost character of the first word of the next list
element (or. if the list element is a pointer, the character pointed at)
provides the editing phrase letter to be used to edit the data. Valid
list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN, and
POINTER.

118
FORMAT ALGOL REFERENCE MANUAL

The editing phrase letter extracted from the list element is a 6-bit
character if the default character type is BCL; otherwise, it is an
8-bit character.

Example

REAL A.B;
INTEGER I;

FORMAT FMTl(V8.2),
FMT2(2V*),
FMT3(*V*.*);

READ (KARD. FMTl, "R" , A);
B := 4"Cl";
WRITE(LINE,FMT2,B,6,A,I);
I := 4"C5";
READ(KARD,FMT3,2,I.IO,4,A,B);

In the preceding program, in the first READ statement FMTI evaluates to
R8.2 and corresponds to the list element A; in the WRITE statement FMT2
evaluates to 2A6 and corresponds to the list elements A and I; and in
the second READ statement FMT3 evaluates to 2ElO.4 and corresponds to
the list elements A and B.

For more information, refer to "Variable Editing Phrases" earlier in
this section.

x Editing Phrase Letter

On input, the editing phrase letter X specifies that w characters of
input are to be skipped. On output, the editing phrase letter X
specifies that w blanks are to be written. No list element corresponds
to this editing phrase letter.

Declarations

Z Editing Phrase Letter

119
FORMAT

The editing phrase letter Z is used when reading or writing REAL values.
Valid list elements are of type INTEGER, REAL~DOUBLE. COMPLEX. and
BOOLEAN.

On input. the editing phrase letter Z selects one of the editing phrase
letters D. I. or L to specify editing action. depending on the type of
the corresponding list element. as shown in the following table:

Type

REAL or DOUBLE
INTEGER
BOOLEAN

Output

Editing Phrase

Dw.d
Iw
Lw

The output string has a length of w characters regardless of the value
or type of the list element being written. For Boolean list elements,
Lw is used. For integer list elements. Iw is used. For real or
double-precision list elements, D. E. or F editing is performed
depending on the type of the list element and the magnitude of its
value.

Output Examples

Internal Value

1.23@@250
1
12345
12
12345.678
12
12345678
1234

Editing Phrase

Z12.b
Z5.1
Z5.1
Z8.7
ZlO.4
ZlO.4
Z6
Zb

External String

1.230000+250
bbbbl
12345
bbbbbb12
1.2346E+04
bbbbbbbb12

bb1234

120
FORMAT

Editing Modifiers

ALGOL REFERENCE MANUAL

Editing modifiers can be used to modify the editing performed by the
editing phrase letters D. E. F, I, J. R. and Z. Editing modifiers are
valid only for output.

P Editing Modifier

The P editing modifier specifies that a comma (,) is to be inserted
immediately to the left of every third digit left of the decimal point.

$ Editing Modifier

The $ editing modifier specifies that a dollar sign ($) is to be
inserted immediately to the left of the output string.

Examples

Internal Value

17.347
-1234567
-1234567
1234567.11111
1234567.1234
1234567.1234

Editing Phrase

$F10.2
PI10
P$Z15.2
PF15.5
$PR15.5
$PR15.0

External String

bbbb$17.35
-1,234,567
bbbb$-1.234.567
1.234.567.11111
bbb$1.23457E+06
bbbb$l,234,567.

Declarations

FORWARD REFEREIfCE J)ECLARATION

121
FORWARD REFERENCE

The forward reference declaration enables the ALGOL compiler to handle
situations in which two procedures. two interrupts. or two switch labels
make references to each other. Normally, a procedure, interrupt, or
switch label must: be declared before it can be used in a program.
However, in the situation described above, regardless of which
procedure, interrupt, or switch label is declared first, its body
contains a reference to an undeclared entity. The forward reference
declaration allows the compiler to recognize such entities before they
have been declared in full.

Syntax

<forward reference declaration>

----<forward interrupt declaration>-------I
I 1

I-<forward procedure detlaration>----I
I 1

I-<forward switch label declaration>-I

<forward interrupt declaration>

-- INTERRUPT --<interrupt identifier>-- -- FORWARD --I

<forward procedure declaration>

----------------------- PROCEDURE --<procedure heading>-- ------->

I-<procedure type>-i

>- FORWARD --I

<forward switch label declaration>

-- SWITCH --<SWitch label identifier>-- FORWARD --I

See also
<interrupt identifier>
<procedure heading>
<procedure type>
<switch label identifier> .

126
165

. . . 165
195

122
FORWARD REFERENCE ALGOL REFERENCE MANUAL

Semantics .

Suppose two procedures, PROC_ONE and PROC_TWO, make references to each
other, and PROC_ONE appears before PROe_TWO in the source code. Before
PROC_ONE is declared, the following forward reference declaration must
appear:

PROCEDURE PROe_TWO; FORWARD

When PROe_ONE calls PROe_TWO, the compiler recognizes the second
procedure. At some later point in the program, the second procedure,
PROe_TWO. is declared in full.

Similar methods are used for mutually referencing interrupts and
mutually referencing switch labels.

Examples

SWITCH SELECT FORWARD

Declares a forward reference to a switch label named SELECT.
in the program, SELECT must be declared in full.

Later

INTEGER PROCEDURE SUM(A,B,C);
VALUE AtB;
INTEGER A,B;
REAL C;
FORWARD

Declares a forward reference to an integer procedure
Later in the program, SUM must be declared in
parameters must be the same in number and type as in
declaration.

named SUM.
full, and its
this forward

Declarations

INTEGER DECLARATION~

123
INTEGER

An INTEGER declaration declares simple variables that can have integer
values (arithmetic values that have exponents of zero and no fractional
parts) .

Syntax

<integer declaration>

I i
1- OWN -I

I<-------~- , ~-------I
I I

INTEGER -----<identifier>---------I
I I
I-<equation part>-I

<integer identifier>

An <identifier> that is associated with the INTEGER data type in an
INTEGER declaration.

See also
<equation part> .. 55

Semantics

A simple variable declared to be OWN retains its value when the program
exits the block in which the variable is declared. and that value is
again available when the program re-enters the block in which the
variable is declared.

The equation part causes the simple variable being declared to have the
same address as the simple variable associated with the second
identifier. This action is called "address equation." An identifier can
be address-equated only to a previously declared local identifier or to
a global identifier. The first identifier must not have been previously
declared within the block of the equation part.

Address equation is allowed only between integer, real, and Boolean
variables. Because both identifiers of the equation part have the same
address, altering the value of either variable affects the value of both
variables.

124
INTEGER ALGOL REFERENCE MANUAL

The following example demonstrates the effects of address-equating
Boolean and integer variables:

BEGIN
BOOLEAN B;
INTEGER I = B;
I .- 4; % E = FALSE
B := TRUE: % B = TRUE

END.

The OWN specification has no effect on
The first identifier of an equation
identifier of the equation part is own.

I = 4
~ = 1

an address-equated identifier.
part is own only if the second

An INTEGER declaration with an equation part is not allowed in the
global part of a program unit.

Pragmatics

When an arithmetic value is assigned to an integer simple variable, the
value is rounded to an integer, if possible, before it is stored in the
simple variable.

When an integer simple variable is allocated, it is initialized to zero
(a 48-bit word with all bits equal tc zero). However. to ensure
compatibility with ALGOL 60, programmers should explicitly initialize
integer simple variables with appropriate assignment statements.

The appendix "Data Representation" contains additional information on
the internal structure of an integer operand as implemented on A Series
and B 5000/B 6000/B 7000 Series systems.

See also
Integer Operand • . . • . • 821

Examples

INTEGER INDEX

Declares INDEX as an integer simple variable.

Declarations

INTEGER COUNT,VAL,NOEXPONENT

125
INTEGER

Declares COUNT, VAL. and NOEXPONENT as integer simple variables.

OWN INTEGER SAVEVALUE,MAX

Declares SAVEVALUE and MAX as integer simple variables. Because
they are declared to be own, these simple variables retain their
values when the program exits the block in which they are declared.

INTEGER INT = BOOL, CAL

Declares INT and CAL as integer simple variables, and
address-equates INT to the previously declared simple variable BOOL.
INT and BOOL share the same address.

126
INTERRUPT ALGOL REFERENCE MANUAL

The INTERRUPT declaration declares an interrupt and associates an
unlabeled statement with it.

Syntax

<interrupt declaration>

-- INTERRUPT --<identifieri-- --<unlabeled statement>--I

<interrupt identifier>

An <identifier> that is associated with an interrupt in an INTERRUPT
declaration.

See also
<unlabeled statement> 220

Semantics

An interrupt provides a method of forcIng a process to depart from its
current point of control and execute the unlabeled statement associated
with the interrupt by the INTERRUPT declaration.

After executing the unlabeled statement associated with an interrupt, a
program usually returns to its previous point of control. However, the
program does not return to this point if a GO TO statement is executed
within the unlabeled statement and the specified designational
expression references a statement outside of the unlabeled statement.

Once an interrupt is declared. it is enabled until it
disabled with the DISABLE statement. The DISABLE
temporarily render the associated interrupt ineffective.
statement is used to re-enable a dIsabled interrupt.

is explicitly
statement can

The ENABLE

For an interrupt to be used, the interrupt identifier must be attached
to an event through the ATTACH statement. An interrupt can be detached
from an event through the DETACH statement.

Declarations

Pragmatics

127
INTERRUPT

An INTERRUPT declaration can be thought of as describing an unlabeled
statement (which can be a block) that is automatically entered on the
occurrence (CAUSE) of an event. The Master Control Program (MCP)
ensures that when a program is executing the unlabeled statement
associated with an interrupt, all other interrupts are queued until the
program exits the unlabeled statement.

For more information, refer to "ATTACH statement," "DETACH Statement,"
"DISABLE Statement," and "ENABLE Statement."

Examples

INTERRUPT ERR: GO TO ABORT

Declares ERR to be an interrupt and associates the statement "GO TO
ABORT" with it.

INTERRUPT BLOCKl;
BEGIN
DISPLAY("ERROR");
DISPLAY("INTERRUPT BLOCKl OCCURRED U

);

END

Declares BLOCKl to be an interrupt. When BLOCKl is invoked, two
messages are displayed. Because no GO TO statement occurs within
the declaration. after the interrupt code is executed, the program
continues from the point at which the interrupt occurred.

128
LABEL ALGOL REFERENCE MANUAL

A LABEL declaration declares each identifier in the declaration to be a
label.

Syntax

<label declaration>

! < ------ • ----- I
I

-- LABEL ---<identifier>----j

<label identifier>

An <identifier> that is associated with a label in a LABEL
declaration.

Semantics

Label identifiers can be used as the targets of GO TO statements and as
labels in READ and WRITE statements.

A label identifier
innermost block
statement.

Examples

LABEL START

must appear
in which the

Declares START as a label.

LABEL ENTER,EXIT,START,LOOP

in a
label

LABEL declaration within the
identifier is used to label a

Declares ENTER. EXIT, START, and LOOP as labels.

Declarations

LIBRARY QECLARATION

129
LIBRARY

The LIBRARY declaration declares a library identifier and specifies
values for the library attributes associated with the library. The
library identifier can be used by a program to access entry points in
the library.

Syntax

<library declaration>

-- LIBRARY ------.--)

1<------------_·_------------- . --------------------------1
I I

>--~<identifier>--------------~-------~-~--------------------------1

1 1
1- «library attri.bute specifications» -I

<library identifier>

An <identifier) t.hat is associated with a library in a LIBRARY
declaration.

<library attribute specifications>

1<---------------------- • ------------~---------I
! I

------<string library attribute specification>--------I
I 1

I-<mnemonic library attribute specification>-i

<string library attribute specification~

--<string-valued library attribute name>-- = --<EBCDIC string>--I

<string-valued library attribute name>

FUNCTIONNAME ----I
i I
1- INTNAME ------1
I 1

1- LIBPARAMETE~~ -I
I I
1- TITLE --------1

130
LIBRARY ALGOL REFERENCE MANUAL

<mnemonic library attribute specification>

--<mnemonic-valued library attribute name>-- = --------------------->

)-<mnemonic library attribute value>--------------------------------I

<mnemonic-valued library attribute name>

-- LIBACCESS --I

<mnemonic library attribute value>

BYFUNCTION ----I
1 I

1- BYTITLE ----I

Semantics

The LIBRARY declaration appears in a program that accesses a library.
The LIBRARY declaration can be used to assign values to the library
attributes of a library. In a program that calls a library, the library
identifier also appears in the PROCEDURE declarations for the library
entry points.

When a value is assigned to the TITLE attribute, the EBCDIC string must
be a properly formed file title as defined in the "Work Flow Language
(WFL) Reference Manual." and must have a period as its last nonblank
character within the quotation marks (").

When a value is assigned to the INTNAME attribute, the EBCDIC string
must have a period as its last character and can have leading blanks.
The sequence of characters beginning with the first nonblank character
up to, but not including, the next blank or period constitutes the
INTNAME and must be a "valid identifier," where "valid identifier" is
defined to be any sequence of characters beginning with a letter and
consisting of letters, digits, hyphens (-), and underscores (_). Blanks
can be present between the INTNAME and the period.

Specification of the TITLE and INTNAME attributes is optional; by
default, the library identifier being declared is used for the TITLE and
INTNAME. If the INTNAME is given and the TITLE is not, the INTNAME is
also used for the TITLE.

Declarations
131

LIBRARY

~~he EBCDIC string assigned to the LIBPARAMETER attribute is used as a
parameter to a selection procedure during dynamic library linkage.

Pragmatics

Libraries can be declared in any block of a user program. The library
and its entry points are valid within the scope of the block; when the
block is exited. the linkage to the library is broken t and the count of
users of the library is decremented.

The chapter "Interface to the Library Facility" contains extended
examples of libraries and programs that use libraries, as well as
information about library attributes, library linkage, and library usage
.in general.

See also
Library Attributes ...
Library Examples ..
Linkage Provisions ..

• . . 665
. 671

• •• 659

132
LIST

LIST DECLARATION

ALGOL REFERENCE MANUAL

A LIST declaration associates an ordered set of list elements with a
list identifier. The list identifier is used in a READ statement or
WRITE statement to indicate which entities are to be read or written.

Syntax

<list declaration>

1<----------------------- , -----------------------1
1

1

1

-- LIST ---<identifier>--

<list identifier>

1<---------- , ----------1
1 I

-----------<list element>---
1 1

1- * -I

1

I
I

----I

An <identifier> that is associated with a set of list elements in a
LIST declaration.

Declarations

<list element>

133
LIST

----<simple arithmetic expression>---------------------------I
I 1

I-<simple Boolean expression>---------------------------I
I 1

I~<simple complex expression>---------------------------I
I 1

I-<pointer expression>------------------~---------------I
1 1 1

I 1- FOR --<arithmetic expression>-I
1 I

I-<string expression>-----------------------------------I
I 1

I-<array rOwi---~--1
1 I

! I < ------- , ------1 1
1 1 1 1

!- ---<list element>--- ----------------------------1
1 1

1- DO --<list element>-- UNTIL --<Boolean expression>---I
1 1

I-<iteration clause>--<list element>--------------------I
1 1

I-<if clause)--<list element>---------------------------I
I 1 1

I 1- ELSE --<list element>--I
1

I 1 < ------ ,
I 1

------1
1

1

1

1

I-<case head>-- (---<list element>--- ---------------1

<iteration clause>

1<-------- , --------1
I

FOR --<variable>-- .- ---<tor list element>--- DO ----I
1

1- THRU --<arithmetic expression>-- DO -------~-------I
I 1
1- WHILE --<Boolean expression>-- DO -----------------1

See also
<array row>
<case head)
<for list element>.
<if clause>

43

· 263
. . . 305

<simple arithmetic expression> ..
<simple Boolean expression>
<simple complex expression> .
<variable> ...

· 319
475

. . 491

. . 506
· 225

134
LIST

Semantics

ALGOL REFERENCE MANUAL

Although the syntax of the READ statement and WRITE statement allows the
list elements to be listed within the statement itself, a LIST
declaration provides a way to associate a list identifier with a
specific group of list elements.

A simple complex expression or complex value appearing in a list is
considered to be a pair of real values: the first value is the real
part of the complex value. and the second is the imaginary part.

List elements of the form

<pointer expression> FOR <arithmetic expression>

allow the user to specify the number of characters to be read to or
written from the pointer-specified location.

An array row appearing in a list is interpreted as a sequence of
variables of the same type as that of the array. A complex array row is
considered to be a real array row containing the real and imaginary
parts of the complex values in the following order: the real part of
the first element. the imaginary part of the first element. the real
part of the second element, the imaginary part of the second element.
and so on.

A string variable is a valid list element for editing phrase letters A
and C and for free-field formatting. A string variable acts in the same
manner as "<pointer expression> FOR <arithmetic expression>" when used
with the A and C editing phrases. (For more information about the A and
C editing phrases, refer to "FORMAT Declaration.")

Asterisks (*) prefixed to list elements have meaning only for free-field
output; they are ignored for other types of I/O. An asterisk prefixed
to a list element causes the text of the list element and an equal sign
to be written to the left of the edited value of the list element.

Declarations

Examples

LIST Ll (X.Y.A[4,*).FOR I := 2 STEP 1 UNTIL 5 DO B[I)

Declares Ll as a list identifier for the list consisting
the array row A[4.*J. and B[2]. B[3]~ B[4J~ and B[S].
identifier might appear in a WRITE statement such as

WRITE (LP_OUT,//.Ll);

LIST ANSWERS (P + Q,Z"SQRT(R».
RESULTS (Xl.X2.X3.X4/2)

135
LIST

of X. Y.
This list

Declares ANSWERS and RESULTS as two list identifiers with associated
list elements.

LIST LIST3 (FOR I := 0 STEP 1 UNTIL 10 DO
FOR J := 0.3.b DO

A[I.J])

Declares LIST3 as a list identifier with
consisting of nested FOR clauses indexing
identifier can be used in a READ statement to
elements of array A.

an associated list
array A. This list
read the specified

ALGOL REFERENCE MANUAL

MONITOR DECLARATION

The MONITOR declaration designates items to be monitored during
execution of the program and the method by which they are monitored.
The monitor declaration is used when diagnostic information is needed.

Syntax

<monitor declaration>

-- MONITOR ---------------------------------------~----------------) .

1<---------------------------
1

1

1

)-----<file identifier>--------
1 I
I-<procedure identifier>-I

<monitor element>

----<simple variable>---------I
! I
I-<subscripted variable>-I
I I
I-<label identifier>-----/
I I
I-<array identifier>-----/

See also
<array identifier>.
<file identifier> ..
<label identifier>.
<procedure identifier>.
<simple variable>
<subscripted variable> ..

. ---------------------------1
1<-------- . -------1
I I

---<monitor element>---

1

I
I

---·----1

42
85

. 128
. . . 165

• • 225
. • 225

Declarations

Semantics

137
MONI'I'Of(

Each time an identifie'r designated as a monitor element is used in one
of the ways described in this section. the identifier and its current
value are written to ~he file or passed as parameters to the procedure
specified in the MONITOR declaration.

The monitor ac~ion does·not occur within procedures that are declared
before the MONITOR declaration is encountered. nor does monitoring of a
variable in the monitor list occur if this' identifier is passed as an
actual parameter to a call-by-name formal parameter that is modified
within the procedure. The control variable in a FOR statement cannot be
monitored. The monitor action does not occur when a value changes as
the result of a READ statement ~r a REPLACE statement.

The diagno~tic information produced depends on the forms of the monitor
elements. When the LINEINFO compiler control option is TRUE and a file
identifier is specified in the MONITOR declaration t a stack number, an
at sign (@). a code address, and a sequence number are printed in front
of the symbolic name of the monitor element (for example. "0143 @
003:0003:4 (00007000)"). Diagnostic information is given for the
specified monitor elements as follows:

1. When the monitor element is a simple variable or a subscripted
variable. the symbolic name and the previous and new values of
the variable are printed (for example. "B =0:==13").

2. When the monl.tor element is a label identifier, the symbolic
name of the label is shown (for example. "LABEL L").

3. If the monitor element is ,an array identifier. the symbolic
name of the array, the SUbscript of the element. and the
previous and new values of the changed array element are
printed (for example, "A[12] =0:=12").

When a procedure identifier is specified in the MONITOR declaration,
printing of the monitor element must be performed by the procedure.
Also, the monitoring procedure performs the specified operations
depending on the valuE~s passed to it.

138
MONITOR ALGOL REFERENCE MANUAL

When the monitor element is a simple variable, the format of the
monitoring procedure must be as follows:

REAL PROCEDURE MON(NAME,VAL.SPELL);

The procedure must be of the same type as the monitor elements. The
procedure must have three parameters:

1. The first parameter, NAME, is a call-by-name parameter of the
same type as the monitor element. NAME is passed a reference
to the monitor element. and it is normally used to store the
value of the second parameter, VAL.

2. The second parameter, VAL. is also of the same type as the
monitor element, but it is a call-by-value parameter and is
passed the new value to be assigned to the monitor element.

3. The third parameter. SPELL. must be a call-by-value real
variable that is passed the name of the monitor element as a
string of characters. Only the first six characters of th.e
symbolic name are passed to this formal parameter. If the
symbolic name is less than six characters long, it is
left-justified, and trailing blanks are added, up to six
characters.

If the monitor element is to be assigned a value. this assignment must
be done by the monitoring procedure. This value can also be assigned to
the procedure value to be used, for example, in evaluating the remainder
of an expression in which the assignment is embedded. In the example on
the next page using the array identifier form. the assignment statement
"NAME := MON := VAL:" allows the subsequent use of the value assigned to
the monitor element.

When the monitor element is a label identifier. the format of the
monitoring procedure must be as follows:

PROCEDURE MON(SPELL);

The procedure must be untyped and must have only one parameter. This
parameter is a call-by-value real variable that is passed the first six
characters of the symbolic name. Only the first six characters of the
symbolic name are passed to this formal parameter. If the symbolic name
is less than six characters long. it is left-justified, and trailing
blanks are added, up to six characters. For example. the monitoring
procedure could compare this name to the symbolic names in the monitor
list in order to identify a particular label.

Declarations
139

MONITOR

When the monitor element is an array identifier, the declaration of the
monitoring procedure must be as follows:

REAL PROCEDURE MON(Dl •... ,Dn,NAME,VAL.SPELL);

The parameters DI •...• Dn of the procedure are index parameters that are
passed the 'subscripts for each dimension of the array element that is
modified. There must be as many index parameters as the array has
dimensions. Each index parameter isa call-by-value integer. The last
thre@ parameters are the same as in the simple variable form. except
that NAME and VAL are simple variables of the same type as the array.

The value being assigned to the array element can also be assigned to
the procedure value to be used. for example, to evaluate the remainder
of an expression containing the array element.

The following procedure could be used to monjtor a two-dimensional real
array so that the values in the array never become negative.

REAL PROCEDURE MO~(Dl.D2.NAME.VAL.SPELL);
VALUE Dl.D2.VAL.SPELL:
REAL NAME. VAL;
REAL SPELL;
INTEGER Dl.D2;

BEGIN
IF VAL < 0 THEN

GO TO ERROREXIT; % BAD GO TO
NAME := MON := VAL; % RETURN VALUE FOR FURTHER USE
END;

The occurrence of the statement

B := A[r.J] := 4;

where A is monitored by MON, is equivalent to the statement

B := MON(I,J,A[r,J].4."A");

Pragmatics

For a debugging feature. refer to the TADS compiler control option in
the chapter "Compiling Programs."

See also
<TADS option> ' 643

140
MONITOR

Examples

MONITOR FYLE (A)

ALGOL REFERENCE MANUAL

Declares the simple variable A to be a monitor element. When A is
used in the ways described above, monitoring information on A 1s
written to file FYLE.

100 BEGIN
200
300
400
500
600
700
800
900

FILE TERMOUT(KIND=REMOTE);
INTEGER I;
LABEL FINISH;
ARRAY MONl[0:3],

MON2[0:3];
MONITOR TERMOUT (I,MONl,MON2[1],FINISH);

1000 1:= 27;
1100 MONl[O]:= I;
1200 MON2[0]:= 23:
1300 MON2[1]:= MONl[O] * 2:
1400 GO TO FINISH;
1500 FINISH:
1600 END.

In the above program, simple variable I, array MONl~ subscripted
variable MON2[1]. and label FINISH are monitored. When the program
is executed, the following output is written to the terminal:

0148 @ 003:000E:4 (00001000)
0148 @ 003:0013:4 (00001100)
0148 @ 003:0020:4 (00001300)
0148 @ 003:0024:4 (00001500)

I =0:=27
MONI [0]=0:=27
MON2 [1]=0:=54
LABEL FINISH

(4"00000000001B")
(4"0000000000lB")
(4"000000000036")

Declarations
141

OUTPUTMESSAGE ARRAY

PUTPUTMESSAGE ARRAY DECLARATION

An OUTPUTMESSAGE ARRAY declaration declares output message
output message array contains output messages to be
MultiLingual System (MLS). For a description of how
arrays, refer to "MESSAGESEARCHER Statement."

Syntax

(output message array declaration>

1<---------- , -------~--I

arrays. An
used by the

to use these

I I
OUTPUTMESSAGE -, ARRAY ---<output message array>-..:.--I

<output message array>

--<identifier>-- (-------------------------------) --I
I I
1 1 < ----,...----- , --------- 1 1

I I I 1

I---<output message part>---I

<output message array identifier>

An <identifier> that is associated with an output message array in
an OUTPUTMESSAGE ARRAY declaration.

<output message part>

--<language name>------------------------------ (----------------->
1 !
I-<translator's help text>-I

>--------------------------) ----------------------------~--------I
1

1 I <: ------- , ------- I !
! ! I 1

!---ioutput message)~--I

'HTTF)UTMESSAGE ARRAY ALGOL R£Fl::kENCE MANUAL

<language name>

--<letter>----------------------------\
\ 1

1 \ (-- ------- --- -- ------ -- \ 1

I I 1

I---/lb\---<letter>-----I

<translator's help text)

1 I

i-<digit>--\

-- < --<EBCDIC string constant>-- --I

<output message>

-------------------------------<output message number>-------------)
\ !
\-<translator's help text>-I

)------------------------------

I-<translator's help text>-!

1<-----------------------------1
1 1

---------------------------------)

>-----<output message segment>-------------------------------------\
1 1

\-<translator's help text>-I

<output message number>

--<unsigned integer>--I

<output message segment>

----<EBCDIC string constant>------------I
I

\-<hexadecimal string constant>----I
1

I-<output message parameter>-------I
\ 1

1- ! ------------------------------1
I I
I-<output message case expression>-I
1 I

1- EMPTY --------------------------1

Dec lara t i ot1S

<output message parameter>

143
OUTPUTMESSAGE ARRAY

-- < --<output message parameter number>---------------------------)

)-------------------------------- > -------------------------------1

1- . -- DECIMALPOINTISCOMMA

(OU t pu. t mes sa ge parameter number>

-<unsigned integer>--I

<output message case expression>

-- CASE -- < --<output messag& parameter number)-- > --- OF --------)

1<------------ . ------------1
1 I.

)- BEGIN ---<output message case part>--~-------- END -------------1
. 1 1

1- , -I

<output message case part>

1 <---i
1 !

------<output message parameter value>--- : -----------------------)
i !
1-/1\- ELSE -----------------------1

>---------------------------------------~--------------------------1
I I
I I (------------------------------- 1 I

1 I I !
1-----<outpUt message segment>-----I

I I
I-<translator's help text>-!

<output message parameter value>

----<EBCDIC string constant>---------I
1 I
I-<hexadecimal string constant>-!
j i
1- EMPTY -----------------------1

144
OUTPUTMESSAGE ARRAY ALGOL REFERENCE MANUAL

See also
<EBCDIC string constant>
<hexadecimal string constant> .

Semantics

. 524
• . • • 525

The OUTPUTMESSAGE ARRAY declaration is part of the ALGOL interface to
the MultiLingual System (MLS), which allows the user to word system
messages in various human languages.

Each output message array identifier must be unique throughout the
entire program. This requirement is an exception t~ the description of
the scope of identifiers given in the chapter "Program Structure."

An output message number must be less than eight digits long. For each
output message part, the output message number must uniquely identify an
output message. This means that a number is assigned to one and only
one output message segment. and each output message segment has only one
number assigned to it.

An output message parameter number represents a parameter to be
substituted into the message when the MESSAGESEARCHER statement is
executed. The number identifies which parameter is to be substituted.
The output message parameters are numbered consecutively from I through
n, where n is the number of parameters in the output message.

DEClMALPOINTISCOMMA indicates that any decimal point (.) appearing in
the parameter value corresponding to the preceding output message
parameter number is changed to a decimal comma (,). and all commas are
changed to decimal points.

A slash (/) causes both a carriage return character (48"00") and a line
feed character (48"25") to be inserted into the completed output
message.

If an output message case expression does not contain an ELSE clause and
no case exists for the value of the output message para~eter. then the
result of the output message case expression is a null string and an
error result is returned with the completed output message. The program
requesting the output message can decide whether or not the partially
formed output message should be used.

Declarations
145

OUTPUTMESSAGE ARRAY

When multiple otitput message parts occur within the same output message
array, they define the same output messages for different languag~s.
Multiple output message arrays can be used to define different groups of
output messages.

Defines are expanded within an OUTPUTMESSAGE ARRAY declaration.

The translator's help text is displayed by the Message Translation
Utility when an output message is being translated. (For more
information on the Message Translation Utility, refer to the "Mess~ge

Translation Utility User's Guide.") The translator's help text can occur
before or after an output message segment. It can also appear before or
after an OUtput message n~mber. If translator's help text needs to
appear wi th all output message.s in the language, then the translator's
help text is placed after the language name (and before the left
parenthesis).

Examples

OUTPUTMESSAGE ARRAY ERRORS (
ENGLISH (

10 = "POSITIVE INTEGER EXPECTED.",
20 = "TOO MANY PARAMETERS."

) ,
FRANCAIS (

10 = "DEMANDE UN ENTlER POSITIF. It
,

20 = "TROP DE PARAMETRES."
)) ;

The output message array ERRORS shows an OUTPUTMESSAGE ARRAY
declaration with the same output me~sages in two languages. The
language of the user and the output message number determine the
output message that is selected from this array.

OUTPUTMESSAGE ARRAY SUMMARY (
ENGLISH (

100 =
"THIS PROGi~M IS TO BE EXECUTED WITH "
CASE <1> OF

BEGIN
"1": "MAX PROCESSING TIME " <2> It SEC.
"2": "MAX I/O TIME " < 3> n SEC . " . "

"3" : "MJ\.X PROCESSING TIME .. <2> " SEC. ,

END
) ,

"I/O TIME " <3> " SEC. n

t

MAX "

146
OUTPUTMESSAGE ARRAY ALGOL REFERENCE MANUAL

FRANCAIS (
100 =

"CE PROGRAMME DOIT S'EXECUTER EN MaINS DE "
CASE <1> OF

BEGIN
"1": <2. DECIMALPOINTISCOMMA>

" SEC. DE CALCUL.".
"2": <3. DEClMALPOINTISCOMMA> " SEC. D'E/S.",
"3": <2. DEClMALPOINTISCOMMA>

END
)) ;

" SEC. DE CALCUL au "
<3. DECIMALPOINTISCOMMA> " SEC. D'E/S."

The output message array SUMMARY shows an OUTPUTMESSAGE ARRAY
declaration with parameters. The first parameter value is not used
as part of the message, but rather to select among case
alternatives. The second and third parameters are conditionally
inserted into the message. based on the value of the first
parameter. Note that the second and third parameters are not
necessarily both used. When the message is given in the language
FRANCAIS, decimal points in the values of parameters 2 and 3 are
changed to decimal commas.

Declarations

PICTURE DECLARATION

147
PICTURE

The PICTURE declaration declares pictures that are then used in REPLACE
statements to perform general editing of characters.

Syntax

<picture declaration>

I<---~------------ , ---------------1
I I

-- PICTURE ---<identifier>-- (~-<picture>--) ----I

<picture identifier>

An <identifier> that is associated with a picture in a PICTURE
declaration.

<picture>

1<-----------------1
I I

----<picture symbol>----I

<picture symbol>

----<string literal>-----------------------------j
I 1

I-<introduction>----------------------------I
I I
I-<picture skip>----------------------------I

I I
I-<repeat part va1ue>------1

I
I-<control character)-----------------------I
I I
I-<single picture character>----------------I
! i
I-<picture character>-----------------------I

1

I-<repeat part value>-I

148
PICTURE ALGOL REFERENCE MANUAL

<introduction>

----<introduction code>--<new character>------------------------I
I I

1<----------------------------1 I
I I I I
1- 4 --<introduction code>---/2\-<hexadecimal character>---I

<introduction code>

B ----I

I- e

1- M -I
j I
I- N -j

I- F I - ,

i i
1- U -I

<new character>

----<letter>-------------------j
I

I-<digit>-----------------/
I

i-<sing1e space>----------I
i

i-<special new character>-I

<special new character>

<picture sk.ip>

) ----I
I

1- -1

Declarations

<repeat part value>

-- (--<unsigned integer>-- } --I

<control character>

Q ----I
I 1

1- : -I

<single pictu~e character>

J ----I
I I
1- R -I
1 I
I- S -I

<picture character>

A ----I
I I
1- D -I
I I
I- E -I
I I
I- F -I
1 1

I- I -I
1 I
I- X -I
I I
1- z -I
1 1
1- 9 -I

Semantics

14<:)

PICTURE

A picture is used in a REPLACE statement to perform generalized editing
functions as characters are transferred from a source location to a
destination. The following editing operations can be performed:

1. Unconditional character moves

2. Moves of characters with leading zero editing

3. Moves of characters with leading zero editing and floating
character insertion

150
PICTURE ALGOL REFERENCE MANUAL

4. Moves of characters with conditional character insertion

5. Moves of characters with unconditional character insertion

6. Moves of only the numeric parts of characters

7. Forward and reverse skips of source characters

8. Forward skips of destination characters

9. Insertion of an overpunch sign on the previous character

A picture consists of a named string of picture symbols enclosed in
parentheses. The picture symbols specify the editing to be performed
and car be combined in any order to perform a wide range of editing
functions.

Flip-flops Used by picture Symbols

Two hardware flip-flops affect the operation of certain picture symbols:
the float flip-flop (FLTF) and the external sign flip-flop (EXTF).

The value of FLTF affects the function performed by the picture symbols
D. E. F, J. R. and Z. FLTF is set to zero at the beginning of every
picture. The picture symbols E, F, and Z may change the value of FLTF
to 1, and the picture symbols J. R. and unconditionally assign zero
to FLTF.

The value of EXTF affects the function performed by the picture symbols
E. F. ~, Q. R. and S. EXTF is not assigned a value by the REPLACE
statement that is using the picture: EXTF is in the state in which it
was left after the most recent operation that affected it. For example.
a REPLACE statement of the form

REPLACE <destination> BY <arithmetic expression>
FOR <arithmetic expression> DIGITS

sets EXTF to reflect the sign of the first arithmetic expression: 1 if
the arithmetic expression is positive, and zero if it is negative.

Declarations
151

PICTURE

Character Fields

Pictures can act on both EBCDIC and hexadecimal characters. In the
descriptions of the picture symbols, the term "numeric field" is used to
mean either an entire hexadecimal character or the rightmost four bits
of an EBCDIC character. The term "zone field" is used to mean the
leftmost four bits of an EBCDIC character.

Characters Used by Picture Symbols

Certain picture symbols implicitly define characters to be inserted into
the destination. These characters are referred to as the "insert
character," "zero character," "nonzero character," "minus character,"
"pI us character." and "dollar character."

The insert character is the character inserted into the destination by
the picture symbol I. It is, by default, the period (.), and it can be
changed by the introduction code N.

The zero character is used by'the picture symbol D. and by the picture
symbols E, F, and Z for leading zero replacement. It is. by default.
the blank character. and it can be changed by the introduction code B.

The nonzero character is used by
default, the comma (.). and it
code C.

the picture symbol D. It is. by
can be changed by the introduction

The minus character is used by the picture symbols E. R, and S. The
default minus character is the hyphen (-), and it can be changed by the
introduction code M.

The plus character is used by the picture symbols E. R, and S. The
default plus character is the plus (+). and it can be changed by the
introduction code P.

The dollar character is used by the picture symbols F and~. The
default dollar character is the dollar sign ($). and it can be changed
by the introduction code U.

152
PICTURE

String Literals

ALGOL REFERENCE MANUAL

If a string literal appears in a picture, the string is inserted into
the destination. If the destination is EBCDIC, the string is inserted
unchanged. If the destination is hexadecimal. only the numeric fields
of the characters of the string are inserted into the destination.

Introduction Codes

The introduction codes can be used to change the implicit characters
used by some of the picture symbols. The <introduction> construct
specifies the new character to be used. If two hexadecimal characters
are used to specify the new character. they are assumed to represent a
single EBCDIC character.

Introduction
Code Action

B Specifies the zero character to be used by D. E. F. and
z. The default zero character is the blank character.

C

M

N

P

u

Specifies the nonzero character to be used by D.
default nonzero character is the comma (,).

The

Specifies the minus character to be used by E, R, and S.
The default minus character is the hyphen (-).

Specifies the insert character to be used by I.
default insert character is the period (.).

The

Specifies the plus character to be used by E. R. and S.
The default plus character is the plus (+).

Specifies the dollar character to be used by F and J.
The default dollar character is the dollar sign ($).

Declarations

Picture Skip

153
PICTURE

The picture skip characters are described in the following table. If a
repeat part value is given with the picture symbol. the unsigned integer
in the repeat part value specifies how many characters are skipped in
the source. If no repeat part value is given. one character is skipped
in the source.

Character Action

The source pointer is skipped forward (to the right) the
specified number of characters.

< The source pointer is skipped backward (to the left) the
specified number of characters.

Control Characters

The control charactc9rs are described in the following table.

Character Action

Q If EXTF = 1, a 4"D" character is inserted into the zone
field of the preceding destination character. If EXTF = 0,
the destination character is not altered. The destination
pointer must be EBCDIC, and it is left pointing to the same
character that it was pointing to before the Q action was
taken.

FLTF is unconditionally assigned zero.

Single Picture Characters

The single picture characters are described in the following table.

Character Action

J If FLTF = 0, the dollar character is inserted into the
destination. If FLTF = 1, no character is inserted. and
the destination pointer is not advanced. FLTF is then
assigned zero. If the destination is hexadecimal, only the
numeric field of the dollar character is inserted.

154
PICTURE ALGOL REFERENCE MANUAL

Character Action

R If FLTF =0 and EXTF = O. the plus character is inserted
into the destination. If FLTF = 0 and EXTF = 1, the minus
character is inserted into the destination. If FLTF = 1,
no character is inserted, and the destination pointer is
not advanced. FLTF is then assigned zero. If the
destination is hexadecimal, only the numeric field of the
plus or minus character is inserted.

S If EXTF = 1, the minus character is inserted into the
destination: otherwise. the plus character is inserted into
the destination. The destination must be EBCDIC.

Picture Characters

The picture characters are described in the following table. If a
repeat part value is given with the picture symbol. the unsigned integer
in the repeat part value specifies how many characters are skipped,
inserted, or transferred from the source to the destination. If no
repeat part value is given. one character is skipped, inserted, or
transferred from the source to the destination.

Character

A

Action

The specified number of characters are transferred from the
source to the destination. If the destination is
hexadecimal, only the numeric fields of the characters are
transferred.

D If FLTF = 0, the specified number of zero characters are
inserted into the destination. If FLTF = 1, the specified
number of nonzero characters are inserted into the
destination. If the destination is hexadecimal, only the
numeric field of the zero or nonzero character is inserted.

Character

E

F

Declarations

Action

For the specified number of source
following action takes place.

155
PICTURE

characters. the

While FLTF = 0 and the num~ric field of the source
character is 4"0". the zero charatter is inserted into the
destination. If the destination is hexadecimal. only the
numeric field of the zero character is inserted.

If FLTF = 0 and the numeric field of the source character
is not equal to 4"0". several things happen. If EXTF = O.
the plus character is inserted into the destination. If
EXTF = I, the minus character is inserted into the
destination. If the destination is hexadecimal, only the
numeric field of the plus or minus character is inserted.
The numeric field Of the source character is transferred to
the destination. with a zone field of 4"F" if the
destination is EBCDIC. FLTF is assigned a value of 1.

While FLTF = 1, the numeric field of the source character
is transferred to the destination. with a zone field of
4"F" if the destination is EBCDIC.

For the specified number of source
following action takes place.

characters, the

While FLTF = 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the
destination. If the destination is hexadecimal. only the
numeric field of the zero character is inserted.

If FLTF = 0 and the numeric field of the source character
is not equal to 4"0". several things happen. The dollar
character is inserted into the destination. If the
destination is hexadecimal. only the numeric field of the
dollar character is inserted. The numeric field of the
source character is transferred to the destination. with a
zone field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1.

While FLTF = 1. the numeric field of the source character
is transferred to the destination. with a zone field of
4"F" if the destination is EBCDIC.

I The specified number of insert characters are inserted into
the destination. If the destination is hexadecimal, only
the numeric field of the insert character is inserted.

156
PICTURE

Character

ALGOL REFERENCE MANUAL

Action

X The destination pointer is skipped forward (to the right)
the specified number of characters.

z For the specified number of source
following action takes place.

characters. the

While FLTF 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the
destination. If the destination is hexadecimal. only the
numeric field of the zero character is inserted.

If FLTF = 0 and the numeric field of the source character
is not equal to 4"0'1, the numeric field of the source
character is transferred to the destination. with a zone
field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1.

While FLTF = I, the numeric field of the source character
is transferred to the destination. with a zone field of
4"F" if the destination is EBCDIC.

q If the source and destination are both EBCDIC, the numeric
fields of the specified number of characters are
transferred from the source to the destination with zone
fields of 4 "F" . I f the source and dest ina t ion are both
hexadecimal, the specified number of characters are
transferred from the source to the destination.

Pragmatics

One value array (also called an "edit table") is generated for each
PICTURE declaration: therefore. for run-time efficiency, all pictures
should be collected under a single PICTURE declaration.

Examples

PICTURE NUM (ZZZZ9)

Declarations
157

PICTURE

This picture transfers five characters from the source to the
destination. The first four characters are transferred with leading
zero replacement; that is, leading zeros are transferred to the
destination as the zero character, which is a blank character by
default. The fifth character is not replaced by the zero character.
If the source and destination are EBCDIC. digits are transferred as
digits, but other characters have their zope field replaced by 4"F".
turning them into digits. If the source and destination are
hexadecimal. only the numeric field of the zero character is
transferred to replace leading zeros. The following table gives
some sample results of this picture.

Source Destination
------ -_._--------

8"00000" 8" 0"
8"00500" 8" 500"
8"00356" 8" 35b"
8"OABCD" 8" 1234"
4"00000" 4"00000"
4"00500" 4"00500"
4"00356" 4"00356"
4"OABCD" 4"OABCD"

PICTURE USECS (ZZZI999999)

This picture transfers nine characters from the source to the
destination and inserts one character into the destination, yielding
ten characters in the destination. The first three characters from
the source are transferred to the destination with leading zero
replacement. Then the insert character, which is a period (.) by
default, is inserted into the destination. Six characters are then
transferred from the source to the destination with no leading zero
replacement. The following table gives some sample results of this
picture.

Source

8"000000000"
8"356000012"
8 10 005123400"
8"150000376"

Destination

8" .000000"
8"35b.000012"
8" 5.123400"
8 " 150 . 000376 "

158
PICTURE ALGOL REFERENCE MANUAL

PICTURE TIMENOW (N: " " 9 (2) I 9 (2) I 9 (2))

This picture transfers six characters from the source. The
introduction code-N causes the insert character to be the colon (:).
The string literal" " causes the blank character to be inserted
into the destination. The first and second source characters are
transferred to the destination without leading zero replacement, the
insert character is inserted into the destination, the third and
fourth source characters are transferred to the destination, the
insert character is inserted, and the fifth and sixth source
characters are transferred to the destination. The destination
receives a total of nine characters. The following table gives some
sample results of this picture.

Source

8"000000"
8"123456"
8"000523"
8"150007"

Destination

8" 00:00:00"
8" 12:34:56"
8" 00:05:23"
8" 15:00:07"

PICTURE TABLE ("1983 = " F(4) X(2) "1984
"CHANGE ": E(3) n%")

" :F(4) X(2)

This picture transfers 11 characters from the source to the
destination. formatting the information into a table.

First, the string "1<)82 = " is inserted into the destination. Then
four characters are transferred from the source to the destination,
with leading zero replacement and a dollar sign ($) inserted in
front of the first nonzero character. Then the destination pointer
is advanced two characters, and the string ~1984 =" is inserted
into the destination. The colon (:) control character causes
leading zero replacement to be restored. Four characters are
transferred from the source to the destination with leading zero
replacement and dollar sign insertion. The destination pointer is
advanced two characters, and the string "CHANGE = " is inserted into
the destination. Again, the colon is used to restore leading zero
replacement. Then three characters are transferred from the source
to the destination with leading zero replacement and a plus (+) or a
minus (-) inserted in front of the first nonzero character,
depending on the value of EXTF. Finally, the string "%" is inserted
into the destination. A total of 42 destination characters are
produced by this picture.

Declarations
159

PICTURE

The following table gives some sample results of this picture. In
the table, it is assumed that the destination area was filled with
blanks before the picture was used, and that EXTF was properly set
up to reflect the sign of the change value.

Source

8"00035000420020"
8"00110003680235"
8"02246021060006"
8"0008C)000350061"

8"1c)83
8"1983
8"1983
8"1983

=
=
=
=

S35
SIlO

S2246
S89

Destination

1984 $42
lC)84 = S368
1984 = $2106
1984 $35

CHANGE +20%"
CHANGE = +2 35~~"
CHANGE
CHANGE = -61%"

160
POINTER

POINTER DECLARATION

ALGOL REFERENCE MANUAL

The POINTER declaration declares a pointer. A pointer can represent the
address of a character position in a one-dimensional array or an array
row. Because of this, it is said to "point" to a character position.

Syntax

<pointer declaration>

------------ POINTER --)
/ I
1- OWN -I

1<---------------------- . ---------------------1
1

>---<identifier>---1
I /
I-<lex level restriction part>-I

<pointer identifier>

An <identifier> that is associated with a pointer in a POINTER
declaration.

<lex level restriction part>

-- FOR ---<pointer identifier>----/
/ 1

I-<array identifier>---i

See also
<array identifier> 42

Semantics

The POINTER declaration establishes each identifier in the list as a
pointer identifier.

Declarations

Pragmatics

161
POINTER

Pointers are initialized through the use of a pointer assignment
statement or the update pointer construct. Any attempt to use a pointer
before itis initialized results in a fault at run time.

Example

POINTER PTS,PTD.SOURCE,DEST

Declares PTS. PTD. SOURCE, and DEST to be pointers.

Own Pointers

A pointer declared to be OWN retains its value when the program exits
the block in which the pointer is declared, and that value is again
available when the program re-enters the block in which the pointer is
declared.

Own pointers can be assigned only to global arrays or own arrays
declared within the scope of the pOinter. This restriction applies
because the pointer is not deallocated when the block in which it is
declared is exited. If an own pointer were assigned to a local array,
then when the block in which the pointer is declared is re-entered. the
pointer could contain a reference to an array that has been deallocated.

<lex level restriction part>

A global pointer pointing to a local array would access an invalid
portion of memory ~ if the local array is deallocated. To avoid this
situation, any construct that could result in a pointer pointing to an
array declared at a higher lexical (lex) level than that at which the
pointer is declared is disallowed by the compiler. Such an assignment
is called an "up-levE'1 pointer assignment."

162
POINTER ALGOL REFERENCE MANUAL

An explicit up-level pointer assignment such as

GLOBALPOINTER := POINTER(LOCALARRAY)

results in a syntax error. because the locally declared array LOCALARRAY
might be deallocated. leaving the global pointer GLOBALPOINTER pointing
at an invalid memory location.

A potential up-level pointer assignment such as

GLOBALPOINTER .- LOCALPOINTER

also results in a syntax error. because the local pointer LOCALPOINTER
can point to a locally declared array. Of course. LOCALPOINTER can
point to an array declared at a lex level equal to or less than that at
which GLOBALPOINTER is declared (in which case up-level assignment would
not occur). but because there is no way for the compiler to determine
where LOCALPOINTER will be pointing when the assignment is executed,
such potential up-level pointer assignments are not allowed.

The lex level restriction part causes assignments to the pointer being
declared to be restricted so that the pointer can be used to assign
values to pointers declared at lower lex levels. The lex level
restriction part specifies that. for up-level pointer assignment
checking. the compiler is to treat the pointer being declared as if it
were declared at the same lex level as the pointer or array whose
identifier follows the "FOR." For example. the declaration

POINTER LOCALPOINTER FOR GLOBALPOINTER

declares a pointer LOCALPOINTER that can point only to arrays declared
at lex levels equal to or less than the lex level at which GLOBALPOINTER
is declared.

Because assignments to LOCALPOINTER are restricted py the lex level
restriction part in the above declaration. an assignment such as

GLOBALPOINTER .- LOCALPOINTER

cannot result in an up-level pointer assignment. and therefore is
allowed by the compiler.

The lex level restriction part is not allowed in the formal parameter
part of a PROCEDURE declaration or in the global part.

Declarations

Example 1

100 %%
200 %%%%%%%%%%%%%% PROGRAM 1 %%%%%%%%%%%%%%%
300 %%
400 BEGIN
500
600
700
800
900

1000
1100
1200
1300

POINTER GLOBALPOINTER;
ARRAY GLOBALARRAYl,

GLOBALARRAY2[0:9];
GLOBALPOINTER := POINTER(GLOBALARRAYl);
BEGIN

POINTER LOCALPOINTER;
ARRAY LOCALARRAY[0:9]:
GLOBALPOINTER := LOCALPOINTER;
LOCALPOINTER .- POINTER(LOCALARRAY);

1400 END:
1500 END.

100 %%
200 %%%%%%%%%%%%%% PROGRAM 2 %%%%%%%%%%%%%%%
300 %%.

163
POINTER

% LEX LEVEL 2

% LEX LEVEL 3

% SYNTAX ERROR

400 BEGIN % LEX LEVEL 2
500 POINTER GLOBALPOINr~R;
bOO ARRAY GLOBALARRAYl,"
700 GLOBALARRAY2[0:9];
800 GLOBALPOINTER:= POINTER(GLOBALARRAYl);
900 BEGIN % LEX LEVEL 3

1000 POINTER LOCALPOINTER 'FOR GLOBALARRAY2;
1100 ARRAY LOCALARRAY[O:9];
1200 GLOBALPOINTER := LOCALPOINTER;
1300 LOCALPOINTER .- POINTER(LOCALARRAY); % SYNTAX ERROR
1400 END;
1500 END.

Progiam 1 and program 2 above are nearly identical. The only difference
is found in the POINTER declaration at line 1000. In program 1,
LOCALPOINTER is declared without a lex level restriction part, and the
potential up-level pointer assignment at line 1200 of program 1 causes a
syntax error. In program 2. LOCALPOIN~ER is declared with the lex level
restriction part "FOR GLOBALARRAY2". so the pointer assignment at line
1200 of program 2 cannot bean up-level pointer assignment and does not
cause a syntax error. However, the restrictions imposed by the lex
level restriction part cause a syntax error at line 1300 of program 2,
where no error occurred in program 1.

164
POINTER ALGOL REFERENCE MANUAL

Example 2

BEGIN
POINTER PI, P2:
ARRAY A[O:9];
PROCEDURE P(PTRA, PTRB);
POINTER PTRA, PTRB;

BEGIN
PTRA := PTRA + 3;
REPLACE 'PTRA:PTRA BY PTRB:PTRB FOR 5:
PTRA .- PTRB;
PTRA := P2;
PTRB := POINTER(A);
REPLACE PTRA:PTRB BY "X";
END:

P2 .- POINTER(A):
P(PI, P2);

END.

% LEX LEVEL 2

% OK
% OK
% SYNTAX ERROR
% SYNTAX ERROR
% SYNTAX ERROR
01
10 SYNTAX ERROR

A call-by-name formal pointer parameter cannot be assigned the value of
any painter other than itself. because there is no way for the compiler
to determine the lex level of the actual pointer parameter passed to the
call-by-name formal pointer parameter.

Example 3

[POINTER PTRA,PTRB;]
PROCEDURE P:

BEGIN
ARRAY A[O:9]:
PTRA .- PTRA + 2:
PTRA := POINTER(A):

PTRA .- PTRB:

END.

% OK
% SYNTAX ERROR -- THIS IS AN
% UP-LEVEL POINTER ASSIGNMENT.
% SYNTAX ERROR -- THE LEX LEVELS
% OF PTRA AND PTRB ARE NOT KNOWN.
% SO THIS IS A POTENTIAL UP-LEVEL
% POINTER ASSIGNMENT.

To prevent up-level pointer assignments that can result from separate
compilation of procedures with global parts, a pointer declared in the
global part cannot be assigned the value of any pointer other than
itself.

Declarations

PROCEDURE DECLARATION

165
PROCEDURE

A PROCEDURE declaration defines a procedure and associates a procedure
Identifier with it. The procedure can then be invoked by using the
procedure identifier.

Syntax

<procedure declaration>

PROCEDURE --<procedure heading>-- ------->
I-<procadure type>-I

>-<procedure body)---------~-----~--------------~------------------1

<procedure type>

----<type>----------------------I
I 1

1----------------- STRING -I
1 1
I-<string type>-I

<procedure heading>

--<identifier>------------------------------I
I !
I-<formal parameter part>-I

<procedure identifier>

An <identifier> that is associated with a procedure in a PROCEDURE
declaration.

<string procedure identifier>

An <identifier> that is associated with a procedure that is declared
a STRING procedure in a PROCEDURE declaration.

166
PROCEDURE ALGOL REFERENCE MANUAL

<formal parameter part>

-- (--<formal parameter list>--) -- ---------------------------)
I-<value part>-I

1<------- ; ------1
1

>---<specification>---·-----1

<formal parameter list>

1<---- . ---------------------1
1 I I I

1 1 <-<parameter de1imlter>-1 I

1 1

----<formal parameter>-------------I

<formal parameter>

--<ldentifier>--1

<value part>

1 < ----- • ----- I
1 I

-- VALUE ---<identifier>--- --I

<specification>

I < ----- • -----,
1

----<specifier>---<identifier>------I
1 I

I-<procedure speclfication>----I
I

I-<array specification>--------I

Declarations

<specifier>

---- EVENT -----~--~------------I
1 1

1------------ FILE --------1
1 1 1

1- DIRECT -I I·
I 1

1- FORMAT -----------------1
1 1

1- LABEL ------------------1
I 1

1- LIST -------------------\
1 1

- PICTURE ----------------1
1

- POINTER ----------------\
1

----------------- STRING -I

-<string type>-I
1

\

1

- SWITCH -----------------1
1

------------ SWITCH FILE -\
1

- DIRECT -I
1

1

1

- SWITCH FORMAT ----------1
1

- SWITCH LIST ------------1
1

1- TASK -------------------1
1 1

I-<type>-------------------I

<procedure specification>

167
PROCEDURE

-----------------.------ PROCEDURE --<identifier>------------------->

I-<procedure type>-I

>------------------------------~-----------------------------------1
i I
I-<formal parameter specifier>-I

168
PROCEDURE ALGOL REFERENCE MANUAL

<formal parameter specifier>

---- () ---------------------- -- FORMAL --I
1 1
I-<formal parameter part>-I

<array specification>

1<--·--- , -----1
1 1

------------------- ARRAY ---<identifier>-------------------------->

I-<array type>-I

>- [--<lower bourid lis±>--] -------------------------------------1

. <array type>

-<array class>---------------I
1

- DIRECT -----------------1
1 1
I-<array class>-I

I
- EVENT ------------------1

I
----------------- STRING -I

I
-<string type>-I 1

1

- TASK -------------------1

<lower bound list>

1<----------- , ----------1
! 1

----<specified lower bound>----I

<specified lower. bound>

----<integer>----I
I 1

1_)Ir -------1

Declarations

<procedure body>

----<unlabeled statement>------------------I
1 1

1- EXTERNAL --------------------------1
1 1

I-<dynamic procedure specification>---I
1 1

I-<library entry point specification>-I

<dynamic procedure specification>

-- BY CALLING --<selection procedure identifier>--I

<selection procedure identifier>

--<procedure identifier>--I

<libr~ry entry point specification>

169
PROCEDURE

-- LIBRARY --<library ident~fier>---------------------------------->

>----------------.-----------------------~--------------------------1
I 1

1- (-- ACTUALNAME -- = -- <EBCDIC string> --) -I

See also
<array class>
<library identifi4~r> ..
<string type>
<type>
<unlabeled statement> .

Semantics

41
. 129

. . . 185
41

. . . 220

A procedure becomes a "function" by preceding the word PROCEDURE with a
procedure type and by assigning a value (the result to be returned by
the procedure) to the procedure identifier somewhere within the
procedure body. This kind of procedure is referred to in ALGOL as a
"typed procedure." (For examples of typed procedures, see procedures
RESULT, HEXPROC. MATCH. and MUCHO under Examples.) A typed procedure can
be used either as a statement or as a function. When used as a
statement. the returned result is automatically discarded.

170
PROCEDURE ALGOL REFERENCE MANUAL

If <string type> is not specified in the <procedure type> construct in
the declaration of a string procedure, then ~he procedure is a string
procedure of the default character type. The default character type can
be designated by the compiler control options ASCII and BCL. If no such
compiler control option is used, the default character type is EBCDIC.
(For more information, refer to "Default Character Type" in the appendix
"Data Representation.")

See also
Default Character Type. 817

The formal parameter part lists the items to be passed in as parameters
when the procedure is invoked. A formal parameter part is optional.
Every formal parameter for a procedure must appear in a specification.

The value part specifies which formal parameters are to be
"call-by-value." When a formal parameter is call-by-value, the formal
parameter is assigned the value of the corresponding actual parameter
when the procedure is invoked. Thereafter, the formal parameter is
handled as a variable that is local to the procedure body. That is, any
change made to the value of a call-by-value formal parameter has no
effect outside the procedure body.

Only arithmetic. Boolean, complex. designational, pointer, and string
expressions can be passed as actual parameters to call-by-value formal
parameters. These expressions are evaluated once before entry into the
procedure body.

Formal parameters not listed in the value part are "call-by-name,"
except for string parameters (described below) and file parameters.
Wherever a call-by-name formal parameter appears in the procedure body,
the formal parameter is. in effect, replaced by the actual parameter
itself and not by the value of the actual parameter. A call-by-name
formal parameter is effectively global to the procedure body. because
any change made to its value within the procedure body also changes the
value of the corresponding actual parameter outside the procedure body.
If the formal parameter is a complex call-by-name parameter and the
actual parameter is not of type COMPLEX, an assignment within the
procedure body to the formal parameter causes the program to discontinue
with a fault.

Declarations
171

PROCEDURE

An expression can be passed as an actual parameter to a call-by-name
formal parameter. This situation results ih a "thunk," or "accidental
entry." A thunk is a compiler-generated typed procedure that calculates
and returns the value of the expression each time the formal parameter
is used. This situation can be time-consuming if the formal parameter
is repeatedly referenced. In addition, a fault occurs if an attempt is
made to store into that parameter.

The default mode of passing a string is "call-by-reference" instead of
call-by-name. Any string expression can be passed to a
call-by-reference string formal parameter. When a string variable or a
subscripted string variable is passed as an actual parameter to a
call-by-reference string formal parameter, a reference to the actual
string is passed. If the value of the formal parameter is changed
within the procedure body, the actual string is also Changed. If any
other form of string expression is passed as an actual parameter to a
call-by-reference string formal parameter, the string expression is
evaluated once at the time the expression is passed. and a reference to
the value of the expression is passed to the called procedure. This
value can be altered by the called procedure. However, any change in
the value of the formal parameter within the procedure body has no
effect outside the procedure body.

An array specification must be provided for every formal array. The
array specification specifies the number of dimensions in the formal
array and indicates the lower bound for each dimension.

A specified lower bound that is an integer indicates that the
corresponding dimension of the formal array has a lower bound given by
this integer. An asterisk (*) used as a specified lower bound indicates
that the corresponding dimension of the formal array has a lower bound
that is passed to the procedure with the actual array.

Array rows that are passed as actual parameters to procedures have their
subscripts evaluated at the time of the procedure call. rather than at
the time the corresponding formal array is referenced.

If a program is a procedure, parameters can be passed to it. If the
procedure is initiated through CANDE (which passes only one parameter, a
quoted string). then the formal parameter must be declared as a real
array with an asterisk lower bound. If the procedure is initiated
through Work Flow Language (WFL). a formal parameter for a string actual
parameter must be declared as a re~l array with an asterisk lower bound.
Both CANDE and WFL pass strings as arrays. (For more information, refer
to the EXECUTE command in the "CANDE Reference Manual" and the RUN
statement in the "Work Flow Language lWFL) Reference Manual.") When the
program is initiated, the array is allocated the minimum number of words

172
PROCEDURE ALGOL REFERENCE MANUAL

needed to contain the string plus at least one null character (48"00"),
which is appended to the end of the string.

The procedure body EXTERNAL is used to declare a procedure that is to be
"bound in" to the program (as opposed to actually appearing within the
program) or that is an external code file to be invoked. An attempt to
invoke a procedure that is declared external but has not been bound in
nor associated with an external code file results in a run-time error.

A dynamic procedure specification is used in a library program to
declare a procedure that is to be exported dynamically. Such a
procedure is also called a "by-calling procedure." For mote information
on by-calling procedures. refer to the chapter "Interface to the Library
Facility." The by-calling procedure cannot be declared FORWARD and
cannot be a separately compiled procedure. Also, the by-calling
procedure cannot be referenced directly in the library program that
declares it.

A selection procedure identifier must specify an untyped procedure with
two parameters. The first parameter must be a call-by-value EBCDIC
string. The second parameter must be a fully specified untyped
procedure with one parameter that is a task. When the Master Control
Program (MCP) invokes this selection procedure. the task variable passed
to its procedure parameter must already be associated with a library
that has been processed using this task variable.

A library entry point specification declares a procedure to be an entry
point in the library known to this program by the library identifier.
The procedure cannot be declared FORWARD or EXTERNAL.

If a program declares a library and entry points in that library, the
object code file for the program contains a structure called a library
template. which describes the library and its declared entry points.
Each library declared has one template. The template's description of
an entry point includes the entry point'S name, a description of the
procedure's type. and descriptions of its parameters.

When a library entry point is called. the description of the entry point
in the library template of the calling program is compared to the
description of the entry point of the same name in the library directory
associated with the referenced library. (Refer to "EXPORT Declaration"
for a discussion of library directories.) If the entry point does not
exist in the library or if the two entry point descriptions are not
compatible. then a run-time error is given and the program is
terminated.

Declarations
173

PROCEDURE

The name given for an entry point in a library template is the procedure
identifier in the dpclaration of the entry point, unless an ACTUALNAME
clause appears, in which case it is given by the EBCDIC string. The
EBCDIC string in the ACTUALNAME clause must not contain any leading.
trailing, or embedded blanks and must be a "valid identifier"; that is.
any sequence of characters beginning with a letter and consisting of
letters, digits, hyphens (-), and underscores (_).

Procedures can be called recursively; that is, inside the procedure
body. a procedure can invoke itself.

Pragmatics

For maximum efficiency. as many formal parameters as possible should be
call-by-value. and E?ach specified lower bound should have a value of
zero.

The formal parameter specifier causes the compiler to generate more
efficient code for passing procedures as parameters. When a procedure
is declared FORMAL. the compiler checks the parameters of the actual
procedure passed to it at compile time; otherwise, the parameters are
checked at run time. If FORMAL is specified. the formal procedure is
called a "fully specified" formal procedure.

Allowed Formal and Actual Parameters

All parameters can be declared to be call~by-name (or. in the case of
strings, call-by-reference). The following types of parameters can also
be declared to be call-by-value:

ASCII string
Boolean simple variable
complex simple variable
double simple variable
EBCDIC string
hexadecimal string

integer simple variable
label
pointer
real simple variable
string

174
PROCEDURE

Array Parameters

ALGOL REFERENCE MANUAL

If a formal parameter is an array, the actual parameter passed to that
formal array must be an array designator that has the same number of
dimensions as the formal array.

The types of actual arrays that can be passed to formal arrays are given
by the following table.

Formal Parameter 1 Allowed Actual Parameters 1
==1

ASCII array 1 ASCII array 1
1 ASCII value array 1

----------------------------1---1
ASCII string array 1 ASCII string array 1

----------------------------1---1
BCL array 1 BCL array 1

1 BCL value array 1

----------------------------1---1
Boolean array 1 Boolean array 1

1 direct Boolean array 1

1 Boolean value array 1
----------------------------1---1

complex array 1 complex array 1

1 complex value array 1

----------------------------1---1
direct ASCII array 1 direct ASCII array 1

----------------------------1---1
direct BCL array 1 direct BCL array 1

1----------------------------1---1
1 direct Boolean array 1 direct Boolean array 1

1----------------------------1---1
1 direct double array 1 direct double array 1

1----------------------------1---1
1 direct EBCDIC array I direct EBCDIC array 1

1----------------------------1---1
1 direct hexadecimal array 1 direct hexadecimal array 1

1----------------------------1---1
1 direct integer array I direct integer array 1

1 direct real array 1 direct real array 1
1----------------------------1---1
1 double array 1 double array 1
1 1 direct double array 1
1 1 double- value array 1
1----------------------------1---1
1 EBCDIC array 1 EBCDIC array 1
1 1 EBCDIC value array I

I 1 -.I

Declarations

! Formal Parameter Allowed Actual Parameters

175
PROCEDURE

1==!
1 EBCDIC string array I EBCDIC string array
1----------------------------1---j
1 event array 1 event array I
1----------------------------1---1
1 hexadecimal array 1 hexadecimal array I
1 I hexadecimal value array I

1------------------_·_--------1---!
I hexadecimal string array 1 hexadecimal string array I

1------------------_·_--------1---!
1 integer array 1 integer array
1 real array 1 real array
1 1 direct integer array
I 1 direct real array
1 1 integer value array
1 1 real value array I

1----------------------------1---1
1 task array I task array
1 1 ___________________________________ __

Procedure Parameter~

If a formal parameter is a procedure, the actual parameter passed to
that formal procedure must be the identifier of a procedure for which
the following is true:

1. The actual procedure has the same number of parameters as the
formal procedure.

2. Each parameter of the actual procedure must have the same type
as the corresponding parameter in the formal procedure.

3. Each paramE'ter of the actual procedure must be passed in the
same manner (call-by-name or call-by-value) as the
corresponding parameter in the formal procedure.

176
PROCEDURE ALGOL REFERENCE MANUAL

The types of the procedures that can be passed to formal procedures are
given in the following table.

1 Formal Parameter I Allowed Actual Parameters 1
1==1
1 ASCII string procedure I ASCII string procedure 1

1------------------------------1--1
I Boolean procedure 1 Boolean procedure 1

1------------------------------1---------------------------------------1
I complex procedure complex procedure I
1------------------------------ --1
1 double procedure double procedure I

1------------------------------ --1
I EBCDIC string procedure EBCDIC string procedure 1

1------------------------------ --1
1 hexadecimal string procedure hexadecimal string procedure 1

1------------------------------ --1
1 integer procedure integer procedure 1

1 real procedure real procedure 1

1------------------------------ --1
1 untyped procedure untyped procedure 1

1 1

Simple Variable Parameters

The types of actual parameters that can be passed to formal parameters
that are simple variables are given in the following table.

Formal Parameter Allowed Actual Parameters I
=================================;=====================================1
Boolean simple variable 1 Boolean identifier

(call-by-name or I Boolean procedure identifier
call-by-value) I Boolean expression 1

----------------------------1--1
complex simple variable I complex identifier 1

(call-by-name or 1 double identifier I

call-by-value) 1 integer identif ier 1

1 real identifier 1

1 complex procedure identifier 1

I double procedure identifier 1

1 integer procedure identifier I

1 real procedure identifier I

I arithmetiC expression I
1 (single or double precision) 1

I complex expression 1

---------------------------_1 I

Declarations

Formal Parameter Allowed Actual Parameters

177
PROCEDURE

I===============================~======================================1
1 double simple variable double identifier I
1 (call-by-name) double procedure identifier I

I arithmetic expression I
1 (double p~ecision only)
1------------------·---------- ---
1 double simple variable double identifier
I (call-by-value) integer identifier
1 real identifier
1 double procedure identi f ier
1 integer procedure identifier
I real procedure identifier
I arithmetic expression
1 (single or double precision)
I----------------------------I-~---------------------------------------
I integer simple variable I integer identifier
I real simple variable I real identifier
I (call-by-name) I integer procedure identifier
I I real procedure identifier
I I arithmetic expression
1 I (single precision only) 1

1-----------------------------1---1
I integer simple variable I double identifier I
I real simple variable I integer identifier I
I (call-by-value) I real identifier I
I 1 double procedure ident i f ier I

1 I integer procedure identifier 1

I real procedure identifier I
I arithmetic expression
I (single or double precision)

--------------------.-----------1------------------------------------

178
PROCEDURE

String Parameters

ALGOL REFERENCE MANUAL

The types of actual parameters that can be passed to formal parameters
that are strings are given in the following table.

1 Formal Parameter 1 Allowed Actual Parameters 1
1==1
1 ASCII string 1 ASCII string identifier 1
1 (call-by-reference or 1 ASCII string procedure identifier 1
1 call-by-value) 1 ASCII string expression I

1----------------------------1---1
1 EBCDIC string 1 EBCDIC string identifier 1

1 (call-by-reference or 1 EBCDIC string procedure identifier I

1 call-by-value) 1 EBCDIC string expression 1
1----------------------------1---1
1 hexadecimal string 1 hexadecimal string identifier 1

1 (call-by-reference or 1 hexadecimal string procedure identifier 1

1 call-by-value) 1 hexadecimal string expression I

I I 1

File Parameters

The types of actual parameters that can be passed to formal parameters
that are files are given in the following table.

1 Formal Parameter Allowed Actual Parameters 1

1==i
1 direct file 1 direct file identifier
I I subscripted direct switch file
1 ! identifier
i---------~------------------i---1
1 direct switch file 1 direct switch file identifier 1
j-___________________________ i ________________________ -----------------1
1 file I file identifier 1

1 1 subscripted switch file identifier 1

1---------------------------- ---1
1 switch file switch file identifier

1----------------------------

Declarations

Other ~ of Parameters

179
PROCEDURE

The types of actual parameters that can be passed to formal parameters
.that are not arrays, procedures, simple variables, strings, or files are
given in the following table.

-~----------------.----------------------------~--~----~---------------
Formal Parameter Allowed Actual Parameters

1==================:==1
I event 1 event identifier 1
1 1 an element of an event array I
I 1 file identifier. I
1 I event-valued file attribute name 1

I 1 subscripted switch file identifier. I
1 1 event-valued file attribute name 1

I-~--------------------------I---1
I format I format identifier· 1

1 1 subscrip~ed switch format identifier 1

I-----------------------~----I--------~~-------------------------------1
1 label I label identifier 1

1 (call-by-name or 1 sUbscripted switch identifier 1
1 call-by-value) 1 designational expression I

I----------------------------I--~--------------------------------------1
I list I list identifier I
1 1 subscripted switch list identifier I

I----------------------------I~------------------------~---------------I
I picture I picture identifier I
I------------------~---------I--~------~----------~--------------------1
1 pointer (call-by--name) 1 pointer identifier 1

1-----------------------------1---1
1 pointer (call-by--value) I pointer identifier I

1 1 pointer expression 1

1----------------------------1---1
1 switch label I switch label identifier 1

1----------------------------1-----------------------------~-----------I
1 switch format 1 switch format identifier I

I----~------~-------·--~------I----------------~------------------------1
I switch list 1 switch list identifier I

1----------------------------1---1
1 task 1 any task designator I

I 1 1

180
PROCEDURE

Examples

ALGOL REFERENCE MANUAL

The examples below show how the procedure body of a procedure can vary
in complexity from a simple unlabeled statement to a block.

PROCEDURE SIMPL;
X := X + 1

Declares SIMPL to be an untyped procedure with no parameters. The
body of SIMPL is a single statement.

PROCEDURE TUFFER(PARAM);
VALUE PARAM:
REAL PARAM:

X := X + PARAM

Declares TUFFER to be an untyped procedure with one parameter,
PARAM. which is a call-by-value real variable. The body of TUFFER
consists of a single statement.

REAL PROCEDURE RESULT(PARAM.FYLEIN);
REAL PARAM:
FILE FYLEIN;

BEGIN

RESULT .- X + PARAM:

END

Procedure RESULT is a typed procedure that returns a real value.
The value to be returned is assigned to the procedure identifier by
the assignment "RESULT := X + PARAM;". RESULT has two parameters, a
call-by-name real variable and a file.

HEX STRING PROCEDURE HEXPROC:
HEXPROC := 4"123"

Declares HEXPROC to be a typed procedure that returns a hexadecimal
string value. The value to be returned is assigned to the procedure
identifier in the assignment that makes up the body of HEXPROC.

BOOLEAN PROCEDURE MATCH(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;

MATCH := A=B OR A=C OR B=C

181
PROCEDURE

Declares MATCH to be a typed procedure that returns a Boolean value.
MATCH has three parameters that are all call~by-value, integer
variables.

PROCEDURE FURTHERON;
FORWARD

This is a forw,ard procedure declaration for the procedure FURTHERON.
For more infor:mation, refer to "Forward Reference Declaration."

DOUBLE PROCEDURE MUCHO(DBLl,DBL2,BOOL);
VALUE DBL2,BOOL;
DOUBLE DBLl,DBL2;
BOOLEAN BOOL;

BEGIN
REAL LOCALX,LOCALY;

MUCHO := DOUBLE{LOCALX,LOCALY):
END OF MUCHO

Declares MUCHO to be a double-precision procedure with three
parameters. DBLI is a call-by~name double-precision variable, DBL2
.is a call-by'-value double-precision variable, and BOOL is a
call-by-value Boolean variable. The body of MUCHO is a block.

PROCEDURE GETDATA(A);
ARRAY A[*];

BY CALLING SELECTDATASOURCE

% BY~CALLING PROCEDURE

Declares GETDA'rA to be a by-cailing procedure. The selection
procedure is SELECTDATASOURCE. GETDATA has one parameter, a
one-dimensional real array, A, with an asterisk lower bound. meaning
that the lower bound. will be passed as a parameter.

INTEGER PROCEDURE NUMRECORDS(TYPE);
VALUE ·TYPE;
INTEGER TYPE;

% LIBRARY ENTRY POINT

LIBRARY DATAiiANDLER (ACTUALNAME="COUNTRECS")

Declares NUMRECORDS to be an entry point in the library DATAHANDLER.
The entry pc:>int is exported from DATAHANDLER wi th the name
COUNTRECS, but will be called NUMRECORDS in this program.

182
REAL

REAL DECLARATION

ALGOL REFERENCE MANUAL

A REAL declaration declares ~imple variables that can have real values
(arithmetic values that have exponents and fractional parts).

Syntax

<real declaration>

1 I

1- OWN -I

<real identifier>

1<--------- . --------1
1

REAL -----<identifier>---------l
I 1

I-<equation part>-I

An <identifier> that is associated with the REAL data type in a REAL
declaration.

See also
<equation part> 0 • • • • • • • • • • • • • • •• 55

Semantics

A simple variable declared to be OWN retains its value when the program
exits the block in which the variable is declared. and that value is
again available when the program re-enters the block in which the
variable is declared.

The equation part causes the simple variable being declared to have the
same address as the simple variable associated with the second
identifier. This action is called "address equation." An identifier can
be address-equated only to a previously declared local identifier or to
a globa: jdentifier. The first identifier must not have been previously
declared within the block of the equation part.

Address equation is allowed only between integer, real, and Boolean
variables. Because both identifiers of the equation part have the same
address. altering the value of either variable affects the value of both
variables.

183
Declarations REAL

The following example demonstrates the effects of address-equating real
and Boolean variables.

BEGIN
BOOLEAN B;
REAL R = B' ,
R .- 4; % B = FALSE R = 4.0
B := TRUE; % B = TRUE R = 1.0

END.

rhe OWN specification has no effect on . an address-equated identifier.
The first identifier of an equation part is own only if the second
identifier of the equation part is own.

A REAL declaration with an equation part is not allowed in the global
part of a program unit.

Pragmatics

If a real or integer value is assigned to a real variable, it is stored
"as is" into the variable. If a double-precision value is assigned to a
real variable, it is rounded to single precision before it is stored in
the variable.

When a real simple variable is allocated, it is initialized to
48-bit word with all bits equal to zero). However,
compatibility with ALGOL bO. programmers should explicitly
real simple variables with appropriate assignment statements.

zero (a
to ensure
initialize

The appendix "Data Representation" contains additional information on
the internal structure of a real operand as implemented on A Series and
B 5000/B booo/B 7000 Series systems.

See also
Real Operand 820

184
REAL ALGOL REFERENCE MANUAL

Examples

REAL INDX.X.Y.TOTAL

Declares INDX, X, Y. and TOTAL as real variables.

REAL CALC = BaaL. INDEX. VALU = INTR

Declares CALC. INDEX. and VALU as real variables. CALC is
address-equated to the simple variable BaaL. and VALU is
address-equated to the simple variable INTR. This means CALC and
BaaL share the same address. and VALU and INTR share the same
address.

OWN REAL DISTANCE. REALINDEX

Declares DISTANCE and REALINDEX as real variables. Because they are
declared to be own, these variables retain their values when the
program exits the block in which they are declared.

Declarations

STRING DECLARATION

185
STRING

A STRING declaration declares simple variables to be strings. Strings
allow storage and manipulation of character strings in a program.

Syntax

<string declaration>

1<----- . -----1
1 I

---------------~~---- STRING ---<identifier>----I

I-<string type>-I

<string type>

ASCII -----1
1 1
1- EBCDIC -I
1 1
1- HEX ----I

<string identifier>

An <identifier> that is associated with the STRING data type in a
STRING declaration.

Semantics

The type STRING is ,a structured data type that contains characters of
only one character type. A string has two components: contents and
length. No trailing blanks or null characters are added to a string, so
the length of a string is exactly the number of characters stored in the
string. The maximum string length allowed is 2**16-2 characters.

All strings declared in a STRING declaration are of the same string
type. If no string type is specified in the STRING declaration, then
the default character type is used. If the default character type in
this case is BeL, a syntax error is given. The default character type
can be designated by the compiler control options ASCII and BCL. If no
such compiler control option is deSignated, the default character type
is EBCDIC. (For more information. refer to "Default Character Type" in
the appendix "Data Representation.")

18b
STRING

See also

ALGOL REFERENCE MANUAL

Default Character Type 817

Pragmatics

The number of strings that can be declared in a program is limited by
the Master Control Program (MCP) to 500. If this limit is exceeded, the
message "STRING POOL EXCEEDED" is given.

Examples

ASCII STRING Sl,S2.S3

Declares Sl. S2. and S3 as string simple variables of string type
ASCII. Sl. S2. and S3 will contain ASCII characters.

EBCDIC STRING S5,S6,S7~S8

Declares S5, S6, S7, and S8 as string simple variables of string
type EBCDIC. These strings will contain EBCDIC characters.

STRING S9

Declares 89 as a string simple variable. Because no string type is
specified, the default character type is used. This character type
is EBCDIC unless the compiler control option ASCII is TRUE, in which
case the string type is ASCII. or the compiler control option BCL is
TRUE, in which case the string type is BCL. If the default
character type is BCL, this declaration is given a syntax error.

Declarations

STRING AiiAX DEC~~TION

187
STRING ARRAY

A STRING ARRAY declaration declares string arrays. A string array is an
array that has string elements.

Syntax

<string array declaration>

---------------.----- STRING -- ARRAY ------------------------------>
i

I-<string type>-I

1<---------------------
I
I I<----~ , -----1

, ---------------------1
I
1

I 1 I 1

>-----<identifi~~r>--- [--<bound pair 1ist>-- J -------------------1

<string array identifier>

An <identifier> that is associated with a string array in a STRING
ARRAY declaration.

<string array designator>

--<string array identifier>--------------------------I
I I
I-<subarray selector>-I

See also
<bound pair list> .
<string type> ...
<subarray selector> .

Semantics

42
. 185

44

All string arrays declared in a STRING ARRAY declaration are of the same
string type. If no string type 1s specified, the default character type
is used. If the default character type in this case is BCL, a syntax
error is given. The default character type can be designated by the
compiler control options ASCII and BeL. If no such compiler control
option is used, the default character type is EBCDIC. (For more
information, refer to "Default Character Type" in the appendix "Data
Representation.")

188
STRING ARRAY ALGOL REFERENCE MANUAL

The restriGtions that apply to arrays also apply to string arrays. (For
more information. refer to "ARRAY Declaration.")

See also
Default Cbaracter Type 817

Examples

STRING ARRAY SA,SB.SC[O:lOJ

Declares SA, SB, and SC as one-dimensional arrays of strings, each
with a lower bound of zero and an upper bound of 10. Because no
string type is specified, the default character type is used. This
character type is EBCDIC unless the compiler control option ASCII is
TRUE. in which case the string type is ASCII. or the compiler
control option BCL is TRUE, in which case the string type is BCL.
If the default character type is BCL. this declaration is given a
syntax error.

EBCDIC STRING ARRAY ESA[l:15]. ESE. ESC[O:lO. O:lOJ

Declares ESA. ESB. and ESC as arrays of strings. The string type is
EBCDIC, so each is an array of EBCDIC strings. ESA is
one-dimensional and has a lower bound of 1 and an upper bound of 15.
Arrays ESE and ESC are two-dimensional arrays with lower bounds of
zero and upper bounds of 10 for both dimenSions.

Declarations

SWITCH UI.& DECLABA'UQIf

189
SWITCH FILE

A SWITCH FILE declaration associates'an identifier with a list of file
designators. Any of these file designators can later be referenced by
using the ident1fier and a number corresponding to the position of the
f1le designator in the list.

Syntax·.

<switch file declaration>

--------------- SWITCH -- FILE --<identifier>-- .- ---------------->
II
1- DIRECT -I

)-<switch file l1st>----~---~--------------------------------------1

<sw1tch file identifier>

An <identifier> that is assoc1ated w1th a switch file list in a
SWITCH FILE declaration.

<direct switch file identifier>

An <identifier> that is assqciated with a switch file list in a
DIRECT SWITCH FILE declaration.

<switch file list>

1<-------- , -------1
! I

----<file designator>----I

<file designator>

-----<file identifier>--I
I I
I-<direct file 1dentif1er>--------------------------------1
I I
1-<sWitch file ident1fier>---------- [--<subscript>--] -I
I I
I-<direct switch fileident1fler>-1

190
SWITCH FILE ALGOL REFERENCE MANUAL

See also
<direct file identifier>.
<file identifier> .
<subscript>

Semantics

85
85
43

An integer index is associated with each file designator in the switch
file list. The indexes are O. 1. 2. and so on through N-l, where N is
the number of file designators in the list. These indexes are obtained
by counting the file designators in order of their appearance in the
list. A file designator in the list can be referenced by subscripting
the switch file identifier with a subscript whose value is equal to the
index of the file designator.

If a subscript to a switch file identifier yields a value outside the
range of the switch file list (that is, less than zero or greater than
N-I), a fault occurs at run time.

Any subscripts in the switch file list are evaluated at the time of the
switch file declaration.

A switch file can reference itself in the switch file list. in which
case a stack overflow might occur when the program is executed. For
example. if a switch file is declared as

SWITCH FILE SF .- FI, F2. SF[N]

then if N equals 2. the subscripted switch file identifier SF[N]
references itself indefinitely.

The switch file list of a switch file that is not DIRECT can contain
only file designators that are not DIRECT, and the switch file list of a
switch file that is DIRECT can contain only file designators that are
DIRECT.

Declarations

Examples

SWITCH FILE CHOOSEUNIT :~

CARDOUT,
TAPEOUT.
PRINTOUT;

WRITE(CHOOSEUNIT[O]. 14, A[*]);
WRITE(CHOOSEUNIT[l], 14, A[*]);
WRITE(CHOOSEUNIT[2]. 14, A[*]);

% WRITES TO CARDOUT
% WRITES TO TAPEOUT
% WRITES TO PRINTOUT

191
SWITCH FILE

192
SWITCH FORMAT ALGOL REFERENCE MANUAL

SWITCH FORHAT DECLARATION

A SWITCH FORMAT declaration associates an identifier with a list of
items representing editing speCifications. Any of these items and the
associated editing specifications can later be referenced by using the
identifier and a number corresponding to the position of the item in the
list.

Syntax

<switch format declaration>

-- SWITCH -- FORMAT --<identifier>-- := --<switch format list>--I

<switch format identifier>

An <identifier> that is associated with a switch format list in a
SWITCH FORMAT declaration.

<switch format list>

1<----------- , ----------1
1 1

----<switch format segment>----I

<switch format segment>

----<format designator>-------------------I
I 1
1- --<editing specifications>--) -I
I 1
1- < --<editing specifications>-- > -I

<format designator>

----<format identifier>--------~-------------------------I
! 1

I-<switch format identifier>-- [--<subscript>--] -I

See also
<editing specifications>.
<format identifier>
<subscript>

90
89
43

Semantics

Declarations
193

SWITCH FORMAT

An integer index is associated with each switch format segment in the
switch format list. The index.s are 0, 1, 2, and so on through N-l,
where N is the number of switch fo~mat segments in the list. These
indexes are obtained by counting the switch format segments in order of
their appearance in the list. A switch format segment in the list can
be referenced by subscripting the switch format identifier with a
subscript whose value is equal to the index of the switch format
segment.

If a subscript to a switch format 1dentifier yields a value outside the
range of the switch format list (that iS t less than zero or greater than
N-l). a fault occurs at run time.

Any subscripts in the switch format list are evaluated at the time the
subscripted switch format identifier is encountered.

A switch format can reference itself tnthe switch format list. in whiCh
case a stack overflow might occur when the program is executed. For
example, if a switch format is declared as

SWITCH FORMAT SF := FMTl, FMT2, SF[N]

then if N equals 2, the subscripted switch format identifier SF[N]
references itself indefinitely.

A simple string Ii tE'ral in a SWITCH FORMAT declaration is always
read-only if the switch format segment in which it appears consists of
editing specifications rather than a format designator.

Examples

SWITCH FORMAT SF .- (Ab. 314. 12, X60) • % 0
(14. X2. 214. 312) . % 1
(X78. 12) • % 2
(X2) ,~ 3

Declares SF to be a switch format identifier with a switch format
list of four sets of editing specifications. The editing
specifications (X78. 12). for example. can be referenced as SF[2].

194
SWITCH FORMAT ALGOL REFERENCE MANUAL

SWITCH FORMAT SWHFT : = FMT1. FMT2. F:MT3

Declares SWHFT to be a switch format identifier with a switch format
list of three format designators. SWHFT[O] evaluates to format
FMT1. SWHFT[l] to FMT2. and SWHFT[2] to FMT3.

Declarations

~SWITCH LABEL DECLARAT1SH!

195
SWITCH LABEL

A SWITCH LABEL declaration associates an identifier with· a list of
designational expressions, which are expressions that evaluate to
labels. Any of these designationa1 expressions can later be referenced
'by using the identtfier and a number corresponding to the position of
the designationa1 expression in the list.

Syntax

<switch label declaration>

-- SWITCH --<identifier>-- .- --<switch label list>--I

<switch label identifier>

An <identifier> that is associated with a switch label list in a
SWITCH LABEL declaration.

<switch label list>

1<------------ , ------------1
1 1

----<designationa1 expression>----I

Semantics

An integer index is associated witt each designationa1 expression in the
switch label list. The indexes are 1, 2, 3, and so on through N, where
N is the number of designational expressions in the list. These indexes
are obtained by counting the designati:onal expressions in order of their
appearance in the list. A designational expression in the list can be
referenced by subscripting the switch label identifier with a subscript
whose value is equal to the index of the designationa1 expression.

Note that the indexing of a switch label list begins at 1.

If a subscript to a switch label identifier yields a value outside the
range of the switCh label list (t~at is, less than 1 or greater than N).
the statement using the switch label is not executed. and control
proceeds to the nE~xt statement. Typically. the next statement is a
specification of so~e form of error ha~dling.

196
SWITCH LABEL ALGOL REFERENCE MANUAL

The designational expressions in a switch label list are evaluated at
the time the subscripted switch label identifier is encountered.

A switch label can reference itself in the switch label list. in which
case a stack overflow might occur when the program is executed. For
example. if a switch label is declared as

SWITCH SW .- Ll. L2, L3, SW[N]

then if N equals 4. the designational expression SW[N] references itself
indefinitely.

Examples

SWITCH CHOOSEPATH := Ll.L2.L3.L4

Declares CHOOSEPATH to be a switch label identifier with labels LI.
L2, L3. and L4 in the switch label list. CHOOSEPATH[l] evaluates to
label LI, CHOOSEPATH[2] to L2. and so on.

SWITCH SELECT .- START, % I
ERRORl, % 2
CHOOSEPATH[2] % 3

Declares SELECT to be a switch label identifier with labels START
and ERRORI and designational expression CHOOSEPATH[2] in the switch
label list. Note that from the previous SWITCH LABEL declaration.
CHOOSEPATH[2] evaluates to L2. so SELECT[3] evaluates to L2.

Declarations

SWITCH LIST DECLARATION

197
SWITCH LIST

A SWITCH LIST declaration associate$ an identifier with a list of list
designators. Any of these list designators can later be referenced by
using the identifier and a number corresponding to the position of the
list designator in the list~

Syntax

<switch list declaration>

1<-------- . -------1
1 1

-- SWITCH -- LIST --<identifier>-- := ~~-<list designator>--~-I

<switch ~ist identifier>

An <identifier> that is associated with a list of list designators
in a SWITCH LIST declaration.

<list designator>

----<list identifj.er>--------~-------------------------I
I 1

I-<switch list identifier>-- [--<subscript>--] -I

See also
<list identifier> .
< subscript;. . . .

Semantics

. 132
43

An integer index is associated with each list designator in the
declaration. The indt=xes are 0, 1, 2, and so on through N-1, where N is
the number of list desigriators in the declaration. These indexes are
obtained by counting the list designators in order of their appearance
in the declaration. Any of these list designators can be referenced by
subscripting the switch list identifier with a subscript whose value is
equal to the index of the list designator.

If a subscript to a switch list identifier yields a value outside the
range of the list of list designators (that is. less than zero or
greater than N-l), a fault occurs at run time.

198
SWITCH LIST ALGOL REFERENCE MANUAL

Any subscripts in the list of list designators are evaluated at the time
the subscripted switch list identifier is encountered.

A switch list can reference itself in the list of list designators, in
which case a stack overflow might occur when the program is executed.
For example, if a switch list 1s declared as

SWITCH LIST SL .- LIt L2, SL[N]

then if N equals 2. the subscripted switch list identifier SL[N]
references itself indefinitely.

Example

SWITCH LIST NUMVARIABLES := NOVARS. % 0
ONEVAR, % 1
TWOVARS, % 2
THREEVARS % 3

Declares NUMVARIABLES to be a switch list identifier and associates
four list designators with it. NUMVARIABLES[OJ evaluates to the
list NOVARS, NUMVARIABLES[l] evaluates to ONEVAR. and so on.

DeClarations
199

TASK and TASK ARRAY

The TASK and TASK ARRAY declarations are used to declare tasks and task
arrays, respectively. which can then be associated with a process or
coroutine. Task attributes can be used to control or to contain
information about the process or coroutine.

Syntax

<task declaration>

! <. ----- , ----- 1

I
-- TASK ---<identifier>----I

<task identifier>

An <identifier> that is associated with a task in
declaration.

<task array declaration>

a TASK

I<-----------------~--- , ---------------------1
1 I
I 1<----- . -----1 1

I 1 I I
-- TASK -- ARRAY-----<identifller>--- [--<bound pair list>--] ---I

. <task array identifier>

An <identifier> that is associ~ted with a task array in a TASK ARRAY
declaration.

200
TASK and TASK ARRAY ALGOL REFERENCE MANUAL

<task designator>

----<task
1

iderttifier)----------------------------~-----------------)

1 1<----- . ----I
1 1 1

1

1

I
I-<task array identlfier>-- [---<subscript>---] -I
1

I­
I
1-

1

MYSELF ---1
1

MYJOB --1
)-~---1

1 1
1 1<---------------------------------------1 1
1 I 1 I
1--- . --<task-valued task attribute name>---I

<task-valued task attribute name>

EXCEPTIONTASK ----I
I 1
1- PARTNER -------1

<task array designator>

--<task array identifier>--------------------------I
1 I

I-<subarray selector>-I

) See also
<bound pair list> .
<subarray selector> .
< subscr ipt > • • • •

Semantics

A task array is an array whose elements are tasks.
have no more than 15 dimen~ions.

42
44
43

A task array can

A task designator represents a single task. A task array designator
represents an array of tasks. MYSELF is the task designator for the
currently running program. MYJOB is the task designator for the
currently running job.

201
TASK and TASK ARRAY

When a process or coroutine is invoked, a task can be associated with
it. For example. a task designator can appear in a CALL statement.
PROCESS statement, or RUN statement. Attributes of the task can be
assigned values by the program to control the process or coroutine, and
the program can interrogate the values of attributes of the task as the
process or coroutine executes.

Attributes associated with a task designator can be assigned values or
interrogated in a program by specifying the task designator and the
appropriate task attribute names i.n assignment statements.

For information on processes and coroutines, refer to "CALL Statement."
"PROCESS Statement, II and "RUN Statement." For more information on
assigning and interrogating task attributes, refer to the <arithmetic
task attribute> construct under "Arithmetic Assignment." the <Boolean
task attribute> construct under "Boolean Assignment~" and "Task
Assignment."

See also
<arithmetic task attribute> ..
<Boolean task attribute> ..
Task Assignment

Examples

TASK PROCESSTASK

Declares PROCESSTASK to be a task identifier.

TASK ARRAY CHILDREN[O:LIM]

.. 227
• • • • 235

. . 246

Declares CHILDREN as a one-dimensional task array with a lower bound
of zero and an upper bound of LIM. CHILDREN might be used to store
the tasks associated with a group of processes and coroutines
initiated by a program.

202
TRANSLATETABLE ALGOL REFERENCE MANUAL

TRAlSLATETABLE DECLARATION

The TRANSLATETABLE declaration defines one or more translate tables.
Used in a REPLACE statement. a translate table indicates translations to
be performed from one group of characters to another group of
characters.

Syntax

<translate table declaration>

1<------------ . -----------1
I 1

-- TRANSLATETABLE ---<translate table element>----I

<translate table element>

1<----------- . ----------1
1 1

--<identifier>-- (---<translation specifier>---) --I

<translate table identifier>

An <identifier> that is associated with a group of one or more
translation specifiers in a TRANSLATETABLE declaration.

<translation specifier>

----<source characters>-- TO --<destination characters>----I
I 1

I-<translate table identifier>------------------------I

<source characters>

----<string literal>----I
I I
I-<character set>--I

Declarations

<character set>

ASCII -----1
1 I
1- BCL ----I
1 I
1- EBCDIC -I
1 I

1- HE~ ----I

<destinatio~ characters>

----<string literal>---~---------------I
1 I

I-<character set>-----------------I
1 1
I-<special destination character>-I

<special destination character>

A <string literal> that is one character long.

Semantics

203
TRANSLATETABLE

Specifying a character set is equivalent to specifying all the
characters in that set. in ascending binary sequence. The length of a
character set is equal to the total number of characters in the set.

A string literal specifies all the characters in the string literal.
The length of a string literal is equal to the number of characters in
the string literal in terms of the largest character size specified by
the string literal.

Within a pair of parenthesis. eaCh succeeding translation specifier
overrides the previous translation specifiers.

Within a single translate table, all source character sizes and all
destination character sizes must be the same, although the character
sizes of the source and destination parts need not be the same.

The number of destination characters must equal the number of source
characters, unless the special destination character is used or unless a
character set is used for both the source characters and the destination
characters. If the special destination character is used, all the
source characters are translated to the speCial destination character.

204
TRANSLATETABLE ALGOL REFERENCE MANUAL

Every translate table has a default base in which all source characters
are translated to characters with all bits equal to zero. This means
that all source characters that do not appear in the TRANSLATETABLE
declaration are translated to the character whose binary representation
had all bits equal to zero.

The use of a character set for both the source and destination parts
invokes a standard table from the Master Control Program (MCP) and
provides a way of obtaining a legitimate base on which additional
translation specifiers can be used, if desired, to override certain
parts of the standard table. The use of a translate table identifier as
a translation specifier can also be used to provide a base.

When string literals of equal length are used for the source and
destination parts. translation is based on the corresponding positions
of the source and destination characters, from left to right.

See also
Short and long string literals 387

Examples

TRANSLATETABLE ALCHEMY ("LEAD" TO "GOLD")

Translates the letters "L" to "G". "E" to "0", "A" to "L". and liD"
to "0". All other characters are translated to the character whose
binary representation has all bits equal to zero. Both the source
and the destination characters are of the default character type.

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC.
"abcdefghijk.lmnopqrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Translates all EBCDIC characters to themselves except for the
lowercase letters, which it translates to uppercase letters.

TRANSLATETABLE PAREN_TO_BRACKET (EBCDIC TO EBCDIC. 8"(" TO 8"[")

Translates all EBCDIC characters to themselves except the left
parenthesis, "(", which is translated to the left square brack.et,
II [" •

Declarations

TRANSLATETABLE NUMBERS_TO_PERIODS (EBCDIC TO EBCDIC,
"0123456789" TO ".")

205
TRANSLATETABLE

Translates all EBCDIC characters to themselves except for the
digits, which it transiates to periods (.).

Translate Table IndexjLng

·The size of a translate table is determined by the size of the source
characters (the characters to be translated): 4-bit characters require
a 4-word table; b-bit characters require a l6-word table; 7-bit and
8-bit characters require a 64~word table. A translate table is a
one-dimensional read-only array.

Each word in a translate table (Figure 4-1) has its low-'-order 32 bits
divided into four 8-bit fields, numbered 0 to 3 from left to right. The
high-order 16 bits are all zeros.

When a character is to be translated. the binary representation of the
character is divided into two parts: a "word ·index" and a "field
index." The field indE~x consists of the two low-order bits; the word
index consists of the remaining high-order bits. The word index
designates the word in the translate table in which the field index
designates the character into which the source character is to be
translated.

206
TRANSLATETABLE ALGOL REFERENCE MANUAL

The diagram below shows ind~xing for the translation of "a" to "A" that
would result from the declaration

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,
"abcdefghijk.lmnopqrstuvwxyz" to
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

l 6 5 ,t 3 2 1 0

[l] 0 I 0 I o~T 0 I 0 11 1
'~ ________ ~I ______ ~A 1 /

~RD INDEX FIELD IND]~

/
Binary representation of character
to be tra.nslated: (EBCDIC) "a"

Binary representation of

nev va.lue for "a": "A"

FIELD 0 FIELD 1. FIELD 2 FIELD 3

\«JBD (32] OF
TRANSLATE TABLE

-

r

.......

(47:16] EMPTY [31:8] 123:8] [15:8) [7:8]
/..-___ 1-1 ___ \/,....._..a..1 --v.,..._ ' - v,-_.&-' ---"v ' \

0 0 1 0 1 0 1 0
47 43 39 35 31 21 23 19 15 11 7 3

0 0 1 0 1 0 1 0
46 42 38 34 30 26 22 18 14 10 6 2

0 0 0 0 0 1 0 1
45 41 31 33 29 25 21 17 13 9 5 1

0 0 0 1 0 0 0 1
44- 40 36 32 28 24 20 16 12 €I 4 0

Figure 4-1. Translate Table Indexing

Declarations

TRUTHSET DECLABATIOlt!

207
TRUTHSET

The TRUTHSET declaration associates an identifier with a set of
characters. The identifier can then be used in a SCAN statement to scan
while or until any character in the truth set occurs. The identifier
can also appear as a condition in a REPLACE statement. so that
replacement takes place while or until any character in the truth set
occurs.

Syntax

<truth set declaration>

I<·----~------------~----- t ----------------------1
1 1

-- TRUTHSET ---<identifier>-- (--<membership ·expression>--) ----I

<truth set identifier>

An <identifier> that is associated with a membership expression in a
TRUTHSET declaration.

<membership expression>

1 < -----------.--

1 I

1 1 (-

1 I
1 1(-
I I
I 1 <-
1 1
1 1 (-

1

AND -------------j

OR --I
1

i ---I
I

IMP -I
I

EQV -I

--------------<membership primary>----I
I I
1- NOT -I

208
TRUTHSET ALGOL REFERENCE MANUAL

<membership primary>

----<string literal>---------------------l
1 j
I-<truth set identifier>------------I
1 1

1- (--<membership expression>--) -I
1 1

1- ALPHA ---------------------------1
I I
1- ALPHA6 -----------------.--------- 1
1 1

1- ALPHA7 --------------------------1
1 1

1- ALPHA8 --------------------------1

Semantics

All membership primaries of a membership expression must be of the same
character size (4-bit. 6-bit, 7-bit, or 8-bit); this character size
determines the type of the truth set. The character size of a string
literal is determined by the maximum character size indicated by its
component string codes. (For more information, refer to "String
Literal" in the chapter "Language Components.")

A membership expression is evaluated according to the normal rules of
precedence for Boolean operators. This precedence is described under
"Boolean Expression."

ALPHA, ALPF~6, ALPHA 7 , andALPHA8 are intrinsic ·truth sets defined as
follows:

ALPHAb

ALPHA7

ALPHA8

ALPHA

A truth set that contains the BCL digits and uppercase
letters

A truth set that contains the ASCII digits and uppercase
letters

A truth set that contains the EBCDIC digits and uppercase
letters

A truth set that contains the digits and uppercase
letters of the default character type

Declarations
209

TRUTHSET

If a default character type is not explicitly specified by the compiler
control options ASCII or BeL, then the default character type is EBCDIC,
and ALPHA is the same as ALPHA8. If the ASCII compiler control option
is TRUE, then ALPHA is the same as ALPHA7. If the BCL compiler control
option is TRUE, then ALPHA is the same as ALPHA6.

Pragmatics

NOTE

The BCL data type is not supported on all
A Series and B SOOOIB bOOO/B 7000 Series
systems. The appearance of a BCL
construct that may cause the creation of
a BCL descriptor, such as the ALPHAb
intrinsic truth set, will cause the
program to get a compile~time warning
message.

From the characters in a TRUTH SET declaration, the compiler builds a
truth set table, which is used in a truth set test to determine whether
a given character is a member of that group of characters.

All truth sets declared by a single TRUTHSET declaration are stored in a
single read-only array. SeparateTRBTHSET declarations produce separate
read-only arrays.

A truth set test references a bit in the read-only array containing the
truth set by dividing the binary representation of the character being
tested into two parts: the low-order five bits are used as a bit index.
and the three high-order bits are used as a word index. If the size of
the source character is smaller than eight bits, high-order zero bits
are inserted to mak~~ an 8-bit character before the indexing algorithm is
used.

The word index selects a particular word in the truth set table. The
bit index is then subtracted from 31. and the result is used to
reference one of th~~ low-order 32 bits in the selected word. If the bit
selected by the following expression is equal to 1, the character is a
member of the truth set:

TABLE[CHAR.[7:3]].[(31-CHAR.[4:5]):1]

210
TRUTHSET ALGOL REFERENCE MANUAL

Figure 4-2~shows an example of a truth set test. In this example, the
referenced bit (13) is equal to 1: therefore. the test character is a
member Of the truth set.

16 Eo 4:;:2 10

r 1 ·11 11 11 I 0 I 0 I 1 0 I B1r,ary representa.tion of the
L.. __ '-__ .1-__ ... __ ..L __ ...L __I. __I.-----I_ test character: (EBCDIC) "2"

\ __ ~I~~A~·-----~I------~/

WORD INDEX BIT INDEX=
31-18=13

[47: 16) EMPTY [31: 32]
/ V,-----------..... I----------\

Examples

wan (1] OF

TRUTHSBT

TRUTHSET T(ALPHA)

~

-

.....

0 1 1 0
47 43 39 36 31 27 23 19

0 1 1 0
46 42 38 34 30 26 22 18

1 1 0 0
45 41 37 33 29 25 21 ·17

1 1 0 0
44- 40 36 32· 28 24 20 16

Figure 4-2. Truth Set Test

1 1 1 0
15 11 7 3

1 1 1 0

iii
10 6 2

1 0 0
9 5 1

1 1 0 0
12 8 4 0

Declares T to bea truth set with membership equal to that of ALPHA.
ALPHA consists of all uppercase letters and the digits 0 through 9.
in the default character set.

TRUTH SET Z (ALPP..A8 OR "~")

Declares Z to be a truth set with membership of ALPHA8 and the
hyphen (-).

TRUTH SET NUMBERS("0123478956")

Declares NUMBERS to be a truth set with a membership of the digits 0
through 9 in the default character set.

Declarations

TRUTHSET LETTERS(ALPHA AND NOT NUMBERS)

211
TRUTHSET

Declares LETTERS to be a truth set with a membership of ALPHA but
not the digits 0 through 9: that is, consisting of the uppercase
letters in the default character set.

TRUTHSET HEXN (4" 12 2:") ,BCLN(b" 12 3")" ASCN (7" 123")

Declares three truth sets:

1. HEXN. with a membership of the hexadecimal characters 1. 2,
and 3

2. BCLN, with a membership of the BCL characters 1. 2. and 3

3. ASCN, with a membership of the ASCII characters 1, 2, and 3

212
TYPE ALGOL REFERENCE MANUAL

TYPE DECLARATION

A type declaration declares simple variables that can be used in a
manner appropriate to the specified type.

Syntax

<type declaration>

----<Boolean declaration>----I
I

I-<complex declaration>-I
I I
I-<double declaration>--I
i I
I-<integer declaration>-I
! I
I-<real declaration>----I

Semantics

Type-transfer functions can be used (as can the equation part feature)
to perform operations on a variable other than those that are valj.d for
the type of the variable.

Each type of simple variable is used as follows:

Type

BOOLEAN

COMPLEX

DOUBLE

INTEGER

Meaning/Description

Boolean values. A Boolean variable is a one-word variable
in which the Boolean value (TRUE or FALSE) depends on the
low-order bit (bit zero) of the word; use of partial word
parts and concatenation allows all 48 bits to be tested or
manipulated as needed.

Complex values. A complex variable is a two-word variable
in which the first word contains the real part and the
second word contains the imaginary part.

Double-precision arithmetic values.
variable is a two-word variable.

A double-precision

Integer arithmetic values. An integer value is one that
has an exponent of zero and no fractional part. Integer
variables are one-word variables.

Type

REAL

Declarations

Meaning/Description

213
TYPE

Real arithmetic values~ A real value is one that can have
an .exponent and a fractional part. Real variables are
one-word variables.

The appendiX "Data Representation" contains more information regarding
the internal structure of each type· of simple variable as implemented on
A Series and B 5000/B ~OOO/B 7000 Series systems.

214
VALUE ARRAY ALGOL REFERENCE MANUAL

VALUE AiBAI DECLARATION

A VALUE ARRAY declaration declares a read-on1y~ one-dimensional array of
constants.

Syntax

<value array declaration>

------------------------------- VALUE -- ARRAY -------------------->

1- LONG -I I-<array class>-I

1<------------------- . ------------------1
1 1

>---<identifier>-- (--<constant list>--) ~-----------------------I

<value array identifier>

An <identifier> that is associated with a value array in a VALUE
ARRAY declaration.

<constant list>

1<---- . ----I
I I

----<constant>----I

<constant>

----<Boolean value>----------------------------------I
I 1

I-<number>--------------------------------------I
I 1

I-<con~tant expression>-------------------------I
i I
i-<string literal>------------------------------I
i 1

I-<unsigned integer>-- (--<constant list)--) -I

<constant expression>

An arithmetic, Boolean. or complex expression that can be entirely
evaluated at compile time.

Declarations

See also
<array class>
<Boolean value>

Semantics

215
VALUE ARRAY

41
. 492

A value array is a one-dimensional, read-only array. An element Of a
value array is referenced in the same manner as for any other array:
that is, through a subscripted variable or by using a pointer. However.
an attempt to store a value into a value array is flagged with a
compile-time or run-time error.

The lower bound of a value array is zero.

Normally. a value clrray longer than 1024 words is automatically paged
(segmented) at run time into segments 256 words long. LONG specifies
that the value array is not to be paged, regardless of its length.

If no array class appears in a VALUE ARRAY declaration, REAL is assumed.

NOTE

The BeL data type is not supported on all
A Series and B 5000/B 6000/B 7000 Series
systems. The appearance of a BeL
construct that may cause the creation of
a BeL descriptor, such as a BeL value
array, will cause the program to get a
compile-time warning message.

Each constant initializes an integral number of words. The number of
words initialized depends on the type of the array and the kind of
constant.

Single-precision numbers. single-precision expressions, Boolean values,
and Boolean exprE~ssions initialize one word in value arrays other than
double or complex value arrays. In double value arrays, this word is
extended with a second word of 2ero. In complex value arrays, this word
is normalized and then extended with an imaginary part of zero.

Double-precision numbers and expressions are stored unchanged in two
words in double value arrays. In complex value arrays, the value is
rounded and normalized to single precision and then extended with an
imaginary part o:f zero. For other types of value arrays, the second

216
VALUE ARRAY ALGOL REFERENCE ~~NUAL

word of the double-precision value is dropped and the first word
initializes one word of the array.

Complex expressions can appear only in complex value arrays, and they
initialize two words of the array.

String literals more than 48 bits long initialize as many words as are
needed to contain the string and are left-justified with trailing zeros
inserted in the last word. if necessary. In complex and double value
arrays, long string literals can initialize an odd number of words.
causing the following constant to start in the middle of a two-word
element of the array.

String literals less than or equal to 48 bits long are right-justified
within one word with leading zeros. if necessary. This word initializes
one word in value .arrays other than double or complex value arrays. In
double value arrays, this word is extended with a second word of zero.
In complex value arrays. this word is normalized and then extended with
an imaginary part of zero.

The "<unsigned integer> «constant list»" form of constant causes the
values within the parentheses to be repeated the number of times
specified by the unsigned integer.

Pragmatics

The Master Control Program (MCP) overlays value arrays more efficiently
than other arrays because value arrays need not be written to disk when
their space in memory is relinquished.

The maximum size of an unpaged (unsegmented) value array is 4095 words;
the maximum size of a paged value array is 32,767 words.

Example

VALUE ARRAY DAYS ("MONDAY
"W.EDNESDAY
"FRIDAY

Declarations

"
t,

"

"TUESDAY
"THURSDAY
"SATURDAY

"SUNDAY")

"
"
"

217
VALUE ARRAY

Declares DAYS to be a value array of real elements. DAYS stores the
names of the days of the week, one day name in each two words. The
string "FRIDAY", for example, is stored in DAY[8] and DAY[9].
and can be retrieved by assigning a pointer to DAY[8] and using the
pointer.

219

~ STATEMENTS

Statements are the active elements of an ALGOL program. They indicate
an operation to be performed~ Statements are normally executed in the
order in which they appear in the p~ogram. This sequential flow of
execution~an be altered by a statement that transfers control to
another program location.

Syntax

<statement>

Note that. <statement> can be null or empty. Each of the following
metatokens represents a valid ALGOL statement.

<accept statement>
<assignment statement>
<attach statement>
<block>
<breakpoint statement>
<call statement>
<cancel statement>
<case statement>
<cause statement>
<causeandreset statement>
<changefile statement>
<checkpoint statement>
<close statement>
<compound statement>
<continue statement>
<deallocate statement>

.<detach statement>
<disable statement>
<display statement>
<do statement>
<enable statement>
<exchange statement>
<fill statement>
<fix statement>
<for statement)
<free statement>
<freeze statement>
<go to statement>
<if statement>
<liberate statement>
<lock statement>

<merge statement>
<messagesearcher statement>
<multiple attribute assignment statement>
<on statement>
<open statement>
<procedure invocation statement>
<process statement>
<procure statement>
<programdump statement>
<read statement>
<removefile statement>
<replace family-change statement>
<replace pointer-valued attribute statement>
<replace statement>
<reset statement>
<resize statement)
<rewind statement)
< run staitement>
<scan statement>
<seek statement>
<set staitement>
< sort s t'a temen t >
< space s:tatement>
< swap st:atement>
<thru st:atement)
<wait st:atement)
<wa1tandreset statement>
<when st:atement>
<while statement>
<write statement>
<zip statement>

220
ALGOL REFERENCE MANUAL

Semantics .

The syntax for <statement> is recursive--a statement can be a bloCK or a
compound statement, each of which, in turn, can include statements. For
a description of the syntax of <block> and <compound statement>, refer
to the chapter "Program Structure."

Statements can be labeled or unlabeled. A <labeled statement> is of the
following form:

--<label identifier)-- --<statement>--I

An <unlabeled statement> is any statement that is NOT a labeled
statement.

With the exceptions of <block> and <compound statement>,
described in the chapter "Program Structure." each of
statements is described in this chapter.

which
the

are
above

Statements

ACCEPT STATEMENT

221
ACCEPT

The ACCEPT statement causes the display of a specified message on the
Operator Display Terminal (ODT).

Syntax

<accept statement>

-- ACCEPT -- (---<pointer expression>------------) --I
I 1

I-<string variable>-------------I

See also

i I
I-<subscripted string variable>-I

<string variable>
<subscripted string variable> .

Semantics

. 525

. 525

The message displayed on the ODT is designated by the parameter to the
ACCEPT statem~nt. If the parame~er is a pointer expression, then
execution of the ACCEPT statement causes the characters to which the
pointer expression points to be displayed on the ODT. The pOinter
expression must point to EBCD1C characters, and the message to be
displayed must be terminated by the EBCDIC null character (48"00").
Following display of the characters. the program is suspended until a
response is entered at an ODT. The; response is placed, left-justified.
with leading blanks discarded and with an EBCDIC null character added at
the end, into the location to Which th~ pointer expression points. and
the program continues execution with the statement following the ACCEPT
statement.

If the parameter to the ACCEPT st,atement is a string variable or
subscripted string variable. then execution of the ACCEPT statement
causes the contents of the specified string to be displayed on the ODT.
The string variable or subscripted string variable must be of type
EBCDIC. Following the display of the characters, the program is
suspended until a response is entered at an ODT. The response is placed
in the string variable or subscripted string variable, and the program
continues execution with the statement following the ACCEPT statement.

222
ACCEPT ALGOL REFERENCE MANUAL

The ACCEPT.statement can be used as a Boolean function. If a response
is not available. the value of the ACCEPT statement is FALSE. If a
response is available, the valUE of the ACCEPT statement is TRUE, and
the response is placed in the specified location. The program continues
execution regardless of the value returned by the ACCEPT statement.

Pragmatics

No more than 430 characters can be displayed by the ACCEPT statement.
No more than 960 characters can be accepted as a response.

The response to the ACCEPT statement can be entered before the actual
execution of that statement. The response can be entered using the AX
(Accept) ODT command. For more information, refer to the "Operator
Display Terminal (ODT) Reference :Manual."

Examples

ACCEPT(POINTER(Z,8»

Displays the string of EBCDIC characters in the array Z. from the
beginning of the array to the EBCDIC null character (48"00).

IF ACCEPT(STR) THEN
DISPLAY("THANK YOU.")

ELSE
DISPLAy(UPLEASE RE-ENTER.")

Displays the contents of string STR on the ODT. If a response is
available, the string "THANK YOU." is displayed. If no response is
available. the string "PLEASE RE-ENTER." is displayed.

Statements

ASSIGNMENT STATEMENT

223
ASSIGNMENT

The assignment statement causes the.item on the right of the assignment
operator (:=) to be evaluated and the resulting value to be assigned to
the item on the left of the assignment operator.

Syntax

<assignment statement>

----<arithmetic assignment>------------I
\

\-<array reference assignment>--~-
I
I-<Boolean assignment>------------
\

\-<complex assignment>------------
\

I-<mnemonic attribute assignment>­
,
I-<pointer assignment>-----------­
I
I-<string assignment>-------------
I
\-<task assignment>---------------

Semantics

The action of an assignment statement is as follows:

1. The location of the target is determined.

2. The item following the assignment operator (:=) is evaluated.

The resulting value is assigned to the target.

The syntax, semantics, pragmatics, and examples for each form of the
assignment statement are discussed in the following pages.

224
ASSIGNMENT ALGOL REFERENCE MANUAL

The various forms of the assignment statement are called "assignments"
instead of "statements" because they can appear both as statements and
in expressions. For example,

A := A + 1

is a statement when it stands alone. However, the same construct can be
used in an expression, such as in

IF (A := A + 1) > 100 THEN <statement>

Pragmatics

Too many arithmetic, Boolean, complex, pointer, or string assignments in
one statement can cause a stack overflow fault in the compiler. The
fault can be avoided by breaking the statement into several separate
statements. each containing fewer assignments, or by increasing the
maximum stack size for the program by using the task attribute
STACKLIMIT.

Examples

A := A + 1

XRAY .- A[3,*J

BOOL .- FALSE

CMF := COMPLEX(Rl,Il)

L.LIBACCESS := VALUE(BYTITLE)

PTR .- POINTER(INARAY,8)

STR .- "LONG MESSAGE"

TSK.EXCEPTIONTASK := T1

Statements

Arithmetic Assignment

225
Arithmetic Assignment

An arithmetic assignment assigns the value of the arithmetic expression
on the right side of the assignment operator (:=) to the arithmetic
target on the left side.

Syntax

<arithmetic assignment>

----<arithmetic variable>-->
I 1 I

1 I-<partial wore part>-I
I I
I-<arithmetic type transfer variable>---------I
I I
I-<arithmetic attribute>----------------------I

>--- := --<arithmetic expression>----------------------------------!
I I
I-<arithmetic update assignment>-I

<arithmetic variable>

--<variable>--!

<variable>

----<simple variable>---------I
I I
I-<subscripted variable>-!

<simple variable>

--<identifier>--i

<subscripted variable>

1<----- , ----i

--<array name>-- ---<subscript>--- --I

226
Arithmetic Assignment ALGOL REFERENCE MANUAL

<arithmetic type transfer variable>

DOUBLE ---­
I I
1- INTEGER -I
I

--<variable>-------------------------
1 1

I-<partial word part>-I
I

----I
I
1

1

1- REAL ----I 1-) --<partial word part>--!

<arithmetic attribute>

----<arithmetic file attribute>------------i
I I
I-<arithmetic direct array attribute>-I
1 1

I-<arithmetic task attribute>---------I

<arithmetic file attribute>

--<file designator>--- . ---->
I 1

I-<attribute parameter specification>-I

>-<arithmetic-valued file attribute name>--------------------------I

<attribute parameter specification>

-- (--<attribute parameter list)--

<attribute parameter list>

1<----------- . ----------1
I I

----<arithmetic expression>----I

<arithmetic direct array attribute>
•

--I
I

--<direct array row>-- . --)

)-<arithmetic-valued direct array attribute name>------------------I

Statements
227

Arithmetic Assignment

<arithmetic-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array
attribute values described in the "I/O Subsystem Reference Manual."

<arithmetic task attribute>

--<task designator>-- . --<arithmetic-valued task attribute name>--I

<arithmetic-valued task attribute name>

CLASS MAXLINES
COMPILETYPE MAXPROCTIME
COREESTlMATE OPTION
DECLAREDPRIORITY ORGUNIT
ELAPSEDTIME PROCESSIOTIME
HISTORY PROCESSTIME
INITIATOR RESTART
JOBNUMBER STACKNO
MAXCARDS STACKSIZE
MAXIOTIME

<arithmetic update assignment>

STARTTIME
STATION
STATUS
STOPPOINT
SUBS PACES
TARGETTIME
TASKATTERR
TASKVALUE
TYPE

-~<update symbols>---------------------~--------------------------->

>-----------------------------------~------------------------------1
!

I-<arithmetic operator>--<arithmetic expression>-!

<update symbols>

:= -- * --I

See also
<arithmetic operator)
<arithmetic-valued file attribute name)
<array name~
<direct array row> ..
<file designator) ..
<partial word part> . .
<subscript> ...
<task deSignator> .

• 475
86
43
68

· 189
· 489

• • • • 43
. . • • • . 200

228
Arithmetic Assignment ALGOL REFERENCE MANUAL

Semantics

If the declared type of the target item to the left of the assignment
operator (:=) and the type of the value to be assigned to it are
different, then the appropriate implicit type conversion is performed
according to the following rules:

1. If the left side is of type INTEGER and the expression value is
of type REAL, then the value is rounded to an integer before it
is stored.

2. If the left side is of type INTEGER and the expression value is
of type DOUBLE, then the value is rounded to a single-precision
integer before it is stored.

3. If the left side is of type REAL and the expression value is of
type INTEGER. then the value is stored unchanged.

4. If the left side is of type REAL and the expression value is of
type DOUBLE, then the value is rounded to single precision
before it is stored.

5. If the left side is of type DOUBLE and the expression value is
of type INTEGER or REAL. then the value is converted to double
precision by appending a second word of zero (all bits equal to
zero) before it is stored.

If more than one assignment operator appears in a single assignment (for
example. A:= B := C := 1.414), assignment of values is executed from
right to left. If. during this process, a value is converted to another
type so that it can be assigned. then it remains in that converted form
following that assignment; that is. the value does not resume its
original form. For example, if the following program is executed:

BEGIN
DOUBLE DBL1. DBL2:
REAL RELI, RE~2;

INTEGER INTI;
DBL2 .- REL2 := INT := RELI .- DBLl := 1.414213562373095048801;

END.

the variables are assigned the following values:

DBLI = 1.414213562373095048801
RELl = 1.41421356237
INT = 1
REL2 = 1.0
DBL2 = 1.0

Statements
229

Arithmetic Assignment

The arithmetic update assignment isa shorthand form of assignment that
can be used when the arithmetic target on the left side of the
assignment operator also appears in the arithmetic expression on the
right side of the operator. The arithmetic update assignment form can
be specified only following an arithmetic target that does not contain a
partial word part. The asterisk (*) represents a duplication of the
item to the left of the assignment operator. For example,

A := * + 1

produces the same results as

A := A + 1

The target item is not re-evaluated at the appearance of the asterisk.
Hence, if I equals zero initially, then

B[l :=1 + IJ .- * + 1

is equivalent to

B[l] := B[l] + 1

but it is not equivalent to

B[l] := B[2] + 1

If the item to the left Of the assignment operator is a subscripted
variable. it cannot reference a value array.

Pragmatics

If the "<arithmetic variable> <partial word part>" syntax or the
"'<arithmetic attribut,e>" syntax appears in a statement with multiple
assignments, then it must appear as the leftmost target in the
statement. The following examples illustrate this rule.

Allowed Not Allowed

X.[7:8] := Y := 1 Y := X.[7:8] .- 1

Fl.MAXRECS1ZE := RECLNGTH .- 30 RECLNGTH := Fl.MAXRECS1ZE .- 30

230
Arithmetic Assignment ALGOL REFERENCE MANUAL

Examples

VAL := 7

A[4,5].[30:4] .- X

FYLE.AREAS := 5C

FYLE(5).AREAS := 10

DIRARAY.IOCW := 4"1030"

TSK.COREESTIMATE := 10000

NEWARRAY[I] := * + OLDARRAY[I]

ONE := SIN(X := 3)**2 + COS(X)**2

DISTANCE := SQRT(X**2 + Y**2 + 2**2)

Statements
231

Array Reference Assignment

Ar..l:U Reference Assignment

An array reference assignment associates a variable, called
reference variable. with an array or a portion of an array.
reference variable can then be used to reference the array
portion.

Syntax

<array reference assisnment>

--<array reference variable>-- .- --<array designator>--I

<array reference variable>

--<array reference identifier>--I

See also
<array designator>
<array reference identifier>.

Semantics

an array
The array
or array

43
52

The array designator indicates the array or array portion to be
associated with the array reference variable. Following an array
reference assignment, the array reference variable becomes a referred
array, describing the same data as the array designator. which can
itself be an original array or another referred array.

The array reference variable cannot be global to the array designator.

If the array reference variable is declared as DIRECT, then
array designator for a direct array can be assigned to it.
non-direct array reference variable can be assigned an array
for either a direct or a non-direct array.

only an
However, a
designator-

The dimensionality of the array reference variable and the array
designator must be the same. If both are multidimensional, then the
array classes must be compatible. INTEGER. REAL. and BOOLEAN types are
compatible with each other. Other array classes are compatible only
with themselves. If the array reference identifier and the array
designator are both one-dimensional, then they can have any array class.

232
Array Reference Assignment ALGOL REFERENCE MANUAL

The size of each dimension of a multidimensional array reference
variable is the same as the size of the corresponding dimension of the
array designator. The size of a one-dimensional array reference
variable is determined by the size and element width of the array
designator and the element width for the array class with which the
array reference variable was declared. Let Sa and Wa be the size and
element width. respectively, of the array designator a and let Wr be the
element width for the array reference variable. The size of the array
reference variable, Sr, is then

Sr := (Sa * Wa) DIV Wr

Because of the truncation implicit in the DIV operation, Sr * Wr may be
less than sa* Wa. In this case. indexing the array reference variable
by S + LB. where LB is the lower bound in the ARRAY REFERENCE
declaration. causes an invalid index fault. Nevertheless. pointer
operations using the array reference variable can access the entire area
of memory allocated to the original array to which the array designator
ultimately refers; the memory area may hold more than Sr elements of
width Wr.

If the array designator is an uninitialized array reference variable,
the array reference assignment causes the target array reference
variable to become uninitialized.

Pragmatics

An array reference assignment generates a "copy descriptor" of an array
or array row.

Typical uses of an array reference assignment include the following:

To perform more efficiently arithmetic operations on
multidimensional arrays (for example, by extracting a particular
row to avoid repeated indexing to the same row)

For concurrent. but different, uses of the same array (for
example, for storing values of type REAL into an array that is
originally declared as Boolean)

Statements

Examples

BOOLARRAY := REELARRAY

EBCDICARAY := INPUTARAY[*]

SUBARRAY:= BIGARRAY[N,*,*]

ARAYROW := MULTIDlMARAY[I,J.K,*]

233
Array Reference Assignment

234
Boolean Assignment ALGOL REFERENCE MANUAL

Boolean Assignment

A Boolean assignment assigns the value of the Boolean expression on the
right side of the assignment operator (:=) to the Boolean target on the
left side.

Syntax

<Boolean assignment>

----<Boolean variable>--->
I I I

I-<partial word part>-I
I

I-<Boolean type transfer variable>---------I
I I
I-<Boolean attribute>----------------------j

)--- := --<Boolean expression>------------------------------~-------I
I I
\-<Boolean update assignment>-I

<Boolean variable>

--<variable>--I

<Boolean type transfer variable>

-- BOOLEAN -- (--<variable>--------------------------) ----I
I ! I
I-<partial word part>-I 1
I I
!--) -- < partial word part >--1

<Boolean attribute>

----<Boolean file attribute>------------I
I

I-<Boolean direct array attribute>-I
I I
I-<Boolean task attribute>---------I

Statements
235

Boolean Assignment

<Boolean file attribute>

--<file designator)--------------~-------------------------- . ---->
I I
I-(attribute parameter specificat1on>-1

>-<Boolean-valued file attribute name>-----------------------------I

<Boolean direct array attribute>

-- < direct array row>-- . ---------,---------------------------------- >

>-<Boolean-valued direct array attribute name>---------------------I

<Boolean-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array
attribute values described in the "I/O Subsystem Reference Manual."

<Boolean task attribute>

--<task designator>-- . --<Boolean-valued task attribute name>--I

<Boolean-valued task attribute name>

LOCKED ----I
I 1

1- TADS ---I

<Boolean update assignment>

--<update symbols>-------~--1
I I
I--<Boolean operator>--<simple Boolean express10n>-1

See also
<attribute parameter specification> ..
<Boolean operator>
<Boolean-valued file attribute name> ..
<direct array row>.
<file designator>
<partial word part>
< simple Boolean E?XpreS s ion>
<task designator>
<update symbols>..
<variable>. . . <, •••••••• • • • • •

· 226
491

86
68

189
489

. • 491

· 200
· 227
· 225

~3b

Boolean Assignment ALGOL REFERENCE MANUAL

Semantics

The Boolean update assignment is a shorthand form of assignment that can
be used when the Boolean target on the left side of the assignment
operator (:=) also appears in the Boolean expression on the right side
of the operator. The Boolean update assignment form can be specified
only following a Boolean target that does not contain a partial word
part. The asterisk (*) represents a duplication of the item to the left
of th~ assignment operator. For example,

B := * AND BOOL

produces the same results as

B := BAND BOOL

The target item is not re-evaluated at the appearance of the asterisk.

If the item to the left of the assignment operator is a sUbscripted
variable, it cannot reference a value array.

Examples

BOOL := TRUE

BOOLARRAY[N].[30:l] := Q < VAL

HIGHER := PTR > PTS FOR b

TAUTOLOGY := * OR TRUE

Statements
237

Complex Assignment

Complex Assignment

A complex assignment assigns the value of the complex expression on the
right side of the assignment OPerator (:=) to the complex variable on
the left side.

Syntax

<complex assignment>

--<complex vari~ble>--- := --<complex expression>-----I
I I
I-<complex update assignment>-I

<complex variable>

--<variable>--I

<complex update assignment>

--<update symbols>--->

>--~----------------------1
I I
I-<complex operator>--<simple complex expression>-I

See also
<comple~ operator>
<simple complex expression> .
<update symbols>
<variable>

Semantics

• 506
· 506

. • 227
• 225

The complex update assignment is a shorthand form of assignment that can
be used when the complex variable on the left side of the assignment
operator (:=) also appears in the complex expression on the right side
of the operator. The asterisk (*) ,represents a duplication of the
variable to the left of the assignment operator. For example.

C := * + COMPLEX(3.4)

238
Complex Assignment ALGOL REFERENCE MANUAL

produces the same results as

c .= C + COMPLEX(3,4)

The target variable is not re-evaluated at the appearance of the
asterisk.

If the item to the left of the ass:ignment operator is a subscripted
variable, it cannot reference a value array.

Examples

Cl .- COMPLEX(8.1.5)

C2 .- * + Cl/2

239
Statements Mnemonic Attribute Assignment

Mnemonic Attribute Assignment

A mnemonic attribute assignment assi,gns a value to the mnemonic-valued
library attribute LIBACCESS.

Syntax

<mnemonic attribute assignment>

--<mnemonic attribute>--:= ~ALUE ~- (------------------------->

>-<mnemonic attribute value>--) ----------------------------------1

<mnemonic attribute>

--<mnemonic library attribute>--j

<mnemonic library attribute>

--<library identifier>-- . -->
>-<mnemonic-valued library attri:bute name>-------------------------I

<mnemonic attribute value>

--<mnemonic library attribute value>--;

See also
<library identifier>
<mnemonic library attribute value>. . . .
<mnemonic-valued library attribute name> ..

Semantics

. 12q

. 130
. . . . 130

Refer to "Library Attributes" in the "Interface to the Library Facility"
chapter for a description of the library attribute LIBACCESS.

See also
Library Attributes 665

240
Mnemonic Attribute Assignment ALGOL REFERENCE MANUAL

Examples

L.LIBACCESS .- VALUE(BYTITLE)

L.LIBACCESS .- VALUE(BYFUNCTION)

Statements
241

Pointer Assignment

Pointer Assignment

A pointer assignment assigns the painter on the left side Of the
assignment operator (:=) to pOint to the location in an array indicated
by the expression on the right side of the assignment operator. Such a
pointer is then considered "initialized" and can be used in the REPLACE
and SCAN statements for character manipulation.

Syntax

<pointer assignment>

--<pointer variclble>--- := --<pointer expression>-----I
I I
I-<pointer update assignment>-I

<pointer variable>

-~<pointer identifier>--I

<pointer update assignment>

--<update symbols>-------------I
I I
I-<Sk.ip>-I

See also
<pointer identif ier >. •
<Sk.ip>
<update symbols> .. .

Pragmatics

· 160
· 519
· 227

A pointer assignment causes the creation of a copy descriptor to an
array. The pointf~r variable (copy descriptor) can be set up with the
needed character size by using the P~INTER function syntax.

See also
<pointer function> ~ 565

242
Pointer Assignment ALGOL REFERENCE MANUAL

Examples

PTS := EBCDICARAY[S]

Assigns a pointer named PTS to point to the EBCDIC character in the
EBCDIC array EBCDICARAY identified by the subscripted variable
EBCDICARAY[5].

PTR := POINTER(REALARAY)

Assigns a pointer named PTR to point to the leftmost character
position in the first element of the r~a1 array REALARAY.

PINFO := PTR + 17

Assigns the pointer PINFO to point to the 17th character position
after the character position pointed to by the pointer PTR.

POUT := POINTER(INSTUFF[N],4)

Assigns the pointer POUT to point to the leftmost character position
in the array element identified by INSTUFF[N]. The- "4" following
the comma indicates that POUT is a hexadecimal pointer and thus
points to hexadecimal characters.

Statements
243

String Assignment

StrlngAssignment

A.string assignment assigns the string that results from evaluation of
the string expression on the right side of the assignment operator (:=)
to the string target on the left side~

Syntax

<string assignment>

-------~------------------~---~------------------------------------>
I I
I-<string-valued library attribute>-- := -I

I<----~---------------------I

I I
>---<str1ng des1gnator>--:= -------------------------------------->

>--------------~-------~-------------------<string expression>-----I
1 I
1- * --<string concatenation operator>-I

<string designator>

----<string identifier>-----------------------------------I
I
I
I

1\----- . ----I
I

I-<string array identifier>-- [---<subscript>---] -I

1 I
I-<string procedure identifier>--------------~-------I

See also
<string array identifier> ..
<string identifier> . ~ . • . .
<string procedure identifier> •
<string-valued library attribute> .
<subscript>

· 187
· 185
• 165
· 525

43

244
String Assignment ALGOL REFERENCE MANUAL

Semantics .

The result of the expression on the right side of the assignment
operator (:=) must be a string of the same character type as the
declared type of the string designator on the left side.

Embedded assignment is not allowed. For example.

51 := DROP(52 := "ABC", 2)

is not allowed.

Assignment can be made to a string procedure identifier only within the
body of that string procedure.

The "* <string concatenation operator>" form is a shorthand form of
assignment that can be used when the string designator on the left side
of the assignment operator also appears in the expression on the right
side of the operator. The asterisk (*) represents a duplication of the
item to the left of the assignment operator. For example.

5 := " CAT "ABC"

produces the same results as

5 := 5 CAT "ABC"

Examples

5TRI := 8"ABCD123"

Assigns the EBCDIC stringABCD123 to the string variable 5TRI.

Sl := 52 := "1234"

Asslgns the string 1234 (of the default character type) to both of
the string variables S2 and S~.

SOUT := SOUTl := 1< CAT "INPUT"

concatenates the string INPUT onto the end of the string stored in
SOUT1, and then assigns the result to both of the string variables
SOUTl and SOUTo

Statements

SOUT := * I I SOUT I I "ABC"

245
String Assignment

Concatenates the string ABC onto the end of the string stored in
SOUT, and this string is then concatenated onto the end of the
string stored in SOUT. The resulting string is assigned to the
string variable SOU~.

246
Task Assignment ALGOL REFERENCE MANUAL

Task Assignment

A task assignment associates the task designator on the right side of
the assignment operator (:=) with the task indicated by the expression
on the left side.

Syntax

<task assignment>

--(task designator>-- . --<task-valued task attribute name>-- := -->

>-<task designator>---1

See also
<task designator>
<task-valued task attribute name> .

Semantics

., 200
• • 200

The EXCEPTIONEVENT attribute of the EXCEPTIONTASK of a program is
~caused" whenever the status of that program changes (for example, if
the program is suspended or terminated).

The PARTNER task attribute is used in conjunction with the CONTINUE
statement.

Examples

TISKIT.EXCEPTIONTASK := TASKIT

Assigns the task TASKIT to the EXCEPTIONTASK attribute of TISKIT.

TSK.EXCEPTIONTASK := TASKARAY[N]

Assigns the task identified by the task array element TASKARAY[N] to
the EXCEPTIONTASK attribute of TSK.

Statements
247

Task. Assignment

TASKVARB.PARTNER := COHORT

Assigns the tasJ~ COHORT to the PARTNER attribute of TASKVARB.

MYSELF.PARTNER := COWORKERS[INDXJ

Assigns the task. identified by the task array
COWORKERS[INDX] to the PARTNER attribute of MYSELF.

MYSELF.PARTNER.EXCEPTIONTASK := MYS~LF.PARTNE~.PARTNER

element

Assigns the task that
MYSELF. PARTNER to the
the task. ~YSELF.PARTNER.

is the PARTNER attribute of the task.
task that is the EXCEPTIONTASK attribUte of

248
ATTACH

ATTACH STATEMENT

ALGOL REFERENCE MANUAL

The ATTACH statement associates an interrupt with an event so that when
the event is caused, the program is interrupted. and the interrupt code
is placed in execution (provided that the interrupt is enabled).

Syntax

<attach statement>

-- ATTACH --<interrupt identifier>-- TO --<event designator>--I

See also
<event designator> ...
<interrupt identifier>.

Pragmatics

78
. 126

Although different interrupts can be simultaneously attached to the same
event. a particular interrupt can be attached to only a single event at
anyone time. For this reason, if, at attach time, the interrupt is
found to be already attached to an event, then it is automatically
detached from the old event and attached to the new event. Any pending
invocations of the interrupt are lost.

An interrupt can be attached to an event that is declared in a different
block. For example. a local interrupt can be attached to a formal
event. Such an attachment can cause compile-time or run-time up-level
attach errors if the block containing the event can be exited before the
block that contains the interrupt is exited.

Examples

ATTACH THEPHONE TO THEBELL

Attaches the interrupt THEPHONE to the event THEBELL. When THE BELL
is caused, the code associated with THEPHONE begins executing.

Statements

ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT

249

ATTACH

Attaches the interrupt ANSWERHI to the event MYSELF. EXCEPTIONEVENT.
Whenever the task MYSELF undergoes a change in status, the
EXCEPTIONEVENT attribute is caused, and the code associated with
ANSWERHI begins executing.

250
BREAKPOINT

BREAKPOINT·STATEMENT

ALGOL REFERENCE MANUAL

The BREAKPOINT statement invokes the breakpoint intrinsic, which allows
the programmer to examine or change the values of variables during the
execution of a program.

Syntax

<breakpoint statement>

-- BREAKPOINT --I

Semantics

The commands accepted by the breakpoint intrinsic are described below
under "Interaction with the Breakpoint Intrinsic."

To establish the required environment for running the breakpoint
intrinsic, the BREAKHOST compiler control option must be used. The
breakpoint intrinsic can also be called implicitly by using the
BREAKPOINT compiler control option. These options are described under
"Compiler Control Options" in the chapter "Compiling Programs."

See also

NOTE

The BREAKHOST and BREAKPOINT compiler
control options and the BREAKPOINT
statement will be deimplemented on the
Mark 3.7 release. For a debugging
facility. refer to the TADS option under
"Compiler Control Options."

<breakhost option>.
<breakpoint option> .
<TADS option> . . .

. . 608
. 609

. . 643

Statements

Interaction with th~ Breakpoint Intrinsic

251
BREAKPOINT

When the breakpoint intrinsiC is called. it suspends execution of the
program and waits for input from a terminal in the form of breakpoint
commands. Breakpoint commands are user instructions to the breakpoint
intrinsic given at run time. They are not part of ALGOL.

Breakpoint commands are of three types:

1. Display commands. These are used to display the values of
variables.

2. Control commands. These ar;e used to change the format used for
display and to continue' execution of the program.

3. Reformat commands. These are used to
recently requested variable in a new
address couple, or alter its value.

redisplay the most
format, display its

Display Commands

Display commands are used to display the values of variables.

Syntax

-<Boolean ident1fier>----------------------~--------1
J

-<complex identifier>----------------------------I
I

-<double identifier>-----------------------------I
I

-<event identifier)~-----------------------------I
I

-<integer identifier>----------------------------I
I

-<real identifier>-------------------------------I
I

I-<character array identifier>--<index and count>-I
I I
I-<word array identifier>--<index or range>-------I
I I
I-<pointer identifier>~- FOR --<count>------------I

252
BREAKPOINT

<index and· count>

ALGOL REFERENCE MANUAL

----------<index>--------- FOR --<count>--I
1 I 1 1
1- [-I 1-] -I

<index>

--<unsigned integer>--I

<count>

--<unsigned integer>--I

<index or range>

--------------------------<index>---------------------------1
1 1 1 1 1 1 1
1- [-I 1<---. --I 1 1- - --<index>-I 1-] -I

1 1 1 ,.

I---<index>---I

See also
<Boolean identifier>
<character array identifier> ..
<complex identifier> ..
<double identifier> ..
<event identifier> ...
<integer identifier>
<pointer identifier>.
<real identifier>
<word array identifier> .

Semantics

55
42
58
71
78

. 123
. . 160

. 182
42

The value of a simple variable can be displayed by entering its name.
The ~ontents of a character array can be displayed by entering its name.
a starting index, and a count giving the number of characters to be
displayed. Only the contents of one-dimensional character arrays can be
displayed. The contents of word arrays can be displayed in two ways:
(1) a single element can be displayed by entering the array name and a
fully specified subscript list; and (2) a range of elements within an
array row can be displayed by indicating an index range in the
specification for the final subscript; for example, A[2.0-3J. Arrays of
type DOUBLE, COMPLEX. and EVENT cannot be displayed.

Statements
253

BREAKPOINT

All array elements must be referenced as if the lower bound of the array
is zero. For example, if an array has been declared as ARRAY A[5:10],
the third element is referenced as A[7] within the program but is
requested as A[2] in breakpoint display commands.

Control Commands

Control commands are used to change the format used for display and to
continue execution of the program.

syntax

I<-----~--------I

I I
-- / ------- TYPE ---- -------------------1

I I 1
1 1- ASCII --- I
I I 1
1 1- BCL ----- 1
I 1 I
I 1- DECIMAL - I
I I I
I 1- EB.CDIC -- I
I I I
I 1- HEX ----- I
I I 1
I 1- OCTAL --- I
I I
1- CONTINUE -----~-------~-------I
I I I
I I-<sequence number>-I
I I I
I 1- + --<skip count>-I
I I
1- WHERE ---~--------------------I

<skip count>

--<unsigned 1nteger>--1

See also
< sequence numbE~r > . 613

254
BREAKPOINT ALGOL REFERENCE MANUAL

Semantics .

Control commands begin with a slash (/). The TYPE, ASCII, BCL, DECIMAL,
EBCDIC. HEX, and OCTAL control commands establish the format or formats
in which variables requested in subsequent display commands are
displayed. The TYPE control command specifies that the format of
subsequent displays is determined by the declared type of the variable
as follows:

Variable Type

Boolean
Complex
Double
Event
Integer
Real
Word array elements
Pointer

Character array

Display Format

TRUE or FALSE
Floating point (real part only)
Floating point (first word only)
Floating point (first word only)
Integer
Floating point
Same as simple variable of same type
According to the character size of

the pointer
According to the character type of

the array

The CONTINUE control command causes program execution to continue with
the ALGOL statement following the current breakpoint call. If a
sequence number is specified, execution continues directly to the
breakpoint call at the specified sequence number, and all intervening
breakpoint calls are ignored. If no breakpoint call occurs at the
specified sequence number. program execution continues to the end of the
program. If a skip count is specified, program execution continues,
without stopping for breakpoint input, until the breakpoint intrinsic
has been called <skip count> times. That is. <skip count> - 1
breakpoint calls are ignored. "CONTINUE" and "CONTINUE + 1" are
equivalent.

The WHERE control command displays the sequence number of the statement
at which program eX€2ution is currently suspended.

Reformat Commands

Reformat commands are used to
recently displayed variable,
value.

redisplay in a new format the most
display its address couple. or alter its

Syntax

1<--------------1
1 I

Statements

-- & ------- TYPE --------------1
1 1 1

1- ASCII ---I 1
1 1 I

1- BCL .----- 1 1
1 I 1

1- DECIl~AL - 1 I
1 I 1

1- EBCDIC --I I
1 1 1

1- HEX -----1 1
1 I I

1- OCTAL ---I 1
i' I
1- ADDRESS ------------1
1 1

1- ALTER --<new value>-I

<new value>

----------<unsigned integer>--I
1 1
1- - -I

Semantics

255
BREAKPOINT

Reformat commands begin with an ampersand (&). The TYPE, ASCII, BCL,
DECIMAL. EBCDIC. HEX, and OCTAL reformat commands cause the variable
requested by the last display command to be redisplayed in the specified
format or· formats. The TYPE reformat command specifies that the
variable be redisplayed in the format appropriate for its declared type.
The formats chosen for each type of variable are the same as those
chosen when the TYPE control comm~nd is used.

The ADDRESS reformat command displays the address couple of the item
requested by the last display command. The ALTER reformat command
assigns the specified new value to the item requested by the last
display command. Arrays and pointers cannot be altered using the ALTER
command.

256
BREAKPOINT

Example

1000 BEGIN
1100 $ SET BREAKHOST
1200
1300 BOOLEAN B;
1400 COMPLEX C;
1500 DOUBLE D:
1600 EVENT E:
1700 INTEGER I:
1800 REAL A, R;
1900 POINTER P;

ALGOL REFERENCE MANUAL

2000 ARRAY RARRAY[0:10];
2100 BOOLEAN ARRAY BARRAY[0:5,0:8];
2200 HEX ARRAY HA[0:100];
2300
2400 PROCEDURE PROC(PARAM);
2500 VALUE PARAM;
2600 INTEGER PARAM:
2700 BEGIN
2800 REAL L;
2900 L := PARAM * 2;
3000 BREAKPOINT;
3100 END;
3200
3300 A:= "ABCABC";
3400 B:= TRUE;
3500 $ SET BREAKPOINT
3600
3700
3800
3900
4000
4100
4200 $

C := COMPLEX(l,2);
D := DOUBLE(1.2);
CAUSE(E) ;
I := 25;
R := 3.14159265;

POP BREAKPOINT
4300
4400 P:= POINTER(RARRAY);
4500 REPLACE P BY "ABCK" FOR 44;
4600 BARRAY[3,3]:= TRUE;
4700 REPLACE HA BY 4"ABCABC123123";
4800 PROC(3):
4900 BREAKPOIN~:

5000 END.

In the example
statement 3700.
the breakpoint
statement 4100,
4900.

program above. execution proceeds normally until
where the breakpoint intrinsic is called. Thereafter.

intrinsic is called after each statement through
at statement 3000 in procedure PROC, and at statement

Statements
257

BREAKPOINT

The following is a sample execution of the program shown above. The
i3.rrows (--» indica te breakpoint commands.

BREAK @ 3700
--) /HEX DECIMAL

BLOCK#l
--) A

A = HEX CIC2C3CIC2C3
-1.4b8l7073645E+14

--) &EBCDIC
EBC ABCABC

--) B
B = HEX 000000000001
1.0

--) &TYPE
TRUE

--) /CONTINUE 3900

BREAK @ 3900
--) C

FIRSTWORD C =
1.0

--) D
FIRSTWORD D
1.0

--) E
FIRSTWORD E =
1.0

--) &ADDRESS
E IS (2 , 10)

--) 1

HEX 000000000001

HEX 000000000001

HEX 000000000001

I = HEX 000000000000
o

--) &ALTER -1
I =
HEX 400000000001
-1

--) /WHERE
BREAK @ 3900

--) /CONTINUE + 2

258
BREAKPOINT

BREAK @ 3000
--) PARAH

PROC OF BLOCK#l

ALGOL REFERENCE MANUAL

PARAH = HEX 000000000003
3

--) L
L = HEX 000000000006

6.0
--) /CONTINUE

BREAK @ 4900
--) R

BLOCK#l
R = HEX 263243F6A792

3.14159265
--) P FOR 12

P FOR 12
ABCKABABCKAB

--) /TYPE
--} P FOR 12

P FOR 12
ABCKABABCKAB

--) BARRAY[3,0~3]
BARRAY[3,0-3] =
FALSE FALSE FALSE TRUE

--) HA[3] FOR 3
HA[3] FOR 3
ABC

--) /CONTINUE
[program finished]

259
CALL

~ALL STATEMENT

The CALL statement initiates a procedure as a coroutine.

Syntax

<call statement>

-- CALL --<procedure identifier>--------------------~-------------->
I I
I-<actual parameter part>-I

>- [--<task designator>--] --------------------------------------1

See also
<actual parameter part> .
<procedure identifier>.
<task designator> ...

Semantics

• • • • . 346
. . 165
• . 200

Initiation of a coroutine consists of setting up a separate stack,
passing any parameters (call-by-name or call-by-value), and beginning
the execution of the procedure.

Processing of the initiating program, called the "initiator" or the
"primary coroutine," is suspended.

The called procedure, referred to as the "secondary coroutine," cannot
be a typed procedure. The actual parameter part must agree in number
and type with the formal parameter part in the declaration of the
procedure: otherwise~ a run-time error occurs.

The task designator aSSOCiates a task with the coroutine at initiation;
the values of the task attributes of that "task. such as COREESTIMATE,
STACKSIZE, and DECLAl~EDPRIORITY, can be used to control the execution of
the coroutine. For more information about assigning values to task
attributes, refer to <arithmetiC task attribute> under "Arithmetic
Assignment," <Boolean task attribute> under "Boolean Assignment," and
"Task Assignment" in this chapter.

/'

260
CALL ALGOL REFERENCE MANUAL

Every coroutine has a "partner" task to which control can be passed by
using the CONTINUE statement. The partner task of the secondary
coroutine is the initiator by default but can be changed by assignment
to the task-valued task attribute PARTNER of the task designator. Local
variables and call-by-value parameters of the secondary coroutine retain
their values as control is passed to or from the coroutine.

The "critical block" (described under "PROCESS Statement") in the
initiator cannot be exited until the secondary coroutine is terminated.
Any attempt by the initiator to exit that block before the secondary
coroutine is terminated causes the initiator (and all tasks it has
initiated through CALL or PROCESS statements) to be terminated.

A secondary coroutine is terminated by exiting its own outermost block
or by execution in the initiator of the following statement:

<task designator>.STATUS := VALUE(TERMINATED)

where the task designator specifies the task associated with the
secondary coroutine to be terminated.

Pragmatics

The CALL statement causes the initiation of a separate stack as a
coroutine. Because of the overhead involved, a coroutine should be
established once and then used through CONTINUE statements. If a CALL
statement is used to invoke a procedure. overall system efficiency is
severely degraded.

See also
<arithmetic task attribute> .
<Boolean task attribute> ..
Task Assignment

Example

CALL COROOTEEN(X. Y, 7, X + Y + Z) [T]

Initiates as a coroutine the procedure
parameters X, Y, 7. and X + Y + Z.
designator T associated with it.

. • 227
• 235
• 246

COROOTEEN. and passes
COROOTEEN has the

the
task

Statements

~~AHCEL STATEMENT

261
CANCEL

~rhe CANCEL statement can be used to. de1ink a library from a program and
cause the library program to "unfreeze" and resume running as a regular
program.

Syntax

<cancel statement>

-- CANCEL -- (--<library identifier>--) --I

See also
<library identifier> 129

Semantics

Normally, a library is linked to a program when the program calls one of
the library·s entry points, and the library is delinked from the program
when the block in which the library is declared is exited. The CANCEL
statement can be used to delink a library before it would normally be
delinked.

When a library is canceled, all users of the library are delinked from
the library. and the library unfreezes (thaws) and resumes running as a
regular program regardless of whetber it is temporary or permanent.
(Refer to "FREEZE Statement" for a discussion of temporary and permanent
libraries.)

After a program has canceled a library. the program can again link to
the library as if for the first time.

Pragmatics

Only libraries whose SHARING compiler control option is specified as
PRIVATE or SHAREDBYRUNUNIT can be canceled. If an attempt is made to
cancel a library that is not PRIVATE or SHAREDBYRUNUNIT, a run-time
message is given and the library remains linked to the program.

262
CANCEL ALGOL REFERENCE MANUAL

When an asynchronous process links to a library whose template is owned
by the initiator program. no record of that linkage is made. If an
attempt is made to cancel a library that is accessible to a task
initiated by a CALL or PROCESS statement, the cancel operation is not
performed, and a rub-time message is given explaining why the library
was not canceled.

To delink a program from a library without affecting any other users of
the library. use the DELINKLIBRARY function.

For more information on libraries. refer to the chapter "Interface to
the Library Facility."

See also
<delinklibrary function> •.•••••............. 543

Example

CANCEL(LIB)

Delinks the library LIB from the program.

Statements

~:ASE STATEHENT

263
CASE

The CASE statement provides a means of dynamically selecting one of many
alternative statements.

:Syntax

<case statement>

--<case head>--<case body>--I

<case head>

-- CASE --<arithmetic expression>-- OF --I

<case body>

-- BEGIN ---<statement list>------------ END --I
1 1
I-<numbered statement list>-I

<numbered statement list>

1<------------ ; ------------1
1 I

----<numbered statement grQup>----1

<numbered statement group>

--<number list>--<statement list>--I

<number list>

1<---1
1 I

---~--<constant arithmetic expression>--- : ----I
1

1- ELSE ---------------------------!

See also
<constant arithmetic expression> ..
<statement list>•...

. 476
q

264
CASE ALGOL REFERENCE MANUAL

Semantics

Unnumbered Statement ~

If the case body contains an unnumbered statement list, then the
statement to be executed 1s selected in th~ following manner:

1. The arithmetic expression in the case head is evaluated. If
the resulting value is not an integer, it is integerized by
rounding.

2. The integer value is usep
statements in the case body.
are numbered 0 to N-l. The

as an index into the list of
The N statements in the case body
statement corresponding to the

index value is the statement executed.

If the index value is less than zero or greater than N-1, the program is
discontinued with a fault.

Numbered Statement List

If the case body contains a numbered statement list. then the statement
list to be executed is selected in the following manner:

1. The arithmetic expression in the case head is evaluated. If
the resulting value is not an integer, it is integerized by
rounding.

2. If the integer value 1s equal to one of the statement numbers,
the statement list associated with the number is executed.

If the integer value is not equal to any of the statement
numbers, then an invalid index fault occurs unless "ELSE"
appears in a number list in the CASE statement. in which case
control is transferred to the statement list following "ELSE".

The statement numbers given by the constant arithmetic expressions in
the number list must lie in the range 0 to 1023, inclusive. The word
"ELSE" can appear only once in a CASE statement.

:Examples

CASE I OF
BEGIN

J .- 1;
J := 20;
BEGIN

J .- 3;
K .- 0;

END;

% STATEMENT 0
% STATEMENT 1
% STA~~EMENT 2

J . - 4;
END;

% STATEMENT 3

CASE I OF
BEGIN

1:
2:
5:
7 :

3:
4:
20:

J . - 3;
Q .- J-1;

J := 4;
ELSE:

GO TO BADCASEVALUE;
END;

Statements
265

CASE

266
CAUSE

CAUSE STATEKBHT

ALGOL REFERENCE MANUAL

The CAUSE statement activates all tasks that are waiting on the
specified event.

Syntax

<cause statement>

CAUSE -~ (--<event designator>--) --I

See also
<event designator>. • .. 78

Semantics

Normally, the CAUSE statement also sets the happened state of the event
to TRUE (happened). Refer to "WAITANDRESET Statement" for exceptions.

If an enabled interrupt is attached to the event, each cause of the
event results in one execution of the interrupt code.

pragmatics

Activating a task does not necessarily place the task into immediate
execution. Activating a task consists of delinking the task from an
event queue (each event has its own queue) and linking that task in
priority order into a system queue called the ready queue.

The ready queue is a queue of all tasks that are capable of running.
Tasks are taken out of the ready queue either when a processor is
assigned to the task or when the task must wait for an operation (such
as an I/O operation) to complete or for an event to be caused. A task
is placed in actual execution only when it is the top item in the ready
queue and a processor is available.

A cause of a happened event is essentially a "no-operation"; the system
does not "remember" every cause unless an interrupt is attached to the
event. For more information on events, refer to "Event Statement."

Statements

Examples

CAUSE(EVNT)

Activates the tasks.waiting for the event EVNT.

CAUSE(EVNTARAY[INDX])

Activates the tasks waiting
EVNTARAY[INDX].

CAUSE(TSK.EXCEPTIONEVENT)

for the event identified

267
CAUSE

by

Activates the tas)ts waiting for a change in the status of the task
TSK.

268
CAUSEANDRESET

CAUSEANDRESET STATEMENT

ALGOL REFERENCE MANUAL

The CAUSEANDRESET statement activates all tasks that are waiting on the
specified event and sets the happened state of the event to FALSE (not
happened) .

Syntax

<causeandreset statement>

-- CAUSEANDRESET -- (--<event designator>--) --I

See also
<event designator>. 78

Semantics

This statement differs from the CAUSE statement in that the happened
state of the event is set to FALSE (not happened).

Pragmatics

The pragmatics of the CAUSEANDRESET statement are the same as those of
the CAUSE statement.

Examples

CAUSEANDRESET(EVNT)

Activates the tasks waiting for the event EVNT. and sets the
happened state of EVNT to FALSE (not happened).

CAUSEANDRESET(EVNTARAY[INDX])

Activates the
EVNTARAY[INDX] ,
(not happened).

tasks
and

waiting for the event identified by
sets the happened state of that event to FALSE

Statements

CAUSEANDRESET(TSK.EXCEPTIONEVENT)

269
CAUSEANDRESET

Activates the tasks waiting for a change in the status of the task
TSK, and sets the happened state of TSK.EXCEPTIONEVENT to FALSE (not
happened) .

270
CHANGEFILE

CHABGEFILE STATEKEHT

ALGOL REFERENCE MANUAL

The CHANGEFILE statement changes the names of files without opening
them.

Syntax

<changefile statem~n~)

CHANGEFILE -- (--<directory element)-- , --<directory element>-)

)-) --1

<directory element>

----<pointer expression>----I
1 1
I-<array row>----------I
I I
,I-<string literal>-----I

See also
<array row> . 43

Semantics

A directory element is a file name, a directory name, or both a file
name and a directory name. A directory name references a group of
files. For example, the following files are all in the directory named
"(JAMES)". The first six files are in the directory named
"(JAMES)OBJECT", and the first five files are in the directory named
"(JAMES)OBJECT/TEST". Note that "(JAMES)OBJECT/TEST/PRIMES" is both a
file name and a directory name.

(JAMES)OBJECT/TEST/COMM
(JAMES)OBJECT/TEST/SORT
(JAMES)OBJECT/TEST/PRIMES
(JAMES)OBJECT/TEST/PRIMES/l
(JAMES)OBJECT/TEST/PRIMES/2
(JAMES)OBJECT/LIBRARYI
(JAMES)MEMO

Statements
271

CHANGEFILE

In the CHANGEFILE statement, the second directory element (the "target")
designates the name to which the first directory element (the "source")
is to be changed. If the change applies to files on pack, and a family
substitution specification is not in effect (either by default through
the USERDATA file or by specification in either CANDE or WFL), the
second directory element must include "ON <family name>", and the first
directory element must not include a family name. If a family
substitution specification is in effect, "ON <family name>" is not
required; if "ON <fa.mily name>" does not appear, the family substitution
specification is us€'d to determine the family on which the files reside.

The CHANGEFILE stat€'ment returns a value of TRUE if an error occurs.
Error numbers, stored in field [39:20] of the result, correspond to the
causes of failure as follows:

10 The first directory element is in error.

20 The second directory element is in error.

30 File names have not been changed.

Pragmatics

File names and directory names must be specified in EBCDIC and must be
followed by a period. All errors in the names are detected at run time.

If a family substitution specification is in effect, the CHANGEFILE
statement affects only the substitute family. not the alternate family.

If a directory name is specified as the source, the names of the files
in that directory are changed according to the following rules:

1. If the specified target directory is a new directory, then the
names of all the files in the source directory are changed.

2. If the specified target directory is not a new directory, then
only files that do not have corresponding names in the target
directory are changed.

272
CHANGEFILE ALGOL REFERENCE MANUAL

F0r example, the first column below shows file names that exist
before the statement

CHANGEFILE(nA.n,nB.")

is executed, and the second column shows the file names
resulting from execution of the statement.

Existing files

A/B/C
A/B/D
A/C/C
B/B/D
B/C/D

Resulting files

B/B/C
A/B/D
B/C/C
B/B/D
B/C/D

Note that because the file name B/B/D already exists, the file
name A/B/D is not changed.

3.

Example

A directory element of the form n<file
files in that directory. It does
"<file name>".

name>/=" affects only
not affect a file named ,.

The following program changes A/B to C/D and then removes C/D.

BEGIN
ARRAY OLD, NEW[O:44];
BOOLEAN B;
REPLACE POINTER(OLD) BY snA/B.";
REPLACE POINTER(NEW) BY S"C/D. n;
IF B := CHANGEFILE(OLD,NEW) THEN

DISPLAY("CHANGEFILE ERROR");
IF B := REMOVEFILE(S"C/D. n) THEN

DISPLAy(nREMOVEFILE ERROR");
END.

Statements

CHECKPOINT STATE1IEN'r

273
CHECKPOINT

The CHECKPOINT statlament wri tes to a disk file the complete state of the
job at a specified pOint. Using the disk file, the job can later be
restarted from this point.

Syntax

<checkpoint statement>

-- CHECKPOINT --- (--<device>-- • --<disposition>--) --I

<device>

DISK ---------1
1 1
1- DISKPACK -I
1 1
1- PACK -----1

<disposition>

LOCK -----1
1 I

1- PURGE -I

Semantics

The checkpoint/restart facility can protect a program against the
disruptive effects of unexpected interruptions during the program's
execution. If a Halt/Load or other system interruption occurs, a job is
restarted either bHfore the initiati.on of the task that was interrupted
or, if the operator permits, at the last checkpoint, whichever is more
recent. Checkpoint information can also be retained after successful
runs to permit restarting jobs to correct bad data situations.

The device options determine the medium to be used for the checkpoint
files.

The disposition option PURGE causes all checkpoint files to be removed
at successful termination of the job and protects the job against system
failures. The LOCK option causes all checkpoint files to be saved
indefinitely and can be used to restart a job even if it has terminated
normally.

274
CHECKPOINT ALGOL REFERENCE MANUAL

The CHECKPOINT statement can be used as a Boolean function. An
attempted checkpoint returns a value with the following information:

[0: 1]
[10:10]

[25:12]
[46: 1]

= Exception bit
= Completion code (refer to "Checkpoint/Restart

Messages" below)
= Checkpoint number
= Restart flag (1 = restart)

When a checkpoint is invoked, the following files are created:

1. The checkpoint file, CP/<JN>/<CPN>, where <IN> is a four-digit
job number and <CPN> is a three-digit checkpoint number. If
the PURGE option has been specified, the checkpoint number is
always zero, and each succeeding checkpoint with PURGE removes
the previous file. If the LOCK option is used, the checkpoint
number starts with a value of 1 for the first checkpoint and is
incremented by 1 for each succeeding checkpoint with LOCK. If
the two types are mixed within a job, the LOCKed checkpoints
use the ascending numbers and the PURGEd checkpoints use zero,
leaving files 0 through N at the completi9n of the job.

2. Temporary files, CP/<JN>/T<FN>. where <FN> is a three-digit
file number beginning with 1 and incremented by 1 for each
temporary disk or system resource pack file.

3. The job file, CP/<JN>/JOBFILE. This file is created under the
LOCK option only.

The LOCK and PURGE options are also effective when the task terminates.
If the task terminates abnormally and the last checkpoint has used the
PURGE option, then the checkpoint file (numbered zero) is changed to
have the next sequential checkpoint number, and the job file is created
(if necessary). If the job terminates normally and only PURGE
checkpoints have been taken, the CP/<JN> directory is removed.

A job can be restarted in two ways:

1. After a Halt/Load. The system automatically attempts to
restart any job that was active at the time of a Halt/Load. If
a checkpoint has been invoked during the execution of the
interrupted task, then the operator is given a message
requiring a response to determine whether the job should be
restarted. The operator can respond with the Operator Display
Terminal (ODT) command OK (to restart at the last checkpoint),
DS (to prevent a restart), or QT (to prevent a restart but save
the files for later restart if the job was a checkpoint with
PURGE).

Statements
275

CHECKPOINT

2. By a Work Flow Languag~ (WFL) RERUN statement. A WFL
be restarted programmatically by use of the WFL
statement ..

Pragmatics

The following conditions can inhibit a successful restart:

1. An invalid usercode

job can
"'RERUN"

2. An OLAYRO\~ value after the checkpoint that
the OLAYRC>W value before the checkpoint

is different from

3. Recompi1ation of the program si.nce the checkpoint

4. An MCP level after the checkpoint that is different from the
MCP level before the checkpoint

5. Intrinsics after the checkpoint that are different from the
intrinsic!; before the checkpoint

The following can inhibit a successful 6heckpoint/restart:

1. Direct I/O (direct arrays or files)

2. Datacomm I/O (open datacomm files)

3. Open Data Management System II (DKSII) sets

4. The task being checkpointed must have no tasks initiated
through CALL or PROCESS statements, it must have been initiated
by a WFL job, and this WFL job must not have initiated other
tasks that are also running.

5. Paper tapE~ I/O

6. ODT files

7. Duplicated files

8. Output directly to a printer or card punch (backup files are
acceptable,)

9. Running ta.sks in swap space

10. Checkpoints taken inside sort input or output procedures. The
sort intrinsic provides its own restart capability; refer to
"SORT Statement."

11. Checkpoints taken in a compi1e-and-go program

276
CHECKPOINT ALGOL REFERENCE MANUAL

If a job that produces printer backup files is restarted, the backup
files can already have been printed and removed, and on restart, the job
requests the missing backup files. In this situation, when the backup
files are requested, the operator must respond with the ODT command OF
(Optional File). A new backup file is created. Output preceding the
checkpoint is not re-created.

For jobs that take a large number of checkpoints with LOCK, the
checkpoint number counts up to 999 and then recycles to 1 (leaving zero
undisturbed). When this recycling occurs, previous checkpoint files are
lost as new ones using the same numbers are created.

If a temporary disk file is open at a checkpoint, it is locked under the
CP directory. If it is subsequently locked by the program, the name is
changed to the current file title. At restart time, the file is sought
only under the CP directory, resulting in a no-file condition. To avoid
this condition, all files that are to be locked eventually should be
opened with the file attribute PROTECTION assigned the value SAVE. (To
remove the file, it must be closed with PURGE.) True temporary files,
which are never locked, do not have this problem. All data files must
be on the same medium as at the checkpoint, but need not be on the same
units or the same locations on disk or disk pack. They must retain the
same characteristics (blocking, and so forth). The checkpoint/restart
system makes no attempt to restore the contents of a file to their state
at the time of the checkpoint; the file is merely repositioned. At this
time, volume numbers are not verified.

CANDE and Remote Job Entry (RJE) cannot be used to run a program with
checkpoints. The checkpoints are ignored if used.

If a rerun is initiated and the job number is in use by another job, a
new job number is supplied, and the CP/<JN> directory node is changed to
reflect the new job number.

If a rerun is initiated and the PROCESSID function is used, the
returned by the function can be different for the restarted job.
to the description of the PROCESSID function in the
"Expressions" for more information.

value
Refer

chapter

When a job is restarted at some checkpoint before the last, subsequent
checkpoints taken from the restarted job continue in numerical sequence
from the checkpoint used for the restart. Previous higher numbered
checkpoints are lost.

See also
<processid function> 568

Example

BOOL := CHECKPOINT(DISK,PURGE)

Checkpoint/Restart lessages

Statements
277

CHECKPOINT

The messages in the following list can appear as the result of a
checkpoint/restart.

Checkpoint Message Completion Code

CHECKPOIN"N~nn o

INVALID AREA IN STACK 1

SYSTEM ER]~OR 2

BAD IPC El~VIRONMENT 3

NO USER DISK FOR CP FILE 4

10 ERROR DURING CHECKPOINT 5

ROWS IN CP FILE > 1024 6

DIRECT FILE NOT ALLOWED 7

TOO MANY ~?EMPORARY DIS1< FILES 8

PAPER TAPE FILE NOT ALLOWED 9

DUPLICATED FILE NOT ALLOWED 10

CON FILE NOT ALLOWED 11

CARD PUNCH FILE NOT ALLOWED 12

OPEN REVERSED TAPE FILE NOT ALLOWED 13

DISKHEADER~ IN STACK 14

DMS AREA IN STACK 15

DIRECT ARRAY IN STACK 16

DIRECT DOPE VECTOR IN S'I'ACK 17

SUBSPACE IN STACK 18

278
CHECKPOINT ALGOL REFERENCE MANUAL

CheCkpoint Message

STACKMARK

SORT AREA IN STACK

REMOTE FILE NOT ALLOWED

ILLEGAL CONSTRUCT

BDBASE ILLEGAL

TEMP FILE ON NAMED PACK

Completion Code

19

20

21

22

23

24

Statements
279

CHECKPOINT

The messages in the following list can appear as the result of an
attempt to restart.

Restart Messages

RESTART PENDING (RSVP)

MISSING CHECKPOINT FILE

10 ERROR DURING RESTART

USERCODE NO LONGER VALID

OPERATOR DSED RESTART

OPERATOR QTED RESTART

MISSING CODE FILE

NOT ABLE TO RESTART

INVALID JOB FILE

RESTART AS CP/nnnn

MISSING JOB FILE

FILE POSITIONING ERROR

WRONG JOB FILE

WRONG CODE FILE

BAD CHECKPOINT FILE

BAD STACK NUMBER

WRONG MCP

280
CLOSE

CLOSE STATElElfT

ALGOL REFERENCE MANUAL

The CLOSE statement breaks the link between a logical file declared in
the program and its associated physical file, which is the actual file
data is sent to or from.

Syntax

<close statement>

CLOSE -- (--<file designator>---------------------------------->

)-->
1 1 1 1
1- [-- SUBFILE --<subfile index>--] -I 1- • -'-<close option>-I

)-) --1

<subfile index>

--<arithmetic expression>--I

<close option>

* -------- --I

- CRUNCH ---

- DONTWAIT -

- LOCK -----

- PURGE ----

- REEL -----

- REWIND ---

See also
<file designator> 189

Statements

Semantics

281
CLOSE

The <subfile index> syntax is used to specify the subfile to be closed.

The CLOSE statement can be used as an arithmetic function, in which case
it returns the same values as the file attribute AVAILABLE. The
AVAILABLE attribute' is described in the "I/O Subsystem Reference
Manual."

When no close option is specified, the CLOSE statement closes the file,
depending on the kind of file, as follows:

Card Output File

A card containing an ending label is punched. The file must be
labeled.

Line Printer File

The printer is skipped to channell, an ending label is
printed, and the printer is again skipped to channell. The
file must be labeled.

Unlabeled Tape Output File

A double tape mark is written after the last block on the tape,
and the tape is rewound.

Labeled Tape Output File

A tape mark is written after the last block on the tape; then
an ending label is written followed by a double tape mark, and
the tape is rewound.

Disk File

If the file is a temporary f'ile, the disk space is returned to
the system.

For all types of files, the I/O unit and the buffer areas are released
to the system.

282
CLOSE

<close option>

ALGOL REFERENCE MANUAL

If the asterisk (*) is used and the file is a tape file, the I/O unit
remains under program control, and the tape is not rewound. This
construct is used to create multifile reels.

When the asterisk is used on multifile input tapes and the value of the
LABEL file attribute is STANDARD, the CLOSE statement closes the file as
follows:

1. If the value of the DIRECTION file attribute is FORWARD, the
tape is positioned forward to a point just following the ending
label of the file.

2. If the value of the DIRECTION file attribute is REVERSE, the
tape is positioned to a point just in front of the beginning
label for the file.

3. If the end-of-file branch of a READ statement or WRITE
statement has been taken, the CLOSE statement does not position
the file.

The close action performed on a single-file reel is the same as that
performed on a multifile reel. The next I/O operation performed on the
file must be done in the direction oPPosite to that of the prior I/O
operations; otherwise, an end-of-file error is returned.

When the asterisk is used and the LABEL file attribute does not have the
value STANDARD, the tape is spaced beyond the tape mark (on input), or a
tape mark is written going forward (on output). The essential
difference is that if LABEL is OMITTEDEOF, labels are not spaced over,
but if LABEL is STANDARD, labels are spaced over.

The CRUNCH option is meaningful only for disk fi~es. It causes the
unused portion of the last row of disk space (beyond the end-of-file
indicator) to be returned to the system. The file cannot be expanded
but can be written inside of the end-of-file limit.

The DONTWAIT option is meaningful only for files for which the KIND file
attribute has the value PORT. Refer to the "I/O Subsystem Reference
Manual tt for a description of the DONTWAIT option.

If the LOCK option is used, the file is closed. If the file is a tape
file, it is rewound, and a system message is printed that notifies the
operator that the reel must be saved. The tape unit is made
inaccessible to the system until the operator readies it manually. If

Statements
283

CLOSE

the file is a disk file, it is retained as a permanent file on diSk.
The file buffer areas are returned to the system.

If the PURGE option is used, the file is closed, purged, and released to
the system. If the file is a permanent disk file, it is removed from
the disk directory, and the disk space is returned to the system.

If the REEL option is used, the
current reel is closed, and
implicitly opens the next reel.
use with direct tape files, for
perform reel switching.

file must be a multireel tape file. The
a subsequent reference to the file
This option is provided primarily for
which the system does not automatically

If the REWIND option is specified, th& file is closed. If the file is a
paper tape or magnetic tape file, it is rewound. For disk files, the
record pointer is rf~set to the first record of the file. The file buffer
areas are returned itO the system, and the I/O unit remains under program
control. For paper tape files, the REWIND option can be used only on
input.

All forms of the CLOSE statement that are not appropriate for the type
of unit assigned to the file are equivalent to using the REWIND option.

Examples

CLOSE(FILEID)

If FILEID is a temporary disk file, this statement closes the file
and returns the disk space to the system.

CLOSE(FILEID,*)

Closes FILEID and, assuming FILEID is a
tape according to the description
option). ,t

CLOSE(FILEID,PURGE)

tape
under

file, positions the
the heading "<close

Closes, purges, and releases FILEID to the system. If FILEID is a
permanent disk file, it is removed from the disk directory and the
disk space is rE?turned to the system.

284
CLOSE

CLOSE(FILEID,REEL)

ALGOL REFERENCE MANUAL

Closes the current reel of FILEID. Assuming FILEID is a multireel
tape file, any subsequent reference to FILEID implicitly opens the
next reel.

CLOSE(FILEID,CRUNCH)

Closes FILEID and. assuming FILEID is a disk file, returns to the
system the unused portion of the last row of FILEID.

Statements

CONTINUE STATEIENT

285
CONTINUE

The CONTINUE statemE~nt causes control to pass from the program in which
the statement appears to a coroutine.

Syntax

<continue statement)

-- CONTINUE ----------------------------------1
1 1
1- (--<task designator>--) -I

See also
<task designator> • 200

Semantics

A coroutine is a prc)cedure that is imitiated as a separate task by using
a CALL statement. The "caller" is referred to as the "primary"
coroutine and the called procedure as the "secondary" coroutine.

Because the execution of CONTINUE statements causes control to alternate
between primary and secondary coroutines, processing always continues at
the point where it last terminated.

The secondary coroutine uses the CONTINUE statement form without the
task designator to pass control back to its "partner" task, which is the
primary coroutine by default. The task designator is used by the
primary coroutine to pass control to the secondary coroutine associated
with that task designator by the CALL statement. For more information,
refer to "CALL Statement."

Examples

CONTINUE

Passes control from this program~ a secondary coroutine, to its
"partner" task, which is, by default, the primary coroutine.

286
CONTINUE

CONTINUE(TSK)

ALGOL REFERENCE MANUAL

Passes control to the coroutine associated with the task TSK.

Statements

DEALLOCATE STATEllENT

287
DEALLOCATE

The DEALLOCATE statemlent causes th~ contents of the specified array row
to be discarded and the memory area to be returned to the system.

Syntax

<deallocate statement>

-- DEALLOCATE -- (--<array row>--) --I

See also
<array row> . 43

Pragmatics

When an array row is deallocated, it is made not present (all data is
lost). When the array row is used again, it is made present, and each
element is re-initialized to zero.

Array rows of paged (segmented) arrays and event arrays cannot be
deallocated by using the DEALLOCATE statement.

Examples

DEALLOCATE(ARAY)

Discards the contents of ARAY and returns the memory area to the
system. Note that ARAY must be a one-dimensional array or a syntax
error results.

DEALLOCATE(MATRlXARY[INDX,*])

Discards the contents of the row MATRlXARY[INDX,*] and returns the
memory area to the system.

288
DETACH

DETACH STATEMENT

ALGOL REFERENCE MANUAL

The DETACH statement severs the association of an interrupt with an
event.

syntax

<detach statement>

-- DETACH --<interrupt identifier>--I

See also
<interrupt identifier> 126

Semantics

Any pending invocations of a detached interrupt are discarded.
Detaching an interrupt that is not attached to an event is essentially a
"no-operation"; no error occurs.

The enabled/disabled condition of an interrupt is not changed by a
DETACH statement. When an interrupt is attached after it has been
detached, the enabled/disabled condition of the interrupt is the same as
it was before it was detached. (For more information, refer to "ATTACH
Statement," "DISABLE Statement," "ENABLE Statement," and "INTERRUPT
Declaration.")

Example

DETACH THE PHONE

Severs the association between the interrupt THE PHONE and the event
it is attached to.

Statements

DISABLE STATEMENT

289
DISABLE

The DISABLE statement prevents int:errupt code from being executed.

Syntax

<disable statement>

-- DISABLE -----------------------------1
1 1
I-<interrupt identifier>-I

See also
<interrupt identifier> 126

Semantics

A DISABLE statement that does not speeify an interrupt identifier is
referred to as a "general disable." A general disable has the effect of
disabling all the interrupts for the taSK. The interrupts whose
associated events are caused are placed in an interrupt queue for the
taSK.

If the DISABLE statement specifies an interrupt identifier, only that
interrupt is disabled. The system queues these interrupts until the
interrupt is enabled.

Interrupts are queued to ensure that none are lost during the time they
are attached. Queuing continues until the appropriate ENABLE statement
is executed.

Disabling or enabling an interrupt is not affected by whether or not the
interrupt is attached to an event.

For more information, refer to "ATTACH Statement," "DETACH Statement,"
"ENABLE Statement," and "INTERRUPT Declaration."

290
DISABLE

Examples

DISABLE

ALGOL REFERENCE MANUAL

General disable--disables all interrupts.

DISABLE THEPHONE

Disables the interrupt named THEPHONE.

Statements

IHSPLAY STATRMEKT

291
DISPLAY

~rhe DISPLAY statement causes the specified message to be displayed on
the Operator Display T'erminal (DDT) and to be printed in the job summary
of the program.

Byntax

<display statement>

-- DISPLAY -- (---<pointer expression>---) --I
1 1

I-<string expression>~-I

:Semantics

'The message to be displayed is specified by the pointer expression or
the string expression. If the parameter to the DISPLAY statement is a
pointer expression, E~xecution of the DISPLAY statement causes the
characters to which the pointer expression points to be displayed on the
ODT. The pointer expression must point to EBCDIC characters, and the
message to be displaYE~d must be terminated by a null character (48"00").

If the parameter to the DISPLAY statement is a string expression,
execution of the DISPLAY statement causes the contents of the string
specified by the string expression to be displayed on the DDT. The
string expression must be of type EBCDIC.

Display messages from programs run in
terminal if the MESSAGES option of
specified.

CANDE appear on the user's
the CANDE "SO" command has been

A maximum of 430 characters can be displayed.

Examples

DISPLAY(POINTER(Q,8»

Displays the EBCDIC 9haracters stored in array Q. from the beginning
of the array to the EBCDIC null character (48"00).

292
DISPLAY ALGOL REFERENCE MANUAL

DISPLAY("VALUE IS " CAT STR)

Displays the string created by concatenating "VALUE IS" and the
string STR.

DISPLAY(MESSAGESTRING)

Displays the string stored in the string variable MESSAGESTRING.

Statements

I!Q STATEMENT

293
DO

The DO statement causes a statement to be executed until a specified
condition is met.

Syntax

<:do statement>

-- DO --<statement>-- UNTIL --<Boolean expression>--I

See also
<statement> 219

Semantics

The statement following "DO" is executed. The Boolean expression is
E~valuated, and if it is FALSE, the statement is executed again and the
Boolean expression is re-evaluated. This sequence of operations
continues until the value of the Boolean expression is TRUE. At that
time, control passes to the statement following the DO statement.

Note that both <block> and <compound statement> are statements and can
be substituted for <statement>.

>-YES_-.[~~n [EN'TER _ _.__-.t EXECUTE
LOOP STATEMENT

Figure 5-1. DO-UNTIL Loop

294
DO

Examples

DO
BEGIN
PTR := *-4;
CTR := *+4;
END

UNTIL PTR IN LOOKED FOR

DO
J := J/2

UNTIL BUF[J] < JOB

ALGOL REFERENCE MANUAL

Statements

ENABLE STAIEXENT

The ENABLE statement allows interrupt code to be executed.

Syntax

<enable statement>

-- ENABLE -------------------~---------I
I I
I-<interrupt identifier>-I

See also

295
ENABLE

<interrupt identifier>•..... 126

Semantics

Previously disabled :lnterrupts can be enabled with the ENABLE statement.
If the event associated with the interrupt is caused after an interrup~
has been enabled, then the interrupt code is executed.

An ENABLE statement that does not specify an interrupt identifier is
referred to as a "general enable" and causes the system to look for, and
place in execution, all interrupts that are in the interrupt queue of
the task.

If the ENABLE statem,?nt specifies an interrupt identifier, only that
interrupt is enabled. All occurrences of the interrupt in the interrupt
queue are placed in execution.

Disabling or enabling an interrupt is not affected by whether or not the
interrupt is attached to an event.

For more information, refer to "ATTACH Statement," "DETACH Statement,"
"DISABLE Statement," and "INTERRUPT Declaration."

296
ENABLE

Examples

ENABLE

ALGOL REFERENCE MANUAL

General enable--enables all previously disabled interrupts.

ENABLE THE PHONE

Enables the interrupt named THEPHONE.

Statements

EVERT STATEXENT

297
EVENT

Events have two.BoolHan characteristics, happened and available. Each
characteristic can be in one of two states: TRUE or FALSE. These
states can be changed using event statements.

Syntax·

<event statement)

----<cause statement)------------!
I

-<causeandreset statement)-

-<fixstatement)-----------

- < free s ta temEm t)----------

-<liberate statement)------

-<procure statement>-------

-<reset statement>---------

-<set statement)-----------

-<wait statement)----------

-<waitandreset statement)--

Semantics

The happened and avallable states of an event can be interrogated using
the HAPPENED function and the AVAILABLE function.

See also
<available function> ...
<happened function) .

. 535

. 555

298
EXCHANGE

EXGBABGE STATEImI'r

ALGOL REFERENCE MANUAL

The EXCHANGE statement 1s used to exchange rows between two disk files.

Syntax

<exchange statement>

EXCHANGE -- (--<file designator>-- [--<row/copy numbers)--] -)

>- , --<file des1gnator)-- [--<row/copy numbers>--] --) --------1

<row/copy numbers>

--<row number>--------------------I

<row number>

1 1
I-<copy number>-I

--<arithmetic expression>--I

<copy number>

--<arithmetic expression>--I

See also
<file designator> . . • • . . . • • • . • . • • . • . 189

Semantics

Row numbers begin with zero, and copy numbers begin with 1. If there
are copies of the file and a copy number is specified, then only the
rows of that copy are exchanged.

statements

Pragmatics

299
EXCHANGE

The two files must be' closed when the EXCHANGE statement is executed,
the two rows must be the same size, the specified row numbers and the
specified copy numbers must be valid, and the two files cannot be code
files of any kind.

For the exchange to take place, the referenced files must be closed with
retention. For more information. refer to "CLOSE Statement."

If the system d~tects an error, the e~change is not performed, and the
program resumes execution with the next statement. After using the
EXCHANGE statement, the row addres.ses should be checked by using f i1e
attributes to ensure that the exchange was successfully completed.

Examples

EXCHANGE(FILE1[ROW6],FILE2[ROWO])

Exchanges the contents of row ROW& of FILEl with the contents of row
ROWO of FILE2.

EXCHANGE(MASTERFYLE[I],REBUILTFYLE[J])

Exchanges row I of MASTERFYLE with row J of REBUILTFYLE.

300
FILL ALGOL REFERENCE MANUAL

FILL STATEJfflWT

The FILL statement fills an array row with specified values.

Syntax

<fill statement>

-- FILL --<array row>-- WITH --<value list>--I

<value list>

1<------- , ------1
1 1

----<initial value>----I

<initial value>

----<number>--------------------------------------I
1 1
I-<string literal>---------------------------I
1 1
I-<unsigned integer>-- (--<value list>--) -I

See also
<array row> • . <. 43

Semantics

The FILL statement cannot be used with character arrays.

Each initial value initializes an integral number of words. The number
of words initialized depends on the type of the array and the k:ind of
initial value.

Single-precision numbers initialize one word in arrays other than double
or complex arrays. In double arrays, this word is extended with a
second word of zero. In complex arrays, this word is normalized and
then extended with an imaginary part of zero.

Statements
301

FILL

Double-precision numbers are stored unchanged in two words in double
arrays. In complex arrays, the value is rounded and norma~ized to
single precision and then extended with an imaginary part of zero. For
other types of arrays, the second word of the double-precision value is
dropped and the first word initializes one word of the array.

String literals more than 48 bits long initialize as ~any words as are
needed to contain the string and are left-justified with trailing zeros
inserted in the last word, if necessary. In complex and double arrays,
long string literals can initialize an odd number of words, causing the
following initial value to start in the middle of a two-word element of
the array.

String literals less than o~ equal to 48 bits long are right-justified
within one word with leading zeros, if necessary. This word initializes
one word in arrays other than double or complex arrays. In double
arrays, this word is extended with a second word of zero. In complex
arrays, this word is normalized and then extended with an imaginary part
of zero.

An initial value of the form "<unsigned integer> «value list»" causes
the values in the value list to be repeated the number of times
specified by the unsigned integer.

If the value list contains more values than will fit in the array row,
filling stops when the array row is full.

If the value list contains fewer vplues than the array row can hold, the
remainder of the array row is left unchanged.

The length of the value list cannot e~ceed 4095 48-bit words.

Examples

FILL MATRIX[*] WITH 250(0)

Fills the first 250 words of the one-dimensional array MATRIX with
zeros.

302
FILL ALGOL REFERENCE MANUAL

FILL GROUP[l,*] WITH .25, "ALGOL", """, "LONGER STRING"

Fills the designated row of array GROUP with the value .25~ the
string ALGOL right-justified with leading zeroes, the character"
right-justified with leading zeros, and with the string LONGER
STRING, which fills two words and part of a third word. Trailing
zeros fill the rest of the third word.

Statements

FIX STATEIEllT

303
FIX

The FIX statement examines the avail~ble state of an event. After the
FIX statement executes, the available state of the designated event is
always FALSE (not available).

Syntax

<fix statement>

-- FIX -- (--<event designator>--) --I

See also
<event designator>. . . . • • . • 78

Semantics

The FIX statement can be used as a Boolean function. If the available
state of the specified event is TRUE (available), the ~vent is procured,
the state is set to FALSE (not available), and FALSE is returned as the
value of the function. If the available state of the specified event is
FALSE (not availablE~), the FIX statement returns TRUE, and the available
state is left unchanged.

The FIX statement is sometimes referred to as the "conditional procure
function."

When the FIX statemE~nt has finished execution, the available state of
the event is FALSE (not available).

Examples

FIX(EVNT)

Examines the available state of the event EVNT.

FIX(EVENTARRAY[INDEX])

Examines the available state
EVENTARRAY[INDEX].

of the event designated by

304
FIX ALGOL REFERENCE MANUAL

IF GOTIT .- FIX(FILELOCK) THEN ...

Examines the available state of event FILELOCK and stores in GOTIT a
value indicating this state.

FIX(MYSELF.EXCEPTIONEVENT)

Examines the available state of the task's EXCEPTIONEVENT.

Statements

l.Q& STATEIEllT

305
FOR

The FOR statement ccmstructs a loop consisting of one or more statements
that are executed a specified number of times.

syntax

<for statement>

1<-------- , ------~-I
1 1

-- FOR --<variable>-- := ---<for list element>--- DO --<statement>-I

<for list element>

--<initial part>-----------------------I
1 1
I-<iteration part>-/

<initial part>

--<arithmetic expression>--I

<iteration part>

STEP <arithmetic expression> UNTIL <arithmetic expression> ---I
1 1 1
1 1- WHILE <Boolean expression> ----I
1 1
1- WHILE <Boolean expression> -------------------------------------1

See also
<statement>•
<variable>. . .

Semantics

. 219

. 225

The number of times a FOR loop is traversed is determined by a variable,
called the "control variable," which is initialized when the FOR
statement is first entered, and wh;ich can be updated during each
iteration of the loop.

306
FOR ALGOL REFERENCE MANUAL

The action·of a FOR statement can be described by isolating the
following three distinct steps:

1. Assignment of a value to the control variable

2. Test of the limiting condition

3. Execution of the statement following "DO"

Each type of <for list element> syntax specifies a different process.
However, all of these processes have one property in common: the
initial value assigned to the control variable is that of the arithmetic
expression in the <initial part> construct.

The <for list element> construct establishes which values are assigned
to the control variable and which test to mak.e of the control variable
to determine whether or not the statement following "DO" is executed.
When a for-list element is exhausted, the next for-list element, if any,
is evaluated, progressing from left to right. When all for-list
elements have been used, the FOR statement is considered completed, and
executioncont1nues with the statement following the FOR statement. The
statement following "DO" can transfer control outside the FOR statement,
in wh1ch case some for-list elements may not have been exhausted before
the FOR statement is exited.

In the discussion below of the various forms of the FOR statement, V 1s
the control variable; AEXP1, AEXP2 •... are arithmetic expressions; BEXP
is a Boolean expression; and Sl is a statement.

FOR-DO 1.&.Ql2

If a for-list element consists of only an· initial part. such as

FOR V := AEXPl, AEXP2, DO

then that for-list element designates only one value to be assigned to
the control var1able. Because no limiting condition is present, no test
is made. After assignment of the arithmetic expression to the control
variable, the statement following "DO" is executed, and the for-list
element is considered eXhausted.

Statements

Figure 5-2 illustrates the FOR-DO loop.

EHTEll
I..OOP

307
FOR

SET IND$)(
TO INITIAL

VALUE

EXECUTE
STATEMENT

SEr INDEX
TO. SECOND

VALUE

EXECUTE
STATDGHT

. S~ I~ I ~E HDma~TEI - - ... TO FINAL --- STATEMENT LOOP
VALUE

Figure 5-2. FOR-DO Loop

FOR-STEP-UNTIL 1&Ql2

If a for-list element is of the form "<initial part> STEP <arithmetic
expression> UNTIL <arithmetic expression>". such as

FOR V := AEXPl STEP AEXP2 UNTIL AEXPl DO

then a new value is assigned to the control
execution of the statement following "DO".
that of AEXPl, is assigned to the control
execution of the statement following
"V := V + AEXP2" is performed. Both AEXP2 and
each time through the loop.

variable V before each
First. the initial value.

variable. After each
"DO", the assignment
AEXP3 are re-evaluated

A test is made immediately after each assignment of a value to V
(including the first) to determine whether or not the value of V has
"pas sed" the value c)f AEXP3. Whether AEXP3 is an upper or a lower 1 imi t
depends on the sign of AEXP2: AEXP3 is an upper limit if AEXP2 is
positive and a lower limit if AEXP2 is negative. If AEXP3 is an upper
limit, then V has passed AEXP3 when the expression "V LEO AEXP3" is no
longer TRUE. If AEXP3 is a lower limit. then'V has passed AEXP3 when
the expression "V GEQ AEXP3" is no longer TRUE. If V has not passed
AEXP3, the statement following "DO" is executed; otherwise. the for-list
element is exhausted. Figure 5-3 illustrates the FOR-STEP-UNTIL loop.

308
FOR

ENTER
LOOP

,FOR-STEP-WHILE Loop

ALGOL REFERENCE MANUAL

TERMiNATE
LOOP

NO
F

Figure 5-3. FOR-STEP-UNTIL LOOp

If a for-list element is of the form "<initial part> STEP <arithmetic
expression> WHILE <Boolean expression>", such as

FOR V := AEXPI STEP AEXP2 WHILE BEXP DO

then a new value is assigned to the control variable V before each
execution of the statement following "DO". First, the initial value,
that of AEXPI. is assigned to the control variable. After each
execution of the statement following "DO", the assignment
"V := V + AEXP2" is performed. AEXP2 is re-evaluated each time through
the loop. After each assignment to V. the Boolean expression BEXP is
evaluated and. if BEXP is TRUE. the statement following "DO" is
executed. If BEXP is FALSE. this for-list element is exhausted. Figure
5-4 illustrates the FOR-STEP-WHILE loop.

ENTER
LOOP

TERMINATE
LOOP

YES.. EXECUTE I STATFWm

Figure 5-4. FOR-STEP-WHILE Loop

INCREMENT
INDEX

Statements

FOR-WHILE l&Ql2

30'1
FOR

If the for-list element is of the form "<initial part> WHILE <Boolean
expression>", such as

FOR V := AEXPl WHILE BEXP DO

the value of AEXPl before each
"DO". AEXPI is re-evaluated for
assignment to V, the Boolean

then the ,control variable V is assigned
execution of the statement following
each assignment to V. After each
expression BEXP .is evaluated. If
statement following flDO" 1s executed.
this for-list element is exhausted.

the value of BEXP is TRUE. the
If the value of BEXP is FALSE,

For example, in the FOR statement

FOR V := V + 1 WHILE V LEQ 5 DO
Sl:

if V had the value zero before execution of this statement, Sl would be
executed five times.

Figure 5-5 illustrates the FOR-WHILE loop.

ENTER ASSIGN VALUE

LOOP 1 TO COl-mOLLED VARIABLE

TERMINATE
LOOP

YES EXECUTE
STATEM!Nl'

Figure 5-5. FOR-WHILE Loop

Examples

FOR I := 0 DO

Executes the statement following "DO" just once, with 1 assigned
zero.

310
FOR ALGOL REFERENCE MANUAL

FOR J := O·STEP 1 UNTIL 255 DO
LOOKEDFOR[J] := 1

Assigns 1 to elements 0 through 255 of array LOOKEDFOR.

FOR INDEX := 0. 1, 2. 10, 15, 37. 5. 16 DO
BUF[INDEX] := ITEM

Assigns ITEM to elements 0, 1. 2. 5, 10. 15, 16. and 37 of array
BUF.

FOR X := ° STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO
FETCH(X)

Calls FETCH repeatedly. passing the values 0, I, 2, 3. 4, 5. 29. and
the values of (47 + 3 * X) where X = 0, 1. 2. and so on. as long as
(47 + 3 * X) is less than LIM.

FOR NEXT := BEG STEP AMT WHILE NOT DONE DO
PANHANDLE

Calls PANHANDLE and assigns to NEXT values equal to BEG, BEG + AMT.
BEG + 2*AMT. and so on, as long as DONE is FALSE.

FOR N := IX + 7 WHILE TARGET LEQ RANGE DO
TARGET := * + N

Increments TARGET by the value IX + 7 as long as TARGET is less than
or equal to RANGE.

Statements

FREE STATEMENT

311
FREE

The FREE statement sets the available state of the specified event to
TRUE (available).

Syntax

<free statement>

-- FREE -- (--(event designator>--) --I

See also
<event designator>•.... ~ 78

Semantics

The FREE statement can be used as a Boolean function that returns FALSE
if the available state of the event is already TRUE (available) and TRUE
if the available state of the event is FALSE (not available). In either
case, the available state of the event is unconditionally set to TRUE
(avai lable) .

The FREE statement does not activate any task attempting to procure the
event, nor does it activate any task waiting on the event.

Examples

FREE(EVNT)

Sets the available state of the event EVNT to TRUE (available).

FREE(EVNTARAY[INDX])

Sets the available state of the event designated by EVNTARAY[INDX]
to TRUE (available).

IF WAS PROCURED := FREE(FYLELOCK) THEN ...

Assigns to WASPROCURED a value indicating the available state of the
event FYLELOCK. and sets the available state of FYLELOCK to TRUE
(available) .

312
FREEZE

FREEZE STATEMENT

ALGOL REFERENCE MANUAL

The FREEZE statement changes the running program into a library.

Syntax

<freeze statement>

-- FREEZE -- (PERMANENT) --I
1

1- TEMPORARY -I

SemantiCS

At least one EXPORT declaration must appear in the same block as the
FREEZE statement. The procedures affected by a FREEZE statement are the
procedures that appear in EXPORT declarations in the same block as the
FREEZE statement. After the FREEZE statement is executed, these
procedures are library entry points.

The PERMANENT and TEMPORARY specifications of the FREEZE statement
control the permanence of the library. A permanent library remains
available until it is discontinued. A temporary library remains
available as long as there are users of the library. A temporary
library that is no longer in use unfreezes (thaws) and resumes running
as a regular program. When a library unfreezes, it cannot execute
another FREEZE statement in an attempt to become a library again.

Because a library program initially runs as a regular program, the flow
of execution can be such that the execution of a FREEZE statement is
conditional and can occur anywhere in the outer block of the program.

If a calling program causes a library to be initiated and this library
does not execute a FREEZE statement (if, for example, it was not a
library program and thus had no FREEZE statement), then the attempted
linkage to the library entry points cannot be made. and the calling
program is discontinued. For more information on libraries, refer to
the "Interface to the Library Facility" chapter.

Statements

GO TO STATEKENT

313
GO TO

The GO TO statement transfers control to the statement in the program
with the specified label.

Syntax

<go to statement>

GO ----------<designational expression>--j
I 1

1- TO -I

Semantics

The value of the designational expression specifies the label to which
control is transferred.

Because labels must be declared in the innermost block in which they
occur as statement labels. a GO TO statement cannot lead from outside a
bloCk to a point inside that block. Each block must be entered at the
BEGIN so that the declarations associated with that block are invoked.
For more information on labels. refer to "LABEL Declaration."

A "bad go to" occurs when a GO TO statement in an inner block transfers
control to a label that is global to that block. A necessary side
effect of a "bad go to" is that the block in which it occurs is exited
abruptly and local variables are deallocated immediately.

A "bad go to" requires cutting back the lexical (lex) level to a more
global block~ To perform a "bad go to," the Master Control Program
(MCP) is invoked to cut back the stack and discard any locally declared
items that occupy memory space outside Of the stack (sometimes referred
to as "nonstack items"). such as files. arrays. and interrupts.

314
GO TO

~amples

GO TO LABELl

ALGOL REFERENCE MANUAL

Control is transferred to the statement with the label LABELl.

GO LABEL2

Control 1s transferred to the statement with the label LABEL2.

GO TO SELECTIT[INDX]

Control is transferred to the statement with the label designated by
the subscripted switch label identifier SELECTIT[INDX].

GO TO IF K=l THEN SELECT[2) ELSE START

If K 1s equal to 1, control is transferred to the statement with the
label designated by the subscripted switch label identifier
SELECT[Z]. Otherwise control is transferred to the statement with
the label START.

Statements

I11J. STATEMENT

315
I/O

An I/O statement causes informat1on to be exchanged between a program
and a peripheral deVice, and allows the programmer to perform certain
control functions.

syntax

<I/O statement>

----<accept statement>-----I
I I
I-<close statement>---I
I I
I-<display statement>-I
I I
I-<lock statement>----I
! I
!-<open statement>--~-I

I
I-<read statement>----I
I I
I-<rewind statement>~-I
I I
I-<seek statEl·ment>----1
I !
I-<space statement>---I
I I
I-<write statement>---I

Semantics

ALGOL input/output (I/O) is handled by a part of the Master Control
Program (MCP) called the I/O subsystemj a thorough description of which
is beyond the SCOPE) of this manual. Refer to the "I/O Subsystem
Reference Manual" for specific information.

The ACCEPT statement and DISPLAY statement are unique in that the file
to or from which data 1s transfentedneed not be specified. For more
information, refer to "ACCEPT Statement" and ~DISPLAY Statement."

The remalnlng I/O statem~nts reference a file that must be declared by
the programmer. Fc)r more information. refer to "FILE Declaration."

316
I/O ALGOL REFERENCE MANUAL

Two distinct methods of I/O are available. The first and typical method
is referred to as "normal I/O": the second method is called "direct
I/O." The major differences between normal I/O and direct I/O have to do
with "buffering," the overlap of program execution, and the overlap of
I/O operations. These two I/O methods are described in general below.
Their effect on a particular I/O statement is presented in the
description of the statement.

Normal 110

Normal I/O is indicated when direct files and direct arrays are not
used. Normal I/O includes many automatic facilities provided by the
MCP, such as the following:

1. Buffering: the automatic overlap of program processing and I/O
traffic to and from the peripheral units

2. Blocking: more than one logical record per physical block

3. Translation as needed between the character set of the unit and
that required by the program

The amount of buffering between the I/O statements and program execution
depends on the number of buffers allocated for the file. Refer to "FILE
Declaration" for information on how to specify the number of buffers.

In normal I/O. a READ statement causes the automatic testing of the
availability of the needed record. The program is suspended in the READ
statement until the record is actually available for use.

In normal I/O, a WRITE statement transfers the specified data to a
buffer; the program is immediately released to begin execution of the
next statement. If all the buffers are full when the WRITE statement is
executed. the program is suspended until a buffer is available.

Direct 110

Direct I/O is indicated when direct files and direct arrays are used.

Direct I/O allows more direct control of the actual I/O operations. In
certain situations. avoiding suspension of the program is desirable. In
other situations, nonstandard I/O operations (and masking of certain
types of error conditions which could arise) is desirable.

Statements
317
I/O

When direct I/O is used, buffering, blocking, and translation are the
responsibility of the programmer.

The syntax for a direct read or direct write operation employs the
"<arithmetic expression>, <array ro:w>" form of <format and list part>.
An event designator is the only allowable form of <action labels or
finished event> for direct I/O. The value of the arithmetic expression'
has the following meaning: field [16:l7J contains the number of words
to be transferred, and field [19:3] contains the number of trailing
characters to be transferred. The array row is called the I/O area of
the user. A direct array identifier must be used for the <array name>
part in the array row construct. Thus, the statement

READ(FID, 10, A[*]) [EVTJ

could be used to perform a direct read of 10 words from file FID into
direct array A using the event EVT as the finished event.

The MCP establishes a relationship between the I/O area and the finished
event, if one is specified. Before any subsequent use of the I/O area
can be made in the program, either for calculations or for further I/O.
the direct I/O operation must be finished~ The finished event can be
inspected (1) by uslng the HAPPENED function, (2) by obtaining the value
of the STATE filE~ attribute using the WAIT statement as a Boolean
function and specifying a direct array row as a parameter, or (3) by
using the WAIT statement on the event to deactivate the process until
the event is caused. Once the operation has been completed, the
happened state of the event should be set to FALSE (not happened) before
reusing it. Refer to "WAIT Statement" for more information.

The finished event can be associated with a direct array row that is
declared in a different block. For example, a formal event can be
associated with a local array. Such an association can cause
compile-time or run-time up-level event errors if the bloCk containing
the finished event can be exited before the block that contains the
direct array is exited.

In direct I/O, the I/O operations analogous to the SPACE and REWIND
statements are performed as if they were read or write operations.
except that the !gC1W direct array attribute is specifically assigned the
proper hardware ipstructions for the operation.

316
I/O ALGOL REFERENCE MANUAL

When performing direct I/O with the SPACE operation,
spacing limitation overrides any user-specified spacing.
a line printer, this limitation is two.

See also

the device's
In the case of

<happened function> 555

Statements

JF STATEMENT

319
IF

The IF statement causes a statement to be executed or not executed based
on the value of a Boolean expression.

syntax

<if statement>

--<if clause>--<statement>------------~-------------I
1 I
1- ELSE --<statement>-I

<if clause>

-- IF --<Boolean expression>-- THEN --f

See also
<statement> 219

Semantics

In the descriptions that follow, BEXP represents any Boolean expression.
and SI, S2 t and S3 represent statements.

<if clause> <statement)

When the IF statement is of this form~ such as

IF BEXP THEN Sl

then if the value of the Boolean expression BEXP is TRUE, the statement
Sl is executed. If BEXP is FALSE, then SI is not executed. In either
case, execution continues with the statement following the IF statement.

320
IF ALGOL REFERENCE MANUAL

<if clause> (statement) ELSE <statement>

When the IF statement is of this form, such as

IF BEXP THEN 81 ELSE S2

then if the value of BEXP is TRUE. the statement Sl is executed and the
statement S2 is ignored. If the value of BEXP is FALSE, then the
statement S2 is executed, and Sl is ignored. In either case, execution
continues with the statement following the IF statement.

Further Information

Note that both <block> and <compound statement> are statements and can
be substituted for <statement>.

IF statements can be nested; that is, the statements following the
reserved words THEN or ELSE (or both) can also be IF statements.

When IF statements are nested, the correct correspondence between the
reserved words THEN and ELSE must be maintained. The compiler matches
the innermost THEN to the first ELSE that follows it and that yields a
syntactically correct IF statement. Consider the following IF
statement:

IF BEXPl THEN IF BEXP2 THEN S2 ELSE 81

The ELSE is paired with the innermost THEN. which is the THEN following
BEXP2. as illustrated below.

IF BEXPI THEN
IF BEXP2 THEN

S2
ELSE

Sl

If it is desired to pair the ELSE with the THEN following BEXPl, the
inner IF statement must be made a compound statement by using BEGIN and
END as follows:

IF BEXPI THEN
BEGIN
IF BEXP2 THEN

S2
END

ELSE
Sl

Statements
321

IF

A GO TO statement can lead to a labeled statement within an IF
statement. The subsequent action is equivalent to the action that would
result if the IF statement was entered at the beginning and evaluation
of the Boolean expression caused execut:ion of the labeled statement.

J::xamples

IF ALL DONE THEN
GO AWAY

If ALLDONE is TRUE, control is transferred to the statement with the
label AWAY. If ALLDONE is FALSE. the statement following the IF
statement is executed.

IF X > LIMIT THEN
ERROR

ELSE
:x .= 'Ie + 1

If the value of X is greater than the value of LIMIT. procedure
ERROR is called.. If the value of X is less than or equal to the
value Of LIMIT, the value of X is incremented by 1. In either case.
execution continues with the statemerit following the IF statement.

322
INTERRUPT

INTERRUPT STATEIENT

ALGOL REFERENCE MANUAL

Interrupts provide a way to interrupt a process when a specific event
occurs. Interrupt statements allow interrupts to be attached to and
detached from events. and allow interrupts to be enabled and disabled.

Syntax

<interrupt statement>

----<attach statement>-----I
I I
I-<detach statement>--I
I I
I-<disable statement>-I
! I
j-<enable statement>--I

Semantics

The ATTACH statement is used to associate an interrupt with an event.

The DETACH statement is used to sever the association between an
interrupt and the event to which it is attached.

The ENABLE statement and DISABLE statement are used to explicitly enable
and disable. respectively, an interrupt.

For more information on interrupts. refer to "INTERRUPT Declaration."

St.atements

INVOCATION STATEMENT

323
INVOCATION

An invocation statement causes a previou~ly declared procedure to be
executed as a subroutine, an asynchronous process, a coroutine, or an
independent program.

Syntax

<invocation statement>

----<call statement>---------------~----I
I 1
I-(procedure invocation'statement>-I
I !
1- <process statement >-----------,---1
I !
I-<run statement>------------------!

Semantics

The CALL statement invokes a procedure to execute as a coroutine. The
procedure invocation statement invokes a procedure to execute as a
subroutine. The PROCESS statement invokes a procedure to run as an
asynchronous process. The RUN statement invokes a procedure to run as
an independent program.

With the exception of the procedure i;nvocation statement. a separate
stack is initiated. and the speci;fied procedure cannot be a typed
procedure.

With the exception of the RUN statement,parameters can be call-by-name
or call-by-value. All parameters passed in the RUN statement must be
ca 11-by-va 1 ue . ,

I

324
LIBERATE ALGOL REFERENCE MANUAL

LIBERATE STATEMENT

The LIBERATE statement activates all
event. It can also change the
(happened).

Syntax

<liberate statement>

tasks waiting on the specified
happened state of the event to TRUE

-- LIBERATE -- (--<event designator>--) --I

See also
<event designator>. .. 78

Semantics

The LIBERATE statement causes the execution of an implicit CAUSE
statement for the specified event. This implicit CAUSE statement can
result in a change to the happened state of the event, if the waiting
tasks have used the WAITANDRESET statement. (For more information,
refer to "CAUSE Statement" and "WAITANDRESET Statement.") The available
state of the event is set to TRUE (available).

Pragmatics

Although all waiting tasks are activated, they are linked into the ready
queue in priority order. At that point, all tasks that were waiting to
procure the event are in the ready queue in priority order. (For more
information about procuring events, refer to "PROCURE Statement.")

Examples

LIBERATE(ANEVENT)

Causes the event ANEVENT and sets its available state to TRUE
(available) .

LIBERATE(EVENTARRAY[INDEX])

Causes the event designated by EVENTARRAY[INDEX] and sets its
available state to TRUE (available).

Statements

LOCK STATEIlENT

The LOCK statement causes the specified file to be closed.

Syntax

<lock statement>

-- LOCK -- (--<file designator>------------------------) --I
I

1- , --<lock option>-I

<lock option>

CRUNCH ----I
1 1

1- * ------1

See also

325
LOCK

<file designator> 189

Semantics

If the specified file is a tape file, it is rewound. and the tape unit
is made inaccessible to the system until the operator readies it again.
If the file is a disk file, it is retained as a permanent file on disk.
The file buffer areas are returned to the system.

A LOCK statement with a lock option performs the same action as a CLOSE
statement that specifies CRUNCH. Whether CRUNCH or an asterisk (*)
appears as the lock option, the action of the LOCK statement is the
same. The file must be a disk file. The unused portion of the last row
of disk space (beyond the end-of-file indicator) is returned to the
system. The disk file can no longer be expanded without being copied
into a new file; however. data can be written to existing records.

326
LOCK ALGOL REFERENCE MANUAL

Examples

LOCK(FILEA)

If FILEA is a disk file, it is retained as a permanent file.

LOCK(FYLE,CRUNCH)

The unused portion of the last row of disk file FYLE is returned to
the system.

LOCK(FYLE,1C)

The unused portion of the last row of disk file FYLE is returned to
the system.

Statements

HERGE STATEJIENT

327
MERGE

The MERGE statement causes data in the specified files to be combined
and returned.

Syntax

<merge statement>

MERGE -- (--<output option>-- • --<compare procedure>-- • ----->

)-<record length>-- . ~-<merging option list>--) -----------------1

<merging option list>

1<------- . -------1
I I

----<merging option>--~-I

<merging option>

--<input option>--I

See also
<compare procedure>
<input option>.
<output option> .
<record length> .

Semantics

· 437
· 436
· 436
· 437

The compare procedure determines the manner in which the data is
combined. The output option specifies how the data is to be returned
from the merge operation.

The merging option list must contain between two and eight input
options. inclusive. which must be files or Boolean procedures.

328
MERGE

Example

ALGOL REFERENCE MANUAL

MERGE(LINEOUT.COMP,14,IN1.IN2)

Merges records from files INl and IN2 according to a scheme given in
compare procedure COMPo The merged result is written to file
LINEOUT. The records of INl and IN2 have a maximum record size of
14.

329
·MESSAGESEARCHER

IESSAGESEARCHER STA1EJ~

The MESSAGESEARCHER statement returns a completed output message based
on the information passed to it.

~3yntax

<messagesearcher statement)

-- MESSAGESEARCHER -- (--<output message array identifier>-- ---)

)----------------··------------------<arithmetic expression>--] --->
I
I-<language specification>-- , -I

)- , -":'<result polnter>-- • --<result length>---------------------->

>----------------------------------) --------~--------------------I
1 !
I I <--------------------------1 I
I I I I
1--- . --<parameter element>---I

<language specification>

----<string expression>-------------------------------------!
I I
I-<pointer expression>-- FOR --<arithmetic expression>-I

<result pointer>

--<pointer expression>--!

<result length>

--<arithmetic variable>--I

<parameter element>

----<string expression>-------------------------------------I
I I
~-<pointer expression>-- FOR --<arithmetic expression>-I

330
MESSAGESEARCHER

See also

ALGOL REFERENCE MANUAL

<arithmetic variable>
<output message array identifier> .

Semantics

. 225

. 141

The output message array identifier indicates the output message array
from which the output message is to be obtained.

The language specification indicates the preferred language for the
requested output message.

The arithmetic expression within the square brackets ([]) indicates the
output message number of the message that is to be completed and cannot
be a double-precision value.

The result pointer is a call-by-value EBCDIC pointer that points to
where the completed output message is to be stored. An EBCDIC null
character (48"00") is placed after the last character of the message.
The null character is not included in the returned message length.

The result length is an integer or real variable that is assigned the
length of the returned output message, not counting the null character
that is appended at the end.

Each parameter element contains the actual value of a parameter that was
specified in the declaration of the requested output message. The first
parameter element refers to parameter <1>, the second to parameter <2>,
and so on.

The following method is used to find the requested message so that it
can be completed.

First, an initial language in which to search for the message must be
selected. If a language specification is given as a parameter to the
MESSAGESEARCHER statement, that language is selected; otherwise, the
language in the language specification of the task requesting the
message is used. If the task does not have a language specification,
the system default language is used.

If the requested message cannot be found in the initial language and the
initial language is not the system default language, the message is
searched for in the system default language. If the message still

Statements
331

MESSAGESEARCHER

cannot be found, then the message is searched for in the languages that
exist in. the specified output me~sage array. beginning with the first
language, the second language, and so on. If none of the languages in
the output message array contains the message, an ~rror message that
specifies the message number is produced in place of the message.

The MESSAGESEARCHER statement can be used as an arithmetic function that
returns an integer result indicating whether or not the message was
successfully found and formatted. The possible values for this result
are as follows:

1 The message is not in the requested language; it is in
MYSELF. LANGUAGE or SYSTEMLANGUAGE.

o The message was found and formatted as requested.

-1 Too few parameters were specified.

-2 No matching <output message case part> was found.

-3 The message is in the first available language.

-4 The array row referenced by the result pointer is too small.

-5 The message was not found.

-6 The version of the output message array is incompatible with
the version of the Master Control Program (MCP).

-7 The output message array is in error.

-8 A fault occurred while obtaining the output message.

-9 The length passed with a parameter is too long.

For more information, refer to "OUTPUTMESSAGE ARRAY Declaration."

332
MULTIPLE ATTRIBUTE ASSIGNMENT ALGOL REFERENCE MANUAL

MULTIPLE ATTRIBUTE ASSIGNMENT STATEIENT

The multiple attribute assignment statement is used to assign values at
run time to one or more attributes of a specified file.

Syntax

<multiple attribute assignment statement>

--<file identifier>-- (--<attribute specifications>--) --I

See also
<attribute specifications> ..
<file ldentifier>

Semantics

85
85

If the name of a Boolean file attribute in the attribute specifications
is not followed by an equal sign (=) and a value, it is assigned a value
of TRUE; that is, the attribute specifications

DEPENDENTSPECS,KIND = DISK

have the same effect as the attribute specifications

DEPENDENTSPECS = TRUE,KIND = DISK

An assignment specified in a multiple attribute assignment statement
occurs at run time and overrides any assignment made to the attribute in
a FILE declaration or through file equation.

Pragmatics

One intrinsic call is generated to assign all attributes, except when a
pointer-valued file attribute name is assigned a pointer expression. In
this case, the compiler generates a separate intrinsic call for the
pointer-valued attribute assignment.

:Examples

333
Statements MULTIPLE ATTRIBUTE ASSIGNMENT

AFILE(BUFFERS = 3,INTMODE = EBCDIC,KIND = DISK)

At run time, the BUFFERS attribute of fileAFILE is assigned the
value 3, the INTMODE attribute is assigned EBCDIC, and the KIND
attribute is set to DISK.

LINE(TITLE = P~INTNAME =Q)

At run time, the TITLE attribute of file LINE is assigned the value
pointed to by pointer P, and the INTNAME attribute is assigned the
value pointed to by pointer Q.

334
ON

ON STATEHENT

ALGOL REFERENCE MANUAL

The ON statement is used to enable or disable an interrupt for one or
more fault conditions.

Syntax

<on statement>

----<enabling on statem~nt>-----I
1 1

I-<disabling on statement>-I

<enabling on statement>

-- ON --<fault list>-------------------------------- , ------------>
1 I I I
I-<fault information part>-I 1- -I

>-<fault action>---I

<fault list>

I < ----- OR ---- I
I I

----<fault name>----I

Statements

<fault name>

ANY FAULT --------------1
I 1

1- EXPONENTOVERFLOW ---I
I 1
I-
I
I-
I
I­
I
I.,..

EXPONENTUNDERFLOW --I
I

INTEGEROVERFLOW ~---I
1

INVALIDADDRESS -----1
I

INVALIDINDEX -------1
1

- INVALIDOP ----------

- INVALIDPROGRAMWORD -

- LOOP --~------------

- MEMORYPARITY -------

- MEMORY PROTECT -----~

- PROGRAMMEDOPERATOR -

- SCANPARITY ---------

- STRINGPROTECT ------1
I

- Z~RODIVIDE ---------1

<fault information part>

---<fault stack history>-------------------------] --I
I I I
I 1- : --<fault number>-I
I I
1- --<fault number>-----~-------------------I

<fault stack history>

----<array row>-------------I
i

I-<pointer expression>-I

<fault number>

--<variable>--I

335
ON

336
ON

<fault action>

--<statement>--I

<disabling on statement>

ALGOL REFERENCE MANUAL

-- ON --<fault list>--I

See also
<array row> .
<statement>
<variable> .

Semantics

43
. 219
. 225

The two forms of enabling ON statements are the "implicit call" form and
the "implicit branch" form.

Once an interrupt is enabled. it remains enabled until one of the
following conditions occurs:

1. The procedure or block that contains the ON statement is
exited.

2. The interrupt is explicitly disabled.

3. A new interrupt is enabled for the same fault condition.

Whenever the block that contains an ON statement is exited, the
interrupt status for that fault condition reverts to the interrupt
status it had when the block was entered.

The fault list allows the user to enable or "arm" several faults with
the same fault action or to disable or "disarm" one or more faults at
the same time. An example of the use of fault lists appears below. The
occurrence of anyone of the faults in the fault list is sufficient to
cause transfer of control to the fault action. The fault name ANYFAULT
is used to arm or disarm all faults.

The fault information part provides access to the stack history at the
time of the occurrence of the fault and to the number corresponding to
the fault kind. The fault number, when it is used, is assigned one of
the following values when the corresponding fault occurs:

337
Statements ON

Value Fault

1 ZERODIVIDE
2 EXPONENTOVERFLOW
3 EXPONENTUNDERFLOW
4 INVALID INDEX
5 INTEGEROVERFLOW
7 MEMORYPROTECT
8 INVALIDOP
9 LOOP

10 MEMORYPARITY
11 SCANPARITY·
12 INVALIDADDRESS
14 STRINGFROTECT
15 PROGRAMMEDOPERATOR
18 I NVAL I DPROGRAMWORD

If the fault stack history option is used, a string Of EBCDIC characters
representing the stack history is stared into the array row or the array
specified by the pOi.nter, expresston. The stack history information is
always stored as EBCDIC characters regardless of the character type of
the array row or pointer expression.

The format of the stack history is

SSS : AAAA : Y , #SSS : AAAA: Y , # ••• ,#SSS ::AAAA: Y •

or

SSS : AAAA: Y# (DDDDDDDD) ,1/ ••• ,Itsss: AAAA: Y# (DDDDDDDD) .

where .SSS is a code segment number, AAAA is a code word address. Y is a
code syllable number, # is a blank space, and DDDDDDDD is a sequence
number (present only if the compiler control option LINEINFO was TRUE
during program compilation).

One of these entries is generated for each active lexical level in the
stack in effect when the fault is encountered. Each entry is followed
by a comma (,), and the last complete entry is terminated by a
period (.). If the user-specified array is sufficiently long, the
entire stack history 1s stored. If iit is not long enough. then only a
portion of the stack history is stored, with the last complete entry in
the array terminated by a period. Th:e code segment number field, SSS.
is expanded to four characters, SSSS, for segment numbers greater than
4095; that is, for segment numbers whose hexadecimal representation
requires four characters.

338
ON ALGOL REFERENCE MANUAL

The: array row or pointer expression that makes up the fault stack
history and the variable that makes up the fault number are evaluated
once when the ON statement is executed, and not at the time the fault
occurs. Thus, in the following ON statement. array row A[I,*] is
determined by the value of I at the execution of the ON statement and
not when a ZERODIVIDE fault actually occurs. This determination is also
true for the variables B[J] and J.

ON ZERODIVIDE[A[I,*]:B[J]]: GO TO ERROR_HANDLING

The form of the ON statement that includes a comma, instead of a
colon (:). before the fault action is the implicit call form. With this
form of ON statement, when a specified fault occurs. the program calls
the fault action statement as a procedure. If the fault action
statement does a "bad go to" to a label outside the block in which the
fault occurred, the fault condition is discarded, and the program
continues running. If the fault action statement exits without doing a
"bad go to" around the fault, the fault condition for which the fault
action statement was called still exists. If an ON statement is enabled
for that condition in a more global block, then control is passed to
that ON statement; otherwise, the program is discontinued as a result of
that fault.

A GO TO statement cannot be executed
statement to a label inside the
results occur when a GO TO statement
parameter (a formal label).

from outside the fault action
fault action statement. Undefined
specifies a label passed as a

The form of the ON statement that includes a colon. instead of a comma,
before the fault action is the implicit branch form of the ON statement.
With this form of ON statement, the program branches to the statement
given as the fault action when a specified fault occurs. The fault
condition is discarded. and the program continues execution from that
point.

The disabling ON statement disables or disarms
corresponding to the fault names in the fault list.

the interrupts

No calIon the block exit intrinsic is required to deactivate the armed
faults for a block.

Statements

Examples

ON ZERODIVIDE OR INVALIDINDEX [FAULTARRAY:FAULTNO]:
BEGIN
REPLACEFAULTARRAY[8] BY FAULTNO FOR 11 DIGITS;
WRITE(LINE, 22, FAULTARRAY);
REPLACE FAULTARRAY BY " " FOR 22 WORDS;
CASE FAULTNO OF

BEGIN
1: DIVISOR := 1;
4: INDEX := 100;
END;

GO BACK;
END

339
ON

If either a divj~de-by-zerofault or an invalid index fault occurs at
run time~ the fault conditi~n is discarded and control transfers to
the compound statement in this 0N statement. The stack history
information is written t~ the array row FAULTARRAY, and the fault
number of the fault that occurred is stored in FAULTNO.

ON MEMORYPROTECT OR LOOP: Q := 2

If either of the specified faults occurs at run time, the fault
condition is discarded and control is transferred to the assignment
statement in the ON statement. After execution of the assignment
statement, execution continues with the statement following the ON
statement.

ON EXPONENTUNDERFLOW % DISABLING ON STATEMENT

Disables the interrupt associated with the exponent underflow fault.

ON ANYFAULT [POINTR + 2:Z], HANDLEFAULTS(Z)

If any fault occurs. the statement HANDLEFAULTS(Z) is called as a
procedure. The stack history information is written to the location
indicated by thE~ pointer expression POINTR + 2, and the faul t number
of the fault that occurred is stored in Z.

340
OPEN

OPEN STATEIlENT

ALGOL REF'ERENCE MANUAL

The OPEN statement causes the referenced file or subfile to be opened.

Syntax

<open statement>

-- OPEN -- (--<file designator>----------------------------------->

)--)
1 1 1

1- [-- SUBFILE --<subfile index>--] -I 1- • --<open option>-I

)-) --1

<open option>

1

AVAILABLE ----I
1

1- DONTWAIT --I
I \
\- OFFER -----\
\ \

\- WAIT ------1

See also
<file designator) .
<subfile index> .

Semantics

The subfile index specifies the subfile to be opened.

. 189

. 280

The OPEN statement can be used as an arithmetic function and returns·the
same values as the file attribute AVAILABLE returns. For a description
of these values. see the "I/O Subsystem Reference Manual."

The open options AVAILABLE, DONTWAIT, OFFER, and WAIT are described in
the "I/O SubsyStem Reference Manual."

Statements
341

OPEN

If no open option ts specified 9 the WAIT option is assumed. Any open
option can be used with any type Of file. However, DONTWAIT and OFFER
are meaningful only for port files. For other kinds of files, DONTWAIT
and OFFER are ignored and an open with WAIT is performed.

Examples

OPEN(FILEID)

Opens file FILEID. Execution Of the program is suspended until
FILEID is open.

OPEN(FILEID[SUBFILE I).OFFER)

Opens subfile I of port file FILEID and offers it for matching. The
program does not wait for a matching subfile to be found.

OPEN(FILEID[SUBFILE I),WAIT)

Opens subfile I of port file FILEID and offers it for matching. The
program is suspended until a matching subfile is found.

IF OPEN(FILEID[SUBFILE I),AVAILABLE) = 1 THEN
PROCESSOPEN

Opens subfile I of port f1leFILEID and offers it for matching. A
search is made for a matching subfile that has been offered. If one
is found. the subfile is opened, the result returned by the OPEN
statement is 1, and PRocESSOPEN is called; otherwise. an error
result is returned and PROCESSOPEN is not called.

342
POINTER

POINTER $TATEMENT

ALGOL REFERENCE MANUAL

Pointer statements are used to examine, transfer. and edit character
data stored in arrays.

Syntax

<pointer statement>

----<replace statement>-----------------------------j
I
I-<replace family-change statement>------------I
I I
I-<replace pointer-valued attribute statement>-I
I I
I-<scan statement>-----------------------------!

Semantics

The REPLACE statement can be used to move character data into an array
row. Within a single REPLACE statement, the character data to be moved
can be taken from several sources. Each of these sources can be one of
several different types. A source can be another array row, a string
literal. the value of an arithmetic expression. the value of a string
expression, or the value of a pointer-valued attribute. Furthermore, as
the character data is moved from a source to the destination, the
characters can be translated or edited. Also, an arithmetic expression
source can be treated as a binary value and converted into the
equivalent decimal number expressed as a string of numeric characters.

The replace family-change statement is the language construct provided
to add datacomm stations to or remove datacomm stations from a family of
stations.

The replace pointer-valued attribute statement is the language construct
provided to assign character data to pointer-valued file and task
attributes.

The SCAN statement can be used to examine character data located in an
array row.

Pointer statements process character data from left to right.

Statements

Pragmatics

343
POINTER

Many of the operations performed by pointer statements require the use
of temporary storage for intermediate results. In describing the
actions of a pointer statement~ a discussion of how this temporary
storage is initialized, changed, and disposed of is necessary. These
discussions use the following names for these tem~orary storage
locations:

1. Stack-souree-pointer

2. Stack-destination-pointer

3. Stack-auxiliary-pointer

4. Stack-integer-counter

5. Stack-test-character

6. Stack-souree-operand

The prefix "stack" denotes that none of these parameters correspond to
any program variables. They exist only until execution of the pointer
statement is completed.

The stack-source-pointer, the stack-destination-pointer. and the
stack-auxiliary-pointer have the same internal structure as a pointer
variable that can be declared in a program. These temporary storage
locations are initialized either from pointer expressions in the pointer
statement or from previous corresponding temporary storage locations.

The initial value of the stack-source-pointer points to
character to be used by the associated operation. As
the instruction progresses, the stack-source-pointer
point to each successive source character. When

the
the
is
the

first source
execution of
modified to
operation is

complete, the stack-source-pointer points to the first "unprocessed"
character in the source data (the "process" is determined by the
particular form of the pointer statement). This final value can be
stored into a pointer variable, or it can be discarded.

The initial value of the stack-destination-pointer points to the first
destination character position to be used by the associated operation.
As the execution of the operation progresses, the
stack-destination-pointer is modified to point to each successive
destination character position. When the operation is complete, the
stack-destination-pointer points to the first unfilled character
position in the destination. If more than one source is to be
processed. the stack-destination~pointer value corresponding to the

344
POINTER ALGOL REFERENCE MANUAL

completed processing of one element in the source list is used as the
initial value for the subsequent source. If no more sources are to be
processed. this final value can be stored into a pointer variable, or it
can be discarded.

The initial value of the stack-auxiliary-pointer points to the first
entry in a table of data to be used by the operation in its execution.
This table can be a translate table if the operation to be performed is
extracting characters from the source data, translating the characters
to different characters (possibly containing a different number of bits
per character). and storing the translated characters in the
destination. This table can be a truth set describing a particular set
of characters if the operation to be performed requires a membership
test. Finally, this table can be a "picture"--a table that contains
instructions of a special type describing how the source data is to be
edited before being stored in the destination.

The stack-integer-counter. when required by a pointer statement, is
initialized by an arithmetic expression supplied in the pointer
statement. The value of this arithmetic expression is integerized
before it is used. The stack-integer-counter has different meanings
depending on the type of pointer statement involved. In some cases, the
number of characters in a source string to be processed is dictated
solely by this parameter. The number of numeric characters to be placed
in the destination while converting the value of an arithmetic
expression to character form is also dictated by the
stack-integer-counter.

In some forms of the pointer statement. two controlling factors exist
that dictate how many characters are to be processed from a source
string. One factor depends on the source data and is called a
condition. The other factor is a maximum count contained in the
stack-integer-counter and is provided by an arithmetic expression in the
pointer statement. For examplE', with such a pointer statement, the
following instructions could be written: "translate characters from the
source string to the destination until either 14 characters have been
transferred or a period is encountered in the source string. whichever
comes first." The final value of the stack-integer-counter is available
for storage. or it is discarded.

The stack-test-character is initialized by an arithmetic expression
(usually, but not necessarily, of the form of a single-character string,
such as "B"). Although the stack-test-character parameter is one entire
word of memory that contains the single-precision value of the
arithmetic expression. only the rightmost character position of the word
is used. When a condition employing a relational operator is used in a
pointer statement. the stack-test-character must contain the character
against which the individual characters in the source string are to be
compared.

Statements
345

POINTER

The stack-source-operand is used when the source data is given by the
value of an arithmetic expression rather than a value located in an
array row into which the stack-source-pointer points. The
stack-source-operand is initialized by the arithmetic expression.

Refer to the discussions of the specific pointer statements for more
detailed information.

346
PROCEDURE INVOCATION ALGOL REFERENCE MANUAL

PROCEDURE INVOCATION STATEMENT

A procedure invocation statement causes a previously declared procedure
to be executed as a subroutine.

Syntax

<procedure invocation statement>

--<procedure identifier>------------------------------i
1 I

I-<actual parameter part>-I

<actual parameter part>

1<---- , ---------------------1
1 II!
I I <-<parameter delimiter>-I 1

I I
-- (---<actual parameter>------------) --I

Statements

<actual parameter>

----<expression>-----------------------!
I I
I-<array designator>----~-------~-I
I I
I-<string array designator>-------!
I I
1-<direct file identif1er>--------!
I I
I-<direct switch file ident1fier>-1
II
I~<event des1gnator>-------~------1

I !
I-<event array deslgnator>--------I
I I
1-<fl1e designator>--------------~I
I I
1-<sWitch file ldent1fier>---~----1
I I
I-<format designator>------------~I
! I
I-<switch format identif1er>------1
I I
I-<label ident1fier>--------------1
I I
'-<switch label ident1fier>------~1

I
-<11st designator>---------------I

I
-<switch list ldentifier>--------!

I
-<picture identif1er>------------1

!
-<procedure identifier>--~-------I

!
-<task designator>---------------I

i
I-<task array des1gnator>---------!

347
PROCEDURE INVOCATION

348
PROCEDURE INVOCATION ALGOL REFERENCE MANUAL

See also
<array designator>.
<direct file identifier>
<direct switch file identifier> ..
<event array designator> ..
<event designator> ..
<expression>.
<file designator> .
<format designator> .
< label identif ier >. .
<list designator> ..
<parameter delimiter>
<picture identifier>
<procedure identifier>.
<procedure identifier> ..
<string array designator>
<switch file identifier> ..
<switch format identifier>.
<switch label identifier> .
<switch list identifier> ..
<task array designator>
<task designator>

Semantics

43
85

· 189
79
78

· 473
· 189
· 192

128
· 197

17

· 147
165

. . . . 165

· 187
· 189
· 192
· 195
· 197
· 200
· 200

When a procedure is invoked, program control is transferred from the
point of the procedure invocation statement to the referenced procedure.
When the procedure is completed, program control is transferred back to
the statement following the procedure invocation statement, unless a
"bad go to" is executed in the referenced procedure. Bad GO TO
statements are described under "GO TO Statement."

A typed procedure returns a value. However, when a typed procedure is
used in a procedure invocation statement, this value is discarded.

Calling Procedures with Parameters

The ~ctual parameter part of a procedure invocation statement must have
the same number of entries as the formal parameter list in the
declaration of the procedure. Correspondence between the actual
parameters and formal parameters is obtained by matching the parameters
that occur in the same relative position in the two lists.
Corresponding formal and actual parameters must be of compatible types.
Parameters can be call-by-name or call-by-value.

Statements
349

PROCEDURE INVOCATION

If a formal parameter is of type INTEGER. REAL, or DOUBLE, then the
actual parameter must also be INTEGER. REA~, or DOUBLE, but not
necessarily the same type as its formal counterpart. If a mismatch
among these types occurs. then the action that takes place depends on
whether the formal parameter is call-by-name or call-by-value. If it is
call-by-value. the type of the actual parameter is converted to the type
of the formal parameter before the formal parameter is assigned the
value of the actual parameter. If the formal parameter is call-by-name,
the appropriate conversion takes place each time the formal parameter is
referenced.

If the formal parameter of a non-formal procedure is a simple variable
of type COMPLEX. then the correspond~ng a~tual parameter can be of type
INTEGER, REAL. DOUBLE, or COMPLEX. However, if the COMPLEX formal
parameter is call-by-name and the corresponding actual parameter is not
of type COMPLEX, an assignment to that formal parameter within the
procedure body causes the program to be discontinued with a fault.

Actual parameters of all types other than INTEGER. REAL. and DOUBLE must
match the type of the formal parameter exactly.

For more information on procedures, refer to "PROCEDURE Declaration."

Examples

SIMPL

Invokes the procedure SIMPL,which has no parameters.

HEAVY(X,Y,A[*],SQRT(BINGO+BASE»)

Invokes the procedure HEAVY and passes it four parameters:
the array row A[*], and the expression SQRT(BINGO+BASE).

X, Y,

350
PROCESS

PROCESS STATEMENT

ALGOL REFERENCE MANUAL

The PROCESS statement initiates a procedure as an asynchronous process.

Syntax

<process statement>

--- PROCESS --<procedure identifier>-------------------------------->
I

I-<actual parameter part>-I

>- [--<task designator>--] --------------------------------------1

See also
<actual parameter part> .
<procedure identifier> ..
< task des i gna tor) . . .

Semantics

. 346
165
200

Initiation of an asynchronous process consists of setting up a separate
stack for the process, passing any parameters (call-by-name or
call-by-value). and beginning the execution of the procedure. The
initiating program continues execution, and both the initiating program
and the initiated procedure run in parallel.

The specified procedure cannot be a typed procedure.

The actual parameter part must agree in number and type with the formal
parameter part in the declaration of the procedure; otherwise. a
run-time error occurs.

The task designator associates a task with the process at initiation;
the values of the task attributes of that task, such as COREESTlMATE,
STACKSIZE, and DECLAREDPRIORITY, can be used to control execution of the
process. For information about assigning values to task attributes,
refer to <arithmetic task attribute> under "Arithmetic Assignment,"
<Boolean task attribute> under "Boolean Assignment," and "Task
Assignment." Many task attributes can be interrogated while the process
is running.

Statements

See also
<arithmetic task attribute> .
<Boolean task attribute> ..
Task Assignment

351
PROCESS

227
. 235

246

An asynchronous process depends on its initiator for global variables
and call-by-name actual parameters. Thus. for each process. a "critical
block" is present in the initiator that cannot be exited until the
process is terminated. The critical block is the block of highest
lexical level that contains one or more of the following items:

The declaration of the procedur~ itself

The declarations of the actual parameters passed
6all-by-name formal parameters

The declaration of the task designator

to the

Any compiler-generated code for evaluating arithmetic expressions
passed to call-by-name parameters

The critical block can be the block that contains the PROCESS statement.
the outer block of the program. or some block in between. An attempt by
the initiator to exit the critical block before the process is
terminated causes the initiator (and all tasks it has initiated through
CALL or PROCESS statements) to be terminated.

A process is terminated by exiting its own outermost block or by
execution in the initiator of the following statement:

<task designator>.STATUS := VALUE(TERMINATED)

where the task designator specifies the task associated with the process
to be terminated.

Pragmatics

The processed procedure must not declare any own arrays. An attempt to
do so results in a run-time error.

352
PROCESS

Examples

PROCESS AGENT [TSK]

ALGOL REFERENCE MANUAL

The procedure AGENT, which has no parameters, is invoked as an
asynchronous process. The task TSK is associated with the process.

PROCESS ACHILD(OUTARRAY.YOUREVENT[INDX] ,COUNT) [TSKARAY[INDX]]

The procedure ACHILD is invoked as an asynchronous process and
passed the three parameters OUTARRAY, YOUREVENT[INDX], and COUNT.
The task designated by TSKARAY[INDX] is associated with the process.

Statements

PROCURE STATEIENT

The PROCURE statement tests the available state of an event.

Syntax

<procure statement>

-- PROCURE -- (--<event designator>--) --I

See also

353
PROCURE

<event designator>. • 78

Semantics

If the available state of the event is FALSE (not available), the
program is suspended and put in the procure list until some other task
executes the LIBERATE statement for that event. If the available state
of the event is TRUE (available), the available state is set to FALSE
(not available), and the program continues execution with the statement
following the PROCURE statement.

Pragmatics

The PROCURE statement. provides a means for different programs to share
resources. For example, a convention could be established that a
certain shared resource that is available for use by more than one
program is not to be used by a program unless that program has procured
the event that is used as the interlock. When the program has completed
its use of the resource, it should execute a LIBERATE statement on the
event.

Examples

PROCURE(EVNT)

If the available state of EVNT is TRUE (available), EVNT is procured
by setting its available state to FALSE (not available). Otherwise,
the program is suspended until EVNT is made available.

354
PROCURE

PROCURE(EVNTARAY[INDX])

ALGOL REFERENCE MANUAL

If the available state of the event designated by EVNTARAY[INDX] is
TRUE (available), then that event is procured by setting its
available state to FALSE (not available). Otherwise. the program is
suspended until the event designated by EVNTARAY[INDX] is made
available.

Statements

PROGRAMDUKP STATEMENT

The PROGRAMDUMP statement causes the Master Control
print out the contents of the stack of the program.
available to specify which items of the stack are
printed.

Syntax

<programdump statement>

355
PROGRAMDUMP

Program (MCP) to
Sev-eral options are

to ·analyzed and

-- P.ROGRAMDUMP --1
I I
I 1<------------- . ------------1 I

I I I
1- -----<programdump option>-------- -I

<programdump option>

I I
I-<arithmetic expression>-I

ARRAY ---------------1
I 1

1- ARRAYS -----------1
1 1

1- BASE -------------1
I I
1- CODE -------------1
I I

DBS --------------!
I

FILE -------------1

I­
I
I­
I I
1- FILES ------------1
! I
1- LIBRARIES --·------1
1 I

I- PRIVATELIBRARIES -I
I I
1- SIBS -------------1
I I
1- ALL --------------1

35t
PROGRAMDUMP

Semantics

ALGOL REFERENCE MANUAL

The information produced by the PROGRAMDUMP statement is written to the
file specified by the TASKFILE task attribute of th~ program.

If no programdump options are specified, the stack is analyzed and
printed according to the specifications in the task attribute OPTION of
the program.

If the contents of the arrays of the program are to be printed, the
option ARRAY or ARRAYS must be specified.

The bottom (or "base") of the stack of the program is printed if the
BASE option is specified. The MCP uses a portion of each stack to
contain various words needed to control. identify. and log the program.

The segment dictionary of the program is printed out if the CODE option
is specified. The actual code is printed only for segments that are
referenced by the program at the time of the PROGRAMDUMP statement.
Value arrays in the segment dictionary are printed when both the CODE
and either the ARRAY or ARRAYS options are specified.

The DBS option causes the output of database stacks and. prior to the
Mark 3.5 release, structure information blocks (SIBs). The SIBS option
causes the output of SIBs on Mark 3.4 and earlier releases; on Mark 3.5
and later releases. it has no effect.

If program files are to be printed and analyzed. the FILE or FILES
option must be specified. As each file is encountered. each word of the
file information block (FIB) is separately named and. in some cases.
analyzed.

The LIBRARIES option causes the stacks of all libraries that are being
used by the program to be printed. The PRIVATELIBRARIES option causes
the stacks of all private libraries that are being used by the program
to be printed.

Specifying the ALL option is equivalent to specifying all the other
options.

Statements
357

PROGRAMDUMP

If the arithmetic expression option is used, the individual bits of the
value of the expression are interpreted as follows:

[7:lJ 1 The base of the user stack is to be printed.

8:lJ 1 Array contents are to be printed.

9:1] = 1 The segment dictionaTY is to be printed.

[10:1] = 1 Files are to be analyzed and printed.

[15:1] = 1 Database stacks . and SIBs are to be printed .

[18:1] 1 SIBs are to be printed.

[19:1J = 1 Sta.CKS for libraries are to be printed.

[20:1J 1 Stacks for private libraries are to be printed.

When the MCP has completed analyzing and printing the specified items,
control passes to the next statement.

Pragmatics

Diagnostic and debugging information can also be written to the TASKFILE
so that the program dump and the information are ~oordinated.

Examples

PROGRAMDUMP

Analyzes and prints the program stacK according to the value of the
OPTION task attribute of the program.

PROGRAMDUMP(ARRAYS)

Analyzes and prints the basic information plus the contents of all
arrays.

PROGRAMDUMP(ARRAYS.BASE.CODE.FILE)

Analyzes and prints the contents of arrays. value arrays, the base
of the stack, the segment dictionary. referenced code segments. and
files.

358
PROGRAMDUMP

PROGRAMDUMP(ALL)

ALGOL REFERENCE MANUAL

Analyzes and prints the maximum amount of information about the
program stack.

PROGRAMDUMP(DUMPPARAM)

Analyzes and prints the program stack according to the value of
DUMPPARAM.

PROGRAMDUMP(O & 1 [10:1])

Equivalent to the statement PROGRAMDUMP(FILES). This statement
analyzes and prints the contents of files of the program.

359
READ

READ STATEMENT

The READ statement allows data to be read from files and assigned to
program variables.

Syntax

<read statement>

-- READ -- (--<file part>----------------------------) ----------}
! I
I-<formatand list part>-i

> - - - - - - - - - - - - - - - -, - - --- - - - - - - - -,- --- - - - -- - - - - - I
1 I
i-<aCtion labels or finished event>-I

<file part>

----<file designa.tor>----------------------------~-------------I
1 I 1

1 I-<record number or carriage control>-I
I

I-<core-to-core part>-------------------------------------I

<record number or carriage control>

-- [-----------------<arithmetic
I
1 - LINE --_.--- 1

1 1

1- SKI P --_.--- 1
i 1

1- SPACE ------1
I

1- STACKER ---I
I I
1- STATION ---I
I 1

i- TIMELIMIT -I
!

expression>---
I
I

I
I
I
1

1

I
1

I
I
I
I
I

1- NO ----------------------------------1
1

1- STOP --------------------------------1
1 I
j-<subfile specification>---------------!

--I

360
READ ALGOL REFERENCE·. MANUAL

<subfile specification>

DONTWAIT --I
1 I

1- SUBFILE -------------------<subfile index>-------------------I
I 1 1 I

I-<result>-- : -I 1- , -- DONTWAIT -I

<result>

--<arithmetic variable>--I

<core-to-core part>

--<core-to-core file part>-----------------------------------I
1 I

I-<core-to-core blocking part>-I

<core-to-core file part>

----<array row>---------------I
1 I

I-<pointer expression>---I
I I
I-<subscripted variable>-I

<core-to-core blocking part>

-- (--<core-to-core record size>---------------------------------->
I

1- , --<core-to-core blocking>-I

>-) --1

<core-to-core record size>

--<arithmetic expression>--I

<core-to-core blocking>

--<arithmetic expression>--I

Statements

<format and list part>

361
READ

---<format dE?Signator>--------------------------------------�

<list>

I I I
1 1- , --<list>---------------------1
I
I­
I

!
< --<editing specifications>-- > --------------------1

1

I
1- * ----------~------
1 1
I-<free-field part>-l
I

1 I

1- , -~<list>-----~I
1

--<list>-----------------------I
1

I
I

I-<arithmetic expression>-- , ---<array row>------------I
! I
I-<subscrlpted variable>-I

I<~----- . ----~-I
I 1

1 I

I-<pointer expression>---I
I I
\-<string variable>------I

------<list element>------I
! I
I-<list designator>--I

<free-field part>

---------------------------------- / -----------------------------1
I 1 I 1

1- * -/ I-<number of co1umns>-1 !- / -I I-<column width>-I

<number of columns>

-- [--<arithmetic expression>-- J --I

<column width>

-- [--<arithmetic expression>-- --I

362
READ ALGOL REFERENCE MANUAL

<action labels or finished event>

-- [-->

>---<eof label>-->
1

1--------------- : <parity error label> --------------------------1
I 1 1

I-<eof label>-I j- : <data error label> -I
1

!---------------
1

I-<eof label>-I
1

<data error label> --------------------------1
1

1

1

I-<event designator>---I

>- J --1

<eof label>

--<designational expression>--I

<parity error label>

--<designational expression>--I

<data error label>

--<designational expression>--I

See also
<arithmetic variable> ..
<array row>
<editing specifications>.
<event designator>.
<file designator> .
<format designator> .
<list designator> ..
< list eleme!1t>. . .
<string variable>
<subfile index> ..
<subscripted variable>.

· . . 225
43
90
78

189
· . . 192
· . . 197

133
. 525

280
· . . 225

Semantics

Statements

NOTE

The syntax of the READ statement and the
syntax of the WRITE statement are nearly
identical. Differences in the semantics
are discussed separately in the semantics
for each statement.

363
READ

The action of the READ statement d~pends on the form of the <file part>
element and on the form of the <format and list part> element.

The READ statement can be used as a Boolean function. When the read
operation fails. the value TRUE is returned. When the read operation
succeeds, the value FALSE is returned. Specifically. the READ statement
returns a value identical to that returned by the file attribute STATE.
For more information, refer to the discussion of the STATE attribute in
the "I/O Subsystem Reference Manual."

Examples of READ Statement Syntax

READ(FILEID)

READ(FILEID.FMT)

READ(FILEID.FMT,LISTID)

READ(FILEID,*.LISTID)

READ(SPOFILE,FMT,A,B,C)

READ(SPOFILE,/,SIZE,LENGTH,MASS)

READ(FILEID.FMT,7,2,A,B,C,ARAY[AJ,B+C,F)

READ(FILEID.I,J.FOR I := 0 STEP 1 UNTIL J DO ARRY[I])

READ(FILEID.*,A.B,C,FOR A := B*A STEP C UNTIL J DO ARY[I])

READ(SWFILEID[IF X > N THEN X+N ELSE O].25.ARRY[2,*])

READ(FILEID,/.SWLISTID[r])

READ(FILEID.FMT,SWLISTID[r])

READ(SPOFILE.8WFMT[l6J.A.B,C)

364
READ

READ(FILEID.50,STR)

ALGOL REFERENCE MANUAL

READ(FILEID./,L.M.N.ARRY[2]) [EOFLj

READ(FILEID[3][NO]) [:PARL]

READ(SWFILEID[l4][NO].FMT,A+EXP(B),ARRY[I.J.*]) [:PARSWL[M]]

READ(FILEID[NOJ.SWFMT[6+J],LISTID) [EOFSWL[Q*3]::DATAERRORL]

READ(SWFILEID[A+B],*,SWLISTID[2+H/K]) [EOFL:PARL)

READ(FILEID[NO) [EOFSWL[I]:PARSWL[J]]

READ(FYLE) [EOFL:PARL:DATAERRL]

READ(DIRFYLE) [EVNT]

READ(DIRFYLE,30.DlRARAY) [EVNT]

<file part>

The file part specifies the location of the data to be read.

<file designator>

The file designator specifies the file to be read.
information. refer to "SWITCH FILE Declaration."

<record number or carriage control>

For more

If the <record number or carriage control> element is not specified, the
record currently addressed by the record pointer is read, and the record
pointer is adjusted to point to the next record in the file.

If the <record number or carriage control> element is invalid for the
physical file associated with the file designator. it is ignored.

If the <record number or carriage control> element is an arithmetic
expression. its value indicates the zero-relative record number of the
record in the file that is to be read. The record pointer is adjusted
to point to the specified record before the read is performed. and the
record pointer is adjusted after the read operation to point to the next
record.

Statements
365

READ

If the <record number or carriage control> element is "NO", then the
record pointer is not adjusted following the read operation. That is,
the record can be read again. This <record num~er or carriage control>
element has no effect if the KIND attribute of the file being read is
equal to REMOTE.

If the <record number or carriage control> element is of the form
"[SPACE <arithmetic expression>]", then the number of records specified
by the value of the arithmetic expression are skipped. Spacing is
forward if the arithmetic expression has a positive value and backward
if the arithmetic expression has a. negative value.

The "[TIMELIMIT <arithmetic expression>]" construct, which is meaningful
only for remote files, assigns the value of the arithmetic expression to
the TIMELIMIT attribute of the file. Refer to the "I/O Subsystem
Reference Manual" for information on the TIMELIMIT attribute. The value
of this attribute applies to all subsequent READ and WRITE statements on
that file. If the value of the TIMELIMIT attribute is greater than zero
and if no input is received within that number of seconds (the value can
be fractional), then a time-out error is reported.

The "[STATION <arithmetic expression>]" construct is meaningful only for
remote files. The value of the arithmetic expression is assigned to the
LASTSUBFILE attribute of the file. Refer to the "I/O Subsystem
Reference Manual" for information on the LASTSUBFILE attribute.

)

<subfile specification>

If the file to be read is a port file (a file for which the KIND
attribute is equal to PORT), an array row read containing a subfile
specification must be used. Refer to "Array Row Read" in this section.

The subfile specification is meaningful only for port files. It is used
to specify the subfile to be used for the read operation and the type of
read operation to be performed.

If the subfile index is used. the value of the subfile index is assigned
to the LASTSUBFILE attribute of the file. It specifies the subfile to
be used for the read operation. If the subfile index is zero, a
nonselective read is performed. ~f tIDe subfile index is nonzero, then a
read from the specified subfile i~ performed. The result variable. if
any. is assigned thE~ resultant value of the LASTSUBFILE attribute. For
more information on the LASTSUaFILE attribute, refer to the "I/O
Subsystem Ref erence 11anual."

366
READ ALGOL REFERENCE MANUAL

If DONTWAIT is specified in a READ statement. and if no input is
available. no data is returned and the program is not suspended.

<core-to-core part>

If the <file part> consists of a <core-to-core part>, then a
core-to-core read is performed. A core-to-core read operation reads
from a location in memory. not from a physical device; therefore, it is
much laster than a ~~y~lcal read. EditIng is performed exactly as it is
performed when reading from a physical device.

<core-to-core file part>

If the core-to-core file part is a hexadecimal, BCL. or EBCDIC array row
or pointer. then the default record size (the number of characters
considered to be in the record) depends on the character size of the
array row or pointer and is determined by the actual length of the
designated string.

The maximum size of the core-to-core file part for BCL and hexadecimal
arrays is 65.535 words. Core-to-core I/O on BCL and hexadecimal arrays
longer than 65,535 words is permitted only if the core-to-core file part
is indexed far enough into the array such that the length between that
point and the end of the array does not exceed 65.535 words. If an
attempt is made to use an array or array segment more than 65.535 words
long. a run-time error occurs.

For single- and double-precision array rows or subscripted variables,
the default record size is computed by multiplying the length of the
array row (or remaining length of the array row when a subscripted
variable is used) by the number of characters per word, where characters
per word is derived from the following table:

Default Character Type

BCL EBCDIC

single 8 6

Precision -------------------------------------
double It 12

Statements

<core-to-core blocking part>

367
READ

To specify a record size smaller .than the default size, a value can be
provided for <core-to-core record size>. This value is in terms Of

characters. By supplying a value for <core-to-core blocking>. the
"file" can be blocked into more records than the default number, which
is one.

With formatted I/O. if the format requires more records than indicated
by the core-to-core blocking value. a run-time error is given. Also.
the format can require more characters than the core-to-core file part
contains; this situation also results in a run-time error. In such
cases, the number of characters ~ndicated in the core-to-core blocking
part (this number is computeq by multiplying the core-to-core record
size by the core-to-core blocking) can appear to be large enough to
satisfy the format. but the core-to-core blocking part can indicate more
characters than the core-to-core file part actually contains. The
core-to-core file part, the core-to-core blocking part, and the format
must be compatible or run-time errors will occur.

Examples

BEGIN
ARRAY A[0:9];
REAL B,C;
READ (A(80),<T50,A6.IIO>,B,C);
WRITE(A(15,3),<X5,I15>,1.2,3):
WRITE(A(20.2),<X5,I15>,1,2,3);

% EXAMPLE 1
% EXAMPLE 2
% EXAMPLE 3

B :=" ITEM";
WRITE(A(15,4).<tt.",X2,A6,I2,X4>,B,l,B,2,B,3,B,4); % EXAMPLE 4

END.

The statement labelHd "EXAMPLE 1" in the program above results in a
run-time error (format error 217), because the format requires 65
characters, but the file part (array A) contains only 60 characters.

The statement labeled "EXAMPLE 2" results in a run-time error (format
error 117), because the format requires 20-character records. but
I5-character records were specified in the blocking part.

The statement labeled "EXAMPLE 3~' re;sults in a run-time error (format
error 120), because the three list elements require three repetitions of
the format. Thus, three records are required, but only two records were
specified in the blocking part.

368
READ ALGOL REFERENCE MANUAL

The statement labeled "EXAMPLE 4" fills array A with the following
EBCDIC data ("I" denotes the end of the data):

ITEM 1 ITEM 2 ITEM 3 ITEM 4

<format and list ~

The <format and list part> element indicates the interpretation of the
data in the file and the variables to which the data is assigned.

If the <format and list part> element does not appear, the input record
is skipped.

Formatted Read

A READ statement that contains a format designator, editing
specifications, or a free-field part is called a "formatted read."

A format designator without a list indicates that the referenced format
contains a string literal into which corresponding cha-racters of the
input data are to be placed. The string literal in the FORMAT
declaration is replaced by the string literal in the input data.

A format designator with a list indicates that the input data is to be
edited according to the specifications of the format and assigned to the
variables of the list.

Editing specifications can appear in place of a format designator and
have the same effect as if they had been declared in a FORMAT
declaration and had been referenced through a format designator. For
more information, refer to "FORMAT Declaration."

On any formatted I/O statement (excluding core-to-core I/O), the number
of characters allowed in the record is determined solely by the value of
the file attribute MAXRECSIZE of the file. If the format requires more
characters than are contained in the record, a format error occurs at
run time.

The free-field part is discussed under "Data Format for Free-field
Input" in this section.

Binary Read

A READ statement of the form

READ«file part>,*,<list»

is called a "binary read."

Statements
369

READ

An asterisk (*) followed by a list specifies that the input data is to
be processed as full words and assigned to the elements of the list
without being edited. The number of words read is determined by the
number of elements in the list or the maximum record size, whichever is
smaller.

When data is read into character arrays, only full words are read. If
there is a partial word left at the end of the data. it is ignored. For
example, if A is an EBCDIC array and FILEID contains the string
"12345678", the statement

READ(FILEID,*,A)

reads only the characters "123456".

When a string is read into a ~tring variable using a binary READ
statement, the first word read from the record is assumed to specify the
len~th of the string. This word is evaluated, and the resulting value
is the number of cha(acters read beginning with the next word of the
record. The binary WRITE statement automatically writes a word of
length information before the text of each string variable; therefore,

WRITE(F, * , STR, S'rRARRAY[5] . STR I I "ABC")

can later be read by

READ (F , * • STR1. S'rR2 ,STRARRAY [OJ)

For more information, see "Binary Write" under "WRITE Statement."

The results are und~~fined for binary READ statements that attempt to
read data not containing length information into string variables.

370
READ ALGO~ REFERENCE MANUAL

Array Row Read

A READ statement of any of the forms

READ«file part>, <arithmetic expression>,<array row»
READ«file part>, <arithmetic expression>, <subscripted variable»
READ«file part>, <arithmetic expressLon>,<pointer expression»
READ«file part>, <arithmetic expression>,<string variable»

is called an "array row read."

The first three forms of the array row read specify that input data is
to be read without editing and assigned left-justified to the array
specified by the array row. subscripted variable, or pointer expression.
The arithmetic expression specifies the number of words or the number of
characters, depending on the value of the FRAMESIZE attribute for the
file, to be read. Refer to the "I/O Subsystem Reference Manual" for
information on the FRAMESIZE attribute. The number of words or
characters actually read equals whichever of the followinj values is
smallest:

the MAXRECSIZE attribute Of the file being read

the length of the array row (or portion of the array to the right
of where the pointer expression points or to the right of the
element specified by the subscripted variable)

the absolute value of the arithmetic expression

A READ statement of the form

READ «file part>,<arithmetic expression>,<string variable»

specifies that input data is to be read without editing and assigned to
the string variable. The number of characters read is the smaller of
the value of the MAXRECSIZE attribute of the file being read or of the
absolute value of the arithmetic expression. The value of the
arithmetic expression always specifies the number of characters (not
words) to be read.

Example

BEGIN
FILE IN(TITLE="TEST.". UNITS=CHARACTERS. MAXRECSIZE=20);
STRING Sl,S2;
READ(IN,15~Sl); % READS 15 CHARACTERS INTO Sl
READ(IN.50,S2); % READS 20 CHARACTERS INTO S2

END.

Statements

<action labels Qr finished event>

371
READ

The <action labels or finished event> element provides a means of
transferring control from a READ statement, WRITE statement, or SPACE
statement when exception conditions occur. A branch to the eof label
takes place when an end-of-fi1e condition occurs. A branch to the
parity error label takes place if an irrecoverable parity error is
encountered. A branch to the data error label takes place if a conflict
exists between the format and the data. If the appropriate label is not
provided when an exception condition occurs, the program is terminated.

The "[<event designator>]" syntax can be used only for direct I/O. The
event is caused when the I/O operatior. is finished. For more
information. refer to "Direct I/O" under "I/O Statement."

Exception conditions occurring during a READ statement can also be
handled without thE~ use of the <act]on labels or finished event> syntax.
The READ statement can be used as a Boolean function, and the value
returned can be tested to determine if any exception conditions exist.
(For more informatton, refer to the discussion of the STATE attribute in
the "I/O Subsystem Reference Manuat.") When exception conditions are
handled in this manner, the <action labels or finished event> syntax
cannot be used. The user assumes all responsibility for handling
exception conditions. Core-to-core I/O statements of the forms

READ«array row>,<arithmetic ex~ression>.<array row»
WRITE«array row>, <arithmetic expression>.<array row»

cannot be used with the <action labels or finished event> syntax and
cannot be used as Boolean functions. Attempting to do either results in
a syntax error.

See also
Direct I/O 316

Data Format for Fn:?e-field Input

The use of a <free·-fie1d part> element in a READ statement allows input
to be performed with editing but without using editing specifications.
The appropriate format is selected automatically.

On input, only the simplest forms of the free-field part, a single
slash (/) or double slash (//), can be used. These formats allow input
from records in the form of free-field data records. A single slash
indicates that data items are delimited by a comma; a double slash
indicates that data items are delimited by one or more blanks.

372
READ ALGOL REFERENCE MANUAL

Free-field·Data Format

The format of a free-field input data record is as follows:

1<-------------------------1
I !

------<field>-------------------j

<field>

i I
I-<explicit delimiter>-i

----<unquoted string>------------------<field delimiter>--I
1 I
I-<number>-------------------------I
I I 1 I
I-<quoted string>-I I-<commentary>-I
1 1
I-<hex string>----I
1 I

1- / -------------1
1 I
1- ~ -------------1

<unquoted string>

Any string not containing an <explicit delimiter>.

<quoted string>

-- <EBCDIC string> --I

<hex string>

-- 4" --<hexadecimal string>-- " --I

<commentary>

Any string not containing an <explicit delimiter>.

<field delimiter>

----<explicit delimiter~----:
I
I-<end-of-record>------I

Statements

~exp1icit delimiter>

373
READ

Comma (,) for the single-slash form or one or more blanks for the
double-slash form. An empty record is not considered an explicit
delimiter.

<end-of-record>

The end of the input record.

Semantics

Each record Qf free'-field input data must be in the form described
above.

Empty records are ignored. <commentary> is ignored.

Each field except the slash is associated with the list element to which
it corresponds by position.

Fields

The single-slash format interprets a field that contains only a comma or
a comma preceded by blanks as a null field. Such a field is skipped
along with its associated list element, which is left unaltered.

The different types of fields are described in the following paragraphs.

<unquoted string>

If an unquoted string is read into a list element of type string or
pointer. all characters preceding the explicit delimiter (including
quotation marks if present) are transferred to the list element.
The <end-of-record> is not recognized as a delimiter.

If an unquoted string is read into a list element of type string.
characters are read until an explicit delimiter is detected or until
the maximum string length (2**5 - 2) is reached.

If an unquoted string is read into a list element of type pointer.
characters are read until an explicit delimiter is detected or until
the end of the array is reached.

374
READ ALGOL REFERENCE MANUAL

If an unquoted string is read into a list element of type Boolean,
the value TRUE is assigned to the list element if the first
character of the string is "T". If the first character is not the
letter "T", the value FALSE is assigned to the list element. The
unquoted string is read until a field delimiter is detected.

If an unquoted string is read into a list element of any type other
than string, pointer, or Boolean. it is treated as commentary.

<number>

A number that is represented as an integer is treated as type
INTEGER unless it is larger than the largest allowable integer, in
which case it is treated as type REAL. Numbers that contain a
decimal fraction are treated as type REAL. However, when the list
element is double precision, results are treated as type DOUBLE.
When the field delimiter is a comma, blanks within numbers are
ignored.

Complex values are divided into real and imaginary values. When a
complex variable or complex subscripted variable appears in the list
of a free-field READ statement, two fields are necessary to complete
the read operation. The value in the first field is assigned to the
real part, and the value in the second field is assigned to the
imaginary part.

<quoted string>

A quoted strin~ of any length can be read into single- or
double-precision list elements. Each single-precision EBCDIC or BCL
list element receives six characters or eight characters,
respectively (12 or 16 characters, respectively, for
double-precision list elements), until either the list or the string
is exhausted. If the number of characters in the string is not a
multiple of six (for EBCDIC) or eight (for BCL), then the last list
element receives the remaining characters of the string. The string
characters are stored, right-justified, in the list elements.

<hex string>

A hexadecimal string can be read into a single- or double-precision
list element. If fewer than 12 hexadecimal digits are read into a
Single-precision variable (or fewer than 24 hexadecimal digits into
a double-precision variable), the string is stored right-justified
in the variable. If a minus sign precedes the string (for example.
-4"A"), bit 46 of the resulting value is complemented.

Statements

slash (I)

375
READ

The slash field causes the remaimder of the current buffer to be
ignored. The buffer fOllowing t~e slash is considered the beginning
of a new field. The slash is a field by itself and must not be
placed within another field or between a field and its explicit
delimiter.

asterisk (*)

The asterisk fiE?ld terminates the READ statement. The program
continues with the statement following the READ statement. The list
element corresponding to the asterisk remains unchanged, as do any
subsequent elements in the list.

Examples

1.

2.5, I anything to the right of a slash is ignored

2.48 @ -20, I blanks are ignored if using single-slash editing

3 4 I two data elements if the delimiter is a blank

3.4, I two data elements if the delimiter 1s a comma

"THIS IS A QUOTED STRING"

THIS IS AN UNQUOTED STRING AND THE DELIMITER IS A COMMA, 123

THIS-IS-AN-UNQUOTED-STRING-AND-THE-DELIMITER-IS-A-BLANK 45b

2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA.

4"AB" I A HEX STRING

-4"40000000000A" I BIT 4b IS COMPLEMENTED, THE RESULT = +10

I null fields; the three corresponding list elements are
/ skipped with no alteration to their contents.

4. ,5 I null field is ignored

* THIS DATA RECORD TERMINATES THE ~EAD STATEMENT

376
READ ALGOL REFERENCE MANUAL

NOTE

Additional information about I/O
operations can be found under "I/O
Statement" and "WRITE Statement."

Statements

REIIOVEFILE STATEKEN'r

The REMOVEFILE statlement removes files without opening them.

Syntax

<removefile statement>

-- REMOVEFILE -- (--<directory element>--) --I

See also

377
REMOVEFILE

<directory element> .. 270

Semantics

The syntax and semantics of <directOiry element> appear under "CHANGEFILE
Statement."

If the directory element is a directory name, all files in that
directory are removed. If the directory element is both a file name and
a directory name, that file and all files in the directory are removed.

A directory element of the form n<f1.le name>/=" removes only files in
that directory. It does not remove a file named "<file name>".

The REMOVEFILE statement can be used as a Boolean function. in which
case it returns a value of TRUE. if an error occurs. The value in field
[39:20J of the result defines the failure as follows:

10 File name or directory name is in error.

3C Files have not been removed.

If a pointer expression is used as a directory element. it must point to
an array that contains the name of the file or directory to be removed.

378
REMOVEFILE

Pragmatics-

ALGOL REFERENCE MANUAL

Family substitution is used if the task has an active family
specification and the family name involved in the REMOVEFILE statement
is the target family name that the FAMILY specification substitutes.

If a family substitution specification is in effect, the REMOVEFILE
statement affects only the substitute family, not the alternate family.

Example

BOOL := REMOVEFILE(tlMYTEST ON PACKFOUR. tI
)

Removes the file MYTEST and. if the remove is successful, assigns
FALSE to the variable BOOL.

statements

REPLACE STATEMENT

379
REPLACE

The REP~ACE statement causes character data from one or more sources to
be stored in a designated portion of an array row.

Syntax

<replace statement>

-- REPLACE --<destination>-- BY --<source part list>--I

<destination>

-----------------------<po1nter expression>--I
I I
I-<update pointer>-I

<update pointer>

--<pointer variable>-- --I

<source part list>

I<-~---- t -----1
I I

----<source part>----I

380
REPLACE ALGOL REFERENCE MANUAL

<source part>

----<string literal>--------------------------I
I I I
I I-<unit count>--------I
! I
I-<arithmetic expression>----------------!
1 I

1 I-<unit count>-j
I 1

I-<digit convert part>-------------------1
1 1

I-<numeric convert part>-----------------I
I I
I-<source>--<transfer part>--------------I
! I
I-<translate part>-----------------------I
I 1

I-<pointer-valued attribute>-------------I
1 I

I-<string expression>--------------------I

<unit count>

-- FOR --<arithmetic expression>--------------I
1 1

1- WORDS -I

<digit convert part>

--<arithmetic expression>-- FOR ---<arithmetic expression>--------->
1 1

1- * ---------------------1

>--- DIGITS ---1
I i
1- SDIGITS -I

<numeric convert part>

--<arithmetic expression>-- FOR ---<count part>--- NUMERIC --I
i

j- * ----------1

Statements

<count part>

-----------------------<arithmetic expression>--!
I 1

I-<residual count>-I

<residual count>

--<simple variable>-- --I

<source>

-----------------------<pointer expression>--I
i I
I-<update pOinter>-1

<transfer part>

----<unit count>--------------------I
I 1

1- WITH --<picture identifier>-I
I I
I-<scan part>------------------I

<scan part>

--------------------------<condit~on>--I

i i
1- FOR --<count part>-I

<condition>

381
REPLACE

WHILE ----o-<relational operator>--<arithmetic expression>----j
1 1 1 I

1- UNTIL -I 1- IN --<truth set table>------------------------I

382
REPLACE

<truth set-table>

ALGOL REFERENCE MANUAL

----<subscripted variable>- --I
I
I-<truth set identifier>-
I
1- ALPHA ---------------­
I
1- ALPHA6 ---------------1
I I
1- ALPHA7 ---------------1
1 1

1- ALPHA8 ---------------1

<translate part>

--<source>-- FOR --<arithmetic expression>-- WITH ----------------->

>-<translate table>---I

<translate table>

----<subscripted variable>----------!
1

I-<translate table identifier>-I
I 1

i-<intrinsic translate table>--I

Statements

<intrinsic translate table>

ASCIITOBCL -------1
I 1
1- ASCIITOEBCDIC -I
I 1
1- ASCIITOHEX --,--1

1
1- BCLTOASCII -----1
1 1
1- BCLTOEBCDI C ---- 1
1 1
1- BCLTOHEX ------- I
1 1
1- EBCDICTOASCII -I
I 1
1- EBCDICTOBCL ----I
I 1
1- EBCDICTOHEX ----I
j 1
1- HEXTOASCII -,---1
1 1
1- HEXTOBCL ---._-- 1
1 1
1- HEXTOEBCDIC---I

See also
<picture i-dentif ier >. • • • •
<pointer variable>
<pointer-valued attribute> .. .
<relational operator> ..
<simple variable>
<subscripted variable>
<translate table identifier>.
<truth set identifier>

Semantics

383
REPLACE

. . . 147

· 241
. . 411

· 493
· 225

225
. . . 202

. ... 207

The description of the REPLACE statement, which makes up the remainder
of this section. makes frequent reference to the temporary storage
locations defined under "Pointer Statement" in this chapter.

The REPLACE statement stores character data from one or more data
sources into a designated portion of an array row. The array row and
the starting character position within the array row are both determined
by the pointer expression part of <destination>. The value of this
pointer expression initializes the stack-destination-pointer. As each
character is moved into the destination array row, the
stack-destination-po:inter is correspondingly incremented one character

384
REPLACE ALGOL REFERENCE MANUAL

position. When the last character has been stored in the destination
array row, the corresponding final value of the
stack-destination-pointer is stored in the pointer variable of the
update pointer, if specified; otherwise. it is discarded.

The source part list consists of one or more source parts. Each source
part specifies source data and the processing to be performed on the
data. All the data specified by a single source part is processed by a
single method, but the various source parts of the source part list can
specify a variety of processing methods.

With certain forms of the source part, provisions are made to store the
final value of the stack-source-pointer. With several source parts in a
single REPLACE statement, several "final values" for the
stack-source-pointer arise. Corresponding to these final values are
values of the stack-destination-pointer. These latter values are not
accessible to the programmer but serve as the initial values of the
stack-destination-pointer for the processing of the next source part.

<source> is the same syntactic construct encountered in the SCAN
statement. <source> contains a pointer expression that initializes the
stack-source-pointer to a particular character position in an array row.
The character size associated with this pointer expression must be the
same as that associated with the pointer expression that initialized the
stack-destination-pointer. If the update pointer option for <source> is
present, the pointer variable specified by the update pointer is
assigned the final value of the stack-source-pointer for this source
part.

Pragmatics

The stack-source-pointer and the stack-destination-pointer can both
reference the same array during a REPLACE statement. However, if the
stack-source-pointer references a character position between the initial
position of the stack-destination-pointer and its current position, the
result is undefined. For example,

REPLACE POINTER(A)+6 BY POINTER(A) FOR 12

produces an undefined result. On the other hand,

REPLACE POINTER(A) BY POINTER(A) FOR 12

produces a well-defined result.

Statements

Examples of REPLACE Statement Syntax

REPLACE PTR BY "A"

REPLACE PTR:PTR BY "*11 FOR 75

REPLACE PTR BY ITEM

REPLACE PTR BY (4"03").[7:48] FOR 1

REPLACE PTR BY " " FOR N WORDS

REPLACE PTR:PTR BY PST FOR 18

REPLACE PTR BY PST:PST FOR NUM WORDS

REPLACE PTR BY PINFO WITH PIC

REPLACE PTR:PTR BY PST WHILE NEQ " "

REPLACE PTR BY PST WHILE IN ALPHA

REPLACE P BY X FOR * DIGITS

REPLACE P BY X FOR 50 NUMERIC

REPLACE P BY X FOR * NUMERIC

REPLACE PTR BY PST WHILE IN MYTRUTHTABLE

REPLACE PTR BY PST UNTIL = " " ,

REPLACE PTR: PTR BY ps'r: PST UNTIL IN ALPHA8 .

REPLACE PTR BY PST FOR THELENGTH WHILE) "0"

REPLACE PTR BY PST FOR LEFT:25 WHILE IN ACCEPTABLE

REPLACE PTR BY PST FOR 120'UNTIL NEQ " "

REPLACE PTR BY PST FO:R M:N UNTIL IN ALPHA

REPLACE PTR:PTR BY SUMTOTAL FOR 6 DIGITS, " "

REPLACE PTR BY FYLE.TITLE

REPLACE PTR BY PST:PST FOR L WITH XLATTABLE

REPLACE PTR BY STR

REPLACE PTR BY SARRAY[4,J]

385
REPLACE

38b
REPLACE ALGOL REFERENCE MANUAL

REPLACE P BY 51 II 52

REPLACE P BY PTR:PTR FOR 10

REPLACE P BY TAKE(S,2) I I SA[4]

REPLACE P BY HEAD(S,ALPHA)

<source ~ Combinations

The formal syntax of the <source part> can be reduced to the following
combinations:

<string· literal>
<string literal> FOR <arithmetic expression>

FOR <arithmetic expression> WORDS

<arithmetic expression>
<arithmetic expression> FOR <arithmetic expression>

FOR <arithmetic expression> WORDS
FOR <arithmetic expression> DIGITS
FOR 1(DIGITS
FOR <arithmetic expression> SDIGITS
FOR 1(SDIGITS
FOR <count part> NUMERIC
FOR 1(NUMERIC

<source> FOR <arithmetic expression>
FOR <arithmetic expression> WORDS
FOR <arithmetic expression> WITH <translate table>

<source> WITH <picture identifier>

<source> WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>
WHILE IN <truth set table>
UNTIL IN <truth set table>

<source> FOR <count part> WHILE <rela'~ional operator>
<arithmetic expression>

<source> FOR <count part> UNTIL <relational operator>
<arithmetic expression>

<source> FOR <count part> WHILE IN <truth set table>
FOR <count part> UNTIL IN <truth set table>

<pointer-valued attribute>

<string expression>

Statements
387

REPLACE

The remainder of the information about the REPLACE statement is
organized according to the combinations listed above.

In all examples, P and Q are 8-bit pointers and the default character
type is EBCDIC.

String Literal Source Parts

Short and Long String Literals

A string literal of 96 bits or less is a short string literal. A short
string literal is evaluated at compile time and stored, left-justified,
in a one- or two-word operand. Character size information is discarded.

A string literal of more than 96 bits is a long string literal. A long
string literal is E~valuated at compile time and stored in a portion of
an array called a "pool array." The character size and address of the
string literal are stored in a pointer called a "pool array pointer."

The compiler calculates the number of characters in a string literal in
terms of the largHst character size specified by the string literal.
For example.

4"Cl" is two characters long.
8"AB" is two characters long.
48"01" is one character long~
4"01""A" is two characters long (if the default character

type? is EBCDIC) .

<string literal>

If the source part is a short string literal. it is processed as
follows:

1. At compile time. the number of characters in the string is
calculated.

2. At run time. the string literal is,stored, left-justified with
zero fill, in a one- or two-word Stack-souree-operand.

4.

The stack-integer-counter is assigned the value for the string
length calculated at compile time (see step 1).

Characters are copied
destination specified

from
by

the stack-source-operand to
the stack-destination-pointer.

the
The

388
REPLACE ALGOL REFERENCE MANUAL

stack-integer-counter specifies the number of characters
copied. and the stack-destination-pointer specifies the
character size. If the destination is specified by a
non-character array row or array element, the character size is
eight bits.

If the source part is a long string literal, it is processed as follows:

1. At compile time, the number of characters in the string is
calculated.

2. At run time, the stack-source-pointer is assigned the value of
the pool array pointer to the long string literal, which
includes the character size and address.

3. The character sizes of the stack-source-pointer and the
stack-destination-pointer are compared. If they are not equal,
the program is discontinued with a fault.

4. The stack-integer-counter is assigned the value for the string
length calculated at compile time (see step 1).

5. The number of characters specified by the stack-integer-counter
are copied from the pool array to the destination specified by
the stack-destination-pointer.

Examples

REPLACE P BY "ABC"

The three EBCDIC characters ABC are copied to the destination
pointed to by P.

REPLACE P:P BY "A MUCH LONGER STRING"

The 20-character EBCDIC string is cOFied to the destination pointed
to by P. At the end of the statement, P is left pointing to the
first character position after the last character copied.

REPLACE P BY 4"1234"

Because the string literal is four characters long and P is an 8-bit
pointer. four 8-bit characters are copied to the destination. That
is, the leftmost 32 bits of the stack-source-operand
4"123400000000", or 4"12340000". are copied to the destination.

Statements

<string literal> FOR (arithmetic expression>

389
REPLACE

If the source part is a short string literal, it is processed as
follows:

1. At compile time, the string literal is stored in a one- or
two-word operand. If the string literal is less than or equal
to 48 bits long, it is stored. left-justified, and repeated for
fill in a one-word operand. If the string literal is more than
48 bits long, it is stored. left-justified with zero fill, in a
two-word operand.

2. At run time, this operand is assigned to the
stack-source-operand.

3. If the arithmetic expression yields a positive value, this
value is rounded to an inte:ger. if necessary. and assigned to
the stack-integer-counter; otherwise, zero is assigned to the
stack-integer-counter.

4. The number of characters specified by the stack-integer-counter
are copied to the destination specified by the
stack-destination-pointer. If the stack-source-operand contains
fewer than the specified number of characters, it is reused as
many times as necessary. The character size is specified by
the stack-destination-pointer. If the destination is specified
by a non-character array row or array element. the character
size is eight bits.

In the following examples, the first column shows a source part. and the
second column shows the resulting string. A question mark (?)
represents a null character.

Source Part

nA" FOR ;20
flAB" FOR 20
"ABC" FO}(20
"ABCD" FOR 20
tlABCDEF" FOR 20
"ABCDEFGH" FOR 20

Result

AAAAAAAAAAAAAAAAAAAA
ABABABABABABABABABAB
ABCABCABCABCABCABCAB
ABCDABABCDABABCDABAB
ABCDEFABCDEFABCDEFAB
ABCDEFGH????ABCDEFGH

If the source part is a long string litera~. it is processed as follows:

1. The stack-source-pointer is assigned the value of the pool
array pointer to the long string literal, which includes the
character size and address.

390
REPLACE ALGOL REFERENCE MANUAL

2. The character sizes of the stack-source-pointer and the
stack-destination-pointer are compared. If they are not equal,
the program is discontinued with a fault.

3. If the arithmetic expression yields a positive value, this
value is rounded to an integer, if necessary, and assigned to
the stack-integer-counter: otherwise, zero is assigned to the
stack-integer-counter.

4. The number of characters specified by the stack-integer-counter
are copied to the destination specified by the
stack-destination-pointer.

The "<string literal> FOR <arithmetic expression>" syntax is undefined
for a long string literal if the integerized value of the arithmetic
expression is greater than the length of the string literal in
characters. For example, the result of

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 30

is undefined.

<string literal> FOR <arithmetic expression> WORDS

If the source part is a short string literal, it is processed as
follows:

1. At compile time, the string literal is stored in a one- or
two-word operand. If the string literal is less than or equal
to 48 bits long, is stored, left-justified and repeated for
fill, in a one-word operand. If the string literal is more
than 48 bits long, it is stored, left-justified with zero fill,
in a two-word operand.

"')
L. • At run time, this

stack-source-operand.
operand is assigned to the

3. If the arithmetic expressio~ yields a positive value. this
value is rounded to an integer. if necessary. and assigned to
the stack-integer-counter: otherwise. zero is assigned to the
stack-integer-counter.

4. The stack-destination-pointer is moved forward. if necessary,
to the nearest word boundary.

The number of words specified by the stack-integer-counter are
copied from the stack-sauree-operand to the destination
specified by the stack-destination-pointer. If the
stack-saurce-operand contains fewer than the specified number
of words, it is reused as often as necessary.

Statements
391

REPLACE

In the following examples, the first column shows a source part, and the
second column shows the resulting string. A question mark (?)
represents a null character.

Source Part

"ABCD" FOR 2 WORDS
"ABCDEFGH" FOR 2 WORDS
"ABCDEFGH" FOR 3 WORDS

Result

ABCDABABCDAB
ABCDEFGH????
ABCDEFGH????ABCDEF

If the source part is a long string literal. it is processed as follows:

1. The stack-source-pointer is assigned the value of the pool
array pointer to the long string literal, which includes the
character size and address.

2. The character sizes of the stack-source-pointer and the
stack-destination-pointer are compared. If they are not equal.
the program is discontinued wdth a fault.

3. If the arithmetic expression yields zero or a positive value,
this value is rounded to an integer, if necessary. and assigned
to the stack-integer-counter; otherwise. zero is assigned to
the stack-integer-counter.

4. The stack-destination-pointer is moved forward. if necessary,
to the nearest word boundary.

5. The number of words specified by the stack-integer-counter are
copied from the stack-source-operand to the destination
indicated by the stack-destination-pointer.

The "<string literal> FOR <arithmetic expression> WORDS" syntax is
undefined for a long string literal if the integerized value of the
arithmetic expression is greater than the length of the string literal
in 48-bit words. For example, the result of

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 6 WORDS

is undefined.

392
REPLACE ALGOL REFERENCE MANUAL

Arithmetic Expression Source Parts

String Literals as Arithmetic Expressions

When a string literal is to be interpreted as an arithmetic expression,
it must be enclosed in parentheses. Without the parentheses, the
compiler interprets it as a string literal and generates code or issues
syntax errors accordingly. For example.

REPLACE POINTER(A) BY "A" FOR 3 DIGITS

is an invalid statement and results in a syntax error. However.

REPLACE POINTER(A) BY ("A") FOR 3 DIGITS

is valid.

<arithmetic expression>

A source part of this form is processed as follows:

1. The arithmetic
precision,

expression is
if necessary,

stack-source-operand.

evaluated,
and

rounded
stored

to
in

single
the

2. The stack-source-operand is copied once to the destination
specified by the stack-destination-pointer.

The character size of the stack-destination-pointer is irrelevant.

Examples

In the following examples. the first column shows a REPLACE statement,
and the second column shows, in hexadecimal format, the resulting
string.

Statement

REPLACE P BY 7.5
REPLACE P BY 3
REPLACE P BY 1.68@@2
REPLACE P BY (fiAtt)

Result

267800000000
000000000003
248540000000
OOOOOOOOOOCI

Statements
393

REPLACE

·cari thmetic expression. > FOR <arithmetic expression>

A source part of this form is processed as fOllows:

1. The first arithmetic expression is evaluated, rounded to single
precision, if necessary, and stored in the
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a
positive value, this value is rounded t.o an integer, if
necessary, and assigned to the stack-integer-counter;
otherwise, ZE~ro is assigned to the stack-integer-counter.

3. The number of characters specified by the stack-integer-counter
are copied from the stack-source-operand to the destination
specified by the stack-destination-pointer. If the
stack-source--operand contains fewer than the specified number
of characters. it is reused as often as necessary. The
character size is specified by the stack-destination-pointer.
If the destination is specified by a non-character array row or
array element. the character size is eight bits.

Examples

REPLACE P BY 3 FOR 1

Copies the character
4"000000000003". and
copied to P.

48"00" to P.
the leftmost

REPLACE P BY (3).[7:48] FOR 1

Copies the character 48"03" to P.

REPLACE P BY ("A").[7:48] FOR 1

Copies the EBCDIC character A to P.

The stack-source-operand is
character of this operand is

394
REPLACE ALGOL REFERENCE MANUAL

<arithmetic expression> FOR <arithmetic expression> WORDS

A source part of this form is processed as follows:

1. If the stack-destination-pointer points to an array of type
DOUBLE and evaluation of the first arithmetic expression yields
a double-precision value. this double-precision value is
assigned to a two-word stack-source-operand. Otherwise, the
value of the first arithmetic expression is rounded to a
single-precision value. if necessary. and assigned to a
one-word stack-source-operand.

2. If evaluation of the second arithmetic expression yields a
positive value, this value is rounded to an integer, if
necessary. and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. The stack-destination-pointer is moved forward. if necessary,
to the nearest word boundary.

4. The number of words specified by the stack-integer-counter are
copied from the stack-source-operand to the destination
specified by the stack-destination-pointer. If the
stack-integer-counter specifies more than one word (when the
stack-source-operand is single precision) or more than two
words (when the stack-source-operand is double precision). then
the stack-source-operand is reused as often as necessary.

Example

REPLACE POINTER(A) BY 0 FOR SIZE(A) WORDS

Copies a single-precision zero into every element of array A.

<arithmetic expression> FOR <arithmetic expression> DIGITS

A source part of this form is processed as follows:

1. The absolute value of the first arithmetic expression is
rounded to an integer value, if necessary. and aSSigned to the
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a
positive value, this value is rounded to an integer, if
necessary. and assigned to the stack-integer-counter;
otherwise. zero is assigned to the stack-integer-counter.

Statements
395

REPLACE

3. A string of 12 hexadecimal characters that represents the
decimal value of the stack-source-operand is generated. If the
value of stack-source-operand can be expressed in fewer than 12
digits, the string is filled on the left with zeros.

4. . The N rightmost hexadecimal characters. where N is the number
specified by the stack~integer-counter, are copied from this
hexadecimal string to the des~ination. If the character size
of the stack-destination-potnter is four bits. the characters
are copied without change; if it is six or eight bits. the
appropriate zone field is supplied.

The sign of the first arithmetic expression is placed in the external
sign flip-flop (EXTF). For an explanation of the external sign
flip-flop, refer to "PICTURE Declaration."

If the value of the stack-integer-counter is greater than 12, the
program is discontinued with a fault. If the value is not large enough
to include all nonzero decimal characters, the overflow flip-flop (OFFF)
is assigned the value TRUE.

Examples

In the following examples, the first column shows the source part. the
second column shows the resulting string when the destination is an
8-bit pointer. and thp third column shows the resulting string when the
destination is a 4-bit pointer.

Source part

1234 FOR 6 DIGITS
7.5 FOR 3 DIGITS
-10 FOR 3 DIGITS
1234 FOR 3 DIGITS

8-bit destination

8"001234"
8"008"
8"010"
8"234"

4-bit destination

4"001234"
4"008"
4"010"
4"234"

396
REPLACE ALGOL REFERENCE MANUAL

<arithmetic expression> FOR * DIGITS

This source part functions similarly to a source part of the form

<arithmetic expression> FOR <arithmetic expression> DIGITS

except that the stack-integer-counter is assigned a value equal to the
minimum number of characters required to express accurately the value of
the stack-source-operand.

Examples

In the following examples. the first column shows the source part. the
second column shows the resulting string when the destination is an
8-bit pointer. and the third column shows the resulting string when the
destination is a 4-bit pointer.

Source part

1234 FOR * DIGITS
7.5 FOR * DIGITS
-10 FOR * DIGITS

8-bit destination

8"1234"
8"8"
8"10"

4-bit destination

4"1234"
4"8"
4"10"

<arithmetic expression> FOR <arithmetic expression> SDIGITS

This source part functions similarly to a source part of the form

(arithmetic expression> FOR <arithmetic expression> DIGITS

except that the sign of the first arithmetic expression is also
recorded. If the character size of the stack-destination-pointer is
four bits. then a 4"D" (1"1101") character, indicating a negative value,
or a 4"C" (1"1100") character, indicating a positive value, is copied
before the first digit. If the character size is eight bits, the zone
field of the rightmost digit is changed to 1"1101" for negative values
or 1"1100" for positive values.

When the character size of the stack-destination-pointer is four bits,
the 4"C" or 4"D" character, indicating the sign of the value, is not
counted as a digit.

Statements

For example. the statement

REPLACE POINTER(A,4) BY -123 FOR 3 SDIGITS

yields

D123

Four, not three. characters are copied to the destination.

397
REPLACE

Strings produced by this form of source part can later be converted to
an integer value with the correct sign using the INTEGER function. For
example. the statement in the above example could be followed by the
statement

I := INTEGER(POINTER(A.4),3)

after which I would contain the value -123.

Examples

In the following examples. the first column shows the source part, the
second column shows the resulting string when the destination is an
8-bit pointer, and the third column shows the resulting string when the
destination is a 4-bit pointer.

Source part

1234 FOR 6 SDIGITS
-1234 FOR 6 SDIGITS

8-bit destination

4"FOFOFlF2F3C4"
4"FOFOFIF2F3D4"

<arithmetic expression> FOR * SDIGITS

4-bit destination

4"C001234"
4"D001234"

This source part functions similarly to a source part of the form

<arithmetic expression> FOR <arithmetic expression> SDIGITS

except that the stack-integer-counter is assigned a value equal to the
minimum number of characters required to express accurately the value of
the stack-sourcE-operand.

398
REPLACE

Examples

ALGOL REFERENCE MANUAL

In the following examples. the first column shows the source part. the
second column shows the resulting string when the destination is an
8-bit pointer. and the third column shows the resulting string when the
destination is a 4-bit pointer.

Source part

1234 FOR * SDIGITS
-1234 FOR * SDIGITS

8-bit destination

4"F1F2F3C4"
4"FlF2F3D4"

<arithmetic expression> FOR <count part> NUMERIC

4-bit destination

4"C1234"
4"D1234"

A source part of this form is processed as follows:

1. If the arithmetic expression in the count part yields a
positive value. this value is rounded to an integer. if
necessary, and assigned to the stack-integer-counter:
otherwise, zero is assigned to the stack-integer-counter.

2. The first arithmetic expression is evaluated, and an internal
procedure is called. This procedure generates an EBCDIC
character string representing the decimal value of the
arithmetiC expression as precisely and concisely as possible
given the field width specified by the stack-integer-counter.

3. If the character size of the stack-destination-pointer is eight
bits, the string is copied to the destination without
translation. If the character size is six bits. the string is
copied with EBCDIC-to-BCL translation. If the character size
is four bits, the program is discontinued with a fault.

If a residual count does not appear in the count part, the string is
copied to the destination. right-justified with blank fill, in a field
with a width equal to the value of the stack-integer-counter. If a
residual count does appear in the count part, the string is copied to
the destination, left-justified. and the simple variable is assigned the
difference between the initial value of the stack-integer-counter and
the number of characters copied.

The form of the decimal representation is determined by the operand type
(single or double precision). whether or not the operand value is an
integer, the magnitude of the operand. the number of significant digits
in its deCimal representation, and the field width. The basic rule is
that the number is represented as compactly as possible using integer,
Simple deCimal, or exponential notation. as appropriate.

Statements

For example, the following source
representations shown:

parts

12345678 FOR 8 NUMERIC
12345678 FOR 6 NUMERIC
123/100 FOR N:6 NUMERIC

12345678
1.23+7
1.23

<arithmetic expressj.on> FOR • NUMERIC

generate the

(N 2)

This source part functions similarly to a source part of the form

<arithmetic expression> FOR <count part> NUMERIC

39g

REPLACE

decimal

except that no maximum field width is specified. Thus, the internal
procedure that generates the string is allowed to use as many as 36
characters to represent the decimal value of the arithmetic expression.

For example. the following source
representations shown:

parts generate

123 FOR * NUMERIC
1/3 FOR * NUMERIC

123
0.3333333333333333333333

Pointer Expression «source» Source Parts

<source> FOR <arithmetic expression>

A source part of this form is processed as follows:

the decimal

1. The pointer expression in the source is evaluated and assigned
to the stack-source-pointer.

2. If the arithmetic expression yields a positive value. this
value is rounded to an integer. if necessary, and assigned to
the stack-integer-counter; otherwise. zero is assigned to the
stack-integer-counter.

3. The character sizes of the stack-source-pointer and the
stack-destination-pointer are compared. If they are not equal.
the program is discontinued with a fault. If both the source
and the destination are specified by non-character array rows
or array elements. the character size of both the
stack-source-pointer and the stack-destination-pointer is eight
bits.

4. The number of characters specified by the stack-integer-counter
are copied from the location specified by the

400
REPLACE

Example

ALGOL REFERENCE MANUAL

stack-source-pointer to the destination specified by the
stack-destination-pointer.

REPLACE P BY Q FOR 20

The 20 EBCDIC characters pointed to by Q are copied to the location
pointed to by P.

<source> FOR <arithmetic expression> WORDS

A source part of this form is processed as follows:

1. The pointer expression in the source is evaluated and assigned
to the stack-source-pointer.

2. If the arithmetic expression yields a positive value. this
value is rounded to an integer. if necessary. and assigned to
the stack-integer-counter; otherwise. zero is assigned to the
stack-integer-counter.

~. The stack-source-pointer and the stack-destination-pointer are
moved forward. if necessary. to the nearest word boundary.

4. The number of 48-bit words specified by the
stack-integer-counter are copied from the location specified by
the stack-source-pointer to the destination specified by the
stack-destination-pointer.

The character sizes of the source and destination pOinter expressions
are irrelevant.

Example

REPLACE P BY Q FOR 20 WORDS

Both P and Q are advanced to the nearest word boundary, if
necessary. and 20 words are copied from the location pointed to by Q
to the location pointed to by F.

Statements

<source> FOR <aritbmetic express1on~ WITH <translate table>

401
REPLACE

This construct retrieves characters from a source location, translates
e~ch character (through the use of the specified translate table) into a
possibly different character with a possibly different character size,
and stores each resulting character in the location indicated by the
stack-destination-pointer.

The value of the pointer expression in the source points to the first
character to be translated. The stack-source-pointer is initialized to
this value. The stack-destination-pointer and the stack-source-pointer
need not havp the same character size. Instead, the
stack-source-pointE~r must have a character size equal to that of the
characters being translated, and the stack-destination-pointer must have
a character size equal to that of the resulting translated characters.

The value
characters

of the arithmetic expression indicates the
to be translated and written to the destination.

number of
This value

is integerized. if necessary, and assigned to the stack-integer-counter.
The stack-auxiliary-pointer is initialized to point to the first
character of the first word of the translate table, and its character
size is absent. Normally, when a pointer is used and its character size
is absent. a default value of six or eight is used, depending on the
default character type. However, the character size of the pointer used
to initialize the stack-auxiliary-painter is irrelevant. The translate
table is not examined sequentially (one character at a time)~ instead,
the data in the table is accessed by special indexing techniques
implemented in the hardware, as follows:

<intrinsic translate table>

If the translate table is of this form, the
stack-auxiliary-pointer is initialized to point to the
appropriate intrinsic translate table. The function of each
translate table can be deduced from its name. For example, the
HEXTOEBCDIC table is used to translate characters from
hexadecimal to EBCDIC.

<translate table identifier>

If the translate table is of this form. a translate table must
have been declared in a TRANSLATETABLE declaration. For a
detailed discussion regarding the construction of a translate
table, ref.~r to "TRANSLATETABLE Declaration. ,.

402
REPLACE ALGOL REFERENCE MANUAL

<subscripted variable>

Examples

If the translate table is of this form, the programmer is
responsible for creating a properly structured translate table
that is contained entirely in the array row and begins with the
word in the array row indicated by the subscripted variable.
Refer to "Translate Table Indexing" under "TRANSLATETABLE
Declaration."

REPLACE POINTER(B,4) BY POINTER(A,8) FOR 20 WITH EBCDICTOHEX

A = 8"0123456789ABCDEFGHIJ"
B = 4"012345b789ABCDEFFFFF"

REPLACE POINTER(B,7) BY POINTER(A,8) FOR 14 WITH EBCDICTOASCII

A = 4"FOF1F2F3F4F5F6F7F8F9C1C2C3C4"
B = 4"3031323334353637383941424344"

REPLACE POINTER(B,8) BY POINTER(A,4) FOR 12 WITH HEXTOEBCDIC

A = 8"012345" = 4"FOF1F2F3F4F5"
B = 8"FOF1F2F3F4F5"

<source> WITH <picture identifier>

The character data specified by the source (which must be a pointer) is
processed under control of the picture specified by the picture
identifier. The source and destination pointers must be 4-bit, 8-bit,
or word-oriented. If the source is a word-oriented pointer, it is
changed to a 4-bit pointer if the destination is a 4-bit pointer;
otherwise. it is changed to an 8-bit pointer~ If the destination is a
word-oriented pointer, it is changed to a 4-bit pointer if the source is
a 4-bit pointer; otherwise. it is changed to an 8-bit pointer. If
neither the source nor the destination pointer is a word-oriented
pointer, the source and destination pointers must either both be 4-bit
pointers or both be 8-bit pointers. Details regarding the formation and
action of pictures are described under "PICTURE Declaration."

Statements

Source Parts with B()olean Conditions

403
REPLACE

The next eight forms
to the destinat~on

specified test. The
an optional count
Boolean conditions.

of the souicepart copy characters from the source
until a source character fails or passes the

number of characters copied can also be limited by
part. For more information on the use of these

refer to "SCAN Statement."

In the source parts containing a condition of either of the forms

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

the. source characters are tested against bits [7:8J, [5:b]. or [3:4J of
the arithmetic expression, depending on the character size of the
source. In all cases, the stack-source-pointer is left pointing to the
character that failed or passed the test.

The.count part consists of an arithmetic expression and, optionally, a
residual count. The value of the arithmetic expression specifies the
maximum number of characters to be copi~d. The residual count. when it
appears, is a simple variabl~ in which is stored the difference between
the value of the arithmetic expression and the number of source-part
characters copied.

<source> WHILE <relational operator> <arithmetic expression>

The stack-source-pointer is initialized to the source pointer.
Characters are then copied from the source to the destination as long as
source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of
the following conditions occur:

1. The stack-destination-pointer references the first character
beyond the end of the destination array.

2. The stack-source-pointer referenCes the first character to fail
the test.

3. The stack-integer-counter is nonzero.

404
REPLACE

Example

REPLACE P BY Q WHILE NEQ

Q = "LONG STRING"
P = "LONG"

ALGOL REFERENCE MANUAL

" "

<source> UNTIL <relational operator> <arithmetic expression>

The stack-source-pointer is initialized to the source pointer.
Characters are then copied from the source to the destination until a
source character passes the test.

A paged (segmented) array error fault could occur at run time if all of
the following conditions occur:

1. The stack-destination-pointer references the first character
beyond the end of the destination array.

2. The stack-source-pointer references the first character to pass
the test.

3. The stack-integer-counter is nonzero.

Example

REPLACE P BY Q UNTIL = " "

Q = "FILE/TITLE ON PACK.XXX"
P "FILE/TITLE ON PACK"

<source> WHILE IN <truth set table>

The stack-source-pointer is initialized to
Characters are then copied from the source to
the source characters are members of the

the source
the destination as
truth set. For

information on truth sets, see "TRUTHSET Declaration."

pointer.
long as
further

Example

REPLACE P BY Q WHILE IN ALPHA8

Q "ABCD1234.56"
P "ABCD1234"

Statements

<source> UNTIL IN <truth set table>

405
REPLACE

The stack-source-pointer is initialized to the source pointer.
Characters are then copied from the source to the destination until a
source character is encountered that is a member of the truth set. For
further information on truth sets. see "TRUTHSET Declaration."

Example

REPLACE P BY Q UNTIL IN ALPHA8

Q
p

"
"

*,$1234"
* • $"

<source> FOR <count part> WHILE <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The
stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then copied from the
source to the destination and the stack-integer-counter is decremented
for each character copied as long as the stack-integer-counter is not~

zero and the source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of
the following conditions occur:

1. The stack-destination-pointer references the first character
beyond the end of the destination array.

2. The stack-source-pointer references the first character to fail
the test.

3. The stack-integer-counter is nonzero.

40b

REPLACE

Example

ALGOL REFERENCE MANUAL

REPLACE P BY Q FOR N:ll WHILE NEQ " "

Q = "LONG STRING"
P "LONG" (and N = 7)

<source> FOR <count part> UNTIL <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The
stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then copied from the
source to the destination and the stack-integer-counter is decremented
for each character copied until either the stack-integer-counter is zero
or a source character passes the teSt.

A paged (segmented) array error fault could occur at run time if all of
the following conditions occur:

1. The stack-destination-pointer references the first character
beyond the end of the destination array.

2. The stack-source-pointer references the first character to pass
the test.

3. The stack-integer-counter is nonzero.

Example

REPLACE P BY Q FOR N:22 UNTIL = "."

Q = "FILE/TITLE ON PACK.XXX"
P "FILE/TITLE ON PACK n (and N 4)

<source> FOR <count part> WHILE IN <truth set table>

The stack-source-pointer is initialized to the source pointer. The
stack-integer-counter is initialized to tne value of the arithmetic
expression in the count part. Characters are then copied from the
source to the destination and the stack-integer-counter is decremented
for each character copied as long as the stack-integer-counter is not
zero and the source characters are members of the truth set. For
further information on truth sets. see "TRUTHSET Declaration."

Statements

Example

REPLACE P BY Q FOR N:ll WHILE IN ALPHA8

Q = "ABCD1234.S6"
P = "ABCD1234" (and N = 3)

<source> FOR <count part> UNTIL IN <truth set table>

407
REPLACE

The stack-source-poJLnter is initialized to the source pointer. The
stack-integer-countE~r is initialized to the value of the arithmetic
expression in the count part. Characters are then copied from the
source to the destination and the stack-integer-counter is decremented
for each character copied until either the stack-integer-counter is zero
or a source character is a member of the truth set. For further
information on truth sets, see "TRUTHSET Declaration."

REPLACE P BY Q FOR N:10 UNTIL IN ALPHA8

Q = "
P = "

*,$1234'"
*,$"

Other Source Parts

(and N = 4)

<pointer-valued attribute>

The string of characters that forms the value of the pointer-valued
attribute is copied to the location indicated by the
stack-destination-pointer. The string of characters is formatted in the
destination array row in a form suitable to serve in a replace
pointer-valued attribute statement that assigns a value to the same
attribute. The character string ends with an EBCDIC period (8"."). For
example, if P is a pointer identifier and Fl and F2 are file
identifiers. then the following sequence of statements is valid:

REPLACE P BY Fl.TITLE:
REPLACE F2.TITLE BY P;

All pointer-valued attributes have a character size of eight bits. At
run time. if the destination pointer does not also have a character size
of eight bits, the program is discontinued with a fault.

408
REPLACE ALGOL REFERENCE MANUAL

If a pointer-valued attribute appears as the source part in a REPLACE
statement, a call is made on a Master Control Program (MCP) procedure to
perform this part of the REPLACE statement.

<string expression>

When a string expression appears as the source part in a REPLACE
statement, it is evaluated and stored in a pool array. The
stack-source-pointer is initialized to point to the first character of
the string in the pool array. The entire string is copied to the
destination.

Example

STR := "ABCDEFG";
REPLACE P BY STR;

Copies the EBCDIC string ABCDEFG to the location pointed to by P.

Statements

REPLACE FAMILY-CHANGE STATEMENT

40Q
REPLACE FAMILY-CHANGE

The replace family-change statement adds stations to, or deletes
stations from. the family of an open. remote file.

Syntax

<replace family-change statement>

-- REPLACE --<family designator>-- BY --<up or down>--------------->

>-<simple soUrCt2)--I

<family designator>

--<file designator;-- . -- FAMILY --I

<up or down>

* + ----I
1 1

1- - -I

<simple ~ource>

----<string literal>--------j
1 I

I-<pointer expression>-I

See also
<file designator> 189

Semantics

The file designator specifies the file whose FAMILY file attribute is to
be changed. If a station is to be added to the family, <up or down> is
"*+". If a station is to be deleted from the family, <up or down> is
"*_fI The simple source specifie!s the title of the station involved.
Because the simple source is a valu~ for a pointer-valued attribute, its
value must end with a period (.). For more specific information. refer
to "Replace Pointer-Valued Attribut~ Statement" in this chapter.

410
REPLACE FAMILY-CHANGE ALGOL REFERENCE MANUAL

Pragmatics -

If the simple source does not reference a valid station title (as
specified for the current network in the Network Definition Language II
(NDLII) description), then the replace family-change statement has the
following effects:

.,
~ .

2.

<file designator>.FAMILY is unchanged .

<file designator>.ATTERR is given the value TRUE,
<file designator>.ATTYPE is set to the appropriate value.

and

3. An appropriate error message is displayed on the Operator
Display Terminal (ODT).

4. The program continues.

If <up or down> is "*_" and the simple source specifies a valid station
as defined by the current NDLII description, but the specified station
is not currently a member of the family, then the replace family-change
statement makes no change to the specified family. No error condition
is indicated (such a situation is not considered to be an error), and
control passes to the next statement of the program.

If. after execution of a replace family-change statement, the remote
file is closed with release and later re-opened. the family reverts to
its NDLII-specified value. However. if the remote file is closed with
retention and later re-opened, the family retains its changed value.

When the replace family-change statement is executed, a call is made on
a Master Control Program (MCP) procedure to perform the desired
function.

Examples

REPLACE NETWORK.FAMILY BY *+ "ACCT7."

Adds the station with the title "ACCT7" to the family of the remote
file NETWORK.

REPLACE DATACOLLECTORS.FAMILY BY *- STATIONNAMEPTR

Deletes the station with the title given by the pointer
STATIONNAMEPTR from the family of the remote file DATACOLLECTORS.

Statements

REPLACE PQINTER-VALU~ ATTRIBUTE STATEIENT

411
REPLACE POINTER ATTRIBUTE

The replace pointer-valued attribute statement changes the value of a
pointer-valued attribute.

Syntax

<replace pointer-valued attribute statement>

-- REPLACE --<pclinter-valued attribute>-- BY ----------------------)

>---<simple source>-------~~---------------------------------------I
I I
I-<pointer-valued attribute>~1

<pointer-valued attribute>

----<pointer-valued file attr1bute>----1
I !
I-<pointer-valued task attribute>-!

<pointer-valued file attribute>

--<file designator>--- . ----)
I I
I-<attribute parameter specification>-!

>-<pointer-valued file attribute name>-----------------------------I

<pointer-valued task attribute>

--<task designator>-- . --<pointer-valued task attribute name>--I

412
REPLACE POINTER ATTRIBUTE ALGOL REFERENCE MANUAL

<pointer-valued task attribute name>

ACCESSCODE ------1
1 1

1- BACKUPPREFIX -I
1

1- CHARGECODE ---I
1

1- FILECARDS ----I
1 I

1- NAME ---------1
I 1

1- USERCODE -----1

See also
<attribute parameter specification> ..
<file designator>
<pointer-valued file attribute name> ..
<simple source> .
<task designator>

Semantics

. . . 226
· 189

86
· 409
· 200

The simple source specifies the string of characters that is to become
the new value of the pointer-valued attribute.

If the simple source is a string literal. the last character of the
string literal must be a period (.). The "effective" part of the string
literal is terminated by the first period in the string. A maximum
string length is associated with each pointer-valued attribute. If the
effective part of the string literal has a string length that is greater
than the maximum length allowed for the pointer-valued attribute, then
the new value of the pointer-valued attribute is the value of the string
literal truncated on the right to the required length.

If the simple source is a pointer expression, the pointer expression
must point to the string of characters that is to become the new value
of the pointer-valued attribute. Starting with the first character
pointed to by the pointer expression, characters are copied as the new
value of the pointer-valued attribute until a period is encountered, the
maximum number of characters for the attribute are copied. or the end of
the array row is encountered. The last case results in a run-time
error.

If a pOinter-valued task attribute is used as the destination and the
source is a pointer-valued attribute, the source attribute and the
destination attribute must be the same attribute. If a pointer-valued

Statements
413

REPLACE POINTER ATTRIBUTE

file attribute is used as the destination, the source must be a simple
source.

Pragmatics

When the replace painter-valued attribute statement is executed, a call
is made on a Master Control Program (MCP) procedure to perform the
desired function.

Examples

REPLACE FYLE.TITLE BY "MASTER/PAYROLL."

The TITLE attribute of file FYLE is assigned "MASTER/PAYROLL.".

REPLACE TSK.NAME BY "SECOND/STACK."

The NAME attribute of the task TSK is assigned "SECOND/STACK.".

REPLACE T.NAME BY TS.NAME

The NAME attribute of task T is assigned the value of the NAME
attribute of task TS.

414
RESET

RESET STATEMENT

ALGOL REFERENCE MANUAL

The RESET statement sets the happened state of the designated event to
FALSE (not happened).

Syntax

<reset statement>

RESET -- (--<event designator>--) --I

See also
<event designator>. .. 78

Semantics

The RESET statement does not change the status of any tasks waiting on
the event.

Pragmatics

If a RESET statement is used after a WAIT statement to restore the
happened state of an event to FALSE (not happened), a period of time
exists during which another task could cause the event. For this
reason. a WAITANDRESET statement mjght prove to be more useful than a
WAIT statement followed by a RESET statement.

Examples

RESET(EVNT)

Sets the happened state of the event EVNT to FALSE (not happened).

RESET(EVNTARAY[INDX])

Sets the happened state of the event designated by EVNTARAY[INDX] to
FALSE (not happened).

Statements

RESIZE STATEMENT

415
RESIZE

The RESIZE statement modifies the size of the designated array row,
subarray, or array.

Syntax

<resize statement>

-- RESIZE -- (--.- <array row res ize parameters)-------) --I
1 1

I-<special array resize parameters>-I

<array row resize parameters>

--<array row>-- , --<new size>-----~----------------I
1 1

1- • RETAIN --I
1 1
1- DISCARD -I
1 1

1- PAGED ---I

<new size>

--<arithmetic expression>--I

<special array resize parameters>

---~<multidimensional array designator?--- , --<new size>-- , -----)
1 1

I-<event array designator>------------i
!
I-<string array designator>-----------!

>- RETAIN ---I

<multidimensional array designator>

An <array designator> with dimensionality greater than one; that is,
a multidimensional <array name>, optionally suffixed by a <subarray
selector> with at least two asteriSks (*).

416
RESIZE

See also

ALGOL REFERENCE MANUAL

<array designator>. 43
43
43

<array name>
<array row>
<event array designator> ..
<string array designator> .
<subarray selector> ...

• • •. 79
. 187

44

Semantics

The RESIZE statement changes the upper bounds of the appropriate
dimensions of an array. The resize parameters designate the array row
or rows to be changed and the new sizes of those rows.

There are two forms of the RESIZE statement: the <array row resize
parameters> form and the <special array resize parameters> form.

<array row resize parameters>

In this form of RESIZE statement, the first parameter is an array row, a
one-dimensional array whose elements are of some array class: BOOLEAN.
COMPLEX, DOUBLE, INTEGER, REAL, or a character type.

The RESIZE statement causes
modified as specified by
following effects:

the size of the designated row to be
the new size. The resize options have the

DISCARD

The current contents of the array row are discarded--the new
contents of the array row are undefined.

RETAIN

PAGED

As much of the current information in the array row is retained
as fits in the new size. If the new size is smaller than the
old, data in the lost elements is discarded. If the new size
is larger, the data in the new elements is undefined.

The resized array is to be a paged (segmented) array. The new
paged array is considered to be "touched" (referenced) after
the resize is complete. "PAGED" also implies "RETAIN". (Note:
If a program is compiled to use this feature and is run on a
pre-Mark 3.5 Master Control Program (MCP), an attempt is made
to resize the array. leaving it unpaged (unsegmented). This

Statements
417

RESIZE

attempt might succeed, or might result in "WORDS REQUIRED"
action, or might fail with an "ARRAY TOO LONG" error.)

If no third parameter appears, DISCARD is assumed.

If the new array row size is less than the old. any
that now points beyond the end of the array
uninitialized state.

painter variable
row is set to the

If the array row designates a value
(segmented) array, the program
:RESIZE/DEALLOCATE" error.

array or a referenced
is discontinued with a

paged
"BAD

The value of the new size is integerized with rounding, if necessary, to
specify a new size, Sn, which is interpreted as a number of elements for
the resized array row. If the array row is an original array, then its
size is changed to Sn. If the array row is a referred array and the
original array has a different element size, the original array is
resized to have just .~nough elements to hold Sn elements of the referred
array row.

When an original array is resized, any referred arrays with element
widths different from those of the original array are assigned the size
they would have had if the original array had been declared at its new
size and the referred array had been created from the original by array
equivalence or array reference assignment.

When a resize of a referred array causes a resize of an original array,
the size calculations are performed with the element widths Wn for the
resized referred array and Wo for the original array. The new size of
the original array, So, is

So := (Sn * Wn + Wo - 1) DIV Wo

So * Wo can exceed Sc * Wn. The new size, Sr, of any referred array
with element width Wr that is based on the resized original array is

Sr := (So * Wo) DIV Wr

Wr = Wn for the explicitly resized referred array, and the net
calculation is

Sr := «(Sn * Wn + Wo - 1) DIV Wo) * Wo) DIV Wn

418
RESIZE ALGOL REFERENCE MANUAL

which can exceed Sn. That is, the explicitly resized array row can be
slightly larger than requested. if the original array has a wider
element width. For example, if arrays RA and EA are declared as
follows:

REAL ARRAY RA[0:5];
EBCDIC ARRAY EA[O] = RA;

then EA contains 36 elements. If the statement

RESIZE(EA,50,RETAIN)

is executed. the original array. RA. is resized
words. calculated from

So = (50 'I: 8 + 48 - 1) DIV 4B = 9

The actual new size of the referred array. EA.
from

Sr = (9 * 48) DIV 8 = 54

to

is

Because the second calculation truncates, Sr * Wr
So * Woo just as with array row equivalence
assignment.

For example, consider the statement

RESIZE(H.29,DISCARD)

a new

then 54.

can be
or array

size of 9

calculated

less than
reference

where H is a hexadecimal array row. The following table shows the size
assigned to referred arrays for several combinations of referred and
original classes. (The diagonal of the table shows the size assigned to
each original.)

Referred
original Hexadecimal EBCDIC Real Double
-------- ----------- ------ ------

Hexadecimal 29 14 2 1
EBCDIC 30 15 2 1

Real 36 18 3 1
Double 48 24 4 2

Statements

<special array resize parameters>

419
RESIZE

In this form of RESIZE statement, tbefirst parameter is an array whose
elements do not have an array class. Events and strings are special
classes of objects. A multidimensional array can be considered an array
of arrays.

The RESIZE statement sets the size of the parameter array to the new
size, unless the new size is less than the existing size, in which case
the RESIZE statement is ignored and the warning message "ATTEMPTED
DOWNWARD RESIZE IGNORED" is generated.

If the first parameter includes a subarray selector. the dimension
corresponding to the first asterisk (*) is changed: otherwise, the first
dimension of tbe designated array is changed. Whenever a higher-order
dimension of an array is enlarged, new subarrays are created with the
same dimensions as in the original ARRAY declaration. Any existing
subarrays are unaffected by the resize operation. For example, given
the declaration

DOUBLE ARRAY A[1:2,0:5,-4:4]

the statement

RESIZE(A[1.*,*].8,RETAIN)

increases the size of A[l.*.*J from 6 to 8 (new bound pair 0:7); it
causes array rows A[1,6,*] and A[1,7,*] to be established as
one-dimensional double arrays of size 9 (even if all existing rows of A
had already been resized to some other size).

If the array to be resized is specified by a <multidimensional array
designator>. then the new subarraYs have the same type as the original
array; their contents are undefined.

If the array to be resized is specified by a <event array designator>.
then enlarging the low-order dimension creates new events with the
happened state equal to FALSE (not happened) and the available state
equal to TRUE (available); existing elements are unaffected.

If the array to be resized is specified by a <string array designator>.
then enlarging the low-order dimension creates new empty strings:
existing elements are unaffected.

/

420
RESIZE

Pragmatics

ALGOL REFERENCE MANUAL

RETAIN is typically used for an array being employed as a stack. When
the array is not large enough to accept a "push" of the next entry, the
array can be enlarged without losing the data already present. If no
data has been assigned to the array. or if the old data is no longer
relevant, DISCARD is more efficient for the resize of an array row.

Note that if the RESIZE statement is used on other than the
highest-order dimension of an array. the array can contain subarrays of
different sizes.

When the initial size of an array IS to be chosen dynamically by a
program. the most efficient technique is to declare the array with a
variable upper bound. the bound being a global variable or a parameter
computed before the procedure or block is entered.

It is not possible to resize a referenced paged array. An array is
referenced (touched) if a statement referring to the array has been
executed in the block. An array row is paged if its declared length
exceeds the array segmentation start size. unless it is declared LONG or
DIRECT. The array segmentation start size is typically 1024 words. The
start size can be displayed or set with the Operator Display Terminal
(ODT) command SEGARRAYSTART. Note that if an array is initially
declared shorter than the array segmentation start size. then it is
unpaged. and resizing it larger without using the PAGED option does not
cause it to become paged.

An array that is initially declared to be shorter than the array
segmentation start size and is, therefore, an unpaged array can be
resized to become a paged array by using the PAGED option. The new
paged array is considered to be "touched" (referenced) after the resize
is complete. This implies that the array can never be resized again.
(Note: If a program is compiled to use this feature and is run on a
pre-Mark 2.5 Master Control Program (MCP). an attempt is made to resize
the array. leaving it unpaged (unsegmented). This attempt might
succeed. or might result in "WORDS REQUIRED" action, or might fail with
an "ARRAY TOO LONG" error.

Statements
421

RESIZE

The PAGED option is useful in cases where the desired size of a paged
array is not known at the time the array is declared. The PAGED option
offers an alternative to declaring an array larger than the array
segmentation start size and avoiding references to the array until the
desired size is known. The PAGED option achieves the same results and
makes errors less likely. The only restrictions on the use of the PAGED
option are that the array row must not already be paged and the new size
of the resized array must be larger than the array segmentation start
size.

Examples

RESIZE(A,NEWSZ,DISCARD)

The size of one-dimensional array A is changed to NEWSZ, and the
previous contents of A are discarded.

RESIZE(ARAY,NEWSZ.PAGED)

The size of one-dimensional array ARAY is changed to NEWSZ. and ARAY
is changed to a paged array. The contents of ARAY are retained.

RESIZE(INPUTDATA,F.MAXRECSIZE,DISCARD)

The size of one-dimensional array INPUTDATA is changed to equal the
value of the MAXRECSIZE attribute of file F. The previous contents
of INPUTDATA are discarded.

RESIZE(A[2,*J.5,DISCARD)

The size of the specified row of array A is changed to 5, and the
previous contents of that row are discarded. The other rows of A
are not affected.

RESIZE(A,SIZE(A)+lOO,RETAIN)

The size of one-dimensional array A is increased by 100 elements.
and the previous contents of A are retained.

RESIZE(EVENTARRAY, 20" RETAIN)

The size of the one-dimensional event array EVENTARRAY is changed to
20. and the previous contents of the array are retained. Note that
RETAIN must be specified for event arrays.

422
RESIZE ALGOL REFERENCE MANUAL

RESIZE(STUFF[I,*,*],M,RETAIN)

The size of the second dimension of array STUFF is changed to M.
New array rows are created for the new size of the second dimension.
The previous contents of the array are retained.

RESIZE(STUFF[r,J,*],N,RETAIN) % RESIZE an array row

The size of the specified row of array STUFF is changed to N, and
the previous contents of that row are retained.

Statements

~IND STATEMENT

423
REWIND

The REWIND statement causes the designated file to be closed and the
file buffer areas to be returned to the system.

:syntax

<rewind statement>

-- REWIND -- (--<file designator>--) --I

See also
<file designator> 189

Semantics

If the file is a paper tape or magnetic tape file, it is rewound. For
disk files, the record pOinter is set to the first record of the file.

Card reader, card punch, and line printer units are released from
program control. When the REWIND statement is usad for a magnetic tape
file that is positioned past the first reel of a multireel file, the
second and subsequent· reels are released from program control. Other
kinds of units remain under program control.

For paper tape files, the REWIND statement can be used only on input.

Pragmatics

For random access files, if the file is to be reused immediately, the
statement "SEEK«file designator>[O])'" positions the file at its first
record while avoiding the overhead of closing the file and then
re-opening it. For more information,refer to "SEEK Statement."

42<:>
RUN ALGOL REFERENCE MANUAL

Pragmatics

Because array and file parameters cannot be call-by-value, procedures
with array or file parameters cannot be invoked with a RUN statement.
Also. a procedure that has a pointer as a parameter, whether or not it
is specified as call-by-value. cannot be invoked with a RUN statement.

See also
<arithmetic task attribute> .
<Boolean task attribute>.
Task Assignment

Examples

RUN SIMPL [TSK]

• 227
• 235

• • 246

Invokes procedure SIMPL. which has no parameters. as an independent
program. The task TSK is copied by the MCP for SIMPL to use as its
task variable.

RUN DOOER(X,Y.Z."ABCD") [TSKARRAY[INDEX]]

Invokes procedure DOOER as an independent program. passing the four
parameters X. Y. Z. and the string literal "ABCD". The task
designated by TSKARRAY[INDEX] is used by DOOER as its task variable.

Statements

,SCAN STATEMENT

427
SCAN

The SCAN statement examines a contiguous portion of character data in an
array row, one character at a time, in a left-to-right direction.

Syntax

<scan statement>

-- SCAN --(source>--<scan part>--I

See also
<scan part>
< source> ..

Semantics

NOTE

The full syntax for the SCAN statement is
presented in the description of the
REPLACE statement.

381
381

The source is always a pointer express:ion. and at the completion of the
SCAN statement, the final value of the stack-source-pointer can be
stored in a pointer variable.

The scan part is basically a testing operation that determines when the
SCAN statement is to stop. The scan part can specify that scanning is
to stop after a given number of source characters, or when a source
character fails or passes a specified test.

The count part is used in a scan part when a limited number of source
characters are to be scanned. <residual count> can be used, in which
case the value of the remaining count is stored in the specified simple
arithmetic variable at the completion of the SCAN statement.

The relational operator in <condition> specifies the comparison to be
made between the ar'ithmetic expression and the source characters. The
arithmetic expression can be of any valid form, but most often takes the
form of a one-character string literal.

428
SCAN ALGOL REFERENCE MANUAL

Before the scan operation begins, the arithmetic expression in
<condition> is evaluated and the value of bits [7:8], [5:6], or [3:4J
(depending on the character size of the source pointer) of the
arithmetic expression is assigned to the stack-source-operand.

Examples of SCAN Statement Syntax

SCAN PTR WHILE = " "

SCAN PTR UNTIL NEQ 48"00"

SCAN PTR:PTR WHILE IN ALPHA

SCAN PTR UNTIL IN ALPHA8

SCAN PTR:PTR WHILE IN ACCEPTABLE[O]

SCAN PTR FOR 50 WHILE > HZ"

SCAN PTR:PTR FOR X:80 UNTIL - " " - .
SCAN PTR FOR RMNDR:960 WHILE NEQ 4S"lD"

SCAN PTR:PTR FOR ZED:ZED WHILE IN ALPHAS

SCAN PTR FOR 80 UNTIL IN GOODSTUFF[5]

<scan ~ Combinations

The formal syntax of the <scan part> can be reduced to the following
combinations:

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

WHILE IN <truth set table>
UNTIL IN <truth set table>

FOR <count part> WHILE <relational operator> <arithmetic expression>
FOR <count part) UNTIL <relational operator> <arithmetic expression>

FOR <count part> WHILE IN <truth set table>
FOR <count part) UNTIL IN <truth set table>

Statements
429

SCAN

The remainder of the information about the SCAN statement is organized
according to the above combinations. Because all combinations of the
SCAN statement begin \~ith <source>, each description of a combination
begins with the assumption that t~e stack-source-pointer has been
initialized to the source pointer.

The scan parts that contain a count part scan (examine) source
characters until either the number of characters specified by the
arithmetic expression in the count part have been examined or a source
character fails or passes the test specified by the <condition> syntax.
The scan parts that do not contain a count part examine source
characters until either a source character fails or passes the test
specified by the <condition> syntax or the end of the array is reached.
If the end of the array is reached. the program is discontinued with a
paged (segmented) array error.

Scan Parts Without count Parts

WHILE <relational operator> <arithmeti:c expression>

Characters are scarined as long as they pass the test. For example,

SCAN P WHILE NEQ " "

scans the characters pointed to by Pais long as a period (.) is not
encountered.

UNTIL <relational ope~rator) <ari thmet:Lc expression>

Characters are scanned until a source character passes the test. For
example,

SCAN P:P UNTIL =

scans the characters
encountered. P is
the test.

" "

pointed to by P until a blank character is
updated to point to the blank character that passed

430
SCAN ALGOL REFERENCE MANUAL

WHILE IN <truth set table>

Characters are scanned as long as they are members of the truth set.
For example,

SCAN P:P WHILE IN ALPHA8

scans the characters pointed to by P as long as they are members of the
truth set ALPHA8. P is updated to paint to the first character that is
not a member of ALPHA8.

UNTIL IN <truth set table>

Characters are scanned until a source character is found that is a
member of the truth set. For example,

SCAN P:P UNTIL IN ALPHA8

scans the characters pointed to by P until a member of the truth set
ALPHA8 is encountered. P is updated to point to the first character
that is a member of ALPHA8.

FOR <count part> WHILE <relational operator> <arithmetic expression>

The stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then scanned and the
stack-integer-counter is decremented for each character as long as the
stack-integer-counter is not zero and a source character passes the
test. For example,

SCAN P FOR N:20 WHILE NEQ " "

scans the first 20 characters pointed to by P as long as a period (.) is
not encountered. Because N reflects how many of the 20 characters have
yet to be scanned, it can be used to determine whether a period was
encountered and, if so, where the period is.

Statements

FOR <count part> UN~~IL <relational operator> <arithmetic expression>

431
SCAN

The stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then scanned and the
stack-integer-countE~r is decremented for each character until either the
stack-integer-countE~r is zero or a source character passes the test.
For example.

SCAN P:P FOR N:N UNTIL NEQ tI "

scans the first N characters pointed to by P until the first nonblank
character is encountered. If, when the statement is invoked, the value
of N is the number of characters between P and the end of the array row.
then because both P and N are updated in this statement, at the
completion of the statement, N gives the number of characters between
the updated P and the end of the array row.

FOR <count part> WHILE IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then scanned and the
stack-integer-countE?r is decremented for each character as long as the
stack-integer-countE?r is not zero and source characters are members of
the truth set. For further information on truth sets. see "TRUTHSET
Declaration."

For example,

SCAN P:P FOR N::20 WHILE IN ALPHA8

scans the first 20 characters pointed to by P as long as they are
members of the truth set ALPHA8. P is updated to point to the first
character that is not a member of ALPHA8, or, if all of the 20
characters scanned are members of ALPHA8. to the character that is 20
characters beyond the initial position of P. N is assigned the number
of characters yet to be scanned.

FOR <count part> UNTIL IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic
expression in the count part. Characters are then scanned and the
stack-integer-counter is decremented for each character until either the
stack-integer-counter is zero or a source character is a member of the
truth set. For further information on truth sets, see "TRUTHSET
Declaration."

432
SCAN

For example,

ALGOL REFERENCE MANUAL

SCAN P:P FOR 20 UNTIL IN ALPHA8

scans the first 20 characters pointed to by P until a member of the
truth set ALPHA8 is encountered. P is updated to point to the first
character that is a member of ALPHA8. or. if none of the 20 characters
scanned are members of ALPHA8, to the character that is 20 characters
beyond the initial position of P.

Statements

SEEK STATEMENT

433
SEEK

The SEEK statement positions the record pointer for the designated file
at the specified record. This record is read or written by the next
serial I/O operation.

syntax

<seek statement>

-- SEEK -- (--<file designator>-- [--<record number>--] --) --I

<record number>

--<arithmetic expression>--I

See also
<file designator> • . • 189

Semantics

A serial I/~ operation is a READ statement or WRITE statement that does
not include a record number in the <record number or carriage control>
part. The SEEK statement does not affect any nonserial I/O statements.
The value of the record pointer is not saved when the file is closed.

The SEEK statement can be used as a Boolean function. When the
statement fails, the value TRUE is returned. When the statement is
successful, the value FALSE is returned. Specifically, the SEEK
statement returns a value iqentical to that returned by the file
attribute STATE. For more information, refer to the discussion of the
STATE attribute in the "I/O Subsystem Reference Manual."

The file designator must not reference a direct file or a direct switch
file.

434
SEEK

Example

SEEK(FILEA[X+2*Y])

ALGOL REFERENCE MANUAL

Positions the record pointer of file FILEA to record number
X + 2 * Y.

Statements

~ STATEIENT

435
SET

The SET statement SE~tS the happened state of the designated event to
TRUE (happened).

Syntax

<set statement>

-- SET -- (--<event designator>--) --I

See also
<event designator>. • • 78

Semantics

The SET statement does not activate any tasks waiting on the event.

Pragmatics

To set the happened state of an event to TRUE (happened) and activate
the tasks waiting on the event, use the CAUSE statement.

Examples

SET(EVNT)

Sets the happened state of EVNT to TRUE (happened).

SET(EVNTARAY[INDX))

Sets the happencS'd state of the event designated by EVNTARAY[INDX] to
TRUE (happened).

436
SORT ALGOL REFERENCE MANUAL

SORT STATEMENT

The SORT statement invokes the sort intrinsic. which provides a means
for designated data to be sorted and placed in a file or returned to a
procedure.

Syntax

<sort statement>

-- SORT -- (--<output option>-- . --<input option>-- . ----------->

)-<number of tapes>-- . --<compare procedure>-- . ----------------->

)-<record length>---------------------------) -------------------->
I 1
I-<size specifications>-i

)--1
1 I

I-<restart specifications>-I

<output option>

----<file designator>-----I
I 1

I-<output procedure>-I

<output procedure>

--<procedure identifier>--!

<input option>

----<file designator>----!
I
j-<input procedure>-I

<input procedure>

--<procedure identifier>--i

Statements

<number of tapes>

--<arithmetic expression>--I

<compare procedure>

--<procedure identifier>--I

<record length>

--<arithmetic expression>--I

<size specifications>

-- . --<memory size>------------------------\
1 I
1- , ---<disk size>-I

I 1

\-<pack size>-\

<memory size>

--<arithmetic expression>--I

<disk size>

--<arithmetic expression>--I

<pack size>

-- PACK ------------------------------1
I
\-<arithmetic expression>-i

<restart specifications)

-- [-- RESTART -- = --<arithmetic express1on>--] --I

See also
<file designator>
<procedure identifier> ..

437
SORT

. 189

. 165

438
SORT ALGOL REFERENCE MANUAL

Semantics

The data to be sorted is indicated by the input option. The output
option indicates where the sorted data is to be placed. The order in
which the data is sorted is determined by the compare procedure.

<output option>

If a file designator is specified as the output option, the sort
intrinsic writes the sorted output to this file. When sorting is
completed, the sort intrinsic closes the file. If the file is a disk
file for which the file attribute SAVE FACTOR has a nonzero value, it is
closed and locked. The output file must not be open when it is passed
to the sort intrinsic by the program.

If an output procedure is specified as the output option, the sort
intrinsic calls the output procedure once for each sorted record and
once to allow end-of-output action. This procedure must be untyped,
must not be declared EXTERNAL, and must have two parameters. The first
parameter must be a call-by-value Boolean variable, and the second
parameter must be a one-dimensional array with a lower bound of zero.
The Boolean parameter is FALSE as long as the second parameter contains
a sorted record. When all records are returned. the first parameter is
TRUE and the second parameter must not be accessed.

The following is an example of an output procedure:

PROCEDURE OUTPROC(B.A);
VALUE B;
BOOLEAN B;
ARRAY A[O];

BEGIN
IF B THEN

CLOSE(FILEID,RELEASE)
ELSE

WRITE(FILEID.RECSIZE.A[*]);
END OUTPROC:

<input option>

If a file designator is used as the input option, the file supplies
input records to the sort intrinsic. This file is closed after the last
record is read. Disk files are closed with regular close action. and
non-disk files are closed with release action. The input file must not
be open when it is passed to the sort intrinsic by the program.

Statements
439

SORT

If an input procedure is used as the input option. the procedure is
called to furnish input records to the sort intrinsic. The input
procedure must be a Boolean procedure, must not be declared EXTERNAL.
and must have a one-dimensional array with a lower bound of zero as its
only parameter. This procedure, on each call. either inserts the next
record to be sorted into its array parameter or returns the value TRUE,
which indicates the end of the input data.

When TRUE is returnE?d by the input procedure, the sort intrinsic does
not use the contents of the array parameter and does not call the input
procedure again.

The following is an example of an input procedure that can be used when
sorting N elements of array Q:

BOOLEAN PROCEDURE INPROC(A);
ARRAY A[O];

BEGIN
N := *-1;
IF N GEQ 0 THEN

A[O] := Q[Nj
ELSE

INPROC := TRUE;
END INPROC;

<number of tapes)

The value of <number of tapes> spec~fies the number of tape files that
can be used, if necessary~ in the sorting process. If the value of the
arithmetic expression is zero. no tapes are used. If the value of the
arithmetic expression is between 1 and 3. inclusive. three tapes are
used. If the value of the arithmetic expression is between 3 and 8. the
specified number of tapes are used. If the value of the arithmetic
expression is 8 or more. a maximum of eight tapes are used.

<compare procedure>

The compare procedure is called by the sort intrinsic to apply the
appropriate sort criteria to a pair of input records. The procedure
must be a Boolean procedure. must not be declared EXTERNAL. and must
have exactly two parameters. Each of the parameters must be a
one-dimensional array with a lower bound of zero. Every time two input
records are to be compared. the sort intrinsic calls the compare
procedure and paSSE?S the two records to the compare procedure through
the array parameters. If the compare procedure returns TRUE. the record
passed to the first array precedes. in the sorted output. the record
passed to the second array. If the compare procedure returns FALSE. the

44a
SORT ALGOL REFERENCE MANUAL

record passed to the second array precedes the record passed to the
first array.

The following is an example of a compare procedure that can be used to
sort arithmetic data in ascending sequence:

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A.B[a];

BEGIN
CMP := A[a] < B[a]:
END CMP;

For alphanumeric comparisons. the following compare procedure can be
used to sort data in ascending sequence:

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A,B[a]:

BEGIN
CMP := POINTER(A) LSS POINTER(B) FOR t;
END CMP;

The eMP procedures above return TRUE if the value in A[a] compares as
less than the value in B[a] and return FALSE if the value in A[a]
compares as greater than or equal to the value in B[a]. Therefore, if
A[a] is less than B[a], the content of array A is passed to the output
file or procedure before the content of array B, and if A[a] is greater
than or equal to B[a]. the content of array B is passed to the output
file or procedure before the content of array A. If either of these
compare procedures is used, word zero of the input records is considered
to be the "key" on which sorting is done.

Fer the actual comparison, a string relation can be used to compare a
string from each record (according to the EBCDIC collating sequence), or
an arithmetic relation can be used to compare an arithmetiC value from
each record. The comparison can be done on one or more fields (called
"keys") from each record or on the entire record. The manner in which
the comparison is done is specified entirely by the programmer.

<record length>

The record length specifies the length. in words or characters
(depending on whether the array parameters of the procedure are word or
character arrays. respectively) of the largest item that is to be
sorted. If the value of the aritnmetic expression is not a positive
integer, the largest integer that is not greater than the absolute value
of the expression is used; for example. a record length of 12 is used if
the expression has a value of -12.995. If the value of the arithmetic
expression is zero, the program terminates.

Statements
441

SORT

<size specifications>

The size specifications allow the programmer to specify the maximum
amount of main memory and disk storage to be used by the sort intrinsic.

The memory size specifies the maximum amount (in words) of main memory
that is to be used. If the memory size is unspecified, a value of
12,000 is assumed.

The disk size specifies the maximum amount (in words) of disk storage
that can be used. If the disk size is unspecified, a value of 600.000
is assumed.

If the pack size is specified, temporary files created by the sort
intrinsic have PACK, instead of DISK, as the value of their FAMILYNAME
attribute. For an E'xplanation of the FAMILYNAME attribute, refer to the
"I/O Subsystem Reference Manual." If the <arithmetic expression> option
does not appear in the <paCk size> element, a value of 600.000 words is
assumed.

<restart specifications>

The restart specifications allow the sort intrinsic to resume processing
at the most recent checkpoint after discontinuation of a program. The
program must providE? logic to restore and maintain variables, arrays,
files, pointers, and so forth, which are defined for, and by. the
program. In other v~ords, the program must provide the means to restore
everything that is necessary for the program to continue from the point
of interruption. The restart capability is implemented only for disk
sorts.

The sort intrinsic inspects the least significant (rightmost) five bits
of the value of the arithmetic expression in the restart specifications
to determine the course of action it 1S to take. To control the sort.
these bits can bE? set by the program. The meanings of these bits are
explained in the following table.

Bit Value

a 1

Description

The program is restarting a previous sort. The sort
intrinsic tries to open its two disk files and obtain
restart information. If it is successful in Obtaining this
information. the sort intrinsic tries to continue from the
most recent restart point.

442
SORT

Bit Value.

o o

1 1

1 o

2 1

2 o

3

3 1

3 c

ALGOL REFERENCE MANUAL

Description

The sor: is starting from the beginning. If the sort is
restartable, and previous sort files with identical titles
exist, they are removed and replaced by new sort files.

The program is requesting a restartable sort. The sort
intrinsic saves its two internal files and can be restarted
on program request. If bit 2 is 1, bit 1 is set to 1 by
default.

A normal sort is requested, and no sort files are saved
(unless bit 2 is 1. which sets bit 1 to 1 by default).

The program is requesting a restartable sort and desires
extensive error recovery from I/O errors. If bit 2 is 1.
the sort intrinsic attempts to backtrack and remerge
strings, as necessary, when I/O errors occur during the
accessing of either of the two sort files. To use this
option, the program must provide at least three times as
much disk space as required to contain the input data. If
less disk space is provided. the sort intrinsic emits an
error message, changes. to restartable-only mode, and
continues the sort without further use of backtracking
capability.

Recovery from internal errors is not requested.

Bit 3 has meaning only if a restartable sort is requested.
The use of this option controls the sort during the
stringing phase as the user input is being read by the sort
intrinsic. Use of this bit determines how the sort restarts
(when a restart is requested) only if the restart occurs
while the sort is in the stringing phase.

The program requires that the sort restart at the beginning
of the user input. This restart is the equivalent of
starting an entirely new sort. In case the restarted sort
passes from the stringing phase into the merge phase, it
continues from the merge phase. This bit can be set to 1
during a restart, even if it is not 1 initially. Once set
to 1. it cannot be set to 0 by subsequent restarts.

The program requires the ability to restart at the last
restart point that occurred during the stringing phase. If
the sort is still in the stringing phase. it Skips over the
records already processed and continues from the last
restart point. If the sort is in the merge phase. it
continues from the last merge phase restart point. If bit 3
is O. the sort is normally less efficient because more
strings are created during the stringing phase.

Bit Value

4

Statements

Description

443
SORT

This bit is reserved for expansion and is not currently used
by the s:ort intrinsic.

Arrays1n ~ ProcE~dures

The array parameters used by the input procedure, output procedure, and
compare procedure must be similarly specified. For example, if one
procedure declares its array par~meter as an EBCDIC array, then all must
declare their array parameters as EBCDIC arrays.

When character arrays are tised in the procedures passed to the sort
intrinsic. the record length parameter is interpreted as a length in
characters.

For more detailed information about the sort intrinsic. refer to "SORT"
in the "System Software Utilities Reference Manual."

SOR.T Mode

The combination of the <disk size> and <number of tapes> determines the
sort mode as follows:

1 (number of tapes> I <disk size> I Sort Mode i
I===~====================i
I NEQ 0 1 0 1 Tape On 1 y i
1-------------------1-------------1------------------------------------1
1 NEQ 0 1 NEQ 0 I Integrated-Tape-Disk (ITO) I
1-------------------1-------------1-,-----------------------------------1
I 0 ! NEQ 0 1 01 sk Only 1

I---~------~--------I-----~-------I------------------------------------1
I 0 I 0 I Core Only 1
1 1

444
SORT ALGOL REFERENCE MANUAL

Examples

SORT(FILEOUT,FILEIN,3.COMPARE,lO)

Sorts the records of file FILEIN according to compare procedure
COMPARE and writes the sorted data to file FILEOUT. Three tapes are
used in the sort and the record length is 10.

SORT(OUTPROC, INPROC,NUMOFTAPES ,COMPARER,DSKSZ) [RESTART = PARAM]

Sorts the records provided by procedure INPROC according to compare
procedure COMPARER. and writes sorted data out according to
procedure OUTPROC. The number of tapes is given by NUMOFTAPES, and
the record size is given by DSKSZ. A restart specification is given
by PARAM.

Statements

SPACE STATEMENT

445
SPACE

The SPACE statement is used to bypass records in a file without reading
those records.

Syntax

<space statement>

SPACE -- (--<file de~ignator)-- ", --<arithmetic expression>---->

)- ---i

See also

I I
I-<action labels or finished event>-I

<action labels or finished event>
<file designator>

Semantics

. 362

. 189

The value of the ar:lthmetic expression determines the number of records
to be spaced and the direction of the spacing. If the value of the
arithmetic expression is positive, the records are spaced in a forward
direction; if it is negative. the records are spaced in the reverse
direction.

The SPACE statement can be used as a Boolean function. When the
statement fails, the value TRUE is returned. When the statement is
successful, the value FALSE i$ returned. Specifically, the SPACE
statement returns a value identical to that returned by the file
attribute STATE. For more information. refer to the discussion of the
STATE attribute in the "I/O Subsystem Reference Manual."

The file designator must not reference a dlrect file or a direct switch
file.

44b
SPACE

Examples

SPACE(FYLE,50)

ALGOL REFERENCE MANUAL

Spaces file FYLE forward 50 records.

SPACE(FILEID,N) [LEOF]

Spaces file FILEID a number of records and a direction given by the
value of N. If an end-of-file condition occurs. the program
continues execution with the statement associated with the label
LEOF.

B := SPACE(FILEID.-3) [LEOF]

Spaces file FILEID backward 3 records. A value is assigned to B
indicating the success or failure of the spacing. If an end-of-file
condition occurs. the program continues execution with the statement
associated with the label LEOF.

Statements

~WAP STATEMENT

447
SWAP

The swap statement as~igns the value of the variable on the right side
of the swap operator (:=:) to the variable on the left side of the swap
operator, and assigns the value of the v~riable on the left side of the
swap operator to the variable on the right side of the swap operator.

Syntax

<swap statement>

----<integer variable>-- :=: --<integer variable>--------------------I
I I
I-<real varjable>-- :=: --<real variable>-----------------------I
I I
I-<doubl~ variable>-- :=: --<double variable>-------------------I
I I
I-<Boolean variable>-­
I
I-<complex variable>--

:=:

.-.

--<Boolean variable>-----------------I
I

--<complex variable>-----------------I
I I
I-<array reference variable>-- :=: --<array reference variable>-I
I I
I-<pointer variable>-- :=: --<pointer var1able>-----------------1

<integer variable>

A <variable> of type INTEGER.

<real variable>

A <variable> of type REAL.

<double variable>

A (variable> of type DOUBLE.

See also
<array reference variable>.
<Boolean variable> ..
<complex variable> ...
<pointer variable> ..
<variable>

· 231
234

· 237
· 241

. . 225

448
SWAP

Semantics

ALGOL REFERENCE MANUAL

The declared types of the variables on either side of the swap operator
(:=:) must be the same. Partial word swaps are not permitted.

Descriptions of the processes of an assignment are found
"Assignment Statement."

Example

This example program uses the swap statement to sort a real array.

BEGIN
FILE REM(KIND=DISK,TITLE="SORT/OUT.".PROTECTION=SAVE);
BOOLEAN SWAP_DONE;
INTEGER I.J;
DEFINE LASTONE = 5#:
INTEGER ARRAY ARY[O:LASTONE];

PROCEDURE SORTER;
BEGIN

BOOLEAN PROCEDURE NEED_TO_SWAP(A,B):
VALUE A.B;
INTEGER A.B;

BEGIN
IF (A < B) THEN

NEED_TO_SWAP .- TRUE
ELSE

NEED_TO_SWAP .- FALSE;
END NEED_TO_SWAP;

SWAP_DONE := TRUE;
FOR I := 0 STEP 1 WHILE (I < LASTONE AND SWAP_DONE) DO

BEGIN
SWAP_DONE := FALSE;
FOR J := 1+1 STEP 1 UNTIL LASTONE DO

IF (NEED_TO_SWAP(ARY[I].ARY[J]» THEN
BEGIN
SWAP_DONE := TRUE;
ARY[I] :=: ARY[J]:
END;

END FORLOOP:
END SORTER:

under

ARY[O] .­
ARY[1] : =
ARY[2] .­
ARY[3"] : =
ARY[4] :=
ARY[5] : =
SORTER;

SAM";
AL" :

HAL";
BOB" ;
TOM";
SID";

Staternen!ts

FOR I := 0 STEP 1 UNTIL LASTONE DO
WRITE(REM.<A6>.ARY[I]):

END.

449
SWAP

450
THRU

THRU STATEHENT

ALGOL REFERENCE MANUAL

The THRU statement executes a statement a specified number of times.

Syntax

<thru statement>

-- THRU --<arithmetic expression>-- DO --<statement>--!

See also
<statement> 2lq

Semantics

The absolute value of the arithmetic expression is evaluated and rounded
~o an integer, if necessary. This value determines the number of times
the statement following "DO" is executed. The upper limit of this value
is 2**39 - 1. Figure 5-6 illustrates the THRU loop.

ENTER
LOOP

STORE INITIAL
VALUE OF

REPEAT INDEX

Examples

THRU 255 DO
LOADCHAR

TERMINATE
LOOP

EXECUTE I STATI!IIFNr

Figure 5-6. THRU Loop

The statement LOADCHAR is executed 255 times.

DECREMENT

IINDEX BY 1

THRU MAXI := REAL(PTR,,3) DO
SKIP1

Statements
451

THRU

The REAL function is evaluated. the value is assigned to MAXI. and
the statement SKIPI is executed MAXI times.

/

452
WAIT

WAIT STATEMENT

ALGOL REFERENCE MANUAL

The WAIT statement suspends the program until a designated condition
occurs.

Syntax

<wait statement>

-- WAIT --1
1

1- (---<wait parameter list>--- -!

I-<direct array row>----i

<wait parameter list>

<time>

(--<time>-- ------------------------1
1

1- • --<event list>-I
1

I-<event list>-------------------------I

--<arithmetic expression>--I

<event list>

1<-------- . --------1
1 I

----<event designator>----I

See alsc
<direct array row> ..
<event designator>.

68
78

Statements

Semantics

The program can be suspended until a given length of
event is caused, a previously initiated direct
finished, or a software interrupt occurs.

453
WAIT

time elapses, an
I/O statement is

If the WAIT statement consists solely of "WAIT", a Master Control
Program (MCP) procedure is called that suspends the program until an
attached and enabled interrupt is invoked as a result of the associated
event being caused. For more information. refer to "INTERRUPT
Declaration." This form of the WAIT statement cannot be used as a
function.

When a statement of the form "WAIT«event designator»" is executed, the
event is examined to determine whether its happened state is TRUE
(happened) or FALSE (not happened). If the happened state of the event
is TRUE. the program continues executing with the next statement. If
the happened state of the event is FALSE, the program is suspended until
the event is caused.

When a statement of the form "WAIT«<time»)" is executed. execution of
the program is suspended for <time> seconds. Refer to "WHEN Statement"
for a discussion of <time>.

When the statement includes event designators in the wait parameter
list. the program is suspended until anyone event in the event list is
caused or until <time> seconds, if specified. have elapsed.

The "WAIT«wait parameter list»" form can be used as an arithmetic
function that returns an integer value. starting at 1. that represents
the position in the wait parameter list of the item that caused the
program to be activated. For example, in the statement

T := WAIT«.OOl).El.E2)

the value of T is 1 if elapsed time caused the program to be activated.
In the statement

T := WAIT(El.E2.E3)

the value of T is 2 if a cause operation on event E2 activated the
program. Only one parameter activates the program.

The WAIT statement with a wait parameter list and the WAITANDRESET
statement are identical, except for the state to which the caused event
is set during the cause process. If a program is waiting on an event

454
WAIT ALGOL REFERENCE MANUAL

because of the WAIT statement, then the happened state of the event is
set to TRUE (happened). If a program is waiting on an event because of
a WAITANDRESET statement, then the happened state of the event is set to
FALSE (not happened).

The form "WAIT«direct array row»" is one of the ways in which a
program can determine if a previously initiated direct I/O statement has
finished. This form can be used as a Boolean function. When the I/O
statement fails, the value TRUE is returned. When the statement is
successful, the value FALSE is returned. Specifically, this form of the
WAIT statement returns a value identical to that returned by the file
attribute STATE. Refer to the discussion of the STATE attribute in the
"I/O Subsystem Reference Manual."

Examples

WAIT(EVNT)

If the happened state of event EVNT is TRUE (happened), the program
continues with the next statement. Otherwise. the program is
suspended until EVNT is caused. and the happened state of EVNT is
set to TRUE (happened).

WAIT(EVNTl.EVNT2,EVNT3)

or EVNT3 is TRUE
the next statement.

of the events EVNTl.
state of that event is

If the happened state of event EVNTl, EVNT2,
(happened), the program continues with
Otherwise, the program is suspended until one
EVNT2. or EVNT3 is caused, and the happened
set to TRUE (happened).

X := WAIT«NAPTIME),WAKEUP,GOAWAY) ,
If the happened state of WAKEUP or GOAWAY is TRUE (happened), the
program continues with the next statement. Otherwise, the program
is suspended until NAPTIME seconds have elapsed or until event
WAKEUP or GOAWAY is caused. If WAKEUP or GOAWAY is caused, its
happened state is set to TRUE (happened). The value stored in X is
1, L. or 3, indicating which of the three items reactivated the
program.

Statements
455

WAIT

RSLT := WAIT(DIRINPUT)

WAIT

If D~RINPUT is a direct array row , the program is suspended until
the direct I/O operation associated with DIRINPUT is completed. If
the I/O operation fails, the value ~RUE is assigned to RSLT. If the
operation is successful, the value FALSE is assigned to RSLT.

The program is suspended until an attached and enabled interrupt is
invoked as a result of the associated event being caused.

456
WAITANDRESET

WAITANDRESET STATEMENT

ALGOL REFERENCE MANUAL

The WAITANDRESET statement suspends the program until a designated
condition occurs.

Syntax

<waitandreset statement>

-- WAITANDRESET -- (--<wait parameter list>--) --I

See also
<wait parameter list> 452

Semantics

The WAITANDRESET statement and the WAIT statement with a wait parameter
list are identical. except for the state to which the caused event is
set during the cause process. If a program is waiting on an event
because of a WAITANDRESET statement. then the happened state of the
event is set to FALSE (not happened). If a program is waiting on an
event because of the WAIT statement. then the happened state of the
event is set to TRUE (happened).

The WAITANDRESET statement can be used as an arithmetic function that
returns an integer value, starting at 1. that represents the position in
the wait parameter list of the item that caused the prograrr to be
activated. For example, in the statement

T := WAITANDRESET(.001).E1.E2)

the value of T is 1 if elapsed time caused the program to be activated.
In the statement

T := WAITANDRESETCE1.E2.E3)

the value of T is 2 if a cause operation on event E2 activated the
program. Only one parameter activates the program.

Note that the <direct array row> syntax is not allowed as a parameter to
the WAITANDRESET statement.

lE:xamples

WAITANDRESET(EVNT)

Statements
457

WAITANDRESET

If the happened state of event EVNT is TRUE (happened), the program
continues with the next statement. Otherwise, the program is
suspended until EVNT is caused, and the happened state of EVNT is
set to FALSE (not happened).

WAITANDRESET(EVNTl,EVNT2,EVNTARAY[INDX])

If the happened state of event EVNTl, EVNT2, or the event designated
by EVNTARAY[INDX] is TRUE (happened), the program continues with the
next statement. Otherwise, the pr0gram is suspended until one of
the three events is caused. and the happened state of that event is
set to FALSE (not happened).

WAITANDRESET«.5),FINI,GOAWAY)

If the happened state of event FIN! or GOAWAY is TRUE (happened),
the program continues with the next statement. Otherwise, the
program is suspended until .5 second has elapsed or until event FIN I
or GOAWAY is caused. If FINI or GOAWAY is caused, its happened
state is set to FALSE (not happened).

REASON := WAITANDRESET«SLEEPMAX).WAKEUP,LOOKAROUND)

If the happened state of event WAKEUP. or LOOKAROUND is TRUE
(happened), the program continues with the next statement.
Otherwise. the program is suspended until SLEEPMAX seconds have
elapsed or until event WAKEUP or LOOKAROUND is caused. The value
stored in REASON is 1, 2, or 3~ indicating which of the three items
reactivated the program. If WAKEUP or LOOKAROUND is caused, its
happened state is set ~o FALSE (not happened).

458
WHEN

WHEN STATEMENT

ALGOL REFERENCE MANUAL

The WHEN statement suspends processing of the program for the specified
number of seconds.

Syntax

<when statement>

-- WHEN -- (--<time>--) --I

See also
<time> 452

Semantics

Program processing is suspended for <time> seconds. The value of <time>
need not be an integer. If <time> is a double-precision value, it is
rounded to single precision. If <time> is less than approximately
0.0000023. the program resumes execution immediately. If <time> is
larger than this value, then the number of seconds that the program is
suspended is the smaller of <time> and (2**32-1)*2.4 microseconds
(approximately 2.86 hours).

Pragmatics

Depending on the amount of multiprocessing being performed and the
priorities of other programs in execution, the actual time that a
program is suspended can vary widely with respect to <time) but is at
least <time> seconds.

Examples

WHEN(10)

The program is suspended for 10 seconds.

WHEN(2*Y+Z)

The program is suspended for 2 * Y + Z seconds.

Statements

WHILE STATEMENT

459
WHILE

The WHILE statement executes a statement as long as a specified
condition is met.

Syntax

<while statement>

WHILE --<Boolean expression>-- DO --<statement>--I

See also
<statement) ;. ... 219

Semantics

The iterative WHILE statement is executed as follows: the Boolean
expression is evaluated and. if t:he result is TRUE, the statement
following "DO" is executed. This sequence of events continues until the
value of the Boolean expression is FALSE or until the statement
following "DO" transfers control outside the WHILE statement. Figure
5-7 illustrates the WHILE-DO loop.

ENTER
LOOP

TERMIN:l LOO):.j

YES EXECUTE
STATEMENT

Figure 5-7. WffiILE-DO Loop

460
WHILE

Examples

WHILE INDX LEO MAXVAL DO
X := *+A[INDX];

ALGOL REFERENCE MANUAL

As long as INDX is less than or equal to MAXVAL, the value of X is
incremented by the value A[INDX].

WHILE J LSS LIMIT DO
BEGIN
SU[J] := SVALUES[J];
J := *+1:
END;

As long as J is less than LIMIT. the compound statement is executed.
Contiguous elements of array SU are assigned the values of the
elements of array SVALUES with the same indexes.

Statements

WRITE STATE1IENT

461
WRITE

The WRITE statement causes data to be transferred from various program
variables to a file.

Syntax

<write statement>

WRITE -- (--<write file part)----------------------------) ---)
I I
\-<format and list part>-I

)----------------.--1
\ 1

1-<a6tion labels or finished event)-I

<write file part>

----<file part>---I
i I
I-<task designator)-- . --<file-valued task attribute name>-I

<file-valued task attribute name>

-- TASKFILE --I

See also

NOTE

The syntax of the WRITE statement and the
syntax of the READ statement are nearly
identical. Differences in the semantics
are discussed separately in the semantics
for each statement. See the "READ
Statement" in this chapter for a more
detailed breakdown of those syntactic
elements of the WRITE statement that are
not discussed here.

<action labels or finished event> .
<file part>
<format and list part> ..
<task designator> ...

· 362
· 359
· 361
· 200

462
WRITE

Semantics

ALGOL REFERENCE MANUAL

The action of the WRITE statement depends on the form of the <write file
part> element and on the form of the <format and list part> element.

The WRITE statement can be used as a Boolean function. When the write
operation fails, the value TRUE is returned. When the write operation
succeeds, the value FALSE is returned. Specifically, the WRITE
statement returns a value identical to that returned by the file
attribute STATE. For more information, refer to the discussion of the
STATE attribute in the "I/O Subsystem Reference Manual."

For Burroughs Network Architecture (BNA) Host Services, error results
for WRITE statements are reported one WRITE statement after the WRITE
statement that reuses the buffer that originally had the error. That
is, the error is reported one buffer later than normal. Normally, error
results are reported exactly at the WRITE statement that reuses the
buffer having the error.

Pragmatics

WRITE statements that do not contain format designators or editing
specifications provide a faster output operation than those that specify
that data is to be edited.

Examples of WRITE Statement Syntax

WRITE(FILEID)

WRITE(SPOFILE,FMT,LISTID)

WRITE(FILEID[NO],FMT)

WRITE(SPOFILE,lO.ARRY[3,*])

WRITE(SWFILEID[O],X+Y-Z,ARRY[X,I,*])

WRITE(SPOFILE,/,LISTID)

WRITE(FILEID,FMT,LISTID)

WRITE(SWFILEID[3][PAGE])

WRITE(FILEID./.A,B,C)

WRITE(FILEID.SWFMT[A*I])

Statements

WRITE(FILEID,*.LISTID)

WRITE(FILEID[5+IJ./.SWLISTID[4J)

WRITE(FILEID./.LISTID)

WRITE(FILEID.*.A,B,C)

WRITE(FILEID,FMT,A,E,C.D+SIN(X» [:PARL]

WRITE(FILEID.FMT.LISTID) [:PARSWL[MJJ

WRITE(SWFILEID[lJ,SWFMT[2J,SWLISTID[3]) [:PARSWL[4JJ

WRITE(DIRFYLE,30,DIRARAY) [EVNTJ

WRITE(MYSELF.TASKFILE,<"ABOVE DUMP BEFORE TRANSACTION"»

WRITE(OUT,lO,Sl I I 82)

WRITE(OUT,<2A10>,TAKE(S1,2),Sl I I "ABC")

<write file ~.

463
WRITE

The write file part indicates where the data is to be written.

<record number or carriage control>

If the <record number or carriage control> element is
"[LINE <arithmetic .expression> J" and the file is a printer file, then
the printer spaces forward to the specified line before printing. The
PAGESIZE file attribute of the file must be nonzero. Because the
default action for ALGOL is to print before carriage action, a
subsequent WRITE statement can overprint the line. For more information
on the PAGESIZE attribute, refer to the "I/O Subsystem Reference
Manual."

The "[SKIP <arithmetic expression>]" construct causes the printer to
skip to the channel indicated by the value of the arithmetic expression
after printing the current record. The LINENUM file attribute of the
file is re-initialized to 1 when [SKIP 1J is used. For more information
on the LINENUM attribute, refer to the "I/O Subsystem Reference Manual."

4b4

WRITE ALGOL REFERENCE MANUAL

The "[SPACE <arithmetic expression>]" construct causes the printer to
space the number of lines specified by the arithmetic expression after
printing the current record. On other types of devices, this construct
causes the number of records specified by the value of the arithmetic
expression to be spaced.

If the specified file is a remote file. the "[STOP]" construct causes
the normal line feed and carriage return action to be omitted.

The "[STACKER <arithmetic expression>]" construct allows pocket
selection for card punch files. Valid values for the arithmetic
expression are 0 and 1: 0 selects the normal pocket, and I selects the
alternative pocket.

The n[TIMELIMIT <arithmetic expression>]" construct is meaningful only
for remote files. The write operation is terminated with a timelimit
error if the buffer is not available within the number of seconds
specified by the value of the arithmetic expression.

The "[STATION <arithmetic expression>]" construct is meaningful only for
remote files. It assigns the Value of the arithmetic expression to the
LASTSUBFILE file attribute of the file. For more information on the
LASTSUBFILE attribute, refer to the "I/O Subsystem Reference Manual."

<subfile specification>

If the file to be written is a port file (a file for which the KIND
attribute is equal to PORT), an array row write containing a subfile
specification must be used. Refer to "Array Row Write" in this section.

The subfile specification is meaningful only for port files. It is used
to specify the subfile to be used for the write operation and the type
of write operation to be performed.

If a subfile index is used, the value of the subfile index is assigned
to the LASTSUBFILE attribute of the file. It specifies the subfile to
be used for the write operation. For a WRITE statement~ if the subfile
index is zero, a broadcast write is performed. If the subfile index is
nonzero, then a write to the specified subfile is performed. The result
variable, if specified, is assigned the resultant value of the
LASTSUBFILE attribute. For more information on the LASTSUBFILE file
attribute. refer to the "I/O Subsystem Reference Manual."

465
Statements WRITE

If DONTWAIT is specified and no buffer is available, the program is not
suspended.

<core-to-core part>
<core-to-core file part>
<core-to-core blockj.ng part>

Refer to "READ Statement" for a discussion of these constructs.

<format and list J2grt>

The <format and list part> element indicates which variables contain the
data and how the data is to be interpreted.

If the <format and list part> element is omitted in a WRITE statement, a
logically empty record is written. The actual output is
device-dependent. Printers and card punches interpret this as a blank
record; disks and tapes interpret this as a record with undefined
contents.

Formatted Write

A WRITE statement that contains a format designator. editing
specifications, or a free-field part is called a "formatted write."

A format designator without a list indicates that the referenced format
contains one or more string literals that constitute the entire output
of the WRITE statement.

A format designator with a list indicates that the variables in the list
are to be written in the format described by the referenced format.

Editing specifications can appear in plac~ of a format designator and
have the same effect as if they had been declared in a FORMAT
declaration and had been referenced through a format designator. For
more information. rlefer to the "FORMAT Declaration."

466
WRITE

Binary Write

ALGOL REFERENCE MANUAL

A WRITE statement of the form

WRITE«write file part>,*.<list»

is called a "binary write."

An asterisk (*) followed by a list specifies that the elements in the
list are to be processed as full words and are to be written without
being edited. The number of words written is determined by the number
of elements in the list or tbe maximum record size, whichever is
smaller. When unblocked records are used, the block size is the maximum
record size.

When writing a character array, only full words are written. If there
is a partial word left at the end of the array, it is ignored. For
example. if A is an EBCDIC array that contains the characters
"12345678", the statement

WRITE(FILEID,*,A)

writes only the characters "123456".

When a string variable occurs in the list of a binary.WRITE statement, a
word containing the string length is written to the file before the
contents of the string are writien. This feature allows the program to
write string information that can later be read through a binary READ
statement. For more information. see "Binary Read" under "READ
Statement."

See also
Binary read ~ 369

Statements

Array Row Write

A WRITE statement of any of the forms

WRITE«write file part>,<arithmetic expression>, <array row»
WRITE«write file part>,<arithmetic expression>,

467
WRITE

<subscripted variable»
WRITE«write file part>, <arithmetic expreSsion>.

<pointer expression»
WRITE«write file part>, <arithmetic expression>.<string variable»

is called an "array row write."

The first three forms of the array row write specify that the elements
of the designated array row, subscripted variable. or item referenced by
the pOinter expression are to be processed as full words and are to be
written without being edited. The number of words written is determined
by the smallest of

the number of elements in the array row, subscripted variable. or
item referenced by the pointer expression

the maximum record length

the absolute value of the arithmetic expression

If the FILETYPE attribute if the file has a value of b. then the maximum
record length is ignored and records span block boundaries. When
unblocked records are used. the block size is the maximum record size.
If the UNITS attribute equals CHARACTERS and the INTMODE attribute does
not equal SINGLE. then all counts represent characters. not words.

A WRITE statement of the form

WRITE«write file part>, <arithmetic expression>,<string variable»

specifies that the characters in the string variable are to be written
without being edited. The number of chaiacters written is determined by
the maximum record size, the absolute value of the arithmetic
expression. or the length of the string. whichever is smallest. If the
UNITS attribute equals CHARACTERS and the INTMODE attribute does not
equal SINGLE. then all counts represent characters, not words.

468
WRITE

<free-field part>

ALGOL REFERENCE MANUAL

The free-field part allows output to be performed with editing but
without using editing specifications. The appropriate format is
selected automatically, but variations of the free-field part give the
programmer some control over the form of the output.

On output, each value is edited into an appropriate format. An edited
item is never split across a record boundary. If the record is too
short to hold the representation of the item. a string of pound
signs (#) is written in place of the item.

When a complex expression appears in the list of a free-field WRITE
statement. two values are written. The first value corresponds to the
real part. and the second value corresponds to the imaginary part.

Data items are normally separated by a comma and a space (,). If the
free-field part contains two slashes, data items are separated by two
spaces.

If the optional asterisk (*) is used, the name of the data item and an
equal sign (=) are written to the left of the value of the data item.
If the data item is not a variable. then the expression is written as
the name of the data item.

If the free-field part includes the <number of columns> and <column
width) elements, each list element is written in a separate column.
This process is controlled by two column factors: the number of columns
per record (r) and the width of each column (w). where w is measured in
characters. Both rand ware integerized, if necessary.

If r is zero. the number of columns per record is determined from the
value of wand the record length. If w is zero. the width of each
column is determined from the value of r and the record length. If both
rand ware zero. the output has no column structure. If rand ware
such that r columns of w characters cannot fit on one record,
adjustments are made to both rand w. The width of a column does not
include the two-character delimiter: therefore. r*(w+2) must be less
than or equal to the length of the record.

Statements

Example

BEGIN
FILE DCOM(KIND=REMOTE.MAXRECSIZE=12.MYUSE=IO):
INTEGER I;
REAL R:
DOUBLE D;
STRING S;
I . - 25:
R .- 1002459;
D .- 25@@5;
S := "string";
WRITE(DCOM.*/. I, R. D. S, I+R. R-D. SII" ABCDE". 7.2);

END.

The following output results when this program is executed:

469
WRITE

1=25, R=1002459.0, D=2.5D+b, S=string, I+R=1002484.0. R-D=-1497541.0,
sll" ABCDE"=string ABCDE, <CNST>=7.2.

Additional
operations

NOTE

information about I/O
can be found under "I/O

Sta tE~ment" and "READ Statement."

<action labels or f j.nished event)

This construct provides a means of transferring program control from a
READ statement. WRITE statement, or SPACE statement when exception
conditions occur (for normal I/O) or when the I/O is complete (for
direct I/O). Exception conditions can also be handled by using the
WRITE statement as Cl Boolean function. For more information, refer to
"READ Statement."

470
ZIP

ZIP STATEMENT

ALGOL REFERENCE MANUAL

The ZIP statement causes the Work Flow Language (WFL) compiler to begin
compiling the designated source code.

Syntax

<zip statement>

-- ZIP -- WITH ---<array row>----------I
1 1

I-<file designator>-I

See also
<array row>
<file designator> ..

Semantics

43
. . 189

The ZIP statement passes to the WFL compiler the source code in the
array row or in the file referenced by the file designator. The source
code in the array row or file must be valid WFL source input: otherwise.
it is not executed. WFL syntax requirements are described in the "Work
Flow Language (WFL) Reference Manual."

ZIP WITH <array row>

The array row can be a BCL or EBCDIC array row or a row of a word array.
If the array row is a word array, the character type of the contents of
the array row is the default character type. (For more informat~Dn,

refer to "Default Character Type" in the" "Data Representation"
appendix.) The first character of the array row must be a question mark
(EBCDIC 48"6F" or BCL 36"14"). The information in the array row must be
terminated by the word "END" or the words "END JOB". The array row is
processed as one record, but it can include more than 72 characters. A
semicolon (;) is used to separate statements within the array row. Only
one question mark character can appear in the array row.

WFL examines the contents of the array row for correct syntax, and if
errors occur, it reports this fact to the Operator Display Terminal
(ODT). If no errors are detected. the compiled job is run. In either
case, program control passes to the next statement in the program.

Statements

See also

471
ZIP

Default Character Type. . . • . . . • 817

ZIP WITH <file designator>

When this form of the ZIP statement is executed, the file referenced by
the file designator 1s passed to the WFL compiler. The file is compiled
in the same manner as any other WFL source file. If the source compiles
without syntax errors, it is executed, and .control passes to the
statement following the ZIP statement. If syntax errors occur when the
source is compiled. a message is displayed on the ODT. the WFL job is
not executed. and control passes to the statement following the ZIP
statement.

On execution of a ZIP statement, con!trol of the file referenced by the
file designator is passed to the Master Control Program (MCP).

Examples

ZIP WITH ARAY

The WFL source input in array ARAY is compiled and executed.

ZIP WITH FYLE

The WFL source input in file FYtE is compiled and executed.

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472

