
BORLAND

Turbo Pasca~
Version 6.0

User's Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001. SCOTTS VALLEY. CA 95067-0001

R2

Copyright © 1983, 1990 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
The Turbo Pascal manuals 2
Installing Turbo Pascal 2

Customizing Turbo Pascal 4
Laptop systems 4

The README file .. 4
Typefaces used in these books 5
How to contact Borland 6

Chapter 1 Learning the new IDE 7
The components 8

The menu bar and menus 8
Shortcuts 9

Turbo Pascal windows 11
Window management 13

The status line. 14
Dialog boxes 15

Check boxes and radio buttons 16
Input boxes and lists 16

Editing 17
Starting Turbo Pascal 18
Creating your first program 18

Analyzing your first program 19
Saving your first program 20
Compiling your first program 20
Running your first program 21
Checking the files you've created 22

Stepping up: your second program 22
Debugging your program 24

Using the Watch window 25
Fixing your second program. 25

Programming pizazz: your third
program 26

Chapter 2 Programming in Turbo
Pascal 29

The elements of programming 29

E N T s

Data types 31
Integer data types 31
Real data types 32
Character and string data types 33
Boolean data type 35
Pointer data type 36

Identifiers 37
Operators 38

Assignment operators 38
Arithmetic operators 39
Bitwise operators 39
Relational operators 39
Logicaloperators 40
Address operators 41
Set operators 41
String opera tors 41

Output 41
The Writeln procedure 41

Input 43
Conditional statements 43

The if statement 44
The case statement 45

Loops 45
The while loop 46
The rep eat .. until loop 46
The for loop .. 48

Procedures and functions 49
Program structure 49
Procedure and function structure 50
Sample program 51
Program comments 52

Chapter 3 Turbo Pascal units 55
What is a unit? 55
A unit's structure 56

Interface section 57

Implementation section 57
Initialization section 59

How are units used? 59
Referencing unit declarations 60
Implementation section uses clause . .. 63

Circular unit references 63
Sharing other declarations 65

The standard units 66
System 66
Dos 66
Overlay 66
Crt 66
Printer 67
Graph 67
Turbo3 and Graph3 67

Writing your own units 68
Compiling units 68
An example 69
Units and large programs 70
Units as overlays. 71
The TPUMOVER utility 71

Chapter 4 Object-oriented
programming 73

Objects? 74
Inheritance 75
Objects: records that inherit 76

Instances of object types 79
An object's fields 79
Good practice and bad practice 79

Methods 80
Code and data together 82
Defining methods 82
Method scope and the Self parameter . 83
Object data fields and method formal
parameters .. 85
Objects exported by units 85

Private section 87
Programming in the active voice 87
Encapsulation 88
Methods: no downside 89
Extending objects 90
Inheriting static methods 93
Virtual methods and polymorphism .. 95

ii

Early binding vs. late binding. 96
Object type compatibility 97
Polymorphic objects 99
Virtual methods 101

Range checking virtual method
calls. .. 103
Once virtual, always virtual 103

An example of late binding 103
Procedure or method? 105
Object extensibility 108
Static or virtual methods 109
Dynamic objects 110
Allocation and initialization with
New 111
Disposing dynamic objects 112
Destructors 112
An example of dynamic object
allocation 115

Disposing of a complex data structure
on the heap 116

Where to now? 118
Conclusion .. 119

Chapter 5 Debugging Turbo Pascal
progrnms In

Taxonomy of bugs 121
Compile-time errors 122
Run-time errors 122
Logic errors 122

The integrated debugger 123
What the debugger can do 123

Tracing .. 124
Go to cursor 124
Breaking .. 124
Watching 124
Evaluate/Modify 124
Navigating. 125

In and out of the debugger 125
Starting a debugging session 126
Restarting a debugging session ... 126
Ending a debugging session 127

Tracing through your program 127
Stepping through your program 129
Using breakpoints 131

Using Ctrl-Break 133
Watching values 133

Types of watch expressions. 135
Format specifiers. 136
Typecasting 137
Expressions 138
Editing and deleting watches 139

Evaluating and modifying 139
Modifying expressions 140

Navigation. .. 142
The call stack 142
Finding procedures and functions . 143

Object-oriented debugging 144
Stepping and tracing method calls . .. 144
Objects in the Evaluate window 144
Expressions in the Find Procedure
command .. 145

General issues 145
Writing programs for debugging 145
Memoryissues 146

Outside the IDE 147
Re-configuring Turbo Pascal. 147
Modifying your source code 148
Turbo Debugger and the IDE 149

Recursive routines 150
Where debugging won't go 150
Common pitfalls 151

Error handling. .. 152
Input/output error checking 152
Range checking 153
Other error-handling abilities 154

Chapter 6 Project management 157
Program organization 157

Initialization 159
The Build and Make options 159

The Make option. 160
The Build option 161

The Stand-alone MAKE utility 161
A quick example 162

Creating a makefile 163
Using MAKE 163

Conditional compilation 164
The DEFINE and UNDEF directives 164

iii

Defining at the command line 165
Defining in the IDE. 165

Predefined symbols 165
The VER60 symbol 166
The MSDOS and CPU86 symbols 166
The CPU87 symbol. 166
The IFxxx, ELSE, and ENDIF
symbols 167

The IFDEF and IFNDEF directives .. 168
The IFOPT directive 169

Optimizing code 170

Chapter 7 The IDE reference 173
Starting and exiting 174

Command-line options 174
The /C option 174
The /D option 174
The /E option 175
The / G option 175
The /L option 175
The /N option 175
The /0 option 176
The /P option 176
The /S option 176
The /T option 176
The /W option 176
The /X option 176

Exiting Turbo Pascal 177
:: (System) menu 177

About 177
Refresh Display 177
Clear Desktop 177

File menu 178
Open 178

Using the File list box 179
New 179
Save 179
Save As 180
Save All 180
Change Dir 180
Print 181
Get Info 181
DOS Shell 182
Exit 182

Edit menu 182
Restore Line 183
Cut 184
Copy 184
Paste 184
Copy Example 184
Show Clipboard 184
Clear 185

Search menu 185
Find 185

Options 185
Direction 186
Scope 186
Origin 187

Replace .. 187
Search Again 188
Go to Line Number 188
Find Procedure 188
Find Error 188

Run menu 189
Run 189
Program Reset 190
Go to Cursor 190
Trace Into 191
Step Over .. 191
Parameters .. 191

Compile menu. .. 192
Compile 192
Make 192
Build 193
Destination 193
Primary File .. 193

Debug menu 194
Evaluate/Modify 194
Watches 196

Add Watch 196
Delete Watch 196
Edit Watch. 196
Remove All Watches 196

Toggle Breakpoint 196
Breakpoints 197

Options menu 198
Compiler 199

Code Generation 199

iv

Run-time Errors 200
Syntax Options 200
Numeric Processing 201
Debugging 201
Conditional Defines 202

Memory Sizes 202
Linker 203

Map File .. 203
Link Buffer (memory) 203

Debugger .. 203
Debugging .. 204
Display swapping. 204

Directories 205
Environment 206

Preferences. 206
Editor .. '.' 208
Mouse 209
Startup 209
Colors 210

Save Options 211
Retrieve Options 211

Window menu 211
Size/Move 212
Zoom 212
Tile 212
Cascade 212
Next 212
Previous 212
Close 213
Watch 213
Register 213
Output 213
Call Stack .. 214
User Screen 214
List 214

Help menu. .. 214
Contents 215
Index 216
Topic Search 216
Previous Topic 216
Help on Help. 217

Chapter 8 The editor from A to Z 219
The new and the old 219

Editor reference. 220
Jumping around 222
Block commands. 222
Other editing commands 224
Search and replace 225

Searching and searching again 225
Search and replace 225

Pair matching 226
Directional and nondirectional
matching 227

Nestable delimiters 227

Chapter 9 The command-line
compiler 229

Compiler options 230
Compiler directive options 231

The switch directive option 231
The conditional defines option 232

v

Compiler mode options 233
The make (1M) option 233
The build all (/B) option 234
The find error option 234
The link buffer option 235
The quiet option 235

Directory options 236
The EXE & TPU directory option 236
The include directories option 236
The unit directories option 236
The object files directories option 237

Debug options. .. 237
The map file option 237
The standalone debugging option ... 238

TheTPC.CFG file 239
Compiling in protected mode. 240

Index 241

T A B L E s

1.1: General hot keys 9 5.1: Watch expression values 138
1.2: Menu hot keys 10 6.1: Summary of compiler directives 164
1.3: Editing hot keys 10 6.2: Predefined conditional symbols 165
1.4: Window management hot keys 10 7.1: Format specifiers recognized in
1.5: Online help hot keys 11 debugger expressions 195
1.6: Debugging/Running hot keys 11 8.1: Full summary of editor commands .. 220
1.7: Manipulating windows 14 8.2: Block commands in depth 223
2.1: Integer data types 32 8.3: Other editor commands in depth ... 224
2.2: Real data types 33 8.4: Delimiter pairs 227
2.3: Operator precedence 38 9.1: Command-line options 230

vi

F G

1.1: A typical window 12
1.2: A typical status line 15
1.3: A typical dialog box 15
4.1: A partial taxonomy chart of insects ... 76
4.2: Layout of program ListDemo's data

structures 116
7.1: The Open a File dialog box 178
7.2: The Save File As dialog box 180
7.3: The Change Dir dialog box 181
7.4: The Get Info box 182
7.5: The Find dialog box 185
7.6: The Replace dialog box 187
7.7: The Go to Line Number dialog box .188
7.8: The Find Procedure dialog box 188

u

vii

R E s

7.9: The Program Parameters dialog box .192
7.10: The Evaluate/Modify dialog box .. 194
7.11: The Breakpoints dialog box 197
7.12: The Edit Breakpoint dialog box 198
7.13: The Compiler Options dialog box .. 199
7.14: The Linker dialog box 203
7.15: The Debugger dialog box 204
7.16: The Directories dialog box 205
7.17: The Preferences dialog box 206
7.18: The Startup Options dialog box 210
7.19: The Colors dialog box 210
8.1: Search for match to square bracket or

parenthesis 228

N T R

For more about compiler
directives, refer to Chapter

27 in the Programmer's
Guide.

Introduction

o D u c T o N

Turbo Pascal is designed to meet the needs of all types of users of
IBM PS/2s, PCs, and compatibles. It is a structured, high-level
language you can use to write programs for any type or size of
application.

Turbo Pascal 6.0 builds on what is already the world's standard
Pascal compiler. Fully compatible with code written using earlier
versions of Turbo Pascal, this new version also includes

• a brand new, state-of-the-art integrated development
environment (IDE), with

• multiple overlapping windows

• mouse support, menus, dialogs

• multi-file editor that can edit files up to 1 Mb

• enhanced debugging facilities

• complete save and restore of desktop

• an object-oriented application framework, Turbo Vision, for use
in your applications (it gives you the same tools we used to
write the IDE)

• a full-featured inline assembler

• private fields and methods in object declarations

• extended syntax directive ($X) that lets you treat functions like
procedures (and ignore function results)

.286 code generation ($G directive)

• address references in typed constants

• far and near procedure directives
• link in initialized data ($L) from object files

• new heap manager is faster and reduces fragmentation
(FreeMin and FreeList have been replaced; refer to Chapter 16 in
the Programmer's Guide for more information)

• enhanced hypertext online help facilities, with complete cut­
and-paste example code for every library procedure and
function

The Turbo Pascal manuals

The four manuals in the Turbo Pascal documentation set serve
four different purposes. Briefly, here's what each contains:

The Users's Guide (this book) contains information on how to
install, learn and use Turbo Pascal's integrated environment and
command-line compilers. It also includes information on the
basics of programming in Turbo Pascal, as well as more advanced
topics like debugging, object-oriented programming, and
management of larger projects.

The Programmer's Guide is a reference guide to technical aspects of
Turbo Pascal, describing in detail the definition of the language,
the contents of the standard libraries, how they are implemented
in Turbo Pascal, and use of Turbo Pascal with assembly language.
This volume also contains explanations of all compiler directives
and error messages used by Turbo Pascal.

The Library Reference contains an alphabetical reference to all the
standard procedures and functions supported by the Turbo Pascal
run-time library.

The Turbo Vision Guide tells you all about the Turbo Vision object­
oriented application framework for building windowing appli­
cations. This volume contains step-by-step tutorials on how to put
together a Turbo Vision application, reference material on all the
tools provided in the library, and an alphabetical reference for all
the objects, procedures, functions, and types in Turbo Vision.

Installing Turbo Pascal

2

Turbo Pascal comes with an automated installation program
called INSTALL. You should use INSTALL to load Turbo Pascal
onto your system, as it will ensure that you get all the files you
need into the places that you need them. INSTALL will
automatically create directories and copy files from the
distribution disks to your hard disk. INSTALL's operation is

Turbo Pascal User's Guide

\ /fyou don't already know
how to use DOS commands,
refer to your DOS reference

manual before setting up
Turbo Pascal on your system.

self-explanatory. If you have installed earlier versions of Turbo
Pascal or Turbo C++, you are already familiar with the process.

We assume you are already familiar with DOS commands. For
example, you'll need the DISKCOPY command to make backup
copies of your distribution disks. Make a complete working copy
of the distribution disks when you receive them, then store the
original disks away in a safe place.

If you are not familiar with Borland's No-Nonsense License State­
ment, read the agreement included with your Turbo Pascal
package. Be sure to mail us your filled-in product registration
card; this guarantees that you'll be among the first to hear about
the hottest new upgrades and versions of Turbo Pascal.

If you intend to use Turbo Pascal on a floppy-disk-only system,
please read the information in the README file 'about floppy disk
installation first.

To install Turbo Pascal on a hard disk:

• Insert the installation diskette into drive A.

• Type the command
A: INSTALL

and press Enter.

• Press Enter at the installation screen.

• Follow the prompts.

When it is finished, INSTALL reminds you to read the README
file, which contains last-minute details about this release.
INSTALL also tells you how to configure your CONFIG.SYS and
AUTOEXEC.BAT files to use Turbo Pascal.

Also, once you've installed Turbo Pascal, you'll have a chance to
try out TPTOUR. TPTOUR is a guided tour of some of the
highlights of the new Turbo Pascal integrated environment.
TPTOUR is installed by default in your main Turbo Pascal
directory.

After installing Turbo Pascal and trying out TPTOUR, you may be
anxious to get up and running with the new IDE. If so, just get to
the directory that holds your newly-installed Turbo Pascal
programs and type TURBO, then press Enter. Otherwise, just keep

Press Alt-X to leave the IDE. reading the rest of this introduction for more important startup
information.

Introduction 3

Customizing
Turbo Pascal

Laptop systems

This and other options are
explained in Chapter 7.

The README file

4

The new integrated environment allows you to do all
customization (colors, options, preferences) without exiting the
program to use external utilities. You can also specify some
options at the command line when you start the integrated
environment (see Chapter 7).

If you want the IDE to save and restore your desktop between
sessions, go to the Preferences dialog box (Options I Environment)
and turn Auto Save on for both Environment and Desktop.

If you have a laptop computer with an LCD or plasma display, in
addition to carrying out the procedures given in the previous
sections, you need to set your screen parameters before using
Turbo Pascal. The Turbo Pascal integrated environment version
works best if you type MODE BW80 at the DOS prompt before
running Turbo Pascal.

Although you could create a batch fiie to take care of this, you can
also easily customize Turbo Pascal for a black-and-white screen
with the Startup Options dialog box in the IDE (Options I
Environment I Startup).

The README file contains last-minute information that may not
be in these manuals. It also lists every file on the distribution
disks, with a brief description of what each one contains.

Here's how to access the README file:

1. If you haven't installed Turbo Pascal yet, insert your Turbo
Pascal installation disk into drive A.

2. Type A: and press Enter.

3. Type README and press Enter. Once you are in README, use the
t and ,j, keys to scroll through the file.

4. Press Esc to exit.

Turbo Pascal User's Guide

If you've already installed Turbo Pascal, you can open README
in an edit window by following these steps:

1. Start Turbo Pascal from the directory in which you installed it
by typing TURBO and pressing Enter.

2. Press F3. Type in README and press Enter. Turbo Pascal will
open the README file in an edit window.

3. When you're done with the README file, press Alt-F3 to close
the editor window or Alt-X to leave the IDE.

Typefaces used in these books

Introduction

All typefaces used in this manual were produced by Borland's
Sprint: The Professional Word Processor, on a PostScript laser
printer. Their uses are as follows:

Monospace type

[]

Boldface

Italics

Keycaps

This typeface represents text as it appears on­
screen or in a program. It is also used for any­
thing you must type (such as TURBO to start up
Turbo Pascal).

Square brackets in text or DOS command lines
enclose optional items that depend on your
system. Text of this sort should not be typed
verbatim.

This typeface is used in text for Turbo Pascal
reserved words, for compiler directives {$I-} and
for command-line options (fA).

Italics indicate identifiers that appear in text.
They can represent terms that you can use as is,
or that you can think up new names for (your
choice, usually). They are also used to
emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard.
For example, "Press Esc to exit a menu."

This icon indicates keyboard actions.

This icon indicates mouse actions.

5

How to contact Borland

See the README file included
with your distribution disks for

details on how to report a
bug.

6

The best way to contact Borland is to log on to Borland's Forum
on CompuServe: Type GO BOR from the main CompuServe menu
and choose "Borland Programming Forum A (Turbo Pascal)"
from the Borland main menu. Leave your questions or comments
there for the support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department-Turbo Pascal
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95067-0001, USA

You can also telephone our Technical Support department be­
tween 6 am and 5 pm Pacific time at (408) 438-5300. Please have
the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Turbo Pascal
is displayed when you first load the program and before you
press any keys.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number
can be determined by typing VER at the DOS prompt.)

5. Contents of your AUTOEXEC.BA T file.

6. Contents of your CONFIG.SYS file.

Turbo Pascal User's Guide

c H

There s also a command-line
version available, TPC.EXE.

A p T E R

1

Learning the new IDE

Turbo Pascal is more than just a fast Pascal compiler; it is an
efficient Pascal compiler with an easy-to-Iearn and easy-to-use
integrated development environment (for short, we call it the
IDE). With Turbo Pascal, you don't need to use a separate editor,
compiler,linker, and debugger in order to create, debug, and run
your Pascal programs. All these features are built into Turbo
Pascal, and they are all accessible from the IDE.

You can begin building your first Turbo Pascal program using the
compiler built into the IDE. By the end of this chapter, you'll have
learned your way around the development environment, written
and saved three small programs, and learned some basic
programming skills.

Online context-sensitive help is only a keystroke (or a mouse
click) away. You can get help at any point (except when your
program has control) by pressing the shortcut F1. The Help menu
(Alt-H) provides you with a table of contents to the help system, a
detailed index, searching capabilites (Ctrl-F1), the ability to go back
to other screens (AIt-F1), and help on Help (F1 when you're already
in help). Any help screen can contain one or more keywords
(highlighted items) on which you can get more information.

If you want more detail about the IDE, look at Chapter 7, "The
IDE reference."

Chapter 7, Learning the new IDE 7

The components

We offen abbreviate menu
items. For example, to
choose add a watch
(Debug I Watch I Add

Watch),' we'll tell you to
choose D I WI Add Watch.

The menu bar

There are three visible components to the IDE: the menu bar at the
top, the desktop, and the status line at the bottom. Many menu
items also offer dialog boxes. Before we detail each menu item in
the IDE, we'll describe these more generic components.

and menus The menu bar is your primary access to all the menu commands.

To cancel an action,
press Esc.

The only time the menu bar is not visible is when you're viewing
your program's output. You'll see a highlighted menu title when
the menu bar is active; this is the currently selected menu.

If a menu command is followed by an ellipsis mark (...), choosing
the command displays a dialog box. If the command is followed
by an arrow (~), the command leads to another menu (a pop-up
menu). A command without either an ellipsis mark or an arrow
indicates that the action occurs once you choose it.

Here is how you choose menu commands using just the
keyboard:

1. Press F10. This makes the menu bar active.

2. Use the arrow keys to select the menu you want to display.
Then press Enter.

As a shortcut for this step, you can just press the highlighted
letter of the menu title. For example, from the menu bar, press
E to quickly display the Edit menu. From anywhere, press Alt
and the highlighted letter to display the menu you want.

3. Use the arrow keys again to select the command you want.
Then press Enter.

Again, as a shortcut, you can just press the highlighted letter
of a command to choose it once the menu is displayed.

At this point, Turbo Pascal either carries out the command,
displays a dialog box, or displays another menu.

M. You can also use a mouse to choose commands. The process is
this:

8 Turbo Pascal User's Guide

Turbo Pascal uses only the
left mouse button. You can,

however, customize the right
button and other mouse

settings; see page 209.

Shortcuts

In dialog boxes, just press the
highlighted letter.

Table 1.1
General hot keys

1. Click the desired menu title to display the menu.

2. Click the desired command.

You can also drag straight from the menu title down to the menu
command. Release the mouse button on the command you want.
(If you change your mind, just drag off the menu; no command
will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. You can still select (highlight) an
unavailable command in order to get online help about it.

Turbo Pascal offers a number of quick ways to choose menu
commands. For example, mouse users can combine the two-step
process into one by dragging from the menu title down to the
menu commands and releasing the mouse button when the
command you want is selected.

From the keyboard, you can use a number of shortcuts (or hot
keys) to access the menu bar and choose commands. You can get
to, or activate, main menu items by pressing Aft and the
highlighted letter. Once you're in a menu, you can press an item's
highlighted letter or the shortcut next to it. You can also click on
shortcuts on the status line.

The following tables list the most-used Turbo Pascal hot keys:

Key(s) Menu item Function

F1 Help Displays a help screen.
F2 File I Save Saves the file that's in the active

Edit window.
F3 File I Open Brings up a dialog box so you can

open a file.
F4 Run I Go to Cursor Runs your program to the line

where the cursor is positioned.
F5 Window I Zoom Zooms the active window.
F6 Window I Next Cycles through all open windows.
F7 Run I Trace Into Runs your program in debug mode,

tracing into procedures.
FB Run I Step Over Runs your program in debug mode,

stepping over procedure calls.
F9 Compile I Make Makes the current executable.
F10 (none) Takes you to the menu bar.

Chapter 7, Learning the new IDE 9

Table 1.2
Menu hot keys Key(s) Menu item Function

Alt-Spacebar ==menu Takes you to the == (System)
menu

AIt-G Compile menu Takes you to the Compile menu
AIt-D Debug menu Takes you to the Debug menu
Alt-E Edit menu Takes you to the Edit menu
Alt-F File menu Takes you to the File menu
Alt-H Help menu Takes you to the Help menu
Alt-O Options menu Takes you to the Options menu
Alt-R Run menu Takes you to the Run menu
Alt-S Search menu Takes you to the Search menu
Alt-W Window menu Takes you to the Window menu
Alt-X File I Exit Exits Turbo Pascal to DOS

Table 1.3
Editing hot keys Key(s) Menu item Function

etrl-Del Edit I Clear Removes selected text from the
window and doesn't put it in the
Clipboard

Gtrl-Ins Edit I Copy Copies selected text to Clipboard
Shift-Del Edit I Cut Places selected text in the

Clipboard, deletes selection
Shift-Ins Edit I Paste Pastes text from the Clipboard

into the active window
Gtrl-L Search I Search Again Repeats last Find or Replace

command
F2 File I Save Saves the file in the active Edit

window
F3 File I Open Lets you open a file

Table 1.4
Window management hot Key(s) Menu item Function

keys Alt-# (none) Displays a window, where # is
the number of the window you
want to view

Alt-O Window I List Displays a list of open windows
Alt-F3 Window I Close Closes the active window
Alt-F5 Window I User Screen Displays User Screen
Shift-F6 Window I Previous Cycles backward through active

windows
F5 Window I Zoom Zooms/ unzooms the active

window
F6 Window I Next Cycles forward through active

windows
etrl-F5 Window I Size/Move Changes size or position of

active window

10 Turbo Pascal User's Guide

Table 1.5
Online help hot keys

Table 1.6
Debugging/Running hot keys

Turbo Pascal
windows

You can increase the
number of windows that can

potentially be opened by
increasing the heap size

using the Startup
option(Options I

Environment).

Key(s) Menu item Function

F1 Help I Contents Opens a context-sensitive
help screen

F1 F1 Help I Help on Help Brings up Help on Help. (Just
press F1 when you're already
in the help system.)

Shift-F1 Help I Index Brings up Help index
A/t-F1 Help I Previous Topic Displays previous Help

screen
etr/-F1 Help I Topic Search Calls up language-specific

help in Editor only

Key(s) Menu item Function

AIt-F9 Compile I Compile Compiles last file in editor
etrl-F2 Run I Program Reset Resets running program
etr/-F4 Debug I Evaluate/Modify Evaluates an expression
etr/-F? Debug I Add Watch Adds a watch expression
Girl-FB Debug I Toggle Breakpoint Sets or clears conditional

breakpoint
etrl-F9 Run I Run Runs program
F4 Run I Go To Cursor Runs program to cursor

position
F? Run I Trace Into Executes tracing into

procedures
FB Run I Step Over Executes skipping procedure

calls
F9 Compile I Make Makes (compiles/links)

program

Most of what you see and do in the IDE happens in a window. A
window is a screen area that you can move, resize, zoom, tile,
overlap, close, and open.

You can have any number of windows open in Turbo Pascal
(memory and heap space allowing), but only one window can be
active at any time. The active window is the one that you're cur­
rently working in. Any command you choose or text you type
generally applies only to the active window. There are several
types of windows, but most have these things in common:

• a title bar
• a close box
• scroll bars
• a resize comer

Chapter 7, Learning the new /DE 11

12

Figure 1.1
A typical window

.azoom box

• a window number

Turbo Pascal makes it easy to spot the active window by placing a
double-lined border around it. The active window always has a
close box, a zoom box, scroll bars, and a resize corner. If your
windows are overlapping, the active window is always the one on
top of all the others (the frontmost one).

The Edit window also displays the current line and column
numbers in the lower left corner. If you've modified your file, an
asterisk (*) will appear to the left of the column and line numbers.

This is what a typical window looks like:

Cl ick the
~to
quickly close
the window.

The lDIliIlmi contains
the name of the window.

The mEiiImE! contains
an icon you click to
either enl arge or
shrink the window.

I I
T T T

[1]======= Window Title ======: -[tll.~".
Each open wi ndow

:::i;l!Jn~,'~gi?;n ~

Use a ~ to scroll the
contents of a window

T g
:::C::E:::::::::::::::::::::::::::::::::!p

.a.

Drag the '14iM-Manyi to make
the window larger or smaller

The close box of a window is the box in the upper left corner. You
click this box to quickly close the window. (Or choose Window I
Close or press Alt-F3.) The Help window is considered temporary;
you can close it by pressing Esc.

Turbo Pascal User's Guide

Shortcut: Double-click the
title bar of a window to zoom

or restore it.

Scroll bars let both mouse
and keyboard users see how
far into the file they've gone.

iw..

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. Double-clicking
the title bar zooms the window (and vice versa). You can also
drag the title bar to move the window around.

Each of the windows you open in Turbo Pascal have a window
number in the upper right border. Alt-O (zero) gives you a list of all
windows you have open. You can make a window active
(bringing it to the top of the heap) by pressing Alt in combination
with the window number. For example, if the Help window is #5
but has gotten buried under the other windows, Alt-5 brings it to
the front.

The zoom box of a window appears in the upper right corner. If the
icon in that corner is an up arrow (t), you can click the arrow to
enlarge the window to the largest size possible. If the icon is a
doubleheaded arrow (*), the window is already at its maximum
size. In that case, clicking it returns the window to its previous
size. To zoom a window from the keyboard, choose Window I
Zoom, or press F5.

Scroll bars are horizontal or vertical bars that look like this:

g III .. C , , .. ,1111111,." ••••••••••••••••••• ".,11.1111, 11 11 ''''IIIIII''''''~
................. 11 ... ,11 11 ... 111 ,111 ... 111 .. IIIUIi
••• ,1, •••••••••• , ••••••••• 111111 ,11 ••• I .,11 11 •••••••••••••••••••••••••• ,11 ,1

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on
the bar to quickly move to a spot in the window relative to the
position of the scroll box.

The resize box is in the lower right corner of a window. You drag
any corner to make the window larger or smaller. You can spot
the resize corner by its single-line border instead of the double­
line border used in the rest of the window. To resize using the
keyboard, choose Size/Move from the Window menu, or press
Ctrl-F5.

Window management Table 1.7 gives you a quick rundown of how to handle windows
in Turbo Pascal. Note that you don't need a mouse to perform
these actions-a keyboard works just fine.

Chapter 7, Learning the new IDE 13

14

Table 1.7
Manipulating windows To accomplish this: Use one of these methods

The status line

--
Open an Edit window

Open other windows

Close a window

Activate a window

Move the active window

Resize the active window

Zoom the active window

Choose File I Open to open a file and
display it in a window, or press F3.

Choose the qesired window from the
Window :qlenu

Choose Close from the Window menu (or
press Alt-F3), or click the close box of the
window.

Click anywhere in the window, or

Press Aft plus the window number in the
upper right border of the window), or

Choose Window I List or press Alt-O and
select the window from the list, or

Choose Window I Next or F6 to make the
next window active (next in the order you
first opened them). Or press Alt-F6 to cycle
backward.

Drag its title bar, or press Ctrl-F5 (Window I
Size/Move) and use the arrow keys to
place the window where you want it, then
press Enter.

Drag the resize corner (or any other
corner). Or choose Window I Size/Move
and press Shift while you use the arrow
keys to resize the window, then press Enter.
The shortcut is to press Ctrl-F5 and then use
Shift and the arrow keys.

Click the zoom box in the upper right
corner of the window, or

Double-click the window's title bar, or

Choose Window I Zoom, or press F5.

The status line appears at the bottom of the screen; it

• reminds you of basic ~eystrokes and shortcuts applicable at that
moment in the active window .

• lets you click the shortcuts to carry out the action instead of
choosing the command from the menu or pressing the shortcut
keystroke.

Turbo Pascal User's Guide

Figure 1.2
A typical status line

Dialog boxes

Figure 1.3
A typical dialog box

If you have a color monitor,
Turbo Pascal will use different
colors for various elements of

the dialog box.

The Breakpoints Options
dialog box is unique in that it

doesn't have a Cancel
button.

• tells you what the program is doing. For example, it displays
"Saving filename ... " when an Edit file is being saved .

• offers one-line hints on any selected menu command and dialog
box items.

The status line changes as you switch windows or activities. One
of the most common status lines is the one you see when you're
actually writing and editing programs in an Edit window. Here is
what it looks like:

Fl Help F2 Save F3 Open Alt-F9 Compile F9 Make FlO Menu

If a menu command has an ellipsis after it (...), the command
opens a dialog box. A dialog box is a convenient way to view and
set multiple options.

When you're making settings in dialog boxes, you work with five
basic types of onscreen controls: radio buttons, check boxes,
action buttons, input boxes, and list boxes. Here's a typical dialog
box that illustrates some of these items:

[1]====== Typical Dialog Box =========;)

InDut box

Check boxes

!X18~~~~g ~ X Option 3
Option 4

X Option 5

u
Radio buttons

I-j 8~~~~g a
Option C
Option D

II

Item one •
Item two
Item three
Item four
Item five
Item six
Item seven
Item ei ght "Y

a"':
1_+ld3,_1

This dialog box has three standard action buttons: OK, Cancel,
and Help. If you choose OK, the choices in the dialog box are
made in Turbo Pascal; if you choose Cancel, nothing changes and
no action is made, but the dialog box is put away. Choose Help to
open a Help window about this dialog box. Esc is always a
keyboard shortcut for Cancel (even if no Cancel button appears).

If you're using a mouse, you can just click the button you want.
When you're using the keyboard, you can press the highlighted
letter of an item to activate it. For example, pressing K selects the
OK button. Press Tab or Shift-Tab to move forward or back from
one item to another in a dialog box. Each element highlights when
it becomes active.

Chapter I, Learning the new IDE 15

You can select another
button with Tab; press Enter to

choose that button.

Check boxes and
radio buttons

Radio buttons are so called
because they act just like the

group of buttons on a car
radio. There is always one­

and only one-button
pushed in at a time. Push

one in, and the one that was
in pops out.

Input boxes and lists

16

In this dialog box, OK is the default button, which means you need
only press Enter to choose that button. (On monochrome systems,
arrows indicate the default; on color monitors, default buttons are
highlighted.) Be aware that tabbing to a button makes that button
the default.

You can have any number of check boxes checked at any time.
When you select a check box, an X appears in it to show you it's
on. An empty box indicates it's off. You check a check box (set it to
on) by clicking it or its text, by pressing Tab until the check box (or
its group) is highlighted and then pressing Spacebar, or by
selecting the highlighted letter.

If selecting a check box in a group, use the arrow keys or
highlighted letters to select the item you want, and then press
Spacebar. On monochrome monitors, Turbo Pascal indicates the
active check box or group of check boxes by placing a chevron
symbol (») next to it. When you press Tab, the chevron moves to
the next group of checkboxes or radio buttons.

Radio buttons differ from check boxes in that they present
mutually exclusive choices. For this reason, radio buttons always
come in groups, and exactly one (no more, no less) radio button
can be on in anyone group at anyone time. To choose a radio
button, click it or its text. From the keyboard, select the
highlighted letter, or press Tab until the group is highlighted and
then use the arrow keys to choose a particular radio button. Press
Tab or Shift-Tab again to leave the group with the new radio button
chosen.

You're probably all familiar with input boxes; this is where you
type in text. Most basic text-editing keys work in the text box (for
example, arrow keys, Home, End, and insert/overwrite toggles by
Ins). If you continue to type once you reach the end of the box, the
contents automatically scroll. If there's more text than what shows
in the box, arrowheads appear at the end (~and ~). You can click
the arrowheads to scroll or drag the text. If you need to enter
control characters (such as AL or AM) in the input box, then prefix
the character with a AP. So, for example, entering ApAL enters a
AL into the input box. This is useful for search strings.

If an input box has a down-arrow icon to its right, there is a
history list associated with that input box. Press J. to view the

Turbo Pascal User's Guide

Editing

history list and Enter to select an item from the list. The list will
display any text you typed into the box the last few times you
used it. If you want to reenter text that you already entered, press
J- or click the ~ icon. You can also edit an entry in the history list.
Press Esc to exit from the history list without making a selection.

Here is what a history list for the Find text box might look like if
you had used it seven times previously:

Text to find __ !!!!!!!!!!!!II
date = record
Wri tel n('
stri n9 [7]
{
AbortCode

A final component of many dialog boxes is a list box. A list box
lets you scroll through and select from variable-length lists
without leaving a dialog box. If a blinking cursor appears in the
list box and you know what you're looking fOT, you can type the
word (or the first few letters of the word) and Turbo Pascal will
search for it.

You make a list box active by clicking it or by choosing the
highlighted letter of the list title (or press Tab or the arrow keys
until it's highlighted). Once a list box is displayed, you can use the
scroll box to move through the list or press i or J- from the
keyboard.

If you're a longtime user of Borland products, the following
summary of new editing features can help you identify the areas
that are different from older products.

Turbo Pascal's integrated editor now has

• mOUSf support
• support for large files (up to 1 Mb files; limited to 2 megabytes

for all editors combined)

• Shift i J- -7 f- for selecting text

• Edit windows that you can move, resize, or overlap

• multi-file capabilities let you open several files at once

Chapter 7, Learning the new IDE 17

• multiple windows let you have several views onto the same file
or different files

• a sophisticated macro language, so you can create your own
editor commands (see TEMC.DOC on your distribution disks)

• the ability to paste text or examples from the Help window

• an editable Clipboard that allows cutting, copying, and pasting
in or between windows

Starting Turbo Pascal

If you have a low-density 5
7/4" floppy drive system, this
procedure does not apply;

read the README file for
installation and operation

details.

If you're using a floppy disk drive, put your Turbo Pascal system
disk into Drive A and type the following command:

TURBO

Press Enterto run the program TURBO.EXE, which brings up the
IDE.

If you're using a hard disk, get into the Turbo Pascal subdirectory
you created with INSTALL (the default is C: \ TP) and run
TURBO.EXE by typing

TURBO

at the C: \TP) prompt. Now you're ready to write your first Turbo
Pascal program.

Creating your first program

To access the examples
given here, run INSTALL with

the Unpack Exarpples option
set to on.

18

When you load Turbo Pascal (type TURBO and press Enter at the
DOS prompt), what you'll see is the main menu bar, a status line,
an empty desktop, and a window with product version infor­
mation (choosing the About command from the =, or System,
menu at any time will bring up this information). When you press
any key, the version information disappears, but the windowed
environment remains.

Press F10 to go the menu bar and then F3 (a shortcut for File I
Open) to display the Open a File dialog box. You're in the input
box, so go ahead and type in MYFIRST (you don't need the .P AS
extension; it's assumed) and then press Enter. Now you can start

Turbo Pascal User's Guide

Don't forget the semicolons
and follow the last end with

a period.

Analyzing your
first program

typing in the following program, pressing Enter at the end of each
line:

program MyFirst;
var

A, B: Integer;
Ratio: Real;

begin
write ('Enter two numbers: ');
Readln(A,B);
Ratio := A / B;
Writeln('The ratio is ' ,Ratio);
Write('Press <Enter> ... ');
Readln;

end.

Use the Backspace key to make deletions, and use the arrow keys
to move around in the edit window. If you're unfamiliar with
editing commands, Chapter 8 discusses all those available.

While you can type in and run this program without ever
knowing how it works, we've provided a brief explanation here.
The first line you entered gives the program the name MyFirst.
This is an optional statement, but it's a good practice to include it.

The next three lines declare some variables, with the word var
signaling the start of variable declarations. A and B are declared
to be of type Integer; that is, they can contain whole numbers,
such as 52,--421, 0, 32,283, and so on. Ratio is declared to be of
type Real, which means it can hold fractional numbers such as
423.328 and -0.032, in addition to all integer values.

The rest of the program contains the statements to be executed.
The word begin signals the start of the program. The statements
are separated by semicolons and contain instructions to write to
the screen (Write and Writeln), to read from the keyboard (Readln),
and to perform calculations (Ratio := A / B). The Readln at the end
of the program will cause execution to pause (until you press
Enter) so you can inspect the program's output. The program's
execution starts with the first instruction after begin and
continues until end. is encountered.

Chapter 1, Learning the new IDE 19

20

Saving your first
program

Compiling your
first program

After entering your first program, it's a good idea to save it to
disk. To do this, choose the Save command from the File menu by
pressing F10, then F to bring up the File menu and S to choose the
Save command. An easier method would be to use the shortcut
for File I Save, F2.

To compile your first program, go to the Compile option on the
main menu. You can press F10 C, or Alt-Ctakes you right to it. Alt-F9
is the quickest shortcut, initiating compilation right away.

Turbo Pascal compiles your program, changing it from Pascal
(which you can read) to 8086 machine code for the microprocessor
(which your PC can execute). You don't see the 8086 machine
code; it's stored in memory (or on disk).

Like English, Pascal has rules of grammar you must follow.
However, unlike English, Pascal's structure isn't lenient enough to
allow for slang or poor syntax-the compiler must always
understand what you mean. In Pascal, when you don't use the
appropriate words or symbols in a statement or when you
.organize them incorrectly, you will get a compile-time (syntax)
error.

What compile-time errors are you likely to get? Probably the most
common error novice Pascal programmers will get is

Unknown identifier

or

';' expected

Pascal requires that you declare all variables, data types,
constants, and subroutines-in short, all identifiers-before using
them. If you refer to an undeclared identifier or if you misspell it,
you'll get an error. Other common errors are unmatched
begin .. end pairs, assignment of incompatible data types (such as
assigning reals to integers), parameter count and type mismatches
in procedure and function calls, and so on.

When you start compiling, a box appears in the middle of the
screen, giving information about the compilation taking place. If
no errors occurred during compilation, the message "Compilation

Turbo Pascal User's Guide

Running your first

successful: press any key" flashes across the box. The box remains
visible until you press a key. See how fast that went?

If an error occurs during compilation, Turbo Pascal stops,
positions the cursor at the point of error in the editor, and
displays an error message at the top of the editor, as it does with
compile-time error messages. (The first key you press will clear
the error message, and Ctrl-Q Wwill bring it back until you change
files or recompile. Make the correction, save the updated file, and
compile it again.)

program After you've fixed any typing errors that might have occurred, go
to the main menu and choose Run I Run (or press Ctrl-F9). You're
placed at the User screen, and the message

Enter two numbers:

appears on the screen. Type in any two integers (whole numbers),
with a space between them, and press Enter. The following
message will appear:

The ratio is

followed by the ratio of the first number to the second. On the
next line the message "Press <Enter> ... " will appear and the
program will wait for you to press the Enter key. To review your
program output, choose Window I User Screen (or press Alt-F5).

If an error occurs while your program is executing, you'll get a
message on the screen that looks like this:

Run-time error <errnum> at <segment>:<offset>

where <errnum> is the appropriate error number (see Appendix A
in the Programmer's Guide, "Error messages," for information on
compiler and run-time error messages), and <segment>:<offset> is
the memory address where the error occurred. (If you need this
number later~ look for it in the Output window.) You'll be
positioned at the point of error in your program with a
descriptive error message displayed on the editor status line.
While the message is still on the editor status line, you can press
F1 to get help with that particular error. Any other keystroke
clears the error message. If you need to find the error location
again, choose Search I Find Error.

Chapter 7, Learning the new IDE 21

Checking the files
you've created

When your program has finished executing, you're returned to
the place in your program where you started. You can now
modify your program if you wish. If you choose the Run I Run
command before you make any changes to your program, Turbo
Pascal immediately executes it again, without recompiling.

Once you're back in the IDE after executing your program, you
can view your program's output by choosing the Run I User Screen
command (or by pressing AIt-F5). Choose it again to return to the
Turbo Pascal environment.

If you exit Turbo Pascal (choose Exit from the File menu), you can
see a directory listing of the source (Pascal) file you've created. To
exit, press 0 (for DOS Shell) in the File menu or, alternatively,
press X (for Exit) and type the following command at the DOS
prompt:

DIR MYFIRST.*

You'll get a listing that looks something like this:

MYFIRST PAS 217 8-10-88 11:07a

The file MYFIRST.PAS contains the Pascal program you just
wrote. If you saved the program while you were typing, you'll
also see a backup file MYFIRST.BAK, which was created
automatically by the editor.

You'll only see the executable file if you've changed your default
Destination setting in the Compile menu to Disk. You would then
produce a file called MYFIRST.EXE, which would contain the
machine code that Turbo Pascal generated from your program.
You could then execute that program by typing MYFIRST followed
by Enter at the DOS system prompt.

Stepping up: your second program

22

Now you're going to write a second program that builds upon the
first. If you exited from Turbo Pascal using the DOS Shell
command from the File menu, you can return to the Turbo Pascal
environment by typing EXIT at the DOS prompt. If you exited
using Exit from the File menu, you would type

TURBO MYFIRST.PAS

Turbo Pascal User's Guide

at the prompt in order to return to the IDE. This will place you
directly into the editor. Now, modify your MYFIRST.P AS
program to look like this:

program MySecond;
var

A, B: Integer;
Ratio: Real;

begin
repeat

Write('Enter two numbers: ');
Readln(A,B);
Ratio := AlB;
Writeln('The ratio is ' ,Ratio:8:2);
Write('Press <Enter> ... ');
Readln;

until B = 0;
end.

You want to save this as a separate program, so go to the File
menu, select Save As, and type in MYSECOND.PAS and press Enter.

Go ahead and compile and run your second program using Ctrl-F9.
This is tells Turbo Pascal to run your updated program. And since
you've made changes to the program, Turbo Pascal automatically
compiles the program before running it.

A major change has been made to the program: The statements
have been enclosed in the repeat..untilloop. This causes all the
statements between repeat and until to be executed until the
expression following until is True. A test is made to see if B has a
value of zero or not. If B has a value of zero, then the loop should
exit.

Run your program, try out some values, then enter 1 0 and press
Enter. Your program does exit, but not quite in the way you
intended: It exits with a run-time error. You're placed back in the
editor, with the cursor in front of the line

Ratio := AlB;

and the message
Error 200: Division by zero

at the top of the edit window.

Chapter 7, Learning the new IDE 23

24

Debugging your
program If you've programmed before, you may recognize this error and

how to fix it. But let's take this opportunity to show you how to
use the integrated debugger that's built into Turbo Pascal 6.0.

Turbo Pascal's integrated debugger allows you to step through
your code one line at a time. At the same time, you can watch
your variables to see how their values change.

To start the debugging session, choose the Run I Trace Into
command (or press F7). If your program needs to be recompiled,
Turbo Pascal will do so. The first statement (begin in this case) in
the main body of your program is highlighted; from now on we'll
call this highlighted bar the run bar.

The first Flyou pressed initiated the debugging session. Now
press Fl to begin executing the program. The debugger just
executed the invisible startup code. The next executable line in
this program is the Write statement on line 7.

Press F7 again. Your screen blinks momentarily, then shows your
program with the run bar on the second statement (Readln).
What's happening here is that Turbo Pascal switches to the User
screen (where your program is executed and its output
displayed), executes your first statement (a Write statement), then
goes back to the editing screen.

Press F7 again. This time, the User screen comes up and stays
there. That's because a Readln statement is waiting for you to enter
two numbers. Type two integer numbers, separated by a space; be
sure the second number isn't a zero. Now press Enter. You're back
at the Edit window, with the run bar on the assignment statement
on line 9.

Press F7 and execute the assignment statement. Now the run bar
is on the Writeln statement on line 10. Press F7twice. Now you're
about to execute Readln on line 12. Press F7, inspect your
program's output, and then press Enter.

The run bar is on the until clause. Press Fl one more time, and
you're back at the top of the repeat loop.

Instead of racing through one program statement after another,
the integrated debugger lets you step through your code one line
at a time. This is a powerful tool, and we go into a more detailed

Turbo Pascal User's Guide

Using the Watch
window

Fixing your
second program

discussion of debugging in Chapter 5. First, we'll give you a quick
taste of debugging by tracking down that divide-by-zero error.

Let's take a look at the values of the variables you've declared.
Press Alt-D to bring up the Debug. Choose the Add Watch
command from the Watches menu (or press Gtrl-Fl). Type A in the
Watch Expression input box and press Enter. This puts A in the
Watch window, along with its current value. Now use the Add
Watch command to add B and Ratio to the Watch window.
Finally, use it to add the expression AlB to the Watch window.

Choose Run I Trace Into (or press Fl) to step through your
program. This time, when you have to enter two numbers, enter 0
for the second number. When you press Enter and return to the
IDE, look at the expression AlB in the Watch window (press Alt
and the window # or Alt-W W). Instead of having a value after it, it
has the phrase "Invalid floating-point operation"; that's because
dividing by zero is undefined. Note, though, that having this
expression in your Watch window doesn't cause the program to
stop with an error. Instead, the error is reported to you and the
debugger does not perform the division in the Watch window.

N ow press F7 again, assigning AI B to Ratio. At this point, your
program does halt, and the error message "Division by zero"
appears at the top of the Edit window again.

Now you probably have a good idea of what's wrong with your
program: If you enter a value of zero for the second number (B),
the program halts with a run-time error.

How do you fix it? If B has a value of zero, don't divide B into A.
Edit your program so that it looks like this:

program MySecond;
var

A,B: Integer;
Ratio: Real;

begin
repeat

Write ('Enter two numbers: ');
Readln (A, B);
if B = 0 then

Writeln('The ratio is undefined')
else

Chapter 1, Learning the new IDE 25

begin
Ratio := A / B;
Write1n('The ratio is ' ,Ratio:8:2);

end;
Write('Press <Enter> ... ');
Read1n;

until B = 0;
end.

Now run your program (either by itself, or using the debugger). If
you do use the debugger, note how the values in the Watch
window change as you step througH the program. When you're
ready to stop, enter 0 for B. The program will pause after printing
the message liThe ratio is undefined. Press <Enter> "

Now you have an idea just how powerful the debugger is. You
can step through your program line by line; you can display the
value of your program's variables and expressions, and you can
watch the values change as your program runs.

Programming pizazz: your third program

26

You need to unzip
GRAPH. TPU from BGI.lIP in
order to run this program.

For the last program, let's get a little fancy and dabble in graphics.
This program assumes that you have a graphics adapter for your
system, and that you are currently set up to use that adapter. If
you are in doubt, try the program and see what happens. If an
error message appears, then you probably don't have a graphics
adapter (or you have one that's not supported by our Graph unit).
In any case, pressing Enter once should get you back to the IDE.

Open the file (F3) MYTHIRD.P AS and enter this program:

program MyThird;
uses

Graph;
const

Start = 25;
Finish = 175;
Step = 2;

var
GraphDriver: Integer;
GraphMode: Integer;
ErrorCode: Integer;
Xl,Yl,X2,Y2: Integer;

begin
GraphDriver := Detect;

{ Stores graphics driver number }
{ Stores graphics mode for the driver }

{ Reports an error condition }

{ Try to autodetect Graphics card }

Turbo Pascal User's Guide

To run this program, you must
be in the same directory as

the BGI driver files (*.SGI).

InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then { Error? }
begin

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Writeln(' (You probably don"t have a graphics card!)');
Writeln('Prograrn aborted ... ');
Readln;
Halt(l);

end;
Y1 := Start;
Y2 := Finish;
Xl := Start;
while Xl <= Finish do
begin

X2 := (StarttFinish) - Xl;
Line (Xl, Y1, X2, Y2);
Xl := Xl t Step;

end;
Xl := Start;
X2 := Finish;
Y1 := Start;
while Y1 <= Finish do
begin

Y2 := (StarttFinish) - Y1;
Line (Xl, Y1, X2, Y2);
Y1 := Y1 t Step;

end;
OutText('Press <Enter> to quit:');
Readln;
CloseGraph;

end. { MyThird }

Save this program (F2) and then compile it (Alt-F9). If you have no
errors during compilation, choose Run I Run (Ctrl-F9) to run it. This
program produces a square with some wavy patterns along the
edges. When execution is over, you'll be returned to your
program.

The uses clause says that the program uses a unit named Graph.
A unit is a library, or collection, of subroutines (procedures and
functions) and other declarations. In this case, the unit Graph
contains the routines you want to use: InitGraph, Line, CloseGraph,
and more.

The section labeled canst defines three numeric constants-Start,
Finish, and Step-that affect the size, location, and appearance of

Chapter 7, Learning the new IDE 27

28

the square. By changing their values, you can change how the
square looks.

¢ Warning: Don't set Step to anything less than 1; if you do, the
program will get stuck in what is known as an infinite loop (a loop
that circles endlessly). If you've compiled to disk and are running
the .EXE from DOS, you won't be able to exit except by pressing
Gtr/-Aft Del or by turning your PC off. If you're running from inside
the IDE, you can interrupt the program by pressing Gtrl-Break.

The variables Xl, Yl, X2, and Y2 hold the values of locations
along opposite sides of the square. The square itself is drawn by
drawing a straight line from Xl,Yl to X2,Y2. The coordinates are
then changed, and the next line drawn. The coordinates always
start out in opposite comers: The first line drawn goes from
(25,25) to (175,175).

The program itself consists primarily of two loops. The first loop
draws a line from (25,25) to (175,175). It then moves the X
(horizontal) coordinates by two, so that the next line goes from
(27,25) to (173,175). This continues until the loop draws a line
from (175,25) to (25,175).

The program then goes into its second loop, which pursues a
similar course, changing the Y (vertical) coordinates by two each
time. The routine Line is from the Graph unit and draws a line
between the endpoints given.

The final Readln statement causes the program to wait for you to
press a key before it goes back into text mode and returns to the
IDE.

You might want to step through this program line-by-line using
the integrated debugger and then watch it swap back and forth
between the program's graphics mode and the IDE's text mode.

Turbo Pascal User's Guide

c H A p T E R

2

Programming in Turbo Pascal

The Pascal language was designed by Niklaus Wirth in the early
1970s to teach programming. Because of that, it's particularly
well-suited as a first programming language. And if you've
already programmed in other languages, you'll find it easy to pick
up Pascal.

To get you started on the road to Pascal programming, this
chapter will teach you the basic elements of the Pascal language
and show you how to use them in your programs. However,
because we don't cover everything about Pascal programming
here, you might want to pick up a copy of the Turbo Pascal Disk
Tutor (Borland Osborne/McGraw Hill), a complete book-plus­
disk tutorial about programming in Pascal and using Turbo
Pascal.

Before you work through this chapter, you might want to read
Chapter 7, "The IDE reference," and Chapter 8, "The editor from
A to Z," to learn about the environment and text editor in Turbo
Pascal. If you haven't already installed Turbo Pascal as described
in the introduction, you should do so now.

The elements of programming

Most programs are designed to solve a problem. They solve
problems by manipulating information or data. As a programmer,
you do the following:

Chapter 2, Programming in Turbo Pascal 29

30

• get the information into the program-input.

• have a place to keep it-data.
• give the right instructions to manipulate the data-operations.
• be able to get the data back out of the program to the user (you,

usually)-output.

You can organize your instructions so that

• some are executed only when a specific condition (or set of
conditions) is True-conditional execution.

• others are repeated a number of times-loops.
• others are broken off into chunks that can be executed at

different locations in your program-subroutines.

These are the seven basic elements of programming: input, data,
operations, output, conditional execution, loops, and subroutines. This
list is not comprehensive, but it does describe those elements that
programs (and programming languages) usually have in
common.

Many programming languages, including Pascal, have additional
features. And when you want to learn a new language quickly,
you can find out how that language implements these seven
elements, then build from there. Here's a brief description of each
element:

Input
This means reading values in from the keyboard, from a disk, or
from an I/O port.

Data
These are constants, variables, and structures that contain
numbers (integer and rea!), text (characters and strings), or
addresses (of variables and structures).

Operations
These assign one value to another, combine values (add, divide,
and so forth), and compare values (equal, not equal, and so on).

Output
This means writing information to the screen, to a disk, or to an
I/O port.

Conditional execution
This refers to executing a set of instructions if a specified
condition is True (and skipping them or executing a different set

Turbo Pascal User's Guide

Data types

Integer data
types

if it is False) or if a data item has a specified value or range of
values.

Loops
These execute a set of instructions some fixed number of times,
while some condition is True or until some condition is True.

Subroutines
These are separately named sets of irtstructions that can be
executed anywhere in the program just by referencing the name.

N ow we'll take a look at how to use these elements in Turbo
Pascal.

When you write a program, you're working with information that
generally falls into one of five basic types: integers, real numbers,
characters and strings, Boolean, and pointers.

Integers are the whole numbers you learned to count with (1, 5,
-21, and 752, for example).

Real numbers have fractional portions (3.14159) and exponents
(2.579x1024). These are also sometimes known as floating-point
numbers.

Characters are any of the letters of the alphabet, symbols, and the
numbers 0-9. They can be used individually (a, Z, !, 3) or
combined into character strings ('This is only a test.').

Boolean expressions have one of two possible values: True or
False. They are used in conditional expressions, which we'll
discuss later.

Pointers hold the address of some location in the computer's
memory, which in tum holds information.

Standard Pascal defines the data type integer as consisting of the
values ranging from -Maxlnt through 0 to Maxlnt, where Maxlnt
is the largest possible integer value allowed by the compiler
you're using. Turbo Pascal supports type integer, defines Maxlnt
as equal to 32,767, and allows the value -32,768 as well. A variable
of type Integer occupies 2 bytes.

Chapter 2, Programming in Turbo Pascal 31

32

Table 2.1
Integer data types,

Real data types

Turbo Pascal also defines a long integer constant, MaxLonglnt,
with a value of 2,147,483,647.

Turbo Pascal also supports four other integer data types, each of
which has a different range of values. Table 2.1 shows all five
integer types.

Type

Byte
Shortint
Integer
Word
Longint

Range

0 .. 255
-128 .. 127

-32768 .. 32767
0 .. 65535

-2147483648 .. 2147483647

Size in Bytes

1
1
2
2
4

A final note: Turbo Pascal allows you to use hexadecimal (base 16)
integer values. To specify a constant value as hexadecimal, place a
dollar sign ($) in front of it; for example, $27 = 39 decimal.

Standard Pascal defines the data type Real as representing
floating-point values consisting of a significand (fractional
portion) multiplied by an exponent (power of 10). The number of
digits (known as significant digits) in the significand and the range
of values of the exponent are compiler-dependent. Turbo Pascal
defines the type real as being 6 bytes in size, with 11 significant
digits and an exponent range of 10-38 to 1038.

Turbo Pascal also supports the IEEE Standard 754 for binary
floating-point arithmetic. This includes the data types Single,
Double, Extended, and Compo Single uses 4 bytes, with 7
significant digits and an exponent range of 10-45 to 1038; double
uses 8 bytes, with 15 significant digits and an exponent range of
10-324 to 10308; and extended uses 10 bytes, with 19 significant
digits and an exponent range of 10-4951 to 104931.

If you have an 8087 math coprocessor and enable the numeric
support compiler directive or environment option ({$N+}), Turbo
Pascal generates the proper 8087 instructions to support these
types and to perform all floating-point operations on the 8087.

If you don't have an 8087 chip, but you still want to use the IEEE
Standard types, you can ask Turbo Pascal to emulate an 8087 chip,
by enabling both the 8087 emulation and numeric processing
compiler directives ({$E+} and {$N+}, respectively). Turbo Pascal

Turbo Pascal User's Guide

Table 2.2
Real data types

Character and
string data types

then links in a special math library that performs floating-point
functions just like an 8087 chip.

Type

Real
Single
Double
Extended
Comp*

Range

2.9 x 10E-39 .. 1.7 x 10E38
1.5 x 10E-45 .. 3.4 x 10E38

5.0 x 10E-324 .. 1.7 x 10E308
1.9 x 10E-4951 .. 1.1 x 10E4932

-2E+63+ 1 .. 2E+63-1

* comp only holds integer values.

Significant
Digits

11-12
7- 8

15-16
19-20
19-20

Size
in Bytes

6
4
8

10
8

Get into the Turbo Pascal editor and enter the following program:

program DoRatio;
var

A, B: Integer;
Ratio: Real;

begin
Write ('Enter two numbers: ');
Readln(A,B);
Ratio := A div B;
Writeln('The ratio is ',Ratio)

end.

Save this as DORA TIO.P AS by selecting File I Save As from the
main menu. Then press Alt-R to compile and run the program.
Enter two values (such as 10 and 3) and note the result (3.000000).
You probably expected an answer of 3.3333333333, but instead
you received a 3. That's because you used the div operator, which
performs integer division. Go back and change the div statement
to read as follows:

Ratio := A / B;

Save the code (press F2), then compile and run. The result is now
3.3333333333, as you expected. Using the division operator (I)
gives you the most precise result-a real number.

You've learned how to store numbers in Pascal, now how about
characters and strings? Pascal offers a predefined data type Char
that is 1 byte in size and holds exactly one character. Character
constants are represented by surrounding the character with
single quotes (for example, 'A', 'e', I?', '2'). Note that '2' means the

Chapter 2, Programming in Turbo Pascal 33

Appendix B in the Program­
mer's GuIde lists the ASCII

codes for all characters.

34

character 2, while 2 means the integer 2 (and 2.0 means the real
number 2).

Here's a modification of DORATIO that allows you to repeat it
several times (this also uses a repeat .. untilloop, which we'll
discuss a little later):

program DoRatio;
var

A, B: Integer;
Ratio: Real;
Ans: Char;

begin
repeat

Write ('Enter two numbers: ');
Readln(A,B);
Ratio := A I B;
Writeln('The ratio is ' ,Ratio);
Write('Do it again? (YIN) ');
Readln (Ans)

until UpCase(Ans) = 'N'
end.

After calculating the ratio once, the program writes the message

Do it again? (YIN)

and waits for you to type in a single character, followed by
pressing Enter. If you type in a lowercase n or an uppercase N, the
until condition is met and the loop ends; otherwise, the program
goes back to the repeat statement and starts over again.

Note that n is not the same as N. This is because they have
different ASCII code values. Characters are represented by the
ASCII code: Each character has its own 8-bit number (characters
take up 1 byte, remember).

Turbo Pascal gives you two additional ways of representing
character constants: with a caret (A) or a number symbol (#). First,
the characters with codes 0 through 31 are known as control
characters (because historically they were used to control teletype
operations). They are referred to by their abbreviations (CR for
carriage return, LF for linefeed, ESC for escape, and so on) or by
the word "Ctrl" followed by a corresponding letter (meaning the
letter produced by adding 64 to the control code). For example,
the control character with ASCII code 7 is known as BEL or etr/-G.
Turbo Pascal lets you represent these characters using the caret
(A), followed by the corresponding letter (or character). Thus, AG

Turbo Pascal User's Guide

Boolean data
type

is a legal representation in your program of Ctrl-G, and you could
write statements such as Writeln("G), causing your computer to
beep at you. This method, however, only works for the control
characters.

You can also represent any character using the number symbol (#),
followed by the character's ASCII code. Thus, #7 would be the
same as "G, #65 would be the same as 'A', and #233 would
represent one of the special IBM PC graphics characters.

Individual characters are nice, but what about strings of
characters? After all, that's how you will most often use them.
Standard Pascal does not support a separate string data type, but
Turbo Pascal does. Take a look at this program:

program Helloi
var

Name: string[30]i
begin

Write('What is your name? ')i

Readln(Narne)i
Writeln('Hello, , ,Name)

end.

This declares the variable Name to be of type string, with space set
aside to hold 30 characters. One more byte is set aside internally
by Turbo Pascal to hold the current length of the string. That way,
no matter how long or short the name is you enter at the prompt,
that is exactly how much is printed out in the Writeln statement.
Unless, of course, you enter a name more than 30 characters long,
in which case only the first 30 characters are used, and the rest are
ignored.

When you declare a string variable, you can specify how many
characters (up to 255) it can hold. Or you can declare a variable
(or parameter) to be of type String with no length mentioned, in
which case the default size of 255 characters is assumed.

Turbo Pascal offers a number of predefined procedures and
functions to use with strings; they can be found in Chapter 1 in
the Library Reference.

Pascal's predefined data type Boolean has two possible values:
True and False. You can declare a variable to be of type Boolean,
then assign the variable either a True or False value or (more

Chapter 2, Programming in Turbo Pascal 35

Pointer data type

36

importantly) an expression that resolves to one of those two
values.

A Boolean expression is simply an expression that is either True or
False. It is made up of relational expressions, Boolean operators,
Boolean variables, and/or other Boolean expressions. For
example, the following while statement contains a Boolean
expression:

while (Index <= Limit) and not Done do ... J

The Boolean expression consists of everything between the
keywords while and do, and presumes that Done is a variable (or
possibly a function) of type Boolean.

All the data types we've discussed until now hold just that-data.
A pointer holds a different type of information-an address. A
pointer is a variable that contains the address in memory (RAM)
where some data is stored, rather than the data itself. In other
words, it points to the data, like an address book or an index.

A pointer is usually (but not necesarily) specific to some other
data type. Consider the following declarations:

type
Buffer = strinq[255J;
BufPtr = ABuffer;

var
Buf1: Buffer;
Buf2: BufPtr;

The data type Buffer is now just another name for string[255],
while the type BufPtr defines a pointer to a Buffer. The variable
Bufl is of type Buffer; it takes up 256 bytes of memory. The
variable Buf2 is of type BufPtr; it contains a 32-hit address and
takes up only 4 bytes of memory.

Where does Buf2 point? Nowhere, currently. Before you can use
BufPtr, you need to set aside (allocate) some memory and store its
address in Buf2. You do that using the New procedure:

New(Buf2);

Since Buf2 points to the type Buffer, this statement creates a 256-
byte buffer somewhere in memory, then puts its address into
Buf2.

Turbo Pascal User's Guide

Identifiers

How do you use the data pointed to by Buf2? Via the indirection
operator 1\. For example, suppose you want to store a string in
both Bufl and the buffer painted to by Buf2. Here's what the
statements would look like:

Bufl := 'This string gets stored in Bufl.'
Buf2 A := 'This string gets stored where Buf2 points.'

Note the difference between Buf2 and Buf2". Buf2 refers to a 4-
byte pointer variable; Buf2" refers to a 256-byte string variable
whose address is stored in Buf2.

,How do you free up the memory pointed to by Buf2? Using the
Dispose procedure. Dispose makes the memory available for other
uses. After you use Dispose on a pointer, it's good practice to
assign the (predefined) value nil to that pointer. That lets you
know that the pointer no longer points to anything:

Dispose(Buf2);
Buf2 := nil;

Note that you assign nil to Buf2, not to Buf2".

Up until now, we've given names to variables without worrying
about what restrictions there might be. Let's talk about those
restrictions now.

The names you give to constants, data types, variables, and
functions are known as identifiers. Some of the identifiers used so
far include

Integer, Real, String
Hello,DoSum,DoRatio
Name, A, B, Sum, Ratio
Write, Writeln,Readln

Predefined data types
Programs
User-defined variables
Predeclared procedures

Turbo Pascal has a few rules about identifiers; here's a quick
summary:

• All identifiers must start with a letter or underscore (a ... z,
A ... Z, or _). The rest of an identifier can consist of letters,
underscores, and/or digits (0 ... 9); no other characters are
allowed.

Chapter 2, Programming in Turbo Pascal 37

Operators

38

Table 2.3
Operator precedence

Assignment
operators

• Identifiers are case-insensitive, which means that lowercase
letters (a .. . z) are considered the same as uppercase letters
(A .. . Z). For example, the identifiers indx, Indx, and INDX are
identical.

• Identifiers can be of any length, but only the first 63 characters
are significant.

Once you get your data into the program (and into your
variables), you'll probably want to manipulate it somehow, using
the operators available to you. There are eight operator types:
assignment, arithmetic, bitwise, relational, logical, address, set,
and string.

Most Pascal operators are binary, taking two operands; the rest are
unary, taking only one operand. Binary operators use the usual
algebraic form, for example, a + b. A unary operator always
precedes its operand, for example, -b.

In more complex expressions, rules of precedence clarify the order
in which operations are performed (see Table 2.3).

Operators

@,not
*, /, div, mod, and, shl, shr
+,., or, xor
=, <>, <, >, <=, >=, in

Precedence

First (high)
Second
Third
Fourth (low)

Categories

Unary operators
Multiplying operators
Adding operators
Relational operators

Operations with equal precedence are normally performed from
. left to right, although the compiler may at times rearrange the
operands to generate optimum code.

Sequences of operators of the same precedence are evaluated
from left to right. Expressions within parentheses are evaluated
first and independently of preceding or succeeding operators.

The most basic operation is assignment (that is, assigning a value
to a variable), as in Ratio:= A / B. In Pascal, the assignment
symbol is a colon followed by an equal sign (:=). In the example
given, the value of A / B on the right of the assignment symbol is
assigned to the variable Ratio on the left.

Turbo Pascal User's Guide

Arithmetic
operators Pascal supports the usual set of binary arithmetic operators-they

Bitwise operators

Relational

work with type integer and real values:

• Multiplication (*)

• Integer division (div)

• Real division (/)

• Modulus (mod)

• Addition (+)

• Subtraction (-)

Also, Turbo Pascal supports both unary minus (a + (-b», which
performs a two's complement evaluation, and unary plus (a + (+b»,
which does nothing at all but is there for completeness.

For bit-level operations, Pascal has the following operators:

• shl (shift left): Shifts the bits left the indicated number of bits,
filling at the right with O's.

• shr (shift right): Shifts the bits right the indicated number of
bits, filling at the left with O's.

• and: Performs a logical and on each corresponding pair of bits,
returning 1 if both bits are 1, and 0 otherwise.

• or: Performs a logical or on each corresponding pair of bits,
returning 0 if both bits are 0, and 1 otherwise.

• xor: Performs a logical, exclusive or on each corresponding pair
of bits, returning 1 if the two bits are different from one another,
and 0 otherwise.

• not: Performs a logical complement on each bit, changing each
o to a 1, and vice versa.

These allow you to perform very low-level operations on integer
values.

operators Relational operators allow you to compare two values, yielding a
Boolean result of True or False. Here are the relational operators
in Pascal:

Chapter 2, Programming in Turbo Pascal 39

Logical operators

40

> greater than
>= grea ter than or equal to
< less than
<= less than or equal to
= equal to
<> not equal to
in is a member of

Why would you want to know if something were True or False?
Enter the following program:

program TestGreater;
var

A,B: Integer;
Test: Boolean;

begin
Write {'Enter two numbers: ');
Readln (A, B) ;
Test := A > B;
Writeln{'A is greater than B', Test);

end.

This will print True if A is greater than B or False if A is less than
or equal to B.

There are four logical operators-and, xor, or, and not-which are
similar to but not identical with the bitwise operators. These
logical operators work with logical values (True and False),
allowing you to combine relational expressions, Boolean
variables, and Boolean expressions.

They differ from the corresponding bitwise operators in this
manner:

• Logical operators always produce a result of either True or
False (a Boolean value), while the bitwise operators do bit-by­
bit operations on type integer values.

• You cannot combine Boolean and integer-type expressions with
these operators; in other words, the expression Flag and Indx is
illegal if Flag is of type Boolean, and Indx is of type integer (or
vice versa).

• The logical operators and and or will short-circuit by default;
xor and not will not. Suppose you have the expression expl and
exp2. If expl is False, then the entire expression is False, so exp2
will never be evaluated. Likewise, given the expression expl or

Turbo Pascal User's Guide

Address

exp2, exp2 will never be evaluated if expl is True. You can force
full Boolean expression using the {$B+} compiler directive or
the Complete Boolean Eval option (Options I Compiler).

operators Pascal supports two special address operators: the address-of
operator (@) and the indirection operator (A).

Set operators

String operators

Output

The Writeln

The @ operator returns the address of a given variable; if Sum is a
variable of type integer, then @Sum is the address (memory
location) of that variable. Likewise, if ChrPtr is a pointer to type
char, then ChrPtrA is the character to which ChrPtr points.

Set operators perform according to the rules of set logic. The set
operators and operations include

+

*

union
difference
intersection

The only string operation is the + operator, which is used to con­
catenate two strings.

It may seem funny to talk about output before input, but a
program that doesn't output information isn't of much use. That
output usually takes the form of information written to the screen
(words and pictures), to a storage device (floppy or hard disk), or
to an I/O port (serial or printer ports).

procedure You've already used the most common output function in Pascal,
the Writeln routine. The purpose of Writeln is to write information
to the screen. Its format is both simple and flexible:

Writeln(item, item, ...);

Chapter 2, Programming in Turbo Pascal 41

42

Each item is something you want to print to the screen and can be
a literal value, such as an integer or a real number (3, 42, -1732.3),
a character ('a', 'Z'), a string ('Hello, world'), ora Boolean value
(True). It can also be a named constant, a variable, a dereferenced
pointer, or a function call, as long as it yields a value that is of
type Integer, Real, Char, String, or Boolean. All the items are
printed on one line, in the order given. The cursor is then moved
to the start of the next line. If you wish to leave the cursor after
the last item on the same line, then use the statement

Write (item, item, ...);

When the items in a Writeln statement are printed, blanks are not
automatically inserted; if you want spaces between items, you'll
have to put them there yourself, like this:

Writeln (item,' ',item,' ', ...);

For example, the following statements produce the indicated
output:

~ := 1; B := 2; C := 3;
Name := 'Frank';

Writeln(A,B,C);
Writeln(A,' ',B,' ',C);
Writeln('Hi' ,Name);
Writeln (' Hi, ',Name,'.');

123
. 1 2 3
HiFrank
Hi, Frank.

You can also use field-width specifiers to define a field width for a
given item. The format for this is

Writeln(item:width, .•.);

where width is an integer expression (literal, constant, variable,
function call, or combination thereof) specifying the total width of
the field in which item is written. For example, consider the
following code and resulting output:

A := 10; B := 2; C := 100;
Writeln(A,B,C);
Writeln(A:2,B:2,C:2);
Writeln(A:3,B:3,C:3);
Writeln(A,B:2,C:4);

102100
10 2100

10 2100
10 2 100

Note that the item is padded with leading blanks on the left to
make it equal to the field width. The actual value is right-justified.

What if the field width is less than what is needed? In the second
Writeln statement given earlier, C has a field width of 2 but has a

Turbo Pascal User's Guide

Input

value of 100 and needs a width of 3. As you can see by the output,
Pascal simply expands the width to the minimum size needed.

This method works for all allowable items: integers, rea Is,
characters, strings, and Booleans. However, real numbers printed
with the field-width specifier (or with none at all) come out in
exponential form:

x := 421.53:
Writeln (X) : 4.2153000000E+02
Writeln(X:8) : 4.2Et02

Because of this, Pascal allows you to append a second field-width
specifier: item:width:digits. This second value forces the real
number to be printed out in fixed-point format and tells how
many digits to place after the decimal point:

X := 421.53:
Writeln (X: 6: 2);
Writeln(X:8:2):
Writeln (X: 8: 4);

421. 53
421.53

421. 5300

Standard Pascal has two basic input functions that are used to
read from data from the keyboard: Read and Readln. The general
syntax is

Read(item,item, ...):

or

Readln(item,item, ...):

Each item is a variable of any integer, real, char, or string type.
Numbers being input must be separated from other values by
spaces or by pressing Enter.

Conditional statements

There are times when you want to execute some portion of your
program when a given condition is True or False, or when a
particular value of a given expression is reached. Let's look at how
to do this in Pascal.

Chapter 2, Programming in Turbo Pascal 43

The if statement

44

Look again at the if statement in the previous examples; note that
it can take the following generic format:

if expr
then statementl
else statement2

expr is any Boolean expression (resolving to True or False), and
statementl and statement2 are legal Pascal statements. If expr is
True, then statementl is executed; otherwise, statement2 is
executed.

We must explain two important points about if/then/else
statements:

1. else statement2 is optional; in other words, this is a valid if
statement:

if expr
then statementl

In this case, statementl is executed only if expr is True. If expr is
False, then statementl is skipped, and the program continues.

2. What if you want to execute more than one statement if a
particular expression is True or False? You use a compound
statement. A compound statement consists of the keyword
begin, some number of statements separated by semicolons (;),
and the keyword end.

The ratio example uses a single statement for the if clause

if B = o. 0 then
Writeln('Division by zero is not allowed.')

and a compound statement for the else clause

else
begin

Ratio = A / B;
Writeln('The ratio is ' ,Ratio)

end;

You might also notice that the body of each program you've
written is simply a compound statement followed by a period.

Turbo Pascal User's Guide

The case
statement

else is an extension to
standard Pascal.

Loops

This statement gives your program the power to choose from
more than two alternatives without having to specify lots of if
statements.

The case statement consists of an expression (the selector) and a
list of statements, each preceded by a case label of the same type
as the selector. It specifies that the one statement be executed
whose case label is equal to the current value of the selector. If
none of the case labels contain the value of the selector, then
either no statement is executed or, optionally, the statements
following the reserved word else are executed.

A case label consists of any number of constants or subranges,
separated by commas and followed by a colon; for example,

case BirdSight of
'C', 'e': Curlews := Curlews + 1;
'H', 'h': Herons := Herons + 1;
'E', 'e': Egrets := Egrets + 1;
'T', 't': Terns := Terns + 1;

end; {ease}

A subrange is written as two constants separated by the subrange
delimiter ' .. '. The constant type must match the selector type. The
statement that follows the case label is executed if the selector's
value equals one of the constants or if it lies within one of the
subranges.

Just as there are statements (or groups of statements) that you
want to execute conditionally, there are other statements that you
may want to execute repeatedly. This kind of construct is known
as a loop.

There are three basic kinds of loops: the wh ile loop, the repeat
loop, and the for loop. We'll cover them in that order.

Chapter 2, Programming in Turbo Pascal 45

46

The while loop

The repeat .. until
loop

You can use the while loop to test for something at the beginning
of your loop. Enter the following program:

program Hello;
var

Count: Integer;
begin

Count := 1;
while Count <= 10 do
begin

Writeln('Hello and goodbye!');
Inc (Count)

end;
Writeln('This is the end!')

end.

The first thing that happens when you run this program is that
Count is set equal to I, then you enter the while loop. This tests to
see if Count is less than or equal to 10. Count is, so the loop's body
(begin .. end) is executed. This prints the message Hello and
goodbye! to the screen, then increments Count by 1. Count is again
tested, and the loop's body is executed once more. This continues
as long as Count is less than or equal to 10 when it is tested. Once
Count reaches II, the loop stops, and the string This is the end! is
printed on the screen.

The format of the while statement is

while expr do statement

where expr is a Boolean expression, and statement is either a single
or a compound statement.

The while loop evaluates expr. If it's True, then statement is
executed, and expr is evaluated again. If expr is False, the while
loop is finished and the program continues.

The second loop is the repeat .. untilloop, which we've seen in the
program DORATIO.PAS:

program DoRatio;
var

A,B: Integer;

Turbo Pascal User's Guide

Ratio: Real;
Ans: Char;

begin
repeat

Write('Enter two numbers: ');
Readln(A,B);
Ratio := A I B;
Writeln('The ratio is ' ,Ratio);
Write('Do it again? (YIN) ');
Readln (Ans)

until UpCase(Ans) = 'N'
end.

As described before, this program repeats until you answer nor N
to the question Do it again? (YIN). In other words, everything
between repeat and until is repeated until the expression
following until is True.

Here's the generic format for the repeat..untilloop:

repeat
statement;
statement;

statement
until expr

There are three major differences between the while loop and the
repeat loop. First, the statements in the repeat loop always
execute at least once, because the test on expr is not made until
after the repeat occurs. By contrast, the while loop will skip over
its body if the expression is initially False.

Next, the repeat loop executes until the expression is True, where
the while loop executes while the expression is True. This means
that care must be taken in translating from one type of loop to the
other. For example, here's the HELLO program rewritten using a
repeat loop:

program Hello;
var

Count: Integer;
begin

Count := 1;
repeat

Writeln('Hello and goodbye!');
Inc (Count)

until Count> 10;

Chapter 2, Programming in Turbo Pascal 47

The for loop

48

Writeln('This is the end!')
end.

Note that the test is now Count> 10, where for the while loop it
was Count <= 10.

Finally, the repeat loop can hold multiple statements without
using a compound statement. Notice that you didn't have to use
begin .. end in the preceding program, but you did for the earlier
version using a while loop.

Again, be careful to note that the repeat loop will always execute
at least once. A while loop mayor may not execute, depending on
the value of the expression.

The for loop is the one found in most major programming
languages, including Pascal. However, the Pascal version is
simultaneously limited and powerful.

Basically, the for loop executes a set of statements some fixed
number of times while a variable (known as the index variable)
steps through a range of values. To see how this works, modify
the earlier HELLO program to read as follows:

program Hello;
var

Count: Integer;
begin

for Count := 1 to 10 do
Writeln('Hello and goodbye!');
Writeln('This is the end!')

end.

When you run this program, you can see that the loop works the
same as the while and repeat loops already shown and, in fact, is
precisely equivalent to the while loop. Here's the generic format of
the for loop statement:

for index := expr1 to expr2 do statement

index is a variable of some scalar type (any integer type, char,
Boolean, any enumerated type), exprl and expr2 are expressions of
some type compatible with index, and statement is a single or
compound statement. Index is incremented by one after each time
through the loop.

Turbo Pascal User's Guide

You can also decrement the index variable instead of
incrementing it by replacing the keyword to with the keyword
downto.

The for loop is equivalent to the following code:

index := exprlj
while index <= expr2 do
begin

statementj
Inc (index)

endj

The main drawback of the for loop is that it only allows you to
increment or decrement by one. Its main advantages are
conciseness and the ability to use char and enumerated types in
the range of values.

Procedures and functions

Program structure

You've learned how to execute code conditionally and iteratively.
Now, what if you want to perform the same set of instructions on
different sets of data or at different locations in your program?
Well, you simply put those statements into a subroutine, which
you can then call as needed.

In Pascal, there are two types of subroutines: procedures and
functions. The main difference between the two is that a function
returns a value and can be used in expressions, like this:

x := Sin(A)j

while a procedure is called to perform one or more tasks:

Writeln{'This is a test')j

However, before you learn any more about procedures and
functions, you need to understand Pascal program structure.

In Standard Pascal, programs adhere to a rigid format:

program ProgNamej
label

labels;

Chapter 2, Programming in Turbo Pascal 49

Procedure and

const
constant declarations;

type
data type definitions;

var
variable declarations;

procedures and functions;
begin

main body of program
end.

You do not have to have all five declaration sections-label,
const, type, var, and procedures and functions-in every
program. But in standard Pascal, if they do appear, they must be
in that order, and each section can appear only once. The
declaration section is followed by any procedures and functions
you might have, then finally the main body of the program,
consisting of some number of statements.

Turbo Pascal gives you tremendous flexibility in your program
structure. All it requires is that your program statement (if you
have one) be first and that your main program body be last.
Between those two, you can have as many declaration sections as
you want, in any order you want, with procedures and functions
freely mixed in. But identifiers must be defined before they are
used, or else a compile-time error will occur.

function structure As mentioned earlier, procedures and functions-known.
collectively as subprograms-appear anywhere before the main
body of the program. Procedures use this format:

50

procedure ProcName(parameters);
label

labels;
const

constant declarations;
type

data type definitions;
var

variable declarations;
procedures and functions;
begin

main body of procedure;
end;

Turbo Pascal User's Guide

Sample program

Functions look just like procedures except that a function
declaration starts with a function header and ends with a data
type for the return value of the function:

function FuncName(parameters): data type;

As you can see, there are only two differences between this and
regular program structure: Procedures or functions start with a
procedure or function header instead of a program header, and
they end with a semicolon instead of a period. A procedure or
function can have its own constants, data types, and variables,
and even its own procedures and functions. What's more, all these
items can only be used with the procedure or function in which
they are declared.

Here's a version of the DORATIO program that uses a procedure
to get the two values, then uses a function to calculate the ratio:

program DoRatio;
var

A,B: Integer;
Ratio: Real;

procedure GetData(var X,Y: Integer);
begin

Write ('Enter two numbers: ');
Readln(X,Y)

end;

function GetRatio(I,J: Integer): Real;
begin

GetRatio := I/J
end;

begin
GetData (A, B);
Ratio := GetRatio(A,B);
Writeln('The ratio is ',Ratio)

end.

This isn't exactly an improvement on the original program, being
both larger and slower, but it does illustrate how procedures and
functions work.

When you compile and run this program, execution starts with
the first statement in the main body of the program: GetData (A, B) •

This type of statement is known as a procedure call. Your program
handles this call by executing the statements in GetData, replacing

Chapter 2, Programming in Turbo Pascal 51

52

Program
comments

X and Y (known as formal parameters) with A and B (known as
actual parameters). The keyword var in front of X and Yin
GetData's procedure statement says that the actual parameters
must be variables and that the variable values can be changed and
passed back to the caller. So you can't pass literals, constants,
expressions, and so on to GetData. Once GetData is finished,
execution returns to the main body of the program and continues
with the statement following the call to GetData.

That next statement is a function call to GetRatio. Note that there
are some key differences here. First, GetRatio returns a value,
which must then be used somehow; in this case, it's assigned to
Ratio. Second, a value is assigned to GetRatio in its main body; this
is how a function determines what value to return. Third, there is
no var keyword in front of the formal parameters I and]. This
means that the actual parameters could be any two integer
expressions, such as Ratio:= GetRatio(A + B,300); and that even if
you change the values of the formal parameters in the function
body, the new values will not be passed back to the caller. This, by
the way, is not a distinction between procedures and functions;
you can use both types of parameters with either type of
subprogram.

Sometimes you want to insert notes into your program to remind
yourself (or inform someone else) of what certain variables mean,
what certain functions or statements do, and so on. These notes
are known as comments. Pascal, like most other programming
languages, lets you put as many comments as you want into your
program.

You can start a comment with the left curly brace (0, which
signals to the compiler to ignore everything until after it sees the
right curly brace O).

Comments can even extend across multiple lines, like this:

{ This is a long
comment, extending
over several lines.

Pascal also allows an alternative form of comment, beginning
with a left parenthesis and an asterisk, (*, and ending with an
asterisk and a right parenthesis, *). This allows for a limited form

Turbo Pascal User's Guide

Chapter 3, Turbo Pascal units

of comment nesting, because a comment beginning with (*
ignores all curly braces, and vice versa.

53

54 Turbo Pascal User's Guide

c H

What is a unit?

A p T E R

3

Turbo Pascal units

In Chapter 1, you learned how to write standard Pascal programs.
What about non-standard programming-more specifically, PC­
style programming, with screen control, DOS calls, and graphics?
To write such programs, you have to understand units or
understand the PC hardware enough to do the work yourself.
This chapter explains what a unit is, how you use it, what
predefined units are available, how to go about writing your own
units, and how to compile them.

Turbo Pascal gives you access to a large number of predefined
constants, data types, variables, procedures, and functions. Some
are specific to Turbo Pascal; others are specific to the IBM PC (and
compatibles) or to DOS. There are dozens of them, but you
seldom use them all in a given program. Because of this, they are
split into related groups called units. You can then use only the
units your program needs.

A unit is a collection of constants, data types, variables,
procedures, and functions. Each unit is almost like a separate
Pascal program: It can have a main body that is called before your
program starts and does whatever initialization is necessary. In
short, a unit is a library of declarations you can pull into your
program that allows your program to be split up and separately
compiled.

Chapter J, Turbo Pascal units 55

Turbo Vision provides an
entire suite of units: see the

Turbo Vision Guide for details.

A unit's structure

56

All the declarations within a unit are usually related to one
another. For example, the Crt unit contains all the declarations for
screen-oriented routines on your PC.

Turbo Pascal provides eight standard units for your use. Six of
them-System, Overlay, Graph, Dos, Crt, and Printer-provide
support for your regular Turbo Pascal programs; these are all
stored in TURBO.TPL. The other two-Turbo3 and Graph3-are
designed to help maintain compatibility with programs and data
files created under version 3~0 of Turbo Pascal. Some of these are
explained more fully in Chapters 10 through 15 of the Program­
mer's Guide, but we'll look at each one here and explain its general
function.

A unit provides a set of capabilities through procedures and
functions-with supporting constants, data types, and variables­
but it hides how those capabilities are actually implemented by
separating the unit into two sections: the interface and the
implementation. When a program uses a unit, all the unit's
declarations become available, as if they had been defined within
the program itself.

A unit's structure is not unlike that of a program, but with some
significant differences. Here's a unit, for example:

unit <identifier>;
interface
uses <list of units>; {Optional

{ public declarations }
implementation
uses <list of units>; {Optional

{ private declarations }
{ implementation of procedures and functions }

begin·
{ tnitialization code }

end.

The unit header starts with the reserved word unit, followed by
the unit's name (an identifier), much the way a program begins.
The next item in a unit is the keyword interface. This signals the
start of the interface section of the unit-the section visible to any
other units or programs that use this unit.

Turbo Pascal User's Guide

Interface section

Implementation
section

A unit can use other units by specifying them in a uses clause.
The uses clause can appear in two places. First, it can appear
immediately after the keyword interface. In this case, any
constants or data types declared in the interfaces of those units
can be used in any of the declarations in this unit's interface
section.

Second, it can appear immediately after the keyword
implementation. In this case, any declarations from those units
can be used only within the implementation section. This also
allows for circular unit references; you'll learn how to use these
la ter in this chapter.

The interface portion-the "public" part-of a unit starts at the
reserved word interface, which appears after the unit header and
ends when the reserved word implementation is encountered. The
interface determines what is "visible" to any program (or other
unit) using that unit; any program using the unit has access to
these "visible" items.

In the unit interface, you can declare constants, data types,
variables, procedures, and functions. As with a program, these
can be arranged in any order, and sections can repeat themselves
(for example, type ... var ... <procs> ... const ... type ... const ...
var).

The procedures and functions visible to any program using the
unit are declared here, but their actual bodies­
implementations-are found in the implementation section.
forward declarations are neither necessary nor allowed. The
bodies of all the regular procedures and functions are held in the
implementation section after all the procedure and function
headers have been listed in the interface section.

A uses clause may appear in the implementation. If present, uses
must immediately follow the keyword implementation.

The implementation section-the "private" part-starts at the
reserved word implementation. Everything declared in the
interface portion is visible in the implementation: constants,
types, variables, procedures, and functions. Furthermore, the
implementation can have additional declarations of its own,

Chapter 3, Turbo Pascal units 57

58

although these are not visible to any programs using the unit. The
program doesn't know they exist and can't reference or call them.
However, these hidden items can be (and usually are) used by the
"visible" procedures and functions-those routines whose
headers appear in the interface section.

A uses clause may appear in the implementation. If present, uses
must immediately follow the keyword implementation.

If any procedures have been declared external, one or more {$L
filename} directive(s) should appear anywhere in the source file
before the final end of the unit.

The normal procedures and functions declared in the interface­
those that are not inline-must reappear in the implementation.
The procedure/function header that appears in the
implementation should either be identical to that which appears
in the interface or should be in the short form. For the short form,
type in the keyword (procedure or function), followed by the
routine's name (identifier). The routine will then contain all its
local declarations (labels, constants, types, variables, and nested
procedures and functions), followed by the main body of the
routine itself. Say the following declarations appear in the
interface of your unit:

procedure ISwap(var Vl,V2: Integer);
function IMax(Vl,V2: Integer): Integer;

The implementation could look like this:

procedure ISwap;
var

Temp: Integer;
begin

Temp := Vl; Vl := V2; V2 := Temp;
end; {of proc ISwap }
function IMax(Vl,V2: Integer): Integer;
begin
if Vl > V2 then

IMax := Vl
else IMax := V2;

end; {of func IMax }

Routines local to the implementation (that is, not declared in the
interface section) must have their complete procedure/function
header intact.

Turbo Pascal User's Guide

Initialization
section The entire implementation portion of the unit is normally

bracketed within the reserved words implementation and end.
However, if you put the reserved word begin before end, with
statements between the two, the resulting compound statement­
looking very much like the main body of a program-becomes
the initialization section of the unit.

The initialization section is where you initialize any data
structures (variables) that the unit uses or makes available
(through the interface) to the program using it. You can use it to
open files for the program to use later. For example, the standard
unit Printer uses its initialization section to make all the calls to
open (for output) the text file Lst, which you can then use in your
program's Write and Writeln statements.

When a program using that unit is executed, the unit's
initialization section is called before the program's main body is
run. If the program uses more than one unit, each unit's
initialization section is called (in the order specified in the
program's uses statement) before the program's main body is
executed.

How are units used?

The units your program uses have already been compiled and
stored as machine code, not Pascal source code; they are not
Include files. Even the interface section is stored in the special
binary symbol table format that Turbo Pascal uses. Furthermore,
certain standard units are stored in a special file (TURBO.TPL)
and are automatically loaded into memory along with Turbo
Pascal itself.

As a result, using a unit or several units adds very little time
(typically less than a second) to the length of your program's
compilation. If the units are being loaded in from a separate disk
file, a few additional seconds may be required because of the time
it takes to read from the disk.

As stated earlier, to use a specific unit or collection of units, you
must place a uses clause at the start of your program, followed by
a list of the unit names you want to use, separated by commas:

Chapter 3, Turbo Pascal units 59

60

Referencing unit
declarations

program MyProg;
uses thisUnit,thatUnit,theOtherUnit;

When the compiler sees this uses clause, it adds the interface
information in each unit to the symbol table and links the
machine code that is the implementation to the program itself.

The ordering of units in the uses clause is not important. If
thisUnit uses thatUnit or vice versa, you can declare them in either
order, and the compiler will determine which unit must be linked
into MyProg first. In fact, if this Unit uses thatUnit but MyProg
doesn't need to directly call any of the routines in thatUnit, you
can "hide" the routines in thatUnit by omitting it from the uses
clause:

unit thisUnit;
uses thatUnit;

program MyProg;
uses thisUnit, theOtherUnit;

In this example, thisUnit can call any of the routines in thatUnit,
and MyProg can call any of the routines in this Unit or
theOtherUnit. MyProg cannot, however, call any of the routines in
thatUnit because that Unit does not appear in MyProg's uses
clause.

If you don't put a uses clause in your program, Turbo Pascal
links in the System standard unit anyway. This unit provides some
of the standard Pascal routines as well as a number of Turbo
Pascal-specific routines.

Once you include a unit in your program, all the constants, data
types, variables, procedures, and functions declared in that unit's
interface become available to you. For example, suppose the
following unit existed:

unit MyStuff;
interface
const

MyValue = 915;
type

MyStars = (Deneb,Antares,Betelgeuse);
var

MyWord: string[20];

Turbo Pascal User's Guide

procedure SetMyWord(Star: MyStars):
function TheAnswer: Integer:
implementation

end.

What you see here is the unit's interface, the portion that is visible
to (and used by) your program. Given this, you might write the
following program:

program TestStuff;
uses MyStuff;
var

I: Integer;
AStar: MyStars;

begin
WriteIn(MyVaIue);
AStar := Deneb;
SetMyWord(AStar);
WriteIn(MyWord);
I := TheAnswer;
WriteIn(I);

end.

Now that you have included the statement uses MyStuff in your
program, you can refer to all the identifiers declared in the
interface section in the interface of MyStuff (My Word, MyVaZue,
and so on). However, consider the following situation:

Chapter 3, Turbo Pascal units

program TestStuff;
uses MyStuff;
const

MyVaIue = 22;
var

I: Integer:
AStar: MyStars:

function TheAnswer: Integer;
begin

TheAnswer := -1
end:
begin

WriteIn(MyVaIue);
AStar := Deneb:
SetMyWord(AStar);
Write In (MyWord) ;
I := TheAnswer;
Write In (I) ;

end.

61

62

This program redefines some of the identifiers declared in
MyStuff. It will compile and run, but will use its own definitions
for MyValue and TheAnswer, since those were declared more
recently than the ones in MyStuff.

You're probably wondering whether there's some way in this
situation to still refer to the identifiers in MyStuffi Yes, preface
each one with the identifier MyStuff and a period (.). For example,
here's yet another version of the earlier program:

program TestStuff;
uses MyStuff;
const

MyVaIue = 22;
var

I: Integer;
AStar: MyStars;

function TheAnswer: Integer;
begin

TheAnswer := -1;
end;
begin

WriteIn(MyStuff.MyVaIue);
AStar := Deneb;
SetMyWord(AStar);
WriteIn(MyWord);
I := MyStuff.TheAnswer;
WriteIn(I);

end.

This program will give you the same answers as the first one,
even though you've redefined MyValue and TheAnswer. Indeed, it
would have been perfectly legal (although rather wordy) to write
the first program as follows:

program TestStuff;
uses MyStuff;
var

I: Integer;
AStar: MyStuff.MyStars;

begin
WriteIn(MyStuff.MyVaIue);
AStar := MyStuff.Deneb;
MyStuff.SetMyWord(AStar);
Write In (MyStuff.MyWord) ;
I := MyStuff.TheAnswer;
Writein (I) ;

end.

Turbo Pascal User's Guide

Implementation
section uses

clause

Note that you can preface any identifier-constant, data type,
variable, or subprogram-with the unit name.

As of version 5.0, Turbo Pascal allows you to place a uses clause
in a unit's implementation section. If present, the uses clause
must immediately follow the implementation keyword, just like a
uses clause in the interface section must immediately follow the
interface keyword.

A uses clause in the implementation section allows you to further
hide the inner details of a unit, since units used in the
implementation section are not visible to users of the unit. More
importantly, however, it also enables you to construct mutually
dependent units.

Since units in Turbo Pascal need not be strictly hierarchical, you
can make circular unit references. The next section provides an
example that demonstrates the usefulness of circular references.

Circular unit references The following program demonstrates how two units can "use"
each other. The main program, Circular, uses a unit named
Display. Display contains one routine in its interface section,
WriteXY, which takes three parameters: an (x, y) coordinate pair
and a text message to display. If the (x, y)coordinates are
onscreen, WriteXY moves the cursor to (x, y) and displays the
message there; otherwise, it calls a simple error-handling routine.

So far, there's nothing fancy here-WriteXY is taking the place of
Write. Here's where the circular unit reference enters in: How is
the error-handling routine going to display its error message? By
using WriteXY again. Thus you have· WriteXY, which calls the
error-handling routine ShowError, which in turn calls WriteXY to
put an error message onscreen. If your head is spinning in circles,
let's look at the source code to this example, so you can see that it's
really not that tricky.

The main program, Circular, clears the screen and makes three
calls to WriteXY:

program Circular;
{ Display text using WriteXY }

uses
Crt, Display;

Chapter 3, Turbo Pascal units 63

64

begin
ClrScr;
WriteXY(l, 1, 'Upper left corner of screen');
WriteXY(100, 100, 'Way off the screen');
WriteXY(81 - Length('Back to reality'), 15, 'Back to reality');

end.

Look at the (x, y) coordinates of the second call to WriteXY. It's
hard to display text at (100, 100) on an 80x25line screen. Next,
let's see how WriteXY works. Here's the source to the Display unit,
which contains the WriteXYprocedure. If the (x, y) coordinates are
valid, it displays the message; otherwise, WriteXY displays an
error message:

unit Display;
{ Contains a simple video display routine

interface

procedure WriteXY(X, Y: Integer; Message: String);

implementation
uses

Crt, Error;

procedure WriteXY(X, Y: Integer; Message: String);
begin

if (X in [1 .. 80]) and (Y in [1 .. 25]) then
begin

GoToXY(X, Y);
Write (Message) ;

end
else

ShowError('Invalid WriteXY coordinates');
end;

end.

The ShowError procedure called by WriteXY is declared in the
following code in the Error unit. Show Error always displays its
error message on the 25th line of the screen:

unit Error;
{ Contains a simple error-reporting routine

interface

procedure ShowError(ErrMsg: String);

implementation

uses
Display;

Turbo Pascal User's Guide

Sharing other
declarations

procedure ShowError(ErrMsg: String);
begin

WriteXY(l, 25, 'Error: ' + ErrMsg);
end;

end.

Notice that the uses clause in the implementation sections of both
Display and Error refer to each other. These two units can refer to
each other in their implementation sections because Turbo Pascal
can compile complete interface sections for both. In other words,
the Turbo Pascal compiler will accept a reference to partially
compiled unit A in the implementation section of unit B, as long
as both A and B's interface sections do not depend upon each
other (and thus follow Pascal's strict rules for declaration order).

What if you want to modify WriteXYand Show Error to take an
additional parameter that specifies a rectangular window
onscreen:

procedure WriteXY{SomeWindow: WindRec; X, Y: Integer;
Message: String);

procedure ShowError(SorneWindow: WindRec; ErrMsg: String);

Remember these two procedures are in separate units. Even if you
declared WindData in the. interface of one, there would be no legal
way to make that declaration available to the interface of the
other. The solution is to declare a third module that contains only
the definition of the window record:

unit WindData;
interface
type

WindRec = record
Xl, Y1, X2, Y2: Integer;
ForeColor, BackColor: Byte;
Active: Boolean;

end;
implementation
end.

In addition to modifying the code to WriteXY andShowError to
make use of the new parameter, the interface sections of both the
Display and Error units can now "use" WindData. This approach is
legal because unit WindData has no dependencies in its uses
clause, and units Display and Error refer to each other only in their
respective implementation sections.

Chapter 3, Turbo Pascal units 65

The standard units

System

Dos

Overlay

Crt

66

The file TURBO.TPL contains all the standard units except Graph
and the compatibility units (Graph3 and Turb03): System, Overlay,
Crt, Dos, and Printer. These are units loaded into memory with
Turbo Pascal; they're always readily available to you. You will
normally keep the file TURBO.TPL in the same directory as
TURBO.EXE (or TPC.EXE).

System contains all the standard and built-in procedures and
functions of Turbo Pascal. Every Turbo Pascal routine that is not
part of standard Pascal and that is not in one of the other units is
in System. This unit is always linked into every program. The
details of the System unit are described in Chapter 10 of the Pro­
grammer's Guide, "The System unit."

Dos defines numerous Pascal procedures and functions that are
equivalent to the most commonly used DOS calls, such as Exec,
GetTime, SetTime, DiskSize, and so on. It also defines two low-level
routines, MsDos and Intr, which allow you to directly invoke any
MS-DOS call or system interrupt. Registers is the data type for the
parameter to MsDos and Intr. Some other constants and data
types are also defined.

The Dos unit is discussed in detail in Chapter 11 of the Program­
mer's Guide, "The Dos unit."

Overlay provides support for Turbo Pascal's powerful overlay
system. Overlays are discussed in detail in Chapter 13 of the Pro­
grammer's Guide, "The Overlay unit."

Crt provides a set of PC-specific declarations for input and
output: constants, variables, and routines. You can use these to
manipulate your text screen (do windowing, direct cursor
addressing, text color and background). You can also do "raw"
input from the keyboard and control the PC's sound chip. Crt is

Turbo Pascal User's Guide

Printer

Graph

Turbo3 and
Graph3

described in detail in Chapter 15 of the Programmer's Guide, liThe
Crt unit."

Printer declares the text-file variable Lst and connects it to a device
driver that allows you to send standard Pascal output to the
printer using Write and Writeln. For example, once you include
Printer in your program, you could do the following:

Write (Lst, 'The sum of " A:4, ' and', B:4, ' is ');
C := A + B;
Writeln(Lst, C:8);

The Graph unit is not built into TURBO.TPL, but instead resides
on the same disk with the .BGI and .CHR support files. Place
GRAPH.TPU in the current directory or use the unit directory to
specify the full path to GRAPH.TPU. (If you have a hard disk and
you used the INSTALL program, your system is already set up so
you can use Graph.)

Graph supplies a set of fast, powerful graphics routines that allow
you to make full use of the graphics capabilities of your PC. It
implements the device-independent Borland graphics handler,
allowing support of CGA, EGA, Hercules, AT &T 400, MCGA,
3270 PC, and VGA and 8514 graphics.

Further explanations of Graph and the Borland Graphic Interface
(BGI) may be found in Chapter 12 of the Programmer's Guide, liThe
Graph unit and the BGI."

These units are provided for backward compatibility only. Turbo3
contains two variables and several procedures no longer
supported by Turbo Pascal. Graph3 supports the full set of
graphics routines-basic, advanced, and turtlegraphics-from
version 3.0. Full information on these units is included in the
online file TURB03.INT.

Now that you've been introduced to units,let's see about writing
your own.

Chapter 3, Turbo Pascal units 67

Writing your own units

Compiling units

68

Say you've written a unit called IntLib, stored it in a file called
INTLIB.P AS, and compiled it to disk; the resulting code file will
be called INTLIB.TPU. To use it in your program, you must
include a uses statement to tell the compiler you're using that
unit. Your program might look like this:

program MyProg;
uses IntLib;

Note that Turbo Pascal expects the unit code file to have the same
name (up to eight characters) of the unit itself. If your unit name
is MyUtilities, then Turbo is going to look for a file called
MYUTILIT.P AS.

You compile a unit exactly the way you'd compile a program:
Write it using the editor and select the Compile I Compile
command (or press Alt-F9). However, instead of creating an .EXE
file, Turbo Pascal will create a .TPU (Turbo Pascal Unit) file. You
can then leave this file as is or merge it into TURBO.TPL using
TPUMOVEREXE.

In any case, you probably want to copy your .TPU files (along
with their source) to the unit directory you specified in the Unit
Directories input box (Options I Directories). That way, you can
reference those files without having to have them in the current
directory or in TURBO.TPL. (The Unit Directories input box lets
you give multiple directories for the compiler to search for in unit
files.)

You can only have one unit in a given source file; compilation
stops when the final end statement is encountered.

To locate a unit specified in a uses clause, the compiler first
checks the resident units-those units loaded into memory at
startup from the TURBO.TPL file. If the unit is not among the
resident units, the compiler assumes it must be on disk. The name
of the file is assumed to be the unit name with extension .TPU. It
is first searched for in the current directory, and then in the
directories specified with the 0 I D I Unit Directories menu
command or in a / U directive on the TPC command line. For
instance, the construct

Turbo Pascal User's Guide

An example

uses Memory;

where Memory is not a resident unit, causes the compiler to look
for the file MEMORY. TPU in the current directory, and then in
each of the unit directories.

When the Compile I Make and Compile I Build'commands compile
the units specified in a uses clause, the source files are searched
for in the same way as the .TPU files, and the name of a given
unit's source file is assumed to be the unit name with extension
.PAS.

Okay, now let's write a small unit. We'll call it IntLib and put in
two simple integer routines-a procedure and a function:

unit IntLib;
interface
procedure ISwap(var I,J: Integer);
function IMax(I,J: Integer): Integer;
implementation
procedure ISwap;
var

Temp: Integer;
begin

Temp := I; I := J; J := Temp;
end; {of proc ISwap }
function IMax;
begin
if I > J then

IMax := I
else IMax := J;

end; {of func IMax
end. {of unit IntLib }

Type this in, save it as the file INTLIB.P AS, then compile it to
disk. The resulting unit code file is INTLIB.TPU. Move it to your
unit directory (whevever that might happen to be) or leave it in
the same directory as the program that follows. This next
program uses the unit IntLib:

program IntTest;
uses IntLib;
var

A, B: Integer;
begin

Write ('Enter two integer values: ');
Readln(A,B);

Chapter 3, Turbo Pascal units 69

70

Units and large

ISwap (A,B) ;
Writeln('A = " A, ' B = " B);
Writeln('The max is " IMax(A,B));

end. {of program IntTest }

Congratulations! You've just created your first unit and written a
program that uses it!

programs Up until now, you've probably thought of units only as libraries­
collections of useful routines to be shared by several programs.
Another function of a unit, however, is to break up a large
program into modules.

Two aspects of Turbo Pascal make this modular fu~ctionality of
units work: (1) its tremendous speed in compiling and linking and
(2) its ability to manage several code files simultaneously, such as
a program and several units.

Typically, a large program is divided into units that group
procedures by their function. For instance, an editor application
could be divided into initialization, printing, reading and writing
files, formatting, and so on. Also, there could be a "global" unit­
one used by all other units, as well as the main program-that
defines global constants, data types, variables, procedures, and
functions.

The skeleton of a large program might look like this:

program Editor;
uses

Dos,Crt,Printer
EditGlobals,
Editlnit,
EditPrint,
EditRead, EditWrite,
EditFormat;

{ Standard units from TURBO.TPL }
{ User-written units }

{ Program's declarations, procedures, and functions}
begin {main program }
end. {of program Editor }

Note that the units in this program could either be in TURBO.TPL
or in their own individual.TPU files. If the latter is true, then
Turbo Pascal will manage your project for you. This means when
you recompile program Editor using the compiler's built-in make
facility, Turbo Pascal will compare the dates of each .P AS and

Turbo Pascal User's Guide

Units as overlays

The TPUMOVER
utility

.TPU file and recompile modules whose source has been
modified.

Another reason to use units in large programs has to do with code
segment limitations. The 8086 (and related) processors limit the
size of a given chunk, or segment, of code to 64K. This means that
the main program and any given segment cannot exceed a 64K
size. Turbo Pascal handles this by making each unit a separate
code segment. Your upper limit is the amount of memory the
machine and operating system can support-640K on most PCs.
Without units, you're limited to 64K of code for your program.
(See Chapter 6, "Project management," for more information
about how to deal with large programs.)

Sometimes, even the ability to have multiple units loaded isn't
enough to solve your memory problems. You might not have
640K to work with, or you may need to have large amounts of
data in memory at the same time. In other words, you just can't fit
your entire program into memory at once.

Turbo Pascal offers a solution: overlays. An overlay is a chunk of
program that is loaded into memory when needed, and unloaded
when not. This allows you to bring in sections of a program only
when you need them.

Overlays in Turbo Pascal are based on units: The smallest chunk
of code that can be loaded or unloaded is an entire unit. You can
define complex sets of overlays, specifying which units can or
cannot be in memory at the same time. Best of all, with Turbo
Pascal's intelligent overlay manager, you don't have to worry
about loading or unloading the overlays yourself-it's all done
automatically.

You'll learn more about overlays and how to set them up and use
them in Chapter 13 of the Programmer's Guide, "The Overlay unit."

Suppose you want to add a well-designed and thoroughly
debugged unit to the library of standard units (TURBO.TPL) so
that it's automatically loaded into memory when you run the
compiler. Is there any way to add to TURBO.TPL? Yes, by using
the TPUMOVER.EXE utility.

Chapter 3, Turbo Pascal units 71

You can find out more about
TPUMOVER in the file

UTlLS.DOC in ONLlNE.ZIP on
your distribution disks.

72

You can also use TPUMOVER to remove units from the Turbo
Pascal standard unit library file, reducing its size and the amount
of memory it takes up when loaded.

As you've seen, it's really quite simpie to write your own units. A
well-designed, well-implemented unit simplifies program
development; you solve the problems only once, not for each new
program. Best of all, a unit provides a clean, simple mechanism
for writing very large programs.

Turbo Pascal User's Guide

c H A p T E R

4

Object -oriented programming

Object-oriented programming (OOP) is a method of
programming that closely mimics the way all of us get things
done. It is a natural evolution from earlier innovations to
programming language design: It is more structured than
previous attempts at structured programming; and it is more
modular and abstract than previous attempts at data abstraction
and detail hiding. Three main properties characterize an object­
oriented programming language:

• Encapsulation: Combining a record with the procedures and
functions that manipulate it to form a new data type-an object.

• Inheritance: Defining an object and then using it to build a
hierarchy of descendant objects, with each descendant
inheriting access to all its ancestors' code and data.

• Polymorphism: Giving an action one name that is shared up and
down an object hierarchy, with each object in the hierarchy
implementing the action in a way appropriate to itself.

Turbo Pascal's language extensions give you the full power of
object-oriented programming: more structure and modularity,
more abstraction, and reusability built right into the language. All
these features add up to code that is more structured, extensible,
and easy to maintain.

The challenge of object-oriented programming is that it requires
you to set aside habits and ways of thinking about programming
that have been standard for many years. Once you do that,

Chapter 4, Object-oriented programming 73

Objects?

Objects keep all their
characteristics and behavior

together.

74

however, OOP is a simple, straightforward, superior tool for
solving many of the problems that plague traditional programs.

A note to you who have done object-oriented programming in other
languages: Put aside your previous impressions of OOP and learn
Turbo Pascal's object-oriented features on their own terms. OOP is
not one single way of programming; it is a continuum of ideas. In
its object philosophy, Turbo Pascal is more like c++ than
Small talk. Smalltalk is an interpreter, while from the beginning,
Turbo Pascal has been a pure native code compiler. Native code
compilers do things differently (and far more quickly) than
interpreters. Turbo Pascal was designed to be a production
development tool, not a research tool.

And a note to you who haven't any notion at all what OOP is about:
That's just as well. Too much hype, too much confusion, and too
many people talking about something they don't understand
have greatly muddied the waters in recent years. Strive to forget
what people have told you about OOP. The best way (in fact, the
only way) to learn anything useful about OOP is to do what
you're about to do: Sit down and try it yourself.

Yes, objects. Look around you ... there's one: the apple you brought
in for lunch. Suppose you were going to describe an apple in soft­
ware terms. The first thing you might be tempted to do is pull it
apart: Let 5 represent the area of the skin; let J represent the fluid
volume of juice it contains; let F represent the weight of fruit
inside; let D represent the number of seeds

Don't think that way. Think like a painter. You see an apple, and
you paint an apple. The picture of an apple is not an apple; it's just
a symbol on a flat surface. But it hasn't been abstracted into seven
numbers, all standing alone and independent in a data segment
somewhere. Its components remain together, in their essential
relationships to one another.

Objects model the characteristics and behavior of the elements of
the world we live in. They are the ultimate data abstraction so far.

An apple can be pulled apart, but once it's been pulled apart it's
not an apple anymore. The relationships of the parts to the whole
and to one another are plainer when everything is kept together

Turbo Pascal User's Guide

Inheritance

in one wrapper. This is called encapsulation, and it's very impor­
tant. We'll return to encapsulation in a little while.

Equally important, objects can inherit characteristics and behavior
from what are called ancestor objects. This is an intuitive leap; in­
heritance is perhaps the single biggest difference between object­
oriented Turbo Pascal and Standard Pascal programming today.

The goal of science is to describe the workings of the universe.
Much of the work of science, in furthering that goal, is simply the
creation of family trees. When entomologists return from the
Amazon with a previously unknown insect in a jar, their funda­
mental concern is working out where that insect fits into the giant
chart upon which the scientific names of all other insects are
gathered. There are similar charts of plants, fish, mammals,
reptiles, chemical elements, subatomic particles, and external
galaxies. They all look like family trees: a single overall category
at the top, with an increasing number of categories beneath that
single category, fanning out to the limits of diversity.

Within the category insect, for example, there are two divisions:
insects with visible wings, and insects with hidden wings or no
wings at all. Under winged insects is a larger number of cate­
gories: moths, butterflies, flies, and so on. Each category has
numerous subcategories, and beneath those subcategories are
even more subcategories (see Figure 4.1).

This classification process is called taxonomy. It's a good starting
metaphor for the inheritance mechanism of object-oriented
programming.

The questions a scientist asks in trying to classify a new animal or
object are these: How is it similar to the others of its general class?
How is it different? Each different class has a set of behaviors and
characteristics that define it. A scientist begins at the top of a
specimen's family tree and starts descending the branches, asking
those questions along the way. The highest levels are the most
general, and the questions the simplest: Wings or no wings? Each
level is more specific than the one before it, and less general.
Eventually the scientist gets to the point of counting hairs on the
third segment of the insect's hind legs-specific indeed (and a
good reason, perhaps, not to be an entomologist).

Chapter 4, Object-oriented programming 75

Figure 4.1
A partial taxonomy chart of

insects

The important point to remember is that once a characteristic is
defined, all the categories beneath that definition include that char­
acteristic. So once you identify an insect as a member of the order
diptera (flies), you needn't make the point that a fly has one pair of
wings. The species of insect called flies inherits that characteristic
from its order.

As you'll learn shortly, object-oriented programming is the
process of building family trees for data structures. One of the im­
portant things object-oriented programming adds to traditional
languages like Pascal is a mechanism by which data types inherit
characteristics from simpler, more general types. This mechanism
is inheritance.

Objects: records that inherit

76

In Pascal terms, an object is very much like a record, which is a
wrapper for joining several related elements of data together
under one name. In a graphics environment, you might gather
together the X and Y coordinates of a position on the graphics
screen and call it a record type named Location:

Location = record
X, Y: Integer;

end;

Turbo Pascal User's Guide

Location here is a record type; that is, it's a template that the com­
piler uses to create record variables. A variable of type Location is
an instance of type Location. The term instance is used now and
then in Pascal circles, but it is used all the time by OOP people,
and you'll do well to start thinking in terms of types and instances
of those types.

With type Location you have it both ways: When you need to
think of the X and Y coordinates separately, you can think of them
separately as fields X and Y of the record. On the other hand,
when you need to think of the X and Y coordinates working
together to pin down a place on the screen, you can think of them
collectively as Location.

Suppose you want to display a point of light at a position
described on the screen by a Location record. In Pascal you might
add a Boolean field indicating whether there is an illuminated
pixel at a given location, and make it a new record type:

Point = record
X, Y: Integer;
Visible: Boolean;

end;

You might also be a little more clever and retain record type
Location by creating a field of type Location within type Point:

Point = record
Position: Location;
Visible: Boolean;

end;

This works, and Pascal programmers do it all the time. One thing
this method doesn't do is force you to think about the nature of
what you're manipulating in your software. You need to ask
questions like, "How does a point on the screen differ from a
location on the screen?" The answer is this: A point is a location
that lights up. Think back on the first part of that statement: A
point is a location

There you have it!

Implicit in the definition of a point is a location for that point.
(Pixels exist only onscreen, after all.) Object-oriented program­
ming recognizes that special relationship. Because all points must
contain a location, type Point is a descendant type of type Location.
Point inherits everything that Location has, and adds whatever is
new about Point to make Point what it must be.

Chapter 4, Object-oriented programming 77

Note the use of parentheses
here to denote Inheritance.

78

This process by which one type inherits the characteristics of
another type is called inheritance. The inheritor is called a
descendant type; the type that the descendant type inherits from is
an ancestor type.

The familiar Pascal record types cannot inherit. Turbo Pascal,
however, extends the Pascal language to support inheritance. One
of these extensions is a new category of data structure, related to
records but far more powerful. Data types in this new category
are defined with a new reserved word: object. An object type can
be defined as a complete, stand-alone type in the fashion of Pascal
records, or it can be defined as a descendant of an existing object
type by placing the name of the ancestor type in parentheses after
the reserved word object.

In the graphics example you just looked at, the two related object
types would be defined this way:

type
Location = object

X, Y: Integer;
end;

Point = object (Location)
Visible: Boolean;

end;

Here, Location is the ancestor type, and Point is the descendant
type. As you'll see a little later, the process can continue
indefinitely: You can define descendants of type Point, and
descendants of Point's descendant type, and so on. A large part of
designing an object-oriented application lies in building this object
hierarchy expressing the family tree of the objects in the
application.

All the types eventually inheriting from Location are called
Location's descendant types, but Point is one of Location's immediate
descendants. Conversely, Location is Point's immediate ancestor. An
object type (just like a DOS subdirectory) can have any number of
immediate descendants, but only one immediate ancestor.

Objects are closely related to records, as these definitions show.
The new reserved word object is the most obvious difference, but
there are numerous other differences, some of them quite subtle,
as you'll see later.

For example, the X and y fields of Location are not explicitly
written into type Point, but Point has them anyway, by virtue of

Turbo Pascal User's Guide

Instances of
object types

An object's fields

Don't forget: An object's
inherited fields are not

treated specially simply
because they are inherited.

Good practice
and bad oractice
Turbo Pascal acfually lets you

make an object's fields and
methods private,' for more on

. this, refer to page 87.

inheritance. You can speak about Point's X value, just as you can
speak about Location's X value.

Instances of object types are declared just as any variables are
declared in Pascal, either as static variables or as pointer referents
allocated on the heap:

type
PointPtr = APoint;

var
StatPoint: Point; { Ready to go! }
DynaPoint: PointPtr; {Must allocate with New before use

You access an object's data fields just as you access the fields of an
ordinary record, either through the with statement or by dotting.
For example,

MyPoint.Visible := False;

with MyPoint do
begin

X := 341;
Y := 42;

end;

You just have to remember at first (eventually it comes naturally)
that inherited fields are just as accessible as fields declared within
a given object type. For example, even though X and Yare not
part of Point's declaration (they are inherited from type Location),
you can specify them just as though they were declared within
Point:

MyPoint.X := 17;

Even though you can access an object's fields directly, it's not an
especially good idea to do so. Object-oriented programming
principles require that an object's fields be left alone as much as
possible. This restriction might seem arbitrary and rigid at first,
but it's part of the big picture of OOP that is being built in this
chapter. In time you'll see the sense behind this new definition of
good programming practice, though there's some ground to cover

Chapter 4, Object-oriented programming 79

An object's data fields are
what an object knows,' its

methods are what an object
does.

Methods

80

before it all comes together. For now, take it on faith: Avoid
accessing object data fields directly.

So-how are object fields accessed? What sets them and reads
them? .

The answer is that an object's methods are used to access an object's
data fields whenever possible. A method is a procedure or function
declared within an object and tightly bonded to that object.

Methods are one of object-oriented programming's most striking
attributes, and they take some getting used to. Start by harkening
back to that fond old necessity of structured programming,
initializing data structures. Consider the task of initializing a
record with this definition:

Location = record
X, Y: Integer;

end;

Most programmers would use a with statement to assign initial
values to the X and y fields:

var
MyLocation: Location;

with MyLocation do
begin

X := 17;
Y := 42;

end;

This works well, but it's tightly bound to one specific record
instance, MyLocation. If more than one Location record needs to be
initialized, you'll need more with statements that do essentially
the same thing. The natural next step is to build an initialization
procedure that generalizes the with statement to encompass any
instance of a Location type passed as a parameter:

Turbo Pascal User's Guide

procedure InitLocation(var Target: Location; NewX, NewY: Integer);
begin

with Target do
begin

X := NewX;
Y := NewY;

end;
end;

This does the job, all right-but if you're getting the feeling that
it's a little more fooling around than it ought to be, you're feeling
the same thing that object-oriented programming's early
proponents felt.

It's a feeling that implies that, well, you've designed procedure
InitLocation specifically to serve type Location. Why, then, must
you keep specifying what record type and instance InitLocation
acts upon? There should be some way of welding together the
record type and the code that serves it into one seamless whole.

Now there is. It's called a method. A method is a procedure or
function welded so tightly to a given type that the method is
surrounded by an invisible with statement, making instances of
that type accessible from within the method. The type definition
includes the header of the method. The full definition of the
method is qualified with the name of the type. Object type and
object method are the two faces of this new species of structure
called an object:

type
Location = object

X, Y: Integer;
procedure Init(NewX, NewY: Integer);

end;

procedure Location.Init(NewX, NewY: Integer);
begin

X := NewX; { The X field of a Location object
Y := NewY; { The Y field of a Location object}

end;

Now, to !.nitialize an instance of type Location, you simply call its
method as though the method were a field of a record, which in
one very real sense it is:

var
MyLocation: Location;

MyLocation.Init(17, 42); {Easy, no? }

Chapter 4, Object-oriented programming 81

Code and data
together

See "Private section N on
page 87 for details on how to

do this.

Defining methods

82

One of the most important tenets of object-oriented programming
is that the programmer should think of code and data together
during program design. Neither code nor data exists in a vacuum.
Data directs the flow of code, and code manipulates the shape and
values of data.

When your data and code are separate entities, there's always the
danger of calling the right procedure with the wrong data or the
wrong procedure with the right data. Matching the two is the
programmer's job, and while Pascal's strong typing does help, at
best it can only say what doesn't go together.

Pascal says nothing, anywhere, about what does go together. If it's
not in a comment or in your head, you take your chances.

By bundling code and data declarations together, an object helps
keep them in sync. Typically, to get the value of one of an object's
fields, you call a method belonging to that object that returns the
value of the desired field. To set the value of a field, you call a
method that assigns a new value to that field.

Like many aspects of object-oriented programming, respect for
encapsulated data is a discipline you should always observe. It's
better to access an object's data by using the methods it provides,
instead of reading the data directly. Turbo Pascal lets you enforce
encapsulation through the use of a private declaration in an
object's declaration.

The process of defining an object's methods is reminiscent of
Turbo Pascal units. Inside an object, a method is defined by the
header of the function or procedure acting as a method:

type
Location = object

X, Y: Integer;
procedure Init(InitX, InitY: Integer);
function GetX: Integer;
function GetY: Integer;

end;

Turbo Pascal User's Guide

All data fields must be
declared before the first

method declaration.

Method scope
and the Self
parameter

As with procedure and function declarations in a unit's interface
section, method declarations within an object tell what a method
does, but not how.

The how is defined outside the object definition, in a separate
procedure or function declaration. When methods are fully
defined outside the object, the method name must be preceded by
the name of the object type that owns the method, followed by a
period:

procedure Location.Init(InitX, InitY: Integer);
begin

X := InitX;
Y := Inity;

end;

function Location.GetX: Integer;
begin

GetX := X;
end;

function Location.GetY: Integer;
begin

GetY := Y;
end;

Method definition follows the intuitive dotting method of
specifying a record field. In addition to having a definition of
Location.GetX, it would be completely legal to define a procedure
named GetX without the identifier Location preceding it. However,
the "outside" GetX would have no connection to the object type
Location and would probably confuse the sense of the program as
well.

Notice that nowhere in the previous methods is there an explicit
with object do ... construct. The data fields of an object are freely
available to that object's methods. Although they are separated in
the source code, the method bodies and the object's data fields
really share the same scope.

This is why one of Location's methods can contain the statement
Gety := y without any qualifier to Y. It's because Y belongs to the
object that called the method. When an object calls a method, there is

Chapter 4, Object-oriented programming 83

This example is not fully
correct syntactically: it's here

simply to give you a fuller
appreciation for the special
link between an object and

Its methods.

Explicit use of Self is legal, but
you should avoid situations

that require it.

84

an implicit statement to the effect with myself do method linking
the object and its method in scope.

This implicit with statement is accomplished by the passing of an
invisible parameter to the method each time any method is called.
This parameter is called Self, and is actually a full 32-bit pointer to
the object instance making the method call. The GetY method
belonging to Location is roughly equivalent to the following:

function Location.GetY(var Self: Location): Integer;
begin

GetY := Self.Y;
end;

Is it important for you to be aware of Self? Ordinarily, no: Turbo
Pascal's generated code handles it all automatically in virtually all
cases. There are a few circumstances, however, when you might
have to intervene inside a method and make explicit use of the
Self parameter.

Self is actually an automatically declared identifier, and if you
happen to find yourself in the midst of an identifier conflict
within a method, you can resolve it by using the Self identifier as a
qualifier to any data field belonging to the method's object:

type
MouseStat = record

Active: Boolean;
X, Y: Integer;
LButton, RButton: Boolean;
Visible: Boolean;

end;

procedure Location.GoToMouse(MousePos: MouseStat);
begin

Hide;
with MousePos do
begin

Self.X := X;
Self.Y := Y;

end;
Show;

end;

Turbo Pascal User's Guide

Methods implemented as
externals in assembly

language must take Self into
account when they access
method parameters on the

stack. For more details on
method call stack frames,
see Chapter 78 in the Pro-

grammer's Guide.

Object data fields
and method

formal
parameters

Objects exported
by units

This example is necessarily simple, and the use of Self could be
avoided simply by abandoning the use of the with statement
inside Location.GoToMouse. You might find yourself in a situation
inside a complex method where the use of with statements simpli­
fies the logic enough to make Self worthwhile. The Self parameter
is part of the physical stack frame for all method calls.

One consequence of the fact that methods and their objects share
the same scope is that a method's formal parameters cannot be
identical to any of the object's data fields. This is not some new
restriction imposed by object-oriented programming, but rather
the same old scoping rule that Pascal has always had. It's the same
as not allowing the formal parameters of a procedure to be
identical to the procedure's local variables:

procedure CrunchIt{Crunchee: MyDataRec, Crunchby, ErrorCode:
Integer);
var

A, B: Char;
ErrorCode: Integer; { This declaration causes an error! }

begin

A procedure's local variables and its formal parameters share the
same scope and thus cannot be identical. Y 9U'1l get "Error 4:
Duplicate identifier" if you try to compile something like this; the
same error occurs if you attempt to give a method a formal
parameter identical to any field in the object that owns the
method.

The circumstances are a little different, since having procedure
headers inside a data structure is a wrinkle new to Turbo Pascal,
but the guiding principles of Pascal scoping have not changed at
all.

It makes good sense to define objects in units, with the object type
declaration in the interface section of the unit and the procedure
bodies of the object type's methods defined in the implementation
section.

Chapter 4, Object-oriented programming 85

86

Exported means "defined
within the interface section

ofa unit. N

Objects can a/so be typed
constants.

Units can have their own private object type definitions in the
implementation section, and such types are subject to the same
restrictions as any types defined in a unit implementation section.
An object type defined in the interface section of a unit can have
descendant object types defined in the implementation section of
the unit. In a case where unit B uses unit A, unit B can also define
descendant types of any object type exported by unit A.

The object types and methods described earlier can be defined
within a unit as shown in POINTS.P AS on your disk. To make use
of the object types and methods defined in unit Points, you simply
use the unit in your own program, and declare an instance of type
Point in the var section of your program:

program MakePoints;

uses Graph, Points;

var
APoint: Point;

To create and show the point represented by APoint, you simply
call APoint's methods, using the dot syntax:

APoint.Init(151, 82);
APoint.Show;
APoint.MoveTo(163, 101);
APoint.Hide;

{ Initial X,Y at 151,82 }
{ APoint turns itself on }
{ APoint moves to 163,101 }
{ APoint turns itself off }

Objects, being very similar to records, can also be used inside with
statements. In that case, naming the object that owns the method
isn't necessary:

with APoint do
begin

Init (151, 82);
Show;
MoveTo(163, 101);
Hide:

end;

{ Initial X,Y at 151,82 }
{ APoint turns itself on }
{ APoint moves to 163,101 }
{ APoint turns itself off }

Just as with records, objects can be passed to procedures as
parameters and (as you'll see later on) can also be allocated on the
heap.

Turbo Pascal User's Guide

Private section In some circumstances you may have parts of an object
declaration that you don't want to export. For example, you may
want to provide objects for other programmers to use without
letting them manipulate the object's data directly. To make it easy
for you, Turbo Pascal allows you to specify private fields and
methods within objects.

Programming in
the active voice

Object-oriented languages
were orice called "actor

languages* with this
metaphor in mind.

Private fields and methods are accessible only within the unit in
which the object is declared. In the previous example, if the type
Point had private fields, for example, they could only be accessed
by code within the Points unit. Even though other parts of Point
would be exported, the parts declared as private would be
inaccessible.

Private fields and methods are declared just after regular fields
and methods, following the optional private reserved word. Thus,
the full syntax for an object declaration is

type
NewObject = object(ancestor)

fields; { these are public }
methods; { these are public }

private
fields; { these are private }
methods; { these are private }

end;

Most of what's been said about objects so far has been from a
comfortable, Turbo Pascal-ish perspective, since that's most likely
where you are coming from. This is about to change, as you move
on to OOP concepts with fewer precedents in standard Pascal
programming. Object-oriented programming has its own
particular mindset, due in part to OOP's origins in the (somewhat
insular) research community, but also because the concept is truly
and radically different.

One often amusing outgrowth of this is that OOP fanatics
anthropomorphize their objects. Data structures are no longer
passive buckets that you toss values into. In the new view of
things, an object is looked upon as an actor on a stage, with a set
of lines (methods) memorized. When you (the director) give the
word, the actor recites from the script.

Chapter 4, Object-oriented programming 87

Encapsulation
Declaring fields as private

allows you to enforce access
to those fields only through

methods.

88

It can be helpful to think of the statementAPoint.MoveTo(242,118)
as giving an order to object APoint, saying "Move yourself to
location 242,118." The object is the central concept here. Both the
list of methods and the list of data fields contained by the object
serve the object. Neither code nor data is boss.

Objects aren't being described as actors on a stage just to be cute.
The object-oriented programming paradigm tries very hard to
model the components of a problem as components, and not as
logical abstractions. The odds and ends that fill our lives, from
toasters to telephones to terry towels, all have characteristics
(data) and behaviors (methods). A toaster's characteristics might
include the voltage it requires, the number of slices it can toast at
once, the setting of the light/ dark lever, its color, its brand, and so
on. Its behaviors include accepting slices of bread, toasting slices
of bread, and popping toasted slices back up again.

If you wanted to write a kitchen simulation program, what better
way to do it than to model the various appliances as objects, with
their characteristics and behaviors encoded into data fields and
methods? It's been done, in fact; the very first object-oriented
language (Simula-67) was created as a language for writing such
simulations.

This is the reason that object-oriented programming is so firmly
linked in conventional wisdom to graphics-oriented environ­
ments. Objects should be simulations, and what better way to
simulate an object than to draw a picture of it? Objects in Turbo
Pascal should model components of the problem you're trying to
solve. Keep that in mind as you further explore Turbo Pascal's
object-oriented extensions.

The welding of code and data together into objects is called
encapsulation. If you're thorough, you can provide enough
methods so that a user of the object never has to access its fields
directly. Like Smalltalk and other programming languages, Turbo
Pascal lets you enforce encapsulation through the use of a private
directive. In this example, we won't specify a private section for
fields and methods, but instead we will restrict ourselves to using
methods in order to access the data we want.

Location and Point are written such that it is completely
unnecessary to access any of their internal data fields directly:

Turbo Pascal User's Guide

Methods: no

type
Location = object

X, Y: Integer;
procedure Init(InitX, InitY: Integer);
function GetX: Integer;
function GetY: Integer;

end;

Point = object(Location)
Visible: Boolean;
procedure Init(InitX, InitY: Integer);
procedure Show;
procedure Hide;
function IsVisible: Boolean;
procedure MoveTo(NewX, NewY: Integer);

end;

There are only three data fields here: X, Y, and Visible. The
MoveTo method loads new values into X and Y, and the GetX and
GetY methods return the values of X and Y. This leaves no further
need to access X or Y directly. Show and Hide toggle the Boolean
Visible between True and False, and the Is Visible function returns
Visible's current state.

Assuming an instance of type Point called APoint, you would use
this suite of methods to manipulate APoint's data fields indirectly,
like this:

with APoint do
begin

Init (0, 0);
Show;

end;

{ Init new point at 0,0 }
{ Make the point visible }

Note that the object's fields are not accessed at all except by the
object's methods.

downside Adding these methods bulks up Point a little in source form, but
the Turbo Pascal smart linker strips out any method code that is
never called in a program. You therefore shouldn't hang back
from giving an object type a method that might or might not be
used in every program that uses the object type. Unused methods
cost you nothing in performance or .EXE file size-if they're not
used, they're simply not there.

Chapter 4, Object-oriented programming 89

About data abstraction

1111"

Extending objects

90

There are powerful advantages to being able to completely
decouple Point from global references. If nothing outside the
object "knows" the representation of its internal data, the
programmer who controls the object can alter the details of the
internal data representation-as long as the method headers
remain the same.

Within some object, data might be represented as an array, but
later on (perhaps as the scope of the application grows and its
data volume expands), a binary tree might be recognized as a
more efficient representation. If the object is completely encapsu­
lated, a change in data representation from an array to a binary
tree does not alter the object's use at all. The interface to the object
remains completely the same, allowing the programmer to fine­
tune an object's performance without breaking any code that uses
the object.

People who first encounter Pascal often take for granted the
flexibility of the standard procedure WriteLn, which allows a
single procedure to handle parameters of many different types:

WriteLn(CharVar);
WriteLn(IntegerVar);
WriteLn(RealVar);

{ outputs a character value }
{ Outputs an integer value }
{ Outputs a floating-point value

Unfortunately, standard Pascal has no provision for letting you
create equally flexible procedures of your own.

Object-oriented programming solves this problem through
inheritance: When a descendant type is defined, the methods of
the ancestor type are inherited, but they can also be overridden if
desired. To override an inherited method, simply define a new
method with the same name as the inherited method, but with a
different body and (if necessary) a different set of parameters.

A simple example should make both the process and the
implications clear. Let's define a descendant type to Point that
draws a circle instead of a point on the screen:

Turbo Pascal User's Guide

type
Circle = object (Point)

Radius: Integer;
procedure Init(InitX, InitY: Integer; InitRadius: Integer);
procedure Show;
procedure Hide;
procedure Expand(ExpandBy: Integer);
procedure MoveTo(NewX, NewY: Integer);
procedure Contract(ContractBy: Integer);

end;

procedure Circle. Init (InitX, InitY: Integer; InitRadius: Integer);
begin

Point. Init (InitX, InitY);
Radius := InitRadius;

end;

procedure Circle.Show;
begin

Visible := True;
Graph.Circle(X, Y, Radius);

end;

procedure Circle.Hide;
var

TempColor: Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph. Circle (X, Y, Radius);
Graph.SetColor(TempColor);

end;

procedure Circle.Expand(ExpandBy: Integer);
begin

Hide;
Radius := Radius + ExpandBy;
if Radius < 0 then Radius := 0;
Show;

end;

procedure Circle.Contract(ContractBy: Integer);
begin

Expand(-ContractBy);
end;

Chapter 4, Object-oriented programming 91

92

procedure Circle.MoveTo(NewX, NewY: Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

A circle, in a sense, is a fat point: It has everything a point has (an
X,Y location, a visible/invisible state) plus a radius. Object type
Circle appears to have only the single field Radius, but don't forget
about all the fields that Circle inherits by being a descendant type
of Point. Circle has X, Y, and Visible as well, even if you don't see
them in the type definition for Circle.

Since Circle defines a new field, Radius, initializing it requires a
new Init method that initializes Radius as well as the inherited
fields. Rather than directly assigning values to inherited fields like
X, Yand Visible, why not reuse Point's initialization method
(illustrated by Circle.Init's first statement). The syntax for calling
an inherited method is Ancestor.Method, where Ancestor is the type
identifier of an ancestral object type, and Method is a method
identifier of that type.

Note that calling the method you override is not merely good
style; it's entirely possible that Point.lnit (or Location.lnit for that
matter) performs some important, hidden initialization. By calling
the overridden method, you ensure that the descendant object
type includes its ancestor's functionality. In addition, any changes
made to the ancestor's method automatically affects all its
descendants.

After calling Point.Init, Circle.Init can then perform its own
initialization, which in this case consists only of assigning Radius
the value passed in InitRadius.

Instead of drawing and hiding your circle point by point, you can
make use of the BGI Circle procedure. If you do, Circle also needs
new Show and Hide methods that override those of Point. These
rewritten Show and Hide methods appear in the example starting
on page 90.

Dotting resolves the potential problems stemming from the name
of the object type being the same as that of the BGI routine that
draws the object type on the screen. Graph.Circle is also a com­
pletely unambiguous way of telling Turbo Pascal that you're

Turbo Pascal User's Guide

Important!

1111"

Inheriting static
methods

referencing the Circle routine in GRAPH. TPU and not the Circle
object type.

Whereas methods can be overridden, data fields cannot. Once you
define a data field in an object hierarchy, no descendant type can
define a data field with precisely the same identifier.

One additional Point method is overridden in the earlier
definition of Circle: MoveTo. If you're sharp, you might be looking
at MoveTo and wondering why MoveTo doesn't use the Radius
field, and why it doesn't make any BGl or other library calls
specific to drawing circles. After all, the GetX and GetY methods
are inherited all the way from Location without modification.
Circle.MoveTo is also completely identical to Point.MoveTo.
Nothing was changed other than to copy the routine and give it
Circle's qualifier in front of the MoveTo identifier.

This example demonstrates a problem with objects and methods
set up in this fashion. All the methods shown so far in connection
with the Location, Point, and Circle object types are static methods.

1111" The term static was chosen to describe methods that are not
virtual. (You willieam about virtual methods shortly.) Virtual
methods are in fact the solution to this problem, but in order to
understand the solution you must first understand the problem.

The symptoms of the problem are these: Unless a copy of the
MoveTo method is placed in Circle's scope to override Point's
MoveTo, the method does not work correctly when it is called
from an object of type Circle. If Circle invokes Point's MoveTo
method, what is moved on the screen is a point rather than a
circle. Only when Circle calls a copy of the MoveTo method
defined in its own scope are circles hidden and drawn by the
nested calls to Show and Hide.

Why so? It has to do with the way the compiler resolves method
calls. When the compiler compiles Point's methods, it first
encounters Point.Show and Point.Hide and compiles code for both
into the code segment. A little later down the file it encounters
Point.MoveTo, which calls both Point.Show and Point.Hide. As with
any procedure call, the compiler replaces the source code
references to Point.Show and Point.Hide with the addresses of their
generated code in the code segment. Thus, when the code for

Chapter 4, Object-oriented programming 93

94

Point.MoveTo is called, it in turn calls the code for Point.Show and
Point.Hide and everything's in phase.

So far, this scenario is all classic Turbo Pascal and would have
been true (except for the nomenclature) since version 1.0. Things
change, however, when you get into inheritance. When Circle
inherits a method from Point, Circle uses the method exactly as it
was compiled.

Look again at what Circle would inherit if it inherited
Point.MoveTo:

procedure Point.MoveTo(NewX, NewY: Integer);
begin

Hide; { Calls Point.Hide }
X := NewX;
Y := NewY;
Show; { Calls Point.Show }

end;

The comments were added to drive home the fact that when Circle
calls Point.MoveTo, it also calls Point.Show and Point.Hide, not
Circle. Show and Circle.Hide. Point.Show draws a point, not a circle.
As long as Point.MoveTo calls Point.Show and Point.Hide,
Point.MoveTo can't be inherited. Instead, it must be overridden by
a second copy of itself that calls the copies of Show and Hide
defined within its scope; that is, Circle. Show and Circle.Hide.

The compiler's logic in resolving method calls works like this:
When a method is called, the compiler first looks for a method of
that name defined within the object type. The Circle type defines
methods named Init, Show, Hide, Expand, Contract, and MoveTo. If
a Circle method were to call one of those five methods, the
compiler would replace the call with the address of one of Circle's
own methods.

If no method by a name is defined within an object type, the
compiler goes up to the immediate ancestor type, and looks
within that type for a method of the name called. If a method by
that name is found, the address of the ancestor's method replaces
the name in the descendant's method's source code. If no method
by that name is found, the compiler continues up to the next
ancestor, looking for the named method. If the compiler hits the
very first (top) object type, it issues an error message indicating
that no such method is defined.

Turbo Pascal User's Guide

Virtual methods
and

polymorphism

Important!

1111"

But when a static inherited method is found and used, you must
remember that the method called is the method exactly as it was
defined and compiled for the ancestor type. If the ancestor's method
calls other methods, the methods called are the ancestor's
methods, even if the descendant has .methods that override the
ancestor's methods.

The methods discussed so far are static methods. They are static
for the same reason that static variables are static: The compiler
allocates them and resolves all references to them at compile time.
As you've seen, objects and static methods can be powerful tools
for organizing a program's complexity.

Sometimes, however, they are not the best way to handle
methods.

Problems like the one described in the previous section are due to
the compile-time resolution of method references. The way out is
to be dynamic-and resolve such references at run time. Certain
special mechanisms must be in place for this to be pOSSible, but
Turbo Pascal provides those mechanisms in its support of virtual
methods.

Virtual methods implement an extremely powerful tool for
generalization called polymorphism. Polymorphism is Greek for
"many shapes," and it is just that: A way of giving an action one
name that is shared up and down an object hierarchy, with each
object in the hierarchy implementing the action in a way appro­
priate to itself.

The simple hierarchy of graphic figures already described
provides a good example of polymorphism in action, imple­
mented through virtual methods.

Each object type in our hierarchy represents a different type of
figure onscreen: a point or a circle. It certainly makes sense to say
that you can show a point on the screen, or show a circle. Later
on, if you were to define objects to represent other figures such as
lines, squares, arcs, and so on, you could write a method for each
that would display that object onscreen. In the new way of
object-oriented thinking, you could say that all these graphic
figure types had the ability to show themselves on the screen.
That much they all have in common.

Chapter 4, Object-oriented programming 95

96

Early binding vs.
late binding

What is different for each object type is the way it must show itself
to the screen. A point is drawn with a point-plotting routine that
needs nothing more than an X,Y location and perhaps a color
value. A circle needs an entirely separate graphics routine to
display itself, taking into account not only X and Y, but a radius
as well. Still further, an arc needs a start angle and an end angle,
and a more complex drawing algorithm to take them into
account.

Any graphic figure can be shown, but the mechanism by which
each is shown is specific to each figure. One word; "Show," is
used to show (literally) many shapes.

That's a good example of what polymorphism is, and virtual
methods are how it is done in Turbo Pascal.

The difference between a static method call and a virtual method
call is the difference between a decision made now and a decision
delayed. When you code a static method call, you are in essence
telling the compiler, "You know what I want. Go call it." Making
a virtual method call, on the other hand, is like telling the
compiler, "You don't know what I want-yet. When the time
comes, ask the instance."

Think of this metaphor in terms of the MoveTo problem
mentioned in the previous section. A call to Circle.MoveTo can
only go to one place: the closest implementation of MoveTo up the
object hierarchy. In that case, Circle.MoveTo would still call Point's
definition of MoveTo, since Point is the closest up the hierarchy
from Circle. Assuming that no descendent type defined its own
MoveTo to override Point's MoveTo, any descendent type of Point
would still call the same implementation of MoveTo. The decision
can be made at compile time and that's all that needs to be done.

When MoveTo calls Show, however, it's a different story. Every
figure type has its own implementation of Show, so which imple­
mentation of Show is called by MoveTo should depend entirely on
what object instance originally called MoveTo. This is why the call
to the Show method within the implementation of MoveTo must be
a delayed decision: When the code for MoveTo is compiled, no
decision as to which Show to call can be made. The information
isn't available at compile time, so the decision has to be deferred
until run time, when the object instance calling MoveTo can be
queried.

Turbo Pascal User's Guide

Object type
compatibility

An ancestor object can be
assigned an instance of any

of its descendant types.

The process by which static method calls are resolved un­
ambiguously to a single method by the compiler at compile time
is early binding. In early binding, the caller and the callee are
connected (bound) at the earliest opportunity, that is, at compile
time. With late binding, the caller and the callee cannot be bound
at compile time, so a mechanism is put into place to bind the two
later on, when the call is actually made.

The nature of the mechanism is interesting and subtle, and you'll
see how it works a little later.

Inheritance somewhat changes Turbo Pascal's type compatibility
rules. In addition to everything else, a descendant type inherits
type compatibility with all its ancestor types. This extended type
compatibility takes three forms:

• between object instances
• between pointers to object instances

• between formal and actual parameters

In all three forms, however, it is critical to remember that type
compatibility extends only from descendant to ancestor. In other
words, descendant types can be freely used in place of ancestor
types, but not vice versa.

Consider these declarations:

type
Locationptr = ~Location;
Pointptr = ~Point;

Circleptr = ~Circle;
var

ALocation: Location;
APoint: Point;
ACircle: Circle;
PLocation: LocationPtr;
PPoint: Pointptr;
PCircle: Circleptr;

With these declarations, the following assignments are legal:

ALocation := APoint;
APoint := ACircle;
ALocation := ACircle;

Chapter 4, Object-oriented programming 97

98

Warning!
1111.

The reverse assignments are not legal.

This is a concept new to Pascal, and it might be a little hard to
remember, at first, which way the type compatibility goes. Think
of it this way: The source must be able to completely fill the destination.
Descendant types contain everything their ancestor types contain
by virtue of inheritance. Therefore a descendant type is either
exactly the same size or (usually) larger than its ancestors, but
never smaller. Assigning an ancestor object to a descendant object
could leave some of the descendant's fields undefined after the
assignment, which is dangerous and therefore illegal.

In an assignment statement, only the fields that the two types
have in common are copied from the source to the destination. In
the assignment statement

ALocation := ACircle;

only the X and Y fields of A Circle are copied to ALocation, since X
and Yare all that types Circle and Location have in common.

Type compatibility also operates between pointers to object types,
under the same rule as for instances of object types: Pointers to
descendants can be assigned to pointers to ancestors. These
pointer assignments are also legal:

PPoint := PCircle;
PLocation := PPoint;
PLocation := PCircle;

Again, the reverse assignments are not legal.

A formal parameter (either value or var) of a given object type can
take as an actual parameter an object of its own, or any descen­
dant type. Given this procedure header,

procedure Draglt(Target: Point);

actual parameters could legally be of type Point or Circle, but not
type Location. Target could also be a var parameter; the same type
compatibility rule applies.

However, keep in mind that there's a drastic difference between a
value parameter and a var parameter: A var parameter is a
pointer to the actual object passed as a parameter, whereas a value
parameter is only a copy of the actual parameter. That copy,
moreover, only includes the fields and methods included in the
formal value parameter's type. This means the actual parameter is
literally translated to the type of the formal parameter. A var

Turbo Pascal User's Guide

Polymorphic
objects

parameter is more similar to a typecast, in that the actual
parameter remains unaltered.

Similarly, if a formal parameter is a pointer to an object type, the
actual parameter can be a pointer to that object type or a pointer
to any of that object's descendant types. Given this procedure
header,

procedure Figure.Add(NewFigure: PointPtr);

actual parameters could legally be of type PointPtr or CirclePtr,
but not type LocationPtr.

In reading the previous section, you might have asked yourself: If
any descendant type of a parameter's type can be passed in the
parameter, how does the user of the parameter know which object
type it is receiving? In fact, the user does not know, not directly.
The exact type of the actual parameter is unknown at compile
time. It could be anyone of the object types descended from the
var parameter type and is thus called a polymorphic object.

Now, exactly what are polymorphic objects good for? Primarily,
this: Polymorphic objects allow the processing of objects whose type is
not known at compile time. This whole notion is so new to the Pascal
way of thinking that an example might not occur to you imme­
diately. (You'll be surprised, in time, at how natural it begins to
seem. That's when you'll truly be an object-oriented programmer.)

Suppose you've written a graphics drawing toolbox that supports
numerous types of figures: points, circles, squares, rectangles,
curves, and so on. As part of the toolbox, you want to write a
routine that drags a graphics figure around the screen with the
mouse pointer.

The old way would have been to write a separate drag procedure
for each type of graphics figure supported by the toolbox. You
would have had to write DragCircle, DragSquare, DragRectangle,
and so on. Even if the strong typing of Pascal allowed it (and
don't forget, there are always ways to circumvent strong typing),
the differences between the types of graphICS figures would seem
to prevent a truly general dragging routine from being written.

After all, a circle has a radius but no sides, a square has one length
of side, a rectangle two different lengths of side, and curves,
arrgh

Chapter 4, Object-oriented programming 99

100

At this point, clever Turbo Pascal hackers will step forth and say,
do it this way: Pass the graphics figure record to procedure DragIt
as the referent of a generic pointer. Inside Draglt, examine a tag
field at a fixed offset inside the graphics figure record to deter­
mine what sort of figure it is, and then branch using a case
statement:

case FigureIDTag of
Point : DragPoint;
Circle : DragCircle;
Square : DragSquare;
Rectangle: DragRectangle;
Curve : DragCurve;

Well, placing seventeen small suitcases inside one enormous suit­
case is a slight step forward, but what's the real problem with this
way of doing things?

What if the user of the toolbox defines some new graphics figure
type?

What indeed? What if the user designs traffic signs and wants to
work with octagons for stop signs? The toolbox does not have an
Octagon type, so DragIt would not have an Octagon label in its
case statement, and would therefore refuse to drag the new
Octagon figure. If it were presented to DragIt, Octagon would fall
out in the case statement's else clause as an "unrecognized
figure."

Plainly, building a toolbox of routines for sale without source
code suffers from this problem: The toolbox can only work on
data types that it "knows," that is, that are defined by the design­
ers of the toolbox. The user of the toolbox is powerless to extend
the function of the toolbox in directions unanticipated by the
toolbox designers. What the user buys is what the user gets.
Period.

The way out is to use Turbo Pascal's extended type compatibility
rules for objects and design your application to use polymorphic
objects and virtual methods. If a toolbox DragIt procedure is set
up to work with polymorphic objects, it works with any objects
defined within the toolbox-and any descendant objects that you
define yourself. If the toolbox object types use virtual methods,
the toolbox objects and routines can work with your custom
graphics figures on the figures' own terms. A virtual method you
define today is callable by a toolbox .TPU unit file that was

Turbo Pascal User's Guide

Virtual methods

written and compiled a year ago. Object-oriented programming
makes it possible, and virtual methods are the key.

Understanding how virtual methods make such polymorphic
method calls possible requires a little background on how virtual
methods are declared and used.

A method is made virtual by following its declaration in the
object type with the new reserved word virtual. Remember that if
you declare a method in an ancestor type virtual, all methods of
the same name in any descendant must also be declared virtual to
avoid a compiler error.

Here are the graphics shape objects you've been seeing, properly
virtualized:

_ type
Location ~ object

X, Y: Integer;
procedure Init(InitX, InitY: Integer);
function GetX: Integer;
function GetY: Integer:

end;

Point ~ object(Location)
Visible: Boolean:
constructor Init(InitX, InitY: Integer);
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible: Boolean;
procedure MoveTo(NewX, NewY: Integer);

end;

Circle ~ object(Point)
Radius: Integer;
constructor Init(InitX, InitY: Integer; InitRadius: Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Expand(ExpandBy: Integer); virtual;
procedure Contract (ContractBy: Integer); virtual;

end;

Notice first of all that the MoveTo method shown in the last
iteration of type Circle is gone from Circle's type definition. Circle
no longer needs to override Point's MoveTo method with an un­
modified copy compiled within its own scope. Instead, MoveTo
can now be inherited from Point, with all MoveTo's nested method

Chapter 4, Object-oriented programming 101

102

We suggest the use of the
identifier Init for object

constructors.

Warning!

calls going to Circle's methods rather than Point's, as happens in an
all-static object hierarchy.

Also, notice the new reserved word constructor replacing the
reserved word procedure for Point.Init and Circle.lnit. A construc­
tor is a special type of procedure that does some of the setup work
for the machinery of virtual methods.

Every object type that has virtual methods must have a constructor.

The constructor must be called before any virtual method is
called. Calling a virtual method without previously calling the
constructor can cause system lockup, and the compiler has no
way to check the order in which methods are called.

Each individual instance of an object must be initialized by a
separate constructor call. It is not sufficient to initialize one in­
stance of an object and then assign that instance to additional in­
stances. The additional instances, while they might contain correct
data, are not initialized by the assignment statements, and lock up
the system if their virtual methods are called. For example:

var
QCircle, RCircle: Circle;

begin
QCircle.lnit(600,lOO,30);
RCircle := QCircle;

end.

{ create two instances of Circle }

{ call constructor for QCircle }
{ RCircle is not valid! }

What do constructors construct? Every object type has something
called a virtual method table (VMT) in the data segment. The VMT
contains the object type's size and, for each of its virtual methods,
a pointerto the code implementing that method. What the con­
structor does is establish a link between the instance calling the
constructor and the object type's VMT.

That's important to remember: There is only one virtual method
table for each object type. Individual instances of an object type
(that is, variables of that type) contain a link to the VMT -they do
not contain the VMT itself. The constructor sets the value of that
link to the VMT -which is why you can launch execution into
nowhere by calling a virtual method before calling the
constructor.

Turbo Pascal User's Guide

Range checking virtual
method calls

The default state of $R is
inactive, {$R-j.

Once virtual, always
virtual

An example of
late binding

During program development, you might wish to take advantage
of a safety net that Turbo Pascal places beneath virtual method
calls. If the $R toggle is in its active state, {$R+}, all virtual method
calls are checked for the initialization status of the instance
making the call. If the instance making the call has not been
initialized by its constructor, a range check run-time error occurs.

Once you've shaken out a program and are certain. that no method
calls from uninitialized instances are present, you can speed your
code up somewhat by setting the $R toggle to its inactive state,
{$R-l. Method calls from uninitialized instances will no longer be
checked for, and will probably lock up your system if they're
found.

Notice that both Point and Circle have methods named Show and
Hide. All method headers for Show and Hide are tagged as virtual
methods with the reserved word virtual. Once an ancestor object
type tags a method as virtual, all its descendant types that imple­
ment a method of that name must tag that method virtual as well.
In other words, a static method can never override a virtual
method. If you try, a compiler error results.

You should also keep in mind that the method heading cannot
change in any way downward in ~n object hierarchy once the
method is made virtual. You might think of each definition of a
virtual method as a gateway to all of them. For this reason, the
headers for all implementations of the same virtual method must
be identical, right down to the number and type of parameters.
This is not the case for static methods; a static method overriding
another can have different numbers and types of parameters as
necessary.

To show how to use polymorphic objects with late binding in a
Turbo Pascal program, let's return to the graphics figures unit
described on page 86. The goal is to create a unit that exports
several graphics figure objects (like Point and Circle) and a
generalized means of dragging any of them around the screen.
The unit, named Figures, is a simple implementation of the
graphics toolbox discussed earlier. To demonstrate Figures, let's
build a simple program that defines a new figure object type

Chapter 4, Object-oriented programming 103

104

A note about abstract
objects

1111"

unknown to Figures and then uses virtual methods to drag that
new figure type around the screen.

Think about how graphics figures are alike and how they differ.
The differences are obvious, and all involve shapes and angles
and curves drawn onscreen. In the simple graphics program we'll
describe, figures displayed onscreen share these attributes:

• They have a location, given as X,Y. The point within a figure
considered to lie at this X, Y position is called the figure's anchor
point .

• They can be either visible or invisible, specified by a Boolean
value of True (visible) or False (invisible).

If you recall the earlier examples, these are precisely the
characteristics of the Location and Point object types. Point, in fact,
represents a sort of "grandparent" type from which all graphics
figure objects are descended.

The rationale demonstrates an important principle of object­
oriented programming: In defining a hierarchy of object types,
gather all common attributes into a single type and allow the
hierarchy of types to inherit all common elements from that type.

Type Point acts as a template from which its descendant object
types can take elements common to all types in the hierarchy. In
this example, no object of type Point is ever actually drawn to the
screen, though no harm would come of doing so. (Calling
Point.Show would obviously display a point on the screen.) An
object type specifically designed to provide inheritable
characteristics for its descendants is called an abstract object type.
The point of an abstract type is to have descendants, not
instances.

Go back to page 101 and read Point over once more, this time as a
compendium of all the things that graphics figures have in com­
mon. Point inherits X and Y from the even earlier Location type,
but Point contains X and Y nonetheless, and can bequeath them to
its descendant types. Note that none of Point's methods address
the shape of a figure, but all figures can be visible or invisible and
can be moved around on the screen.

Point also has an important function as a ''broadcasting station"
for changes to the object hierarchy as a whole. If some new feature
is devised that applies to all graphics figures (color support, for
example), it can be added to all object types descended from Point
simply by adding the new features to Point. The new features are

Turbo Pascal User's Guide

Procedure or
method?

instantly callable from any of Point's descendant types. A method
for moving a figure to the current position of the mouse pointer,
for example, could be added to Point without changing any
figure-specific methods, since such a method would only affect
the two fields X and Y.

Obviously, if the new feature must be implemented differently for
different figures, there must be a whole family of figure-specific
virtual methods added to the hierarchy, each method overriding
the one belonging to its immediate ancestor. Color, for example,
would require minor changes to Show and Hide up and down the
line, since the syntax of many GRAPH.TPU drawing routines
depends on how drawing color is specified.

A major goal in designing the FIGURES.P AS unit is to allow users
of the unit to extend the object types defined in the unit-and still
make use of all the unit's features. It is an interesting challenge to
create some means of dragging an arbitrary graphics figure
around the screen in response to user input.

There are two ways to go about it. The way that might first occur
to traditional Pascal programmers is to have FIGURES.P AS export
a procedure that takes a polymorphic object as a var parameter,
and then drags that object around the screen. Such a procedure is
shown here:

procedure DragIt(var AnyFigure: Point; DragBy: Integer);
var

DeltaX,DeltaY: Integer;
FigureX,FigureY: Integer;

begin
AnyFigure.Show;
FigureX := AnyFigure.GetXi
FigureY := AnyFigure.GetYi

{ This is the drag loop }

{ Display figure to be dragged }
{ Get the initial X,Y of figure}

while GetDelta(DeltaX, DeltaY) do
begin { Apply delta to figure X,Y:

FigureX := FigureX + (DeltaX * DragBy);
FigureY := FigureY + (DeltaY * DragBy);
{ And tell the figure to move }
AnyFigure.MoveTo(FigureX, FigureY);

end;
end;

Chapter 4, Object-oriented programming 105

106

DragIt calls an additional procedure, GetDelta, that obtains some
sort of change in X and Y from the user. It could be from the
keyboard, or from a mouse, or a joystick. (For simplicity's sake,
our example obtains input from the arrow keys on the keypad.)

What's important to notice about DragIt is that any object of type
Point or any type descended from Point can be passed in the
AnyFigure var parameter. Instances of Point or Circle, or any type
defined in the future that inherits from Point or Circle, can be
passed without complication in AnyFigure.

How does DragIt's code know what object type is actually being
passed? It doesn't-and that's OK. Draglt only references
identifiers defined in type Point. By inheritance, those identifiers
are also defined in any descendant of type Point. The methods
GetX, GetY, Show, and MoveTo are just as truly present in type
Circle as in type Point, and would be present in any future type
defined as a descendant of either.

GetX, GetY, and MoveTo are static methods, which means that
Draglt knows the procedure address of each at compile time.
Show, on the other hand, is a virtual method. There is a different
implementation of Show for both Point and Circle-and Draglt
does not know at compile time which implementation is to be
called. In brief, when DragIt is called, DragIt looks up the address
of the correct implementation of Show in the VMT of the instance
passed in AnyFigure. If the instance is a Circle, DragIt calls
Circle. Show. If the instance is a Point, DragIt calls Point. Show. The
decision as to which implementation of Show is called is not made
until run time, and not, in fact, until the moment in the program
when DragIt must call virtual method Show.

Now, Draglt works quite well, and if it is exported by the toolbox
unit, it can drag any descendant type of Point around the screen,
whether that type existed when the toolbox was compiled or not.
But you have to think a little further: If any object can be dragged
around the screen, why not make dragging a feature of the
graphics objects themselves?

In other words, why not make DragIt a method?

Make it a method!

Indeed. Why pass an object to a procedure to drag the object
around the screen? That's old-school thinking. ~f a procedure can
be written to drag any graphics figure object around the screen,

Turbo Pascal User's Guide

then the graphics figure objects ought to be able to drag them­
selves around the screen.

In other words, procedure DragIt really ought to be method Drag.

Adding a new method to an existing object hierarchy involves a
little thought. How far up the hierarchy should the method be
placed? Think about the utility provided by the method and
decide how broadly applicable that utility is. Dragging a figure
involves changing the location of the figure in response to input
from the user. Metaphorically, you might think of a Drag method
as MoveTo with an internal power source. In terms of inherit­
ability, it sits right beside MoveTo-any object to which MoveTo is
appropriate should also inherit Drag. Drag should thus be added
to our abstract object type, Point, so that all Point's descendants
can share it.

Does Drag need to be virtual? The litmus test for making any
method virtual is whether the functionality of the method is
expected to change somewhere down the hierarchy tree. Drag is a
closed-ended sort of feature. It only manipulates the X, Y position
of a figure, and one doesn't imagine that it would become more
than that. Therefore, it probably doesn't need to be virtual.

Still, you should use caution in any such decision: !fyou don't
make Drag virtual, you lock out all opportunities for users of
FIGURES.P AS to alter it in their efforts to extend FIGURES.P AS.
You might not be able to imagine the circumstances under which
a user might want to rewrite Drag. That doesn't for a moment
mean that such circumstances will not arise.

For example, Drag has a joker in it that tips the balance in favor of
its being virtual: It deals with event handling, that is, the intercep­
tion of input from devices like the keyboard and mouse, which
occur at unpredictable times yet must be handled when they
occur. Event handling is a messy business, and often very
hardware-specific. If your user has some input device that does
not meld well with Drag as you present it, the user-will be
helpless to rewrite Drag. Don't burn any bridges: Make Drag
virtual.

The process of converting DragIt to a method and adding the
method to Point is almost trivial. Within the Point object
definition, Drag is just another method header:

Chapter 4, Object-oriented programming 107

The complete source code
(or FIGURESPAS, including

Drag implemented as a
virtual method, is available

on your disk.

108

Object
extensibility

Point = object (Location)
Visible: Boolean;
constructor Init(InitX, InitY: Integer);
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible: Boolean;
procedure MoveTo(NewX, NewY: Integer);
procedure Drag(DragBy: Integer); virtual;

end;

The position of Drag's method header in the Point object definition
is unimportant. Remember, methods can be declared in any order,
but data fields must be defined before the first method declar­
ation.

Changing the procedure DragIt to the method Drag is almost
entirely a matter of applying Point's scope to DragIt. In the DragIt
procedure, you had to specify AnyFigure.Show, AnyFigure.GetX,
and so on. Drag is now a part of Point, so you no longer have to
qualify method names. AnyFigure.GetX is now simply GetX, and
so on. And of course, the AnyFigure var parameter is banished
from the parameter line. The implied Self parameter now tells you
which object instance is calling Drag.

By now, you should be thinking in tenns of building functionality
into objects in the form of methods rather than building proce­
dures and passing objects to them as parameters. Ultimately
you'll come to design programs in terms of activities that objects
can do, rather than as collections of procedure calls that act upon
passive data.

It's a whole new world.

The important thing to notice about toolbox units like
FIGURES.P AS is that the object types and methods defined in the
unit can be distributed to users in linkable .TPU form only, with­
out source code. (Only a listing of the interface portion of the unit
need be released.) Using polymorphic objects and virtual
methods, the users of the .TPU file can still add features to it to
suit their needs.

This novel notion of taking someone else's program code and
adding functionality to it without benefit of source code is called
extensibility. Extensibility is a natural outgrowth of inheritance:
You inherit everything that all your ancestor types have, and then

Turbo Pascal User's Guide

Static or virtual
methods

you add what new capability you need. Late binding lets the new
meld with the old at run time, so the extension of the existing
code is seamless and costs you no more in performance than a
quick trip through the virtual method table.

FIGDEMO.P AS (on your disk) makes use of the Figures unit, and
extends it by creating a new graphics figure object, Arc,: as a de­
scendant type of Circle. The object Arc could have been written
long after FIGURES.P AS was compiled, and yet an object of type
Arc can make use of inherited methods like MoveTo or Drag
without any special considerations. Late binding and Arc's virtual
methods allows the Drag method to call Arc's Show and Hide me­
thods even though those methods might have been written long
after Point.Drag itself was compiled.

In general, you should make methods virtual. Use static methods
only when you want to optimize for speed and memory
efficiency. The tradeoff, as you've seen, is in extensibility.

Let's say you are declaring an object named Ancestor, and within
Ancestor you are declaring a method named Action. How do you
decide whether Action should be virtual or static? Here's the rule
of thumb: Make Action virtual if there is a possibility that some
future descendant of Ancestor will override Action, and you want
that future code to be accessible to Ancestor.

Now apply this rule to the graphics objects you've seen in this
chapter. In this case, Point is the ancestor object type, and you
must decide whether to make its methods static or virtual. Let's
consider its Show, Hide, and MoveTo methods. Since each different
type of figure has its own means of displaying and erasing itself,
Show and Hide are overridden by each descendant figure. Moving
a graphics figure, however, seems to be the same for all
descendants: Call Hide to erase the figure, change its X, Y
coordinates, and then call Show to redisplay the figure in its new
location. Since this MoveTo algorithm can be applied to any figure
with a single anchor point at X, Y, it's reasonable to make
Point.MoveTo a static method that is inherited by all descendants
of Point; but Show and Hide are overridden and must be virtual so
that Point.MoveTo can call its descendants' Show and Hide
methods.

On the other hand, remember that if an object has any virtual
methods, a VMT is created for that object type in the data segment

Chapter 4, Object-oriented programming 109

Dynamic objects

The use of the word ~
here does not relate in any

way to static methods.

110

and every object instance has a link to the VMT. Every call to a
virtual method must pass through the VMT, while static methods
are called directly. Though the VMT lookup is very efficient,
calling a method that is static is still a little faster than calling a
virtual one. And if there are no virtual methods in your object,
then there is no VMT in the data segment and-more
significantly-no link to the VMT in every object instance.

The added speed and memory efficiency of static methods must
be balanced against the flexibility that virtual methods allow:
extension of existing code long after that code is compiled. Keep
in mind that users of your object type might think of ways to use
it that you never dreamed of, which is, after all, the whole point.

All the object examples shown so far have had static instances of
object types that were named in a var declaration and allocated in
the data segment and on the stack.

var
ACircle: Circlei

Objects can be allocated on the heap and manipulated with
pointers, just as the closely related record types have always been
in Pascal. Turbo Pascal includes some powerful extensions to
make dynamic allocation and deallocation of objects easier and
more efficient.

Objects can be allocated as pointer referents with the New
procedure:

var
PCircle: ACirclei

New(PCircle)i

As with record types, New allocates enough space on the heap to
contain an instance of the pointer's base type, and returns the
address of that space in the pointer.

If the dynamic object contains virtual methods, it must then be
initialized with a constructor call before any calls are made to its
methods:

PCircle. Init (600, 100, 30) i

Turbo Pascal User's Guide

Allocation and
initialization with

New

Method calls can then be made normally, using the pointer name
and the reference symbol A (a caret) in place of the instance name
that would be used in a call to a statically allocated object:

OldXPosition := PCireleA.Getx;

Turbo Pascal extends the syntax of New to allow a more compact
and convenient means of allocating space for an object on the
heap and initializing the object with one operation. New can now
be invoked with two parameters: the pointer name as the first
parameter, and the constructor invocation as the second param­
eter:

New (PCirele, Init (600, 100, 30));

When you use this extended syntax for New, the constructor Init
actually performs the dynamic allocation, using special entry code
generated as part of a constructor's compilation. The instance
name cannot precede Init, since at the time New is called, the
instance being initialized with Init does not yet exist. The com­
piler identifies the correct Init method to call through the type of
the pointer passed as the first parameter.

New has also been extended to allow it to act as a function
returning a pointer value. The parameter passed to New is the type
of the pointer to the object rather than the pointer variable itself:

type
ArePtr = AAre;

var
PAre: ArePtr;

PAre := New(ArePtr);

Note that with version, the function-form extension to New
applies to all data types, not only to object types:

type
CharPtr = AChar; {Char is not an object type ...

var
PChar: CharPtr;

PChar := New(CharPtr);

Chapter 4, Object-oriented programming 111

Fail helps you do error
recovery in constructors; see

the section "Constructor
error recovery" in Chapter 77

of the Programmer's Guide.

Disposing
dynamic objects

We suggest the identifier
Done for cleanup methods
that "close up shop" once

an object is no longer
needed.

Destructors

112

The function form of New, like the procedure form, can also take
the object type's constructor as a second parameter:

PAre :~ New(ArePtr, Init(600, 100, 25, 0, 90));

A parallel extension to Dispose has been defined for Turbo Pascal,
as fully explained in the following sections.

Just like traditional Pascal records, objects allocated on the heap
can be deallocated with Dispose when they are no longer needed:

Dispose(PCircle);

There can be more to getting rid of an unneeded dynamic object
than just releasing its heap space, however. An object can contain
pointers to dynamic structures or objects that need to be released
or "cleaned up" in a particular order, especially when elaborate
dynamic data structures are involved. Whatever needs to be done
to clean up a dynamic object in an orderly fashion should be
gathered together in a single method so that the object can be
eliminated with one method call:

MyCornplexObjeet.Done;

The Done method should encapsulate all the details of cleaning up
its object and all the data structures and objects nested within it.

It is legal and often useful to define multiple cleanup methods for
a given object type. Complex objects might need to be cleaned up
in different ways depending on how they were allocated or used,
or depending on what mode or state the object was in when it was
cleaned up.

Turbo Pascal provides a special type of method called a destructor
for cleaning up and disposing of dynamically allocated objects. A
destructor combines the heap deallocation step with whatever
other tasks are necessary for a given object type. As with any me­
thod, multiple destructors can be defined for a single object type.

Turbo Pascal User's Guide

A destructor is defined with all the object's other methods in the
object type definition:

Point = object(Location)
Visible: Boolean;
Next: PointPtr;
constructor Init(InitX, InitY: Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible: Boolean;
procedure MoveTo(NewX, NewY: Integer);
procedure Drag(DragBy: Integer); virtual;

end;

Destructors can be inherited, and they can be either static or
virtual. Because different shutdown tasks are usually required for
different object types, it is a good idea always to make destructors
virtual, so that in every case the correct destructor is executed for
its object type.

Keep in mind that the reserved word destructor is not needed for
every cleanup method, even if the object type definition contains
virtual methods. Destructors really operate only on dynamically
allocated objects. In cleaning up a dynamically allocated object,
the destructor performs a special service: It guarantees that the
correct number of bytes of heap memory are always released.
There is, however, no harm in using destructors with statically
allocated objects; in fact, by not giving an object type a destructor,
you prevent objects of that type from getting the full benefit of
Turbo Pascal's dynamic memory management.

Destructors really come into their own when polymorphic objects
must be cleaned up and their heap allocation released. A poly­
morphic object is an object that has been assigned to an ancestor
type by virtue of Turbo Pascal's extended type compatibility rules.
In the running example of graphics figures, an instance of object
type Circle assigned to a variable of type Point is an example of a
polymorphic object. These rules govern pointers to objects as well;
a pointer to Circle can be freely assigned to a pointer to type Point,
and the referent of that pointer is also a polymorphic object.

The term polymorphic is appropriate because the code using the
object doesn't know at compile time precisely what type of object
is on the end of the string-only that the object is one of a
hierarchy of objects descended from the specified type.

Chapter 4, Object-oriented programming 113

114

The size of object types differ, obviously. So when it comes time to
clean up a polymorphic object allocated on the heap, how does
Dispose know how many bytes of heap space to release? No
information on the size of the object can be gleaned from a poly­
morphic object at compile time.

The destructor solves the problem by going to the place where the
information is stored: in the instance variable's VMT. In every
object type's VMT is the size in bytes of the object type. The VMT
for any object is available through the invisible Self parameter
passed to the method on any method call. A destructor is just a
special kind of method, and it receives a copy of Self on the stack
when an object calls it. So while an object might be polymorphic
at compile time, it is never polymorphic at run time, thanks to late
binding.

To perform this late-bound memory deallocation, the destructor
must be called as part of the extended syntax for the Dispose
procedure:

Dispose(PPoint,Done);

(Calling a destructor outside of a Dispose call does no automatic
deallocation at all.) What happens here is that the destructor of
the object pointed to by PPoint is executed as a normal method
call. As the last thing it does, however, the destructor looks up the
size of its instance type in the instance's VMT, and passes the size
to Dispose. Dispose completes the shutdown by deallocating the
correct number of bytes of heap space that had previously
belonged to PPoint". The number of bytes released is correct
whether PPoint points to an instance of type Point or to one of
Point's descendant types like Circle or Arc.

Note that the destructor method itself can be empty and still
perform this service:

destructor AnObject.Done;
begin
end;

What performs the useful work in this destructor is not the
method body but the epilog code generated by the compiler in
response to the reserved word destructor. In this, it is similar to a
unit that exports nothing, but performs some "invisible" service
by executing an initialization section before program startup. The
action is all behind the scenes.

Turbo Pascal User's Guide

An example of
dynamic object

allocation The final example program provides some practice in the use of
objects allocated on the heap, including the use of destructors for
object deallocation. The program shows how a linked list of
graphics objects might be created on the heap and cleaned up
using destructor calls when they are no longer required.

Building a linked list of objects requires that each object contain a
pointer to the next object in the list. Type Point contains no such
pointer. The easy way out would be to add a pointer to Point, and
in doing so ensure that all Point's descendant types also inherit the
pointer. However, adding anything to Point requires that you
have the source code for Point, and as said earlier, one advantage
of object-oriented programming is the ability to extend existing
objects without necessarily being able to recompile them.

The solution that requires no changes to Point creates a new object
type not descended from Point. Type List is a very simple object
whose purpose is to head up a list of Point objects. Because Point
contains no pointer to the next object in the list, a simple record
type, Node, provides that service. Node is even simpler than List, in
that it is not an object, has no methods, and contains no data
except a pointer to type Point and a pointer to the next node in the
list.

List has a method that allows it to add new figures to its linked
list of Node records by inserting a new instance of Node immedi­
ately after itself, as a referent to its Nodes pointer field. The Add
method takes a pointer to a Point object, rather than a Point object
itself. Because of Turbo Pascal's extended type compatibility,
pointers to any type descended from Point can also be passed in
the Item parameter to List.Add.

Program ListDemo declares a static variable, AList, of type List,
and builds a linked list with three nodes. Each node points to a
different graphics figure that is either a Point or one of its
descendants. The number of bytes of free heap space is reported
before any of the dynamic objects are created, and then again after
all have been created. Finally, the whole structure, including the
three Node records and the three Point objects, are cleaned up and
removed from the heap with a single destructor call to the static
List object, AList.

Chapter 4, Object-oriented programming 115

Figure 4.2
Layout of program

UstDemo's data structures

Disposing of a complex
data structure on the

heap

116

List

Data
segment

(static)

Node

x
y

Visible

Heap
(dynamic)

Node Node

x x
y y

Visible Visible

This destructor, List.Done, is worth a close look. Shutting down a
List object involves disposing of three different kinds of
structures: the polymorphic graphics figure objects in the list, the
Node records that ho14 the list together, and (if it is allocated on
the heap) the List object that heads up the list. The whole process
is invoked by a single call to AList's destructor:

AList.Done;

The code for the destructor merits examination:

destructor List.Done;
var

N: Nodeptr;
begin

while Nodes <> nil do
begin

N := Nodes;
Dispose (NA.ltern, Done);
Nodes := NA.Next;
Dispose (N) ;

end;
end;

The list is cleaned up from the list head by the "hand-over-hand"
algorithm, metaphorically similar to pulling in the string of a kite:
Two pointers, the Nodes pointer within AList and a working
pointer N, alternate their grasp on the list while the first item in

Turbo Pascal User's Guide

the list is disposed of. A dispose call deallocates storage for the
first Point object in the list (Item/\); then Nodes is advanced to the
next Node record in the list by the statement Nodes := N" .Next; the
Node record itself is deaUocated; and the process repeats until the
list is gone.

The important thing to note in the destructor Done is the way the
Point objects in the list are deallocated:

Dispose(NA.ltem,Done);

Here, N/\.Item is the first Point object in the list, and the Done
method called is its destructor. Keep in mind that the actual type
of N/\.Item/\ is not necessarily Point, but could as well be any
descendant type of Point. The object being cleaned up is a poly­
morphic object, and no assumptions can be made about its actual
size or exact type at compile time. In the earlier call to Dispose,
once Done has executed all the statements it contains, the
"invisible" epilog code in Done looks up the size of the object
instance being cleaned up in the object's VMT. Done passes that
size to Dispose, which then releases the exact amount of heap
space the polymorphic object actually occupied.

Remember that polymorphic objects must be cleaned up this way,
through a destructor call passed to Dispose, if the correct amount
of heap space is to be reliably released.

In the example program, AList is declared as a static variable in
the data segment. AList could as easily have been itself allocated
on the heap, and anchored to reality by a pointer of type ListPtr. If
the head of the list had been a dynamic object too, disposing of
the structure would have been done by a destructor call executed
within Dispose:

var
PList: ListPtr;

Dispose(PList,Done);

Here, Dispose calls the destructor method Done to clean up the
structure on the heap. Then, once Done is finished, Dispose deallo­
cates storage for PList's referent, removing the head of the list
from the heap as well.

LISTDEMO.P AS (on your disk) uses the same FIGURES.P AS unit
described on page 108. It implements an Arc type as a descendant
of Point, creates a List object heading up a linked list of three poly­
morphic objects compatible with Point, and then disposes of the

Chapter 4, Object-oriented programming 117

Where to now?

118

whole dynamic data structure with a single destructor call to
AList.Done.

As with any aspect of computer programming, you don't get
better at object-oriented programming by reading about it; you
get better at it by doing it. Most people, on first exposure to
object-oriented programming, are heard to mutter "I don't get it"
under their breath. The "Aha!" comes later, when in the midst of
putting their own objects in place, the whole concept comes
together in the sort of perfect moment we used to call an epi­
phany. Like the face of woman emerging from a Rorschach
inkblot, what was obscure before at once becomes obvious, and
from then on it's easy.

The best thing to do for your first object-oriented project is to take
the FIGURES.P AS unit (you have it on disk) and extend it. Points,
circles, and arcs are by no means enough. Create objects for lines,
rectangles, and squares. When you're feeling more ambitious,
create a pie-chart object using a linked list of individual pie-slice
figures.

One more subtle challenge is to implement objects with relative
position. A relative position is an offset from some base point,
expressed as a positive or negative difference. A point at relative
coordinates -17,42 is 17 pixels to the left of the base point, and 42
pixels down from that base point. Relative positions are necessary
to combine figures effectively into single larger figures, since
multiple-figure combination figures cannot always be tied
together at each figure's anchor point. Better to define an RX and
RY field in addition to anchor point X, Y, and have the final posi­
tion of the object on screen be the sum of its anchor point and
relative coordinates.

Once you've had your "Aha!" start building object-oriented
concepts into your everyday programming chores. Take some
existing utilities you use every day and rethink them in object
oriented terms. Take another look at your hodgepodge of
procedure libraries and try to see the objects in them-then
rewrite the procedures in object form. You'll find that libraries of
objects are much easier to reuse in future projects. Very little of
your initial investment in programming effort will ever be
wasted. You will rarely have to rewrite an object from scratch. If it

Turbo Pascal User's Guide

Conclusion

will serve as is, use it. If it lacks something, extend it. But if it
works well, there's no reason to throwaway any of what's there.

Object-oriented programming is a direct response to the
complexity of modern applications, complexity that has often
made many programmers throw up their hands in despair.
Inheritance and encapsulation are extremely effective means for
managing complexity. (It's the difference between having ten
thousand insects classified in a taxonomy chart, and ten thousand
insects all buzzing around your ears.) Far more than structured
programming, object-orientation imposes a rational order on soft­
ware structures that, like a taxonomy chart, imposes order
without imposing limits.

Add to that the promise of the extensibility and reusability of
existing code, and the whole thing begins to sound almost too
good to be true. Impossible, you think?

Hey, this is Turbo Pascal. "Impossible" is undefined.

Chapter 4, Object-oriented programming 119

120 Turbo Pascal User's Guide

c H A p T E R

5

Debugging Turbo Pascal programs

Turbo Pascal's superb development environment includes
automatic project management, program modularity, high-speed
compilation, and easy-to-use overlays. Yet with all that, your
program can still have bugs, or errors, that keep it from working
correctly.

Turbo Pascal gives you the tools you need to debug your program,
which means to find and remove all the errors to get it running.
Turbo Pascal also makes it easy to locate and fix compiler and
run-time errors. And it lets you enable or disable automatic error
checking at run time.

Turbo Pascal comes with a powerful, flexible source-level
debugger that allows you to execute your program one line at a
time, viewing expressions and modifying variables as you go.
This debugger is built into the Turbo Pascal IDE; you can edit,
compile, and debug without ever leaving Turbo Pascal. And for
big or complex programs that require the full range of debugging
support from machine language to evaluating Pascal expressions,
Turbo Pascal fully supports Borland's standalone debugger, Turbo
Debugger.

Taxonomy of bugs

There are three basic types of program bugs: compile-time errors,
run-time errors, and logic errors.

Chapter 5, Debugging Turbo Pascal programs 121

Compile-time
errors

For more about error
messages, refer to Appendix

A in the Programmer's Guide.

Run-time errors

See Chapter 9, "The
command-line compiler, N for

a complete explanation of
using TPC.EXE to find run-time

errors.

Logic errors

122

A compile-time, or syntax, error occurs when you violate a rule of
Pascal syntax: leave out a semicolon, forget to declare a variable,
pass the wrong number of parameters to a procedure, assign a
real value to an integer variable. What it really means is that
you're writing statements that don't follow the rules of Pascal.

Turbo Pascal won't compile your program (generate machine
code) until all your syntax errors are gone. If Turbo Pascal finds a
syntax error while it is compiling your program, it stops
compiling, goes into your source code,locates the error, positions
the cursor there, and displays an error message in the Edit
window. Once you've corrected it, you can start compiling again.

If you're using the command-line version (TPC.EXE), Turbo
Pascal will print out the offending statement, along with the line
number and the error message. You can then go into whatever
editor you're using, find the line, fix the problem, and recompile.

A run-time, or semantic, error happens when you compile a
syntactically legal program that does something illegal when it
executes, such as opening a nonexistent file for input or dividing
by O. In that case, Turbo Pascal halts your program and prints an
error message to the screen that looks like this:

Run-time error HI at seg:ofs

If you're running in the IDE, Turbo Pascal automatically finds the
location of the run-time error, pulling in the appropriate source
file.

If you ran your program from the DOS prompt, you'll be returned
to DOS. You can load TURBO.EXE and use Search I Find Error to
locate the position in your source (make sure Destination is set to
Disk). You can also use the command-line compiler (TPC.EXE) IF
option to find the error.

Logic errors mean that your program does what you told it to do
instead of what you want it to do. A variable may not have been
initialized; calculations may turn out wrong; pictures drawn

Turbo Pascal User's Guide

onscreen don't look right; or the program might just skip doing
what you think it should.

These can be the hardest errors to find, but they are the ones that
the integrated debugger helps you with the most.

The integrated debugger

What the

Some run-time and logic errors are obscure and hard to track
down. Others can be buried by subtle interactions between
sections of a large program. In these cases, what you'd really like
to do is to execute your program interactively, watching the
values of certain variables or expressions. You'd like your
program to stop when it reaches a certain place so that you can
see just how it got there. You'd like to stop and change the values
of some variables while the program is executing, to force a
certain behavior or see how the program responds. And you'd
like to do this in a setting where you can quickly edit, recompile,
and run your program again.

Turbo Pascal's integrated debugger has all the capabilities just
described and more. It is an integral part of the Turbo Pascal IDE:
Two of the main menu items (Run and Debug) are devoted to its
use; likewise, several hot keys are used for debugger commands.
For more about the IDE and hot keys, refer to Chapter 7, "The IDE
reference," or try TPTOUR or online help.

debugger can do The integrated debugger performs in an uncomplicated manner.
There are no special instructions in your code, no increase in the
size of your .EXE file, and no need to recompile to create a
standalone .EXE once you've finished debugging.

If your program is divided into a number of units, the source code
for each is automatically loaded into the editor as you trace
execution.

If you use overlays, the debugger handles them automatically
within the IDE, smoothly switching back and forth between the
compiler, the editor, and the debugger.

Chapter 5, Debugging Turbo Pascal programs 123

Tracing
[[]

Go to cursor
[ill

Breaking

Watching

Evaluate/Modify
@ill[ill

124

Here's an overview of the debugger's features:

RunlTrace Into You can execute one line in your program, then
pause to see the results. When procedures or functions within
your program are called, you have the option of executing the call
as a single step, or of tracing through that routine line by line.

You can also trace your program's output line by line. You can
have it swap screens as needed, or use dual monitors. You can
also bring up the output screen in a separate window.

RunlGo to Cursor You can move the cursor to a specific line in
your program, then tell the debugger to execute your program
until it reaches that line. This makes it easy to skip over loops and
other tedious sections of code; it also lets you go right to the spot
where you want to start debugging.

DebuglBreakpoints You can mark lines in your program as
breakpoints. When you run your program and it comes to a
breakpoint, it stops and displays the source code with the
breakpoint in the execution bar. You can then examine variables,
start tracing, or run the program until another breakpoint is
encountered. You can attach a condition to a breakpoint. You can
also break at any point during program execution by pressing
etrl-Break. This has the effect of stopping at the next source line, as
if a breakpoint had been set there.

DebuglWatches You can set up a number of watches in the Watch
window. Each one can be a variable, data structure, or expression.
The watches change to reflect their current values as you step
through your program.

DebuglEvalute/Modify You can bring up the Evaluate and Modify
box, which lets you interactively examine the value of variables,
data structures, and expressions. You can change the value of any
variable, including strings, pointers, elements of an array, and
fields of a record. This provides an easy mechanism for testing
how your code reacts to certain sets of values or conditions.

Turbo Pascal User's Guide

Navigating You can quickly locate procedure or function declarations, even if
your program is broken up into many modules (Search I Find
Procedure). During a trace, you can quickly scroll back through
the procedure or function call(s) that led to where you are and
examine the parameters for each call (Window I Call Stack).

In and out of the
debugger

A symbol table is a small
internal database of all the

identifiers that are used­
constants, types, variables,

procedures, and line-number
information.

You can turn these switches
off to conserve memory or

disk space during
compilation.

Before you start debugging, you should understand that the basic
unit of execution in the debugger is a line, not a statement. More
accurately, the smallest unit of execution is a line. If you have
several Pascal statements on a single line, they will all be executed
together with a single press of Fl. If, on the other hand, you have
a single statement spread out over several lines, then the entire
statement will be executed by pressing Fl once. All the execution
commands are based on lines, including single-stepping and
breakpoints; the line about to be executed is always shown in the
execution bar.

Before you start debugging a program, the compiler must be able
to generate the necessary symbol table and line-number
information for your programs. The debugging compiler
directives $L+ and $D+ that do this are on by default; they
correspond to the menu items Options I Compiler I Local Symbols
and Options I Compiler I Debug Information, respectively. Also
checked by default is the Options I Debugger I Integrated option,
which generates debugging information in the executable file.

{$D+} generates line-nllmber tables that map object code to source
positions. {$L+} generates local debug informati~n, which means
it creates a list of the identifiers local to each procedure or
function, so that the debugger can uremember" them while you're
debugging. When you use the compiler directives, separate them
by a comma and no spaces, and precede only the first directive by a
$; for example, {$D+,L+}.

When you step through your program, Turbo Pascal will
sometimes swap to the User screen, execute your code, then swap
back to the integrated environment to await your next command'.
You can control when this screen swap occurs with the Options I
Debugger I Display Swapping setting, which has three possible
values:

Chapter 5, Debugging Turbo Pascal programs 125

• When the Smart option is on (it is by default), the IDE only
swaps to the User screen when a program line accesses video
RAM or when a subroutine is stepped over.

• When the Always option is on, the User screen is swapped with
each step.

• When the None is on, no display swapping ever occurs, and the
IDE remains visible at all times. If the program writes to the
screen or if user input is required, the text will overwrite the
IDE screen. You can have Turbo Pascal repaint its windows by
choosing:: I Refresh Display.

Starting a debugging The quickest way to start debugging is to load in your program

126

session and choose Run I Trace Into (F7). Your program gets compiled,
and when it's finished, the editor will display the main body of
your program, with the execution bar on the initial begin. You can
continue to trace from there (using F7 and FB), or you can use the
other methods we describe here.

Restarting a
debugging session

If you know where in the program you want to start debugging,
you can have your program execute until it reaches that spot, then
have it pause there. To do this, just bring up that section of code
in the editor and move the cursor to the line where you want to
stop. You can then do one of two things:

• You can choose Run I Go to Cursor (or press F4), which will
execute your program until it reaches that point, then pause.

• You can set a breakpoint there (choose Debug I Toggle
Breakpoint or press etrl-FB), and then run your program (choose
Run I Run or press etrl-F9); it will now stop every time it reaches
that line. You can set several breakpoints, in which case your
program will stop whenever it comes to any of the breakpoints.

If you're in the middle of debugging a program and want to start
all over again, choose the Program Reset command from the Run
menu. This reinitializes the debugging system so the next step
command will take you to the first line in the main body of your
program. At the same time, it closes any files your program may
have opened, clears the stack of any nested subroutine calls, and
releases any heap space being used. It does not reinitialize or
otherwise modify any variables (Turbo Pascal never initializes
variables automatically); typed constants, however, are restored
to their original values.

Turbo Pascal User's Guide

Turbo Pascal will also offer a restart if you make any changes to
the program itself while debugging. For example, if you modify
any part of the program, then press any execution command (F7,
FB, F4, Gtrl-F9, and so on), you'll get a box with the message
"Source modified, rebuild? (YIN)." If you press Y, Turbo Pascal
will re-make your program and start debugging from the
beginning. If you press N, Turbo Pascal assumes you know what
you're doing and continues the debug session in progress. (Any
source code changes you made will not affect program execution
until you recompile. If you added or deleted lines, the execution
bar will not compensate for these changes and may appear to
highlight the wrong line.)

Ending a debugging While you're debugging a program, Turbo Pascal keeps track of
session where you are and what you're doing. And since you can load

and even edit different files while you're debugging, Turbo Pascal
does not interpret loading a different file into the editor as
"ending" a debugging session. So, if you want to run or debug a
different program, let Turbo Pascal know by choosing the Run I
Program Reset command (Gtrl-F2).

Tracing through
your program The simplest debugging technique is single-step tracing, which

traces into procedures and functions. Load the following program
(RANGE.P AS) in Turbo Pascal:

{$D+,L+}
{$R-}

{ To be sure complete debug information is generated }
{ To be sure range checking is off }

program RangeTest;
var

List: array[1 .. 10] of Integer;
Indx: Integer;

begin
for Indx := 1 to 10 do

List [Indx] := Indx;
Indx := 0;
while (Indx < 11) do
begin

Indx := Indx + 1;
if List[Indx] > 0 then

List [Indx] := -List [Indxj;
end;
for Indx := 1 to 10 do

Writeln(List[Indx]);
end.

Chapter 5, Debugging Turbo Pascal programs 127

The execution bar indicates
the next line of the program

to be run.

128

To start debugging, press F7. You're asking Turbo Pascal to
execute the first line in the main body of your program. Note that
the execution bar is on the begin on line 7. Since you haven't
compiled your program yet, Turbo Pascal does it automatically,
and then prepares to single-step your program.

Press Fl a few more times. The execution bar moves to List [Indx]
: = Indx;, and appears to stay there. What's happening is that this
line is executing in a loop.

Choose the Debug I Watches I Add Watch command (Ctr/-Fl) to
display the Add Watch box. You're going to monitor the values
within your program by setting a watch; a watch is a variable, data
structure, or expression.

What appears in the Add Watch box depends on where your
cursor is positioned when you press etr/-F7. If you position the
cursor on the first letter of any alphanumeric string, within it, or
immediately following it, the string will be copied to the Add
Watch box and highlighted. So, if the cursor is positioned on Indx,
Indx will appear in the box. To change what's in the box, start
typing and the original expression and the highlight will
disappear.

Once the Add Watch box is displayed, regardless of its contents,
you can add more to it by pressing the ~ key (which copies more
text from the editor). Place List in the box by using the ~ and
press Enter. A line like the following will appear in the Watch
window at the bottom of your screen:

• List: (1,2.0.0.0.0.0,0.0.0)

Now, press Ctr/-F7 again and type Indx and press Enter. Indx is
listed first in the Watch window, making it look something like
this:

• Indx: 3
List: (1.2.0.0.0.0.0.0.0.0)

Now press F7 again, and you'll see the values of Indx and List
change in the Watch window, reflecting what's happening in your
program.

As you enter the while loop, you'll again see the values of Indx
and List change, step by step. Note that the change in the Watch
window reflects the actions of each line after you press F7.

Keep pressing Fluntil you're at the top of the while loop, with
Indx equal to 10. This time through the loop, press Fl, slowly

Turbo Pascal User's Guide

Stepping through

watching how the values in the Watch window change. When
you execute the statement

List [Indx] := -List [Indx];

the value of Indx changes to -11. If you continue to press Fl, you'll
find that what you have is an infinite loop.

This program will compile and run. And run. And run. It gets
stuck in an infinite loop because the while loop executes 11 times,
not 10, and the variable Indx has a value of 11 the last time
through the loop. Since the array List only has 10 elements in it,
List[11] points to some memory location outside of List. Because
of the way variables are allocated, List[11] happens to occupy the
same space in memory as the variable Indx. This means that when
Indx = 11, the statement

List [Indx] := -List[Indx];

is equivalent to

Indx := -Indx

Since Indx equals 11, this statement sets Indx to -11, which starts
the program through the loop again. That loop now changes
additional bytes elsewhere, at the locations corresponding to
List[-11 .. 0]. And because Indx never ends the loop at a value
greater than or equal to 11, the loop never ends.

The important point is that, in just a few minutes and using only
two keystrokes (F7 and Ctrl-F7), you quickly and easily tracked
down a subtle, nasty bug.

your program Trace Into is one debugging technique; Step Over (FB) is yet
another, one that "steps over" subroutine calls. Both Step Over
and Trace Into have a special meaning at the begin statement of
the main program if your program uses units with initialization
code. In this case, F7will step into each unit's initialization code,
allowing you to see how each one of your units is set up. FB will
step over the initialization code, leaving the execution bar on the
next executable line after the begin.

Consider the following (incomplete) sample program:

{$D+,L+}
program TestSort;
const

Chapter 5, Debugging Turbo Pascal programs 129

130

NLMax = 100;
type

NumList = array[l .. NLMax] of Integer;
var

List: NumList;
I,Count: Word;

procedure Sort (var L:NumList; C: Word);
begin

{ sort the list }
end; { of proc Sort

begin
Randomize:
Count := NLMax;
for I := 1 to Count do

List [I] := Random(1000);
Sort(List,Count);
for I := 1 to Count do

Write (List [I] :8);
Readln:

end. { of program TestSort }

Suppose you're debugging the Sort procedure. You want to trace
your call to Sort, including checking the values within List before
calling it. However, it gets tedious stepping through that first for
loop 100 times as it initializes List. There must be a way you can
get the loop to execute without having to single-step each line.

In fact, there are a few ways. First, you could put it in a separate
procedure and press FBwhen you get to it, but that's a bit drastic.
Second, you could set a breakpoint within your program, which is
a place in your program where you want execution to run to, then
stop at. Finally, you could move the cursor to the line calling Sort
and choose the Run I Go to Cursor command (F4). Your program
will execute until it gets to the line containing the cursor. The
execution bar will move to that line; you can start tracing from
there, in this case by pressing F7 to trace into Sort.

Run I Go to Cursor (F4) works through multiple levels of
subroutine calls, even if the source code is in another file. For
example, you could place the cursor somewhere within Sort and
press F4; the program would execute until it reached that line
within Sort. For that matter, Sort could be in a separate unit, and
the debugger would still know when to stop and what to display.

There are three cases where Go to Cursor (F4) will not run to the
line containing the cursor.

Turbo Pascal User's Guide

Using breakpoints
You can have up to 76

breakpoints active at a time.

Breakpoints only exist during
your debugging session; they
aren't saved in your .EXE file
if you compile your program

to disk.

Note that you cannot see
the breakpoint highlight

when the execution bar is on
the breakpoint line.

1. When you have the cursor positioned between two executable
lines, for example, a blank line or a comment line within a
code block, the program will run to the next line containing
executable statements.

2. When you have the cursor positioned outside the scope of a
procedure block, for example, on the program statement or
variable declarations, The debugger will tell you there is "no
code generated for this line."

3. When you position the cursor on a line that will never gain
control; for example, the line above the execution bar
(assuming you're not in a loop) or the else part of a
conditional statement when the if expression is true, the
debugger will behave as if you had chosen Run I Run (Gtrl-F9).
Your program will run until it terminates or until a breakpoint
occurs.

Let's say that you trace through Sort for a while, then want the
program to finish executing so you can see the output. How
would you do this? First, you would move the cursor to the final
end statement in the main body of the program, then choose
Run I Go to Cursor (F4). Or you could choose Run I Run (Gtrl-F9),
which will tell the debugger to let your program continue normal
execution. Your program will then run until it ends or hits a
breakpoint that you've set, or until you press Gtrl-Break.

Breakpoints are an important part of debugging. They're like
having a stop sign embedded in your program: When your
program encounters one, it stops execution and waits for further
debugging instructions.

To set a breakpoint, move the cursor to each line in your program
where you want it to pause. Any line where a breakpoint is set
should contain at least one executable statement. It should not be
a blank line, a comment, or a compiler directive; a constant, type,
label, or variable declaration; a program, unit, procedure, or
function header. To set a line as a breakpoint, choose the Debug I
Toggle Breakpoint command (Gtrl-FB), which highlights it.

Once you've set your breakpoints, execute your program by
choosing Run I Run (or pressing Gtrl-F9). Your program executes
normally until a breakpoint is encountered. Then the program
halts, the appropriate source code file (main program, unit, or

Chapter 5, Debugging Turbo Pascal programs 131

132

Include file) is loaded in, and the Edit window is displayed with
the execution bar on top of the breakpoint line. If any variables or
expressions have been added to the Watch window, they are also
displayed with their current values.

At this point, you can use any number of debugging options.

• You can step through your code using Run I Trace Into, Step
Over, or Go to Cursor (F7, FB, or F4). You can examine and
modify variables.

• You can add or remove expressions from the Watch window.

• You can set or clear breakpoints.
• You can view program output with Windows I User Screen (A/t­

F5).
• You can re-start your program from the beginning (using Run I

Program Reset and then a step command).

• You can continue execution to the next breakpoint (or to the
end of the program) by choosing Run I Run (Gtr/-F9).

To clear a breakpoint from a line, move the cursor to the line and
choose Debug I Toggle Breakpoint (Gtr/-F8) again. This command
toggles the breakpoint line on and off; if you use it on a
breakpoint line, that line returns to normal.

Let's go back to the earlier example:

begin { main body of TestSort }
Randomize;
Count := NLMax;
for I := 1 to Count do

List[I) := Random(lOOO);
Sort(List,Count);
for I := 1 to Count do

Write(List[I):8);
Readln;

end. { of program TestSort }

The idea here was to skip over the initial loop and start tracing
with the call to Sort. The new solution is to move the cursor to the
line calling Sort and choose Debug I Toggle Breakpoint (Gtrl-FB),
making it a breakpoint. Now, run to the breakpoint by choosing
Run I Run (Gtr/-F9). When the program gets to that line, it will stop
and allow you to begin debugging.

Turbo Pascal User's Guide

Using Ctrl-Break In addition to any breakpoints you might set, you also have an
"instant" breakpoint during execution: pressing elrl-Break. This
means that, barring a major crash, you can interrupt your
program at any time. When you press elrl-Break, you drop out of
your program and back into the editor, wIth the execution bar on
the next line and ready for single-stepping.

What actually happens is that the debugger hooks itself into DOS,
the BIOS, and other services. In this way, it knows whether or not
the code currently executing is a DOS routine, BIOS routine, or
your program. When you press elrl-Break, the debugger waits until
the program itself is executing. It then starts stepping every
machine-level instruction until the next instruction is at the
beginning of a Pascal source code line. At that point, it breaks,
moves the execution bar to that line and prompts you to press Esc.

IIi... If a second elrl-Break is detected before the debugger locates and
displays the source code line, then the debugger terminates the
program and doesn't try to find the source line. In such a case, the
exit procedures are not executed, which means that files, video
mode, and DOS memory allocations might not be completely
cleaned up.

Watching values

Change NLMax in the body
of the program to 70, so that
you're working with a smaller

array.

Program flow tells you a lot, but not as much as you'd like. What
you really want to do is watch how variables change as your
program executes. Suppose the Sort procedure for the earlier
program looked like this:

procedure Sort {var L: NumList; C: Word);
var

Top,Min,K: Word;
Temp: Integer;

begin
for Top := 1 to C-l do
begin

Min := Top;
for K := Topt1 to C do

if L[K] < L[Min] then
L [Min] := L [K];

if Min <> Top then
begin

Temp := L[Top];
L[Top] := L[Min]:

Chapter 5, Debugging Turbo Pascal programs 133

134

L[Minj := Temp;
end;

end;
end; { of proe Sort

There is a bug here, so step through it (using Run I Trace Into or
F7) and watch the values of L, Top, Min, and K.

The debugger lets you set up watches to monitor values within
your program as it executes. The current value of each watch is
shown, updated as each line in the program executes.

Set up a watches for each identifier usin Debug I Watch I Add
Watch (Ctrl-F7) to add each expression to the Watch window. The
result might look like this:

• K: 21341
Min: 51
Top: 21383
L: (163.143.454.622.476.161.850.402.375.34)

This presumes you've just stepped into Sort and the execution bar
is on the initial begin statement. (If you haven't stepped into Sort
yet, "Unknown Identifier" will be displayed next to each Watch
expression until you do.) Note that K, Min, and Top just have
random values, since they haven't been initialized yet. The values
in L are supposed to be random; they won't look just like this
when you run the program, but they will all be non-negative
values from 0 to 999.

Pressing F7 four times will move you down to the line if L [K] <
L [Min] then, where you'll notice that K, Min, and Top now have
values of 2, 1, and 1, respectively. Keep pressing F7 until you drop
out of that inner for loop, through the if Min <> Top then line,
back to the top of the outer loop, and down again to if L [K] <
L[Min] then. At this point, the Watch window would look like this
(given the previous values in L):

• K: 3
Min: 2
Top: 2
l: (34.143.454.622 ,476.161.850,402.375 ,34)

By now, you may have noticed two things. First, the last value in
L (34)-which also happens to be the lowest value-got copied
into the first location in L, and the value that was there (163) has
disappeared. Second, Min and Top were the same value all the
way through. In fact, if you look closely, you'll notice something
else: Min gets assigned the value of Top, but is never changed
anywhere else. Yet the test at the bottom of the loop is if Min <>

Turbo Pascal User's Guide

Top then. Either you have the wrong test, or there's something
wacky between those two sections of code.

As it turns out, the bug is in the fifth line of code: It should read
Min : = K; instead of L [Min] : = L [K];. Correct it, move the cursor to
the initial begin in Sort, and choose Run I Go to Cursor (F4). Since
you've changed the program, a box will appear with the question
"Source modified, rebuild? (YIN)"; press Y. Your program will
recompile, start running, then pause at the initial begin in Sort.
This time, the code works correctly: Instead of overwriting the
first location with the lowest value, it swaps values, moving the
value in the first location to the position where the lowest value
was previously. It then repeats the process with the second
location, the third, and so on, until the list is completely sorted.

Types of watch You can put any kind of constant, variable, or data structure in
expressions the Watch window as an expression; you can also put in Pascal

expressions. Specifically, here are the expressions you can add
and how each will be displayed:

Expression

Integers

Reals

Characters

Booleans

Enumerated
data values

Pointers

Strings

Arrays

Records

Objects

Sets

Files

Display

Decimal and hex. Examples: -23 $10

Without an exponent, if possible. Examples: 38328.27 6.283e23

Printable: in single quotes (including extended graphics characters) as themselves.
Control characters: as ASCII codes or printable. Examples: 'h' '0' #4

True or False

Actual named values (all uppercase). Examples: RED JAN WEDNESDAY

segment:offset hex format. Examples: PTR($3632,$106) PTR(CSEG,$220)

In single quotes. Examples: 'Bruce'

In parentheses, separated by commas. Multidimensional arrays as nested lists.
Examples: (-42,23,2292,0,684)

In parentheses, fields separated by commas. Nested records as nested lists.
Examples: (S,10,'Borland',RED,TRUE)

Same as record. Expressions valid for records are also valid for objects.

In brackets, with expressions separated by commas; subranges are used when possible.
Examples: [MON,WED,FRI] ['0' .. '9',' A' .. 'F]

In (status,fname), where status is CLOSED, OPEN, INPUT, or OUTPUT, andfname is
name of disk file assigned to file variable. Examples: (OPEN,'BUDGET.DTA')

Chapter 5, Debugging Turbo Pascal programs 135

Format specifiers

A complete list of the
available format specifiers

and their effects are on
page 795.

136

To control exactly how information is displayed in the Watch
window, Turbo Pascal allows you to add format specifiers to your
Watch expressions. A format specifier follows the Watch
expression, separated from it by a single comma. (You don't need
format specifiers to debug; this is an advanced topic.)

A format specifier consists of an optional repeat count (an integer),
followed by zero or more format characters; no spaces are
required between the repeat count and the format characters.
The repeat count is used to display consecutive variables, such as
the elements of an array. For example, assuming List is an array of
10 integers, the Watch expression List would display:

List: (10.20.30.40.50.60.70.80.90.100)

If you want to look at a particular range of the array, you can
specify the index of the first element, and add a repeat count:

List[6].3: 60.70.80

This technique is particularly useful for dealing with arrays that
are too large to be displayed completely on a single line.

Repeat counts aren't limited to arrays; any variable may be
followed by a repeat count. The general syntax var, x simply
displays x consecutive variables of the same type as var, starting
at the address of var. Note however, that the repeat count is
ignored if the Watch expression does not denote a variable. A
good rule of thumb is that a given construct is a variable if it can
legally appear on the left-hand side of an assignment statement,
or be used as a var parameter to a procedure or function.

To demonstrate the use of format specifiers, assume that the
following types and variables have been declared:

type
NamePtr = ANameRec;
NameRec = record

Next: NamePtr;
Count: Integer;
Name: string(31);

end;
var

List: array[l .. lO) of Integer;
P: NamePtr;

Given these declarations, the following Watch expressions can be
constructed:

Turbo Pascal User's Guide

Li st: (10.20.30.40.50.60.70.80.90.100)
List[6].3H: $3C.$46.$50
P: PTR($3EAO.$C)
P.P: 3EAO:000C
P": (PTR($3EF2.$2) .412. 'John')
P" .R$: (NEXT:PTR($3EF2. $2);COUNT :$19CiNAME: 'John')
P". Next''. R: (NEXT:NILiCOUNT:377iNAME: 'Joe')
Mem[$40:0] .10M: F8 03 F8 02 00 00 00 00 BC 03
Mem[$40:0] .10MD: 248 3 248 2 0 0 0 0 188 3

Typecasting Typecasting is another powerful feature you can use to modify
how Watch expressions are displayed,letting you interpret data
as a different type than it would normally be. This can be
especially useful if you're working with an address or a generic
pointer, and you want to view it as pointing to a particular data
type.

Suppose your program has a variable DFile that is of type file of
MyRec, and you execute the following sequence of code:

Assign(OFile,'INPUT.REC');
Reset (OFile) ;

If you add DFile as a watch, the corresponding line in the Watch
window will look like this:

DFile: (OPEN.'INPUT.REC')

But you might want more information about the file record itself.
If you change your program so that it uses the Dos unit, then you
can modify the DFile watch to FileRec (DFile) ,rh, which means,
"Display DFile as if it were a record of type FileRec (declared in
the Dos unit), with all record fields labeled and all integer values
displayed in hexadecimal." The result in the Watch window
might look something like this:

Fi 1 eRec(DFil e). rh: (HANDLE: $6iMODE:$D7B3;RECSIZE:$14; PRIVATE: ($0.$0 •••• »
The record is too large to view at once; however, you can use the
cursor movement keys to scroll the data not visible on the screen
(see the section "Editing and deleting watches" on page 139).

With this typecasting, you can now watch specific fields of DFile.
For example, you could view the UserData field by adding the
expression FileRec(DFile).UserData to the Watch window:

Fi 1 eRec(DFi 1 e) .UserData: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0)

You can apply the same technique to data structures and types of
your own design. If they're declared in your program or units,
you can typecast to them in the Watch window. The rules for
typecasting are explained in Chapter 6 of the Programmer's Guide,
"Expressions."

Chapter 5, Debugging Turbo Pascal programs 137

Expressions As we mentioned earlier, you can use expressions as Watch
expressions; you could have calculations, comparisons, address
offsets, and other such expressions. Table 5.1 lists the kinds of
features legal in a Watch expression, as well as acceptable values.

Table 5.1: Watch expression values

Legal in a Watch Expression

Literals and Constants

Variables

integer-type

floating-point

Char

Boolean

enumerated data type

Pointer

string

set

Typecasts

Operators

Built-In Functions

Arrays

138

Acceptable Values

All normal types: Boolean, Byte, Char, enumerated, Integer, Longint,
Real, Shortint, string, and Word.

All types, including user-defined types and elements of data
structures:

Any integer expression within the variable's range bounds.

Any floating-point (or integer) expression within the variable's
exponent range; excess significant digits are dropped.

Any character expression, including any printable character
surrounded by single quotes; integer expressions typecast to Char
using Chr or Char(); ASCII constants (#, followed by any value from 0
to 255).

True and False; any Boolean expression.

Any compatible enumerated constant; in-range integer expressions
typecast to a compatible enumerated type.

Any compatible pointer; any compatible typecast expression; the
function Ptr (with appropriate parameters).

Any string constant (text enclosed by single quotes); string variables;
string expressions consisting of string constants and variables
concatenated with the + operator.

Any set constant (compatible elements surrounded by square
brackets); any compatible set expression, including the use of set
operators +, -, *.
Following standard Pascal rules.

All normal Pascal operators, plus Turbo Pascal extensions such as xor,
@,andsoon.

Abs, Addr, Chr, CSeg, DSeg, Hi, IOResult, Length, Lo, MaxAvail,
MemAvail, Odd, 0/5, Ord, Pred, Ptr, Round, Seg, SizeO/, SPtr, SSeg, Succ,
Swap, and Trunc.

Mem, MemL, Mem W

In other words, the expression must be a normal, legal Pascal
expression, and can use any or all of the features described in

Turbo Pascal User's Guide

Editing and deleting
watches

You can't change the value
of the expression, only the

expression itself. To change
the value, use Debug I

Evaluate/Modify.

Evaluating and
modifying

Table 5.1. See "Modification issues" on page 140 for information
on how to modify Watch expressions.

It's easy to edit, add, or delete watches. When the Watch window
is active, the currently active expression is highlighted. To select a
different expression, use the Home, End, i , or J, keys.

To edit (change) the currently highlighted watch, you can choose
Debug I Watches I Edit Watch. Even easier, as shown on the bottom
line of the screen, you can press Enter. The debugger opens a pop­
up window with the selected expression, and you can edit it.
You already know how to add watches, but once the Watch
window is active, there's an easier way: Press Ins. A pop-up
window appears. You can type in the watch expression, add to it
with the ~ key, or accept the default that was copied from the
cursor position.

To delete the current watch, choose Debug I Watches I Delete
Watch, or simply press Del. You can delete all of the watches by
choosing Debug I Watches I Remove All Watches.

The Watch window is wonderful for tracing values as you step
through your program. Other times, you may want to
interactively check a variable or change its value without creating
a watch point.

To accommodate these needs, the debugger offers the Evaluate
and Modify window. To bring it up, choose the Debug I
Evaluate/Modify command (or press Ctrl-F4). This window
contains the Expression, Result, and New value boxes.

As with the Add watch box, the Evaluate and Modify box already
contains the word found at the cursor; it's in highlight mode. Edit
it as you would the Add Watch box and press Enter when you
want to evaluate it. The current value of the constant, variable, or
expression will then appear in the Result box.

The Evaluate box accepts exactly the same set of constants,
variables, and expressions that the Watch window does. You have
the same freedoms and restrictions we've already mentioned. You
can also use the same format characters as you can for Watch
expressions.

Chapter 5, Debugging Turbo Pascal programs 139

When you press Enter, the identifier or expression in the Evaluate
box is highlighted again, which means if you start typing a new
name (without pressing Ins or an arrow key), it will replace the
old one. This lets you quickly type in a series of variables and
expressions.

The New Value box allows you to modify the value of the
variables named in the Evaluate box. You can enter a constant
value, the name of another variable, or even an expression. The
resulting value must be of a type compatible with the variable in
the Evaluate box. Therefore, if you have an expression in Evaluate
that does not result in a memory location, then any value entered
in New Va~ue will result in the message "Cannot be modified."

The Result box shows the current value of whatever is in the
Evaluate box, using the same format as the Watch window. And,
like the Watch window, the data will sometimes be too large to fit.
In such cases, you can use the Tab, Backtab, ~ , -7 , Home, and End
keys to scroll through the box.

In all cases, you can use the t and J, keys (or regular keyboard
editing commands) to move between the three boxes. Once you
have modified a box, press Enter to evaluate the input.

Modifying expressions The ability to modify a variable while the program is running is a
tremendous help while debugging. It can also be dangerous, so
you need to be sure you know the do·'s and don'ts of modification.

140

The simplest form of modification is to enter a variable name in
the Evaluate box and a corresponding value in the New Value
box. When you press Enter after typing in the new value, the
variable's value is changed, and the Result box is updated to
reflect that.

You are not limited to constant values, though. You can enter into
the New Value box any variable or expression that you could
enter into the Evaluate box, with one major qualification: It must
be assignment-compatible with the variable or expression in the
Evaluate box. In other words, if exprl represents what's currently
in the Evaluate box, then you cannot legally enter the expression
expr2 into the New Value box if the statement

exprl := expr2i

would cause a compiler or run-time error.

Turbo Pascal User's Guide

Note that the reverse is not necessarily true: There are cases when
the statement

exprl := expr2;

is legal, but you still cannot use expr2 in the New Value box.

If the expression entered is an incompatible type-such as
entering a floating-point value for an integer variable-then the
Result box will instead display the message "Type mismatch." To
make the Result box redisplay the current value of the variable,
move back up to the Evaluate box and press Enter.

If the expression entered yields an out-of-range value-such as
entering 50,000 for a variable of type Integer-the Result box will
display the message "Constant out of range." The same thing will
occur if you type in an array element with an index that's out of
range.

If the expression entered in the New Value box is one that can't be
assigned, then the Result box will get the message "Cannot
evaluate this expression." Such expressions include arrays,
records, sets, and files.

Likewise, if the variable or expression in the Evaluate box is one
that can't be modified-a whole array, record, set, or a file-then
attempting to assign a value to it will produce the message
"Cannot be modified."

What can you modify? Refer to Table 5.1 on page 138 for a list of
what can be used in a Watch expression, along with acceptable
values. Remember, though, that expressions can only use the
built-in functions listed as acceptable for Watch expressions in
Table 5.1.

Other things to keep in mind:

• You can't modify entire arrays, entire records, or files; however,
as mentioned, you can modify individual elements of arrays or
records that resolve to one of the types listed in Table 5.1,
provided they are not themselves arrays or records.

• You can't directly modify untyped parameters passed into a
procedure or function. You can, however, typecast them to a
given type, then modify them according to the restrictions
we've just detailed.

• Be aware that there can be some real dangers in modifying
variables. For example, if you change a pointer, you could end

Chapter 51 Debugging Turbo Pascal programs 141

Navigation

up making changes to memory that you didn't mean to,
possibly even modifying other variables and data structures.

When you are debugging a large program, especially one spread
out over several units, you can actually get lost, or at least buried
so deep that you can't figure out how best to get to where you
want to go. To aid you with navigation, the debugger provides
two mechanisms: the Window I Call Stack and Search I Find
Procedure commands.

The call stack Each time a procedure or function is called, Turbo Pascal
remembers the call and the parameters passed to it by pushing
the information on the call stack. When you exit that procedure or
function, then the call is popped off the stack, returning execution
to the calling routine.

Whenever your program pausesbecause of a breakpoint or a
single-step command, you can ask to see the current call stack by
using the Window I Call Stack command (Ctrl-F3). This displays a
window that shows the list of procedure/ function calls currently
active on the stack.

The call stack allows you to look back through the sequence of
calls. When you first bring up the call stack, the topmost call is
highlighted. You can use the arrow keys to move up and down
through the stack. If you press Spacebar, you will be taken to the
last active point within that program. Consider the following
small program (TESTPOWER.P AS):

program TestPower;

function Power(Base,Exp: Word): Longint;
begin

if Exp <= 0 then
Power := 1

else
Power := Base * Power (Base,Exp-l) ';

end; { of func Power }

begin { main body of TestPower }
Writeln('2 A14 = , ,Power(2,14));

end. { of program TestPower }

A eGA will display 9 calls; a
Hercules, EGA, or VGA will

display 72.

Compile TESTPOWER, and set a breakpoint on the second line of
the function Power (the line Power := 1). Now run the program.

142 Turbo Pascal User's Guide

Finding procedures
and functions

When it pauses, choose the Window I Call Stack command. You
can use the i and'!' keys to move through the calls. The call stack
tracks up to 128 nested calls.

Sometimes, in the middle of debugging, you want to find a
particular procedure or function in order to set a breakpoint,
execute to that point, check the parameter list, look at the
variables, or any number of other reasons.

If your source code is spread out among multiple files, you'll love
the Search I Find Procedure command. This command leads you
to a small window, where you can enter the name of a procedure
or function. After you type in an identifier and press Enter, Turbo
Pascal checks its internal tables to find where that subprogram is
located, loads in the appropriate source file (if necessary), and
puts you in the Edit window with the cursor positioned at the
beginning of the procedure or function.

There are three important things to remember about using the
Search I Find Procedure command:

• Find Procedure does not affect your current debugging state. In
other words, if you're paused at some point in your program,
you are still paused there, and choosing Run I Trace Into (F7)
will execute that line in your program, not the procedure or
function you've just located.

• Find Procedure places the cursor at the first executable line of
that procedure or function, rather than on the procedure or
function header. This means you can choose Run I Go to Cursor
(F4) to execute from your current position to the start of that
procedure or function.

• You can only use this command if you have compiled your
program and debug information is available for the procedure
or function.

Since you may have routines with the same name in several
different places in your program (in units, nested inside of other
routines, and so on), it's a good idea to qualify the routine's name
by preceding it with the name of the unit or program containing
it, as well as any procedures or functions that might enclose it; for
example, module.proc.proc.<etc.>.proc. If you modify the source
code and the file position (or even name) of a procedure or
function is changed, the Search I Find Procedure command won't
know about any of those changes until you recompile. If you first
compile program TestPower (see the section on "The call stack,"

Chapter 5, Debugging Turbo Pascal programs 143

page 142) and then delete the blank line above the declaration of
function Power, Search I Find Procedure will put the cursor on the
if ... then instead of the begin.

Object-oriented debugging

You don't need to make any
special preparations to

debug an object-oriented
program.

Stepping and
tracing method

calls

Objects in the
Evaluate window

144

Working with objects in the IDE involves two functional areas:
stepping and tracing through method calls, and examining object
data. The integrated debugger "understands" objects and handles
them automatically in a fashion consistent with related language
components like procedures and records.

A method call is treated by the IDE as an ordinary procedure or
function call. FB (Step Over) treats a method call as an indivisible
unit, and executes it without displaying the method's internal
code; whereas F7 (Trace Into) loads the method's code if it's
available, and traces through the method's statements.

There is no difference between tracing static method calls and
tracing virtual method calls. Virtual method calls are resolved at
run time, but because debugging happens at run time, there is no
ambiguity, and the integrated debugger always knows the correct
method to execute next.

The Call Stack window displays the names of methods prefixed
by the object type that defines the method (for example, Circle.Init
rather than simply Init).

When objects are displayed in the Evaluate and Modify window,
they appear in a fashion very similar to records. All the same
format specifiers apply, and all expressions that would be valid
for records are valid for objects.

Only the data fields are displayed when the object name as a
whole is presented to Evaluate. However, when the specific
method name is evaluated, as in

ACircle.MoveTo

Turbo Pascal User's Guide

Expressions in the
Find Procedure

command

General issues

Writing programs
for debugging

a pointer value is displayed indicating the address of the method's
code. This is true for both static and virtual methods. The
integrated debugger handles virtual method lookup transparently
through the virtual method table (VMT), and the address of a
virtual method for a given object instance is the true address of
the correct method code for that instance.

When it is tracing inside a method, the IDE uknows" about the
scope and presence of the Self parameter. You can evaluate or
watch Self, and you can follow it with format specifiers and field
or method qualifiers.

Turbo Pascal allows the entry of expressions at the prompt for the
Find Procedure command of the Search menu. To be legal, an
expression must evaluate to an address in the code segment. Note
that this applies to procedural variables and parameters as well as
to object methods.

You've learned how to use the debugger; now we'll cover some
. other issues that might arise while you're debugging.

There are some simple things you can do to make your programs
easier to debug. In most cases, don't put more than a single
statement on a line. Since the debugger executes on a line-by-line
basis, this ensures that no more than one statement will be
executed each time you press F7.

At the same time, recognize that there are cases when you might
want to put multiple statements per line. If there is a list of
statements you have to step through, but which aren't really
relevant to the debugging, feel free to bunch them up into one or
two statements so that you can step through them more quickly.
That's why in one of the earlier examples we wrote

W := 10; X := 20; Y := 30; Z := 40;

instead of

W := 10;

Chapter 5, Debugging Turbo Pascal programs 145

Memory issues

146

X := 20;
Y := 30;
Z := 40;

You can also organize your variable declarations so that the ones
you are most likely to put in the Watch window are nearest the
initial begin statement of the procedure or function. When you
step into that procedure or function, you can quickly move the
cursor through the list, using Add Watch (Ctrl-F7) to add each
variable as a watch.

In a similar fashion, if there are expressions that you commonly
want to watch or evaluate at certain points in your program,
insert them as comments. When you get to that point, you can
move the cursor to the start of the expression and copy it in to the
Add Watch or Evaluate and Modify box. This is especially helpful
if the expression is a complex one, involving typecasting, format
characters, array elements, or record fields.

Finally, the best debugging is preventive debugging. A well­
designed, clearly-written program will not only have fewer bugs,
but it will make it easier for you to track down and fix what few
bugs there are. Here are some basics to remember when you're
writing your program:

• Program incrementally. When possible, code, test, and debug
your program one (small) section at a time. Get each section
working before moving on to the next section.

• Break your program into modules: units, procedures, functions.
Avoid writing procedures or functions longer than about 25
lines; if one gets bigger than that, try breaking it up into a few
smaller procedures and functions.

• When possible, pass information through parameters only,
instead of referencing global variables inside procedures and
functions. This avoids side effects and also makes the code
easier to debug, since you can easily watch all information
coming in and out of a given procedure or function.

• Concentrate on making your program work correctly before
trying to make it fast.

It is possible to run out of memory while debugging a large
program. After all, Turbo Pascal is holding the editor, compiler,
debugger, current source code file, executable code, symbol tables,

Turbo Pascal User's Guide

Changes you make in the
Startup Options dialog box
(Options I Environment) are

permanent and saved
directly into TURBo.EXE.

Changes made to other
dialog settings can be saved

in a TURBO. TP configuration
file. Refer to Chapter 7.

Outside the IDE

Re-configuring Turbo
Pascal

There are command-line
parameters that you can

pass to TURBo.EXE at startup
that correspond to all the

settings on the Options I
Enviroment I Startup dialog

box: refer to page 774.

If you have EMS available,
disabling this option will have

no effect on IDE capac/ty.

and any other debugging information in memory-all at the same
time. You can monitor the amount of free memory with the File I
Get Info command.

Both the IDE and Turbo Pascal itself are very configurable and
there are several steps you can take to make more workspace
available for compiling and debugging your programs. Some
solutions are easy to implement, while others involve altering
your code or turning off debug information selectively. Always
start with the options that are painless and safe and then, if
necessary, take progressively more radical steps in order to
increase the IDE's capacity. Once you find a system configuration
that provides you with enough capacity, you might want to
permanently modify the your AUTOEXEC.BAT, CONFIG.SYS,
TURBO.TP, and TURBO.EXE files.

• Remove TSRs from memory. If you have Sidekick or Superkey
loaded in memory or EMS, exit the IDE, remove them, and then
reload TURBO.EXE .

• Modify CONFIG.SYS to remove unnecessary drivers
(ANSLSYS, disk caches, etc.). You can also reduce the number
of files and buffers with FILES = 20, BUFFERS = 20. Make sure
these changes are safe for any other software you are using.

1. Set Compile I Destination to Disk.

2. On the Options I Linker dialog box, set Link Buffer to Disk.

3. Using the Options I Enviroment I Startup Options dialog box,
try one or more of the following:

a. If you have expanded memory on your system (EMS),
make sure the Use Expanded Memory option is enabled
and make plenty of EMS available to Turbo Pascal (by
reducing the amount of EMS being used by resident
programs or drivers like RAM disks, Sidekick, etc.). The
IDE can use at least 400K of EMS for overlays, extra
buffers, and other system resources. All these will increase
the workspace for your programs. (Making more than
400K EMS available will increase the IDE's performance,
although it will not make more memory available to
compile and debug your programs.)

b. If you're not trying to debug a graphics program, make
sure the Graphics Screen Save option is disabled. Like all

Chapter 5, Debugging Turbo Pascal programs 147

If you don't have the IDE
load TURBO. TPL, you won't

be able to evaluate
expressions using the

Evaluate/Modify dialog box
unless a debugging session is

active.

Make sure to leave the
extracted units on disk and in

your unit (Options I
Directories I Unit directories)

.so your programs can make
use of the Dos, Crt, Overlay,

and Printer units.

Of course, if you're not
debugging, you can greatly

increase IDE capacity by
disabling the Integrated

switch (Options I Debugger).

Modifying your source
code

148

startup options, you can enable this option on the
command-line when you debug a graphics program.

c. Reduce the default of the Overlay and Window Heap Size
options. Every kilobyte you subtract here yields another
kilobyte for your program. If you have EMS available,
reducing these heap sizes somewhat won't have much
negative impact on the IDE's performance.

d. Disable the Load TURBO.TPL option. TURBO.TPL contains
the commonly used standard units and is loaded into
memory at startup to optimize linker performance. By
disabling this option, you'll still be able to compile and
debug programs, but you'll have to extract all the units
from TURBO.TPL first (using the TPUMOVER utility; refer
to UTILS.DOC on your distribution disk).

As an alternative, you can leave the Load TURBO.TPL
option enabled and still reduce the size of TURBO.TPL by
about 15K. Just extract all units from TURBO.TPL with the
exception of SYSTEM.TPU. Then delete all units from
TURBO.TPL with the exception of SYSTEM.TPU.

e. On a unit-by-unit basis, turn off debug information in
those units that are already debugged. A common
technique is to build a "test harness" around your code as
you develop it. Once that code is implemented, tested and
debugged, turn off symbol information in that unit by
disabling the Debug Information switch (Options I
Compiler dialog box) and recompiling. You can also imbed
a {$D-} in the unit itself. If you do so, it's a good idea to use
conditional directives and defines to control enabling and
disabling debug information in various units (refer to
Chapter 21 in the Programmer's Guide). If you proceed as
described here and end up with debug information
disabled everywhere in your program-and are still
having capacity problems-consider modifying your code
as described next.

Some of the following measures are easy to do and yield big
capacity gains. Others are more radical and you might want to
use conditional directives (see Chapter 21 in the Programmer's
Guide) to turn them on or off.

Turbo Pascal User's Guide

Turbo Debugger and
the IDE

• Overlay units in your program. This is very safe, flexible, and
can dramatically increase the IDE workspace. Refer to Chapter
13 in the Programmer's Guide for more information.

• Using the Options I Memory Sizes dialog box, reduce the Stack
Size and Low Heap Limit. Make sure there's enough stack for
your program, especially if you've turned off stack checking as
recommended next.

• Using the settings in the Compiler Options dialog box, try one
or more of the following:

• Disable Range Checking and Stack Checking. Stack Checking
is on by default. Turn it off once your program is stable and
you've determined its stack requirements .

• Disable Emulation during debugging. Of course, only enable
Emulation and 8087/80287 code generation if you are doing
IEEE floating point. If you have a numeric coprocessor on
your debugging machine, disable Emulation while you're
debugging non-floating point code.

• Reduce the number of symbols in the interface sections of units.
Don't declare something in the interface section of a unit unless
it's used by code outside the unit. Doing this is good, safe
programming practice and will make more symbol space
available during the compilation of large programs.

Turbo Pascal itself and the IDE both offer many ways for you to
gain capacity by making adjustments to default settings. If you
run out of memory compiling or debugging your programs and
have tried most of the painless ideas offered here, consider using
the IDE to edit and compile your programs, and then using Turbo
Debugger to debug them. If you hav~ Turbo Debugger and want
to use it to debug programs developed in the IDE, configure the
IDE as follows: '

1. Set Compile I Destination to Disk.
2. In the Options I Debugger dialog box, disable Integrated and

enable Standalone debugging.

You can also use the command-line compiler, TPC.EXE, or the
extended memory command-line compiler, TPCX.EXE to build
massive programs (several megabytes in size). Then you can use
TD, TD286 or TD386 to debug them.

Chapter 5, Debugging Turbo Pascal programs 149

Recursive routines

Where
debugging won't

go

150

Recursion is a programming technique where a procedure calls
itself (directly or indirectly). For example, the function Power
shown in an earlier example is recursive, because it calls itself to
calculate the value it needs to return.

There are some considerations to keep in mind when debugging
recursive code. First, deep levels of recursion can eat up lots of
system stack space, which can have other side effects (such as
your program halting or crashing due to stack overflow). This is a
general danger of using recursion under any circumstance; just be
aware that, if your program crashes while debugging, it may well
be due to stack overflow rather than anything you did with the
debugger.

Also, if you have deep levels of recursion, you may not be able to
find your way out immediately with the call stack. That's because
the call stack is limited to the last 128 function/procedure calls.
You can, however, go to the bottom of the stack, use it to find the
oldest call, pop out to that spot, then use the call stack again.

Each time a function is called recursively, it creates a new set of
local variables and pass-by-value (non-var) parameters. If you
have added these to the Watch window, be aware that these
values will "float" to reflect the currently active local data.

There are some cases where you can't trace into a given function
or procedure. This is usually-but not always-because the
source isn't available. These situations include the following:

• Any inline procedure or function; that is, any procedure or
function of type inline. That's because these aren't procedure or
function calls at all; the associated machine language is inserted
in place of the "call." Such a call is treated as a single statement.

Note that you can trace into procedures and functions that
happen to use inline statements. However, in that case, each
inline statement is treated as a single line, no matter how many
lines it occupies. This follows the same rule as other statements;
that is, if a single statement takes up several lines, it is treated
by Run I Trace Into and Step Over (F7 and FB) as a single line.

Turbo Pascal User's Guide

Common pitfalls

• Any Turbo Pascal routine from one of the standard units (Crt,
Dos, Graph, Graph3, Overlay, Printer, System, Turbo3).

• Any external procedure or function.
• Any interrupt procedure or function.
• Any procedure, function, or initialization code contained in a

unit that was not compiled with the {$D+} directive (or with
Options I Compiler I Debug Information turned on).

• Any procedure, function, or initialization code contained in a
unit whose source code cannot be found. If it's not in the
current or the unit directory, or if its source code is in a file
named something other than unitname.P AS (where unitname is
the name of the unit as given in the uses clause), the IDE will
prompt you for the correct file name. If you enter a null file
name, or if you press Esc, the debugger will move on as if
debug information were not available.

• Any procedure set up as an exit procedure. If you step through
your program with Run I Trace Into (F7), you'll never step into
an Exit procedure. Note, however, that you can set a breakpoint
in an Exit procedure, and the debugger will break appropriately
when the execution bar arrives at your breakpoint. .

There are a few problems that you often run into while
debugging. Here's a list of things to watch out for:

• Not generating the global and local debug information needed.
By default, both of these switches are on. If you have problems
stepping into a program or unit, put {$D+,L+} at the start of
every program or unit you wish to debug.

• Starting to debug another program without clearing the break­
points and Watch expressions from the previous one. Before
loading in a new program to debug, you should always execute
the following commands: Run I Program Reset (Ctrl-F2) Debug I
Watches I Remove All Watches.

• Trying to compile and run another program when the previous
one is still set up as the main file. Use the Compil~ I Main File
command to clear out the previous name or set a new one.

• Press N when you get the "Source modified, rebuild? (YIN)"
prompt. This means that you've modified a source file wl1ile
debugging, and the debugger's line-number tables may no
longer be valid. This can throw off breakpoints, stepping, and

Chapter 5, Debugging Turbo Pascal programs 151

~rror handling

Input joutput error
checking

152

other debugging activities. If you just accidentally typed a
character and then deleted it, you're probably safe in pressing
Ni if you've inserted or deleted lines, though, you're better off
pressing Y, because the machine code you're debugging doesn't
match the source code you're looking at.

In addition to the integrated debugger, Turbo Pascal provides
several compiler directives and language features to help you trap
programming errors. This section briefly describes some of those
features.

You can insert run-time error checking for yourself by disabling
the generation of automatic error-checking code and writing your
own error-handling routines. Let's take a look at some examples.

If you ran this program, entered the values 45 and 8x when
prompted, and then pressed Enter, what would happen?

program DoSum;
var

A,B,Sum: Integer;
begin

Write('Enter two numbers: ');
Readln(A,B);
Sum := A + B;
Writeln('The sum is ' ,Sum);
Readln;

end.

You'd get a run-time error (106, in fact) and the cursor would be
positioned at the statement

Readln(A,B);

What happened? The program expected an integer value and you
entered non-numeric data-8x-which generated a run-time
error.

In a short program like this, such an error isn't a big bother. But
what if you were entering a long list of numbers and had gotten
through most of the list before making this mistake? You'd be

Turbo Pascal User's Guide

Range checking

forced to start all over again. Worse yet, what if you wrote the
program for someone else to use, and they slipped up?

Turbo Pascal allows you to disable automatic 1/ a error checking
and test such errors for yourself within the program. To turn off
IIO error checking at some point in your program, include the
compiler directive {$I-} in your program (or the Options I
Compiler 11/0 Checking option). This instructs the compiler to
prohibit the production of code that checks for I/O errors.

Another common class of run-time errors involves out-of-range or
out-of-bounds values. Some examples of how these can occur
include assigning too large a value to an integer variable or trying
to index an array beyond its bounds. If you want it to, Turbo
Pascal will generate code to check for range errors. It makes your
program slightly larger and slower, but it can be invaluable in
tracking down any range errors in your program.

Let's revisit an earlier example:

program RangeTest;
var

List: array[l .. 10) of Integer;
Indx: Integer;

begin
for Indx := 1 to 10 do

List [Indx) := Indxi
Indx := 0;
while (Indx < 11) do
begin

Indx := Indx + 1;
if List [Indx) > 0 then

List [Indx) := -List [Indx);
end;
for Indx := 1 to 10 do

Writeln(List[Indx]);
end.

We discovered earlier that if you compile and run this program, it
will get stuck in an infinite loop. This is caused by the while loop
executing 11 times, not 10, and the variable Indx having a value of
11 the last time through the loop.

Chapter 5, Debugging Turbo Pascal programs 153

The Range Checking option
is in the Options I Compile

dialog box. Range checking
is off by default; turning

range checking on makes
your program slightly larger

and slower, but is strongly
advised until your program is

thoroughly debugged.

Other error­
handling abilities

154

How do you check for things like this? You can insert {$R+} at the
start of the program to turn range checking on. Now, when you
run it, the program will halt with run-time error 201 (out-of-range
error, because the array index is out of bounds) as soon as you hit
the statement if List[Indx] > 0 with Indx = 11. If you were running
in the IDE, it would automatically take you to that statement and
display the error.

There are some situations-usually in advanced programming­
in which you may need to violate range bounds, most notably
when working with dynamically allocated arrays or when using
Succ and Pred with enumerated data types.

You can selectively implement range checking by placing the
{$R-} directive at the start of your program. For each section of
code that needs range checking, place the {$R+} directive at the
start of it, and the {$R-} directive at the end. For example, you
could have written the preceding loop like this:

while Indx < 11 do
begin

Indx := Indx + 1;
{$R+}
if List [Indx) > 0 then

List [Indx) := -List[Indx);
{$R-}

end;

{ Enable range checking }

{ Disable range checking }

Range checking will be performed only in the if..then statement
and nowhere else, unless, of course, you have other {$R+}
directives elsewhere.

Turbo Pascal gives you the ability to perform other error-handling
techniques, but because those techniques are described more fully
in other parts of this manual, we'll only touch on them briefly in
this section.

When your program terminates, either normally or through a
run-time error, a standard exit procedure is called that's linked in
with your program. Turbo Pascal lets you add in your own exit
procedures, which are called before the standard exit procedure. In
fact, each unit can have its own exit procedure, so that you can
have automatic cleanup code, as well as the usual automatic

Turbo Pascal User's Guide

initialization code. Exit procedures are described in more detail in
Chapter 18 of the Programmer's Guide, "Control issues."

If you try to allocate memory (through a call to New or GetMem)
and there isn't sufficient memory on the heap, a heap error
procedure is automatically called, which simply causes your
program to exit with a run-time error. You can, however, install
your own heap error procedure to handle things as you wish, like
deallocating dynamic structures no longer needed or simply
causing New or GetMem to return a nil pointer. Heap error
procedures are described in more detail in Chapter 16 of the Pro­
grammer's Guide, "Memory issues."

If you're using the Graph unit, you can perform error checking
much as you do for I/O error checking. One function in the unit,
GraphError, returns an error result set by many of the graphics
routines. Chapter 12 of the Programmer's Guide, liThe Graph unit
and the BGI," provides you with details on how to use this and
the error codes that are generated.

The Overlay unit contains an integer variable, OvrResult, that
stores the result code from the last operation performed by the
overlay manager. Similarly, the Dos unit stores its result codes in
the variable DosError.

Chapter 5, Debugging Turbo Pascal programs 155

156 Turbo Pascal User's Guide

c H A p T E R

6

Project management

So far, you've learned how to write Turbo Pascal programs, how
to use the predefined units, and how to write your own units. At
this point, your program could become large, perhaps separated
into multiple source files. How do you manage such a program?

This chapter suggests how to organize your program into units,
how to take advantage of the built-in Make and Build options,
how to use the stand-alone Make utility, how to use conditional
compilation within a source code file, and how to optimize your
code for speed.

Program organization

Turbo Pascal 6.0 allows you to divide your program into code
segments. Your main program is a single code segment, which
means that after compilation, it can have no more than 64K of
machine code. However, you can exceed this limit by breaking
your program up into units. Each unit can also contain up to 64K
of machine code when compiled. The question is: How should
you organize your program into units?

The first step is to collect all your global definitions-constants,
data types, and variables-into a single unit; let's call it MyGlobals.
This is necessary if your other units reference those definitions.
Unlike include files, units can't "see" any definitions made in
your main program; they can only see what's in the interface

Chapter 6, Project management 157

158

section of their own unit and other units they use. Your units can
use MyGlobals and thus reference all your global declarations.

A second possible unit is MyUtils. In this unit you could collect all
the utility routines used by the rest of your program. These would
have to be routines that don't depend on any others (except
possibly other routines in MyUtils).

Beyond that, you should collect procedures and functions into
logical groups. In each group, you'll often find a few procedures
and functions that are called by the rest of the program, and then
several (or many) procedures/functions that are called by those
few. A group like that makes a wonderful unit. Here's how to
convert it:

1. Copy all those procedures and functions into a separate file
and delete them from your main program.

2. Open that file for editing.
3. Type the following lines in front of those procedures and

functions:

unit unitname;
interface
uses MyGlobals;
implementation

where unitname is the name of your unit (and also the name of
the file you're editing).

4. Type end. at the very end of the file.
5. In the space between interface and implementation, copy the

procedure and function headers of those routines called by the
rest of the program. Those headers are simply the first line of
each routine, the one that starts with procedure (or function).

6. If this unit needs to use any others, type their names
(separated by commas) between MyGlobals and the semicolon
in the uses statement.

7. Compile the unit you've created.
8. Go back to your main program and add the unit's name to the

uses statement at the start of the program.

Ideally, you want your program organized so that when you are
working on a particular aspect of it, you are modifying and
recompiling a single module (unit or main program). This
minimizes compile time; more importantly, it lets you work with
smaller, more manageable chunks of code.

Turbo Pascal User's Guide

Initialization
Remember in all this that each unit can (optionally) have its own
initialization code. This code is automatically executed when the
program is first loaded. If your program uses several units, the
initialization code for each unit is executed. The order of
execution follows the order in which the units are listed in your
program's uses statement; so if your program has the statement

uses MyGlobals,MyUtils,EditLib,GraphLib;

then the initialization section (if any) of MyGlobals will be called
first, followed by that of MyUtils, then EditLib, then GraphLib.

To create an initialization section for a unit, put the keyword
begin above the end that ends the implementation section. This
defines the initialization section of your unit, much as the
begin .. end pair defines the main body of a program, a procedure,
or a function. You can then put any Pascal code you want in here.
It can reference everything declared in that unit, in both the
public (interface) and private (implementation) sections; it can
also reference anything from the interface portions of any units
that this unit uses.

The Build and Make options

Turbo Pascal has an important feature to aid you in project
management: a built-in Make utility. To understand its
significance, let's look at the previous example again.

Suppose you have a program, MYAPP.PAS, which uses four
units: MyGlobals, MyUtils, EditLib, and GraphLib. Those four units
are contained in the text files MYGLOBAL.P AS, MYUTILS.P AS,
EDITLIB.P AS, and GRAPHLIB.P AS, respectively. Furthermore,
MyUtils uses MyGlobals, and EditLib and GraphLib use both
MyGlobals and MyUtils.

When you compile MYAPP.PAS, it looks for the files
MYGLOBAL.TPU, MYUTILS.TPU, EDITLIB.TPU, and
GRAPHLIB.TPU, loads them into memory, links them with the
code produced by compiling MYAPP.P AS, and writes everything
out to MYAPP.EXE (if you're compiling to disk). So far, so good.

Chapter 6, Project management 159

The Make option

160

Suppose now you make modifications to EDITLIB.P AS. In order
to recreate MYAPP.EXE, you need to recompile both
EDITLIB.P AS and MYAPP.P AS. A little tedious, but no problem.

Now, suppose you modify the interface section of
MYGLOBAL.PAS. To update MYAPP.EXE, you have to recompile
all four units, as well as MYAPP.PAS. That means five separate
compilations each time you make a change to MYGLOBAL.PAS­
which could be enough to discourage you from using units at all.
But wait ...

Turbo Pascal offers a solution. You can get the Make option (in the
Compile menu) and Turbo Pascal to do all the work for you. The
process is simple: After making any changes to any units or the
main program, just Make the main program.

Turbo Pascal makes three kinds of checks.

1. First, it checks and compares the date and time of the .TPU file for
each unit used by the main program against the unit's corresponding
.PAS file. If the .PAS file has been modified since the .TPU file
was created, Turbo Pascal recompiles the .PAS file, creating an
updated .TPU file. So, in the first example, if you modified
EDITLIB.P AS and then recompiled MYAPP.P AS (using the
Make option), Turbo Pascal would automatically recompile
EDITLIB.PAS before compiling MYAPP.PAS.

2. The second check is to see if you changed the interface portion of the
modified unit. If you did, then Turbo Pascal recompiles all other
units using that unit.

As in the second example, if you modified the interface
portion of MYGLOBAL.P AS and then recompiled
MYAPP.PAS, Turbo Pascal would automatically recompile
MYGLOBAL.P AS, MYUTILS.P AS, EDITLIB.P AS, and
GRAPHLIB.PAS (in that order) before compiling MYAPP.PAS.
However, if you only modified the implementation portion,
then the other dependent units don't need to be recompiled,
since (as far as they're concerned) you didn't change that unit.

3. The third check is to see if you changed any Include or . OBI files
(containing assembly language routines) used by any units. If a
given .TPU file is older than any of the Include or .OBJ files it
links in, then that unit is recompiled. That way, if you modify
and assemble some routines used by a unit, that unit is

Turbo Pascal User's Guide

The Make option has no
effect on units found in

TURBO.TPL.

The Build option

automatically recompiled the next time you compile a
program using that unit.

To use the Make option under the IDE, either select the Make
command from the Compile menu, or press F9. To invoke it with
the command-line compiler, use the option 1M.

The Build option (also in the Compile menu) is a special case of
the Make option. When you compile a program using Build, it
automatically recompiles all units used by that program (except,
of course, those units in TURBO.TPL). This always brings
everything up to date. You can invoke Build from the command
line with the I B option.

The Stand-alone MAKE utility

MAKE is documented in an
online text file, UTlLS.DOC.

Turbo Pascal places a great deal of power and flexibility at your
fingertips. You can use it to manage large, complex programs that
are built from numerous unit, source, and object files. And it can
automatically perform a Build or a Make operation, recompiling
units as needed. Understandably, though, Turbo Pascal has no
mechanism for recreating .OBI files from assembly code routines
(.ASM files) that have changed. To do that, you need to use a
separate assembler. The question then becomes, how do you keep
your .ASM and .OBI files updated?

The answer is simple: Use the MAKE utility that's included with
Turbo Pascal. MAKE is an intelligent program manager that­
given the proper instructions-does all the work necessary to
keep your program up to date. In fact, MAKE can do far more
than that. It can make backups, pull files out of different
subdirectories, and even automatically run your programs should
the data files that they use be modified. As you use MAKE more
and more, you'll see new and different ways it can help you to
manage your program development.

MAKE is a stand-alone utility; it is different from the Make and
Build options that are part of both the IDE and the command-line
compiler. Here's an example of how you might use it.

Chapter 6, Project management 161

A quick example

162

Suppose you're writing some programs to help you display
information about nearby star systems. You have one program­
GETSTARS.P AS-that reads in a text file listing star systems, does
some processing on it, then produces a binary data file with the
resulting information in it.

GETSTARS.PAS uses three units: STARDEFS.TPU, which
contains the global definitions; ST ARLIB.TPU, which has certain
utility routines; and ST ARPROC.TPU, which does the bulk of the
processing. The source code for these units is found in
STARDEFS.P AS, STARLIB.P AS, and STARPROC.P AS,
respectively.

The next issue is dependencies. STARDEFS.PAS doesn't use any
other unitsi STARLIB.PAS uses STARDEFSi STARPROC.PAS uses
STARDEFS and STARLIB; and GETSTARS.PAS uses STARDEFS,
STARLIB, and STARPROC.

Given that, to produce GETST ARS.EXE you would simply
"make" GETST ARS.P AS. Turbo Pascal would recompile the units
as needed.

Suppose now that you convert a number of the routines in
STARLIB.PAS into assembly language, creating the files
SLIB1.ASM and SLIB2.ASM, then use Turbo Assembler to create
SLIB1.0BJ and SLIB2.0BJ. Each time STARLIB.PAS is compiled, it
links in those .OBJ files. And, in fact, Turbo Pascal is smart
enough to recompile STARLIB.P AS if STARLIB.TPU is older than
either of those .OBJ files.

However, what if either .OBJ file is older than the .ASM file upon
which it depends? That means that the particular .ASM file needs
to be re-assembled. Turbo Pascal can't assemble those files for
you, so what do you do?

You create a make file and let MAKE do the work for you. A make
file consists of dependencies and commands. The dependencies tell
MAKE which files a given file depends upon; the commands tell
MAKE how to create that given file from the other ones.

Turbo Pascal User's Guide

Creating a makefile Your makefile for this project might look like this:

getstars.exe: getstars.pas stardefs.pas starlib.pas slibl.asm \
slib2.asm slibl.obj slib2.obj

tpc getstars 1m

slibl.obj: slibl.asm
TASM slibl.asm slibl.obj

slib2.obj: slib2.asm
TASM slib2.asm slib2.obj

Okay, so this looks a bit cryptic. Here's an explanation:

• The first two lines tell MAKE that GET5T ARS.EXE depends on
three Pascal, two assembly language, and two .OBJ files (the
backslash at the end of line 1 tells MAKE to ignore the line
break and continue the dependency definition on the next line).

• The third line tells MAKE how to build a new GET5T ARS.EXE.
Notice that it simply invokes the command-line compiler on
GET5TARS.P AS and uses the built-in Turbo Pascal Make facility
(1M option).

• The next two lines (ignoring the blank line) tell MAKE that
5LIB1.0BJ depends on 5LIB1.A5M and show MAKE how to
build a new 5LIB1.0BJ.

• Similarly, the last two lines define the dependencies (only one
file, actually) and MAKE procedures for the file 5LIB2.0BJ.

Using MAKE Let's suppose you've created this Make file using the editor in the
Turbo Pascal IDE (or any other ASCII editor) and saved it as the
file 5TARS.MAK. You would then use it by issuing the command

make -fstars.mak

MAKE works from the bottom where -f is an option telling MAKE which file to use. First, it
of the file to the top. checks to see if 5LIB2.0BJ is older than 5LIB2.A5M. If it is, then

MAKE issues the command

TASM SLIB2.asm SLIB2.obj

which assembles 5LIB2.A5M, creating a new version of
5LIB2.0BJ. It then makes the same check on 5LIB1.A5M and
issues the same command if needed. Finally, it checks all of the
dependencies for GET5T ARS.EXE and, if necessary, issues the
command

Chapter 6, Project management 163

tpc getstars 1m

The / M option tells Turbo Pascal to use its own internal MAKE
routines, which will then resolve all unit dependencies, including
recompiling STARLIB.P AS if either SLIB1.0BJ or SLIB2.0BJ is
newer than ST ARLIB. TPU.

Conditional compilation

Table 6.1
Summary of compiler

directives

The DEFINE and

To make your job easier, Turbo Pascal 6.0 offers conditional
compilation. This means that you can now decide what portions
of your program to compile based on options or defined symbols.
For a complete reference to conditional directives, refer to
Chapter 21, "Compiler directives," in the Programmer's Guide.

The conditional directives are similar in format to the compiler
directives you're accustomed to; in other words, they take the
format

{$directive arg}

where directive is the directive (such as DEFINE, IFDEF, and so
on), and arg is the argument, if any. Note that there must be a
separator (blank, tab) between directive and argo Table 6.1 lists all
the conditional directives, with their meanings.

{$DEFINE symbol}
{$UNDEF symbol}
{$IFDEF symbol}
{$IFNDEF symbol}
{$IFOPTx+}
{$IFOPT x-}
{$ELSE}

{$ENDIF}

Defines symbol for other directives
Removes definition of symbol
Compiles following code if symbol is defined
Compiles following code if symbol is not defined
Compiles following code if directive x is enabled
Compiles following code if directive x is disabled
Compiles following code if previous IFxxx is not
True
Marks end of IFxxx or ELSE section

UNDEF directives The IFDEF and IFNDEF directives test to see if a given symbol is
defined. These symbols are defined using the DEFINE directive
and undefined UNDEF directives. (You can also define symbols on
the command line and in the IDE.)

164

To define a symbol, insert the directive

{$DEFINE symbol}

Turbo Pascal User's Guide

Defining at the
command line

Defining in the IDE

Predefined
symbols

Table 6.2
Predefined conditional

symbols

into your program. symbol follows the usual rules for identifiers as
far as length, characters allowed, and other specifications. For
example, you might write

{$DEFINE debug}

This defines the symbol debug for the remainder of module being
compiled, or until the statement

{$UNDEF debug}

is encountered. As you might guess, UNOEF "undefines" a
symbol. If the symbol isn't defined, UNOEF has no effect.

If youire using the command-line version of Turbo Pascal
(TPC.EXE), you can define conditional symbols on the command
line itself. TPC accepts a /0 option, followed by a list of symbols
separated by semicolons:

tpc myprog /Ddebug;test;dump

This would define the symbols debug, test, and dump for the
program MYPROG.PAS. Note that the /0 option is cumulative,
so that the following command line is equivalent to the previous
one:

tpc myprog /Ddebug /Dtest /Ddump

Conditional symbols can be defined in the Conditional Defines
input box (Options I Compiler). Multiple symbols can be defined
by entering them in the input box, separated by semicolons. The
syntax is the same as that of the command-line version.

In addition to any symbols you define, you also can test certain
symbols that Turbo Pascal has defined. Table 6.2 lists these
symbols; let's look at each in a little more detail.

VER60

MSDOS

CPU86

CPU87

Always defined (TP 4.0 has VER40 defined, etc.)

Always defined

Always defined

Defined if an 8087 is present at compile time

Chapter 6, Project management 165

The VER60 symbol The symbol VER60 is always defined for Turbo Pascal 6.0. In a
similar fashion, VER40 is defined for version 4.0 of Turbo Pascal,
VERSO for version 5.0 and so on. Future versions will have
corresponding predefined symbols; for example, version 6.5
would have VER65 defined, version 7.0 would have VER70
defined, and so on. This allows you to create source code files that
can use future enhancements while maintaining compatibility
with older versions.

The MSDOS and CPU86
symbols

These symbols are always defined (at least for Turbo Pascal 6.0
running under DOS). The MSDOS symbol indicates you are
compiling under the DOS operating system. The CPU86 symbol
means you are compiling on a computer using an Intel iAPx86
(8088,8086,80186,80286,80386,80486)processoL

166

As future versions of Turbo Pascal for other operating systems
and processors become available, they will have similar symbols
indicating which operating system and/or processor is being
used. Using these symbols, you can create a single source code file
for more than one operating system or hardware configuration.

The CPU8l symbol Turbo Pascal 6.0 supports floating-point operations in two ways:
hardware and oofiware. If you have an 80x87 math coprocessor
installed in your computer system, you can use the IEEE floating­
point types (Single, Double, Extended, comp), and Turbo Pascal
will produce direct calls to the math chip. If you don't have an
8087, you can still use the IEEE types by instructing Turbo Pascal
to emulate the 8087 in software. Otherwise, you can just use the
standard floating-point type real (6 bytes in size), and Turbo
Pascal will support all your operations with software routines.
Use the $N and $E directives to indicate which you wish to use.

When you load the Turbo Pascal compiler, it checks to see if an
80x87 chip is installed. If it is, then the CPU87 symbol is defined;
otherwise, it's undefined. You might then have the following code
at the start of your program:

{$N+}
{$IFNDEF CPU8?}
{$E+}
{$ENDIF}

{ Always use IEEE floating point }
{ If there's no 80x8? present}

{ No hardware: Use emUlation library }

Turbo Pascal User's Guide

The IFxxx, ELSE, and
ENDIF symbols

The idea behind conditional directives is that you want to select
some amount of source code to be compiled if a particular symbol
is (or is not) defined or if a particular option is (or is not) enabled.
The general format follows:

{$IFxxx}
source code

{$ENDIF}

where IFxxx is IFDEF, IFNDEF, or IFOPT, followed by the
appropriate argument, and source code is any amount of Turbo
Pascal source code. If the expression in the IFxxx directive is True,
then source code is compiled; otherwise, it is ignored as if it had
been commented out of your program.

Often you have alternate chunks of source code. If the expression
is True, you want one chunk compiled, and if it's False, you want
the other one compiled. Turbo Pascal lets you do this with the
$ELSE directive:

{$IFxxx}
source code A

{$ELSE}
source code B

{$ENDIF}

If the expression in IFxxx is True, source code A is compiled;
otherwise source code B is compiled.

Note that all IFxxx directives must be completed within the same
source file, which means they cannot start in one source file and
end in another. However, an IFxxx directive can encompass an
Include file:

{$IFxxx}
{$I filel.pas}
{$ELSE}
{$I file2.pas}
{$ENDIF}

That way, you can select alternate Include files based on some
condition.

You can nest IFxxx .. ENDIF constructs so that you can have
something like this:

Chapter 6, Project management 167

The IFDEF and ,
IFNDEF directives

168

{$IFxxx} { First IF directive }

{$IFxxx} { Second IF directive }

{$ENDIF} { Terminates second IF directive }

{$ENDIF} { Terminates first IF directive }

You've learned how to define a symbol, and also that there are
some predefined symbols. The IFDEF and IFNDEF directives let
you conditionally compile code based on whether those symbols
are defined or undefined. You saw this example earlier:

{$IFDEF CPU87}
{$N+,E-}
{$ELSE}
{$N+,E+}
{$ENDIF}

{ If there's an 80x87 present}
{ Then use the inline 8087 code }

{ Else use the emulation library }

By putting this in your program, you can automaticaJly select the
$N option if an 8087 math coprocessor is present when your
program is compiled. That's an important point: This is a
compile-time option. If there is an 8087 coprocessor in your
machine when you compile, then your program will be compiled
with the $N+ and E- compiler directives, selecting direct calls to
the 8087. Otherwise, it will be compiled with the $N+ and $E+
directives, using the software 8087 emulation. If you compile this
program on a machine with an 8087, you can't run the resulting
.EXE file on a machine without an 8087. (Of course, a program
compiled using {$N+,E+} will run on any system and use
emulation only if no 8087 hardware is detected.)

It is also common to use the IFDEF and IFNDEF directives to insert
debugging information into your compiled code. For example, if
you put the following code at the start of each unit:

{$IFDEF debug}
{$D+,L+}
{$ELSE}
{$D-,L-}
{$ENDIF}

and the following directive at the start of your program:

{$DEFINE debug}

Turbo Pascal User's Guide

The IFOPT

and compile your program, then complete debugging information
will be generated by the compiler for use with the integrated
debugger or the standalone Turbo Debugger. In a similar fashion,
you can have sections of code that you want compiled only if you
are debugging; in that case, you would write

{$IFDEF debug}
source code

{$ENDIF}

where source code will be compiled only if debug is defined at that
point.

directive You may want to include or exclude code, depending upon which
compiler options (range-checking, I/O-checking, numeric­
processing, and so on) have been selected. Turbo Pascal lets you
do that with the IFOPT directive, which takes two forms:

{$IFOPT x+}

and

{$IFOPT x-}

where x is one of the compiler options: $A, $8, $0, $E, $F, $G, $1,
$L, $N, $0, $R, $S, $V, $X (see Chapter 21 in the Programmer's
Guide, "Compiler directives," for a complete description). With
the first form, the following code is compiled if the compiler
option is currently enabled; with the second, the code is compiled
if the option is currently disabled. So, as an example, you could
have the following:

var
{$IFOPT N+}

Radius/Circ/Area: Double;
{$ELSE}

Radius/Circ/Area: Real;
{$ENDIF}

This selects the data type for the listed variables based on whether
or not 8087 support is enabled.

An alternate example might be

Chapter 6, Project management 169

Assign(F,Filename);
Reset(F);
{$IFOPT I-}
IOChecki
{$ENDIF}

where IOCheck is a user-written procedure that gets the value of
IOResult, and prints out an error message as needed. There's no
sense calling IOCheck if you've selected the {$I+} option since, if
there's an error, your program will halt before it ever calls
IOCheck.

Optimizing code

170

A number of compiler options influence both the size and the
speed of the code. This is because they insert error-checking and
error-handling code into your program. It's best to enable them
while you are developing your program, but you may want to
disable them for your final version. Here are those options, with
their settings for code optimization (the default settings are stated
last):

• {$A+} enables word alignment of variables and type constants;
this results in faster memory access on 80x86 systems. The
default is {$A+}.

• {$B-} uses short-circuit Boolean evaluation. This produces code
that can run faster, depending upon how you set up your
Boolean expressions. The default is {$B-}.

• {$E-} disables linking with a run-time library that emulates an
8087 numeric coprocessor if one isn't present. This forces Turbo
Pascal to use either 8087 hardware or the standard 6-byte type
real, depending on the state of the $N numeric processing
switch. The default is {$E-}.

• {$G+} uses additional instructions of the 80286 to improve code
generation; programs compiled this way cannot run on 8088
and 8086 processors.

• {$I-} turns off I/O error-checking. By calling the predefined
function IOResult, you can handle I/O errors yourself. The
default is {$I+}.

• {$N-} generates code capable of performing all floating-point
operations using the built-in 6-byte type real. When the $N
switch is on, Turbo Pascal will use 8087 hardware or emulation

Turbo Pascal User's Guide

in software instead. If you compile a program and all the units
it uses with {$N-}, an 8087 run-time library is not required and
Turbo Pascal ignores the emulation switch directive $E. The
default is {$N-}.

• {$R-} turns off range checking. This prevents code generation to
check for array subscripting errors and assignment of out-of­
range values. The default is {$R-}.

• {$S-} turns off stack-checking. This prevents code generation to
ensure that there is enough space on the stack for each
procedure or function call. The default is {$S+}.

• {$V-} turns off checking of var parameters that are strings. This
lets you pass actual parameter strings that are of a different
length than the type defined for the formal var parameter. The
default is {$V+}.

• {$X+} enables functions calls to be used as statements; the result
of a function call can be discarded.

See Chapter 21 of the Programmer's Guide for more information on
compiler directives.

Optimizing your code using these options has two advantages.
First, it usually makes your code smaller and faster. Second, it
allows you to get away with something that you couldn't
normally. However, they all have corresponding risks as well, so
use them carefully, and reenable them if your program starts
behaving strangely.

Note that besides embedding the compiler options in your source
code directly, you can also set them using the Options I Compiler
menu in the IDE or the I$X option in the command-line compiler
(where X represents a letter for a compiler directive).

Chapter 6, Project management 171

172 Turbo Pascal User's Guide

c H

All of the windows, dialog
boxes, etc., pictured in this

chapter depict what you'd
see on a a monchrome

monitor.

Chapter 7, The IDE reference

A p T E R

7

The IDE reference

Turbo Pascal makes it easy and efficient for you to write, edit,
compile, link, and debug your programs. That's what Borland's
programmer's platform (also known as the integrated
environment, or IDE for short) is all about.

The Turbo Pascal IDE furnishes these extras to make program
writing even smoother:

III multiple, movable, resizable windows

II mouse support

.. multi-file editing of files up to 1 Mb in size

II dialog boxes

II cut-and-paste commands (with copying allowed from the Help
window and between Edit windows)

• search-and-replace capabilities

III print capabilities

.. editor macro language

This chapter tells you briefly how to start and exit Turbo Pascal
and then launches into detail about the individual menu items,
dialog boxes, buttons, and so on. For an introduction to the basic
components of the IDE, you can

II Go to Chapter 1. This chapter provides you with some general
information about the IDE and then gets you started
programming in the environment.

173

• Run TPTOUR. This interactive tutorial emulates the Turbo
Pascal IDE to show you how to open files, edit them, and
compile, run and debug programs, plus learn general window­
management skills.

See page 214 for more
about the online help system.

• Take advantage of Turbo Pascal's extensive online help system.
You can get information about any aspect of the IDE in a
keystroke (F1); specific language help is at your fingertips too
(press Ctrl-F1 while you're in the Edit window).

Starting and exiting

174

Command-line

Starting Turbo Pascal is simple. You just move to your Turbo
Pascal directory and type TURBO at the DOS command line. If you
like, you can use one or more options (and file names) along with
the TURBO command. These options make use of dual monitors,
expanded memory, RAM disks, LCD screens, the EGA palette,
and more.

options The command-line options for Turbo Pascal's IDE are IC, 10, IE,
IG, IL, IN, IP, ISX, rr, IX. These options use this syntax:

turbo [options] files

Placing a + (or a space) after the directive turns it on; placing a -
after it turns it off. For example,

turbo -g -p- myfile

enables graphics memory save and disables palette swapping.

The Ie option If you use the IC option followed by a configuration file name,
Turbo Pascal will load in that configuration file when it starts up.

The ID option The 10 option causes Turbo Pascal to work in dual monitor mode
if it detects appropriate hardware (for example, a monochrome
card and a color card); otherwise, the 10 option is ignored. Use
dual monitor mode when you run or debug a program, or shell to
DOS (File I DOS Shell).

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between

Turbo Pascal User's Guide

the two monitors (MODE C080, for example, or MODE MONO). In dual
monitor mode, the normal Turbo Pascal screen will appear on the
inactive monitor, and program output will go to the active
monitor. So when you type TURBO /D at the DOS prompt on one
monitor, Turbo Pascal will come up on the other monitor. When
you want to test your program on a particular monitor, exit Turbo
Pascal, switch the active monitor to the one you want to test with,
and then issue the TURBO /D command again. Program output will
then go to the monitor where you typed the TURBO command.

Keep the following in mind when using the 10 option:

• Don't change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File I DOS
Shell).

• User programs that directly access ports on the inactive
monitor's video card are not supported, and can cause
unpredictable results.

• When you run or debug programs that explicitly make use of
dual monitors, do not use the Turbo Pascal dual monitor option
(/0).

The IE option Use the IE option to change the size of the editor heap. The
default size is 28K, which is the minimum setting; the maximum
is 128K. Making the editor heap larger than 28K will only
improve IDE performance if you're using a slow disk as a swap
device. If you have EMS or have placed your swap file on a RAM
disk (see IS option), then don't change the default setting.

The IG option Use the IG option to enable a full graphics memory save while
you're debugging graphics programs on EGA, VGA, and MeGA
systems. With Graphics Screen Save on, the IDE will reserve
another 8K for the buffer (which will be placed in EMS if
available).

The IL option Use the IL option if you're running Turbo Pascal on an LeD
screen.

The IN option Use the IN option to enable or disable eGA snow checking; the
default setting is on. Disable this option if you're using a eGA
that doesn't experience snow during screen updates. This option
has no effect unless you're using a eGA.

Chapter 7, The IDE reference 175

The 10 option Use the 10 option to change the IDE's overlay heap size. The
default is 112K. The minimum size you can adjust this to is 64K;
the maximum is 256K. If you have EMS, you can decrease the size
of the overlay heap without degrading IDE performance and
therefore free more memory for compiling and debugging your
programs.

The IP option Use the IP option, which controls palette swapping on EGA video
adapters, when your program modifies the EGA palette registers.
The EGA palette will be restored each time the screen is swapped.

In general, you don't need to use this option unless your program
modifies the EGA palette registers or unless your program uses
BGI to change the palette.

The IS option If your system has no EMS available, use the IS option to specify
the drive and path of a "fast" swap area, such as a RAM disk (for
example, /Sd: \, where d is the drive). If no swap directory is
specified, a swap file is created in the current directory.

The IT option Disable thefT option if you don't want the IDE to load
TURBO.TPL at startup. If TURBO.TPL is not loaded, you'll need
the System unit (SYSTEM.TPU) available in order to compile or
debug programs. You can increase the IDE's capacity by disabling
the fT option and extracting SYSTEM.TPU from TURBO.TPL
(using the TPUMOVER, see UTILS.DOC on your distribution
disks for details).

The IW option Use the I\¥ option if you want to change the windo\v heap size.
The default setting is 32K. The minimum setting is 24K; the
maximum is 64K. Reduce the window heap size to make more
memory available for your programs if you don't need a lot of
windows open on your desktop. The default provides for good
capacity and ample window space.

The IX option Disable the IX option if you don't want the IDE to use EMS. The
default setting is on. When this option is enabled, the IDE
improves performance by placing overlaid code, editor data, and
other system resources in EMS.

176 Turbo Pascal User's Guide

Exiting Turbo
Pasca I There are two ways to leave Turbo Pascal:

• To exit Turbo Pascal upermanently," choose File I Exit (or press
Alt-X). If you've made changes that you haven't saved, Turbo
Pascal prompts you whether you want to save your programs
before exiting .

• To leave Turbo Pascal to enter commands at the DOS command
line, choose File I DOS Shell. Turbo Pascal stays in memory but
transfers you to DOS. You can enter any normal DOS
commands, and even run other programs. When you're ready
to return to Turbo Pascal, type EXIT at the command line and
press Enter. Turbo Pascal reappears just as you left it.

- (System) menu

About

Refresh Display

Clear Desktop

Chapter 7, The IDE reference

The == menu provides three general system-wide commands
(About, Refresh Display, and Clear Desktop).

About displays a dialog box with copyright and version
information for Turbo Pascal. Press Esc or Spacebar or click OK (or
press Enter) to close the box.

You can use this option to restore the IDE screen. This is handy if
your program has accidentally overwritten the IDE's screen and
you need to restore it.

Choose == I Clear Desktop to close all windows and clear all history
lists.

177

== I Clear Desktop

File menu

Open

The File menu lets you open and create program files in Edit
windows. The menu also lets you save your changes, perform
other file functions, shell to DOS, and quit.

The File I Open command displays a file-selection dialog box for
[fl] you to select a program file to open in an Edit window:

Figure 7.1
The Open a File dialog box

178

The dialog box contains an input box, a file list, buttons labeled
Open, Replace, Cancel, and Help, and an information panel that
describes the selected file. Now you can do any of these actions:

• Type in a full file name and choose Replace or Open. Open
loads the file into a new Edit window. Replace replaces the
contents of the window with the selected file; an Edit window
must be active if you do this.

• Type in a file name with wildcards, which filters the file list to
match your specifications.

• Press J. to choose a file specification from a history list of file
specifications you've entered earlier.

• View the contents of different directories by selecting a
directory name in the file list.

The input box lets you enter a file name explicitly or lets you enter
a file name with standard DOS wildcards (* and ?) to filter the
names appearing in the history list box. If you enter the entire
name and press Enter, Turbo Pascal opens it. (If you enter a file
name that Turbo Pascal can't find, it automatically creates and
opens a new file with that name.)

Turbo Pascal User's Guide

If you choose Replace
instead of Open, the

selected file replaces the file
in the active Edit window

instead of opening up a new
window.

Using the File list box

You can also type a
lowercase letter to search for

a file name and an
uppercase letter to search

for a directory name.

New

Save

Chapter 7, The IDE reference

File I Open

If you press.!. when the cursor is blinking in the input box, a
scrollable history list drops down below the box. Choose a name
from the list by double-clicking it or selecting it with the arrow
keys and pressing Enter.

Once you've typed in or selected the file you want, choose the
Open button (choose Cancel if you change your mind). You can
also just press Enter once the file is selected, or you can double­
click the file name.

The File list box displays all file names in the current directory
that match the specifications in the input box, displays the parent
directory, and displays all subdirectories. Click the list box or
press Tab until the list box name is highlighted. You can now
press.!. or t to select a file name, and then press Enter to open it.
You can also double-click any file name in the box to open it. You
might have to scroll the box to see all the names. If you have more
than one pane of names, you can also use --7 and ~ .

The file information panel at the bottom of the Open a File dialog
box displays path name, file name, date, time, and size of the file
you've selected in the list box. (None of the items on this panel are
selectable.) As you scroll through the list box, the panel is
updated for each file.

The File I New command lets you open a new Edit window with
the default name NONAMExx.P AS (the xx stands for a number
from 00 to 99). These NONAME files are used as a temporary edit
buffer; Turbo Pascal prompts you to name a NONAME file when
you save it.

The File I Save command saves the file in the active Edit window
to disk. (This menu item is disabled if there's no active Edit
window.) If the file has a default name (NONAMEOO.P AS, or the
like), Turbo Pascal opens the Save File As dialog box to let you
rename and save it in a different directory or on a different drive.
This dialog box is identical to the one opened for the Save As
command, described next.

179

File I Save As

Save As

Figure 7.2
The Save File As dialog box

Save All

Change Dir

180

The File I Save As command lets you save the file in the active
Edit window under a different name, in a different directory, or
on a different drive. When you choose this command, you see the
Save File As dialog box:

Enter the new name, optionally with drive and directory, and
click or choose OK. All windows containing this file are updated
with the new name. If you pick an existing file name, that file will
be overwritten.

The File I Save All command works just like the Save command
except that it saves the contents of all modified files, not just the
file in the active Edit window. This command is disabled if no
Edit windows are open.

The File I Change Dir command lets you specify a drive and a
directory to make current. The current directory is the one Turbo
Pascal uses to save files and to look for files. (When using relative
paths in Options I Directories, they are relative to this current
directory only.)

Here is what the Change Directory dialog box looks like:

Turbo Pascal User's Guide

Figure 7.3
The Change Dir dialog box

Print

Get Info

Chapter 7, The IDE reference

File I Change Dir

There are two ways to change directories:

• Type in the path of the new directory in the input box and press
Enter, or

• Choose the directory you want in the Directory tree (if you're
using the keyboard, press Enterto make it the current directory),
then choose OK or press Esc to exit the dialog box.

If you choose the OK button, your changes will be made and the
dialog box put away. If you choose the Chdir button, the
Directory Tree list box changes to the selected directory and
displays the subdirectories of the currently highlighted directory
(pressing Enter or double-clicking on that entry gives you the same
result). If you change your mind about the directory you've
picked and you want to go back to the previous one (and you've
yet to exit the dialog box), choose the Revert button.

The File I Print command lets you print the contents of the active
Edit window. Turbo Pascal expands tabs (replaces tab characters
with the appropriate number of spaces) and then sends it to the
DOS print handler. This command is disabled if the active
window cannot be printed. Use Ctrl-K Pto print selected text only.

The File I Get Info command displays a box with information on
the current file.

181

File I Get Info

Figure 7.4
The Get Info box

DOS Shell

Warning: Don't install any TSR
programs (like SideKick) if

you've shelled to DOS,
because memory may get

misallocated.

Exit

The information here is for display only; you can't change any of
the settings in this box. After reviewing the information in this
box, press Enter to put the box away.

The File I DOS Shell command lets you temporarily exit Turbo
Pascal to enter a DOS command or program. To return to Turbo
Pascal, type EXIT and press Enter.

You may find that when you're debugging, there's not enough
memory to execute this command. If that's the case, terminate the
debug session by choosing Run I Program Reset (Ctrl-F2).

Note: In dual monitor mode, the DOS command line appears on
the Turbo Pascal screen rather than the User Screen. This allows
you to switch to DOS without disturbing the output of your pro­
gram. Since your program output is available on one monitor in
~he system, Window I User Screen and Alt-FS are disabled.

The File I Exit command exits Turbo Pascal, removes it from
[A[]0 memory, and returns you to the DOS command line. If you have

made any changes that you haven't saved, Turbo Pascal asks you
if you want to save them before exiting.

Edit menu

The Edit menu lets you cut, copy, and paste text in Edit windows.
[mffiJ You can also open a Clipboard window to view or edit its

contents.

182 Turbo Pascal User's Guide

New!

Restore Line

File I Exit

Before you can use most of the commands on this menu, you need
to know about selecting text (because most editor actions apply to
selected text). Selecting text means highlighting it. You can select
text either with keyboard commands or with a mouse; the
principle is the same even though the actions are different.

From the keyboard you can use any of these methods:

• Press Shift while pressing any arrow key.
• To select text from the keyboard, press Gtrl-K B to mark the start

of the block. Then move the cursor to the end of the text and
press Gtrl-K K.

• To select a single word, move the cursor to the word and press
Gtrl-K T.

• To select an entire line, press Gtrl-K L.

With a mouse:

• To select text with a mouse, drag the mouse pointer over the
desired text. If you need to continue the selection past a
window's edge, just drag off the side and the window will
automatically scroll.

• To select a single line, double-click anywhere in the line.

• To select text line-by-line, click-drag over the text (that is, click .
· once and then quickly press the mouse button again and begin

to drag).

• To extend or reduce the selection, Shift-click anywhere in the
document (that is, hold Shift and click).

Once you have selected text, the commands in the Edit menu
become available, and the Clipboard becomes usable.

The Clipboard is the magic behind cutting and pasting. It's a
special window in Turbo Pascal that holds text that you have cut
or copied, so you can paste it elsewhere. The Clipboard works in
close concert with the commands in the Edit menu.

Here's an explanation of each command in the Edit menu.

The Edit I Restore Line command takes back the last editing
command you performed on a line (including typing text on a
blank line or Gtrl-Y). Restore Line works only on the last modified
or deleted line.

Chapter 7, The IDE reference 183

Edit I Cut

Cut

Copy

Paste

Copy Example

Show Clipboard

184

The Edit I Cut command removes the selected text from your
document and places the text in the Clipboard. You can then
paste that text into any other document (or somewhere else in the
same document) by choosing Paste. The text remains selected in
the Clipboard so that you can paste the same text many times.

The Edit I Copy command leaves the selected text intact but places
an exact copy of it in the Clipboard. You can then paste that text
into any other document by choosing Paste. You can also copy
text from a Help window: With the keyboard, use Shift and the
arrow keys; with the mouse, click and drag the text you want to
copy.

The Edit I Paste command inserts text from the Clipboard into the
current window at the cursor position. The text that is actually
pasted is the currently marked block in the Clipboard window.

The Edit I Copy Example command copies the preselected
example text in the current Help window to the Clipboard. The
examples are already predefined as pastable blocks, so you don't
need to bother with marking the example you want.

The Edit I Show Clipboard command opens the Clipboard
window, which stores the text you cut and copy from other
windows. The text that's currently selected (highlighted) is the
text that gets pasted. And you can edit the Clipboard so that the
text you paste is precisely the text you want.

The Clipboard window is just like other Edit windows except
when you cut or copy text. When you select text in the Clipboard
window and choose Cut or Copy, the selected text immeqiately
appears at the bottom of the window. (Remember, any text that

Turbo Pascal User's Guide

Clear

Edit I Clear

you cut or copy is appended to the end of the Clipboard-so you
can paste it later.)

The Edit I Clear command removes the selected text but does not
@!ill[Qill put it into the Clipboard. This means you cannot paste the text as

you could if you had chosen Cut or Copy. The cleared text is not
retrievable. You can clear the Clipboard itself by selecting all the
text in the Clipboard, then selecting Edit I Clear.

Search menu

The Search menu lets you search for text, procedure declarations,
~ []] and error locations in your files.

Find
The Search I Find command displays the Find dialog box, which

~ [§J [£J lets you type in the text you want to search for and set options
that affect the search. (Ctrl-Q F is another shortcut for this
command.)

Figure 7.5
The Find dialog box

Options

I [] Case sensitivel

I [] Whole words onlyl

Chapter 7, The IDE reference

The Find dialog box contains several buttons and check boxes.

You can choose from three items in the Options check boxes:

Check the Case Sensitive box if you do want Turbo Pascal to
differentiate uppercase from lowercase.

Check the Whole Words Only box if you want Turbo Pascal to
search for words only (that is, a string with punctuation or space
characters on both sides).

185

Search I Find

I[] Regular expressionl

Direction
Direction

ee) Forward
e) Backward

Scope
score ee Global

(Selected text

186

Check the Regular Expression box if you want Turbo Pascal to
recognize GREP-like wildcards in the search string. The wildcards
are A, $,., *, +, [], and \. Here's what they mean:

"
$

*

+

[]

[/\]

[-]

\

A circumflex at the start of the string matches the start of a line.

A dollar sign at the end of the expression matches the end of a line.

A period matches any character.

A character followed by an asterisk matches any number of occurrences
(including zero) of that character. For example, bo* matches bot, b, boo, and
also be.

A character followed by a plus sign matches any number of occurrences
(but not zero) of that character. For example, bo+ matches bot and boo, but
not be or b.

Characters in brackets match anyone character that appears in the
brackets but no others. For example [bot] matches b, 0, or t.

A circumflex at the start of the string in brackets means not. Hence, ["bot]
matches any characters except b, 0, or t.

A hyphen within the brackets signifies a range of characters. For example,
[b-o] matches any character from b through o.

A backslash before a wildcard character tells Turbo Pascal to treat that
character literally, not as a wildcard. For example, \" matches" and does
not look for the start of a line.

Enter the string in the input box and choose OK to begin the
search, or choose Cancel to forget it. If you want to enter a string
that you searched for previously, press J- to choose from the
history list.

You can also pick up the word that your cursor is currently on in
the Edit window and use it in the Find box by simply invoking
Find from the Search menu. You can take additional characters
from the text by pressing -7 .

Choose from the Direction radio buttons to decide which
direction you want Turbo Pascal to search-starting from the
origin (settable with the Origin radio buttons).

Choose from the Scope radio buttons to determine how much of
the file to search in. You can search the entire file (Global) or only
the selected text.

Turbo Pascal User's Guide

Origin

From Cursor oririn
~. Entire Scope

Replace

Figure 7.6
The Replace dialog box

Chapter 7, The IDE reference

Search I Find

Choose from the Origin radio buttons to determine where the
search begins. When Entire Scope is chosen, the Direction radio
buttons determine whether the search starts at the beginning or
the end of the chosen scope. You choose the range of scope you
want with the Scope radio buttons.

The Search I Replace command displays a dialog box that lets you
type in the text you want to search for and text you want to
replace it with. (Ctrl-Q A) is another shortcut for this command.)

The Replace dialog box contains several radio buttons and check
boxes-many of which are identical to the Find dialog box,
discussed previously. An additional checkbox, Prompt on
Replace, controls whether you're prompted for each change.

After you've entered the search string and the replacement string
in the input boxes, choose OK or Change All to begin the search,
or choose Cancel to forget it. If you want to enter a string you
used previously, press J. to choose from the history list.

If Turbo Pascal finds the specified text, it asks you if you want to
make the replacement. If you choose OK, it will find and replace
only the first instance of the search item. If you choose Change
All, it replaces all occurrences found, as defined by Direction,
Scope, and Origin.

Like in the Find dialog box, you can pick up the word your cursor
is currently on in the Edit window and use it in the Text to Find
input box by simply invoking Find or Replace from the Search
menu. And you can add more text from the Edit window by
pressing --7 •

187

Search I Search Again

Search Again

Go to Line
Number

Figure 7.7
The Go to Une Number

dialog box

Find Procedure

Figure 7.8
The Find Procedure dialog

box

Find Error

188

The Search I Search Again command repeats the last Find or
Replace command. All settings you made in the last dialog box
used (Find or Replace) remain in effect when you choose Search
Again.

The Search I Go to Line Number command prompts you for the
line number you want to find:

l
. == Go to Line Number =====]
))~nter new 1 i ne number II_Ill

7111!IaJf- ~ ImaJ
==============

Turbo Pascal displays the current line number and column
number in the lower left corner of every Edit window.

The Search I Find Procedure command displays a dialog box for
you to enter the name of a procedure or function to search for.
This command is available only during a debugging session.

~
== Fi nd Procedure =~-==I
ocedure name
egin ____

1II!IaJf- IlmmJ ImaJ
=======----

Enter the name of a procedure or press J.. to choose a name from
the history list. As opposed to the Search I Find command, this
command finds the declaration of the procedure, not instances of
its use.

The Search I Find Error command finds the location of a run-time
error. When a run-time error occurs, the address in memory of
where it occurred is given in the format seg:ofs. When you return
to the IDE, Turbo Pascal automatically locates the error for you.
This command allows you to find the error again, given the seg
and ofs values.

Turbo Pascal User's Guide

Run menu

Search I Find Error

For Find Error to work, you must set the Debugging check box to
Integrated (in the Options I Debugger dialog box).

If run-time errors occur in a program running within the IDE, the
default values for the error address are set automatically. This
allows you to relocate the error after changing files. (Note that if
you just move around in the same file, you can get back to the
error location with the Ctrl-Q W command.)

When run-time errors occur under DOS, record the segment and
offset displayed onscreen. Then load the main program into the
editor or specify it as the Main File. Be sure to set the Destination
to Disk, then type in the segment offset value.

When you enter the error address, you must give it in
hexadecimal segment and offset notation. 'Qle format is
uxxxx:yyyy"; for example, U2BEO:FFD4."

The Run menu's commands run your program, and also start and
~[ffi end debugging sessions.

Run

If you want to have all Turbo
Pascal's features available,

keep Debugging set to
Integrated.

Chapter 7, The IDE reference

The Run I Run command runs your program, using any
parameters you pass to it with the Run I Parameters command. If
the source code has been modified since the last compilation, the
compiler's built-in project manager will automatically do a make
and and link your program.

If you don't want to debug your program, you can compile and
link it with both the Debugging check boxes unchecked (which
gives the program more room to run) in the Options I Debugger
dialog box. If you compile your program with this check box set
to Integrated, the resulting executable code will contain
depugging information that will affect the behavior of the Run I
Run command in the following ways:

If you have not modified your source code since the last
compilation,

• the Run I Run command causes your program to run to the next
breakpoint, or to the end if no breakpoints have been set.

189

RunlRun

Program Reset

Go to Cursor

190

If you have modified your source code since the last compilation,

• and if you're already stepping through your program using the
Run I Step Over or Run I Trace Into commands, Run I Run
prompts you whether you want to rebuild your program:

• If you answer yes, the built-in project manager will make and
link your program, and set it to run from the beginning .

• If you answer no, your program runs to the next breakpoint
or to the end if no breakpoints are set.

• and if you are not in an active debugging session, the built-in
project manager makes your program and sets it to run from
the beginning.

Pressing etrl-Break causes Turbo Pascal to stop execution on the
next source line in your program. If Turbo Pascal is unable to find
a source line, a second etrl-Break will terminate the program and
return you to the IDE.

The Run I Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files that your program was using.

The Run I Go to Cursor command runs your program from the
run bar (the highlighted bar in your code) to the line the cursor is
on in the current Edit window. If the cursor is at a line that does
not contain an executable statement, the command displays a
warning. Run I Go to Cursor can also initiate a debug session.

Go to Cursor does not set a permanent breakpoint, but it does
allow the program to stop at a permanent breakpoint if it
encounters one before the line the cursor is on. If this occurs, you
must choose the Go to Cursor command again.

Use Go to Cursor to advance the run bar to the part of your pro­
gram you want to debug. If you want your program to stop at a
certain statement every time it reaches that point, set a breakpoint
on that line.

Note that if you position the cursor on a line of code that is not
executed, your program will run to the next breakpoint or the end

Turbo Pascal User's Guide

Trace Into

Run I Trace Into

if no breakpoints are encountered. You can always use etr/-Break to
stop a running program.

The Run I Trace Into command runs your program statement by
statement. When it reaches a procedure call, it executes each
statement within the procedure, instead of executing the
procedure as a single step (see Run I Step Over). If a statement
contains no calls to procedures accessible to the debugger, Trace
Into stops at the next executable statement.

Use the Trace Into command to move the run bar into a procedure
called by the procedure you are now debugging. If the statement
contains a call to a procedure accessible to the debugger, Trace
Into halts at the beginning of the procedure's definition.
Subsequent Trace Into or Step Over commands run the
statements in the procedure's definition. When the debugger
leaves the procedure, it resumes evaluating the statement that
contains the call:

if Min <= Max then
DoSomething;

.. The Trace Into command recognizes only procedures defined in a
source file compiled with two options set on:

Step Over

Parameters

Chapter 7, The IDE reference

• In the Compiler Options d·ialog box (Options I Compiler), check
Debug Information .

• In the Debugger dialog box (Options I Debugger), check
Integrated.

The Run I Step Over command executes the next statement in the
current procedure. It does not trace into calls to lower-level
procedures, even if they are accessible to the debugger.

Use Step Over to run the procedure you are now debugging, one
statement at a time without branching off into other procedures.

The Run I Parameters command allows you to give your running
programs command-line arguments exactly as if you had typed

191

Run I.Parameters

Figure 7.9
The Program Parameters

dialog box

You only need to enter the
parameters here, not the

program name.

Compile menu

them on the DOS command line. DOS redirection commands will
be ignored.

When you choose this command, a dialog box appears with a
single input box.

Parameters take affect only when your program is started. If you
are already debugging and wish to change the parameters, you
can select Program Reset and then start the program with the new
parameters.

Use the commands on the Compile menu to compile, make, or
[][]@] build the program in the active window. To use the Compile,

Make, and Build commands, you must have a file open in an
active Edit window. For example, if you open an Output or Watch
window, those selections will be disabled.

Compile

Make

The Compile I Compile command compiles the active editor file.
When Turbo Pascal is compiling, a status box pops up to display
the compilation progress and results. When compiling/linking is
complete, press any key to remove this box. If any errors occur,
the Edit window containing the offending source code becomes
active, an error message is displayed, and the cursor is placed on
the first error location.

The Compile I Make command invokes the built-in project
[£D manager to make an .EXE file .

• If a Primary File has been named, that file is compiled;
otherwise, the file in the active Edit window is compiled. Turbo
Pascal checks all files upon which the file being compiled
depends.

192 Turbo Pascal User's Guide

Build

Destination

Setting Destination to Disk
increases the memory
available in the IDE to

compile and debug your
program.

Primary File

Chapter 7, The IDE reference

Compile I Make

• If the source file for a given unit has been modified since the
.TPU (object code) file was created, then that unit is recompiled.

• If the interface for a given unit has been changed, then all other
units that depend upon it are recompiled.

• If a unit links in an .OBI file (external routines), and the .OBI file
is newer than the unit's .TPU file, then the unit is recompiled.

• If a unit includes an Include file and the Include file is newer
than that unit's .TPU file, then the unit is recompiled.

If the source to a unit (.TPU file) cannot be located, that unit is not
compiled, but is used as is.

Compile I Make rebuilds only the files that aren't current and the
one in the active Edit window (or Primary File if specified).

The Compile I Build command rebuilds all the files regardless of
whether they're out of date. This command is similar to Compile I
Make except that it is unconditional.

The Compile I Destination command lets you specify whether the
executable code will be stored on disk (as an .EXE file) or whether
it will be stored in memory (and thus lost when you exit Turbo
Pascal). Note that even if Destination is set to Memory, any units
recompiled during a Make or Build have their .TPU files updated
on disk.

If Destination is set to Disk, then an .EXE file is created and its
name is derived from one of two names, in the following order:
the Primary File name or, if none is specified, the name of the file
in the active Edit window.

The resulting .EXE and .TPU (if any) is stored in the same
directory as their respective source files, or in the EXE & TPU
Directory (Options I Directories), if one is specified.

Select the Primary File command to specify which .P AS file will
get compiled when you use Compile I Make (F9) or Build (AIt-C B).
You'll want to use this option when you're working on a program
that uses several unit or Include files. No matter which file you've

193

Compile I Primary File

Debug menu

Evaluate/Modify

Figure 7.10
The Evaluate/Modify dialog

box

The Evaluate button is the
default button; when you

tab to the New Value field,
the Modify button becomes

the default.

194

been editing, Make or Build will always operate on your primary
file. If you specify another file as a primary file, but want to
compile only the file in the selected Edit window, choose Compile
(Alt-F9).

The commands on the Debug menu control all the features of the
integrated debugger. You can change default settings for these
commands in the Options I Debugger dialog box. For more about
debugging, refer to Chapter 5, "Debugging Turbo Pascal
programs."

The Debug I Evaluate/Modify command evaluates a variable
name or expression, displays its value, and, if appropriate, lets
you modify the value. The command opens a dialog box
containing the Expression, the Result, and the New Value fields.

The Expression field shows a default expression consisting of the
word at the cursor in the Edit window. You can evaluate the
default expression by pressing Enter, or you can edit or replace it
first. You can also press -7 to extend the default expression by
copying additional characters from the Edit window.

If the debugger can evaluate the expression, it displays the value
in the Result field. If the expression refers to a variable or simple
data element, you can move the cursor to the New Value field and
enter an expression as the new value.

Press Esc to close the dialog box. If you've changed the contents of
the New Value field but do not select Modify, the debugger will
ignore the New Value field when you close the dialog box.

Turbo Pascal User's Guide

Debug I Evaluate/Modify

Use a repeat expression to display the values of consecutive data
elements. For example, for an array of integers named ListInt,

• ListInt [0] ,5 displays five consecutive integers in decimal.
• ListInt [0], 5x displays five consecutive integers in hex.

An expression used with a repeat count must represent a single
data element. The debugger views the data element as the first
element of an array if it isn't a pointer, or as a pointer to an array
if it is.

The Debug I Evaluate/Modify command displays each type of
value in an appropriate format. For example, it displays an
integer in base 10 (decimal), and an array as a pointer in base 16
(hexadecimal). To get a different display format, precede the
expression with a comma followed by one of the format specifiers
shown in Table 7.1.

Table 7.1: Format specifiers recognized In debugger expressions

Character Function

C Character. Shows special display characters for control characters (ASCII 0 through 31);
by default, such characters are shown ASCII values using the #xx syntax. Affects
characters and strings.

S String. Shows control characters (ASCII 0 through 31) as ASCII values using the #xx
syntax. Since this is the default character and string display format, the S specifier is only
useful in conjunction with the M specifier.

D Decimal. Shows all integer values in decimal. Affects simple integer expressions as well as
structures (arrays and records) containing integers.

$, H, or X Hexadecimal. Shows all integer values in hexadecimal with the $ prefix. Affects simple
integer expressions as well as structures (arrays and records) containing integers.

Fn Floating point. Shows n significant digits (n is an integer between 2 and 18). The default
value is 11. Affects only floating-point values.

M Memory dump. Displays a memory dump, starting with the address of the indicated
expression. The expression must be a construct that would be valid on the left side of an
assignment statement, i.e., a construct that denotes a memory address; otherwise, the M
specifier is ignored. By default, each byte of the variable is shown as two hex digits.
Adding a D specifier with the M causes the bytes to be displayed in decimal. Adding an H,
$, or X specifier causes the bytes to be displayed in hex with a $ prefix. An S or a C
specifier causes the variable to be displayed as a string (with or without special
characters). The default number of bytes displayed corresponds to the size of the variable,
but a repeat count can be used to specify an exact number of bytes.

P Pointer. Displays pointers in seg : ofs format rather than the default Ptr(seg,ofs) format. For
example, displays 3EAO:0020 instead of Ptr($3EAO,$20). Affects only pointer values.

R Record. Displays record and object field names such as (X:liY:l0;Z:5) instead of (1, 10, 5).
Affects only record variables and objects with fields.

Chapter 7, The IDE reference 195

Debug I Watches

Watches

Add Watch

Delete Watch

Edit Watch

The Debug I Watches command opens a pop-up menu of
commands that control the use of watchpoints. The following
sections describe the commands in this pop-up menu.

The Add Watch command inserts a watch expression into the
Watch window.

When you choose this command, the debugger opens a dialog
box and prompts you to enter a watch expression. The default
expression is the word at the cursor in the current Edit window.
There's also a history list available if you want to watch an
expression you've used before.

When you type a valid expression and press Enter or click OK, the
debugger adds the expression and its current value to the Watch
window. If the Watch window is the active window, you can
insert a new watch expression by pressing Ins.

While you're in the Watch window, you can select Delete Watch
to delete the current watch expression from the Watch window, or
press either Del or Ctrl-Y. The current watch expression is marked
by a bullet in the left margin.

The Edit Watch command allows you to edit the current watch
expression in the Watch window. When you choose this
command, you'll get a dialog box that contains a copy of the
current watch expression. Edit the expression and then press Enter;
this replaces the original expression with the edited one.

To edit a watch expression from inside the Watch window, select
the expression and press Enter.

Remove All Watches The Remove All Watches command deletes all watch expressions
from the Watch window.

Toggle Breakpoint
The Debug I Toggle Breakpoint command lets you set or clear an

@!illOO unconditional breakpoint on the line where the cursor is
positioned. When a breakpoint is set, it is marked by a breakpoint

196 Turbo Pascal User's Guide

Breakpoints

Figure 7.11
The Breakpoints dialog box

You can set an unconditional
breakpoint by choosing

Debug I Toggle Breakpoint.

This dialog box has no
Cancel button, so edit and

delete with care.

Debug I Breakpoints

highlight. (The following section discusses breakpoints in more
depth.)

The Debug I Breakpoints command opens a dialog box that lets
you control the use of breakpoints:

• ==== Breakpoints ======--======

))~reakpoint list Line # Condition Pass
» ,,~

7!1Ea1f- ItiDJ oozmm IallDJ IDlDI
---====--=========================

The dialog box shows you all set breakpoints, their line numbers,
and the conditions. The condition has a history list so you can
select a breakpoint condition that you've used before.

Whenever your running program encounters a breakpoint, it will
stop with a run bar positioned on the line with the breakpoint.

Before you compile a source file, you can set a breakpoint on any
line, even a blank line or a comment. When you compile and run
the file, Turbo Pascal validates any breakpoints that are set and
gives you a chance to remove, ignore, or change invalid
breakpoints. When you are debugging the file, Turbo Pascal
knows which lines contain executable statements, and will warn
you if you try to set invalid breakpoints.

You can remove breakpoints from your program by choosing the
Delete button. You can also view the source where existing
breakpoints are set by choosing the View button. View moves the
cursor to the selected breakpoint in the Edit window (it does not
run your code).

Choose Edit to add a new breakpoint to the list. When you edit a
breakpoint, this dialog box pops up over the first one:

Chapter 7, The IDE reference 197

Debug I Breakpoints

Figure 7.12
The Edit Breakpoint dialog

box

Breakpoints are saved in the
TURBO.DSK file if this option is

enabled.

Options menu

198

Again, line number and conditions are that of the breakpoints
you've set. Use Pass Count to set how many times the breakpoint
should be skipped before stopping.

When a source file is edited, each breakpoint" sticks" to the line
where it is set. Breakpoints are lost only when

• you delete the breakpoint in the Breakpoints dialog box

• you delete the source line a breakpoint is set on

• you clear a breakpoint with Toggle Breakpoint

Turbo Pascal will attempt to track breakpoints in two cases:

• If you edit a file containing breakpoints and then don't save the
edited version of the file.

• If you edit a file containing breakpoints and then continue the
current debugging session without remaking the program.
(Turbo Pascal displays the warning prompt "Source modified,
rebuild?")

This dialog box also has a New button, which lets you enter
breakpoint information for a new breakpoint, and a Modify
button, which accepts the settings of the box.

The Options menu contains commands that let you view and
change various default settings in Turbo Pascal. Most of the
commands in this menu lead to dialog boxes.

Turbo Pascal User's Guide

Compiler

Figure 7.13
The Compiler Options dialog

box

Code Generation

This is equivalent to the $F
compiler directive.

This is equivalent to the $0+
compiler directive.

Chapter 7, The IDE reference

Options I Compiler

The Options I Compiler command displays a dialog box that lets
you set several options that affect code compilation. Here's what
the dialog box looks like:

The following sections describe these commands.

You can use the check boxes in the Code Generation group to tell
the compiler to prepare your code in certain ways. Here are what
the various buttons and check boxes mean:

• Force Far Calls allows you to force all procedures and functions
to use the far call model. If the option is not enabled, the
compiler will use the near call models for any procedures or
functions within the file being compiled.

• Overlays Allowed enables or disables overlay code generation.
Turbo Pascal allows a unit to be overlaid only if it was
compiled with Overlays Allowed checked (set to on). In this
state, the code generator takes special precautions passing
string and set constant parameters from one overlaid procedure
or function to another.

Checking the Overlays Allowed check box does not force you to
overlay that unit. It instructs Turbo Pascal to ensure that the
unit can be overlaid, if so desired. If you develop units that you
plan to use in overlaid as well as non-overlaid applications,
then compiling them with Overlays Allowed checked ensures
that you can indeed do both with the same unit.

199

Options I Compiler

200

• Word Align Data (when checked) tells Turbo Pascal to align
noncharacter data at even addresses. When this option is off
(unchecked), Turbo Pascal uses byte-aligning, where data can
be aligned at either odd or even addresses, depending on which
is the next available address. (This is equivalent to the $A
compiler directive.)

Word alignment increases the speed with which 8086 and 80286
processors fetch and store the data .

• 286 Instructions tells Turbo Pascal to generate code for the
80286 instruction set. Note that programs compiled with 80286
code generation turned on do not check for the presence of an
80286 at run time. (This is equivalent to the $G compiler
directive.)

Run-time Errors The Run-time Errors group let you select which run-time errors
are generated.

• When Range Checking is checked, the compiler generates code
to check that array and string subscripts are within bounds, and
that assignments to scalar-type variables don't exceed their
defined ranges. If the check fails, the program halts with a run­
time error. When unchecked, Range Checking is disabled. (This
is equivalent to the $R compiler directive)

• When Stack Checking is checked, the compiler generates code
to check that space is available for local variables on the stack
before each call to a procedure or function. If the check fails, the
program halts with a run-time error. When unchecked, Stack
Checking is disabled. (This is equivalent to the $S compiler
directive.)

• When I/O Checking is checked, the compiler generates code to
check for I/O errors after every I/O call. If the check fails, the
program halts with a run-time error. When the option is
unchecked, I/O Checking is disabled; however, the user can
test for I/O errors via the system function IOResult. (I/O
checking is equivalent to the $1 compiler directive.)

Syntax Options This group lets you select the type of syntax options you want to
search for.

• With the Strict Var-Strings option enabled, the compiler
compares the declared type of a var-type string parameter with
the type of the actual parameter being passed. If they are not
identical, a compiler error occurs. With the option disabled, no

Turbo Pascal User's Guide

Numeric Processing

Numeric Processing
[] 8087/80287
[X] Ernul ati on

This option is ignored unless
8087/80287 is enabled.

Debugging

Debug Information is usually
used in conjunction with the

Local Symbols command.

Chapter 7, The IDE reference

Options I Compiler

such type checking is done. (This option is equivalent to the $V
compiler directive.)

• With Complete Boolean Evaluation enabled, all terms in a
Boolean expression are always evaluated. If disabled, the
compiler generates code to terminate evaluation of a Boolean
expression as soon as possible; for example, in the expression if
False and MyFunc ..• , the function MyFunc would never be
called. (This option is equivalent to the $8 compiler directive.)

• With the Extended Syntax option enabled, Turbo Pascal's
syntax is extended to let you use user-defined function calls as
statements, as if they were procedures. When this option is
disabled, this extension is disabled. Refer to Chapter 21 in the
Programmer's Guide for more information. (This option is
equivalent to the $X directive.)

The Numeric Processing options let you decide how you want
Turbo Pascal to handle floating-point numbers.

• Choose 8087/80287 to generate direct 8087 or 80287 inline code.
This option is equivalent to the $N compiler directive.

• Choose Emulation if you want Turbo Pascal to detect whether
your computer has an 80x87 coprocessor (and to use it if you
do). If it is not present, Turbo Pascal emulates the 80x87. The $E
compiler directive is equivalent to this option.

For more information about the compiler directive equivalents,
refer to Chapter 21 in the Programmer's Guide.

You can set the options in the Debugging group to turn on or off
debug information or local symbol generation.

• Checking Debug Information enables the generation of debug
information, which consists of a line-number table for each
Pascal statement that maps object code addresses into source
text numbers. (This is equivalent to the $D compiler directive.)

When you've checked Debug Information for a given program
or unit, the IDE allows you to single-step and set breakpoints in
that module. Also, when a run-time error occurs in a program
or unit compiled with Debug Information checked, Turbo
Pascal can automatically take you to the statement that caused
the error with Search I Find Error.

For units, the debug information is recorded in the. TPU file,
along with the unit's object code. Debug information increases

201

Options I Compiler

the size of .TPU files, and takes up additional memory when
programs compile that use the unit, but it doesn't affect the size
or speed of the executable program.

To use Turbo Debugger, $D
should be on.

Those parts of your source code compiled and linked with
Debug Information unchecked are not accessible to the
debugger. If disk space is at a premium, un check Debug
Information to create smaller .TPU files and use less memory
during compilation and run time .

202

Local Symbols Is Ignored If
Debug Information is

unchecked.

• CheckIng Local Symbols enables the generation of local symbol
information,which consists of the names and types of all local
variables and constants in a module (the symbols in the
module's implementation part, and the symbols within the
module's procedures and functions). (Local Symbols is
equivalent to the $L compiler directive.)
When you've checked Local Symbols for a given program or
unit, the IDE allows you to examine and modify the module's
local variables. Also, calls to the module's procedures and
functions can be examined with the Window I Call Stack
command.
For units, the local symbol information is recorded in the .TPU
file along with the unit's object code. Local symbol information
increases the size of .TPU files and takes up additional room
when you compile programs that use the unit, but it doesn't
affect the size or speed of the executable program.

Conditional Defines Use the Conditional Defines input box to enter define symbols to
be referenced in conditional compilation directives (refer to
Chapter 21 in the Programmer's Guide). You can separate multiple
defines with semicolons (;), for example,

Memory Sizes

TestCodeiDebugCode

The Memory Sizes options let you configure the default memory
requirements for a program. All three settings can be specified in
your source code using the $M compiler directive. If you attempt
to run your program and there is not enough heap space to satisfy
the specified requirement, the program aborts with a run-time
error. (This is equivalent to the $M compiler directive.)

• Stack Size specifies the size (in bytes) of the stack segment. The
default size is 16,384, the maximum size is 65,520.

Turbo Pascal User's Guide

You must specify a smaller
limit if your program executes

other programs. Refer to
Exec in Chapter 7 of the

Library Reference for more
detail.

Linker

Figure 7.14
The Unker dialog box

Map File
Map File

(.) Off
() Segments
() Publics
() Detailed

Link Buffer (memory)

Debugger

Chapter 7, The IDE reference

Options I Memory Sizes

• Low Heap Limit specifies the minimum required heap size (in
bytes). The default minimum size is OK.

• High Heap Limit specifies the maximum amount of memory (in
bytes) to allocate to the heap. The default is 655360, which (on
most systems) will allocate all available memory to the heap.
This value must be greater than or equal to the smallest heap
size.

The Options I Linker command opens a dialog box that lets you
make several settings that affect linking:

This dialog box has several radio buttons, which are described in
the following sections.

Use the Map File radio buttons to choose the type of map file to be
produced. For settings other than Off, the map file is placed in the
EXE and TPU directory defined in the Options I Directories dialog
box. The default setting for the map file is off. (Segments, Publics,
and Detailed are equivalent to the IGS,/GP, and IGO command­
line options.)

The Link Buffer option tells Turbo Pascal to use Memory or Disk
for the link buffer. When you select the Memory radio button, it
speeds compilation, but you may run out of memory for large
programs. Selecting the Disk radio button frees up memory, but
slows compilation. (This is equivalent to the IL command-line
option in TPC.EXE.)

The Options I Debugger command opens a dialog box that lets
you make several settings affecting the integrated debugger:

203

Options I Debugger

204

Figure 7.15
The Debugger dialog box

Debu
Debugging
[Xl Integrated
[1 Standalone

Display Swapping

!) None
•) Smart
) Always

The following sections describe the contents of this box.

The Debugging check boxes determine whether debugging
information is included in the executable file and how the .EXE if
run under Turbo Pascal.

• Choose Integrated (the default) to debug programs with the
integrated debugger or the standalone Turbo Debugger.

• Choose Standalone to debug programs with Turbo Debugger.

The Integrated, Standalone (Options I Debugger), and Map File
options (Options I Linker) produce complete and local symbol
information for a module only if you've compiled that module
with Debug Information and Local Symbols checked, respectively.

The Display Swapping radio buttons let you set when the
integrated debugger will change display windows while running
a program .

If you're debugging in dual monitor mode (used the Turbo Pascal
command-line Id option), you can see your program's output on
one monitor and the Turbo Pascal screen on the other. In this case,
Turbo Pascal never swaps screens and the Display Swapping
setting has no effect.

• If you set Display Swapping to None, the debugger does not
swap the screen at all. You should only use this setting for
debugging sections of code that you're certain do not output to
the screen.

• When you run your program in debug mode with the default
setting of Smart, the debugger looks at the code being executed
to see whether it will generate output to the screen. If the code
does output to the screen (or if it calls a procedure), the screen
is swapped from the IDE screen to the User screen long enough
for output to be displayed, then is swapped back. Otherwise, no
swapping occurs. Be aware of the following with smart
swapping:

Turbo Pascal User's Guide

Directories

Figure 7.16
The Directories dialog box

Chapter 7, The IDE reference

Options I Debugger

• It swaps on any procedure call, even if the procedure does no
screen output .

• In some situations, the IDE screen might be modified without
being swappedi for example, if a timer interrupt routine
writes to the screen.

• If you set Display Swapping to Always, the debugger swaps
screens every time a statement executes. You should choose this
setting any time the IDE screen is likely to be overwritten by
your running program.

The Options I Directories command lets you tell Turbo Pascal
where to find the files it needs to compile, link, and output files.

This command opens a dialog box containing four input boxes.
The dialog box looks like this:

Use the following guidelines when entering directories in these
input boxes:

• You must separate multiple directory path names (if allowed)
with a semicolon (i). You can use up to a maximum of 127
characters (including whitespace).

• Whitespace before and after the semicolon is allowed but not
required.

• Relative and absolute path names are allowed, including path
names relative to the logged position in drives other than the
current one. For example,

C:\PASCALiC:\PASCAL\MYPROJSiA:TURBO\EXAMPLESi

Here is a description of each input box.

• Enter the output directory for .EXE or .TPU files in the EXE and
TPU directory input box. If the entry is blank, the files are
stored in the directory where the source is found .. MAP files are

205

Options I Directories

Environment

also stored here if Map File (Options I Linker) is set to anything
besides Off.

• Use the Include Directories input box to specify the directories
that contain your standard Include files. Include files are those
specified with the {$I filename} compiler directive. Multiple
directories are separated by semicolons (;), as in the DOS PATH
command.

• Use the Unit Directories input box to specify the directories that
contain your Turbo Pascal unit files. Multiple directories are
separated by semicolons (;), as in the DOS PATH command.

To use the Graph unit, for example, you could create a directory
\TURBO\BGI, copy GRAPH.TPU and specify a unit directory of
\TURBO\BGI. If you also wanted to keep other units in a
\TURBO\UNITS directory, your unit directory would be
\TURBO\UNITSi\TURBO\BGI.

• Use the Object Directory input box to specify the directories
that contain .OBI files (assembly language routines). When
Turbo Pascal encounters a {$L filename} directive, it looks first in
the current directory, then in the directories specified here.
Multiple directories are separated by semicolons (;), as in the
DOS PATH command.

The Options I Environment command lets you make
environment-wide settings. This command opens a menu that lets
you choose settings from Preferences, Editor, and Mouse.

Preferences Here's what the Preferences dialog box looks like:

Figure 7.17
The Preferences dialog box

206

Screen Sizes
(.) 25 1 i nes
() 43/50 lines

• The Screen Sizes radio buttons let you specify whether your
IDE screen is displayed in 25 or 43/50 lines. One or both of
these buttons will be available, depending on the type of video
adapter in your PC.

Turbo Pascal User's Guide

Source Tracking
e) New window
ee) Current w1ndow

Auto Save
[] Editor Files
[] Envi ronment
[] Desktop

Desktop Files
() None
() Current Directory
e·) Config file directory

Chapter 7, The IDE reference

Options I Environment

When set to 25 lines {the default), Turbo Pascal uses 25 lines
and 80 columns. This is the only screen size available to systems
with a monochrome display or Color Graphics Adapter (CGA).

If your PC has EGA or VGA, you can set this option to 43/50
lines. The IDE is displayed in 43 lines by 80 columns if you have
an EGA., or 50 lines by 80 columns if you have a VGA.

• When stepping source or locating an error position in your
source code, the IDE opens a new window whenever it
encounters a file that is not already loaded. Selecting Current
Window causes the IDE to replace the contents of the topmost
Edit window with the new file instead of opening a new Edit
window.

• If Editor Files is checked in the Auto Save options, and if the file
has been modified since the last time you saved it, Turbo Pascal
automatically saves the source file in the Edit window
whenever you choose the Run I Run (or any debug/run
command) or File I DOS Shell command.

When the Environment option is checked, all the settings you
made in this session will be saved automatically into a
TURBO.TP configuration file when you exit Turbo Pascal.

When Desktop is checked, Turbo Pascal controls whether your
desktop (in the file TURBO.DSK) is saved on exit and whether
it's restored when you return to Turbo Pascal. Your desktop
information will not be saved unless a .TP file is created
(automatically or manually by selecting the Options I Save
Options command) and the Desktop radio button is set to
something other than None.

• If you want the IDE to use a desktop file to save and restore
your desktop from one programming session to another, select
either the CUrrent Directory or Config File Directory radio
button. When the IDE saves a TURBO.TP configuration file, it
will also create a TURBO.DSK file that contains edit window
information, the positions of all windows on the desktop,
history lists, breakpoint locations, and other state information.

All this can be saved and restored automatically by enabling
both the Environment and Desktop options in the Auto Save
group. Alternatively, you can create a TURBO.TP manually by
using the Options I Save Options dialog box.

When you next load TURBO.EXE, it will look for TURBO.TP
and TURBO.DSK in the current directory. When located, they
are loaded and the previous session's configuration and

207

Options I Environment

208

Editor

Editor Options
[Xl Create backup files
[Xl Insert mode
[Xl Autoindent mode
[Xl Use tab character
[Xl Optimal fill
[Xl Backspace unindents
[xl Cursor through tabs

ITab Size 81

desktop states are restored. If no TURBO.TP is found in the
current directory, the IDE also will look for it in the directory
that contains TURBO.EXE itself.

If you choose Editor from the Environment menu, the Editor
Options dialog box has several check boxes that control how
Turbo Pascal handles text in Edit windows.

• When Create Backup Files is checked (the default), Turbo
Pascal automatically creates a backup of the source file in the
Edit window when you choose File I Save and gives the backup
file the extension .BAK.

• When Insert Mode is not checked, any text you type into Edit
windows overwrites existing text. When the option is checked,
text you type is inserted (pushed to the right). Pressing Ins
toggles Insert mode when you're working in an Edit window.

• When Autoindent Mode is checked, pressing Enter in an Edit
window positions the cursor under the first nonblank character
in the preceding nonblank line. This can be a great aid in
keeping your program code more readable.

• When Use Tab Character is checked, Turbo Pascal inserts a true
tab character (ASCII 9) when you press Tab. When this option is
not checked, Turbo Pascal replaces tabs with spaces, the
number of which is determined by the Tab Size setting.

• When you check Optimal Fill, Turbo Pascal begins every
autoindented line with the minimum number of characters
possible, using tabs and spaces as necessary. This produces
lines with fewer characters than when Optimal Fill is not
checked.

• When Backspace Unindents is checked (the default) and the
cursor is on a blank line or the first non-blank character of a
line, the Backspace key aligns (outdents) the line to the previous
indentation level.

• When you check Cursor Through Tabs, the arrow keys will
move the cursor to the middle of tabs; otherwise the cursor
jumps several columns when cursoring over a tab.

• If you check Use Tab Character in this dialog box and press Tab,
Turbo Pascal inserts a tab character in the file and the cursor
moves to the next tab stop. The Tab Size input box allows you
to dictate how many characters to move for each tab stop. Legal
values are 2 through 16; the default is 8.

Turbo Pascal User's Guide

Mouse

Right Mouse Button
() Nothing
(e) Topic search
() Go to cursor
() Breakpoint
() Evaluate
() Add watch

Mouse Double Click
Fast Medium Slow

-4liililliilill!i!iiiiiliilii!i£·IIJiii::!i!lili!ililliliii

[] Reverse Mouse Buttons

Startup

Chapter 7, The IDE reference

Options I Environment

To change the way tabs are displayed in a file, just change the
tab size value to the size you prefer. Turbo Pascal redisplays all
tabs in that file in the size you chose. You can save this new tab
size in your configuration file by choosing Options I Save
Options.

When you choose Mouse from the Environment menu, the Mouse
Options dialog box is displayed, which contains all the settings
for your mouse.

The Right Mouse Button radio buttons determine the effect of
pressing the right button of the mouse (or the left button, if the
Reverse mouse buttons option is checked). Topic Search is the
default.

Here's a list of what the right button would do if you choose
something other than Nothing:

Topic Search
Go to Cursor
Breakpoint
Evaluate
Add Watch

Same as Help I Topic Search
Same as Run I Go To Cursor
Same as Debug I Toggle Breakpoint
Same as Debug I Evaluate
Same as Debug I Watches I Add Watch

In the Mouse Double Click box, you can change the slider control
bar to adjust the double-click speed of your mouse by using the
arrow keys.

Moving the scroll box closer to Fast means Turbo Pascal requires
a shorter time between clicks to recognize a double click. Moving
the scroll box closer to Slow means Turbo Pascal will still
recognize a double click even if you wait longer between clicks.

When Reverse Mouse Buttons is checked, the active button on
your mouse is the rightmost one instead of the leftmost. Note,
however, that the buttons won't actually be switched until you
choose the OK button.

Choosing Startup from the Environment menu lets you select
settings for the integrated environment.

209

Options I Environment

Figure 7.18
The Startup Options dialog

box

All of these options correspond to the command-line options
mentioned at the beginning of this chapter (see page 174).

The changes that you make here are written directly to
TURBO.EXE and don't take affect until the next time you load the
IDE.

Colors Use the Colors dialog box to customize the IDE for your use.

210

Figure 7.19
The Colors dialog box

The Group list contains the names of the different regions of the
IDE that can be customized. When you select a group, the Item list
box will contain the names of the different views in that region.
On color and black and white systems, you can modify the
foreground and background colors by using your mouse or cursor
keys to change the palette. On all systems, the text in the lower
right comer of the dialog box reflects the current settings.
Changes do not take affect on the desktop until you close the
dialog box (by selecting OK).

Turbo Pascal User's Guide

Save Options
Save your desktop state

(TURBO.DSK) by setting
Desktop to Current Directory
or Config File Directory in the

Preferences dialog box.

Retrieve Options

Window menu

Refer to page 7 7 for
information on window

elements and how to use
them.

Chapter 7, The IDE reference

Options I Save Options

The Options I Save Options command brings up a dialog box that
lets you save settings that you've made in both the Find and
Replace dialog boxes (off the Search menu), the Destination and
Primary File options (off the Compile menu) and all the settings
under the Options menu. All options and the editor command
table are stored in TURBO.TP; history lists, your desktop state,
and breakpoint locations are stored in TURBO.DSK.

If it doesn't find the files, Turbo Pascal looks for these files'
directory where TURBO.EXE is run from.

The Options I Retrieve Options command brings up a dialog box
that lets you retrieve the settings that you've made in both the
Find and Replace dialog boxes (off the Search menu), the
Destination and Primary File options (off the Compile menu) and
all the settings under the Options menu. If the Desktop file (.DSK)
is set to either Current Directory or Config File Directory,
TURBO.DSK will also be loaded.

The Window menu contains window management commands.
Most of the windows you open from this menu have all the
standard window elements like scroll bars, a close box, and zoom
boxes.

The commands Tile and Cascade will always rearrange Edit
windows in the region above a Watch, Output, or Call Stack
window. If none of these windows are open, Tile and Cascade
will use the entire desktop.

At the bottom of the Window menu, the Window I List command
appears. Choose this command for a list of all open windows.

211

Window I Size/Move

212

Size/Move

Zoom

Tile

Cascade

Next

Choose Window I Size/Move to change the size or position of the
active window. When you choose this command, the active
window moves in response to the arrow keys. When the window
is where you want it, press Enter. You can also move a window by
dragging its title bar.

If you press Shift while you use the arrow keys, you can change
the size of the window. When the window is the size you want it,
press Enter. If a window has a resize corner, you can drag that
corner or any other corner to resize it.

Choose Window I Zoom to resize the active window to the max­
imum size. If the window is already zoomed to the maximum,
you can choose this command again to restore it to its previous
size. You can also double-click anywhere on the top line (except
where an icon appears) of a window to zoom or unzoom it.

Choose Window I Tile to view equally all your open Edit
windows. Tiling makes all your open Edit windows a similar size
and lays them out one next to the other so none overlap.

Choose Window I Cascade to stack all open Edit windows.
Cascade only lets you fully view the active window; only file
names and window numbers are visible for the other windows.

Choose Window I Next to make the next window active, which rm makes it the topmost open window.

Previous
Choose Window I Previous to make the previous window active
(the window last opened before the currently active one).

Turbo Pascal User's Guide

Window I Close

Close
Choose Window I Close to close the active window. You can also

~[][] click the close box in the upper left comer to close a window.

Watch

Register

Output

Chapter 7, The IDE reference

Choose Window I Watch to open the Watch window and make it
active. The Watch window displays expressions and their
changing values so you can keep an eye on how your program
evaluates key values.

You use the commands in the Debug I Watches pop-up menu to
add or remove watches from this window. Refer to the section on
this menu for information on how to use the Watch window (page
196).

To close the window, click its close box or choose Window I Close.

Choose Window I Register to open the Register window and make
it active. The Register window displays CPU registers and is
especially useful when debugging inline assembler. To close the
window, click its close box or choose Window I Close.

Choose Window I Output to open the Output window and make it
active. The Output window displays text from any DOS
command-line text and any text generated from your program (no
graphics).

The Output window is handy while debugging because you can
view your source code, variables, and output all at once. This is
especially useful when you've set the Options I Environment
dialog box to a 43-line display and you are running a standard
25-line mode program. In that case, you can see almost all of the
program output and still have plenty of lines to view your source
code and variables.

If you would rather see your program's text on the full screen-or
if your program generates graphics-choose the Window I User
Screen command instead (Alt-F5).

213

Window I Call Stack

Call Stack

User Screen

List

Help menu

214

To close the window, click its close box or choose Window I Close.

The Window I Call Stack command opens a window that shows
the sequence of procedures your program called to reach the
procedure currently running. At the bottom of the stack is
Program (or your program name); at the top is the procedure that's
currently running.

Each entry on the stack displays the name of the procedure called
and the values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display
the current line of any other procedure on the call stack, select
that procedure's name and press Enter. The cursor moves to the
line containing the call to the procedure next above it on the stack.
The call stack will stay on the desktop until you close it.

Choose Window I User Screen to view your program's full-screen
output. If you would rather see your program output in a Turbo
Pascal window, choose the Window I Output command instead.
Clicking or pressing any key returns you to the integrated
environment.

Choose Window I List to get a list of all the windows you've
opened; the list contains the names of all files that are currently
open. When you make a selection from the list, Turbo Pascal
brings the window to the front and makes it active.

Press Alt-O to pop up a complete list of all open windows. For a full
rundown of how to manage windows, see page 13.

The Help menu gives you access to online help in a special
window. There is help information on virtually all aspects of the
IDE and Turbo Pascal. (Also, one-line menu and dialog box hints
appear on the status line whenever you select a command.)

Turbo Pascal User's Guide

When getting help in a
dialog box or menu, you

cannot resize the window or
copy to the clipboard. In this

instance, Tab takes you to
dialog box controls, not the

next keyword.

Contents

Window I List

To open the Help window, do one of these actions:

• Press F1 at any time (including from any dialog box or when
any menu command is selected).

• When an Edit window is active and the cursor is positioned on
a word, press Ctrl-F1 to get language help.

• Click Help whenever it appears on the status line or in a dialog
box.

To close the Help window, press Esc, click the dose box, or choose
Window I Close. You can keep the Help window onscreen while
you work in another window unless you opened the Help
window from a dialog box or pressed F1 when a menu command
was selected. (If you press F6 or click on another window while
you're in Help, the Help window remains onscreen.)

Help screens often contain keywords (highlighted text) that you
can choose to get more information. Press Tab to move to any
keyword; press Enter to get more detailed help. (As an alternative,
move the cursor to the highlighted keyword and press Enter. With
a mouse, you can double-click any keyword to open the help text
for that item.

You can also cursor around the Help screen and press Ctrl-F1on
any word to get help. If the word is not found, an incremental
search is done in the index and the closest match displayed.

When the Help window is active, you can copy from the window
and paste that text into an Edit window. You do this just the same
as you would in an Edit window: Select the text first (using
Shift~ , Left arrow, Up arrow, Down arrow), choose Edit I Copy,
move to an Edit window, then choose Edit I Paste.

To select text in the Help window, drag across the desired text or,
when positioned at the start of the block, press Shift~, f-, t, J, to
mark a block.

You can also copy preselected program examples from help
screens by choosing the Edit I Copy Example command.

The Help I Contents command opens the Help window with the
main table of contents displayed. From this window, you can
branch to any other part of the help system.

Chapter 7, The IDE reference 215

Help I Contents

Index

Topic Search

You can get help on Help by pressing F1 when the Help window
is active. You can also reach this screen by clicking on the status
line.

The Help I Index command opens a dialog box displaying a full list
of help keywords (the special highlighted text in help screens that
let you quickly move to a related screen).

You can scroll the list or you can incrementally search it by
pressing letters from the keyboard. For example, to see what's
available under "printing," you can type p r i. When you type p,
the cursor jumps to the first keyword that starts with p. When you
then type r, the cursor then moves to the first keyword that starts
with pro When you then type i, the cursor moves to the first
keyword that starts with pri, and so on.

When you find a keyword that interests you, choose it by
cursoring to it and pressing Enter. (You can also double-click it.)

The Help I Topic Search command displays language help on the
@ill[IT] currently selected item.

Previous Topic

To get language help, position the cursor on an item in an Edit
window and choose Topic Search. You can get help on things like
procedure names (Writeln, for example), reserved words, and so
on. If an item is not in the help system, the help index displays the
closest match.

The Help I Previous Topic command opens the Help window and
~[IT] redisplays the text you last viewed.

Turbo Pascal lets you back up through 20 previous help screens.
You can also click on the status line to view the last help screen
displayed.

216 Turbo Pascal User's Guide

Help on Help

Chapter 7, The IDE reference

Help I Help on Help

The Help I Help on Help command opens up a text screen that
explains how to use the Turbo Pascal help system. If you're
already in help, you can bring up this screen by pressing Fl.

217

218 Turbo Pascal User's Guide

c H

You should read this chapter
even if you are familiar with

the editor in other Turbo
products. Turbo Pascal's new
IDE includes improvements to

the editor. Context-sensitive
help Is always just a keystroke

away (F1).

A p T E R

8

The editor from A to Z

This chapter is a reference to Turbo Pascal's full range of editing
commands. Table 8.1 contains a list of all of the editor commands;
the tables and text that follow it cover those aspects of the editor
that need further explanation.

Remember, this chapter is concerned just with the editor. For a
tutorial about the editor and the IDE, refer to Chapter 1; for an
in-depth discussion of the whole Turbo Pascal integrated environ­
ment, refer to Chapter 7.

The new and the old

The new Turbo Pascal IDE still lets you use Borland's familiar hot
key combinations to move around your file, insert, copy, and
delete text, and search and replace. However, it also provides you
with two brand-new menus on the menu bar, the Edit menu and
the Search menu. In addition, Turbo Pascal now supports use of a
mouse for many of the cursor movement and block-marking
commands. '

The Edit menu contains commands for cutting, copying, and
pasting in a file, copying examples from Help to an Edit window,
and viewing the Clipboard. When you first start Turbo Pascal, an
Edit window is already active. To open other Edit windows, go to
the File menu and choose Open. From an Edit window, you still
press F10 to get to the menu bar; to return to the Edit window,

Chapter 8, The editor from A to Z 219

keep pressing Esc until you are out of the menus. If you have a
.... mouse, you can also just click anywhere in the Edit window.

Editor reference

220

Table 8.7 summarizes all
editor commands.

Table 8.1
Full summary of editor

commands

A word is defined as a
sequence of characters
separated by one of the
following: space < > , :
.()()/\'*+-/$

#_=I-?!"%&':
@ \, and all control and

graphic characters.

As always, you enter text pretty much as if you were using a
typewriter. To end a line, press Enter. When you've entered
enough lines to fill the screen, the top line scrolls off the screen.
Don't worry-it isn't lost; you can move back and forth in your
text with the scrolling commands that are described later.

The editor has a restore facility that lets you take back changes to
the last line modified. This command (Edit I Restore line) is
described on page 224 in the section titled "Other editing
commands."

The editor is much more powerful than a quick tutorial can show.
In addition to the menu choices, it uses approximately 50
commands to move the cursor around, page through text, find
and replace strings, and so on. These commands can be grouped
into four main categories:

• Cursor movement
• Insert and delete operations
• Block operations
• Miscellaneous editing operations

Most of these commands need no explanation. Those that do are
described in the text following Table 8.1.

Movement

Cursor movement commands

Basic cursor movement
Character left
Character right
Word left
Word right
Lineup
Line down
Scroll up one line
Scroll down one line
Page up
Page down

Command

~

-7

Ctr/~
Ctrl-7
i
J­
Ctr/-W
Ctr/-Z
PgUp
PgDn

Turbo Pascal User's Guide

Table 8.1: Full summary of editor commands (continued)

&..L Many of the
commands in this table can
a/so be performed with the

mouse. See Chapter 7.

Movement

Long distance
Beginning of line
End of line
Top of window
Bottom of window
Beginning of file
End of file
Beginning of block
End of block
Last cursor position

Insert and delete commands

Insert mode on/off

Delete character left of cursor
Delete character at cursor
Delete word right
Insert line
Delete line
Delete to end of line

Block commands

Mark block
Mark single word
Copy block

Move block

Delete block
Read block from disk
Write block to disk
Hide/ display block
Print block
Indent block
Unindent block

Other editing commands

Autoindent on/off

Control character prefix**
Find place marker
Go to menu bar
New file
Open file
Optimal fill mode on/off

Pair matching
Print file
Quit IDE

Chapter 8, The editor from A to Z

Command

Home
End
Ctrl Home
Ctrl End
Ctri PgUp
Ctrl PgDn
Ctrl-Q B
Ctrl-Q K
Ctrl-Q P

Options I Environment I Editor I
Insert mode or Ins
Backspace
Del
Ctrl-T
Ctri-N
Ctrl-Y
Ctrl-Q Y

Shift J., I, -7, t-, Ctrl-K B, Ctrl-K K
Ctrl-KT
Edit I Copy, Edit I Paste or

Ctrl-Ins, Shift-Ins
Edit I Cut, Edit I Paste or

Shift-Del, Shift-Ins
Edit I Clear or Ctrl-Del
Ctrl-K R
Ctrl-KW
Ctrl-K H
File I Print or Ctrl-K P
Ctrl-K I
Ctrl-K U

Options I Environment I Editor I
Autoindent mode*
Ctrl-P
Ctrl-Q n***
F10
File I New
File I Open (F3)
Options I Environment I Editor I
Optimal fill*
Ctrl-Q [and Ctri-Q J
File I Print
File I Quit (AIt-X)

221

Jumping around

Block commands

222

Table 8.1: Full summary of editor commands (continued)

Movement Command

Repeat last search
Restore error message
Restore line
Return to editor from menus
Save
Search
Search and replace
Set place marker
Tab
Tab mode

Unindent mode

Search I Search Again or Ctrl-L
Ctr/-Q W
Edit I Restore Line or Ctrl-Q L
Esc
FileISave(F2)
Search I Find or Ctr/-Q F
Search I Replace or Ctrl-Q A
Ctr/-K n***
Tab
Options I Environment I Editor I
Use tab characters*
Options I Environment I Editor I
Backspace unindents*

*This command opens the Editor Options dialog box, in which you can set the
appropriate check box or radio buttons.

**Enter control characters by first pressing Glrl·P, then pressing the desired control
character. Depending on your screen setup, control characters appear as low­
intensity or inverse capital letters.

***n represents a number from 0 to 9.

There are three cursor movement commands that need further
explanation: Ctrl-Q B (Beginning of block), Ctrl-Q K (End of block),
and Ctrl-Q P (Last cursor position).

Ctrl-Q Band Ctrl-Q K move the cursor to the block-begin or block­
end marker. Both these commands work even if the block is not
displayed (see "Hide/ display block" in Table 8.2). Ctrl-Q B works
even if the block-end marker is not set, and Ctrl-Q K works even if
the block-begin marker is not set.

Ctrl-Q P moves to the last position of the cursor before the last
command. This command is particularly useful after a search or
search-and-replace operation has been executed, and you'd like to
return to where you were at before you ran the search.

A block of text is any amount of text, from a single character to
hundreds of lines, that has been surrounded with special block­
marker characters. There can be only one block in a window at a
time. A block is marked by placing a block-begin marker on the
first character and a block-end marker after the last character of

Turbo Pascal User's Guide

the desired portion of the text. Once marked, the block can be
copied, moved, deleted, printed, or written to a file.

Table 8.2: Block commands in depth

Movement

Mark block

Mark single

Copy block

Move block

Delete block

Write block
to disk

Read block
from disk

Hide/ display
block

Print block
Print

Command(s)

Shift.1-, i, ~,
~

etrl-K T

Edit I Copy, etrl-Ins
Edit I Paste, Shift-Ins

Function

Marks (highlights) a block as the cursor is moved. Marked text
is displayed in a different intensity.

Marks a single word as a block. If the cursor is placed within a
word, that word will be marked. If it is not within a word, then
the word to the left of the cursor will be marked.

Copies a previously marked block to the Clipboard and pastes it
to the current cursor position. The original block is unchanged,
and the block markers are placed around the new copy of the
block. If no block is marked or the cursor is within the marked
block, nothing happens.

Edit I Cut, Shift-Del Moves a previously marked block from its original position to the
Edit I Paste, Shift-Ins Clipboard and pastes it to the cursor position. The block disap­

pears from its original position; the markers remain around the
block at its new position. If no block is marked, nothing happens.

Edit I Clear, etrl-Del
etrl-K Y

etrl-K W

etrl-K R

etrl-K H

etrl-K P
File I Print

Deletes a previously marked block. No provision exists to
restore a deleted block, so be careful with this command.

Writes a previously marked block to a file. The block is left
unchanged, and the markers remain in place. When you give this
command, you are prompted for the name of the file to write to.
The file can be given any legal name (the default extension is
.PAS). If you prefer to use a file name without an extension,
append a period to the end of its name.

Note: You can use wildcards to select a file to overwrite; a
directory is displayed. If the file specified already exists, a warn­
ing is issued before the existing file is overwritten. If no block is
marked, nothing happens.

Reads a disk file into the current text at the cursor position,
exactly as if it were a block. The text read is then marked as a
block. When this command is issued, you are prompted for the
name of the file to read. You can use wildcards to select a file to
read; a directory is displayed. The file specified can be any legal
file name.

Causes the visual marking of a block to be alternately switched off
and on. The block manipulation commands (copy, move, delete,
print, and write to a file) work only when the block is displayed.
Block-related cursor movements (jump to beginning/ end of
block) work whether the block is hidden or displayed.

Sends the marked block in the active Edit window to the printer.
Sends the entire file in the active Edit window to the printer.

Chapter 8, The editor from A to Z 223

Other editing
commands The next table describes certain editing commands in more detail.

The table is arranged alphabetically by command name.

Table 8.3: other editor commands In depth

Movement

Autoindent

Find place
marker

New file

Open file

Quit edit

Restore line

Save file

Set place

Tab

Tab mode

224

Command{s)

Options I
Environment I
Editor

Ctr/-Qn

File I New

File I Open (F3)

File I Quit (Alt-X)

Edit I
Restore Line

FileISave(F2)

Gtrl-Kn

Tab

Options I
Environment
Editor

Function

Opens the Editor options dialog box, in which you can toggle the
Autoindent mode check box. Provides automatic indenting of
successive lines. When Autoindent is active, the indentation of the
current line is repeated on each following line; that is, when you press
Enter, the cursor does not return to column one but to the starting
column of the preceding non-empty line. When you want to change the
indentation, use the Spacebar and ~ key to select the new column.
Autoindent is on by default.

Finds up to ten place markers (n can be any number in the range 0 to 9)
in text. Move the cursor to any previously set marker by pressing Ctr/-Q
and the marker number.

Opens a new window.

Lets you load an existing file into an Edit window.

Quits Turbo Pascal. You are asked whether you want to save the file to
disk.

Lets you undo changes made to the last line worked on. The line is
restored to its original state regardless of any changes you have made.
This works only on the last modified or deleted line.

Saves the file and returns to the editor.

Mark up to ten places in text by pressing Gtr/-I<, followed by a single
marker digit (0 to 9). After marking your location, you can work
elsewhere in the file and then easily return to your marked location by
using the Gtrl-Q N command (being sure to use the same marker
number). You can have ten places marked in each window.

Tabs default to eight columns apart in the Turbo Pascal editor.

Opens the Editor options dialog box, in which you can set the Use
tab character check box. When the option is on, you can insert tab
characters (ASCII character 8); when it's off, the tab is
automatically inserted as the correct number of spaces.

Turbo Pascal User's Guide

Search and
replace

The search string is also
called the target string.

Searching and
searching again

The Search I Find and Search I Replace commands let you search
for (and optionally replace) strings.

The search string can contain any characters, including control
characters. You can enter control characters with the etr/-P prefix.
For example, search for a etrl-Tby holding down the etr/key as
you press P and then T. You can include a line break in a search
string by specifying etr/-M (carriage return). (For searching regular
~xpressions, take a look at the online file UTILS.DOC.)

The following sections list the steps for performing these
operations.

1. Choose Search I Find. This opens the Find dialog box.

2. Type the string you are looking for into the Text to Find input
box.

3. You can also set various search options:

• The Direction radio buttons control whether you do a
forward or backward search.

• The Scope radio buttons control how much of the file you
search.

• The Origin radio buttons control where the search begins.

• The Options check boxes determine whether the search will
be case sensitive for whole words only, and for regular
expressions.

Use Tab or your mouse to cycle through the options. Use t and
J, to set the radio buttons and Space to toggle the check boxes.

4. Finally, choose the OK button to carry out the search or the
Cancel button to cancel. Turbo Pascal performs the operation.

5. If you want to search for the same item repeatedly, use
. Search I Search Again.

Search and replace 1. Choose Search I Replace. This opens the Replace dialog box.

2. Type the string you are looking for into the Text to Find input
box.

3. Press Tab or use your mouse to move to the New text input
box. Type in the replacement string.

Chapter 8, The editor from A to Z 225

Pair matching

226

4. You can then set the same search options as in the Find dialog
box.

5. Finally, choose OK or Change all to begin the search, or choose
Cancel to cancel. Turbo Pascal performs the operation.
Choosing Change all will replace every occurrence found.

6. If you want to stop the operation, press Esc at any point when
the search has paused.

There you are, debugging your source file that is full of functions,
parenthesized expressions, nested comments, and a whole slew of
other constructs that use delimiter pairs. In fact, your file is
riddled with

• braces: { and}
• parentheses: (and)

• brackets: [and]

• double quotes: "

• single quotes: '

Finding the match to a particular paired construct can be tricky.
Suppose you have a complicated expression with a number of
nested expressions, and you want to make sure all the parenthe­
ses are properly balanced. Or say you're at the beginning of a
function that stretches over several screens, and you want to jump
to the end of that function. With Turbo Pascal's handy pair­
matching commands, the solution is at your fingertips. Here's
what you do:

1. Place the cursor on the delimiter in question.

2. To locate the mate to this selected delimiter, simply press
Ctrl-Q [.

3. The editor immediately moves the cursor to the delimiter that
matches the one you selected. If it moves to the one you had
intended to be the mate, you know that the intervening code
contains no unmatched delimiters of that type. If it moves to
the wrong delimiter, you know there's trouble; now all you
need to do is track down the source of the problem.

We've told you the basics of Turbo Pascal's ''Match Pair" com­
mands; now you need some details about what you can and can't

Turbo Pascal User's Guide

Directional and
nondirectional

matching

Opening braces and
brackets and closing braces

and parentheses are
directional; the editor knows
which way to search for the

mate, so it doesn't matter
which match pair command

you give.

Double and single quotes
are not directional. You must

specify the correct match
pair command.

Table 8.4
Delimiter pairs

Nestable delimiters are
explained after this table.

do with these commands, and notes about a few subtleties to keep
in mind. This section covers the following points:

• There are actually two match pair editing commands: one for
forward matching (Ctrl-Q [) and the other for backward
matching (Ctrl-Q]) .

• If there is no mate for the delimiter you've selected, the editor
doesn't move the cursor.

Two match pair commands are necessary because some delimiters
are nondirectional.

For example, suppose you tell the editor to find the match for an
opening brace ({) or an opening bracket ([). The editor knows
the matching delimiter can't be located before the one you've
selected, so it searches forward for a match. If you tell the editor
to find the mate to a closing brace (}) or a closing parenthesis ()),
it knows that the mate can't be located after the selected delimiter,
so it automatically searches backward for a match.

However, if you tell the editor to find the match for a double
quote (") or a single quote (,), it doesn't know automatically
which way to go. You must specify the search direction by giving
the correct match pair command. If you give the command Ctrl-Q
Ctrl-[, the editor searches forward for the match; if you give the
command Ctrl-Q Ctrl-], it searches backward for the match.

The following table summarizes the delimiter pairs, whether they
imply search direction, and whether they are nestable:

Delimiter pair

" "

Direction implied?

Yes
Yes
Yes
No
No

Nestable delimiters

Are they nestable?

Yes
Yes
Yes
No
No

Nestable means that, when the editor is searching for the mate to a
directional delimiter, it keeps track of how many delimiter levels
it enters and exits during the search.

This is best illustrated with some examples:

Chapter 8, The editor from A to Z 227

Figure 8.1
Search for match to square

bracket or parenthesis

228

matched pair ,....,
Array1 [Array2[X]]

T

matched pair

matched pair matched pair . .
«X> 0) and (Y < 0»

match~d pair

Turbo Pascal User's Guide

c H A p T E R

9

The command-line compiler

TPCX is available only in the
Professional package.

Turbo Pascal's command-line compiler (TPC.EXE) lets you invoke
all the functions of the IDE compiler (TURBO.EXE) from the DOS
command line. You can run the command-line compiler in either
real or protected mode; both TPC and TPCX generate real mode
programs only. The protected mode compiler (TPCX.EXE) lets
you use extended memory to compile very large programs; it uses
the same options as TPC.EXE.

You run TPC.EXE from the DOS prompt using a command line
with the following syntax:

TPC [options] files

options are zero or more optional parameters that provide
additional information to the compiler. files are the names of the
sources file to compile. If you type TPC alone, it displays a help
screen of command-line options and syntax.

If files does not have an extension, TPC assumes .pAs. If you don't
want the file you're compiling to have an extension, you must
append a period (.) to the end of files. If the source text contained
in files is a program, TPC creates an executable file named
FILENAME.EXE. If files contains a unit, TPC creates a Turbo
Pascal unit file named FILENAME.TPU.

You can get help at the You can specify a number of options for TPC. An option consists
command line using THELP; f I h (I) . d' I C 11 db' I tt I

see THELP.DOC in ONLlNE.ZIP 0 a s as nnme late y 10 owe y an option e er. n some
on your disk. cases, the option letter is followed by additional information, such

Chapter 9, The command-line compiler 229

as a number, a symbol, or a directory name. Options can be given
in any order and can come before and/or after the file name.

Compiler options

Table 9.1
Command-line options

230

The IDE allows you to set various options through the menus;
TPC gives you access to most of these same options using the
slash U) command. You can also precede options with a hyphen
(-) instead of a slash U), but those options that start with a
hyphen must be separated by blanks. For example, the following
two command lines are equivalent and legal:

TPC -IC:\TP\TVISION -DDEBUG SORTNAME -$S- -$Ft
TPC /IC:\TP\TVISION/DDEBUG SORTNAME /$S-/$Ft

The first uses hyphens with at least one blank separating options;
the second uses slashes and no separation is needed.

Table 9.1 lists all the command-line options and gives their
integrated environment equivalents. In some cases, a single
command-line option corresponds to two or three menu
commands.

Command Line Menu Command Setting

I$A+ Options I Compiler I Word Align Data Word
I$A- o I C I Word Align Data Byte
I$B+ o I C I Complete Boolean Eval Complete
1$8- o I C I CompleteBoolean Eval Short

Circuit
1$0+ o I C I Debug Information On
1$0- o I C I Debug Information Off
I$E+ 01 C I Emulation On
I$E- o I C I Emulation Off
I$F+ o I C I Force Far Calls On
I$F- o I C I Force Far Calls Off
I$G+ o I C I 286 Instructions On
I$G- o I C I 286 Instructions Off
1$1+ o I C II/a-Checking On
1$1- o I C 11/ a-Checking Off
I$L+ o I C I Local Symbols On
I$L- o I C I Local Symbols Off
I$Msss,min,max o I Memory Sizes
I$N+ o I C I Numeric Processing 8087/80287
I$N- o I C I Numeric Processing
1$0+ ole I Overlays Allowed On
1$0- ole I Overlays Allowed Off
I$R+ o I C I Range Checking On

Turbo Pascal User's Guide

Table 9.1: Command-line options (continued)

Command Line

I$R­
I$S+
I$S­
I$V+
I$V­
I$X+
I$X-

IB
IDdefines
IEpath
IFseg:ofs
IGS
IGP
IGD
Ilpath
IL
1M
IOpath
IQ
ITpath
IUpath
N

Menu Command

o I C I Range Checking
o I C I Stack Checking
o I C I Stack Checking
01 C I Strict Var-string
01 C I Strict Var-string
o I C I Extended Syntax
o I C I Extended Syntax

Compile I Build
Options I Compiler I Conditional Defines
Options I Directories I EXE & TPU Directory
Search I Find Error
Options I Linker I Map File
Options I Linker I Map File
Options I Linker I Map File
Options I Directories I Include Directories
Options I Linker I Link Buffer
Compile I Make
Options I Directories I Object Directories
(none)
Options I Directories I Turbo Directory
Options I Directories I Unit Directories
Debugger I Standalone

Setting

Off
On
Off
On
Off
On
Off

Segments
Public
Detailed

Disk

On

Compiler directive options

The switch
directive option

Turbo Pascal supports several compiler directives, all of which are
described in Chapter 21 of the Programmer's Guide, "Compiler
directives." When embedded in the source code, these directives
take one of the following forms:

{$directi ve+}
{$directive- }
{$directive info}

The 1$ and 10 command-line options allow you to change the
default states of most compiler directives. Using 1$ and 10 on the
command line is equivalent to inserting the corresponding
compiler directive at the beginning of each source file compiled.

The 1$ option allows you to change the default state of the
following switch d~rectives: $A, $8, $0, $E, $F, $G, $1, $L, $N, $0,
$R, $5, $V, and $X. The syntax of a switch directive option is 1$

Chapter 9, The command-line compiler 231

Note that only one dol/or sign
($) is needed.

232

The conditional
defines option

followed by the directive letter, followed by a plus (+) or a minus
(-). For example,

TPC MYSTUFF /$R-

would compile MYSTUFF.P AS with range checking turned off,
while

TPC MYSTUFF /$Rt

would compile it with range-checking turned on. Note that if a
{$R+} or {$R-} compiler directive appears in the source text, it
overrides the I$R command-line option.

You can repeat the 1$ option in order to specify multiple compiler
directives:

TPC MYSTUFF /$R-/$I-/$V-/$Ft

Alternately, TPC allows you to write a list of directives (except for
$M), separated by commas:

TPC MYSTUFF /$R-,I-,V-,Ft

In addition to changing switch directives, 1$ also allows you to
specify a program's memory allocation parameters, using the
following format:

/$MSTACK,HEAPMIN,HEAPMAX

where stack is the stack size, heapmin is the minimum heap size,
and heapmax is the maximum heap size. All three values are in
bytes, and each is a decimal number unless it is preceded by a
dollar sign ($), in which case it is assumed to be hexadecimal. So,
for example, the following command lines are equivalent:

TPC MYSTUFF /$M16384,O,655360
TPC MYSTUFF /M4000,$O,$AOOOO

Note that, because of its format, you cannot use the $M option in a
list of directives separated by commas.

The 10 option lets you define conditional symbols, corresponding
to the {$OEFINE symbol} compiler directive or the Ole I
Conditional Defines option in the IDE. The 10 option must be
followed by one or more conditional symbols, separated by
semicolons (;). For example, the following command line

Turbo Pascal User's Guide

TPC MYSTUFF /DIOCHECK;DEBUG;LIST

defines three conditional symbols, iocheck, debug, and list, for the
compilation of MYSTUFF.P AS. This is equivalent to inserting

{$DEFINE IOCHECK}
{$DEFINE DEBUG}
{$DEFINE LIST}

at the beginning of MYSTUFF.P AS. If you specify multiple 10
directives, you can concatenate the symbol lists are concatenated.
Thus

TPC MYSTUFF /DIOCHECK/DDEBUG/DLIST

is equivalent to the first example.

Compiler mode options

The make (1M)
option

A few options affect how the compiler itself functions. These are
1M (Make),/B (Build),/F (Find Error), IL (Link Buffer) and IQ
(Quiet). As with the other options, you can use the hyphen format
(remember to separate the options with at least one blank).

TPC has a built-in MAKE utility to aid in project maintenance.
The 1M option instructs TPC to check all units upon which the file
being compiled depends.

A unit will be recompiled if

• the source file for that unit has been modified since the .TPU file
was created, or

• any file included with the $1 directive, or any .OBI file linked in
by the $L directive, is newer than the unit's .TPU file, or

• the interface section of a unit referenced in a uses statement has
changed

~ Units in TURBO.TPL are excluded from this process.

If you were applying this option to the previous example, the
command would be

TPC MYSTUFF /M

Chapter 9, The command-line compyer 233

The build all (/B)
option

You can't use /M and /8 at
the same time.

The find error
option

This is the same as Find Error
on the Search menu.

234

Instead of relying on the 1M option to determine what needs to be
updated, you can tell TPC to update all units upon which your
program depends using the IB option. This is the same as
Compile I Build.

If you were using this option in the previous example, the
command would be

TPC MYSTUFF /B

When a program terminates due to a run-time error, it displays an
error code and the address <seg:ofs) at which the error occurred.
By specifying that address in a /Fseg:ofs option, you can locate the
statement in the source text that caused the error, provided your
program and units were compiled with debug information
enabled (via the $D compiler directive).

Suppose you have a file called TEST. PAS that contains the
following program:

program Test;
var

i : integer;
begin

i := 0;
i := i cliv i;

end.
{ Force a divide by zero error }

First, compile this program using the command-line compiler:

TPC TEST

If you do a DIR TEST. *, DOS lists two files: TEST.PAS, your
source code, and TEST.EXE, the executable file.

Now, run TEST and you'll get a run-time error:

C:\>TEST
Run-time error 200 at 0000:0018

Notice that you're given an error code (200) and the address
(0000:0018 in hex) of the instruction pointer (CS:IP) where the
error occurred. To figure out which line in your source caused the

Turbo Pascal User's Guide

The link buffer
option

This is the same as the Disk
setting (0 I L I Link Buffer).

The quiet option

error, simply invoke the compiler, use IF and specify the segment
and offset as reported in the error message:

C:\>TPC TEST /FO:18
Turbo Pascal Version 6.0 Copyright .(c) 1983,90 Borland
International
TEST.PAS(7)
TEST.PAS(6): Target address found.

i := i div i;

In order for TPC to find the run-time error with IF, you must
compile the program with all the same command-line parameters
you used the first time you compiled it.

The compiler now gives you the file name and line number, and
points to the offending line number and text in your source code.

As mentioned previously, you must compile your program and
units with debug information enabled for TPC to be able to find
run-time errors. By default, all programs and units are compiled
with debug information enabled, but if you turn it off, using a
{$D-} compiler directive or a 1$0- option, TPC will not be able to
locate run-time errors.

The IL option disables buffering in memory when .TPU files are
linked to create an .EXE file. Turbo Pascal's built-in linker makes
two passes. In the first pass through the .TPU files, the linker
marks every procedure that gets called by other procedures. In
the second pass, it generates an .EXE file by extracting the marked
procedures from the .TPU files. By default, the .TPU files are kept
in memory between the two passes; however, if the IL option is
specified, they are reread during the second pass. The default
method is faster but requires more memory; for very large
programs, you may have to specify IL to link successfully.

The quiet mode option suppresses the printing of file names and
line numbers during compilation. When TPC is invoked with the
quiet mode option

TPC MYSTUFF /Q

Chapter 9, The command-line compiler 235

its output is limited to the sign-on message and the usual statistics
at the end of compilation. If an error occurs, it will be reported.

Directory options

The EXE & TPU

TPC supports several options that allow you to specify the five
directory lists used by TPC: Turbo, EXE & TPU, Include, Unit, and
Object.

directory option This option lets you tell TPC where to put the .EXE and .TPU files
it creates. It takes a directory path as its argument:

TPC MYSTUFF /EC:\TP\BIN

This is the same as the 0 I D I If no such option is given, TPC creates the .EXE and .TPU files in
EXE & TPU Directory the same directories as their corresponding sourc, e files.

command.

The include
directories option

This (s the same as 0 I D I
Include Directories

command.

The unit

Turbo Pascal supports include files through the {$I filename}
compiler directive. The /I option lets you specify a list of
directories in which to search for Include files. Multiple
directories are separated with semicolons (;). For example, the
following command line causes TPC to search for include files in
C: \ TP\INCLUDE and D: \INC after searching the current
directory:

TPC MYSTUFF /IC:\TP\INCLUDE;D:\INC

If multiple /I directives are specified, the directory lists can be
concatenated. Thus

TPC MYSTUFF /IC:\TP\INCLUDE/ID:\INC

is equivalent to the first example.

directories option When you compile a program that uses units, TPC first attempts
to find the units in TURBO.TPL (which is loaded along with
TPC.EXE). If they cannot be found there, TPC searches for
unitname.TPU in the current directory. The IU option lets you
specify additional directories in which to search for units. As with

236 Turbo Pascal User's Guide

This is the same as the 0 I D I
Unit Directories command.

The object files
directories option

This is the same as the 0 I D I
Object Directories

command.

Debug options

The map file
action

Unlike the binarY format
of.EXE and. TPU files, a .MAP

file is a legible text file that
can be output on a printer or

loaded into the editor.

the previous options, you can specify multiple directory paths as
long as you separate them with semicolons (;). For example, the
following command line causes TPC to look in C: \ TP\ UNITS and
C: \LIBRARY for any units it doesn't find in TURBO.TPL or the
current directory:

TPC MYSTUFF /UC:\TP\UNITS;C:\1IBRARY

As with the n option, if multiple /U options are specified, the
directory lists can be concatenated.

Using {$L filename} compiler directives, Turbo Pascal allows you
to link in .081 files containing external assembly language
routines, as explained in Chapter 22, "The inline assembler," in
the Programmer's Guide. The 10 option lets you specify a list of
directories in which to search for such .OBI files. Multiple
directories are separated with semicolons (;). For example, the
following command line causes TPC to search for .OBI files in C: \
TP\ASM and D: \ OBJECT after searching the current directory:

TPC MYSTUFF /OC:\TP\ASM;D:\OBJECT

Like the /I option, if multiple /0 options are specified, the
directory lists can be concatenated.

Turbo Pascal's IDE features a built-in debugger; TPC has a
number of command-line options that also enable you to generate
debugging information for standalone debuggers, including
Borland's Turbo Debugger.

The IG option, like the 0 I L I Map File command, instructs TPC to
generate a .MAP file that shows the layout of the .EXE file. The IG
option must be followed by the letter S, P, or L to indicate the
desired level of information in the .MAP file. A .MAP file is
divided into three sections:

• Segment

• Publics

Chapter 9, The command-line compiler 237

The standalone
debugging

option

This is the same as the
Standalone option (Options I

Debugger.

Turbo Debugger (TO. EXE) is a
powerful, standalone

debugger that works on
Turbo Pascal, Turbo C++, and

Turbo Assembler .EXE files.

238

• Line Numbers

The IGS option outputs only the Segment section, IGP outputs the
Segment and Publics section, and IGO outputs all three sections.

For modules (program and units) compiled in the {$O+,L+} state
(the default), the Publics section shows all global variables,
procedures, and functions, and the Line Numbers section shows
line numbers for all procedures and functions in the module. In
the {$D+,L-} state, only symbols defined in a unit's interface part
are listed in the Publics section.

For modules compiled in the {$D-} state, there are no entries in the
Line Numbers section.

When you specify the N option on the command line, TPC
appends Turbo Debugger-compatible debug information at the
end of the .EXE file. Turbo Debugger includes both source- and
machine-level debugging, powerful breakpoints (including
breakpoints with conditionals or expressions attached to them),
and it lets you debug huge applications via virtual machine
debugging on a 80386 or two-machine debugging (connected via
the serial port).

Even though the debug information generated by N makes the
resulting .EXE file larger, it does not affect the actual code in the
.EXE file, and if it is executed from DOS, the .EXE file does not
require additional memory.

The extent of debug information appended to the .EXE file
depends on the setting of the $0 and $L compiler directives in
each of the modules (program and units) that make up the
application. For modules compiled in the {$D+,L+} state, which is
the default, all constant, variable, type, procedure, and function
symbols become known to the debugger. In the {$D+,L-} state,
only symbols defined in a unit's interface section become known
to the debugger. In the {$D-} state, no line-number records are
generated, so the debugger cannot display source lines when you
debug the application.

Turbo Pascal User's Guide

The TPC.CFG file

You can set up a list of options in a configuration file called
TPC.CFG, which will then be used in addition to the options
entered on the command line. Each line in TPC.CFG corresponds
to an extra command-line argument inserted before the actual
command-line arguments. Thus, by creating a TPC.CFG file, you
can change the default setting of any command-line option.

TPC allows you to enter the same command-line option several
times, ignoring all but the last occurrence. This way, even though
you've changed some settings with a TPC.CFG file, you can still
override them on the command line.

When TPC starts, it looks for TPC.CFG in the current directory. If
the file isn't found there, and if you are running DOS 3.x, TPC
looks in the Turbo directory (where TPC.EXE resides). To force
TPC to look in a specific list of directories (in addition to the
current directory), specify a rr command-line option as the first
option on the command line.

If TPC.CFG contains a line that does not start with a slash (/) or a
hyphen (-), that line defines a default file name to compile. In that
case, starting TPC with an empty command line (or with a
command line consisting of command-line options only and no
file name) will cause it to compile the default file name, instead of
displaying a syntax summary.

Here's an example TPC.CFG file, defining some default directories
for include, object, and unit files, and changing the default states
of the $F and $5 compiler directives:

/IC:\TP\INC;C:\TP\SRC
/OC:\TP\ASM
/UC:\TP\UNIT
/$Ft
/$S-

Now, if you type

TPC MYSTUFF

at the system prompt, TPC acts as if you had typed in the
following:

TPC /IC:\TP\INC;C:\TP\SRC /OC:\TP\ASM /UC:\TP\UNIT /$Ft /$S- MYSTUFF

Chapter 9, The command-line compiler 239

Compiling in protected mode

240

TPCX uses the same
command-line options as

TPC.

If you've purchased the Professional package and have a 286, 386,
or 486 machine with at least 1 Mb of extended memory, you can
run TPCX.EXE. TPCX can build very large programs by running
in protected mode and using extended memory. Note that TPCX

. can only make use of extended memory, not EMS.

TPCX is much larger than TPC, and running in protected mode
involves more overhead than running in real mode. Use TPC to
do command-line compiling unless you need the extended
memory capacity of TPCX.

Turbo Pascal User's Guide

N

$ See compiler, directives
8087/80287/80387 coprocessor See numeric

coprocessor
8087/80287 option 201
80286 code generation compiler switch 1, 170
43/50-line display 206
» (chevron) in dialog boxes 16
286 Instructions option 1, 200
1\ (indirection) operator 41
25-line display 206
; (semicolons) in directory path names 205
:: (System) menu 177
~ (arrows) in dialog boxes 15

A
$A compiler directive 170
About command 177
Abs function 138
abstract objects 104
activating

menu bar 8
actual parameters, defined 51
Add Watch

box 128
command 25, 134, 196

hot key 11
Addr function 138
address, Borland 6
address-of (@) operator 41
address operators 41
alignment

word 199
ancestors 75, 78

assigning descendants to 97
immediate 78

arguments
command-line compiler 229

arithmetic operators 39

Index

D E

arrows (~) in dialog boxes 15
.ASM files, MAKE utility and 161
assembly language

linking routines 160
MAKE utility and 161

assignment, operators 38
Auto Save option 207
Autoindent Mode option 208

B
/B command-line option

in TPC234
$B compiler directive 41, 170,201
Backspace Unindents option 208
backup

files (.BAK) 208
files, automatic 22

backward
pair matching 227
searching 186

.BAK fIles 208
bar, title 12
binary

arithmetic operators 39
floating-point arithmetic 32
format 237

binding
early 96
late 97

with polymorphic objects 104
bitwise operators 39
Boolean 31

evaluation 170
expressions 36
types 35

Borland
address 6
CompuServe Forum 6

x

241

technical support 6
Borland Graphics Interface (BGI)

EGA palettes and 176
Breakpoints

command 197
dialog box 197

breakpoints 124, 131-132
clearing 198
controlling 197
deleting 197
editing 197
instant 133
losing 198
setting 196
viewing 197

bugs
reporting to Borland 6

Build command 161, 193, 234
build command-line option 234
buttons

Change 226
Change All 187
Change all 226
choosing 15
in dialog boxes 15
mouse 209
radio 16

byte data type 32

c
C++ 74
/C integrated environment option (config) 174
Call Stack

command 142, 202, 214
window 125

calls, tracking 143
Cancel button 15
Cascade command 212
case sensitivity

in searches 185
case statements 45
CGA

snow checking option 175
Change All button 187, 226
Change button 226
Change Dir command 180
Change Directory dialog box 181

242

Char data types 33
defined 31

characters
control

integrated environment and 16
tab

printing 181
check boxes 16
chevron symbol (») 16
choosing menu commands

integrated environment 8
Chr function 138
circular unit reference 63
Clear command 185, 223

hot key 10
Clear Desktop command 177
click speed (mouse) 209
Clipboard 183

clearing 185
editing text in 184
showing 184

close boxes 12
Close command 213

hot key 10
code

conditional execution 49
iterative execution 49

Code Generation
group 199

Colors dialog box 210
columns

numbers 12
command line

viewing from integrated environment 213,
214

command-line
compiler reference 229-240
options 231-238

/B234
/D232
debug 237
directory 236
/E236
/F234
/G237
/GD238
/GP238

Turbo Pascal User's Guide

/GS 238
/1236
/L203,235
/M233
mode 233
/0237
/Q235
switching directive defaults (/$) 231
/U236
/V 238

command-line compiler 149
arguments 229
compiling and linking with 229
protected mode 240

commands See also individual listings
choosing

with a mouse 9
with keyboard 8

editor 220-226
block operations 221,222-223
cursor movement 220, 222
insert and delete 221

comments 52
program 52

compatibility
object 97, 98
pointers to objects 98

compilation 20
conditional 164
unit 68

Compile
command 27, 192

hot key 11
menu 20, 192

compile-time errors 20, 122
Compiler

command 199
compiler

command-line See command-line, compiler
directives

$R
virtual method checking 103

$R200
$A 170
$B 41, 170,201
$D 125, 148,201,234
$DEFINE 164, 232

Index

$E 170
$ELSE 164, 166, 167
emulation 170
$ENDIF 166
$F 199
$G 1, 170,200
$1 170, 200, 206
$IFDEF 164, 166, 168
$IFNDEF 164, 168
$IFOPT 164, 169
$IFOPT N+ 169
$L 1, 58, 125, 202, 206
local symbol 1
$M202, 232
$N 168,201
32
$0199
$R 171
$S 171,200
$UNDEF 164
$V 171,201
$X 1, 171,201

mode, command-line options See command­
line, options

options See command-line, options
compiling

protected mode 240
to .EXE file 192, 193, 233, 234
to disk 147, 149

Complete Boolean Eval option 41,201
compound statements 44
CompuServe Forum, Borland 6
computerized simulations 88
conditional

compilation 164
defines (command-line option) 232
execution 30
statements 43
symbols 165

Conditional Defines option 202
Config File Directory option 207
CONFIG.SYS file

modifying 147
Configuration file integrated environment

option 174
configuration files

retrieving 211

243

saving 147,207, 211
TPC.CFG239

constructor (reserved word) 102
constructors

defined 102
virtual methods and 102, 110

Contents command 215
hot key 11

context-sensitive help 7
control characters 34

entering in integrated environment 16
format specifier 195

conventions
typographic 5

Copy command 184, 223
hot key 10

Copy Example command 184,215
copyright information 177
CPU

registers 213
symbols 166

Create Backup Files option 208
Crt unit 56, 66
Ctrl-Break 189, 190
Current Directory option 207
Current window option 207
Cursor Through Tabs option 208
customizing

color 210
integrated environment 206

Cut command 184, 223
hot key 10

D
ID command-line option 232
$D compiler directive 125, 148,201,234
ID integrated environment option (dual

monitors) 174
data 30

aligning 199
defined 30
types

244

Boolean 31,35
byte 32
Char 33
char 31

defined 31
integer 31
longint 32
pointer 31, 36
real 33
real numbers 31
shortint 32
string 35
word 32

Debug Information option 148,201
Trace into command and 191

Debug menu 194
debugger, integrated See integrated, debugger;

debugging
Debugger command 203
Debugger Options dialog box 204
debugging

Add Watch box 128
basic unit of execution 125
compile-time errors 122
dialog box choices 204
display swapping 204

dual monitors and 204
example 127
expressions 194
format specifiers 195
global identifiers 125
hot keys 11
110 error checking 152
IFDEF and 168
IFNDEF and 168
inability to trace 150
information 189, 204

disabling 148
generating 201
line-number 201

local identifiers 125
memory 146
navigation 142
options, command-line 237
pitfalls 151
preventive 146
range checking 153
restarting 126
run-time errors 122
starting a session 189
Step Over command 191

Turbo Pascal User's Guide

stopping See Program Reset command
syntax errors 122
Trace Into command 191
tracing 124
variables 194
watchpoints

adding 196
controlling 196
deleting 196
editing 196
watch window 213

Debugging command 189
and Trace Into command 191

declaration
methods 81, 82
object instances 79

declarations, unit 60
default buttons 15
$DEFINE compiler directive 164, 232
Delete Watch command 196
deleting line

undoing 183
delimiters

directional 227
nesting 227
nondirectional 227

descendants 78
immediate 78

designators
field 85

desktop
clearing 177

Desktop File option 207
Desktop option 207
Destination command 22, 147, 193
destination default setting 193
destructors

declaring 113
defined 112, 113
dynamic object disposal 114
polymorphic objects and 113
static versus virtual 113

dialog boxes
arrows in 15
Breakpoints 197
Change Directory 181
Colors 210

Index

Debugger Options 204
defined 15
Directories 205
entering text 16
Environment Options 221, 224
Find 185, 225
Find Procedure 188
Get Info 182
Go to Line Number 188
Linker 203
Load a File 224
Open a File 178
Preferences 206
Program Parameters 192
Replace 187, 225
Save File As 180
Startup Options 210

directional pair matching 227
directives See compiler, directives
Directories

command 205
dialog box 205

directories
changing 180
command-line options 236
configuration 205
defining 205
semicolons in paths 205

display
formats

debugger 195
swapping 204

dual monitors and 204
Display Swapping command 125
Dispose procedure 37

extended syntax 112
distribution disks

backing up 3
div operator 33
DOS

MODE command 174
output

viewing from integrated environment 213,
214

symbol 166
wildcards 178

DOS Shell command 22, 177, 182

245

Dos unit 56, 66
dotting 79, 83, 86
double-click speed (mouse) 209
dual monitor mode 174, 175
dual monitors 174

display swapping and 204
DOS command line and 182

dynamic object instances 110-118
allocation and disposal 115

E
IE command-line option 236
$E compiler directive 170,201
IE integrated environment option (dual

monitors) 175
early binding 96
Edit

menu 182
window 18

Edit Watch command 196
Edit windows

activating 219
cursor

moving 220, 222
option settings 208

editing 17
autoindent mode 224
block operations 221,222-223

deleting 223
hiding/unhiding 223
printing 223
reading and writing 223
selecting blocks 182, 223

breakpoints 197
Clipboard text 184
commands 220-226

cursor movement 220, 222
insert and delete 221

copy and paste 223
hot key 10

cut and paste 183, 184, 223
entering text 220
hot keys 10, 220-226
insert mode

overwrite mode vs. 208
miscellaneous commands 224
place marker 224

246

print file 223
quitting 224
restore line 224
search and replace 225-226

options 225
selecting text 182
tab mode toggle 224
tabs 224
undelete 224
undoing line edits 183
watchpoints 196

editor
features 17
tabs in 208

Editor Files option 207
Editor Options 208
EGA 26
ellipsis mark (...) 8, 15
$ELSE compiler directive 164, 166, 167
ELSE symbol 167
EMS

memory 147
emulation, BOxB7

floating point 201
Emulation option 149
encapsulation 75, 88
$ENDIF compiler directive 166
ENDIF symbol 167
Enhanced Graphics Adapter (EGA) 207

palette
integrated environment option 176

Environment
command 206

Environment option
Auto Save 207

Environment Options dialog box 221, 224
errors 21

checking 200
compile-time 20, 122
handling 152, 170
I/O 152
messages

searching 188, 234
out-of-memory Ibounds 153
run-time See run-time errors
syntax 20, 122

Esc shortcut 15

Turbo Pascal User's Guide

Evaluate
command 139

format specifiers and 195
window 139

objects and 144
Evaluate/Modify command 148, 194

hot key 11
event handling

virtual methods and 107
examples

copying from Help 184,215
EXE & TPU Directory command 205
EXE & TPU directory command-line option 236
.EXE files

creating 192, 193,233,234
storing 193, 205

executable
code, storing 193
directories command 205

execution
bar 128

exiting Turbo Pascal 177
expanded memory 176

RAM disk and 147, 176
TSRsand 147

Expanded Memory Specification See EMS
exported object types 85
expressions

debugging 194
nested

pair matching 226
values

displaying 194
Watch See Watch, expressions

extended
memory support See EMS memory
syntax 1, 171

Extended Syntax option 1, 201
extensibility 108

F
/F command-line option 234
$F compiler directive 199
FAR call

model, forcing use of 199
features

editor 17

Index

integrated environment 173
field-width specifiers 42
fields

object 79
accessing 80, 82, 88
designators 85
inherited 79
scope 83

method parameters and 85
private and encapsulation 82, 87, 88

File menu 20, 178
files

backup (.BAK) 208
closed

reopening 214
.EXE

storing 193, 205
information on 181
.MAP237

storing 205
new 179,224
NONAME 179
.OBJ 237

locating 206
open

choosing from List window 214
opening 178, 224

hot key 9
printing 181
saving 179, 224

all 180
automatically 207
hot key 9
with new name or path 180

.TPU 69, 193
debug information 201
local symbol information 202
storing 205

filling lines with tabs and spaces 208
Find command 185, 225
Find dialog box 185, 225
Find Error command 21, 188,234,235
find error command-line option 234
Find Procedure

command 125, 142, 143, 188
methods and 145

dialog box 188

247

floating point
code generation 201
format specifier 195
numbers 31

for
statements, loop 48

Force Far Calls option 199
formal parameters, defined 51
format specifiers 136

debugging and 195
table 195

objects 144
repeat count 136
using 136

43/50-line display 206
forward

forward searching 186
pair matching 227

FreeList
version compatibility 1

FreeMin
version compatibility 1

functions
defined 49
finding 143
structure 50

G
/G command-line option 237
$G compiler directive 1, 170,200
/G integrated environment option (Graphics

save) 175
/GD command-line option 238
generating line-number tables 125
Get Info

command 181
dialog box 182

Get info
command 147

global
identifiers 125

Go to Cursor command 126, 190
hot key 9, 11

Go to Line Number
command 188
dialog box 188

/GP command-line option 238

248

Graph3 unit 56, 67
Graph unit 27, 56, 67
graphics 26

integrated environment option U G) 148, 175
palette

EGA 176
Graphics Screen Save option 148, 175
GREP (file searcher)

wildcards in Turbo Pascal 185
/GS command-line option 238

H
heap

editor 175
management

sizes 202, 232
overlay 176
size 149
window 176

Help
button 15
menu 214
windows

closing 215
copying from 184, 215
keywords in 215
opening 214
selecting text in 215

help
accessing 214
help on help 217
hot keys 9, 11
index 216
keywords 215
language 216
online

in integrated environment 2, 7
Pascal 216
previous topic 216
status line 15
table of contents 215

Help on Help command 217
hot key 11

hexadecimal constants 32
Hi function 138
hierarchies

object 78

Turbo Pascal User's Guide

common attributes in 104, 107
high heap limit setting 203
history lists 16

closing 177
wildcards and 178

hot keys
debugging 11
editing 10
editor 219, 220-226
help 9, 11
menus 10
using 9

/1 command-line option 236
$1 compiler directive 170, 200, 206
I/O

defined 30
error checking 152

disabling 153
error-checking 170

I/O Checking option 200
IDE See integrated, development environment
identifiers 37

defined 37
naming restrictions 37

IEEE floating-point 166
if statements 44
IFDEF 167
$IFDbF compiler directive 164, 166, 168
IFNDEF167
$IFNDEF compiler directive 164, 168
IFOPT 167
$IFOPT compiler directive 164, 169
IFxxx symbol 167
immediate ancestors and descendants 78
implementation sections 65

uses clauses in 63
Include Directories command 206
include directories command-line option 236
include files 236

help 216
incremental search 17
indenting automatically 208
Index command

help 216
hot key 11

Index

index variable 48
indirection (/\) operator 41
infinite loop 28, 129
inheritance 75, 76, 78
initialization

units 159
variables 59

inline assembler 1
input 30

boxes 16
defined 30
functions 43

Insert Mode option 208
instances

defined 77
dynamic object 110-118
object

declaring 79
linked lists of 115

static object 76-110
Instructions

286200
integers

defined 31
types 31

integrated
debugger 24, See also debugging
development environment

commands See individual listings
Edit window See Edit, window
menus See also menus
windows See also windows

~ntegrated (de~ugging) option 148, 189
mtegrated envIronment 173

command-line arguments and 191
command-line options 147, 174

config (lC) 174
dual monitors (lD) 174
editor heap (IE) 175
EGA palette (lP) 176
expanded memory (IX) 176
graphics (lG) 148, 175
laptops (lL) 175
loadingTURBO.TPL (IT) 148, 176
/0 overlay heap 176
overlay heap (10) 176
/P EGA palette 176

249

RAM disk (IS) 176
snow checking (IN) 175
syntax 174
IT loading TURBO.TPL 148, 176
window heap size (lW) 176
IX expanded memory 176

compiling in 20
context-sensitive help 2, 7
control characters and 16
customizing 206
features 173
Graph unit and 27
graphics 26
increasing capacity 147
loading 18
main screen 18
memory issues 147
menus

choosing commands from 8
saving files in 20
sta tements 19
tutorial 18
variables 19

interface sections 65
IOResult function 138,200

K
keyboard

choosing buttons with 15
choosing commands with 8
selecting text with 183

keywords 7
help 216
Help windows 215

L
IL command-line option 203, 235
$L compiler directive 1,58, 125,202,206
IL integrated environment option (LCD screen)

175
language help 216
laptops

integrated environment option (lL) 175
large programs, managing 157
late binding 97

with polymorphic objects 104

250

left-handed
mouse support for 209

Length function 138
license statement 3
line-number tables 201
lines

filling with tabs and spaces 208
moving cursor to 188
numbering 12
restoring (in editor) 183

Link Buffer
option 203, 235
setting 147

linked lists 115
Linker

command 203
dialog box 203

linking
buffer option 235
$L compiler directive 58

List
command

hot key 10
window 211,214

list boxes 17
file names 179
searching incrementally 216

Lo function 138
Load a File dialog box 224
Load TURBO.TPL option 148
loading

Turbo Pascal 18
local

identifiers 125
symbol information, generating 202
symbol information switch 1

Local Symbols option 202
logic errors 122
logical operators 40
longint data type 32
loops

defined 31
for 48
repeat .. until46
while 46

low heap limit setting 202
low-level operations 39

Turbo Pascal User's Guide

M
1M command-line

option 233
$M compiler directive 202, 232
Make command 160, 192, 233

hot key 9, 11
make command-line option 233
MAKE utility

.ASM files and 161
command-line options 163

Map File
command 206, 238
option 204

map file command-line option 237
map files

options 203
.MAP files 237

storing 205
math coprocessor See numeric coprocessor
MaxAvaiI function 138
MaxInt 31
Mem array 138
MemAvail function 138
MemL array 138
memory 146

allocation 232
conserving 147
defaults, configuring 202
dump

format specifier 195
EMS 147
expanded 176

RAM disk and 147, 176
menu command 202

Memory Sizes command 149, 202
Mem Warray 138
menus

accessing 8
choosing commands 8
commands See individual listings
File 20
hot keys 9, 10
opening 8, 219
Run 21
with arrows (~) 8
with ellipsis marks (...) 8, 15

Index

methods
assembly language 85
calling 81
debugging 144
declaring 81,82
defined 80
external 85
Find Procedure command and 145
identifiers, qualified

accessing object fields 86
in method declarations 81, 83

overriding inherited 90
parameters

naming 85
Self 84

debugging and 145
explicit use of 84

positioning in hierarchy 107
procedures versus 106
scope 83
static 95

problems with inherited 93
virtual 95

event handling and 107
polymorphic objects and 101
static versus 107

MODE command (DOS) 174
modifying expressions and variables 140
monitors

dual 174, 182, 204
number of lines 206

mouse
buttons

switching 209
choosing commands with 9, 15
double-click speed 209
left-handed

support for 209
reversing buttons 209
right button action 209

. selecting text with 183
support for 173

Mouse Double Click option 209

N
$N compiler directive 32, 168,201

251

IN integrated environment option (eGA snow
checking) 175

New
command 179,224
procedure 110

extended syntax 111
used as function 112

New Value field 194
New Window option 207
Next command 212

hot key 9, 10
NONAME file name 179
nondirectional pair matching 227
numbers

decimal
format specifier 195

hexadecimal
format specifier 195

numeric
constants 27
coprocessor 32, 166, 168
coprocessors

inline instructions 201

o
10 command-line option 237
$0 compiler directive 199
10 integrated environment option (overlay

heap) 176
.OB] files 237

locating 206
MAKE utility and 161

object (reserved word) 78
object directories command-line option 237
Object Directories option 237
Object Directory command 206
objects

abstract 104
ancestor 78
constructors

defined 102
virtual methods and 102, 110

debugging 144

252

Evaluate window and 144
stepping and tracing 144
Watch window and 135

defined 74
descendant 78
destructors

declaring 113
defined 112, 113
dynamic object disposal 114
polymorphic objects and 113
static versus virtual 113

dynamic instances 110-118
allocation and disposal 115

extensibility 108
fields 79

accessing 80, 82, 88
designators 85
inherited 79
scope 83

method parameters and 85
hiding data representation 90
hierarchies 78

common attributes in 104, 107
instances

declaring 79
linked lists of 115

passed as parameters
compatibility 98

pointers to
compatibility 98

polymorphic 99
late binding and 104

relative position 118
static instances 76-110
types

compatibility
97

exported by units 85
units and 85
virtual method table

pointer
initialization 102

Ofs function 138
OKbutton 15
Open a File dialog box 178
Open command 178, 224

hot key 9, 10
operations 30

defined 30
low-level 39

Turbo Pascal User's Guide

operators
1\ (indirection) 41
address 41
address-of (@) 41
arithmetic 39
assigment 38
binary 38, 39
bitwise 39
defined 38
div33
logical 40
precedence of 38
relational 39
set 41
string 41
unary 38, 39

Optimal Fill option 208
optimization of code 170
Options menu 198
Ord function 138
out-of-memory /bounds errors 153
output

defined 30
devices 41
to DOS

viewing from integrated environment 213,
214

User Screen 214
Writeln 41

Output command 213
Overlay Heap Size option 148
Overlay unit 56, 66
overlays

enabling 199
Overlays Allowed option 199
overriding inherited methods 90
Overwrite Mode 208

p
/P integrated environment option (EGA

palette) 176
pair matching

backward 227
braces 226
brackets 226
commands 226
directional 227

Index

double quotes 226
forward 227
nested expressions 226
nondirectional 227
parentheses 226
rules 226
single quotes 226

Parameters
command 191

parameters
method, naming 85
Self 84

debugging and 145
explicit use of 84

Pascal
language help 216

Paste command 184, 223
hot key 10

path names in Directories dialog box 205
place markers (editor) 224
pointers 36

defined 31
format specifier 195

polymorphic objects 99
late binding and 104
virtual methods and 101

polymorphism 95, 97, 98
pop-up menus 8
Pred function 138
Preferences dialog box 206
Previous command 212

hot key 10
Previous Topic command 216

hot key 11
Primary File command 193
Print Block command 223
Print command 181
Print File command 223
Printer unit 56, 67
private 88

fields and methods 82, 87, 88
procedures

defined 49
Dispose

extended syntax 112
finding 143, 188
help 216

253

methods versus 106
New 110

extended syntax 111
used as function 112

searching for 188
stepping over 191
structure 50
tracing into 191

Program Parameters
dialog box 192

Program Reset command 126, 190
hot key 11

programming, elements of 29
programs

comments 52
compiling 20, 27
debugging See debugging
editing 18
ending 189
rebuilding 190, 193, 234
reinitializing 126
resetting 190
running 21, 189

parameters for 191
to cursor 190
Trace Into 191

saving 20
stepping through 25
structure of 49, 157
tracing 124
updating 21

project management 157
protected mode

command-line compiler and 240
Ptr function 138

Q
/Q command-line option 235
qualified method identifiers

accessing object fields 86
in method declarations 81

quiet mode command-line option 235
Quit

command 177, 182, 224
quitting

debugging See Program Reset command

254

R
/R command-line option

$Rand232
$R compiler directive 171, 200

virtual method checking 103
radio buttons 16
RAM disk

integrated environment and 147, 176
range checking 171, 200, 232

errors 153
selectively implementing 154

Range Checking option 149, 200
Read procedure

text files 43
Readln procedure 43
real numbers 31, 32
records

types 77
recursion 150
Refresh Display command 126, 177
Register command 213
registers

windows 213
reinitializing a program 126
relational operators 39
relative position 118
Remove All Watches command 196
repeat..untilloop 46
repeat count 136
Replace

command 187, 225
dialog box 187, 225

reserved words 56, 57
constructor 102
object 78
virtual 101

resetting programs 190
resize corner 12, 13
restarting a debugging session 126
Restore Line command 183, 220, 224
Result field 194
Retrieve Options command 211
Reverse Mouse Buttons option 209
Right Mouse Button option 209
Round function 138
routines, recursive 150

Turbo Pascal User's Guide

Run
command 189

hot key 11
menu 21, 189

run
bar 24

run-time errors 23, 122, 200
Debug Information command and 188
Find Error command and 188, 234
finding 234

running programs 21, 189

5
$S compiler directive 171, 200
/S integrated environment option (RAM disk)

176
sample programs

copying from Help window 184
Save All command 180
Save As

command 180
Save command 179,224

hot key 9, 10
Save File As dialog box 180
Save Options command 211
saving

programs 20
scope, object fields and methods 83
Screen Sizes

option 206
screens

LCD
integrated environment option 175

number of lines 206
swapping 125
two

using 174
scroll bars 12, 13
scrolling windows 13
Search Again command 188, 225

hot key 10
search and replace 225-226
Search menu 185, 225-226
searching See GREP utility (file searcher)

and replacing text 225, 225-226
direction 186
in list boxes 216

Index

origin 187
procedures 188
regular expressions 185
repeating 188
and replacing text 187
run-time error messages 188, 234
scope of 186
search and replace 187

Seg function 138
Self parameter 84

debugging and 145
explicit use of 84

semantic errors 122
semicolons (i) in directory path names 205
separate compilation 55
sets, operators 41
setting breakpoints 126
short-circuit Boolean

expressions 201
shortint data type 32
Show Clipboard command 184
significant digits, defined 32
Simula-67 88
simulations, computerized 88
single-step tracing 127
Size/Move command 212
SizeOf function 138
Smalltalk 74,88
snow checking

integrated environment option UN) 175
software license agreement 3
software numeric processing See Numeric

Processing command
Source Tracking option 207
spaces vs. tabs 208
SPtr function 138
SSeg function 138
stack

checking 171, 200
size 202

decreasing 149
Stack Checking option 149,200
Standalone Debugging

command 238
option 204

standalone debugging
command-line option 238

255

information 204
standard units See units, standard
Startup

dialog box 210
options 147, 209

Startup Options dialog box 147,210
statements 19

case 45
compound 44
conditional 43
if 44
uses 57, 59
with 79,86

implicit 84
static

methods 95
problems with scope of inherited 93

object instances 76-110
status line 14
status window See compilation window
Step Over command 191

hot key 9, 11
methods and 144

stepping through a program 25
strict error checking 200
Strict Var-strings option 200
strings 35

format specifier 195
operators 41

subroutines 31, 49
Succ function 138
Swap function 138
swapping

displays 204
screens 125

symbols
local information 1

syntax
errors 122
extended 1, 171,201
integrated environment command line 174
options 200

System unit 56, 60, 66

T
/T integrated environment option (load

TURBO.TPL) 176

256

Tab Size option 208
tabs

characters
printing 181

size of 208
spaces vs. 208
using in the editor 208

taxonomy 75
TD.EXE238
technical support 6
text

copy and paste 184
cutting 184
deleting 185
entering 220

in dialog boxes 16
inserting vs. overwriting 208
pasting 184
screen display of 206
selecting 182

Help window 215
Tile command 212
title bars 12
Toggle Breakpoint command 126, 131, 196

hot key 11
Topic Search command 216

hot key 11
TPC.CFG file 239

sample 239
TPTOUR 173
.TPU files 69, 193

debug information 201
local symbol information 202
storing 205

TPUMOVER.EXE 68, 71
TPUMOVER utility 71, 148
Trace Into command 24, 191

Debug Information and 191
Debugging command and 191
hot key 9, 11
methods and 144

tracing
programs 124
single-step 127

trapping, I/O errors 152
Trunc function 138

Turbo Pascal User's Guide

TSRs
removing from memory 147

Turbo3 unit 56, 67
Turbo Debugger 238, See also debugging

standalone 149
TURBO.DSK file

saving 207,211
TURBO.EXE 18
Turbo Pascal

bugs
reporting 6

quitting 177, 182
starting 174
version 3.0 56

conversion
Graph3 unit 67
Turbo3 unit 67

TURBO.TP file
modifying 147
options stored in 211
saving 147, 207

TURBO.TPL 56,66,236
loading 148, 176

tutorial 7, 29
25-line display 206
two's complement 39
typecasting 137
typefaces used in these books 5
types See data, types

object
exported by units 85

record 77
typographic conventions 5

u
IU command-line option 236
unary

minus 39
plus 39

$UNDEF compiler directive 164
Unit Directories

command 148, 206
option 237

units 27, 55
Build option 161
circular reference 63

Index

compiling 68, 160
declarations 60
definition 55
forward declarations and 57
global 157

large programs and 70, 157
implementation section 57
initialization section 59
initializing 159
interface section 57
large programs and 70
Make option 160
merging 68
objects in 85
standard

Crt 56,66
Dos 56,66
Graph 56,67
Graph3 56, 67
Overlay 56, 66
Printer 56, 67
System 56, 60, 66
Turbo3 56, 67

structure 56
. TPU files 68
TPUMOVER 71
TURBO.TPL file 56, 66, 68, 70
Unit Directories

input box 68
Unit directories

option
uses statement 57, 59

unit directories
option 236

use of 59
writing 68

Use Expanded Memory option 147
Use Tab Character option 208
User Screen

command 22, 214
hot key 10

User screen 21
uses

clause
in an implementation section 63

statement 57, 59

257

utilities
BINOB] See BINOB] utility
GREP See GREP utility (file searcher)
INSTALL See INSTALL utility
MAKE See MAKE utility
TOUCH See TOUCH utility
TPUMOVER See TPUMOVER utility
UPGRADE See UPGRADE program

v
IV command-line option 238
$V compiler directive 171,201
var parameters

checking 171
variables 19

debugging 194
index 48
initializing 59
modifying 140

VER60166
version number information 177
Video Graphics Array Adapter (VGA) 207
virtual

method table 102
pointer

initialization 102
methods 95

event handling and 107
polymorphic objects and 101
static versus 107

reserved word 101

w
I W integrated environment option (window

heap) 176
Watch

expressions

258

acceptable values 138
built-in functions 138
display 135
format specifiers 136

repeat count 136
using 136

modifying 140
objects 135

typecasting 137
types 135

arrays 135
Booleans 135
characters 135
enumerated data types 135
files 135
integers 135
pointers 135
reals 135
records 135
sets 135
strings 135

window
editing 139

watches 124
deleting 139
editing 139
setting up 134

Watches command 196
while (syntax)

loop 46
whole-word searching 185
wildcards 185

DOS 178
GREP 185

Window Heap Size option 148
Window menu 211
Windows

call stack 214
windows

active 14
defined 11
hot key 10

cascading 212
Clipboard 184
closing 12, 14, 177, 213
Edit See Edit, window
elements of 11
Evaluate 139
List 214
menu 211
moving 14,212
next 212
open 214
opening 14, 211
Output 213

Turbo Pascal User's Guide

position
hot key 10

previous 212
Register 213
reopening 211
repainting 126
resizing 13, 14,212
scrolling 12, 13
size

hot key 10
source tracking 207
swapping in debug mode 204

dual monitors and 204
tiling 212
title bar 12
User Screen 214
Watch 213, See Watch, window
window number 13
zooming 12, 13, 14,212

Index

with (reserved word)
statement 79, 86

implicit 84
Word Align Data option 199
word data type 32
Writeln procedure 41

field-width specifiers and 42

x
$X compiler directive 1, 171,201
IX integrated environment option (expanded

memory) 176

z
zoom box 12, 13
Zoom command 212

hot key 9, 10

259

B o R L A N D

Cor,orll. H rt"': 1100 Grtt. Hlttl Roed, P.O. 101 110001, Scotti _It.y, CA 950&7 ·00~ , (401) 431-5300
onleu I. : A.llrlltl, 0'I11III111, E .. llnd, FrtllC., G."",.y, lilly, JI,.. Ind s., ... -Plrt. llMM·PAS02·1O - lOR 1150

