BORLAND

Turbo Pascal

Version 6.0

Turbo Vision Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

R2

Copyright ® 1990 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of

Borland International, Inc. Other brand and product names are
frademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10987654321

Introduction 1
Why Turbo Vision? 1
What is Turbo Vision? 1
What youneed toknow 2
Whats inthisbook? 2

Part 1 Learning Turbo Vision

Chapter 1 Inheriting the wheel 7
The framework of a windowing
application ool 7

A new Vision of application development . 8
The elements of a Turbo Vision

applicationiaalL 9
Namingof parts 9
Views ... 9
Bventst 9
Muteobjects ...l 10
A common “look and feel” 10
“Hello, World!” Turbo Vision style 12
Running HELLO.PAS 13
Pullingdownamenu............... 14
A dialogboxol 15 -
Buttons ...l 15
Gettingout................. 16
Inside HELLO.PAS 16
The application object 17
The dialog box object 18
Flow of execution and debugging 19
HELLO'’s main program............. 19
The Initmethod 20
The Runmethod 20
The Donemethod 21
Summary ... 21

Chapter 2 Writing Turbo Vision

applications 23

Your first Turbo Vision application 23
The desktop, menu bar, and status line .. 25
Thedesktopoovvvvvvvnnnn, 26
Thestatusline 26
Creating new commands 27
Themenubar 28
Anoteonstructure................. 30
Openingawindow 31
Standard window equipment 31
Window initialization 33
The Insert method 33
Closingawindow 34
Window behavior 34
Look through any window 35
Whatdoyousee? 37
A betterway toWrite............. 38

A simple file viewer 38
Reading atextfile 39
Buffered drawing 40
Thedraw buffer 40
Moving text into a buffer.......... 41
Writing buffer contents 41
Knowing how much to write 42
Scrollingupanddown 42
Multiple views in a window 45
Where to put the functionality 46
Making a dialogbox 47
Executing a modal dialog box 49
Taking control 50
Button, button... 50
Normal and default buttons 52
Focused controls 52

Takeyourpick 53

Creating a cluster
Check box values
Onemorecluster.................
Labeling the controls
The input line object
Setting and getting data
Shortcut keys and conflicts
Ending the dialog box
Other dialog box controls
Static text
List viewer
Listboxcovvvviiii it
History
Standard dialog boxes

................

................

...............

..........
..............

.............
.........................

........................

...........................

................

Part 2 Programming Turbo Vision

Chapter 3 The object hierarchy
Object typologycoovvvvinia..
Abstract objects
Abstract methods
Object instantiations and derivations ...
Instantiation
Derivation
Turbo Vision methods
Abstract methods
Pseudo-abstract methods
Virtual methods
Staticmethodscouvenn.
Turbo Vision fields
Primitive objecttypes
TPointcoiviii it

....................

..................

........................
................
..................
...........

...................

...................

Views

..............................

...................

Groups
The abstract group
Desktops
Programs
Applications
Windows
Dialog boxes

Terminal views

...........................

...............

.......................

.......................

....................

.......................

....................

....................

Framesout, 75
Buttonsooiiiiiant 75
Clusterscovvvvvinneiionnn 75
Menus.....oovvveviiinnnennnnn, 75
Historiescoovviiiiiiiinnnnn. 76
Inputlines 76

List viewersoovvnnn. 76
Scrolling objects 76
Textdevicescovvvvinnnnn 77
Statictext..............ooiviinitn 77
Statuslineso.unn 78
Non-visible elements 78
Streamsooovviiinniiiiiiiane, 78
DOSstreams 79
Buffered streams 79
EMSstreamscovvennnnn. 79
Resourcescoovvvviivnnnnnen 79
Collectionscoovvviiinnnnnnnn 79
Sorted collections 80
String collections 80
Resource collections 80
Stringlists 80
Chapter 4 Views 81
“We have taken control of your TV...” .. 81
Simple view objects 82
Setting yoursights 82
Getting the TPoint 83
Getting intoaTRect 83
Turbo Vision coordinates 84
Making an appearance 84
Territoriality 85
Drawingondemand 85
Putting on your best behavior 85
Complex viewsccoviiiinnnnn 86
Groups and subviews 86
Getting intoagroup 87
Another angle on Z-order 88
Group portraitsooiiiiinin. 89
Relationships between views 90
The object hierarchy 91
Ownershipo0t, 91
Subviews and view trees 92

Selected and focused views 95
Finding the focused view 96
How does a view get the focus? 96
The focuschain 97

Modal viewsciiiila.. 97

Modifying default behavior 98
The Options flagword 98

ofSelectable 99
ofTopSelect 99
ofFirstClick 99
ofFframed 99
ofPreProcessc..ovvnnnn 99
ofPostProcess 99
ofBuffered 100
ofTileable 100
ofCenterXoooiuienn, 100
ofCenterYoviiine. 100
ofCentered 101
The GrowMode flag byte 101
gfGrowLoX 101
gfGrowLoY 101
gfGrowHiX 101
gfGrowHiY 101
gfGrowAll 101
gfGrowRell 101
The DragMode flag byte 102
dmDragMove 102
dmDragGrow 102
dmLimitLoX 102
dmLimitLoY 102
dmLimitHiX 102
dmLimitHiY 102
dmLimitAll 102
State flag and SetState 102
Acting on a state change 103

What color is your view? 104
Color palettes 105
Inside color palettes 105
The GetColor method 106
Overriding the default colors 107
Addingnew colors 108

Chapter 5 Event-driven
programming
Bringing Turbo Vision to life
Reading the user’s input
The nature of events
Kinds of events
Mouse events
Keyboard events
Message events
“Nothing” events
Events and commands
Routing of events
Where do events come from?
Wheredoeventsgo?
Positional events
Focused events
Broadcast events
User-defined events
Masking events
Phase

.........
...........
.................
...................

..................

................
.................

...............

...................

................
.................
................
.............
...................
...........................

.................

Commands
Defining commands
Binding commands
Enabling and disabling commands .

Handling events

The event record
Clearing events
Abandoned events

Modifying the event mechanism
Centralized event gathering
Overriding GetEvent
Using idle time

Inter-view communication
Intermediaries
Messages among views
Who handled the broadcast?

Is anyone out there?
Who'sontop?ouune.
Calling HandleEvent
Help context

........................
...............

...............

....................
....................

...................
................
......
........
R R I
...................
ooooooooooo
....................

.......

..............

.....................

I

113
113
114
114

128
128
129
129

Chapter 6 Writing safe programs 131
All or nothing programming 131
- Thesafetypool 132
The ValidView method 133
Non-memory errors 134
Reporting errors 135
Major consumers ,................ 135
Chapter 7 Collections 137
Collection objects 138
Collections are dynamically sized ... 138
Collections are polymorphic 138
Type checking and collections 138
Collecting non-objects 139
Creating a collection 139
Iteratormethods 141
- TheForEachiterator 141
The FirstThat and LastThat iterators . 142
Sorted collections 143
String collections 144
Iterators revisited 145
Finding anitem 146
Polymorphic collections 146
Collections and memory management . 149
Chapter 8 Streams 151
The question: ObjectI/O 152
The answer: Streams 152
Streams are polymorphic........... 152
Streams handle objects 153
Essential streamusage 153
Settingup astream 154
Reading and writing a stream 154
Puttingiton.................... 155
Gettingitback 155
Incaseoferror.................. 156
Shutting down the stream 156
Making objects streamable 156
Load and Store methods 156
Stream registration 157
Object ID numbers 158

The automatic fields 158
Registerhere 159
Registering standard objects 159

The stream mechanism
The Put process
The Getprocessoovvnnnn.
Handling nil object pointers

Collections on streams: A complete

example

Adding Store methods
Registration records
Registering
Writing to the stream

Who gets to store things?
Subview instances
Peer view instances

Storing and loading the desktop

Copying a stream

Random-access streams

Non-objects on streams

Designing your own streams
Stream error handling

..............

...................
........

...........................
............

.............

............
............
................
D A A IR AT R SR P
......
...................
..............
..............
.........

.............

Chapter 9 Resources

Why use resources?

What's inaresource?

Creating a resource

Reading a resource

String lists
Making string lists

.................
..................
.........................

................

Chapter 10 Hints and tips
Debugging Turbo Vision applications .
It doesn’t get there
Hiding behind a mask
Stolen events
Blame your parents
It doesn’t do what I expect
Ithangs.............coooiiiiiin,
Porting applications to Turbo Vision. ..
Scavenge your old code
Rethink your organization
Using bitmapped fields
Flag values
Bit masks
Bitwise operations
Setting a bit

................

...........

...................

.............

.........

............

..............

.......................

........................

................

....................

Clearingabit
Checking bits
Using masks
Summaryooooinle

...................

Part 3 Turbo Vision Reference

Chapter 11 How to use the
reference
How to find what you want
Objectsingeneral
Naming conventions

................

Chapter 12 Unit cross reference
The Objects unit
Types
Type conversion records
Objects unit types
Constantscovvvenviinnenennn
Stream access modes
Stream error codes
Maximum collection size
Collection error codes
Variables
Procedures and functions
The Views unit
Types
Constantscovvvevvnnnnnnnnnn
TView Statemasks
Views unit constants
TView Option masks
TView GrowMode masks
TView DragMode masks
Scroll bar partcodes
Window flag masks
TWindow palette entries
Standard view commands
Variables
Function
The Dialogs unit
Types
Constantscovivviunennnn.
Buttonflags
Procedures and functions

....................

...........................

............

..............

...........

........................

..........

.....................

...........................

............

............

........

.............

........................

...........................

..........

181
182
182
182

185
185
186
186

189
189
190
190
190
190
190
190
191
191
191
191
192
192
192
192
193
193
193
193
194
194
194
194
194
195
195
195
195
195

The Appunitccoovvvnnnn..
Types
Variables

TheMenusunit
Types
Procedures and functions

TMenultem functions
TMenu routines
TStatusLine functions

TheDriversunitcoovevieven.
Types
Constantscooveieienennnn..

Mouse button statemasks
Event codes
Event masks
Keyboard state and shift masks ...
Standard command codes
- TDialog standard commands
Screenmodescoviiiiiinan.
Variables
Initialized variables
Uninitialized variables
System error handler variables
Procedures and functions
Event manager procedures
Screen manager procedures
Default system error handler
function
System error handler procedures ..
Keyboard support functions
String formatting procedure
Buffer move procedures
String length function
Driver initialization

The TextView unit
Types
Procedure..........cccovveuennnn..

The Memory unit
Variables
Procedures and functions

The HistListunit
Variables
Procedures and functions

...........................

........................

...........................

..........

...........

................

...........

...........................

....................

...................

........................

.............

..........

.......................

.........

...........

.............

..................

...........................

........................

........................

..........

Chapter 13 Obiject reference 205
- TSample objectooveevriinnnn. 206
Fieldscovvviiiiiiinnnn.. 206
Methodsovvviiiiiia, 206
TApplication 207
Methodsoovvivvviineninn... 207
TBackgroundu0l. 208
Fieldcoiviiiiiiiiiiiiin., 208
Methodscoovviiiinennnnn.. 208
Palettecciiiinninnn.. 209
TBufStreamccvvvvvnn... 209
Fieldscciviiiiiinnnnn.. 210
Methodscvviiviinn.n.. 210
TButtonc.cooviiivan.. 212
Fieldscoiiviiiiniin.. 212
Methodscovvviviiinninns. 213
Palettecoiviininennn... 215
TCheckBOXES «vvvvvvinrinenennnnn. 215
Fieldscoiiiiiinniinninn., 215
Methodsvvvviviiivnnn.... 216
Paletteccvvvviiini ., 216
TClusteroovvniinvnnnnn. .. 217
Fieldscooviviiiviiinn.. 217
Methodsovvvvvivinnnnnn.. 218
Palettecoviviniiiiinnnnns, 220
TCollectioncovvvvviuneenn.. 221
Fieldsovviiiiiiiin... 221
Methodscocvvivvvnenn.... 222
TDeskTopoovvviviinnnnn... 227
Methodsccovvvviinvinnnn., 227
TDialog.........oovviiiiiiiiiiii, 228
Methodsovvivvvnvviinnn.. 229
Paletteoovvvvinnniennnnnnn.. 229
TDosStreamoovvvvvnnvnnn... 230
Fieldsooviiiiiiiiiiiiins, 231
Methodscoovvvviinn.. ... 231
TEmsStreamcovviveennnnn. 232
Fieldsccvviiiiii., 232
Methodscovvvvini. ... 233
TRrameooviiiinenininnnnnnn. 234
Methodsccoivviiiinn.. 234
Paletteoovvinviiininnnnn.. 235
TGroupooovviiiiiiiiiiiii 235

vi

Fields ...covviviiniiiiiiinin... 236
Methodscovviviiinvnnns. 237
THistoryooovviiiiiinnaa.. 244
Fieldsccovviiiiiivinnn... 244
Methodscovvii i, 245
Paletteccvviiiiin... 245
THistoryViewer 246
Fieldciiiiiiiiii.., 246
Methodsovvvvviiiniinnnns. 246
Paletteovvvinvnnnnnd e, 247
THistoryWindow 247
Fieldccooiiiiiiiii. 247
Methodsc.coiivivinnnann.. 247
Paletteccovviiiiinnnn... 248
TInputLineoouaet 248
Fieldsooviiiviiiiiinnnnnn., 249
Methodsoovviiivinat. 250
Palette.......covvviiiiiinn... 252
TLabelccovvviine i, 253
Fieldscovvivviiinnnnn... 253
Methodscovviiiiviannn, 253
Paletteooovvivvnnnvnnn.. 254
TListBOX «vvvveieeiie i ii i i ie e, 255
Fieldcoovviiiii 255
Methodscovviiiivinnn, 256
Paletteoovvviiivnnnnn... 257
TListViewerccvviiniinn. 258
Fieldscciviiiiiviinnn.... 258
Methodsoovivvvnnan. ... 259
Paletteoovviienii i, 261
TMenuBarcoiiva... 262
Methodscovviiiiiinnnnnnnn. 262
Palettecovvveii.t, 263
TMenuBoxccoovviiion... 263
Methodscovvvvivennnn... 263
Palettecovveviniiinnnn., 264
T™MenuViewccvvvivivinnnn.. 264
Fieldscciivviiiiiiinnnnn.. 265
Methodscvvvivvinnenn.. 265
Paletteccvvvvnvinenn.... 267
TObject ..o 267
Methodsovvvviniin..t, 267
TParamTextccovvvvvvnn.... 268

Fieldsccoiiiiiiiiiannnn.. 268 TStrListMakerccovviinvn... 300

Methodscoviivievinaa. 268 Methodscovviiviniinnnenen 301
Paletteoviiiininnennn. 269 TTerminalccvvvviun... 302
TPoint .. cvveei i i e 269 Fields e 302
Fieldsccoiiiiiiiiiina... 269 Methodsccovvvviennnnn., 303
TProgramoovviinnnnnn... 270 Paletteoovvvnneinnnnnnn.. 304
Methodscovvvevinnnnenn.. 270 TTextDeviceovovviieiniennnnnnn. 305
Palettescovvveviinnennnn. 274 Methodscovviieniinn, 305
TRadioButtonscccu.... 276 Palettecovvvvunnn.. e 305
Methodsccovvvvvan... 277 TView ..ot i 306
Paletteoovi it 277 Fieldscoovviiiiiiniinnen.. 306
=T 278 Methodscoovviiiiiiinnnnnn. 309
Fieldscoiiiiiiiiiiai. 278 TWIindow ...oovviie i i 321
Methodscoviviiivnennn. 278 Fieldsccivviieiinian. .. 322
TResourceCollection 279 Methodsccoviiiiinnnnnn.. 322
TResourceFile 279 Paletteoovviiiiiiii i 325
Methods 111 S Chapter14 Globalreference 327
TScrollBarccoviiiiiinnn.. 282 Sample procedure................ ee 327
Fields .o 28D Abstract procedure, 328
Methods . ..o oooe oo 283 Application variable 328
Palette oo no oo 286 AppPalette variable 328
TScroller ...ovvine it iiie i, 286 apXXXX constants 329
FRldS - vevenee e 286 AssignDevice procedure 329
P 087 bfXXXX constants0un.. 329
Palette . .. onn oo 88 ButtonCount variable 330
TSortedCollectionc...... 289 CheckSnow variable 330
Methodsovvviiiiininnnn.. 289 ClearHistory procedure 330
TStaticTexXt «vvvvve i i, 290 ClearScreen procedure................ 331
Field © oo 29] ~ CmXXXXconstants 331
Methodscovviiiniiinnn.... 291 COXXXX constants 334
Palette « ... onveeeneeneenenanns 9o CStrLenfunction.................... 334
TSHAtUSLINE -« v evveeeeeeeneannns 29y ChrlBreakHit variable................ 355
FIEldS «ovvonneeiee e, 293 CtriToArrow function 335
Methods . ..o oo 293 CursorLines variable 336
Palettecovvviviinna... 294 DeskTop varfable 336
TSreamvvvrinnernnnennnnnn. 295 DisposeMenu procedure 336
FReldS « v, 295 ~ DisposeStrprocedure................ 336
Methodscoevvivvnaaa... 296 dmXXXX constants 337
TStringCollection o9g ~ DoneEvents procedure 337
MethodS .« v vvveeenenerenanns, 299 ~ DoneHistory procedure.............. 338
TSHHNGLISE -« v vveeeeeeeannnnnn. 299 ~ DoneMemory procedure 338
Methods - vn oo 300 DoneSysError procedure 338

vil

DoneVideo procedure 338
DoubleDelay variable 339
EmsCurHandle variable 339
EmsCurPage variable................ 339
evXXXXconstants 340
FNameStrtypeoovinnn, 341
FocusedEvents variable 341
FormatStr procedure 341
FreeBufMem procedure 343
GetAltChar functiono.uee. 343
GetAltCode function 343
GetBufMem procedure 344
GetKeyEvent procedure 344
GetMouseEvent procedure 345
gfXXXX constants 345
hcXXXX constants 346
HideMouse procedure 347
HiResScreen variable 347
HistoryAdd procedure 347
HistoryBlock variable 347
HistoryCount function 348
HistorySize variable: 348
HistoryStr function 348
HistoryUsed variable 348
InitEvents procedure 349
InitHistory procedure 349
InitMemory procedure 349
InitSysError procedure 349
InitVideo procedure 350
kbXXXX constants 350
LongDiv function 352
LongMul function 353
LongRectype....oovvviiiiinnnn.. 353
LowMemory function 353
LowMemSize variable 353
MaxBufMem variable 354
MaxCollectionSize variable 354
MaxViewWidth constant 354
mbXXXX constants 354
MemAlloc function 355
MemAllocSeg function 355
MenuBar variable 355
Message function 356

viil

MinWinSize variable 356
MouseButtons variable 356
MouseEvents variable 357
MouselntFlag variable 357
MouseWhere variable 357
MoveBuf procedure 357
MoveChar procedure 358
MoveCStr procedure 358
MoveStr procedure 358
Newltem function 359
NewLine function 359
NewMenu function 359
NewSlItem function 360
NewStatusDef function 360
NewStatusKey function 360
NewStrfunctionc.cevvenenn. 361
NewSubMenu function 361
ofXXXX constantsc0evnnn 361
PChartype.........ooovviiniiinnn.. 363
PositionalEvents variable 363
PrintStr procedure 363
PStringtype ...cooviiiiiiiiiiin, 364
PtrRectype ..., 364
RegisterDialogs procedure 364
Registertype procedure 364
RepeatDelay variable 365
SaveCtrlBreak variable 365
sbXXXX constants 365
ScreenBuffer variable 366
ScreenHeight variable 366
ScreenMode variable 367
ScreenWidth variable 367
SelectModetypecoviiiinnn, 367
SetMemTop procedure 367
SetVideoMode procedure 368
sfXXXXconstantsc.... 368
ShadowAttr variable 370
ShadowSize variable 370
ShowMarkers variable 370
ShowMouse procedure 371
smXXXXconstants 371
SpecialChars variable 371
stXXXXconstants 372

StartupMode variable 372
StatusLine variable 373
StreamkError variable 373
SysColorAttr variable 373
SysErrActive variable 374
SysErrorFunc variable 374
SysMonoAttr variable 374
SystemError function 375
TByteArray type 375
TCommandSet type 376
TDrawBuffertype................... 376
TEventtypeoooiiiiiiai 376
TltemListtypettt 377
TMenutype ..., 377
TMenultemtype 378
TMenuStrtype 379
TPalettetypeoooniiL. 379

TScrollCharstypecc.oovv.... 379
TSItemtypeovvvvveiiiit, 379
TStatusDef typeccoovnin.. 380
TStatusltemtype.................... 380
TStreamRectypeo.t 381
TStrIndextypeovvvvniinnnnn 382
TStrIndexRec typec.o..s. 382
TSysErrorFunctype 382
TTerminalBuffer type................ 383
TTitleStrtype ...ooovvvevvaatn 383
TVideoBuftype 383
TWordArray typeoovvvvnn. ... 383
wiXXXX constants 383
wnNoNumber constant 384
WordRectypeccovvviiiiilt, 384
wpXXXXconstants 385
Index 387

2.1: Data for dialog box controls 58
3.1: Inheritance of view fields 71
5.1: Turbo Vision command ranges 120
11.1: Turbo Vision constant prefixes187
12.1: Turbo Vision units 189
13.1: Stream errorcodesuuin 295
14.1: Application palette constants 329
14.2:Buttonflags 329
14.3: Standard command codes 331
14.4: Dialog box standard commands . ..332
14.5: Standard view commands 333
14.6: Collection error codes 334
14,7: Control-key mappings 335
14.8: Drag mode constants 337
14.9: Standard event flags 340
14.10: Standard event masks 340
14.11: Format specifiers and their results .342
14.12: Grow mode flag definitions 346
14.13: Help context constants 346

14.14: Keyboard state and shift masks . . .350
14.15: Alt-letter key codes 351

14.16: Special key codes 351
14.17: Alt-number key codes 351
14.18: Function key codes 352
14.19: Shift-function key codes 352
14.20: Ctrl-function key codes 352
14.21: Alt-function key codes 352
14.22: Mouse button constants 354
14.23: Option flags 361
14.24: Scroll bar part constants 365
14.25: StandardScrollBar constants 366
14.26: State flag constants 368
14.27: Screen mode constants 371
14.28: Stream access modes 372
14.29: Stream errorcodes 372
14.30: System error function codes 374
14.31: System error function return

valueso.iiiiiiiiiiia., 374
14.32: SystemError function messages ..375
14.33: Stream record fields 381
14.34: Window flag constants 384
14.35: Standard window palettes 385

.......

1.1: Turbo Vision objects onscreen
1.2: The HELLO.PAS startup screen
1.3: The HELLO.PAS Hi menu
1.4: The Hello World! dialog box
2.1: Default TApplication screen
2.2: TVGUIDO04 with multiple windows

open
2.3: TVGUIDO5 with open window
2.4: Multiple file views
2.5: File viewer with scrolling interior
2.6: Window with multiple panes
2.7: Simple dialog box
2.8: Dialog box with buttons
2.9: Dialog box with labeled clusters

added
2.10: Dialog box with input line added ...
2.11: Dialog box with initial values set ..
3.1: Turbo Vision object hierarchy
4.1: Turbo Vision coordinate system
4.2: TApplication screen layout
4.3: Side view of a text viewer window . ..
4.4: Side view of the desktop
4.5: A simple dialog box
4.6: Turbo Vision object hierarchy
4.7: A simple dialog box’s view tree

........

.............................

......

.................

.......

.................

............

............................

.........

............

...............

.......

......

Xi

4.8: Basic Turbo Vision view tree
4.9: Desktop with file viewer added
4.10: View tree with file viewer added ...

4.11: Desktop with file viewer added 94
4.12: View tree with two file viewers

added ..ol 94
413: Thefocuschain................... 96
4.14: Options bitflags 99
4.15: GrowMode bit flags 101
4.16: DragMode bit flags 102
4.17: State flag bit mapping 103
4.18: TScroller’s default color palette105
4.19: Mapping a scroller’s palette onto a

window e 106
5.1: TEvent.What field bit mapping 112
13.1: GrowMode bit mapping 307
13.2: DragMode bit mapping 307
13.3: Options bit flags 308
14.1: Drag modebitflags 337
14.2: Event mask bit mapping 340
14.3: Grow mode bit mapping 345
14.4: Options bitflags 363
14.5: Scroll barpartsn. 366
14.6: State flag bit mapping 369

This volume contains complete documentation for Turbo Vision, a
whole new way of looking at application development. We
describe not only what Turbo Vision can do and how, but also why.
If you take the time to understand the underlying principles of
Turbo Vision, you will find it a rewarding, time-saving, and
productive tool: You can build sophisticated, consistent
interactive applications in less time than you thought possible.

Why Turbo Vision?

After creating a number of programs with windows, dialogs,
menus, and mouse support at Borland, we decided to package all
that functionality into a reusable set of tools. Object-oriented
programming gave us the vehicle, and Turbo Vision is the result.

Does it work? You bet! We used Turbo Vision to write the new
integrated development environment for Turbo Pascal in a
fraction of the time it would have taken to write it from scratch.
Now you can use these same tools to write your own applications.

With Turbo Vision and object-oriented programming, you don't
have to reinvent the wheel—you can inherit ours!

If you write character-based applications that need a high-
performance, flexible, and consistent interactive user interface,
Turbo Vision is for you.

What is Turbo Vision?

Turbo Vision is an object-oriented application framework for
windowing programs. We created Turbo Vision to save you from

Infroduction 1

endlessly recreating the basic platform on which you build your
application programs.

Turbo Vision is a complete object-oriented library, including:

m Multiple, resizeable, overlapping windows

m Pull-down menus

m Mouse support

m Dialog boxes

m Built-in color installation

m Buttons, scroll bars, input boxes, check boxes and radio buttons
m Standard handling of keystrokes and mouse clicks

= And more!

Using Turbo Vision, all your applications can have this state-of-
the-art look and feel, with very little effort on your part.

What you need to know

You need to be pretty comfortable with object-oriented
programming in order to use Turbo Vision. Applications written
in Turbo Vision make extensive use of object-oriented techniques,
including inheritance and polymorphism. These topics are
covered in Chapter 4, “Object-oriented programming,” in the
User’s Guide.

In addition to object-oriented techniques, you also need to be
familiar with the use of pointers and dynamic variables, because
nearly all of Turbo Vision’s object instances are dynamically
allocated on the heap. You may want to review the extended
syntax of the New function, which allows the inclusion of a
constructor as a parameter. Most instances of Turbo Vision objects
are created that way.

What's in this book?

Because Turbo Vision is new, and because it uses some techniques
that might be unfamiliar to many programmers, we have
included a lot of explanatory material and a complete reference
section.

2 Turbo Vision Guide

This manual is divided into three parts:

m Part 1 introduces you to the basic principles behind Turbo
Vision and provides a tutorial that walks you through the
process of writing Turbo Vision applications.

m Part 2 gives greater detail on all the essential elements of Turbo
Vision, including explanations of the members of the Turbo
Vision object hierarchy and suggestions for how to write better
applications.

m Part 3 is a complete reference lookup for all the objects and
other elements included in the Turbo Vision units.

Introduction 3

Turbo Vision Guide

Learning Turbo Vision

Turbo Vision Guide

Inheriting the wheel

How much of your last application was meat, and how much was
bones?

The meat of an application is the part that solves the problem the
application was written to address: Calculations, database
manipulations, and so on. The bones, on the other hand, are the
parts that hold the whole thing together: Menus, editable fields,
error reporting, mouse handlers, and so on. If your applications
are like most, you spend as much or more time writing the bones
as you do the meat. And while this sort of program infrastructure
can in general be applied to any application, out of habit most
programmers just keep writing new field editors, menu
managers, event handlers, and so on, with only minor differences,
for each new project they begin.

You've been warned often enough to avoid reinventing the same
old wheel. So here’s your chance to stop reinventing the wheel—
and start inheriting it.

The framework of a windowing application

Turbo Vision is the framework of an event-driven, windowing
application. There’s no meat as delivered—just a strong, flexible
skeleton. You flesh the skeleton out by using the extensibility
feature of Turbo Pascal object-oriented programming. Turbo
Vision provides you with a skeleton application object,

Chapfter 1, Inheriting the wheel 7

TApplication, and you create a descendant object of TApplication—
call it MyApplication, perhaps—to act as your application. Then
you add to MyApplication what it needs to get your job done.

At the very highest level, that’s all there is to it. The entire
begin..end block of your application program looks like this:

begin
MyApplication.Init; { Set the application up,... }
MyApplication.Run; { ...run it,... }
MyApplication.Done; { ...and then put it away when you’re done! }
end.

A new Vision of application development

You've probably used procedure/function libraries before, and at
first glance Turbo Vision sounds a Iot like traditional libraries.
After all, libraries can be purchased to provide menus, windows,
mouse bindings, and so on. But beneath that superficial
resemblance is a radical difference, one that is worth
understanding to avoid running up against some very high and
very hard conceptual walls.

The first thing to do is remind yourself that you’re now in object
country. In traditional structured programming, when a tool such
as a menu manager doesn’t quite suit your needs, you modify the
tool’s source code until it does. Going in and changing the tool’s
source code is a bold step that is difficult to reverse, unless you
somehow take note of exactly what the code originally looked like.

- Furthermore, changing proven source code (especially source
code written by somebody else) is a fine way to introduce
obnoxious new bugs into a proven subsystem, bugs that could
propagate far beyond your area of original concern.

With Turbo Vision, you never have to modify the actual source
code. You “change” Turbo Vision by extending it. The T Application
application skeleton remains unchanged inside APP.TPU. You
add to it by deriving new object types, and change what you need
to by overriding the inherited methods with new methods that
you write for your new objects.

Also, Turbo Vision is a hierarchy, not just a disjoint box full of tools.
If you use any of it at all, you should use all of it. There is a single

architectural vision behind every component of Turbo Vision, and
they all work together in many subtle, interlocking ways. You

8 Turbo Vision Guide

shouldn't try to just “pull out” mouse support and use it—the
“pulling out” would be more work than writing your own mouse
bindings from scratch.

These two recommendations are the foundation of the Turbo
Vision development philosophy: Use object-oriented techniques
fully, and embrace the entirety of Turbo Vision on its own terms. This
means playing by Turbo Vision’s “rules” and using its component
object types as they were intended to be used. We created Turbo
Vision to save you an enormous amount of unnecessary, repetitive
work, and to provide you with a proven application framework
you can trust. To get the most benefit from it, let Turbo Vision do

the work.

The elements of a Turbo Vision application

Naming of parts

Views

Views are covered in detail
in Chapter 4.

Events

Chapfter 1, Inheriting the wheel

Before we look at how a Turbo Vision application works, let’s take
a look at “what’s in the box”—what tools Turbo Vision gives you
to build your applications with.

A Turbo Vision application is a cooperating society of views,
events, and mute objects.

A view is any program element that is visible on the screen—and
all such elements are objects. In a Turbo Vision context, if you can
see it, it’s a view. Fields, field captions, window borders, scroll
bars, menu bars, and dialog boxes are all views. Views can be
combined to form more complex elements like windows and
dialog boxes. These collective views are called groups, and they
operate together as though they were a single view. Conceptually,
groups may be considered views.

Views are always rectangular. This includes rectangles that
contain a single character, or lines which are only one character
high or one character wide.

An event is some sort of occurrence to which your application
must respond. Events come from the keyboard, from the mouse,
or from other parts of Turbo Vision. For example, a keystroke is
an event, as is a click of a mouse button. Events are queued up by

Events are explained in detail Turbo Vision’s application skeleton as they occur, then they are
in Chapter5. processed in order by an event handler. The TApplication object,
which is the body of your application, contains an event handler.
Through a mechanism that will be explained later on, events that
are not serviced by TApplication are passed along to other views
owned by the program until either a view is found to handle the
event, or an “abandoned event” error occurs.

For example, an F1 keystroke invokes the help system. Unless
each view has its own entry to the help system (as might happen
in a context-sensitive help system) the F1 keystroke is handled by
the main program’s event handler. Ordinary alphanumeric keys or
the line-editing keys, by contrast, need to be handled by the view
that currently has the focus; that is, the view that is currently
interacting with the user.

Mute objects Mute objects are any other objects in the program that are not
views. They are “mute” because they do not speak to the screen
themselves. They perform calculations, communicate with
peripherals, and generally do the work of the application. When a
mute object needs to display some output to the screen, it must do
so through the cooperation of a view. This concept is very
important to keeping order in a Turbo Vision application: Only
views may access the display.

s> Nothing will stop your mute objects from writing to the display
with Turbo Pascal’s Write or Writeln statements. However, if you
write to the display “on your own,” the text you write will disrupt
the text that Turbo Vision writes, and the text that Turbo Vision
writes (by moving or sizing windows, for example) will obliterate
this “renegade” text.

A common “look

and feel” Because Turbo Vision was designed to take a standardized,
rational approach to screen design, your applications acquire a
familiar look and feel. That look and feel is identical to that of the
Turbo languages themselves, and is based on years of experience
and usability testing. Having a common and well-understood
look to an application is a distinct advantage to your users and to
yourself: No matter how arcane your application is in terms of
what it does, the way to use it will always be familiar ground, and
the learning curve will be easier to ascend.

10 Turbo Vision Guide

Allthese ifems are described Figure 1.1 shows a collection of common objects that might appear
In Chapter 4, "Views.” a5 part of a Turbo Vision application. The deskiop is the shaded
background against which the rest of the application appears.
Like everything else in Turbo Vision, the desktop is an object. So
are the menu bar at the top of the display and the status line at the
bottom. Words in the menu bar represent menus, which are
“pulled down” by clicking on the words with the mouse pointer
or by pressing hot keys.
Figure 1.1

Turbo Vision objects
onscreen

StatusLin

The text that appears in the status line is up to you, but typically it
displays messages about the current state of your application,
shows available hot keys, or prompts for commands that are
currently available to the user.

When a menu is pulled down, a highlight bar slides up and down
the menu’s list of selections in response to movements of the
mouse or cursor keys. When you press Enter or click the left mouse
button, the item highlighted at the time of the button press is
selected. Selecting a menu item transmits a command to some
part of the application.

Your application typically communicates with the user through
one or more windows or dialog boxes, which appear and disappear
on the desktop in response to commands from the mouse or the
keyboard. Turbo Vision provides a great assortment of window
machinery for entering and displaying information. Window
interiors can be made scrollable, which enbles windows to act as
portals into larger data displays such as document files. Scrolling
the window across the data is done by moving a scroll bar along

Chapter 1, inheriting the wheel 11

the bottom of the window, the right side of the window, or both.
The scroll bar indicates the window’s position relative to the
entirety of the data being displayed.

Dialog boxes often contain buttons, which are highlighted words
that can be selected by clicking on them (or by Tabbing to the
button and pressing Spacebar). The displayed words appear to
move “downward” in response to the click (as a physical push-
button would) and can be set to transmit a command to the
application.

“Hello, World!” Turbo Vision style

The “Hello, World” code is
given in the file HELLO.PAS on
your distribution disks.

12

The traditional way to demonstrate how to use any new language
or user interface toolkit is to present a “Hello, world” program
written with the tools in question. This program usually consists
of only enough code to display the string “Hello, World” on the
screen, and to return control to DOS.

Turbo Vision gives us a different way to say “Hello, World!”

The classic “Hello, World” program is not interactive (it “talks”
but it doesn’t “listen”) and Turbo Vision is above all a tool for
producing interactive programs.

The simplest Turbo Vision application is much more involved
than a Writeln sandwiched between begin and end. Compared to
the classic “Hello, World” program, Turbo Vision’s HELLO.PAS
does a fair number of things, including

m clearing the desktop to a halftone pattern

m displaying a menu bar and a status line at the top and bottom of
the screen

m establishing a handler for keystrokes and mouse events

m building a menu object “behind the scenes” and connecting it to
the menu bar

m building a dialog box, also “behind the scenes”

m connecting the dialog box to the menu

m waiting for you to take some action, through the mouse or
keyboard

Nowhere in this list is there anything about displaying text to the
screen. Some text has been prepared, but it’s all in the
background, waiting to be called up on command. That’s

Turbo Vision Guide

Running
HELLO.PAS

Figure 1.2
The HELLO.PAS startup screen

something to keep in mind while you’re learning Turbo Vision:
The essence of programming with Turbo Vision is designing a
custom view and teaching it what to do when it receives
commands. Turbo Vision—the framework—worries about getting
your view the proper commands. You only have to worry about
what to do when the keystroke, mouse click, or menu command
finds its way to your view’s code.

The meat of your program is the code that performs some

‘meaningful work in response to commands entered by the user—

and this “meaty” code is contained in the view objects you create.

Before we dissect HELLO.PAS in detail, it would be a good idea
to load the program, compile it, and follow through its execution.

When run, Hello clears the screen, and creates a desktop like that
shown in Figure 1.2. No windows are open, and only one item
appears in the menu bar at the top of the screen: the command
Hello. Notice that the “H” in Hello is set off in a different color
from the “ello”, and that the status bar contains a message: Alt-X
Exit.

Alt-X Exit

This is a good time to point out two general rules for program-
ming in any user environment: Never put the user at a loss as to what
to do next, and always give the user a way forward and a way back.
Before doing anything at all, the user of Hello has two clear
choices: Either select the menu item Hello or press Alt-X to leave
the program entirely.

Chapter 1, Inheriting the wheel 13

Pulling down a
menu

Figure 1.3
The HELLO.PAS Hi menu

With that in mind, select Hello in the menu bar. There are actually
three ways to do this:

m Move the mouse pointer over Hello and click the left button.

m Press F10to take the cursor to the menu bar, where Hello
becomes highlighted. Then press Enter to select Hello.

m Press Alf-H, where H is the highlighted character in the menu
command Hello.

In all three cases, a pull-down menu appears beneath the item
Hello. This should feel familiar to you, as a Turbo Pascal
programmer. It's the same way the Turbo Pascal IDE operates.
You’ll find that Turbo Vision uses all of the conventions of the
Turbo Pascal integrated environment. After all, the IDE is a Turbo
Vision application!

The menu that appears is shown in Figure 1.3. There are only two
items in the menu, separated by a single line into two separate
panes. Hello is so simple that there is only one menu item in each
pane, but in fact there may be any number of items in a pane,
subject to the limitations of the screen.

Hello

Exit Alt-X

You can select a menu item either from the keyboard or with the
mouse. The arrow keys move the highlight bar up and down the
menu. Selecting a highlighted item from the keyboard is done by
pressing Enfer when the desired item is under the highlight bar.
More interesting is selection by mouse: You “grasp” the highlight
bar by pressing the left mouse button down while the mouse
pointer is on the highlight bar and holding the button down. As long
as you hold the button down, you can move the bar up and down
the list of menu items within the menu. You select one of the
menu items by letting go of the mouse button when the highlight
bar is over the menu item that you wish to select.

Turbo Vision Guide

A dialog box

An ellipsis (...) afferamenu However you select it, the Greeting item in the menu brings up a
ffem Is used fo indieate that rectangular window called a dialog box, as shown in Figure 1.4.
the ifem invokes a dialog . .
box. Thedialog box appears in the center of the screen, but you can
move it around the screen by moving the mouse pointer to the
top line of the dialog box, pressing the left mouse button, and
moving the mouse while you hold the button down. As soon as you
let the button up, the dialog box will stop where it is and remain

there.

Figure 1.4 []== Hello, World] =——=
The Hello World! dialog box .
9 Terrific 1

0K
How are you? L —
Lous,
—y
Cancel
—

The dialog box has a title, “Hello, World!”, and a close icon at its
upper left corner. The close icon, when clicked by the mouse,
closes the dialog box and make it disappear. Inside the dialog box
is a short text string: “How are you?” This is an example of static
text, which is text that can be read but which contains no
interactive power. In other words, static text is used to label
things, but nothing happens if you click on it.

Buttons

The four rectangles on the right side of the box are the most
interesting parts of the “Hello, World!” dialog box. These are
called buttons, and are examples of controls. They are called
controls because they resemble the controls on electronic
instruments. Each button has a label, which indicates what
happens when that button is pushed.

You push a button by clicking on it with the mouse, or by making
the button the default (described later in this section) and then
pressing Enter. Try pressing one of the buttons with the mouse
(holding down the mouse button while the pointer is on the
button) and see what happens: The body of the button moves one
position to the right, and its shadow vanishes. The illusion is that
of a rectangular button being pressed “downward” toward the

Chapter 1, Inheriting the wheel 15

Monochrome systems

indicate the default button

with "» «” characters.

Geftting out

screen. When you release the mouse button, the action specified
by the button takes place.

Notice that the title inside the Cancel button is colored differently
than the others. The difference in color indicates that the Cancel
button is currently the default control within the dialog box. If
you press Enter while Cancel is the default, you are in effect
pressing the Cancel button.

The default control within a dialog box can be changed by
pressing the Tab key. Try Tabbing around in the “Hello, World!”
dialog box. The distinctive default colors move from one button to
the next with each press of the Tab key. This allows the user to
press a button without using a mouse, by moving the default to
the chosen button with the Tab key, and then pressing Enter or
Spacebar to perform the actual “press of the button.”

Pressing any of the buttons in Hello “puts away” the dialog box
and leaves you with an empty desktop. You can pull down the
Hello menu again, and bring up the dialog box again, any number
of times. To exit the program, you can either select the Exit item in
the Hello menu, or simply press the Exit shortcut, Alt-X. Note that
this shortcut is presented both inside the Hello menu and in the
status line at the bottom of the screen.

This is good practice: Always make it easy for the user to exit the
program. Frustrated users who can’t find the door are quite likely
to reboot the system, preventing your application from closing
files or otherwise cleaning house before shutting down.

Inside HELLO.PAS

16

That’s what Hello does if you run it. Now, how does it make all
this happen? Much—in fact, most—of the code comprising Hello
is inherited from predefined objects provided in Turbo Vision. So
much is inherited that when the program runs, how it works may
first seem a bit of a mystery. Tracing execution with the integrated
debugger will not show you the whole picture, since Turbo Vision
is provided as compiled units. Fortunately, if you take the time to
understand what is going on, the exact how won't be necesssary.

Turbo Vision Guide

To understand a Turbo Vision application, start by reminding
yourself that a Turbo Vision application is a society of objects working
together. Find the major objects and understand how they work
together. Then see how the lesser objects support the major
objects.

Be sure you read and understand the object definitions before you
read the method implementations. It’s important that you first
understand what an object contains and how it relates to the other
objects in the system.

The application

object The cornerstone object of any application is the TApplication
object. Actually, you never create an instance of object type
TApplication. TApplication is an abstract object type—just bones, no
meat. It doesn’t do anything. You use TApplication by creating a
descendant object type of TApplication that contains the meat of
the program you're writing.

In Hello, that descendant object type is THelloApp:

PHelloApp = “THelloApp;
THelloApp = object (TApplication)
procedure GreetingBox;
procedure HandleEvent (var Event: TEvent); virtual;
procedure InitMenuBar; virtual;
procedure InitStatusLine; virtual;
end;

As shown here, it’s a good idea to define a pointer type to every
object type that you define, since most serious work with objects
operates through pointer references. Polymorphism works
primarily through pointer references.

THelloApp contains much more than just these four methods, of
course; a descendant object inherits everything from its ancestor. In
defining THelloApp, you define how the new object differs from its
ancestor, TApplication. Everything that you do not redefine is
inherited unchanged from TApplication.

If you think about it, the four method definitions in THelloApp pin
down the “big picture” of your entire application:

m How the application functions is dictated by what events it
responds to, and how it responds to them. You must define a
HandleEvent method to fulfill this all-important requirement. A
HandleEvent method is defined in TApplication to deal with

Chapter 1, Inheriting the wheel 17

18

The dialog box
object

generic events that occur within any application, but you must
provide one that handles events specific to your own
application.

m The InitMenuBar method sets up the menus behind the menu
bar for your application. TApplication has a menu bar but no
menus; if you want menus (and it would be a poor application
indeed without them!) you simply define a method to define
the menus. You might wonder why InitMenuBar’s code isn’t
part of THelloApp’s constructor. It could be, but a more
advanced application might wish to choose among several
possible menus for its initial menu display. Best to leave that
outside of the constructor, and allow the constructor to set up
only those things that are always done the same way every time
the application is run.

m The InitStatusLine method sets up the status line text at the
bottom of the screen. This text typically displays messages
about the current state of the application, shows the available
hot keys, or notifies the user of some action to be taken.

m The GreetingBox method brings up the dialog box in response to
the menu item Greeting. GreetingBox is called from within the
HandleEvent method, in response to the event triggered by the
selection of the Greeting menu item. In more advanced
applications, you would have separate methods to respond to
each of the menu items defined in the initial menu.

In short, THelloApp’s methods provide what all main-program
objects must provide: a means to set the application up, an
“engine” (the event handler) to respond to events, and methods to
embody the responses to particular events. These three things are,
by and large, what you must add to TApplication when you create
descendant object types of TApplication.

The only other major object used in Hello is a dialog box object.
Because the dialog box doesn’t have to do anything special, Hello
uses an instance of the TDialog object. There is no need to derive a
special object from TDialog.

TDialog itself contains no interactive elements. It is nothing more
than a frame (albeit a clever frame); you provide whatever fields
or controls are to interact with the user.

Turbo Vision Guide

THelloApp.GreetingBox builds on TDialog by inserting four buttons
which are also Turbo Vision views. (Remember that all program
elements that display anything to the screen must be Turbo Vision
views!) This is typical when using dialog boxes. Usually you just
insert the controls you want to have in the dialog box. Everything
else that a dialog box must have (including an event handler) is
built into TDialog.

Flow of execution

and debugging Because Turbo Vision applications are event-driven, the code is
structured somewhat differently than conventional programs.
Specifically, event-driven programs separate the control
structures that read and evaluate user input (and other events)
from the procedures and functions that act on that input.

Conventional programs typically contain many blocks of code,
each of which involves getting some input, deciding which code
gets that input, calling the appropriate routine(s) to process the
input, then doing the same thing again. In addition, the code that
finishes processing the input must then know where to give
control for the next round of input.

Event-driven programs, on the other hand, have a central event-
dispatching mechanism, so the bulk of your program does not
have to worry about fetching input and deciding what to do with
it. Your routines simply wait for the central dispatcher to hand
them input to process. This has important implications for
For more hints and fips on debugging your programs: You will probably want to rethink
aop lic%?‘iggggslgg g;g g r\gf’%’ your debugging strategies, setting breakpoints in event-handling
" “Hints and tjps,» Toutines to check the dispatching of messages, and setting

breakpoints in your event-responding code to check that it
functions properly.

HELLO's main

program At the very highest level, the main program portion of all Turbo
Vision applications look pretty much like HELLO:

var
HelloWorld: THelloApp;

begin
HelloWorld.Init;
HelloWorld.Run;
HelloWorld.Done;

end.

Chapter 1, Inheriting the wheel 19

The Init method

The Run method

For more detail on how

events are handled, refer to

20

Chapter 5.

Each of these three methods deserves some explanation.

The first of the three statements (HelloWorld.Init) is the necessary
constructor call. All objects containing virtual methods must be

-constructed (through a call to their constructor) before any other

method of the object is called. As a convention, all Turbo Vision
constructors are named Init. This is a very good convention for
you to follow in your own code as well.

HelloWorld.Init sets up the main program object for use. It clears
the screen, provides initial values for certain important variables,
builds the halftone desktop, and lays out the status line and the
menu bar. It calls the constructors of a great many other objects,
some of which you never see because all these calls happen
“offstage.”

It’s interesting to use the integrated debugger to step over the
HelloWorld.Init call via F8, and then press Al-F5 to inspect the
display. The desktop, menu bar, and status line will all be laid out
and complete, ready for the main program to use. Setting up a
main program object via its constructor is pretty straightforward.

Nearly all of the mystery in a Turbo Vision application is in the
main program’s Run method. The mystery starts when you look in
the definition of THelloApp to find the Run method definition. It's
not there—because Run is inherited intact from THelloApp's parent
object type, TApplication.

Run is where your application will probably spend the bulk of its
time. It consists primarily of a repeat..until loop, shown here in
pseudo-code format:

repeat
Get an event;
Handle the event;
until Quit;

Again, this is not the exact code, but a conceptual summary of
what Run does with all the details removed. In essence, a Turbo
Vision application loops through two tasks: Getting an event
(where an event is essentially “something to do”), and servicing
that event. Eventually, one of the events resolves to some sort of
quit command, and the loop terminates.

Turbo Vision Guide

The Done

method The Done destructor is really quite simple: It disposes of the
objects owned by the application—the menu bar, the status line,
and the desktop—and shuts down Turbo Vision’s error handler
and drivers. In general, your application’s Done method should
undo anything special that the Init constructor set up, then call
TApplication.Done, which handles all the standard elements. If you
override TApplication.Init, you will probably have to override
TApplication.Done.

Summary

In this chapter you've had just a taste of what Turbo Vision is all
about. You have seen objects interacting in an event-driven
framework and gotten some idea of the kinds of tools that Turbo
Vision provides.

At this point you may feel confident enough to try modifying the
HELLO.PAS program to do some other things. Feel free to do so.
One of the nicest features of Turbo Vision is the freedom it gives
you to change your programs with very little effort.

The next chapter will take you through the steps of building a
Turbo Vision program of your own from the skeleton we provide.

Chapter 1, Inheriting the wheel 2]

22

Turbo Vision Guide

Writing Turbo Vision applicafions

Now that you've seen what a Turbo Vision application looks like,
inside and out, you're probably itching to write one yourself. In
this chapter, you'll do just that, starting with an extremely simple
framework and adding small fragments of code at each step so
you can see what each of them does.

You probably have a lot of questions at this point, How exactly do
views work? What can I do with them? How can I customize
them for my applications? If Turbo Vision were a traditional run-
time library, most likely you would dig into the source code to get
the answers.

But Turbo Vision is already a working application. The best way
to answer your questions about Turbo Vision is to actually try out
views. As you'll see, you can initialize them with a minimum of
code.

Your first Turbo Vision application

A Turbo Vision application always begins by instantiating an
object descended from TApplication. In the following example, you
will create a descendant of TApplication called TMyApp, and in it,
begin to override TApplication methods. This new object is then
instantiated as MyApp.

= In the rest of this chapter, we will refer often to MyApp. By that we
mean your application, an instance of an object descended from

Chapter 2, Writing Turbo Vision applications 23

There is normally only one
TApplication object in a
program.

Several stages of the
example code are on your
distribution disks. The file
names are indicated next fo
the code examples, and
they correspond to the
names declared in the
program statement,

This program is in
TVGUIDO1.PAS, which is
included with the demo
programs on your distribufion
disks.

24

TApplication. When you write your own Turbo Vision
applications, you will probably call them something else,
something indicative of the function of each application. We use
MyApp, because it is shorter than saying “the instance of the
object you derived from TApplication.”

Beginning with the following code example, you're going to be
building an example program. Rather than giving the entire
program listing each time, we’ve only included the added or
changed parts in the text. If you follow along and make all the
indicated changes, you should get a good feel for what it takes to
add each increment of functionality. We also strongly recommend
that you try modifying the examples.

The main block of TVGUIDO01 (and of every Turbo Vision
application) looks like this:

program TFirst;

uses App; { application objects are in APP.TPU }
type
TMyApp = object (TApplication) { define your application type }
end; { leaving room for future expansion }

var
MyApp: TMyApp;

—

{ you need an instance of your new type

begin
My2pp. Init; { set it up }
MyApp.Run; { interact with the user }
MyApp.Done; { clean up afterward }
end.

Note that you haven’t added any new functionality to TMyApp
(yet). Normally, you would never declare a whole new object type
with no new fields or methods. You would simply declare the
variable MyApp as an instance of the TApplication type. Since
you’ll be adding to it later, as you will when writing Turbo Vision
applications, you've set up TMyApp for flexible expansion. For
now, it will behave as a “plain vanilla” TApplication. The default
behavior of a TApplication produces a screen like that in Figure 2.1.

Turbo Vision Guide

Figure 2.1
Default TApplication screen

This working program does only one thing: It responds to Alf-X to
terminate the program. To get it to do more, you need to add to
the default behavior by adding commands to the status line

and /or the menu bar. In the next section, you'll do both.

The desktop, menu bar, and status line

Objects used: TFirst’s desktop, menu bar, and status line are created by the
™ TView TApplication methods InitDeskTop, InitMenuBar, and InitStatusLine.
enuView S .
TMenuBar These three methods are called by TApplication.Init, so you never
TMenuBox need to call them directly. Instead, your application’s Init method

IStatusLine will call TApplication.Init in its first line. For example:

TGroup
TDeskTop procedure TMyApp.Init;
begin .
TApplication.Init; { call ancestor’s method first }
{ initialization code specific to your application goes here }
end;

Objects and their unifs are . Note that you'll need to add some Turbo Vision units to the uses
cross—reggnfeerdllzn line in the program. In order to use menus and the status bar and
it " the standard key definitions, you'll need to use Objects, Menus,
and Drivers in addition to App.

If your program doesn’t need to do any special initialization, you
simply use the inherited Init method. Because the Init and
InitDeskTop, InitMenuBar, and InitStatusLine methods are virtual,
calling the inherited Init calls the proper InitStatusLine and

Chapter 2, Writing Turbo Vision applications 25

InitMenuBar methods. You'll see an example of this in
TVGUIDO02.PAS.

InitDeskTop, InitMenuBar, and InitStatusLine give values to the
global variables DeskTop, MenuBar, and StatusLine, respectively.
Let’s look at each of these in turn.

The desktop

The desktop is an extremely important object, but it needs little
attention from you. You should never need to override the
inherited injtialization method. Let T Application.InitDeskTop
handle it. DeskTop is owned by MyApp, and whenever MyApp
instantiates a new view in response to the user clicking on a menu
selection, it should attach the new view to DeskTop. Beyond this,
the desktop knows how to manage views by itself.

The status line

TApplication.InitStatusLine instantiates a TStatusLine view called
StatusLine to define and display hot key definitions. StatusLine is
Hot keys are single keystrokes displayed starting at the left edge of the screen, and any part of
that act like men‘,’, or .S'f"f“s the bottom screen line not needed for status line items is free for
ine frems. other views. StatusLine binds hot keys to commands, and the
items themselves can also be clicked on with the left mouse
button.

TVGUIDO02.PAS creates a working status line by overriding
TApplication.InitStatusLine like this:

This is TVGUIDO2.PAS procedure TMyApp.InitStatusLine;
var R: TRect; { this will hold the boundaries of the status line }

begin
GetExtent (R); { set R to the coordinates of the full screen
R.A.Y := R.B.Y - 1; { move top to 1 line above bottom
StatusLine := New(PStatusLine, Init(R, { create status line
NewStatusDef (0, S$FEFF, { set range of help contexts

NewStatusKey (/ ~Alt-X~ Exit’, kbAltX, cmQuit, { define item’
NewStatusKey (‘ ~Alt-F3~ Close’, kbAltF3, cmClose, { another
nil)), { no more keys
nil) { no more defs
)i

end;

—— e e e e e e

e Don't forget to add procedure InitStatusLine; virtual; to the
declaration of TMyApp.

26 Turbo Vision Guide

Turbo Vision commands are The initialization is a sequence of nested calls to standard Turbo

constants. ;h;” ’?ﬁ’]f’ﬁe’f Vision functions NewStatusDef, NewStatusKey, and NewStatusBar
ST "€M= (Jescribed in detail in Chapter 14). TVGUIDO02 defines a status
line to be displayed for a range of help contexts from 0 through
$FFFF and in it binds the standard Turbo Vision command cmQuit
to the Alt-X keystroke, and the standard command cmClose to the

Alt-F3 key.

You may note that, unlike TMyApp.Init, the InitStatusLine method
does not call the method it overrides, T Application.InitStatusLine.
The reason is simple: Both routines set up status lines that cover
the same range of help contexts, and assign them to the same
variable. There is nothing in T Application.InitStatusLine that would
help TMyApp.InitStatusLine do its job more easily, and in fact, you
would waste time and memory by calling it.

The last string displayed on the command line by this initializa-
tion is “Alt-F3 Close.” The part of the string enclosed by tildes (~)
will be highlighted on the screen. The user will be able to click
with the left mouse button anywhere within the string to activate
the command.

When you run TVGUIDO02, you'll notice that the Al-F3 status item
is not highlighted, and clicking on it has no effect. This is because
the cmClose command is disabled by default, and items that
generate disabled commands are also disabled. Once you open a
window, cmClose and the status item will be activated.

Your status line work is over once you've initialized StatusLine,
because you are using only predefined commands (cmQuit and
cmClose). StatusLine can handle the user’s input without any
further attention from you.

Creatingnew Note that cmQuit and cmClose, the commands you bound to the
commands status line items, are standard Turbo Vision commands, so you
don’t have to define them. In order to use customized commands,
you simply declare your commands as constant values. For
example, you can define a new command for opening a new

window:
Turbo Vision reserves some const
constants for its own cnNewHin = 199;

commands. See "Defining
commands” in Chapterd. Next you can bind that command to a hot key and a status line
item:

Chapter 2, Writing Turbo Vision applications 27

28

The menu bar

0 File I

Open F3 l

StatusLine := New(PStatusLine, Init(R,
NewStatusDef (0, S$FFFF,
NewStatusKey (’ ~Alt-X~ Exit’, kbAltX, cmQuit,

NewStatusKey (’ ~F4~ New’, kbF4, cmNewWin, { bind new command }
NewStatusKey (’ ~Alt-F3~ Close’, kbAltF3, cmClose,
nil))), '

nil)

)):

The status line’s initialization syntax is a good introduction to
menu initialization, which is somewhat more complex.

The Turbo Vision menu bar variable MenuBar is initialized with
nested calls to the standard Turbo Vision functions NewMenu,
NewSubMenu, Newltem, and NewLine.

Once you've initialized a menu, your work is finished. The menu
bar knows how to handle the user’s input without your help.

Initialize a simple menu bar, one menu containing one selection,
like this:

const
cnFileOpen = 200; { define a new command }
procedure TMyApp.InitMenuBar;
var R: TRect;
begin
GetExtent (R); { get area of the application }
R.B.Y := R.A.Y + 1; . { set bottom 1 line below top }
MenuBar := New(PMenuBar, Init(R, NewMenu({ create bar with menu }
NewSubMenu (' ~F~ile’, hcNoContext, NewMenu({ { define menu }
NewItem(’~O~pen’, 'F3’, kbF3, cmFileOpen, hcNoContext, { item }
nil)), { no more items }
nil) { no more submenus }
1)) { end of the bar }
end;

The single menu produced by this code is called ‘File,” and the
single menu selection is called ‘Open.” The tildes (~) make F the
shortcut letter in ‘File,” and O the shortcut letter in ‘Open,’ and the
F3key is bound as a hot key for ‘Open.’

All Turbo Vision views can have a help context number associat-
ed with them. The number makes it easy for you to implement

‘context-sensitive help throughout your application. By default,

views have a context of hcNoContext, which is a special context
that doesn’t change the current context. Help context numbers

Turbo Vision Guide

appear in the initialization of the menu bar because the nested
structure of this object makes it difficult to add numbers later.
When you're ready to add help context to the menu bar, you can
substitute your own values for hcNoContext in the Init code.

To add a second item to the ‘File’ menu, you simply nest another
Newltem function, like this:

R File q MenuBar := New(PMenuBar, Init(R, NewMenu(

NewSubMenu (’ ~F~ile’, hcNoContext, NewMenu (

New F4 NewItem{’~O~pen’, 'F3’, kbF3, cmFileOpen, hcNoContext,
NewItem(’~N~ew’, ’'F4’, kbF4, cmNewWin, hcNoContext,
nil))},

nil)

)

To add a second menu, you nest another NewSubMenu function
call, like this:

Window q MenuBar := New(PMenuBar, Init (R, NewMenu(

i NewSubMenu (’~F~ile’, hcNoContext, NewMenu (

Zoom F5 NewItem(’~O~pen’, 'F3’, kbF3, cmFileOpen, hcNoContext,
NewItem(’~N~ew’, 'F4’, kbF4, cmNewWin, hcNoContext,
nil))), {closing parens for menu selections}

NewSubMenu (/ ~W~indow’, hcNoContext, NewMenu(
NewItem({’~N~ext’, 'F6’, kbF6, cmNext, hcNoContext,
NewItem(’~Z~oom’, ’'F5’, kbF5, cmZoom, hcNoContext,
nil)),

nil))) {closing parens for menus}

1)

- You just bound two more standard Turbo Vision commands,
cmNext and cmZoom, to menu items and hot keys.

To add a horizontal line between menu selections, insert a call to
NewLine between the Newltem calls, like this:

0 File m MenuBar := New(PMenuBar, Init (R, NewMenu(

Open F3 NewSubMenu (~F~ile’, hcNoContext, NewMenu (
New F4

NewItem(’~O~pen’, 'F3’, kbF3, cmFileOpen, hcNoContext,
NewItem(’~N~ew’, ’'F4’, kbF4, cmNewWin, hcNoContext,

Exit Alt-X

NewLine {
NewItem(’E~x~it’, ’'Alt-X’, kbAltX, cmQuit, hcNoContext,
nil))))),

This is TVGUIDO3.PAS NewSubMenu (’ ~W~indow’, hcNoContext, NewMenu(

NewItem(’~N~ext’, ‘F6’, kbF6, cmNext, hcNoContext,
NewItem(’~Z~oom’, ’'F5’, kbF5, cmZoom, hcNoContext,
nil))),
nil))
N

Chapter 2, Writing Turbo Vision applications 29

30

A note on
structure

You may notice that the version of TVGUID03.PAS supplied on
your disk also adds a status key to the status line, binding the F10
key to the cmMenu command. cmMenu is a standard Turbo Vision
command that helps non-mouse users make use of the menu bar.
In this case, the F10 keystroke causes the menu bar to be activated,
allowing menus and menu items to be selected using cursor keys.

You may also notice that the status item has a null string as its
text, so nothing appears on the screen for it. Although it might be
nice to alert users that F10 will activate the menus, it is rather
pointless to have an item to click on that performs that action.
Clicking directly on the menu bar makes much more sense.

At this point, a number of commands are available, but most of
them are disabled, and the cuNewWin and cmFileOpen commands
don’t yet perform any actions.

If your initial reaction is one of disappointment, it shouldn’t be—
you've accomplished a lot! In fact, what you've just discovered is
one of the big advantages of event-driven programming: You
separate the function of getting your input from the function of
responding to that input.

With traditional programming techniques, you would need to go
back into the code you've just written and start adding code to
open windows and such. But you don’t have to do that: You've
got a solid engine that knows how to generate commands. All you
need to do is write a few routines that respond to those
commands. And that’s just what you’ll do in the next section.

The Turbo Vision application framework takes you one step
beyond traditional modular programming. Not only do you break
your code up into functional, reusable blocks, but those blocks
can be smaller, more independent, and more interchangeable.

Your program now has several different ways to generate a
command (cmNewWin) to open a window: a status line item, a
menu item, and a hot key. In a moment, you'll see how easy it is
to tell your application to open a window when that command
shows up. The most important thing is that the application
doesn’t care how the command was generated, and neither will
the window. All that functionality is independent.

If, later on, you decide you want to change the binding of the
command—move the menu selection, remap the hot keys,

Turbo Vision Guide

whatever—you don’t have to worry or even think about how it
will affect your other code. That’s what event-driven program-
ming buys you: It separates your user interface design from your
program workings, and as you’ll see, it also allows different parts
of your program to function just as independently.

Opening a window

Objects used:
TRect

TView
TWindow
TGroup
IScroller
TScrollBar

Standard window
equipment

If you're a typical programmer, you may have jumped directly to
this section as soon as you opened the book. After all, what’s more
central to writing a windowed application than making a
window?

It’s true that if Turbo Vision were a collection of traditional library
routines, then jumping right to this section and trying to get right
to work might be a good idea. You could very well get a good
sense of the library’s overall quality and organization.

But Turbo Vision isn’t a traditional library. If you've read the
preceding chapters, you already know that. In order to program
in Turbo Vision, there are some things you need to do before it
makes sense to create a window. You need to understand just
what a Turbo Vision window is (it’s an object!), and how it is
different from windows you might have used before. When
you've done this, you will be further along in your first
application than you’d ever imagine.

So, if you've jumped into the cookbook at this point, you need to
go back to the preceding sections and lay a little groundwork. It
will be well worth it.

A Turbo Vision window is an object, and built into it is the ability
to respond to much of the user’s input without you having to
write a line of code. A Turbo Vision window already knows how
to open, resize, move, and close. But you don’t write on a Turbo
Vision window. A Turbo Vision window is a container that holds
and manages other objects: It is these objects that represent
themselves on the screen, not the window itself. The window
manages the views, and your application’s unique functionality is
in the views that the window owns and manages. The views you
create retain great flexibility about where and how they will
appear.

Chapter 2, Writing Turbo Vision applications 31

This is TVGUIDO4.PAS

IS

Nofte that we always declare
a pointer type for each new

32

object type.,

So how do you combine the standard window tools with the
things you want to put in the window? Over and over again,
remind yourself that you've got a strong framework to build on—
and use it! Start with a standard window, then add the features
you want. As you go through the next few examples you'll see
how easy it is to flesh out the skeleton Turbo Vision provides.

The following code initializes a window and attaches it to the
desktop. Remember to add the new methods to the declaration of
your TMyApp type. Note that again you are defining a new type
(TDemoWindow) without adding any fields or methods to its
ancestor type. As before, you're doing that just to provide a
simple platform you can build on easily. You'll add new methods
as you go.

uses Views;

const
WinCount: Integer = 0; { initialize window counter }
type
PDemoWindow = “TDemoWindow;
TDemoWindow = object (TWindow) { define a new window type }
end;

procedure TMyApp.NewWindow;

var
Window: PDemoWindow;
R: TRect;
begin
Inc (WinCount);
R.Assign(0, 0, 26, 7): { set initial size and position }
R.Move (Random(53), Random(16)); { randomly move around screen }
Window := New(PDemoWindow, Init(R, ’'Demo Window’, WinCount));
DeskTop”.Insert (Window) ; { put window into desktop }
end;

procedure TMyApp.HandleEvent (var Event: TEvent);

begin
TApplication.HandleEvent (Event); { basically, act like ancestor }
if Event.What = evCommand then
begin
case Event.Command of { but respond to additional commands }
cnNewWin: NewWindow; { define action for cmNewWin command }
else
Exit;
end;
ClearEvent (Event); { clear event after handling }
end;
end;

Turbo Vision Guide

To use this window in your program, you first need to bind the
command cmNewWin to a menu option or status line hot key, as
you did earlier. When the user invokes cmNew Win, Turbo Vision
dispatches the command to TMyApp.HandleEvent, which responds
by calling TMyApp.NewWindow.

Window

initialization You need to give a Turbo Vision window three parameters for it
to initialize itself: its size and position on the screen, a title, and a
window number.

The TRect object is described The first parameter, determining the window’s size and position,
In detaitin Chf\’fi’;i:f; is a TRect, Turbo Vision’s rectangle object. TRect is a very simple
" object. Its Assign method gives it a size and position, based on its
top-left corner and its bottom-right corner. There are several other
ways to assign or change the values of a TRect object. Consult
Chapter 14, “Global reference,” for complete descriptions.

In TVGUIDO04, R is created at the origin of DeskTop, then moved a
random distance into the desktop. “Normal” programs probably
won’t do that kind of random movement, but for this exercise you
‘want to be able to open a lot of windows and not have them all be
in the same place.

The second initialization parameter is a string, which is displayed
as the window’s title.

The last initialization parameter is stored in the window’s Number
field. If Number is between 1 and 9, it will be displayed on the
window frame, and the user can select a numbered window by
pressing Alt-1 through Alt-9.

If you don’t need to assign a number to a window, just pass it the
Turbo Vision constant wnNoNumber.

The Insert method Inserting a window into DeskTop automatically makes the
window appear. The Insert method is used to give a view control
over another view. When you execute the instruction

DeskTop”.Insert (Window) ;

you are inserting Window into the desktop. You may insert any
number of views into a group object like the desktop. The group
you insert a view into is called the owner view, and the view you
insert into it is called a subview. Note that a subview may itself be
a group, and may have its own subviews. For instance, when you
insert a window into the desktop, the window is a subview, but

Chapter 2, Writing Turbo Vision applications 33

All these relationships among
views are explained in
Chapter 4.

Closing a window

Window behavior

34

the window may itself own a frame, scroll bars, or other
subviews.

This process of establishing links between view objects creates a
view tree, so named because the multiple linkages of views and
subviews branch out from the central view, the application, much
as limbs branch out from the trunk of a tree.

Clicking the close icon on a window generates the same cmClose
command you bound to the Alf-F3 keystroke and a status line item.
By default, opening a window (with F4 or the File | Open menu
choice) automatically enables the cmClose command and the
views that generate it (as well as other window-related com-
mands like cmZoom and cmNext).

You don’t have to write any new code to close the window. When
the user clicks on the window’s close icon, Turbo Vision does the
rest. By default, a window responds to the cmClose command by
calling its Done destructor:

Dispose (MyWindow, Done);

As part of the window’s Done method, it calls the Done methods of
all its subviews. If you've allocated any additional memory your-
self in the window’s constructor, you need to make sure that you
deallocate it in the window’s Done method.

Take some time to play with the program you’ve written. It has a
great deal of capability already. It knows how to open, close,
select, move, resize, and zoom multiple windows on the desktop.
Not bad for fewer than 100 lines of code!

After TMyApp initializes the window, it inserts it into the desktop.
As you recall, DeskTop is a group, which means that its purpose is
to own and manage subviews, like your window. If you compile
and run the code, you'll notice that you can resize, move, and
close the new window. Your mouse input is being turned into a
series of events and routed from the desktop to the new window,
which knows how to handle them.

If you keep invoking cmNewWin, more windows will appear on
the desktop, each with a unique number. These windows can be
resized, selected, and moved over one another. Figure 2.2 shows
the desktop as it appears with several windows open.

Turbo Vision Guide

Figure 2.2
TVGUIDO4 with multiple
windows open

Demo Window 8——

Demo Window 4—

f['];— Demo Window 9=[1‘]]

|

A TWindow is a group that initially owns one view, a TFrame. The
user clicks on the frame’s icons to move, resize, or close the
window. The frame displays the title that it receives during the
window’s initialization, and it draws the window’s background,
just as TBackGround does for the desktop. All this happens, as
you've seen, without you writing any code.

Look through any

window If you were dealing with a traditional window here, the next step
would be to write something in it. But a TWindow isn’t a blank
slate to be written on: It’s a Turbo Vision group, a TGroup object,
with no screen representation at all beyond its frame view. To put
something “in” a window, you need to take an additional step, a
step that puts tremendous power in your hands.

To make something appear in the window, you create a view that
knows how to draw itself and insert it into the window. This view
is called an interior.

This first interior will entirely fill the window, but you'll find it
easy later to reduce its size and make room for other views. A
window can own multiple interiors, and any number of other
useful views—input lines, labels, buttons, or check boxes. You'll
also see how easy it is to place scroll bar views on a window’s
frame.

Chapter 2, Writing Turbo Vision applications 35

36

This makes TVGUIDOS5.PAS

You can tile or overlap the subviews within a group—how the
views interact is up to you. TDeskTop has a method, Tile, that can
tile subviews after they are initialized, but that method is for the
desktop alone to use.

The interior you'll create next is a simple descendant of TView.
Any TView can have a frame that operates like a traditional static
window frame. A TView'’s frame, which can’t be clicked on, is
outside the clipping region of any writing that takes place inside
the view. It’s just a line around the view.

If your TView interior fills its entire owner window, it doesn’t
matter if it has a frame—the window’s frame covers the interior’s
frame. If the interior is smaller than the window, the interior
frame is visible. Multiple interiors within a window can then be
delineated by frames, as you’ll see in a later example.

The following code writes “Hello, World!” in the demonstration

window, and the results are shown in Figure 2.3.

PInterior = “TInterior;

TInterior = object (TView)
constructor Init(var Bounds: TRect);
procedure Draw; virtual;

end;

constructor TInterior.Init{var Bounds: TRect);

begin

TView.Init (Bounds);

GrowMode := gfGrowHiX + gfGrowHiY; { make size follow window’s }
end;

procedure TInterior.Draw;
begin

TView.Draw;

WriteStr(4, 2, 'Hello, World!’, 1);
end;

constructor TDemoWindow.Init (Bounds: TRect; WinTitle: TString;
WindowNo: Integer);

var
Interior: PlInterior;
S: string[3];

begin
Stx (WindowNo, S); { put window number into title }
TWindow.Init (Bounds, WinTitle + ' ’ + S, wnNoNumber);
GetClipRect (Bounds);
Bounds.Grow(-1,-1); { make interior fit inside window frame }
Interior := New(PInterior, Init (Bounds));

Turbo Vision Guide

Figure 2.3
TVGUIDO5S with open window

What do you
see?

Insert {Interior); { add interior to window }
end;

File Window

[w]Demo Window 1 [1]

Hello, World!

All Turbo Vision views know how to draw themselves. A view’s
drawing takes place within the method Draw. If you create a
descendant view with a new screen representation, you need to
override its ancestor’s Draw method and teach the new object how
to represent itself on the screen. TInterior is a descendant of TView,
and it needs a new Draw method.

Notice that the new TInterior.Draw first calls the Draw of its
ancestor, TView, which in this case just clears the rectangle of the
view. Normally you would not do this: Your interior view’s Draw
method should take care of its entire region, making the
TView.Draw call redundant.

If you really have something to put into a window’s interior, you
won’t want to call the inherited Draw method anyway. Calling
TView.Draw will tend to cause flickering, because parts of the
interior are being drawn more than once.

As an exercise, you might try recompiling TVGUID05.PAS with
the call to TView.Draw commented out. Then move and resize the
window. This should make quite clear why a view needs to take
responsibility for covering its entire region!

Turbo Vision calls a view’s Draw method whenever the user
opens, closes, moves, or resizes views. If you need to ask a view

Chapter 2, Writing Turbo Vision applications 37

A better way to Write

A simple file
viewer

Warning!

This is TVGUIDOG.PAS.

to redraw itself, call DrawView instead of Draw. DrawView draws
the view only if it is exposed. This is important: You override
Draw, but never call it directly; you call DrawView, but you never
override it!

While you can make Turbo Pascal’s Write procedure work in
Turbo Vision, it is the wrong tool for the job. First, if you simply
write something, there’s no way you can keep a window or other
view from eventually coming along and obliterating it. Second,
you need to write to the current view’s local coordinates, and clip
to the view’s boundary. Third, there is the question of what color
to use when writing.

Turbo Vision’s WriteStr not only knows how to write with local
coordinates and how to be clipped by the view’s boundaries, but
also how to use the view’s color palette. The WriteStr procedure
takes x- and y-coordinates, the string to be written, and a color
index as parameters.

Similar to WriteStr is WriteChar, defined as
WriteChar (X, Y, Ch, Color, Count)

Like WriteStr, WriteChar positions its output at x- and y-
coordinates within the view, and writes Count copies of the
character Ch in the color indicated by the Color’th entry in the
view’s palette.

Each of these Write methods should only be called from within a
view’s Draw method. That’s the only place you need to write

anything in Turbo Vision.

In this section you’ll add some new functionality to your window

and put something real in the interior. You'll add methods to read
a text file from disk and display it in the interior.

This program will display some “garbage” characters. Don’t
worry—we did that on purpose!

const

MaxLines = 100; { This is an arbitrary number of lines }
var

LineCount: Integer;

Lines: array(0..MaxLines ~ 1] of PString;

PInterior = “TInterior;

Turbo Vision Guide

TInterior = object (TView)
constructor Init(var Bounds: TRect);
procedure Draw; virtual;

end;

procedure TInterior.Draw; { this will look ugly! }
var
Y: Integer;
begin
for Y := 0 to Size.Y - 1 do { simple line counter }
begin
WriteStr(0, Y, Lines[Y]*, $01); { write each line }
end;
end;

procedure ReadFile;
var
F: Text;
S: String;
begin
LineCount := 0;
Assign(F, FileToRead);

Reset (F);
while not Eof (F) and (LineCount < MaxLines) do
begin
ReadLn(F, S);
Lines[LineCount] := NewStr(S);
Inc (LineCount);
end;
Close(F);
end;

procedure DoneFile;
var
I: Integer;
begin
for I := 0 to LineCount - 1 do
if Lines[I] <> nil then DisposeStr(Lines[i]);
end;

Reading a text file Your application needs to call ReadFile to load the text file into the
array Lines, and DoneFile after executing to deallocate the space
used by Lines.

In ReadFile, the Turbo Vision global type PString is a string
pointer. Turbo Vision also supplies a function called NewStr that
stores a string on the heap and returns a pointer to it. Even
though NewStr returns a pointer, don’t use Dispose to get rid of it.

Chapter 2, Writing Turbo Vision applications 39

Buffered drawing

40

The draw buffer

MaxViewWidth is 132
characters.

This is TVGUIDO7.PAS

Always use the companion procedure DisposeStr to deallocate the
string.

You will notice that when you run this program, there are
“garbage” characters displayed on the screen where there should
be empty lines. That’s a result of the incomplete Draw method. It
violates the principle that a view’s Draw method needs to cover
the entire area for which the view is responsible.

Also, the text array Lines is not really in the proper form to be
displayed in a view. Text typically consists of variable length
strings, many of which will be of zero length. Because the Draw
method needs to cover the entire area of the interior, the text lines
need to be padded to the width of the view.

To take care of this, create a new Draw that assembles each line in
a buffer before writing it in the window. TDrawBuffer is a global

type:
TDrawBuffer = array(0..MaxViewWidth-1] of Word;

TDrawBuffer holds alternating attribute and character bytes.

The new Tinterior.Draw looks like this:

procedure TInterior.Draw; { corrected Draw method }
var
Color: Byte;
Y: Integer;
B: TDrawBuffer;
begin
Color := GetColor(l);
for Y := 0 to Size.Y - 1 do
begin
MoveChar (B, ’ ', Color, Size.X); { £il1l line with spaces }
if (Y < LineCount) and (Lines([Y] <> nil) then
MoveStr (B, Copy(Lines([Y]*, 1, Size.X), Color); { copy in text }
WriteLine(0, Y, Size.X, 1, B); { write the line }
end;
end;

Figure 2.4 shows TVGUID07 with several windows open.

Turbo Vision Guide

Figure 2.4
Multiple file views

Moving text into a
buffer

Wiriting buffer contents

File Window
Demo Window 1

Turbo Pascal 6.0 [[{ssksanisrinshinishinshrxhririihihihkihiihkkin
Demo program from }

Turbo Pascal 6.0

Copyright (c) 1990 Demo program from the Turbo Vision Guide

KA K EIAKKKIIAK { Copyright (c) 1990 by Borland International
program TVGUIDO7;

——

KEKKKKAKRKKRRKRKKKIARKRIKRRKKKKIRRRkKKhARXRRkhR kKX E
i

uses Objects, Drivers,

const
MaxLines = 100;

{*********************

Demo Window 4({ Turbo Pascal 6.0
e e 1 Demo program from

sion Guide }
— Turbo Pascal 6.0
Alt-X Exit F4 New Al1t-F3 Close

Draw first uses a MoveChar call to move Size.X number of spaces
(the width of your interior) of the proper color into a TDrawBuffer.
Now every line it writes will be padded with spaces to the width
of the interior. Next, Draw uses MoveStr to copy a text line into the
TDrawBuffer, then displays the entire buffer with a WriteLine call.

Turbo Vision supplies four global procedures for moving text into
a TDrawBuffer: MoveStr, which you just looked at, and MoveChar,
MoveCStr, and MoveBuf, which move characters, control strings
(strings with tildes for menus and status items), and other buffers,
respectively, into a buffer. All these procedures are explained in
detail in Chapter 14, “Global reference.”

Turbo Vision provides two different procedures for writing the
contents of a buffer to a view. One, WriteLine(X, Y, W, H, Buf), was
shown in TVGUIDO07.

In Tinterior.Draw, WriteLine writes TDrawBuffer on one line. If the
fourth parameter, H (for height), is greater than 1, WriteLine
repeats the buffer on subsequent lines. Thus, if Buf holds “Hello,
World!”, Writeline (0, 0,13, 4,Buf) will write

Hello, World!
Hello, World!
Hello, World!
Hello, World!

Chapter 2, Writing Turbo Vision applications 41

Knowing how much to

42

write

Scrolling up and
down

This is TVGUIDO8.PAS

The other procedure, WriteBuf(X, Y, W, H, Buf), will also write a
rectangular area of the screen. W and H refer to the width and
height of the buffer. If Buf holds “ABCDEFGHIJKLMNOP”,
WriteBuf(0,0,4,4,Buf) will write

ABCD
EFGH
IJKL
MNOP

Unlike their non-buffered counterparts, WriteStr and WriteChar,
you'll notice that you don’t specify the color palette entry to use
when writing a draw buffer. This is because colors are specified
when the text is moved into the buffer, meaning that text with
differing attributes may appear in the same buffer.

Both WriteLine and WriteBuf are explained in detail in Chapter 14,
“Global reference.”

Note that TInterior.Draw draws just enough of the file to fill the
interior. Otherwise, Draw would spend much of its time writing
parts of the file that would just end up being clipped by the
boundaries of TInterior.

If a view requires a lot of time to draw itself, you can first call
GetClipRect. GetClipRect returns the rectangle that is exposed
within the owner, so you only need to draw the part of the view
that is exposed. For example, if you have a complex dialog box
with a number of controls in it, and you move it most of the way
off the screen so you can look at something behind it, calling
GetClipRect before drawing would save having to redraw the
parts of the dialog box that are temporarily off the screen.

Obviously, a file viewer isn’t much use if you can only look at the
first few lines of the file. So next you’ll change the interior to a
scrolling view, and give it scroll bars, so that TInterior becomes a
scrollable window on the textfile. You'll also change
TDemoWindow, giving it a Makelnterior method to separate that
function from the mechanics of opening the window.

type
PInterior = “Tinterior;

Turbo Vision Guide

= TInterior = object (TScroller)
constructor Init (var Bounds: TRect; AHScrollBar, AVScrollBar:

Note that you have PScrollBar);
changed the ancestor of procedure Draw; virtual;
Tinterior! end;

PDemoWindow = “TDemoWindow;
TDemoWindow = object (TWindow)
constructor Init(Bounds: TRect; WinTitle: String; WindowNo:
Word) ;
procedure MakeInterior (Bounds: TRect);
end;

constructor TInterior.Init (var Bounds: TRect; AHScrollBar,
AVScrollBar: PScrollBar);

begin
TScroller.Init (Bounds, AHScrollBar, AVScrollBar);
GrowMode := gfGrowHiX + gfGrowHiY;

SetLimit (128, LineCount); { horizontal, vertical scroll limits }

end;

procedure TInterior.Draw;
var

Color: Byte;

Y, I: Integer;

B: TDrawBuffer;

begin
Color := GetColor($01); { use normal text color }
for Y := 0 to Size.Y - 1 do { still need to count lines }
begin
MoveChar (B, ' ’, Color, Size.X); { fill buffer with spaces }
I := Delta.Y + ¥; { Delta is scroller offset }

if (I < LineCount) and (Lines[I] <> nil) then
MoveStr (B, Copy(Lines[I]*, Delta.X + 1, Size.X), Color);
WriteLine(0, Y, Size.X, 1, B);
end;
end;

procedure TDemoWindow.MakeInterior (Bounds: TRect);
var
HScrollBar, VScrollBar: PScrollBar;
Interior: PInterior;
R: TRect;
begin
VScrollBar := StandardScrollBar (sbVertical);
HScrollBar := StandardScrollBar (sbHorizontal);
Interior := New(PInterior, Init (Bounds, HScrollBar, VScrollBar});
Insert (Interior);
end;

constructor TDemoWindow.Init (Bounds: TRect; WinTitle: String;

Chapter 2, Writing Turbo Vision applications

43

44

Figure 2.5
File viewer with scrolling
interior

WindowNo: Integer);
var
S: string(3];
begin
Str(WindowNo, S);
TWindow.Init (Bounds, WinTitle + ' '’ + S, wnNoNumber);
GetExtent (Bounds) ;
Bounds.Grow (-1,=~1);
MakeInterior (Bounds);
end;

File Window

Demo Window 1
********t***************************************}

{
i Turbo Pascal 6.0
E Demo program from the Turbo Vision Guide

{ Copyright (c) 1990 by Borland International

(***************************’kt*******************) po
program TVGUIDOS; =[a]== Demo Window 3 ==[*]=;
PInterior = ~“TInterior;
uses Objects, Drivers, Views, TInterior = objectSTScrolle 5
constructor Init{var Boun ndow
AVScrol1Bar: PScrollBargollBar: PScrollB
procedure Draw; virtual; s

end;

Ter.Init(Bounds
de := gfGrowHiX
s := Options or

PDemoWindow = ~TDemoWindow;
it(128, LineCou

TDemoWindow = object (TWindo
constructor Init(Bounds:
procedure MakeInterior(Bo'

re TInterior.Dra

The horizontal and vertical scroll bars are initialized and inserted
in the group, and then are passed to TScroller in its initialization.

A scroller is a view designed to display part of a larger virtual
view. A scroller and its scroll bars cooperate to produce a

sscrollable view with remarkably little work by you. All you have

to do is provide a Draw method for the scroller so it displays the
proper part of the virtual view. The scroll bars automatically
control the scroller values Delta.X (the column to begin
displaying) and Delta.Y (the first line to begin displaying).

You must override a TScroller's Draw method in order to make a
useful scroller. The Delta values will change in response to the
scroll bars, but it won’t display anything by itself. The Draw
method will be called whenever Delta changes, so that is where
you need to put the response to Delta.

Turbo Vision Guide

Multiple views in a

window Next, you duplicate the interior and create a window with two
scrolling views of the text file. The mouse or the tab key
automatically selects one of the two interior views. Each view
scrolls independently and has its own cursor position.

To do this, you add a bit to the Makelnterior method so it knows
which side of the window the interior is on (since the different
sides behave a bit differently), and you make two calls to
Makelnterior in TDemoWindow.Init.

= procedure TDemoWindow.MakeInterior (Bounds: TRect; Left: Boolean);
var
Be sure to change the Interior: Plnterior;
declaration of Makelnterior! R: TRect;
begin

Interior := New(PInterior, Init (Bounds,
StandardScrollBar (sbHorizontal),
StandardScrollBar (sbVertical)));

if Left then Interior”.GrowMode := gfGrowHiY

else Interior”.GrowMode := gfGrowHiX + gfGrowHiY;

Insert (Interior);

end;

This is TVGUIDO9.PAS. constructor TDemoWindow.Init (Bounds: TRect; WinTitle: String;

WindowNo: Word);

var
S: string(3];
R: TRect;

begin
Str (WindowNo, S);
TWindow.Init (Bounds, WinTitle + ' ’ + S, wnNoNumber);
GetExtent (Bounds) ;
R.Assign(Bounds.A.X, Bounds.A.Y, Bounds.B.X div 2 + 1, Bounds.B.Y);
MakeInterior (R, True);
R.Assign(Bounds.B.X div 2, Bounds.A.Y, Bounds.B.X, Bounds.B.Y);
MakeInterior (R,False);

end;

Chapter 2, Writing Turbo Vision applications 45

Figure 2.6
Window with multiple panes

=

Remember to add Sizelimits
to TDemoWindow. It virtuall
This is TVGUID10.PAS.

Where to put the
functionality

46

=[n] Demo Window 1
procedure DoneFile;
ineCount: Integer; var
ines: array[0..MaxLin| I: Integer;
begin
for I := 0 to LineCount - 1
if Lines[I] <> ni1 then Di

(1=
A

e

MyApp = object(TAppli
procedure HandleEven|end;
procedure InitMenuBa
procedure InitStatus|{ TInterior } i
procedure NewDialog; (constructor TInterior.Init(varg
procedure NewWindow;| AVScrollBar: PScrollBar); =&
nd; begin

TScroller.Init(Bounds, AHSc

Opti := Options ofFraTI

Interior = ~TInterior

Note that you've changed Makelnterior both in style and in
substance. Instead of declaring two static scroll bars and then
passing them to the Init method, you simply included the
StandardScrollBar calls as parameters to Init. The earlier style is
somewhat clearer; the latter is a bit more efficient.

If you shrink down the windows in TVGUID09.PAS, you'll notice
that the vertical scroll bar gets overwritten by the left interior
view if you move the right side of the window too close to the
left. To get around this, you can set a limit on how small you're
allowed to make the window. You do this by overriding the
TWindow method SizeLimits.

procedure TDemoWindow.SizeLimits(var Min, Max: TPoint);
var R: TRect;
begin
TWindow.SizeLimits (Min, Max);
GetExtent (R);
Min.X := R.B.X div 2;
end;

Note that you do not have to call SizeLimits. You just override it,
and it will be called at the appropriate times. This is the same
thing you did with the Draw method: You told the view how to
draw itself, but not when. Turbo Vision already knew when to call
Draw. The same applies to SizeLimits: You set the limits, and the
view knows the appropriate times to check them.

You've now created a window with a number of views: a frame
and two scrolling interiors, each with two scroll bars. You're on
your way to creating a window that can carry out specific
functions in an application.

Turbo Vision Guide

How do you proceed? Suppose you want to turn your window
into a full-fledged text editor. Since the window has two views,
you may be tempted to put some of the text-editing functionality
into the group, and then have the group communicate with the
two views. After all, a group’s job is to manage views. Isn't it
natural for it to be involved in all the work?

While a group is as capable of being extended as any view, and
you can put any functionality in it that you wish, your Turbo
Vision applications will be more robust and flexible if you follow
these two pointers: keep objects as autonomous as possible, and keep
groups (such as windows) as dumb and devoid of additional
functionality as possible.

Thus, you'd build the text editor by putting all the functionality
into the interior view: Create a text editor view type. Views can be
easily reusable if you design them properly, and moving your text
editor into a different environment wouldn’t be very easy if its
editing functionality were divided between a group and a view.

Making a dialog box

Objects used:
TView

TGroup
IDialog
TCluster
TCheckBoxes
TRadlioButtons
TLabel
TinputLine

This is TVGUID11.PAS

A dialog box is just a special kind of window. In fact, TDialog is a
descendant of TWindow, and though you can treat it as just
another window, you will usually do some things differently.

Building on your demonstration program, you’ll add a new menu
item that generates a command to open a dialog box, add a
method to your application that knows how to do that, and add a
line to the application’s HandleEvent method to link the command
to the action.

Note that you do not need to derive a new object type from
TDialog as you did with TWindow (to produce TDemoWindow).
Rather than creating a special dialog box type, you’ll add the
intelligence to the application: Instead of instantiating a dialog
box object that knows what you want it to do, you'll instantiate a
generic dialog box and fell it what you want it to do.

You will rarely find it necessary to create a descendant of TDialog,
since the only difference between any two dialog boxes is what
they contain, not how the dialog boxes themselves work.

const
cmNewDialog = 200;

Chapter 2, Writing Turbo Vision applications 47

procedure TMyApp.InitMenuBar;
var R: TRect;
begin
GetExtent (R);
R.B.Y := R.A.Y + 1;
MenuBar := New(PMenuBar, Init(R, NewMenu(

NewSubMenu (' ~F~ile’, hcNoContext, NewMenu(
NewItem(’~O~pen’, 'F3’, kbF3, cmFileOpen, hcNoContext,
Newltem(’~N~ew’, 'F4’, kbF4, cmNewWin, hcNoContext,
NewLine (

NewItem(’E~x~it’, ’‘Alt-X’, kbAltX, cmQuit, hcNoContext,
nil))))),

NewSubMenu (’ ~W~indow’, hcNoContext, NewMenu (
NewItem(’~N~ext’, 'F6’, kbF6, cmNext, hcNoContext,
NewItem(’~Z~oom’, ‘F5’, kbF5, cmZoom, hcNoContext,
NewItem(’~D~ialog’, 'F2’, kbF2, cmNewDialog, hcNoContext,
nil)))),

nil))

)i

end;

procedure TMyApp.NewDialog;

var
Dialog: PDialog;
R: TRect;

begin

R.Assign(0, 0, 40, 13);
R.Move (Random(39), Random{10));
Dialog := New(PDialog, Init(R, 'Demo Dialog’)});
DeskTop”.Insert (Dialog);
end;

procedure TMyApp.HandleEvent (var Event: TEvent);
begin
TApplication.HandleEvent (Event);
if Event.What = evCommand then
begin
case Event.Command of
coNewWin: NewWindow;
cmNewDialog: NewDialog;
else
Exit;
end;
ClearEvent (Event);
end;
end;

48 Turbo Vision Guide

Figure 2.7
Simple dialog box

Modal views are discussed in
Chapter 4, "Views.”

Executing a
modal dialog box

This is TVGUID12.PAS

=[I]

Demo Dialog Box =——=——==

There are really very few differences between this dialog box and
your earliest windows, except for the following;:

m The default color of the dialog box is gray instead of blue.
m The dialog box is not resizable or zoomable.
m The dialog box has no window number.

Note that you can close the dialog box either by clicking on its
close icon, clicking the Al-F3 status line item, or pressing the Esc
key. By default, the Esc key cancels the dialog box.

This is an example of what is called a non-modal (or “modeless”)
dialog box. Dialog boxes are usually modal, which means that they
define a mode of operation. Usually when you open a dialog box,
the dialog box is the only thing active: it is the modal view.

Clicking on other windows or the menus will have no effect as
long as you are in the dialog box’s mode. There may be occasions
when you want to use non-modal dialog boxes, but in the vast
majority of cases, you will want to make your dialog boxes modal.

So how do you make your dialog box modal? It’s really very easy.
Instead of inserting the dialog box object into the desktop, you
execute it, by calling the DeskTop”.ExecView function:

procedure TMyApp.NewDialog;
var
Dialog: PDialog;
R: TRect;
Control: Word;
begin
R.Assign(0, 0, 40, 13);
R.Move (Random(39) , Random(10));
Dialog := New(PDialog, Init(R, ‘Demo Dialog’));
Control := DeskTop”.ExecView(Dialog);
end;

Chapter 2, Writing Turbo Vision applications 49

Taking control

Command handling is

explained more in Chapter 5,
“Event-driven programming.”

50

Button, button...

A TDialog already knows how to respond to an Esc key event
(which it turns into a cmCancel command) and an Enfer key event
(which will be handled by the dialog box’s default TButton). A
dialog box always closes in response to a cmCancel command.

Calling ExecView both inserts the dialog box into the group and
makes the dialog box modal. Execution remains in ExecView until
the dialog box is closed or canceled. ExecView then removes the
dialog box from the group and exits. For the moment, you'll
ignore the value returned by the ExecView function and stored in
Control. You'll make use of this value in TVGUID16.

Of course, a dialog box with nothing in it is not much of a dialog
box! To make this interesting, you need to add controls. Controls
are various elements within a dialog box that allow you to
manipulate information. The important thing to remember about
controls is that they only affect things within the dialog box.

The only exception to this rule is the case of a button in a
modeless dialog box. Because buttons generate commands, those
commands will spread downward from the current modal view.
If the dialog box is not the modal view, those commands will go
to places outside the dialog box, which may have unintended
effects.

In general, when setting up controls in a dialog box, you can
separate the visual presentation from the handling of data. This
means you can easily design an entire dialog box without having
to create the code that sets up or uses the data provided in the
dialog box, just as you were able to set up menus and status items
without having code that acted on the commands generated.

One of the simplest control objects is the TButton. It works very
much like a fancy status line item: It’s a colored region with a text
label on it, and if you click on it, it generates a command. There is
also a shadow “behind” the button, so that when you click on the
button it gives a sort of three-dimensional movement effect.

Most dialog boxes have at least one or two buttons. The most
common are buttons for “OK” (meaning “I'm done. You may
close the dialog box and accept the results.”) and “Cancel”
(meaning “I want to close the dialog box and ignore any changes

Turbo Vision Guide

This is TVGUID 13.PAS

Figure 2.8
Dialog box with buttons

made in it.”). A Cancel button will usually generate the same
cmCancel command that the close icon produces.

The Dialogs unit defines five standard dialog commands that can
be bound to a TButton: cmOK, cmCancel, cmYes, cmNo, and
cmDefault. The first four commands also close the dialog box by
having TDialog call its EndModal method, which restores the
previous modal view to modal status.

You can also use buttons to generate commands specific to your
application.

procedure TMyApp.NewDialog;
var
Dialog: PDialog;
R: TRect;
Control: Word;
begin
R.Assign(20, 6, 60, 19);
Dialog := New(PDialog, Init(R, ’Demo Dialog’));
with Dialog” do
begin
R.Assign(15, 10, 25, 12);
Insert (New (PButton, Init(R, '~0~K’, cmOK, bfDefault)));
R.Assign(28, 10, 38, 12);
Insert (New(PButton, Init (R, ’Cancel’, cmCancel, bfNormal)));
end;
Control := DeskTop".ExecView(Dialog);
end;

Creating a button requires four parameters for the Init
constructor:

1. the region the button will cover (Remember to leave room for
the shadow!)

2. the text that will appear on the button
3. the command to be bound to the button
4. a flag indicating the type of button (normal or default)

=[n]

Demo Dialog Box

0K i Cancel 1

Chapter 2, Writing Turbo Vision applications 51

Normal and default
buttons

Focused controls

Labels are discussed later in

52

this chapter.

Tab order is important!

Notice that you didn’t highlight the “C” in “Cancel” because
there is already a hot key (Esc) for canceling the dialog box. This
leaves C available as a shortcut for some other control.

Whenever you create a button, you give it a flag, either bfNormal
or bfDefault. Most buttons will be bfNormal. A button flagged with
bfDefault will be the default button, meaning that it will be
“pressed” when you press the Enter key. Turbo Vision does not
check to ensure that you have only one default button—that is
your responsibility. If you designate more than one default
control, the results will be unpredictable.

Usually, the “OK” button in a dialog box is the default button,
and users become accustomed to pressing Enter to close a dialog
box and accept changes made in it.

Notice that when a dialog box is open, one of the controls in it is
always highlighted. That is the active, or focused, control. Focus of
controls is most useful for directing keyboard input and for
activating controls without a mouse. For example, if a button has
the focus, the user can “press” the button by pressing Spacebar.
Characters can only be typed into an input line if the input line
has the focus.

The user can press the Tab key to move the focus from control to
control within the dialog box. Labels won’t accept the focus, so
the Tab key skips over them.

You will want the user to be able to Tab around the dialog box in
some logical order. The Tab order is the order in which the objects
were inserted into the dialog box. Internally, the objects owned by
the dialog box are maintained in a circular linked list, with the last
object inserted linked to the first object.

By default, the focus ends up at the last object inserted. You can
move the focus to another control either by using the dialog box’s
SelectNext method or by calling the control’s Select method
directly. SelectNext allows you to move either forward or
backward through the list of controls. SelectNext(False) moves you
forward through the circular list (in Tab order); SelectNext(True)
moves you backward.

Turbo Vision Guide

Take your pick

Often, the choices you want to offer your users in a dialog box are
not simple ones that can be handled by individual buttons. Turbo
Vision provides several useful standard controls for allowing the
user to choose among options. Two of the most useful are check
boxes and radio buttons.

Check boxes and radio buttons function almost identically, with
the exception that you can pick as many (or as few) of the check
boxes in a set as you want, but you can pick only one (and exactly
one) radio button. The reason the two sets appear and behave so
similarly is that they both derive from a single Turbo Vision
object, the TCluster.

If you're not familiar with the concept of check boxes and radio
buttons, you might look at the Options menu in the Turbo Pascal
integrated environment. Many of the dialog boxes brought up by
that menu feature cluster controls.

Creating a cluster There is probably no reason you would ever want to create an
instance of a plain TCluster. Since the process for setting up a
check box cluster is the same as that for setting up a cluster of
radio buttons, you only need to look at the process in detail once.

Add the following code to the TMyApp.NewDialog method, after
the dialog box is created but before the buttons are added. Keep
the buttons as the last items inserted so they will also be last in

Tab order.
[1 Hvarti var)
[] Tilset B: PView;
L 1 Jarlsberg R.Assign(3, 3, 18, 6);

B := New(PCheckBoxes, Init(R,
NewSItem(’~H~varti’,
NewSItem(’~T~ilset’,
NewSItem(’~J~arlsberg’,
nil)))

))i:

Insert (B);

The initialization is quite simple. You designate a rectangle to
hold the items (remembering to allow room for the check boxes
themselves), and then create a linked list of pointers to strings
that will show up next to the check boxes, terminated by a nil.

Chapter 2, Writing Turbo Vision applications 53

54

Check box values

One more cluster

§

Solid
Runny
Melted

The preceding code creates a set of check boxes with three
choices. You may have noticed that you gave no indication of the
settings for each of the items in the list. By default, they will all be
unchecked. But often you will want to set up boxes where some
or all of the entries are already checked. Rather than assigning
values when you set up the list, Turbo Vision provides a way to
set and store values easily, outside the visual portion of the
control..

A set of check boxes may have as many as 16 entries. Since you
have up to 16 items that may be checked either on or off, you can
represent the information as a single 16-bit word, with each bit
corresponding to one item to be checked.

After you finish constructing the dialog box as a whole, you will
look at how to set and read the values of all the controls. For now,
concentrate on getting the proper controls in place.

Before moving on, however, add a set of radio buttons to the
dialog box so you can compare them with check boxes. The
following code sets up a set of three radio buttons next to your
check boxes:

R.Assign(, , ,):

B := New(PRadioButtons, Init (R,
NewSItem(’~S~olid’,
NewSItem(’~R~unny’,
NewSItem(’~M~elted’,
nil)))

)i
Insert (B);

The main differences you will note between the check boxes and

the radio buttons are that you can only select one radio button in
the group, and the first item in the list of radio buttons is selected
by default.

Since you don’t need to know the state of every radio button (only
one can be on, so you only need to know which one it is), radio
button data is not bitmapped. This means you can have more than
just 16 radio buttons, if you choose, but since the data is still
stored, you are limited to 65,536 radio buttons per cluster. This
should not be a serious impediment to your design. A value of
zero indicates the first radio button is selected, a one indicates the
second button, a two the third, and so on.

Turbo Vision Guide

Labeling the

controls of course, setting up controls may not be sufficient. Simply
offering a set of choices may not tell the user just what he is
choosing! Turbo Vision provides a handy method for labeling
controls in the form of another control, the TLabel.

There’s more to the TLabel than appears at first glance. A TLabel
not only displays text, it is also bound to another view. Clicking
on a label will move the focus to the bound view. You can also
define a shortcut letter for a label by surrounding the letter with
tildes (~).

To label your check boxes, add the following code right after you
insert the check boxes into the dialog box:

R.Assign{2, 2, 10, 3);
Insert (New(PLabel, Init(R, ’Cheeses’, B)));:

You can now activate the set of check boxes by clicking on the
word “Cheeses.” This also lets the uninformed know that the
items in the box are, in fact, cheeses.

Similarly, you can add a label to your radio buttons with the
following code:

This is TVGUID 14.PAS R.Assign(Zl, 2, 33, 3);
Insert (New(PLabel, Init(R, ’Consistency’, B)));

Figure 2.9 =

Demo Dialog Box

Dialog box with labeled Cheeses Consistency
clusters added Hvarti Q) Solid

[] Tilset () Runny

[] Jarlsberg () Melted

0k 1 Cancel 1

The input line

object There is one other fairly simple kind of control that you can add
to your dialog box: an item for editing string input, called an input
line. Actually, the workings of the input line are fairly complex,
but from your perspective as a programmer, TInputLine is a very
simple object to use.

Chapter 2, Writing Turbo Vision applications 56

56

This is TVGUID15.PAS

Figure 2,10
Dialog box with input line
added

Setting and
getting data

Add the following code after the code for labeling the radio
buttons and before you execute the dialog box:

R.Assign(3, 8, 37, 9);

B := New(PInputLine, Init(R, 128));

Insert (B);

R.Assign(2, 7, 24, 8);

Insert (New(PLabel, Init(R, ’Delivery instructions’, B))):

Setting up an input line is simplicity itself: You assign a rectangle
that determines the length of the input line within the screen. The
only other parameter required is one defining the maximum
length of the string to be edited. That length may exceed the
displayed length because the TInputLine object knows how to
scroll the string forward and backward. By default, the input line
can handle keystrokes, editing commands, and mouse clicks and
drags.

=[1]

Cheeses Consistenc,
Hvarti Q) Solid

[] Tilset () Runny
[] Jarisberg () Melted

Delivery instructions

Demo Dialog Box ==——=

Ok 3 Cancel 1

The input line also has a label for clarity, since unlabeled input
lines can be even more confusing to users than unlabeled clusters.

Now that you have constructed a fairly complex dialog box, you
need to figure out how to use it. You have set up the user interface
end; now you need to set up the program interface. Having
controls isn’t much help if you don’t know how to get
information from them!

There are basically two things you need to be able to do: Set the
initial values of the controls when the dialog box is opened, and
read the values back when the dialog box is closed. Note that you
don’t want to modify any data outside the dialog box until you
successfully close the box. If the user decides to cancel the dialog
box, you have to be able to ignore any changes made while the
dialog box was open.

Turbo Vision Guide

Luckily, Turbo Vision facilitates doing just that. Your program
hands a record of information to a dialog box when it is opened.
When the user ends the dialog box, your program needs to check
to see if the dialog box was canceled or closed normally. If it was
canceled, you can simply proceed, without modifying the record.
If the dialog box closed successfully, you can read back a record
from the dialog box in the same form as the one given to it.

The methods SetData and GetData are used to copy data to and
from a view. Every view has both a SetData and GetData method.

When a group (such as TDialog) is initialized through a SetData
call, it passes the data along by calling each of its subviews’
SetData methods.

When you call a group’s SetData, you pass it a data record that
contains the data for each view in the group. You need to arrange

= each view’s data in the same order as the group’s views were
inserted.

You also need to make the data the proper size for each view.
Every view has a method called DataSize which returns the size of
the view’s data space. Each view copies DataSize amount of data
from the data record, then advances a pointer to tell the next view
where to begin. If a subview’s data is the wrong size, each
subsequent subview will also copy invalid data.

If you create a new view and add data fields to it, don’t forget to
override DataSize, SetData, and GetData so that they handle the
proper values. The order and sizes of the data in the data
structure is entirely up to you. The compiler will return no errors
if you make a mistake.

After the dialog box executes, your program should first make
sure the dialog box wasn’t canceled, then call GetData to import
the dialog box’s information back into your application.

So, in your example program, you initialize in turn a cluster of
check boxes, a label, a cluster of radio buttons, a label, an input
line of up to 128 characters, a label, and two buttons (Ok and
Cancel). Table 2.1 summarizes the data requirements for each of
these.

Chapter 2, Writing Turbo Vision applications &7

Table 2.1

Data for dialog box controls

58

This is TVGUID16.PAS

Control Data required
check boxes Word

label none

radio buttons Word

label none

input line string[128]
label none

button none

button none

Views that have no data (such as labels and buttons) use the
GetData method they inherit from TView, which does nothing at
all, so you don’t need to concern yourself with them here. This
means that when getting and setting data, you can skip over
labels and buttons.

Thus, you are only concerned with three of the views in the dialog
box: the check boxes, the radio buttons, and the input line. As
noted earlier, each of the cluster items stores its data in a Word-
type field. The input line’s data is stored in a string. You can set
up a data record for this dialog box in a global type declaration:

DialogData = record
CheckBoxData: Word;
RadioButtonData: Word;
InputLineData: string(128];

end;

Now all you have to do is initialize the record when you start up
the program (MyApp.Init is a good place), set the data when you
enter the dialog box, and read it back when the dialog box closes
successfully. It's almost easier to say that in Pascal than it was in
English! Once you've declared the type as we did here, you
declare a global variable:

var
DemoDialogData: DialogData;

then add one line before executing the dialog box and one after:

Dialog”.SetData (DemoDialogData);
Control := DeskTop”.ExecView(Dialog);
if Control <> cmCancel then Dialog”.GetData(DemoDialogData);

and add six lines to the TMyApp.Init method to set the initial
values for the dialog box:

with DemoDialogData do

Turbo Vision Guide

begin
CheckboxData := 1;
RadioButtonData := 2;

InputlineData := ‘Phone home.’;
end;
Figure 211 =[] Demo Dialog Box
Dialog box with initial values Cheeses Consistency
set X] Hvarti Solid
[] Tilset ()} Runny
[] Jarlsberg (@) Melted

Delivery instructions
Phone home.

0k 1 Cancel 1

Now any changes you make to the dialog box should be there
when you reopen it, as long as you didn’t cancel the dialog.

One of the things we learned as we wrote the Turbo Pascal
integrated environment was that it is a good idea to have your
program store information that gets altered by a dialog box in the
form of a record that can be used for setting or getting data from
the dialog box. This keeps you from having to construct lots of
data records from discrete variables every time you want to open
a dialog box, and from having to disperse the information
returned from a dialog box to various variables when it’s done.

Shortcut keys and

conflicts By default, labels, check boxes and radio buttons can respond to
shortcut keys even when the focus is elsewhere within the dialog.
For example, when your example dialog box first opens, the focus
is in the check boxes, and the cursor is on the first check box.
Pressing an M for “Melted” will immediately move the focus to
the Melted radio button and turn it on.

While you obviously want shortcut keys to be as mnemonic as
possible, there are only 26 letters and 10 digits available. This may
cause some conflicts. For example, in your little dialog box it
would make sense to have C as the shortcut for “Cheeses,”
“Consistency,” and maybe a cheese called “Cheddar.” There are a
couple of ways to deal with such situations.

First, while it is nice to have the first letter of a word be the
shortcut, it is not always possible. You can resolve the conflict
between “Cheeses” and “Consistency,” for example, by making O
the shortcut for “Consistency,” but the result is not as easy to

Chapter 2, Writing Turbo Vision applications 59

60

The Options field and the
ofPostProcess bit are both
explained in Chapfer 4.

See the "Phase” section in
Chapter 5 for more
explanation.

remember. Another way, of course, is to relabel something.
Instead of the label “Cheeses,” you could label that cluster “Kind
of Cheese,” with K as the shortcut.

This sort of manipulation is the only way around conflicts of
shortcut keys at the same level. However, there is another
approach you can take if the conflict is between, say, a label and a
member of a cluster: Shortcut keys can be made local within a
dialog box item. In the previous example, for example, if you
localize the shortcuts within each cluster, pressing M when the
check boxes are focused will not activate the “Consistency”
buttons or the “Melted” button. M would only function as a
shortcut if you clicked or Tabbed into the “Consistency” cluster
first.

By default all shortcut keys are active over the entire dialog box. If
you want to localize shortcuts, change the default Options field for
the object you are about to insert into the dialog box. For example,
if you want to make the shortcuts in your check boxes local, you
would add another line before inserting into the dialog box:

R.Assign(3, 3, 18, 6);

B := New(PCheckBoxes, Init (R,
NewSItem(’~H~varti’,
NewSItem({’~T~ilset’,
NewSItem(’~J~arlsberg’,
nil)))

)i

B*.Options := B*.Options and not ofPostProcess;
Insert (B);

Now the H, T, and J shortcut keys only operate if you click or Tab
into the “Cheeses” cluster first. Alf-H, Alf-T, and Alf-J will continue to
function as before, however.

Keep in mind that a label never gets the focus. Therefore, a label
must have its ofPostProcess bit on for its shortcut to operate.

Having ofPostProcess set means that the user can enter information
in a dialog box quickly. However, there are some possible
drawbacks. A user may press a shortcut key expecting it to go to
one place, but because of a conflict it goes somewhere else.
Similarly, if the user expects shortcut keys to be active, but they're
only active locally, it could be confusing to have a shortcut key do
nothing when it is pressed outside the area where it is active.

The best advice we can give you is to test your dialog boxes
carefully for conflicts. Avoid having duplicate shortcut keys when

Turbo Vision Guide

Ending the dialog
box

possible, and always make it clear to the user which options are
available.

When you are through with the dialog box, you call Dispose(D,.
Done). Calling Done also removes the dialog box from the desktop.

Other dialog box controls

Static text

List viewer

List box

The Dialogs unit has some additional ready-made parts that
weren't used in this example. They are used in the same way as
the items you did use: You create a new instance, insert it into the
dialog box, and include any appropriate data in the data record.
This section will just describe briefly the functions and usage of
each one. Much more detail is contained in Chapter 13, “Object
reference.” ‘

TStaticText is a view that simply displays the string passed to it.
The string is word wrapped within the view’s rectangle. The text
will be centered if the string begins with a Ctr-C and line breaks
can be forced with Cir-M. By default, the text can’t get the focus,
and of course, the object gets no data from the data record.

A TListViewer will display a single or multiple column list, from
which the user can select items. A ListViewer can also
communicate with two scroll bars.

TListViewer is meant to be a building block, and is not usable by
itself. It has the ability to handle a list, but does not itself contain a
list. Its abstract method GetText loads the list members for its
Draw method. A working descendant of TListViewer needs to
override GetText to load actual data.

TListBox is a working descendant of TListViewer. It owns a
TCollection that is assumed to be pointers to strings. TListBox only
supports one scroll bar. An example of a list box is the file

Chapter 2, Writing Turbo Vision applications » 61

History

selection list in the Turbo Pascal integrated environment, or the
file list used by TFileDialog in STDDLG.PAS.

Getting and setting data with list boxes is greatly facilitated by the
use of the TListBoxRec record type, which holds a pointer to a
collection containing the list of strings to be displayed and a word
indicating which item is currently selected in the list.

THistory implements an object that works together with an input
line and a related list box. By clicking on the arrow icon next to
the input line, the user brings up a list of previous values given
for the input line, any of which may then be selected. This saves
on repetitive typing.

THistory objects are used in many places in the Turbo Pascal
integrated environment, such as the File | Open dialog box and in
the Search | Find dialog box.

Standard dialog boxes

62

The StdDIg unit contains a pre-built dialog called TFileDialog. You
use this dialog box in the integrated environment when you open
a file. TFileDialog uses a number of further objects, also in the
StdDIg unit, which you may find useful:

TFileInputLine = object (TInputLine)
TFileCollection = object (TSortedCollection)
TSortedListBox = object (TListBox)

TFilelist = object (TSortedListBox)
TFileInfoPane = object (TView)

Because the source for the entire standard Dialogs unit is included,
we will not describe the objects in detail here.

Turbo Vision Guide

Programming Turbo Vision

63

Turbo Vision Guide

The objecft hierarchy

This chapter assumes that you have a good working knowledge
of Turbo Pascal, especially the object-oriented extensions,
although we do recap some relevant facts about object types. It
also assumes that you have read Part 1 of this book to get an
overview of Turbo Vision’s philosophy, capabilities, and
terminology.

After some general comments on OOP and hierarchies, this
chapter takes you quickly through the Turbo Vision object
hierarchy, stressing how the objects are related through the
inheritance mechanism. By learning the main properties of each
standard object type (many of which are related to the object’s
name in an obvious way), you will gain an insight into how the
inherited and new fields and methods of each object combine to
provide the object’s functionality.

The complete hierarchy tree is shown in Figure 3.1. You'll find
that this picture repays careful study. To know that TDialog, for
example, is derived from TWindow, which is a descendant of
TGroup, which is a descendant of TView, reduces the learning
curve considerably. Each new derived object type you encounter
already has familiar inherited properties; you simply study
whatever additional fields and properties it has over its parent.

Chapter 3, The object hierarchy 65

Figure 3.1

Turbo Vision object hierarchy
TObject—TView

66

—TCollection

—TResourceFile
—TStringlist

-TStrListMaker

—TBackground
—TButton

—TC1 uster——ETCheckBoxes
TRadioButtons
TFrame
—TGroup TDeskTop
ETProgr‘am———-—TApp] jcation
TWi ndow—————I:TDi alog
THistoryWindow

—THistory
—TInputLine

—TListViewer TListBox
ETHi storyViewer

TMenuV1i ew TMenuBar

T I:TMenuBox

—TScroller——————TTextDevice——————TTerminal
-TScrol1Bar
—TStati cText————ETLabe1
TParamText
—TStatusLine

TSortedCollection—TStringCollection—TResourceCollection

—TStream———ETDosStream—TBufStream

TEmsStream

As you develop your own Turbo Vision applications, you will
find that a general familiarity with the standard object types and
their mutual relationships is an enormous help. Mastering the
minute details will come later, but as with all OOP projects, the
initial overall planning of your new objects is the key to success.

There is no “perfect” hierarchy for any application. Every object
hierarchy is something of a compromise obtained by careful
experiment (and a fair amount of intuition acquired with
practice). You can benefit from our experience in developing
object type hierarchies. Naturally, you can create your own base
object types to achieve special effects beyond the standard objects
provided.

Chapter 13, “Object reference,” describes the methods and fields
of each standard object type in depth, but until you acquire an
overall feel for how the hierarchy is structured, you can easily
become overwhelmed by the mass of detail. This chapter presents
an informal browse through the hierarchy before you tackle the

Turbo Vision Guide

detail. The remainder of this part will give more detailed
explanations of the components of Turbo Vision and how to use
them. Part 3 provides alphabetical reference material.

Object typology

Abstract objects

Not all object types are created equal in Turbo Vision. You can
separate their functions into three distinct groups: primitive
objects, view objects, and mute objects. Each of these is described
in a separate section of this chapter.

Within each of these groups there are also different sorts of
objects, some of which are useful objects that you can instantiate
and use, and others of which are abstract objects that serve as the
basis for deriving related, useful objects. Before we look at the
objects in the Turbo Vision hierarchy, it will be helpful to
understand a little about these abstract objects.

Many object types exist as “abstract” bases from which more
specialized and immediately useful object types can be derived.
The reason for having abstract types is partly conceptual but
largely serves the practical aim of reducing coding effort.

Take the TRadioButtons and TCheckBoxes types, for example. They
could each be derived directly from TView without difficulty.
However, they share a great deal in common: They both represent
sets of controls with similar responses. A set of radio buttons is a
lot like a set of check boxes within which only one box can be
checked, although there are a few other technical differences. This
commonality warrants an abstract class called TCluster.
TRadioButtons and TCheckBoxes are then derived from TCluster
with the addition of a few specialized methods to provide their
individual functionalities.

Abstract types are never usefully instantiated. An instance of
TCluster, MyCluster, for example, would not have a useful Draw
method: It inherits TView.Draw without overriding, so
MyCluster.Draw would simply display an empty rectangle of the
default color. If you want a fancy cluster of controls with
properties different from radio buttons or check boxes, you might
try deriving a TMyCluster from TCluster, or it might be easier to
derive your special cluster from TRadioButtons or TCheckBoxes,

Chapter 3, The object hierarchy 67

Abstract methods

depending on which is closer to your needs. In all cases, you
would add fields, and add or override methods, with the least
possible effort. If your plans include a whole family of fancy
clusters, you might find it convenient to create an intermediate
abstract object type.

Whether you can usefully instantiate an object type depends
entirely on the circumstances. Many of Turbo Vision’s standard
types have abstract methods that must be defined in descendant
types. Standard types may also have pseudo-abstract methods
offering minimal default actions that may suit your purposes—if
not, a derived type will be needed.

A general rule is that as you travel down the Turbo Vision
hierarchy, the standard types become more specialized and less
“abstract.” Their names reveal the functionality encapsulated in
their fields and methods. For most applications there will be
obvious base types from which you can create a “standard”
interface: a desktop, menu bar, status line, dialog boxes, and so
on.

Object instantiations and derivations

68

Instantiation

Given any object type there are two basic operations available:
You can create an instance of that type (“instantiate” it), or you
can derive a descendant object type. In the latter case, you have a
new object type on which the previous two operations can again
be applied. Let’s examine these operations in more detail.

Creating an instance of an object is usually accomplished by a
variable declaration, either static or dynamic:

MyScrollBar: TScrollBar;
SomeButton: PButton;

MyScrollBar would be initialized by TScrollBar.Init with certain
default field values. These can be found by consulting the
TScrollBar.Init entry in Chapter 13, “Object reference.” Since
TScrollBar is a descendant of TView, TScrollBar.Init calls TView.Init
to set the fields inherited from TView. Similarly, TView.Init is a

Turbo Vision Guide

Derivation

descendant of TObject, so it calls the TObject constructor to
allocate memory. TObject has no parent, so the buck stops there.

The MyScrollBar object now has default field values which you
may need to change. It also has all the methods of TScrollBar plus
the methods (possibly overridden) of TView and TObject. To make
use of MyScrollBar, you need to know what its methods do,
especially HandleEvent and Draw. If the required functionality is
not defined in TScrollBar, you need to derive a new descendant

type.

You can easily derive a new object type from an existing one:

PNewScrollBar = “TNewScrollBar;
TNewScrollBar = object (TScrollBar)
end;

You do not yet have any instances of this new object type. Before
declaring any TNewScrollBar objects, you need to define new
methods or override some of TScrollBar’s methods and possibly
add some new fields; otherwise there would be no reason to
create a new scroll bar object type. The new or revised methods
and fields you define constitute the process of adding
functionality to TScrollBar. Your new Init method would
determine the default values for your new scroll bar objects.

Turbo Vision methods

Absiract methods

Turbo Vision methods can be characterized in four (possibly
overlapping) ways, each described here.

In the base object type, an abstract method has no defining body
(or a body containing the statement Abstract set to trap illegal
calls). Abstract methods must be defined by a descendant before
they can be used. Abstract methods are always virtual methods.
An example of this is TStream.Read.

Chapter 3, The object hierarchy 69

Pseudo-abstract
methods

Virtual methods

Static methods

In the base object type, a pseudo-abstract method has a minimal
action defined. It will almost always be overridden by a
descendant to be useful, but the method provides a reasonable
default for all objects in the inheritance chain. An example is
TSortedCollection.Compare.

Virtual methods use the virtual directive in their prototype
declarations. A virtual method can be redefined (overridden) in
descendants but the redefined method must itself be virtual and
match the original method’s header exactly. Virtual methods need
not be overridden, but the usual intention is that they will be

overridden sooner or later. An example of this is TView.DataSize.

A static method cannot be overridden per se. A descendant type
may define a method with the same name using entirely different
arguments and return types, if necessary, but static methods do
not operate polymorphically. This is most critical when you call
methods of dynamic objects. For example, if PGeneric is a pointer
variable of type PView, you can assign pointers of any type from
the hierarchy to it. However, when you dereference the variable
and call a static method, the method called will always be TView's,
since that is the type of the pointer as determined at compile time. .
In other words, PGeneric/.StaticMethod is always equivalent to
TView.StaticMethod, even if you have assigned a pointer of some
other type to PGeneric. An example is TView.Init.

Turbo Vision fields

70

If you take an important trio of objects: TView, TGroup, and
TWindow, a glance at their fields reveals inheritance at work, and
also tells you quite a bit about the growing functionality as you
move down the hierarchy (recall that object trees grow downward
from the root!).

Turbo Vision Guide

Table 3.1
Inheritance of view fields

TView fields TGroup fields TWindow fields
Owner Owner Owner
Next Next Next
Origin Origin Origin
Size Size Size
Cursor Cursor Cursor
GrowMode GrowMode GrowMode
DragMode DragMode DragMode
HelpCtx HelpCtx HelpCitx
State State State
Options Options Options
EventMask EventMask EventMask
Buffer Buffer
Phase Phase
Current Current
Last Last
Flags
Title
Number
ZoomRect
Palette
Frame

Notice that TGroup inherits all the fields of TView and adds
several more that are pertinent to group operation, such as
pointers to the current and last views in the group. TWindow in
turn inherits all of TGroup’s fields and adds yet more which are
needed for window operation, such as the title and number of the

window.

In order to fully understand TWindow, you need to keep in mind
that a window is a group and also a view.

Primitive object types

Turbo Vision provides three simple object types that exist
primarily to be used by other objects or to act as the basis of a

hierarchy of more complex objects. TPoint and TRect are used by
all the visible objects in the Turbo Vision hierarchy. TObject is the
basis of the hierarchy.

Note that objects of these types are not directly displayable.
TPoint is simply a screen-position object (X, Y coordinates). TRect
sounds like a view object, but it just supplies upper-left, lower-
right rectangle bounds and several non-display utility methods.

Chapter 3, The object hierarchy 71

Views

TPoint

TRect

TObject

This object represents a point. Its fields, X and Y, define the
cartesian (X,Y) coordinates of a screen position. The point (0,0) is
the topmost, leftmost point on the screen. X increases horizontally
to the right; Y increases vertically downwards. TPoint has no
methods, but other types have methods that convert between
global (whole screen) and local (relative to a view’s origin)
coordinates.

This object represents a rectangle. Its fields, A and B, are TPoint
objects defining the rectangle’s upper-left and lower-right points.
TRect has methods Assign, Copy, Move, Grow, Intersect, Union,
Contains, Equals, and Empty. TRect objects are not visible views
and cannot draw themselves. However, all views are rectangular:
Their Init constructors all take a Bounds parameter of type TRect to
determine the region they will cover. ‘

TObject is an abstract base type with no fields. It is the ancestor of
all Turbo Vision objects except TPoint and TRect. TObject provides
three methods: Init, Free, and Done. The constructor, Init, forms the
base for all Turbo Vision constructors by providing memory
allocation. Free disposes of this allocation. Dore is an abstract
destructor that must be overriden by descendants. Any objects
that you intend to use with Turbo Vision’s streams must be
derived ultimately from TObject.

TObject’s descendants fall into one of two families: views or non-
views. Views are descendants of TView, which gives them special
properties not shared by non-views. Views can draw themselves
and handle events sent to them. The non-view objects provide a
host of utilities for handling streams and collections of other
objects, including views, but they are not directly “viewable.”

72

The displayable descendants of TObject are known as views, and
are derived from TView, an immediate descendant of TObject. You

Turbo Vision Guide

should distinguish “visible” from “displayable,” since there may
be times when a view is wholly or partly hidden by other views.

Views overview

A view is any object that can be drawn (displayed) in a
rectangular portion of the screen. The type of a view object must
be a descendant of TView. TView itself is an abstract object
representing an empty rectangular screen area. Having TView as
an ancestor, though, ensures that each derived view has at least a
rectangular portion of the screen and a minimal virtual Draw
method (forcing all immediate descendants to supply a specific
Draw method).

Most of your Turbo Vision programming will use the more
specialized descendants of TView, but the functionality of TView
permeates the whole of Turbo Vision, so you'll need to
understand what it offers.

Groups

The importance of TView is literally apparent from the hierarchy
chart shown in Figure 3.1. Everything you can see in a Turbo
Vision application derives in some way from TView. But some of
those visible objects are also important for another reason: They
allow several objects to act in concert.

The abstract group TGroup lets you handle dynamically chained lists of related,
interacting subviews via a designated view called the owner of the
group. Each view has an Owner field of type PView that points to
the owning TGroup object. A nil pointer means that the view has
no owner. A field called Next provides a link to the next view in
the view chain. Since a group is a view, there can be subviews that
are groups owning their own subviews, and so on.

The state of the chain is constantly changing as the user clicks and
types during an application. New groups can be created and
subviews can be added to (inserted) and deleted from a group.
During its lifespan, a subview can be hidden or exposed by
actions performed on other subviews, so the group needs to
coordinate many activities.

Chapter 3, The object hierarchy 73

74

Desktops

Programs

Applications

Windows

Didlog boxes

TDesktop is the normal startup background view, providing the
familar user’s desktop, usually surrounded by a menu bar and
status line. Typically, TApplication will be the owner of a group
containing TDesktop, TMenuBar and TStatusLine objects. Other
views (such as windows and dialog boxes) are created, displayed,
and manipulated in the desktop in response to user actions
(mouse and keyboard events). Most of the actual work in an
application goes on inside the desktop.

TProgram provides a set of virtual methods for its descendant,
TApplication.

TApplication provides a program template object for your Turbo
Vision application. It is a descendant of TGroup (via TProgram).
Typically, it will own TMenuBar, TDesktop and TStatusLine
subviews. TApplication has methods for creating and inserting
these three subviews. The key method of T Application is
TApplication.Run which executes the application’s code.

TWindow objects, with help from associated TFrame objects, are
the popular bordered rectanglar displays that you can drag,
resize, and hide using methods inherited from TView. A field
called Frame points to the window’s TFrame object. A TWindow
object can also zoom and close itself using its own methods.
TWindow handles the Tab and Shift-Tab key method for selecting
the next and previous selectable subviews in a window.
TWindow'’s event handler takes care of close, zoom, and resize
commands. Numbered windows can be selected with Alt-n hot
keys.

TDialog is a descendant of TWindow used to create dialog boxes to
handle a variety of user interactions. Dialog boxes typically
contain controls such as buttons and check boxes. The parent’s
ExecView method is used to save the previous context, insert a
TDialog object into the group, and then make the dialog box
modal. The TDialog object then handles user-generated events
such as button clicks and keystrokes. The Esckey is treated
specially as an exit (cmCancel). The Enter key is specially treated as
a broadcast cmDefault event (usually meaning that the default
button has been selected). Finally, ExecView restores the
previously saved context.

Turbo Vision Guide

Terminal views

Terminal views are all views that are not groups. That is, they
cannot own other views. They are therefore the endpoints of any
chains of views.

Frames TFrame provides the displayable frame (border) for a TWindow
object together with icons for moving and closing the window.
TFrame objects are never used on their own, but always in
conjunction with a TWindow object.

Buttons A TButton object is a titled box used to generate a specific
command event when “pushed.” They are usually placed inside
(owned by) dialog boxes, offering such choices as “OK” or
“Cancel.” The dialog box is usually the modal view when it
appears, so it traps and handles all events, including its button
events. The event handler offers several ways of pushing a button:
mouse-clicking in the button’s rectangle, typing the shortcut letter,
or selecting the default button with the Enterkey.

Clusters TCluster is an abstract type used to implement check boxes and
radio buttons. A cluster is a group of controls that all respond in
the same way. Cluster controls are often associated with TLabel
objects, letting you select the control by selecting on the adjacent
explanatory label. Additional fields are Value, giving a user-
defined value, and Sel, indexing the selected control of the cluster.
Methods for drawing text-based icons and mark characters are
provided. The cursor keys or mouse clicks can be used to mark
controls in the cluster.

Radio buttons are special clusters in which only one control can
be selected. Each subsequent selection deselects the current one
(as with a car radio station selector). Check boxes are clusters in
which any number of controls can be marked (selected).

Menus TMenuView and its two descendants, TMenuBar and TMenuBox,
provide the basic objects for creating pull-down menus and
submenus nested to any level. You supply text strings for the
menu selections (with optional highlighted shortcut letters)
together with the commands associated with each selection. The
HandleEvent methods take care of the mechanics of mouse and/or
keyboard (including shortcut and hot key) menu selection.

Chapter 3, The object hierarchy 75

76

Histories

Input lines

List viewers

Menu selections are displayed using a TMenuBar object, usually
owned by a TApplication object. Menu selections are displayed in
objects of type TMenuBox.

For most applications, you will not be involved directly with
menu objects. By overriding TApplication.InitMenuBar with a
suitable set of nested New, NewSubMenu, Newltem and NewLine
calls, Turbo Vision builds, displays, and interacts with the
required menus. ‘

The abstract type THistory implements a generic pick-list
mechanism. Its two additional fields, Link and Historyld, give each
THistory object an associated TInputLine and the ID of a list of
previous entries in the input line. THistory works in conjunction
with THistoryWindow and THistoryViewer.

TInputLine is a specialized view that provides a basic input line
string editor. It handles all the usual keyboard entries and cursor
movements (including Home and End). It offers deletes and inserts
with selectable insert and overwrite modes and automatic cursor
shape control. The mouse can be used to block mark text.

The TListViewer object type is an abstract base type from which to
derive list viewers of various kinds, such as TListBox. TListViewer’s
fields and methods let you display linked lists of strings with
control over one or two scroll bars. The event handler permits
mouse or key selection (with highlight) of items on the list. The
Draw method copes with resizing and scrolling. TListViewer has
an abstract GetText method, so you need to supply the mechanism
for creating and manipulating the text of the items to be
displayed.

TListBox, derived from TListViewer, implements the most
commonly used list boxes, namely those displaying lists of strings
such as file names. TListBox objects represent displayed lists of
such items in one or more columns with an optional vertical scroll
bar. The horizontal scroll bars of TListViewer are not supported.
The inherited TListViewer methods let you select (and highlight)
items by mouse and keyboard cursor actions. TListBox has an
additional field called List, pointing to a TCollection object. This
provides the items to be listed and selected. The contents of the
collection are your responsibility, as are the actions to be
performed when an item is selected.

Turbo Vision Guide

Scrolling objects A TScroller object is a scrollable view that serves as a portal onto
another larger “background” view. Scrolling occurs in response to
keyboard input or actions in the associated TScrollBar objects.
Scrollers have two fields, HScrollld and VScrollld, identifying their
controlling horizontal and vertical scroll-bars. The Delta field in
TScroller determines the unit amount of X and Y scrolling in
conjunction with fields in the associated scroll bars.

TScrollBar objects provide either vertical or horizontal control. The
key fields are Value (the position of the scroll bar indicator),
PgStep (the amount of scrolling needed in response to mouse
clicks and PgUp, Pgl keys) and ArStep (the amount of scrolling
needed in response to mouse clicks and arrow keys).

A scroller and its scroll bars are usually owned by a TWindow
object leading to a complex set of events to be handled. For
example, resizing the window must trigger appropriate redraws
by the scroller. The values of the scroll bar must also be changed
and redrawn.

Text devices TTextDevice is a scrollable TTY-type text viewer/device driver.
Apart from the fields and methods inherited from TScroller,
TTextDevice defines virtual methods for reading and writing
strings from and to the device. TTextDevice exists solely as a base
type for deriving real terminal drivers. TTextDevice uses TScroller’s
constructor and destructor.

TTerminal implements a “dumb” terminal with buffered string
reads and writes. The size of the buffer is determined at
initialization.

Stafic text TStaticText objects are simple views used to display fixed strings
provided by the field Text. They ignore any events sent to them.
The TLabel type adds the property that the view holding the text,
known as a label, can be selected (highlighted) by mouse-click,
cursor key, or shortcut Altletter keys. The additional field Link
associates the label with another view, usually a control view that
handles all label events. Selecting the label selects the linked
control and selecting the linked control highlights the label as
well as the control.

Chapter 3, The object hierarchy 77

Status lines

A TStatusLine object is intended for various status and hint (help)
displays, usually at the bottom line of the screen. A status lineis a
one-character high strip of any length up to the screen width. The
object offers dynamic displays reacting with events in the
unfolding application. Items on the status line can be mouse or
hot key selected rather like TLabel objects. Most application
objects will start life owning a TMenuBar object, a TDesktop object,
and a TStatusLine object. The added fields for TStatusLine provide
an Items pointer and a Defs pointer.

The Items field points to the current linked list of TStatusItem
records. These hold the strings to be displayed, the hot key
mappings, and the associated Command word. The Defs field
points to a linked list of PStatusDef records used to determine the
current help context so you can display short “hints.” TStatusLine
can be instantiated and initialized using
TApplication.InitStatusLine.

Non-visible elements

78

Streams

The non-view families derived from TObject provide streams,
resource files, collections, and string lists.

A stream is a generalized object for handling input and output. In
traditional device and file I/O, separate sets of functions must be
devised to handle the extraction and conversion of different data
types. With Turbo Vision streams, you can create polymorphic
I/0O methods such as Read and Write that know how to process
their own particular stream contents.

TStream is the base abstract object providing polymorphicI/O to
and from a storage device. TStream provides a Status field
indicating the access mode (read only, write only, read/write) and
an ErrorInfo field to report 1/O failures. There are seven virtual
methods: Flush, GetPos, GetSize, Read, Seek, Truncate, and Write.
These must be overridden to derive specialized stream types.
You'll see that Turbo Vision adopts this strategy to derive
TDosStream, TEmsStream, and TBufStream. Other methods include
CopyFrom, Error, Get, ReadStr, Reset, and WriteStr.

Turbo Vision Guide

Object types must be registered using RegisterType before they can
be used with streams. Turbo Vision’s standard object types are
preregistered (see “RegisterType procedure” in Chapter 14,
“Global reference”).

DOS streams TDosStream is a specialized TStream derivative implementing
unbuffered DOS file streams. A Handle field is provided,
corresponding to the familiar DOS file handle. The Init
constructor creates a DOS stream with a given file name and
access mode. TDosStream defines all the abstract methods of
TStream except for Flush, which is needed only for buffered
streams.

Buffered streams TBufStream implements a buffered version of TDosStream. The
Buffer and BufSize fields are added to specify the location and size
of the buffer. The fields BufPtr and BufEnd define a current
position and final position within the buffer. The abstract
TStream.Flush method is defined to flush the buffer. Flushing
means writing out and clearing any residual buffer data before a
stream is closed.

EMS streams A further specialized stream, TEmsStream implements streams in
EMS memory. New fields provide an EMS handle, the number of
pages, the stream size, and the current position within the stream.

Resources

A resource file is a special kind of stream where generic objects
(“items”) can be indexed via string keys. Rather than derive
resource files from TStream, TResouceFile has a field, Stream,
associating a stream with the resource file. Resource items are
accessed with Get(Key) calls where Key is the string index. Other
methods provided are Put (store an item with a given key), KeyAt
(get the index to a given item), Flush (write all changes to the
stream), Delete (erase the item at a given key), and Count (return
the number of items on file).

Collections

TCollection implements a general set of items, including arbitrary
objects of different types. Unlike the arrays, sets, and lists of non-
OOP languages, a Turbo Vision collection allows for dynamic
sizing. TCollection is an abstract base for more specialized

Chapfter 3, The object hierarchy 79

80

Sorted collections

String collections

Resource collections

String lists

collections, such as T'SortedCollection. The chief field is Items, a
pointer to an array of items. Apart from the indexing, insertion,
and deletion methods, TCollection offers several iterator routines.
A collection can be scanned for the first or last item that meets a
condition specified in a user-supplied test function. With the
ForEach method you can also trigger user-supplied actions on
each item in the collection.

TSortedCollection implements collections that are sorted by keys.
Sorting is defined via a virtual, abstract Compare method. Your
derived types can therefore specify particular ordering for
collections of objects of any type. The Insert method adds items to
maintain this ordering, and keys can be located quickly with a
binary Search method.

TStringCollection is a simple extension of TSortedCollection for
handling sorted collections of Turbo Pascal strings. The secret
ingredient is the overriding of the Compare method to provide
alphabetical ordering. A Freeltem method removes a given string
item from the collection. For writing and reading string
collections on streams, the virtual Putltem and Getitem methods
are provided.

TResourceCollection implements a collection of sorted resource
indexes used by resource files. The TStringCollection methods,
Freeltem, Getltem, KeyOf, and Putltem are all overriden to handle
resources.

TStringList implements a special kind of string resource in which
strings can be accessed via a numerical index using the Get
method. A Count field holds the number of strings in the object.
TStringList simplifies internationalization and multilingual text
applications. String lists can be read from a stream using the Load
constructor. To create and add to string lists, you use
TStrListMaker.

TStringList offers access only to existing numerically indexed
string lists. TStrListMaker supplies the Put method for adding a
string to a string list, and a Store method for saving string lists on
a stream.

Turbo Vision Guide

Views

By now, you should have a sense, from reading Chapters 1 and 2
and from looking at the integrated environment, of what a Turbo
Vision application looks like from the outside. But what's behind
the scenes? That’s the subject of the next two chapters.

“"We have taken conftrol of your TV...”

Chapter 4, Views

One of the adjustments you make when you use Turbo Vision is
that you give up writing directly to the screen. Instead of using
Write and Writeln to convey information to the user, you give the
information to Turbo Vision, which makes sure the information
appears in the right places at the right time.

The basic building block of a Turbo Vision application is the view.
A view is a Turbo Pascal object that manages a rectangular area of
the screen. For example, the menu bar at the top of the screen is a
view. Any program action in that area of the screen (for example,
clicking the mouse on the menu bar) will be dealt with by the

-view that controls that area.

Menus are views, as are windows, the status line, buttons, scroll
bars, dialog boxes, and usually even a simple line of text. In
general, anything that shows up on the screen of a Turbo Vision
program must be a view, and the most important property of a
view is that it knows how to represent itself on the screen. So, for
example, when you want to make a menu system, you simply tell

81

Turbo Vision that you want to create a menu bar containing
certain menus, and Turbo Vision handles the rest.

The most visible example of a view, but one you probably would
not think of as a view, is the program itself. It controls the entire
screen, but you don’t notice that because the program sets up
other views (called its subviews) to handle its interactions with the
user. As you will see, what appears to the user as a single object
(like a window) is often a group of related views.

Simple view objects

Setting your sights

82

As you can see from the hierarchy chart in Figure 4.6, all Turbo
Vision views have TObject as an ancestor. TObject is little more
than a common ancestor for all the objects. Turbo Vision itself
really starts at TView.

A TView itself just appears on the screen as a blank rectangle.
There is little reason to instantiate a TView itself unless you want
to create a blank rectangle on the screen for prototyping purposes.
But even though TView is visually simple, it contains all of Turbo
Vision’s basic screen management methods and fields.

There are two things any TView-derived object must be able to do:

The first is draw itself at any time. TView defines a virtual method
called Draw, and each object derived from TView must also have a
Draw method. This is important, because often a view will be
covered or overlapped by another view, and when that other
view goes away or moves, the view must be able to show the part
of itself that was hidden.

The second is handle any events that come its way. As noted in
Chapter 1, Turbo Vision programs are event-driven. This means
that Turbo Vision gathers input from the user and parcels it out to
the appropriate objects in the application. Views need to know
what to do when events affect them. Event handling is covered in
detail in Chapter 5.

Before discussing what view objects do, you need to learn a bit
about what they are—how they represent themselves on the
screen.

Turbo Vision Guide

TPoint is described in the next

section.

Getting the TPoint

Getting into

ThisWindow and PinsideView
are just made up for this

Chapter 4, Views

'

a TRect

example.

The location of a view is determined by two points: its top left
corner (called its origin) and its bottom right corner. Each of these
points is represented in the object by a field of the type TPoint.
The Origin field is a TPoint indicating the origin of the view, and
the Size field represents the lower right corner.

Note that Origin is a point in the coordinate system of the owner
view: If you open a window on the desktop, its Origin field
indicates the x- and y-coordinates of the window relative to the
origin of the desktop. The Size field, on the other hand, is a point
relative to the origin of its own object. It tells you how far the
lower right corner is from the origin point, but unless you know
where the view’s origin is located within another view, you can’t
tell where that corner really is.

The TPoint type is extremely simple. It has only two fields, called X
and Y, which are its coordinates. It has no methods. Turbo Vision
uses the TPoint object to allow views to specify their coordinates
as a single field.

For convenience, TPoints are rarely dealt with directly in Turbo
Vision. Since each view object has both an origin and a size, they
are usually handled together in an object called TRect. TRect has
two fields, A and B, each of which is a TPoint. When specifying
the boundaries of a view object, those boundaries are passed to
the constructor in a TRect.

TRect and TView both provide useful methods for manipulating
the size of a view. For example, if you want to create a view that
fits just inside a window, you can get the window to tell you how
big it is, then shrink that size and assign it to the new inside view.

procedure ThisWindow.MakeInside;
var
R: TRect;
Inside: PInsideView;
begin
GetExtent (R); { sets R to size of ThisWindow }
R.Grow (-1, -1); { shrinks the rectangle by 1, both ways }
Inside := New(PInsideView, Init(R)); { creates inside view }
Insert (Inside); { insert the new view into the window }
end;

GetExtent is a TView method that sets the argument TRect to the
coordinates of a rectangle covering the entire view. Grow is a

83

84

Turbo Vision
coordinates

Figure 4.1
Turbo Vision coordinate
system

Making an
appearance

TRect method that increases (or with negative parameters,
decreases) the horizontal and vertical sizes of a rectangle.

Turbo Vision’s method of assigning coordinates may be different
from what you're used to. The difference is that, unlike most
coordinate systems that designate the character spaces on the
screen, Turbo Vision coordinates specify the grid between the
characters.

For example, if R is a TRect object, R.Assign(0,0,0,0) designates a
rectangle with no size—it is only a point. The smallest rectangle
that can actually contain anything would be created with
R.Assign(0,0,1,1).

Figure 4.1 shows a TRect created by R.Assign(2,2,4,5).

0 1 2 3 4 5 6 7
0
1
2

RfR|R
3

R|IR|R
4
5

Thus, R.Assign(2,2,4,5) produces a rectangle that contains six
character spaces. Although this coordinate system is slightly
unconventional, it makes it much easier to calculate the sizes of
rectangles, the coordinates of adjacent rectangles, and some other
things as well.

The appearance of a view object is determined by its Draw
method. Nearly every new type of view will need to have its own
Draw, since it is, generally, the appearance of a view that
distinguishes it from other views.

There are a couple of rules that apply to all views with respect to
appearance. A view must

m cover the entire area for which it is responsible, and
mbe able to draw itself at any time.

Both of these properties are very important and deserve some
discussion.

Turbo Vision Guide

Territoriality

Drawing on demand

Putting on your
best behavior

Event handling is covered in
detail in Chapter 5, "Event-
driven programming. “

Chapter 4, Views

There are good reasons for each view to take responsibility for its
own territory. A view is assigned a rectangular region of the
screen. If it does not fill in that whole area, the contents of the
unfilled area are undefined: Just about anything could show up
there, and you would have no control over it. The program
TVDEMOO5.PAS demonstrates what happens if a view leaves
some of its appearance to chance.

In addition, a view must always be able to represent itself on the
screen. That’s because other views may cover part of it but then be
removed, or the view itself might move. In any case, when called
upon to do so, a view must always know enough about its present
state to show itself properly.

Note that this may mean that the view does nothing at all: It may
be entirely covered, or it may not even be on the screen, or the
window that holds it might have shrunk to the point that the view
is not visible at all. Most of these situations are handled
automatically, but it is important to remember that your view
must always know how to draw itself.

This is different from a lot of other windowing schemes, where
the writing on a window, for example, is persistent: You write it
there and it stays, even if something covers it up then moves
away. In Turbo Vision, you can’t assume that a view you uncover
is correct—after all, something may have told it to change while it
was covered!

The behavior of a view is almost entirely determined by a method
called HandleEvent. HandleEvent is passed an event record, which
it must process in one of two ways. It can either perform some
action in response to the event and then mark the event as having
been handled, or it can pass the event along to the next view (if
any) that should see it.

The key to behavior, really, is how the view responds to certain
events. For example, if a window receives an event containing a
cmClose command, the expected behavior is that the window
would close. It is possible that you might devise some other
response to that command, but not likely.

85

Complex views

86

Groups and
subviews

You've already learned something about the most important
immediate descendant of TView, the TGroup. TGroup and its
descendants are collectively referred to as groups. Views not
descended from TGroup are called terminal views.

Basically a group is just an empty box that contains and manages
other views. Technically, it is a view, and therefore responsible for
all the things that any view must be able to do: manage a
rectangular area of the screen, visually represent itself at any time,
and handle events in its screen region. The difference is really in
how it accomplishes these things: most of it is handled by
subviews.

A subview is a view that is owned by another view. That is, some
view (a group) has delegated part of its region on the screen to be
handled by another view, called a subview, which it will manage.

An excellent example is TApplication. TApplication is a view that
controls a region of the screen—the whole screen, in fact.
TApplication is also a group that owns three subviews: the menu
bar, the desktop, and the status line. The application delegates a
region of the screen to each of these subviews. The menu bar gets
the top line, the status line gets the bottom line, and the desktop
gets all the lines in between. Figure 4.2 shows a typical

‘TApplication screen.

Turbo Vision Guide

TApplication screen layout

Getting

Chapter 4, Views

Figure 4.2

info a
group

StatusLine

Notice that the application itself has no screen representation—
you don't see the application. Its appearance is entirely
determined by the views it owns.

How does a subview get attached to a group? The process is
called insertion. Subviews are created and then inserted into
groups. In the previous example, the constructor T Application.Init
creates three objects and inserts them into the application:

InitDeskTop;

InitStatusLine;

InitMenuBar;

if DeskTop <> nil then Insert (DeskTop):

if StatuslLine <> nil then Insert (StatusLine);
if MenuBar <> nil then Insert (MenuBar);

Only when they have been inserted are the newly created views
part of the group. In this particular case, TApplication has divided
its region into three separate pieces and delegated one to each of
its subviews. This makes the visual representation fairly
straightforward, as the subviews do not overlap at all.

There is no reason, however, that views cannot overlap. Indeed,
one of the big advantages of a windowed environment is the
ability to have multiple, overlapping windows on the desktop.
Luckily, groups (including the desktop) know how to handle
overlapping subviews.

87

Another angle on Z-
order

Figure 4.3
Side view of a text viewer
window

Groups keep track of the order in which subviews are inserted.
That order is referred to as Z-order. As you will see, Z-order
determines the order in which subviews get drawn and the order
in which events get passed to them.

The term Z-order refers to the fact that subviews have a three-
dimensional spatial relationship. As you've already seen, every
view has a position and size within the plane of the view as you
see it (the X and Y dimensions), determined by its Origin and Size
fields. But views and subviews can overlap, and in order for
Turbo Vision to know which view is in front of which others, we
have to add a third dimension, the Z-dimension.

Z-order, then, refers to the order in which you encounter views as
you start closest to you and move back “into” the screen. The last
view inserted is the “front” view.

Rather than thinking of the screen as a flat plane with things
written on it, consider it a pane of glass providing a portal onto a
three-dimensional world of views. Indeed, every group may be
thought of as a “sandwich” of views, as illustrated in Figure 4.3.

TWindow
(a pane of glass)

TScroller e——

TFrame ——

The window itself is just a pane of glass covering a group of
views. Since all you see is a projection of the views behind the

Turbo Vision Guide

glass on the screen, you can’t see which views are in front of
others unless they overlap.

By default, a window has a frame, which is inserted before any
other subviews. It is therefore the “background” view. In creating
a scrolling interior, two scroll bars get overlaid on the frame. To
you, in front of the whole scene, they look like part of the frame,
but from the side, you can see that they actually float “above” the
frame, obscuring part of the frame from view.

Finally, the scroller itself gets inserted, covering the entire area
inside the border of the frame. Text gets written on the scroller,
not on the window, but you can see it when you look through the
window.

On a larger scale, you can see the desktop as just a larger pane of
glass, covering a larger sandwich, many of the contents of which
are also smaller sandwiches, as shown in Figure 4.4.

Figure 4.4
Side view of the desktop

TDesktop ———

] TWindow, ———>
active and inactive

TBackground ——

Again, the group (this time the desktop) is a pane of glass. Its first
subview is a TBackground object, so that view is “behind” all the
others. This view also shows two windows with scrolling interior
views on the desktop.

Group portraits

Groups are sort of an exception to the rule that views must know
how to draw themselves, because a group does not draw itself per
se. Rather, a TGroup asks its subviews to draw themselves.

The subviews are called upon to draw themselves in Z-order,
meaning that the first subview inserted into the group is the first

Chapfter 4, Views 89

90

Relationships
between views

Figure 4.5
A simple dialog box

one drawn. That way, if subviews overlap, the one most recently
inserted will be in front of any others.

The subviews owned by a group must cooperate to cover the
entire region controlled by the group. A dialog box, for example,
is a group, and its subviews—frame, interior, controls, and static
text—must combine to fully “cover” the full area of the dialog box
view. Otherwise, “holes” in the dialog box would appear, with
unpredictable (and unpleasant!) results.

When the subviews of a group draw themselves, their drawing is
automatically clipped at the borders of the group. Because
subviews are clipped, when you initialize a view and give it to a
group, the view needs to reside at least partially within the
group’s boundaries. (You can grab a window and move it off the
desktop until only one corner remains visible, for example, but
something must remain visible for the view to be useful.) Only
the part of a subview that is within the bounds of its owner group
will be visible.

You may wonder where the desktop gets its visible background if
it is a TGroup. At its initialization, the desktop creates and owns a
subview called TBackGround, whose sole purpose is to draw in a
uniform background for the whole screen. Since the background
is the first subview inserted, it is obscured by the other views
drawn in front of it.

Views are related to each other in two distinct ways: They are
members of the Turbo Vision object hierarchy, and they are
members of the view tree. When you are new to Turbo Vision, it is
important to remember the distinction.

For example, consider the simple dialog box in Figure 4.5. It has a
frame, a one-line text message, and a single button that closes the
dialog box. In Turbo Vision terms, that’s a TDialog view that owns
a TFrame, a TStaticText, and a TButton.

x]

This is a dialog box text message

0K x

Sample dialog box

Turbo Vision Guide

The object hierarchy One way views are related is as parent and child in the object

Figure 4.6

Turbo Vision object hierarchy

Ownership

Figure 4.7

A simple dialog box’s view

Chapter 4, Views

tree

hierarchy. Notice in the hierarchy diagram (Figure 4.6) that
TButton is a descendant of the TView object type. The TButton
actually is a TView, but it has additional fields and methods that
make it a button. TDialog is also a descendant of TView (through
TGroup and TWindow), so it has much in common with TButton.
The two are distant “cousins” in the Turbo Vision hierarchy.

TObject—KAEl——TBackground
g/ Button

—~TC1 uster—ETCheckBoxes
TRadioButtons
I-TFrame

I~TGroup: TProgram TApplication
TDeskTop
THi ndcw
THistoryWindow
—THistory
—TInputLine

—TListVi ewer——ETL'l stBox
THistoryViewer
—TMenuVi ew—Emen uBar
enuBox
I-TScroller——————————TTextDevice—————TTerminal

_}gir:%art——tu bel
[-TStaticTex abe
TParamText

—TStatusLine
TCollection——TSortedCollection—TStringCollection——TResourceCollection
~TStreal TDosStream——————TBufStream

TEmsStream

—TResourceFile
—TStringList
L-TStrListMaker

The other way that views are related is in a view tree. In the view
tree diagram (Figure 4.7), the TDialog owns the TButton. Here the
relationship is not between hierarchical object types (TDialog is not
an ancestor of TButton!), but between instances of objects, between
owner and subview.

I]

| TFrame | | TButton l | TStaticTextI

As you program, you'll need to make a TButton interact with its
owner in the view tree (TDialog), and the TButton will also draw
upon attributes inherited from its ancestor (TView). Don’t confuse
the two relationships.

A running Turbo Vision application looks like a tree, with views
instantiating and owning other views. As your Turbo Vision

application opens and closes windows, the view tree grows and
shrinks as object instances are inserted and removed. Of course,

91

Subviews and
view tfrees

Figure 4.8
Basic Turbo Vision view tree

This same kind of object is
depicted somewhat
differently in Figure 4.3.

92

the object hierarchy only grows when you derive new object types
from the standard objects.

As noted earlier, the TApplication view owns and manages the
three subviews that it creates. You can think of this relationship as
forming a view tree. Application is the trunk, and MenuBar,
DeskTop, and StatusLine form the branches, as shown in Figure 4.8.

Application

| MenuBar | | DeskTop | I Statusline I

Remember, the relationship illustrated in Figure 4.8 is not an
object hierarchy, but a model of a data structure. The links
indicate ownership, not inheritance.

In a typical application, as the user clicks with the mouse or uses
the keyboard, he creates more views. These views will normally
appear on the desktop, and so form further branches of the tree.

It is important to understand these relationships between owners
and subviews, as both the appearance and the behavior of a view
depend a great deal on who owns the view.

Let’s follow the process. Say, for instance, that the user clicks on a
menu selection that calls for a file viewer window. The file viewer
window will be a view. Turbo Vision will create the window and
attach it to the desktop.

A window will most likely own a number of subviews: a TFrame
(the frame around the window), a TScroller (the interior view that
holds a scrollable array of text), and a couple of TScrollbars. When
the window is called into being, it creates, owns, and manages its
subviews.

More views are now attached to our growing application, which
now looks something like Figure 4.9.

Turbo Vision Guide

Chapter 4, Views

Figure 4.9
Desktop with file viewer iz R S 5

added
File text
The view tree has also become somewhat more complex, as
shown in Figure 4.10. (Again, these are ownership links.)
Figure 4.10 -
View tree with file viewer
added

[1
I MenuBar | FDeskTop I I StatusLine l

Ecroﬂ Bﬂ |Scro'|1 BarJ

Now suppose the user clicks on the same menu selection and
creates another file viewer window. Turbo Vision will create a

second window and attach it to the desktop, as shown in Figure
4.11.

93

Figure 411

Desktop with file viewer
added ——————— File Viewer Window — ——l

A}
File Viewer Window

File text

atustine

The view tree also becomes correspondingly more complex, as
shown in Figure 4.12.

e o Tla
View tree with two file PP
viewers added | |
| MenuBar I L DeskTop | I Statusline
[T
| window |

Wol]erl rFrame] Scroller

|Scroll Bar||ScroH Barl IScroll Bil licro'l’l Bar

As you’ll see in Chapter 5, program control flows down this view
tree. In the preceding example, suppose you click on a scroll bar
in the file viewer window. How does that click arrive at the right
place?

The Application program sees the mouse click, realizes that it's
within the area controlled by the desktop, and passes it to the
desktop object. The desktop in turn sees that the click is within
the area controlled by the file viewer, and passes it off to that
view. The file viewer now sees that the click was on the scroll bar,
and lets the scroll bar view handle the click, generating an
appropriate response.

Event routing is explained in - The actual mechanism for this is unimportant at this point. The

94

ChapterS. important thing to remember is how views are connected. No

Turbo Vision Guide

matter how complex the structure becomes, all views are
ultimately connected to your application object.

If the user clicks on the second file viewer’s close icon or on a
Close Window menu item, the second file viewer will close. Turbo
Vision then takes it off the view tree and disposes it. The window
will dispose all of its subviews, then be disposed itself.

Eventually, the user will trim the views down to just the original
four, and will indicate at some point that he is finished by
pressing Alt-X or by selecting Exit from a menu. TApplication will
dispose its three subviews, then dispose itself.

Selected and focused views

The focused view is the end
of the chain of selected

~ views that starts af the
application.

Chapter 4, Views

Within each group of views, one and only one subview is selected.
For example, when your application sets up its menu bar,
desktop, and status line, the desktop is the selected view, because
that is where further work will take place.

When you have several windows open on the desktop, the
selected window is the one in which you're currently working.
This is also called the active window (typically the topmost
window).

Within the active window, the selected subview is called the
focused view. You can think of the focused view as being the one
you're looking at, or the one where action will take place. In an
editor window, the focused view would be the interior view with
the text in it. In a dialog box, the focused view is the highlighted
control.

In the application diagrammed in Figure 4.12, Application is the
modal view, and DeskTop is its selected view. Within the desktop,
the second (more recently inserted) window is selected, and
therefore active. Within that window, the scrolling interior is
selected, and because it is a terminal view (that is, it’s not a
group), it is the end of the chain, the focused view. Figure 4.13
depicts the same view tree with the chain of focused views
highlighted by double-lined boxes.

95

Figure 4.13
The focus chain

Finding the
focused view

On monochrome displays,
Turbo Vision adds arrow
characters to indicate the
focus.

How does a view

96

get the focus?

Application
|

L
I MenuBar l "47 DeskTop " I StatusLine
[

Scroller

Among other things, knowing which view is focused tells you
which view gets information from the keyboard. For more
information, see the section on focused events in Chapter 5,
“Event-driven programming.”

The currently focused view is usually highlighted in some way on
the screen. For example, if you have several windows open on the
desktop, the active window is the one with the double-lined
frame; the others’ frames will be single-lined. Within a dialog box,
the focused control (controls are views, too!) is brighter than the
others, indicating that it is the one that will be acted upon if you
press Enter. The focused control is therefore the default control, as
well.

A view can get the focus in two ways, either by default when it is
created, or by some action by the user.

When a group of views gets created, the owner view specifies
which of its subviews is to be focused by calling that subview’s
Select method. This establishes the default focus.

The user may wish to change which view currently has the focus.
A common way to do this is to click the mouse on a different
view. For instance, if you have several windows open on the
desktop, you can select different ones simply by clicking on them.
In a dialog box, you can move the focus among views by pressing
Tab, which cycles through all the available views, or by clicking
the mouse on a particular view, or by pressing a hot key.

Turbo Vision Guide

The focus chain

See Chapter 5, "Event-driven
programming,” for a full
explanation.

Modal views

Note that there are some views that are not selectable, including
the background of the desktop, frames of windows, and scroll
bars. When you create a view, you may designate whether that
view is selectable, after which the view will determine whether it
lets itself be selected. If you click on the frame of a window, for
example, the frame does not get the focus, because the frame
knows it cannot be the focused view.

If you start with the main application and trace to its selected
subview, and continue following to each subsequent selected
subview, you will eventually end up at the focused view. This
chain of views from the TApplication object to the focused view is
called the focus chain. The focus chain is used for routing focused
events, such as keystrokes.

Chapfter 4, Views

A mode is a way of acting or functioning. A program may have a
number of modes of operation, usually distinguished by different
control functions or different areas of control. Turbo Pascal’s
integrated environment, for example, has an editing and
debugging mode, a compiler mode, and a run mode. Depending
on which of these modes is active, keys on the keyboard may
have varying effects (or no effect at all).

A Turbo Vision view may define a mode of operation, in which
case it is called a modal view. The classic example of a modal view
is a dialog box. Usually, when a dialog box is active, nothing
outside it functions. You can’t use the menus or other controls not
owned by the dialog box. In addition, clicking the mouse outside
the dialog box has no effect. The dialog box has control of your
program until closed. (Some dialog boxes are non-modal, but
these are rare exceptions.)

When you instantiate a view and make it modal, only that view
and its subviews can interact with the user. You can think of a
modal view as defining the “scope” of a portion of your program.
When you create a block in a Turbo Pascal program (such as a
function or a procedure), any identifiers declared within that
block are only valid within that block. Similarly, a modal view
determines what behaviors are valid within it—events are

97

The status line is always “hot.”
no matter what view is
modal.

handled only by the modal view and its subviews. Any part of the
view tree that is not the modal view or owned by the modal view
is inactive.

There is actually one exception to this rule, and that is the status
line. Turbo Vision “cheats” a little, and keeps the status line
available at all times. That way you can have active status line
items, even when your program is executing a modal dialog box
that does not own the status line. Events and commands
generated by the status line, however, will be handled as if they
were generated within the modal view.

There is always a modal view when a Turbo Vision application is
running. When you start the program, and often for the duration
of the program, the modal view is the application itself, the
TApplication object at the top of the view tree.

Modifying default behavior

The Options flag
word

98

Up to this point, you have seen mostly the default behavior of the
standard views. But sometimes you will want to make your views
look or act a little different, and Turbo Vision provides for that.
This section explains the ways you can modify the standard
views.

Every Turbo Vision view has four bitmapped fields that you can
use to change the behavior of the view. Three of them are covered
here: the Options word, the GrowMode byte, and the DragMode
byte. The fourth, the EventMask word, is covered in Chapter 5,
“Event-driven programming.”

There is also a State word that contains information about the
current state of the view. Unlike the others, State is essentially
read-only. Its value should only be changed by the SetState
method. For more details, see the “State flag and SetState” section
in this chapter.

Options is a bitmapped word in every view. Various descendants
of TView have different Options set by default.

The Options bits are defined in Figure 4.14; explanations of the
possible Options follow.

Turbo Vision Guide

Figure 4.14
Options bit flags

ofSelectable

ofTopSelect

ofFirstClick

ofFramed

ofPreProcess

ofPostProcess

Chapfter 4, Views

ofCentered

[1sb]
Lofselectable
fTopSelect

L ofFirstClick
——ee————o0fFramed
L ofPreProcess
ofPostProcess
ofBuffered
ofTileable
ofCenterX
ofCenterY

Pl T 0L T T T LTI 11 [

Undefined

If set, the user can select the view with the mouse. If the view is in
a group, the user can select it with the mouse or Tab key. If you
put a purely informational view on the screen, you might not
want the user to be able to select it. Static text objects and window
frames, for example, are usually not selectable.

The view will be moved to the top of the owner’s subviews if the
view is selected. This option is designed primarily for windows
on the desktop. You shouldn’t use it for views in a group.

The mouse click that selects the view is sent on to the view. Ifa
button is clicked, you definitely want the process of selecting the
button and operating it to happen with one click, so a button has
ofFirstClick set. But if someone clicks on a window, you may or
may not want the window to respond to the selecting mouse click
other than by selecting itself.

If set, the view has a visible frame around it. This is useful if you
create multiple “panes” within a window, for example.

If set, allows the view to process focused events before the
focused view sees them. See the “Phase” section in Chapter 5,
“Event-driven programming” for more details.

If set, allows the view to handle focused events after they have
been seen by the focused view, assuming the focused view has
not cleared the event. See the “Phase” section in Chapter 5,
“Event-driven programming” for more details.

99

100

ofBuffered

ofTileable

ofCenterX

ofCenterY

When this bit is set, groups can speed their output to the screen.
When a group is first asked to draw itself, it automatically stores
the image of itself in a buffer if this bit is set and if enough
memory is available. The next time the group is asked to draw
itself, it copies the buffered image to the screen instead of asking
all its subviews to draw themselves. If a New or GetMem call runs
out of memory, Turbo Vision’s memory manager will begin
disposing of these group buffers until the memory request can be
satisfied.

If a group has a buffer, a call to Lock will stop all writes of the
group to the screen until the method Unlock is called. When
Unlock is called, the group’s buffer is written to the screen.
Locking can decrease flicker during complicated updates to the
screen. For example, the desktop locks itself when it is tiling or
cascading its subviews.

The desktop can tile or cascade the windows that are currently
open. If you don’t want a window to be tiled, you can clear this
bit. The window will then stay in the same position, while the rest
of the windows will be automatically tiled.

Tiling or cascading views from TApplication.HandleEvent is simple:

cmTile:
begin
DeskTop”.GetExtent (R);
DeskTop”.Tile(R);
end;
cmCascade:
begin
DeskTop”.GetExtent (R);
DeskTop”.Cascade (R) ;
end;

If there are too many views to be successfully cascaded, the
desktop will do nothing.

When the view is inserted in a group, center it in the x dimension.

When the view is inserted in a group, center it in the y dimension.
You may find this an important step in making a window work
well with 25- or 43-line text modes.

Turbo Vision Guide

ofCentered

The GrowMode
flag byte

Figure 415

GrowMode bit flags

gfGrowlLoX

gfGrowlLoY

gfGrowHiX

gfGrowHiY

ofGrowAll

gfGrowRel

Chapter 4, Views

Center the view in both the x and y dimensions when it is
inserted in the group.

A view’s GrowMode field determines how the view will change
when its owner group is resized.

The GrowMode bits are defined as follows:
[—l——l—[—ngrowA'l 1

ol [[[[[[t
|—ng.rowLoX
fGrowLoY

Undefined L— g fGrowHiX
fGrowHiY

fGrowRel

If set, the left side of the view will maintain a constant distance
from its owner’s left side.

If set, the top of the view will maintain a constant distance from
the top of its owner.

If set, the right side of the view will maintain a constant distance
from its owner’s right side.

If set, the bottom of the view will maintain a constant distance
from the bottom of its owner.

If set, the view will always remain the same size, and will move
with the lower right corner of the owner.

If set, the view will maintain its size relative to the owner’s size.

You should only use this option with TWindows (or descendants
of TWindow) that are attached to the desk top. The window will

maintain its relative size when the user switches the application
between 25- and 43/50-line mode. This flag isn’t designed to be

used with views within a window.

101

102

The DragMode
flag byte

Figure 4.16
DragMode bit flags

dmDragMove

dmDragGrow
dmLimitLoX

dmLimitLoY

dmLimitHiX
dmLimitHiY
dmLimitAll

State flag and
SetState

A view’s DragMode field determines how the view will behave
when it is dragged.

The DragMode bits are defined as follows:
T dnLimitAll

o] 1 [[1 1 [
tderagMove

mDragGrow
L dmlimitLoX
dmLimitLoY
dmLimitHiX
dmLimitHiY

The DragMode settings include the following;:

When this bit is set, when you click on the top of a window’s
frame, you can drag it.

When this bit is set, the view can grow.
If set, the left side of the view cannot go out of the owner view.

If set, the top of the view is not allowed to go out of the owner
view.

If set, the right side of the view cannot go out of the owner view.
If set, the bottom of the view cannot go out of the owner view.

If set, no part of the view can go out of the owner view.

A view also has a bitmapped flag called State which keeps track of
various aspects of the view, such as whether it is visible, disabled,
or being dragged.

The State flag bits are defined in Figure 4.17.

Turbo Vision Guide

Figure 417
stateflagbitmapping Ml | [[[[T [[[[[[[Iy

Lsfvisible = $0001
sfCursorVis = $0002
beee————sfCursorIns = $0004
sfShadow = $0008
sfActive = $0010
sfSelected = $0020
sfFocused = $0040
sfDragging = $0080
sfDisabled = $0100
sfModal = $0200
sfDefault = $0400
sfExposed = $0800

The meanings of each of the state flags is covered in Chapter 14,
“Global reference,” under “sfXXXX state flag constants.” This
section focuses on the mechanics of manipulating the State field.

Turbo Vision changes a view’s state flag through its SetState
method. If the view gets the focus, gives up the focus, or becomes
selected, Turbo Vision calls SetState. This differs from the way the
other bitmapped flags are handled, because those are set on
initialization and then not changed (if a window is resizable, it is
always resizable, for example). The state of a view, however, will
often change during the time it is on the screen. Because of this,
Turbo Vision provides a mechanism in SetState that allows you
not only to change the state of a view, but also to react to those
changes in state.

SetState receives a state (AState) and a flag (Enable) indicating
whether the state is being set or cleared. If Enable is True, the bits
in AState are set in State. If Enable is False, the corresponding State
bits are cleared. That much is essentially like what you would do
with any bitmapped field. The difference comes when you want a
view to do something when you change its state.

Acting on astate Views often take some action when SetState is called, depending
change on the resulting state flags. A button, for example, watches State
and changes its color to cyan when it gets the focus. Here’s a
typical SetState for a descendant of TView:

procedure TButton.SetState(AState: Word; Enable: Boolean);

begin
TView.SetState (AState, Enable); { set/clear state bits }
if AState and (sfSelected + sfActive) <> 0 then DrawView;
if AState and sfFocused <> 0 then MakeDefault (Enable);

end;

Notice that you should always call TView.SetState from within a
new SetState method. TView.SetState does the actual setting or

Chapfter 4, Views 103

clearing of the state flags. You can then define any special actions
based on the state of the view. TButton checks to see if it is in an
active window in order to decide whether to draw itself. It also
checks to see if it has the focus, in which case it calls its -
MakeDefault method, which grabs or releases the focus, depending
on the Enable parameter.

If you need to make changes in the view or the application when
the state of a particular view changes, you can do it by overriding
the view’s SetState. Suppose your application includes a text
editor, and you want to enable or disable all the menu bar’s text
editing commands depending on whether or not an editor is
open. The text editor’s SetState is defined like this:

This is the code used by the procedure TEditor.SetState(AState: Word; Enable: Boolean);
IDE’s editor view. const

EditorCommands = [cmSearch, cmReplace, cmSearchAgain, cmGotoLine,
cmFindProc, cmFindError, cmSave, cmSaveAs];
begin
TView.SetState (AState, Enable);
if AState and sfActive <> 0 then
if Enable then EnableCommands (EditorCommands)
else DisableCommands (EditorCommands) ;
end;

This code comes directly from the Turbo Pascal integrated
environment, so the behavior it describes should be familiar.

The programmer and Turbo Vision often cooperate when the state
changes. Suppose you want a block cursor to appear in your text
editor when the editor’s insert mode is toggled on, for example.

First, the editor insert mode will have been bound to a key-
stroke—say, the Ins key. When the text editor is the focused view
and the Ins key is pressed, the text editor receives the Ins key
event. The text editor’s HandleEvent method responds to the Ins
event by toggling some internal state of the view saying that the
insert mode has changed, and by calling the BlockCursor method.
Turbo Vision does the rest. BlockCursor calls the view’s SetState to
set the sfCursorlns state true.

What color is your view?

No one ever seems to agree on what colors are “best” for any
computer screen. Because of this, Turbo Vision allows you to

104 Turbo Vision Guide

change the colors of the views you put on the screen. In order to
facilitate this, Turbo Vision provides you with color palettes.

Color palettes

_ Palettes for all standard When a Turbo Vision view draws itself, it asks to be drawn, not
views are listed in Chapfer i ith 4 specific color, but with a color indicated by a position in its
13, "Object reference. ; .
palette. For example, the palette for TScroller looks like this:

CScroller = #6#7;

Color palettes are actually stored in strings, which allows them to
be flexible arrays of varying length. CScroller, then, is a two-
character string, which you can think of as two palette entries.
The layout of the TScroller palette is defined as

{ Palette layout }
{ 1 = Normal }
{ 2 = Highlight }

but it might be more useful to look at it this way:

Figure 4.18 1 2
TScroller’s default color ¢scroller 7
palette

| l Highlighted text
Normal text

GetColor is a TView method. This means there are two kinds of text a scroller object knows
how to display: normal and highlighted. The default color of each
is determined by the palette entries. When displaying normal text,
the Draw method needs to call GetColor(1), meaning it wants the
color indicated by the first palette entry. To show highlighted text,
the call would be GetColor(2).

Selecting non-defaulf colors If all you want to do is display the default colors, that’s really all
s described in ';heig.gn’d you need to know. The palettes are set up so that any reasonable
" combination of objects should produce decent looking colors.

Inside color

palettes Palette entries are actually indexes into their owner’s palette, not
the colors themselves. If a scroller is inserted into a window, you
get normal text by calling for the normal text color in the scroller’s
palette, which contains the number 6. To translate that into a
color, you find the sixth entry in the owner’s palette. Figure 4.19
shows TWindow’s palette.

Chapfter 4, Views 105

Figure 4.19

Mapping a scroller’s palette

106

onto a window

=

The GetColor
method

Frame passive
Frame active
Frame icon
Scroll bar page

Scroll bar controls

Scroller normal text

Scroller selected text
| L— Reserved

i 5 7
CBlueHindow [8 | 9 | 10[11| 12| 13| 14| 15|

CScrotler n
l Highlighted text
Normal text

The sixth entry in TWindow's palette is 13, which is an index into
the palette of the window’s owner (the desktop), which in turn
indexes into the palette of its owner, the application. TDeskTop has
a nil palette, meaning that it doesn’t change anything—you can
think of it as a “straight” or “transparent” palette, with the first
entry being the number 1, the second being 2, and so on.

The application, does have a palette, a large one containing entries
for all the elements you might insert into a Turbo Vision
application. Its 13th element is $1E. The application is the end of
the line (it has no owner), so the mapping stops there.

So now you are left with $1E, which is a text attribute byte

ccorresponding to background color 1 and foreground color $E (or

14), which produces yellow characters on a blue background.
Again, don’t think of this in terms of yellow-on-blue, but rather
say that you want your text displayed as the normal color for
window text.

Don'’t think of palettes as colors. They are kinds of things to display.

Color palette mapping is done by the virtual TView function
GetColor. GetColor climbs up the view tree from the object being
drawn to its owner, to the owner’s owner, and so on, until it gets
to the application object. At each object along that chain, GetColor
calls GetPalette for that object. The end result is a color attribute.

A view’s palette contains offsets into its owner’s palette, except the
application, whose palette contains color attributes.

Turbo Vision Guide

Overriding the
default colors

Chapter 4, Views

The obvious way to change colors is to change the palette. If you
don’t like your scroller’s normal text color, your first instinct
might be to change entry 1 (the normal text entry) in the scroller’s
palette, perhaps from 6 to 5. Normal scroller text is then mapped
onto the window entry for scroll bar controls (blue on cyan, by
default). Remember: 5 is not a color! All you've done is tell the
scroller that its normal text should look like the scroll bars around
it!

So what if you don’t want bright yellow on blue? Change the
palette entry for normal window text in TApplication. Since that is
the last non-nil palette, the entries in the application palette
determine the colors that will appear in all views within a
window. Make this your color mantra: Colors are not absolute,
but are determined by the owner’s palettes.

This makes sense: Presumably you want your windows to look
similar. You certainly don’t want to have to tell every single
window what color it should be. If you change your mind later
(or you allow users to customize colors) you would have to
change the entries for each window.

Also, a scroller or other interior does not have to worry about its
colors if it is inserted into some window other than the one you
originally intended. If you put a scroller into a dialog box instead
of a window, for example, it will not (by default) come up in the
same colors, but rather in the colors of normal text in a dialog box.

To change a view’s palette, override its GetPalette method. To
create a new scroller object type that draws itself in the window’s
frame color instead of the normal text color, the declaration and
implementation of the object would include the following:

type
TMyScroller = object (TScroller)
function GetPalette: PPalette; virtual;
end;

function TMyScoller.GetPalette: PPalette;
const
CMyScroller = #1#7;
PMyScroller: string[Length(CMyScroller)] = CMyScoller;
begin
GetPalette := @PMyScroller;
end;

107

The types TPalefte and String

are completely
interchangeable.

Adding new
colors

Palefttes are strings, so you
can use string operations like

108

+,

Note that the palette constant is a string constant because Turbo
Vision uses the String type to represent the palettes. This allows
for easier manipulation of the palettes, since all the string
functions and the like can also be uséd with palettes.

You may want to add additional colors to the window object type,
which will allow for a variety of colors to be used for new views
you create. For example, you might decide you want a third color
in your scroller for a different type of highlight, such as the one
used for the breakpoints in the IDE editor. This can be done by
deriving a new object type from the existing TWindow, and
adding to the default palette, as shown here:

type
TMyWindow = object (TWindow)
function GetPalette: PPalette; virtual;
end;

function TMyWindow.GetPalette: PPalette;
const

CMyWindow = CBlueWindow + #84;

P: string[Length(CMyWindow)] = CMyWindow;
begin

GetPalette := @P;
end;

Now TMyWindow has a new palette entry that contains this new
type of hightlight. CWindow is a string constant containing
TWindow's default palette. You will have to change the GetPalette
routine of MyScroller to take advantage of this:

function TMyScroller.GetPalette: PPalette;
const

CMyScroller = #6#74#9;

P: string[Length(CMyScroller)] = CMyScoller;
begin

GetPalette := @P;
end;

The scroller’s palette entry 3 is now the new highlight color (in
this case bright white on red). If you use this new GetPalette using
the CMyScroller that accesses the ninth element in its owner’s
palette, be sure that the owner is indeed using the CMyWindow
palette. If you try to access the ninth element in an eight-element
palette, the results are undefined.

Turbo Vision Guide

Event-driven programming

The purpose of Turbo Vision is to provide you with a working
framework for your applications so you can focus on creating the
“meat” of your applications. The two major Turbo Vision tools are
built-in windowing support and handling of events. Chapter 4
explained views, and this chapter will deal with how to build
your programs around events.

Bringing Turbo Vision to life

We have already described Turbo Vision applications as being
event-driven, and briefly defined events as being occurrences to
which your application must respond.

Reading the
user’s input In a traditional Pascal program, you typically write a loop of code
that reads the user’s keyboard, mouse, and other input, and you
make decisions based on that input within the loop. You'll call
procedures or functions, or branch to a code loop somewhere else
that again begins reading the user’s input:

Chapter 5, Event-driven programming 109

110

repeat
B := ReadKey;
case B of
’i’: InvertArray;
'e’: EditArrayParams;
'q’: GraphicDisplay;
"q': Quit := true;
end;
until Quit;

An event-driven program is not really structured very differently
from this. In fact, it is hard to imagine an interactive program that
doesn’t work this way. However, an event-driven program looks
different to you, the programmer.

In a Turbo Vision application, you no longer have to read the
user’s input because Turbo Vision does it for you. It packages the
input into Pascal records called events, and dispatches the events
to the appropriate views in the program. That means your code
only needs to know how to deal with relevant input, rather than
sorting through the input stream looking for things to handle.

For instance, if the user clicks on an inactive window, Turbo
Vision reads the mouse action, packages it into an event record,
and sends the event record to the inactive window.

If you come from a traditional programming background, you
might be thinking at this point, “O.K., so I don’t need to read the
user’s input anymore. What I'll be doing instead is learning how
to read a mouse click event record and how to tell an inactive
window to become active.” In fact, there’s no need for you to
write even that much code.

Views can handle much of a user’s input all by themselves. A
window knows how to open, close, move, be selected, resize, and
more. A menu knows how to open, interact with the user, and
close. Buttons know how to be pushed, how to interact with each
other, and how to change color. Scroll bars know how to be
operated. The inactive window can make itself active without
any attention from you.

So what is your job as programmer? You will define new views
with new actions, which will need to know about certain kinds of
events that you'll define. You'll also teach your views to respond
to standard commands, and even to generate their own
commands (“messages”) to other views. The mechanism is

Turbo Vision Guide

already in place: All you have to do is generate commands and
teach views what to do when they see them.

But what exactly do events look like to your program, and how
does Turbo Vision handle them for you?

The nature of events

Kinds of events

Events can best be thought of as little packets of information
describing discrete occurrences to which your application needs
to respond. Each keystroke, each mouse action, and any of certain
conditions generated by other components of the program,
constitute a separate event. Events cannot be broken down into
smaller pieces; thus, the user typing in a word is not a single
event, but a series of individual keystroke events.

In the object-oriented world of Turbo Vision, you probably expect
events to be objects, too. But they're not. Events themselves
perform no actions; they only convey information to your objects,
so they are record structures.

At the core of every event record is a single Word-type field
named What. The numeric value of the What field describes the
kind of event that occurred, and the remainder of the event record
holds specific information about that event: the keyboard scan
code for a keystroke event, information about the position of the
mouse and the state of its buttons for a mouse event, and so on.

Because different kinds of events get routed to their destination
objects in different ways, we need to look first at the different
kinds of events recognized by Turbo Vision.

Let’s look at the possible values of Event.What a little more closely.
There are basically four classes of event: mouse events, keyboard
events, message events, and “nothing” events. Each class has a
mask defined, so your objects can determine quickly which
general type of event occurred without worrying about what
specific sort it was. For instance, rather than checking for each of
the four different kinds of mouse events, you can simply check to
see if the event flag is in the mask. Instead of

if Event.What and (evMouseDown or evMouseUp or evMouseMove or
evMouseAuto) <> 0 then...

Chapter 5, Event-driven programming m

112

Figure 5.1
TEvent.What field bit

mapping

Mouse events

Keyboard events

Message events

"Nothing” events

you can use
if Event.What and evMouse <> 0 then ...

The masks available for separating events are evNothing (for
“nothing” events), evMouse for mouse events, evKeyboard for
keyboard events, and evMessage for messages.

The event mask bits are defined in Figure 5.1.

evMessage =
I evKeyboard = $0010

[T evMouse

I

Pl | [L LT T T T T T T T T D
L-evMouseDovm'l
vMouseUp

L—————evMouseMove =
vMouseAuto = $0008

evKeyDown
evCommand

R o
evBroadcast

There are basically four kinds of mouse events: an up or down
click with either button, a change of position, or an “auto” mouse
event. Pressing down a mouse button results in an evMouseDown
event. Letting the button back up generates an evMousellp event.
Moving the mouse produces an evMouseMove event. And if you
hold down the button, Turbo Vision will periodically generate an
evMouseAuto event, allowing your application to perform such
actions as repeated scrolling. All mouse event records include the
position of the mouse, so an object that processes the event knows
where the mouse was when it happened.

Keyboard events are even simpler. When you press a key, Turbo
Vision generates an evKeyDown event, which keeps track of which
key was pressed.

Message events come in three flavors: commands, broadcasts and
user messages. The difference is in how they are handled, which
is explained later. Basically, commands are flagged in the What
field by evCommand, broadcasts by evBroadcast, and user-defined
messages by some user-defined constant.

A “nothing” event is really a dead event. It has ceased to be an
event, because it has been completely handled. If the What field in
an event record contains the value evNothing, that event record
contains no useful information that needs to be dealt with.

Turbo Vision Guide

When a Turbo Vision object finishes handling an event, it calls a
method called ClearEvent, which sets the What field back to
evNothing, indicating that the event has been handled. Objects
should simply ignore evNothing events, as they have already been
dealt with by another object.

Events and

commands Ultimately, most events end up being translated into commands
of some sort. For example, clicking the mouse on an item in the
status line generates a mouse event. When it gets to the status line
object, that object responds to the mouse event by generating a
command event, with the Command field value determined by the
command bound to the status line item. A mouse click on Alt-X
Exit generates the cmQuit command, which the application
interprets as an instruction to shut down and terminate.

Routing of events

Turbo Vision’s views operate on the principle “Speak only when
spoken to.” That is, rather than actively seeking out input, they
wait passively for the event manager to tell them that an event
has occurred to which they need to respond.

In order to make your Turbo Vision programs act the way you
want them to, you not only have to tell your views what to do
when certain events occur, you also need to understand how
events get to your views. The key to getting events to the right
place is correct routing of the events. Some events get broadcast all
over the application, while others are directed rather narrowly to
particular parts of the program.

Where do events

come from? As noted in Chapter 1, “Inheriting the wheel,” the main process-
ing loop of a TApplication, the Run method, calls TGroup.Execute,
which is basically a repeat loop that looks something like this:

var E: TEvent;

E.What := evNothing; { indicate no event has occurred }
repeat
if E.What <> evNothing then EventError (E);
GetEvent (E) ; { pack up an event record }
HandleEvent (E) ; { route the event to the right place }

Chapter 5, Event-driven programming 113

until EndState <> Continue; { until the quit flag is set }

GetEvent, HandleEvent and Essentially, GetEvent looks around and checks to see if anything
E:.fg:g’(;% fcrjaeg;/doisggz chi has happened that should be an event. If it has, GetEvent creates
124, 121, and 123, the appropriate event record. HandleEvent then routes the event to
respectively. the proper views. If the event is not handled (and cleared) by the
time it gets back to this loop, EventError is called to indicate an

abandoned event. By default, EventError does nothing.

Where do events

QO7? Events always begin their routing with the current modal view.
For normal operations, this usually means your application object.
When you execute a modal dialog box, that dialog box object is
the modal view. In either case, the modal view is the one that
initiates event handling. Where the event goes from there
depends on the nature of the event.

Events are routed in one of three ways, depending on what kind
of event they are. The three possible routings are positional,
focused, and broadcast. It is important to understand how each
kind of event gets routed.

Positional events Positional events are virtually always mouse events (evMouse).

The modal view gets the positional event first, and starts looking
at its subviews in Z-order until it finds one that contains the
Zorderis explainedin position where the event occurred. The modal view then passes
Chapfer4, "Views." the event to that view. Since views can overlap, it is possible that
more than one view will contain that point. Going in Z-order
guarantees that the topmost view at that position will be the one
that receives the event. After all, that’s the one the user clicked on!

This process continues until an object cannot find a view to pass
the event to, either because it is a terminal view (one with no
subviews) or because there is no subview in the position where
the event occurred (such as clicking on open space in a dialog
box). At that point, the event has reached the object where the
positional event took place, and that object handles the event.

114 Turbo Vision Guide

Focused events Focused events are generally keystrokes (evKeyDown) or
commands (evCommand), and they are passed down the focus

For details on focused views .
chain.

and the focus chain, see
“Selected and focused

views* in Chapter 4, “Views,” The current modal view gets the focused event first, and passes it

to its selected subview. If that subview has a selected subview, it
passes the event to it. This process continues until a terminal view
is reached: This is the focused view. The focused view receives
and handles the focused event.

Non-focused views may If the focused view does not know how to handle the particular
handle focused events. 566 gyent it receives, it passes the event back up the focus chain to its
the "Phase” secfion in this . .] .
chapter owner. This process is repeated until the event is handled or the
event reaches the modal view again. If the modal view does not
know how to handle the event when it comes back, it calls
EventError. This situation is an abandoned event.

Keyboard events illustrate the principle of focused events quite
clearly. For example, in the Turbo Pascal integrated environment,
you might have several files open in editor windows on the
desktop. When you press a key, you know which file you intend
to get the character. Let’s see how Turbo Vision ensures it actually
gets there.

Your keystroke produces an evKeyDown event, which goes to the
current modal view, the TApplication object. TApplication sends the
event to its selected view, the desktop (the desktop is always
TApplication’s selected view). The desktop sends the event to its
selected view, which is the active window (the one with the
double-lined frame). That editor window also has subviews—a
frame, a scrolling interior view, and two scrollbars. Of those, only
the interior is selectable (and therefore selected, by default), so the
keyboard event goes to it. The interior view, an editor, has no
subviews, so it gets to decide how to handle the character in the
evKeyDown event.

Broadcast events Broadcast events are generally either broadcasts (evBroadcast) or
user-defined messages.

Broadcast events are not as directed as positional or focused
events. By definition, a broadcast does not know its destination,
so it is sent to all the subviews of the current modal view.

The current modal view gets the event, and begins passing it to its
subviews in Z-order. If any of those subviews is a group, it too

Chapfter 5, Event-driven programming 115

Broadcasts can be directed

fo an object with the
Message function.

User-defined events

Manipulating bits in masks is

116

explained in Chapter 10,
“Hints and tips.”

Masking events

Phase

passes the event to its subviews, also in Z-order. The process
continues until all views owned (directly or indirectly) by the
modal view have received the event.

Broadcast events are commonly used for communication between
views. For example, when you click on a scroll bar in a file viewer,
the scroll bar needs to let the text view know that it should show
some other part of itself. It does that by broadcasting a view
saying “I've changed!” which other views, including the text, will
receive and react to. For more details, see the “Inter-view
communication” section in this chapter.

As you become more comfortable with Turbo Vision and events,
you may wish to define whole new categories of events, using the
high-order bits in the What field of the event record. By default,
Turbo Vision will route all such events as broadcast events. But
you may wish your new events to be focused or positional, and
Turbo Vision provides a mechanism to allow this.

Turbo Vision defines two masks, Positional and Focused, which
contain the bits corresponding to events in the event record’s What
field that should be routed by position and by focus, respectively.
By default, Positional contains all the evMouse bits, and Focused
contains evKeyboard. If you define some other bit to be a new kind
of event that you want routed either by position or focus, you
simply add that bit to the appropriate mask.

Every view object has a bitmapped field called EventMask which
is used to determine which events the view will handle. The bits
in the EventMask correspond to the bits in the TEvent. What field. If
the bit for a given kind of event is set, the view will accept that
kind of event for handling. If the bit for a kind of event is cleared,
the view will ignore that kind of event.

There are certain times when you want a view other than the
focused view to handle focused events (especially keystrokes). For
example, when looking at a scrolling text window, you might
want to use keystrokes to scroll the text, but since the text
window is the focused view, keystroke events go to it, not to the
scroll bars that can scroll the view.

Turbo Vision Guide

Turbo Vision provides a mechanism, however, to allow views
other than the focused view to see and handle focused events.
Although the routing described in the “Focused events” section of
this chapter is essentially correct, there are two exceptions to the
strict focus-chain routing.

When the modal view gets a focused event to handle, there are
actually three “phases” to the routing:

m The event is sent to any subviews (in Z-order) that have their
ofPreProcess option flags set.

m If the event isn’t cleared by any of them, the event is sent to the
focused view.

m If the event still hasn’t been cleared, the event is sent (again in
Z-order) to any subviews with their ofPostProcess option flags
set.

So in the preceding example, if a scroll bar needs to see keystrokes
that are headed for the focused text view, the scroll bar should be
initialized with its ofPreProcess option flag set. If you look at the
example program TVDEMO09.PAS, you will notice that the scroll
bars for the interior views all have their ofPostProcess bits set. If
you modify the code to not set those bits, keyboard scrolling will
be disabled.

Notice also that in this particular example it doesn’t make much
difference whether you set ofPreProcess or ofPostProcess: Either one
will work. Since the focused view in this case doesn’t handle the
event (TScroller itself doesn’t do anything with keystrokes), the
scroll bars may look at the events either before or after the event is
routed to the scroller.

In general, however, you would want to use ofPostProcess in a case
like this, because it provides greater flexibility. Later on you may
wish to add functionality to the interior that checks keystrokes,
but if the keystrokes have been taken by the scroll bar before they
get to the focused view (ofPreProcess), your interior will never get
to act on them.

= Although there are times when you will need to grab focused
events before the focused view can get at them, it’s a good idea to
leave as many options open as possible so that you (or someone
else) can derive something new from this object in the future.

Chapter 6, Event-driven programming 117

118

The Phase field

Every group has a field called Phase, which has any of three
values: phFocused, phPreProcess, and phPostProcess. By checking its
owner’s Phase flag, a view can tell whether the event it is handling
is coming to it before, during, or after the focused routing. This is
sometimes necessary, because some views look for different
events, or react to the same events differently, depending on the
phase.

Consider the case of a simple dialog box that contains an input
line and a button labeled “All right,” with Abeing the shortcut key
for the button. With normal dialog box controls, you don’t really
have to concern yourself with phase. Most controls have
ofPostProcess set by default, so keystrokes (focused events) will get
to them and allow them to grab the focus if it is their shortcut
letter that was typed. Pressing A moves the focus to the “All right”
button.

But suppose the input line has the focus, so keystrokes get
handled and inserted by the input line. Pressing the Akey puts an
“A” in the input line, and the button never gets to see the event,
since the focused view handled it. Your first instinct might be to
have the button check for the A key preprocess, so it can snag the
shortcut key before the focused view handles it. Unfortunately,
this would always preclude your typing the letter “A” in the
input line!

The solution is actually rather simple: Have the button check for
different shortcut keys before and after the focused view handles
the event. Specifically, by default, a button will look for its
shortcut key in Alt-letter form pre process, and in letter form post
process. That’s why you can always use the Altletter shortcuts in a
dialog box, but you can only use regular letters when the focused
control doesn’t “eat” keystrokes.

This is easy to do. By default, buttons have both ofPreProcess and
ofPostProcess set, so they get to see focused events both before and
after the focused view does. But within its HandleEvent, the button
only checks certain keystrokes if the focused control has already
seen the event:

evKeyDown: { this is part of a case statement }
begin
C := HotKey(Title");
if (Event.KeyCode = GetAltCode(C)) or
(Owner".Phase = phPostProcess) and (C <> #0) and

Turbo Vision Guide

Commands

(Upcase (Event.CharCode) = C) or
(State and sfFocused <> () and (Event.CharCode =’ ‘) then
begin
PressButton;
ClearEvent (Event) ;
end;
end;

Defining
commands

Most positional and focused events wind up getting translated
into commands by the objects that handle them. That is, an object
often responds to a mouse click or a keystroke by generating a
command event.

For example, by clicking on the status line in a Turbo Vision
application, you generate a positional (mouse) event. The
application determines that the click was positioned in the area
controlled by the status line, so it passes the event to the status
line object, StatusLine.

StatusLine determines which of its status items controls the area
where you clicked, and reads the status item record for that item.
That item usually will have a command bound to it, so StatusLine
creates a pending event record with the What field set to v
evCommand and the Command field set to whatever command was
bound to that status item. It then clears the mouse event, meaning
that the next event found by GetEvent will be the command event
just generated.

Turbo Vision has many predefined commands, and you will
define many more yourself. When you create a new view, you
will also create a command that will be used to invoke the view.
Commands may be called anything, but Turbo Vision’s
convention is that a command identifier should start with “cm.”
The actual mechanics of creating a command are simple—you just
create a constant:

const
cmConfuseTheCat = 100;

Chapter 5, Event-driven programming 119

120

Table 5.1
Turbo Vision command
ranges

Binding
commands

Enabling and
disabling
commands

Turbo Vision reserves commands 0 through 99 and 256 through
999 for its own use. Your applications may use the numbers 100
through 255 and 1000 through 65,535 for commands.

The reason for having two ranges of commands is that only the
commands 0 through 255 may be disabled. Turbo Vision reserves
some of the commands that can be disabled and some of the
commands that cannot be disabled for its standard commands
and internal workings. You have complete control over the
remainder of the commands.

The ranges of available commands are summarized in Table 5.1.

Range Reserved Can be disabled
0..99 Yes Yes
100..255 No Yes
256..999 Yes No
1000..65535 No No

When you create a menu item or a status line item, you bind a
command to it. When the user chooses that item, an event record
is generated, with the What field set to evCommand, and the
Command field set to the value of the bound command. The
command may be either a Turbo Vision standard command or
one you have defined. At the same time you bind your command
to a menu or status line item, you may also bind it to a hot key.
That way, the user can invoke the command by pressing a single
key as a shortcut to using the menus or the mouse.

The important thing to remember is that defining the command
does not specify what action will be taken when that command
appears in an event record. You will have to tell the appropriate
objects how to respond to that command.

There are times when you want certain commands to be
unavailable to the user for a period of time. For example, if you
have no windows open, it makes no sense for the user to be able
to generate cmClose, the standard window closing command.
Turbo Vision provides a way to disable and enable sets of
commands.

Turbo Vision Guide

Specifically, to enable or disable a group of commands, you use
the global type TCommandSet, which is a set of numbers 0 through
255. (This is why only commands in the range 0..255 can be
disabled.) The following code disables a group of five window-
related commands:

var
WindowCommands: TCommandSet;

begin
WindowCommands := [cmNext, cmPrev, cmZoom, cmResize, cmClose];
DisableCommands (WindowCommands) ;

end;

Handling events

Once you have defined a command and set up some kind of
control to generate it—for example, a menu item or a dialog box
button—you need to teach your view how to respond when that
command occurs.

Every view inherits a HandleEvent method that already knows
how to respond to much of the user’s input. If you want a view to
do something specific for your application, you need to override
its HandleEvent and teach the new HandleEvent two things—how "
to respond to new commands you’ve defined, and how to
respond to mouse and keyboard events the way you want.

A view’s HandleEvent method determines how it behaves. Two
views with identical HandleEvent methods will respond to events
in the same way. When you derive a' new view type, you
generally want it to behave more-or-less like its ancestor view,
with some changes. By far the easiest way to accomplish this is to
call the ancestor’s HandleEvent as part of the new object’s
HandleEvent method.

The general layout of a descendant’s HandleEvent would look like
this:

procedure NewDescendant.HandleEvent (var Event: TEvent);
begin
{ code to change or eliminate parental behavior }
Parent.HandleEvent (Event) ;
{ code to perform additional functions }
end;

Chapter 5, Event-driven programming 121

In other words, if you want your new object to handle certain
events differently than its ancestor does (or not at all!), you would
trap those particular events before passing the event to the
ancestor’s HandleEvent method. If you want your new object to
behave just like its ancestor, but with certain additional functions,
you would add the code to do that after the call to the ancestor’s
HandleEvent procedure.

The event record

Up to this point, this chapter has discussed events in a fairly
theoretical fashion. We have talked about the different kinds of
events (mouse, keyboard, message, and “nothing”) as determined
by the event’s What field. We have also discussed briefly the use of
the Command field for command events.

Now it’s time to discuss what an event record actually looks like.
The DRIVERS.TPU unit of Turbo Vision defines the TEvent type
as a variant record:

TEvent = record
What: Word;
case Word of
evNothing: ();
evMouse: (
Buttons: Byte;
Double: Boolean;
Where: TPoint);
evKeyDown: (
case Integer of
0: (KeyCode: Word);
1: (CharCode: Char;
ScanCode: Byte));
evMessage: (
Command: Word;
case Word of
0: (InfoPtr: Pointer);
(Infolong: Longint);
(InfoWord: Word);
(InfoInt: Integer);
(InfoByte: Byte):
(InfoChar: Char));

G o W N =

end;

122 Turbo Vision Guide

TEwvent is a variant record. You can tell what is in the record by
looking at the field What. Thus, if TEvent.What is an evMouseDown,
TEvent will contain:

Buttons: Byte;
Double: Boolean;
Where: TPoint;

If TEvent.What is an evKeyDown, the compiler will let you access
the data either as

KeyCode: Word;
or as

CharCode: Char;
ScanCode: Byte;

The final variant field in the event record stores a Pointer, Longint,
Word, Integer, Byte or Char value. This field is used in a variety of
ways in Turbo Vision. Views can actually generate events
themselves and send them to other views, and when they do, they
often use the InfoPtr field. Communication among views and the
InfoPtr field are both covered in the “Inter-view communication”
section of this chapter.

Clearing events

When a view’s HandleEvent method has handled an event, it
finishes the process by calling its ClearEvent method. ClearEvent
sets the Event.What field equal to evNothing and Event.InfoPtr to
@Self, which are the universal signals that the event has been
handled. If the event then gets passed to another object, that
object should ignore this “nothing” event.

Abandoned

events Normally, every event will be handled by some view in your
application. If no view can be found that handles an event, the
modal view calls EventError. EventError calls the view owner’s
EventError and so forth up the view tree until
TApplication.EventError is called.

TApplication.EventError by default does nothing. You may find it
useful during program development to override EventError to
bring up an error dialog box or issue a beep. Since the end user of
your software isn’t responsible for the failure of the software to

Chapter 5, Event-driven programming 123

handle an event, such an error dialog box in a shipping version
would probably just be irritating.

ClearEvent also helps views communicate with each other. For
now, just remember that you haven’t finished handling an event
until you call ClearEvent.

Modifying the event mechanism

Centralized event

124

gathering

At the heart of the current modal view is a loop that looks
something like this: ‘

var
E: TEvent;
begin
E.What := evNothing;
repeat
if E.What <> evNothing then EventError (E);
GetEvent (E) ;
HandleEvent (E) ;
until EndState <> Continue;
end;

One of the greatest advantages of event-driven programming is
that your code doesn’t have to know where its events come from.
A window object, for example, just needs to know that when it
sees a cmClose command in an event, it should close. It doesn’t
care whether that command came from a click on its close icon, a
menu selection, a hot key, or a message from some other object in
the program. It doesn’t even have to worry about whether that
command is intended for it. All it needs to know is that it has
been given an event to handle, and since it knows how to handle
that event, it does. ‘

The key to these “black box” events is the application’s GetEvent
method. GetEvent is the only part of your program that has to
concern itself with the source of events. Objects in your
application simply call GetEvent and rely on it to take care of
reading the mouse, the keyboard, and the pending events
generated by other objects.

If you want to create new kinds of events (for example, reading
characters from a serial port), you would simply override

Turbo Vision Guide

TApplication.GetEvent in your application object. As you can see
from the TProgram.GetEvent code in APP.PAS, the GetEvent loop
scans among the mouse and the keyboard and then calls Idle. To
insert a new source of events, you could either override Idle to
look for characters from the serial port and generate events based
on them, or override GetEvent itself to add a GetComEvent(Event)
call to the loop, where GetComEvent returns an event record if
there is a character available at the designated serial port.

Overriding

GetEvent The current modal view’s GetEvent calls its owner’s GetEvent, and
so on, all the way back up the view tree to T Application.GetEvent,
which is where the next event is always actually fetched.

Because Turbo Vision always uses TApplication.GetEvent to
actually fetch events, you can modify events for your entire
application by overriding just this one method. For example, to
implement keystroke macros, you could watch the events
returned by GetEvent, grab certain keystrokes, and unfold them
into macros. As far as the rest of the application would know, the
stream of events would be coming straight from the user.

procedure TMyApp.GetEvent (var Event: TEvent);
begin

TApplication.GetEvent (Event);

{ special processing here }
end;

Using idle time
Another benefit of TApplication.GetEvent’s central role is that it
calls a method called TApplication.Idle if no event is ready.
TApplication.Idle is a dummy (empty) method that you can
override in order to carry out processing concurrent with that of
the current view.

An example of aheap Suppose, for example, you define a view called THeapView that
exa‘ﬁp"',’gg%gfggfg r’)”y’:’li uses a method called Update to display the currently available
distribution disks, heap memory. If you override TApplication.Idle with the following,
the user will be able to see a continuous display of the available

heap memory, no matter where he is in your program.

procedure TMyApp.Idle;
begin

HeapViewer.Update;
end;

Chapter 5, Event-driven programming 125

Inter-view communication

126

Infermediaries

A Turbo Vision program is encapsulated into objects, and you
write code only within objects. Suppose an object needs to
exchange information with another object within your program?
In a traditional program, that would probably just mean copying
information from one data structure to another. In an object-
oriented program, that may not be so easy, since the objects may
not know where to find one another.

Inter-view communication is not as easy as sending data between
equivalent parts of a traditional Pascal program. (Although two
parts of a traditional Pascal application can never achieve the
functionality of two Turbo Vision views.)

If you need to do inter-view communication, the first question to
ask is if you have divided the tasks up between the two views
properly. It may be that the problem is one of poor program
design. Perhaps the two views really need to be combined into
one view, or part of one view moved to the other view.

If indeed the program design is sound, and the views still need to
communicate with each other, it may be that the proper path is to
create an intermediary view.

For example, suppose you have a spreadsheet object and a word
processor object, and you want to be able to paste something from
the spreadsheet into the word processor, and vice-versa. In a
Turbo Vision application, you can accomplish this with direct
view-to-view communication. But suppose that at a later date you
wanted to add, say, a database to this group of objects, and to
paste to and from the database. You will now need to duplicate
the communication you established between the first two objects
between all three.

A better solution is to establish an intermediary view—in this
case, say, a clipboard. An object would then need to know only
how to copy something to the clipboard, and how to paste
something from the clipboard. No matter how many new objects
you add to the group, the job will never become any more
complicated than this.

Turbo Vision Guide

Messages among

views 1f you've analyzed your situation carefully and are certain that
your program design is sound and that you don’t need to create
an intermediary, you can implement simple communication
between just two views.

Before one view can communicate with another, it may first have
to find out where the other view is, and perhaps even make sure
that the other view exists at the present time.

First, a straightforward example. The Stddlg unit contains a dialog
box called TFileDialog (it’s the view that opens in the integrated
environment when you want to load a new file). TFileDialog has a
TFileList that shows you a disk directory, and above it, a
FileInputLine that displays the file currently selected for loading.
Each time the user selects another file in the FileList, the FileList
needs to tell the FileInputLine to display the new file name.

In this case, FileList can be sure that FileInputLine exists, because
they are both initialized within the same object, FileDialog. How
does FileList tell FileInputLine that the user just selected a new
name?

FileList creates and sends a message. Here’s TFileList.Focusltem,
which sends the event, and FileInputLine's HandleEvent, which
receives it:

procedure TFilelist.FocusItem(Item: Integer);

var
Event: TEvent;
begin
TSortedListBox.FocusItem(Item); { call inherited method first }
= Message (TopView, evBroadcast, cmFileFocused, List”.At(Item));
end;
TopView points fo the cur(enf procedure TFileInputlLine.HandleEvent (var Event: TEvent);
modal view.
var
Name: NameStr;
begin

TInputLine.HandleEvent (Event);
if (Event.What = evBroadcast) and (Event.Command = cmFileFocused)
and (State and sfSelected = 0) then
begin
if PSearchRec (Event.InfoPtr)”.Attr and Directory <> 0 then
Data* := PSearchRec (Event.InfoPtr)".Name + '\’+
PFileDialog(Owner)*.WildCard

Chapter 5, Event-driven programming 127

Who handled the

128

broadcast?

Is anyone out there?

else Data” := PSearchRec(Event.InfoPtr)".Name;
DrawView;
end;
end;

Message is a function that generates a message event and returns a
pointer to the object (if any) that handled the event.

Note that TFileList.FocusItem uses the Turbo Pascal extended
syntax (the $X+ compiler directive) to use the Message function as

‘a procedure, since it doesn’t care about any results that come back

from Message.

Suppose you need to find out if there is a window open on the
desktop before you perform some action. How can you find this
out? The answer is to have your code send off a broadcast event
that windows know how to respond to. The “signature” left by
the object that handles the event will tell you who, if anyone,
handled it.

Here’s a concrete example. In the Turbo Pascal IDE, if the user
asks to open a watch window, the code which opens watch
windows needs to check to see if there is already a watch window
open. If there isn’t, it opens one; if there is, it brings it to the front.

Sending off the broadcast message is easy:
AreYouThere := Message (DeskTop, evBroadcast, cmFindWindow, nil);

In the code for a watch window’s HandleEvent method is a test to
respond to cmFind Window by clearing the event:

case Event.Command of
cmFindWindow: ClearEvent (Event);
end;
ClearEvent, remember, not only sets the event record’s What field
to evNothing, it also sets the InfoPtr field to @Self. Message reads
these fields, and if the event has been handled, it returns a pointer
to the object who handled the message event. In this case, that

would be the watch window. So following the line that sends the
broadcast, we include

if AreYouThere = nil then

Turbo Vision Guide

CreateWatchWindow { if there is none, create one }
else AreYouThere”.Select; { otherwise bring it to the front }

As long as a watch window is the only object that knows how to
respond to the cmFind Window broadcast, your code can be
assured that when it finishes, there will be one and only one
watch window at the front of the views on the desktop.

Who's ontop? Using the same techniques outlined earlier, you can also
determine, for example, which window is the topmost view of its
type on the desktop. Because a broadcast event is sent to each of
the modal view’s subviews in Z-order (reverse insertion order),
the most recently inserted view is the view “on top” of the
desktop.

Consider for a moment the situation encountered in the IDE when
the user has a watch window open on top of the desktop while
stepping through code in an editor window. The watch window
can be the active window (double-lined frame, top of the stack),
but the execution bar in the code window needs to keep tracking
the executing code. If you have multiple editor windows open on
the desktop, they might not overlap at all, but the IDE needs to
know which one of the editors it is supposed to be tracking in.

The answer, of course, is the front, or topmost editor window,
which is defined as the last one inserted. In order to figure out
which one is “on top,” the IDE broadcasts a message that only
editor windows know how to respond to. The first editor window
to receive the broadcast will be the one most recently inserted; it
will handle the event by clearing it, and the IDE will then know
which window to use for code tracking by reading the result
returned by Message.

Calling

HandleEvent You can also create or modify an event, then call a HandleEvent
directly. You can make three types of calls:

"Peer” views are subviews 1, You can have a view call a peer subview’s HandleEvent
with the same ownex directly. The event won't propagate to other views. It goes
directly to the other HandleEvent, then control returns to you.

2. You can call your owner’s HandleEvent. The event will then
propagate down the view chain. (If you are calling the
HandleEvent from within your own HandleEvent, your

Chapter 5, Event-driven programming 129

130

Help context

HandleEvent will be called recursively.) After the event is
handled, control returns to you.

3. You can call the HandleEvent of a view in a different view
chain. The event will travel down that view chain. After it is
handled, control will return to you.

Turbo Vision has built-in tools that help you implement context-
sensitive help within your application. You can assign a help
context number to a view, and Turbo Vision ensures that
whenever that view becomes focused, its help context number
will become the application’s current help context number.

To create global context-sensitive help, you can implement a
HelpView that knows about the help context numbers that you've
defined. When HelpView is invoked (usually by the user pressing
F1 or some other hot key), it should ask its owner for the current
help context by calling the method GetHelpCtx. HelpView can then
read and display the proper help text. An example HelpView is
included on your Turbo Pascal distribution disks.

Context-sensitive help is probably one of the last things you’'ll
want to implement in your application, so Turbo Vision objects
are initialized with a default context of hcNoContext, which is a
predefined context that doesn’t change the current context. When
the time comes, you can work out a system of help numbers, then
plug the right number into the proper view by setting the view’s
HelpCtx field right after you construct the view.

Help contexts are also used by the status line to determine which
views to display. Remember that when you create a status line,
you call NewStatusDef, which defines a set of status items for a
given range of help context values. When a new view receives the
focus, the help context of that item determines which status line is
displayed.

Turbo Vision Guide

Writing safe programs

Handling errors in an interactive user interface is much more
complicated than in a command line utility. In a non-interactive
application, it is quite acceptable (and indeed, expected) that
errors cause the program to display an error message and
terminate the program. In an interactive setting, however, the
program needs to recover from errors and leave the user in an
acceptable state. Errors should not be allowed to corrupt the
information the user is working on, nor should they terminate the
program, regardless of their nature. A program that meets these
programming criteria can be considered “safe.”

Turbo Vision facilitates writing safe programs. It promotes a style
of programming that makes it easier to detect and recover from
errors, especially the wily and elusive “Out of memory” error. It
does this by promoting the concept of atomic operations.

All or nothing programming

An atomic operation is an operation that cannot be broken down
into smaller operations. Or, more specific to our use, it is an
operation that either completely fails, or completely succeeds.
Making operations atomic is especially helpful when dealing with
memory allocation.

Typically, programs allocate memory in many small chunks. For
example, when constructing a dialog box, you allocate memory

Chapter 6, Writing safe programs 131

The size of the safety poolis

132

The safety pool

set by the variable
LowMem§ize.

for the dialog box, then allocate memory for each of the controls.
Each of these allocations could potentially fail, and each possible
failure requires a test to see if you should proceed with the next
allocation or stop. If any allocation does fail, you need to
deallocate any memory allocated successfully. Ideally, you would
allocate everything and then check to see if any of your
allocations failed. Enter the safety pool.

Turbo Vision sets aside a fixed amount of memory (4K by default)
at the end of the heap, called the safety pool. If allocating memory
on the heap reaches into the safety pool, the Turbo Vision
function LowMemory returns True. This indicates that further
allocations are not safe and might fail.

For the safety pool to be effective, the pool must be as large as the
largest atomic allocation. In other words, it needs to be large
enough to make sure that all allocations between checks of
LowMemory will succeed; 4K should suffice in most applications.

Using the traditional approach to memory allocation, constructing
a dialog box would look something like this:

OK := True;

R.Assign(20,3,60,10);

D := New(Dialog, Init(R, 'My dialog’));

if D <> nil then

begin

with D* do
begin
R.Assign(2,2,32,3);
Control := New(PStaticText, Init(R,
'Do you really wish to do this?’));

if Control <> nil then Insert(Control)
else 0K := False;
R.Assign(5,5,14,7);
Control := New(PButton, Init(R, ’~Y~es’, cmYes));
if Control <> nil then Insert (Control)
else OK := False;
R.Assign(16,6,25,7);
Control := New(PButton, Init(R, ’~N~o’, cmNo));
if Control <> nil then Insert(Control)
else OK := False;
R.Assign(27,5,36,7);
Control := New(PButton, Init(R, ’~C~ancel’, cmCancel));
if Control <> nil then Insert (Control)

Turbo Vision Guide

else OK := False;
end;
if not OK then Dispose(D, Done);
end;)

Note that the variable OK is used to indicate if any of the
allocations failed. If any did, the whole dialog box needs to be
disposed. Remember, disposing of a dialog box also disposes of
all its subviews. On the other hand, with a safety pool this entire
block of code can be treated as an atomic operation, changing the
code to this:

R.Assign(20,3,60,10);
D := New(Dialog, Init(R, ’'My dialog’));
with D* do
begin
R.Assign(2,2,32,3);
Insert (New(PStaticText, Init(R,
'Do you really wish to do this?’)));
R.Assign(5,5,14,7);
Insert (New(PButton, Init(R, '~Y~es’, cmYes)));
R.Assign(16,6,25,7);
Insert (New(PButton, Init(R, "~N~0’, cmNo)));
R.Assign(27,5,36,7);
Insert (New(PButton, Init{R, ’~C~ancel’, cmCancel)));

end;
if LowMemory then { check if we hit the safety pool }
begin
Dispose (D, Done);
OutOfMemory; { report out of memory error }
Dolt := False;
end
else

Dolt := Desktop”.ExecView(D) = cmYes;

Since the safety pool is large enough to allocate the entire dialog
box, which takes up much less than 4k, the code can assume that
all the allocations succeeded. After the dialog box is completely
allocated, the LowMemory variable is checked, and if True, the
entire dialog box is disposed of; otherwise, the dialog box is used.

The ValidView method Since the LowMemory check is done quite often, T Application has a
method called ValidView that can be called to perform the
necessary check. Using ValidView, the if test in the last eight lines
of the code can be condensed into two:

Dolt := (ValidView (D) <> nil) and
(Desktop”.ExecView (D) = cmYes);

Chapter 6, Writing safe programs 133

134

Non-memory
errors

ValidView returns either a pointer to the view passed or nil if the
view was invalid. If LowMemory returns True, ValidView takes care
of disposing the view in question and calling OutOfMemory.

Of course, not all errors are memory related. For example, a view
could be required to read a disk file for some information, and the
file might be missing or invalid. This type of error must also be
reported to the user. Fortunately, ValidView has a “hook” built in
for handling non-memory errors: It calls the view’s Valid method.

TView.Valid returns True by default. TGroup.Valid only returns
True if all the subviews owned by the group return True from
their Valid functions. In other words, a group is valid if all the
subviews of the group are valid. When you create a view that
may encounter non-memory errors, you will need to override
Valid for that view to return True only if it has been successfully
instantiated.

Valid can be used to indicate that a view should not be used for
any reason; for example, if the view could not find its file. Note
that what Valid checks for and how it checks are entirely up to
you. A typical Valid method would look something like this:

function TMyView.Valid(Command: Word): Boolean;

begin
Valid := True;
if Command = cmValid then
begin
if ErrorEncountered then
begin
ReportError;
Valid := False;
end;
end;
end;

When a view is first instantiated, its Valid method should be
called with a Command parameter of cmValid to check for any
non-memory related errors involved in the creation of the view.
ValidView(X) calls X.Valid(cmValid) automatically, as well as
checking the safety pool, so calling ValidView before using any
new view is a good idea.

Valid is also called whenever a modal state terminates, with the
Command parameter being the command that terminated the

Turbo Vision Guide

modal state (see Chapter 4, “Views”). This gives you a chance to
trap for conditions like unsaved text in an editor window before
terminating your application.

ErrorEncountered could be, and most likely is, a (Boolean) instance
variable of the object type that is specified at the call to Init.

Reporting errors Before a Valid method returns False, it should let the user know
about whatever error occurred, since the view is not going to
show up on the screen. This is what the ReportError call in the
previous example does. Typically this involves popping up a
message dialog box. Each individual view, then, is responsible for
reporting any errors, so the program itself does not have to know
how to check each and every possible condition.

This is an important advance in programming technique, because
it lets you program as if things were going right, instead of
always looking for things going wrong. Group objects, including
applications, don’t have to worry about checking for errors at all,
except to see if any of the views they own were invalid, in which
case the group simply disposes of itself and its subviews and
indicates to its owner that it was invalid. The group can assume that
its invalid subview already notified the user of the problem.

Using Valid allows the construction of windows and dialog boxes
to be treated as atomic operations. Each subview that makes up
the window can be constructed without checking for failure; if the
constructor fails, it simply sets Valid to False. The window then
goes through its entire construction, at which point the entire
window can be passed to ValidView. If any of the subviews of the
window are invalid, the entire window returns False from the
valid check. ValidView will dispose of the window and return nil.
All that needs to be done is to check the return result from
ValidView.

Major consumers

The Valid function can also handle major consumers, which are
views that allocate memory greater than the size of the safety
pool, such as reading the entire contents of a file into memory.
Major consumers should check LowMemory themselves, instead of
waiting until they have finished all construction and then
allowing ValidView to do so for them.

Chapter 6, Writing safe programs 135

If a major consumer runs out of memory in the middle of
constructing itself, it sets a flag in itself that indicates that it
encountered an error (such as the ErrorEncountered flag in the
earlier example) and stops trying to allocate more memory. The
flag would be checked in Valid and the view would call
Application™.OutOfMemory and return False from the Valid call.

Obviously, this is not quite as nice as being able to assume that
your constructors work, but it is the only way to manage the
construction of views that exceed the size of your safety pool.

The program FILEVIEW.PAS included on the Turbo Pascal
distribution disks demonstrates the use of these techniques to
implement a safe file viewer.

136 Turbo Vision Guide

Chapter 7, Collections

Collections

Pascal programmers traditionally spend much programming time
creating code that manipulates and maintains data structures,
such as linked lists and dynamically-sized arrays. Virtually the
same data structure code tends to be written and debugged again
and again.

As powerful as traditional Pascal is, it only provides you with
built-in record and array types. Any structure beyond that is up to
you.

For example, if you're going to store data in an array, you
typically need to write code to create the array, to import data into
the array, to extract array data for processing, and perhaps to
export data to I/O devices. Later, when the program needs a new
array element type, you start all over again.

Wouldn't it be great if an array type came with code that would
handle many of the operations you normally perform on an
array? An array type that could also be extended without
disturbing the original code?

That’s the aim of Turbo Vision’s TCollection type. It's an object that
stores a collection of pointers and provides a host of methods for
manipulating them.

137

Collection objects

Collections are

dynamically sized

138

Collections are
polymorphic

Type checking
and collections

Besides being an object, and therefore having methods built into
it, a collection has two additional features that address
shortcomings of ordinary Pascal arrays—it is dynamically sized
and polymorphic.

The size of a standard Turbo Pascal array is fixed at compile time,
which is fine if you know exactly what size your array will always
need to be, but it may not be a particularly good fit by the time
someone is actually running your code. Changing the size of an
array requires changing the code and recompiling.

With a collection, however, you set an initial size, but it can
dynamically grow at run-time to accommodate the data stored in
it. This makes your application much more flexible in its compiled
form.

A second aspect of arrays that can be limiting to your application
is the fact that each element in the array must be of the same type,
and that type must be determined when the code is compiled.

Collections get around this limitation by using untyped pointers.
Not only is this fast and efficient, but a collection can then consist
of objects (and even non-objects) of different types and sizes. Just
like a stream, a collection doesn’t need to know anything about
the objects it is handed. It just holds on to them and gives them
back when asked.

A collection is an end-run around Pascal’s traditional strong type
checking. That means that you can put anything into a collection,
and when you take something back out, the compiler has no way
to check your assumptions about what that something is. You can
put in a PHedgehog and read it back out as a PSheep, and the
collection will have no way of alerting you.

As a Turbo Pascal programmer, you may rightfully feel nervous
about such an end-run. Pascal’s type checking, after all, saves
hours and hours of hunting for some very elusive bugs. So you

Turbo Vision Guide

Collecting non-objects

should proceed with caution here: You may not even be aware of
how difficult a mixed-type bug can be to find, because the
compiler has been finding all of them for you! However, if you
find that your programs are crashing or locking up, carefully
check the types of objects being stored in and read from
collections.

You can even add something to a collection that isn’t an object at
all, but this raises another serious point of caution. Collections
expect to receive untyped pointers to something. But some of
TCollection’s methods act specifically on a collection of TObject-
derived instances. These include the stream access methods
Putltem and Getltem as well as the standard Freeltem procedure.

This means that you can store a PString in a collection, for
example, but if you try to send that collection to a stream, the
results aren’t going to be pretty unless you override the
collection’s standard Getltem and Putltem methods. Similarly,
when you attempt to deallocate the collection, it will try to
dispose of each item using Freeltem. If you plan to use non-TObject
items in a collection, you need to redefine the meaning of “item”
in GetItem, Putltem, and Freeltem. That is precisely what
TStringCollection, for example, does.

If you proceed with prudence, you will find collections (and the
descendants of collections that you build) to be fast, flexible,
dependable data structures.

Creating a collection

Remember to define a
pointer for each new object
type.

Chapter 7, Collections

Creating a collection is really just as simple as defining the data
type you wish to collect. Suppose you're a consultant, and you
want to store and retrieve the account number, name, and phone
number of each of your clients. First you define the client object
(TClient) that will be stored in the collection:

type
PClient = "TClient;
TClient = object (TObject)
Account, Name, Phone: PString;
constructor Init (NewAccount, NewName, NewPhone: String);
destructor Done; virtual;
end;

139

This is TVGUID 17.PAS.

Next you implement the Init and Done methods to allocate and
dispose of the client data. Note that the object fields are of type
PString so that memory is only allocated for the portion of the
string that is actually used. The NewStr and DisposeStr functions
handle dynamic strings very efficiently.

constructor TClient.Init (NewAccount, NewName, NewPhone: String);
begin

Account := NewStr(NewAccount);

Name := NewStr (NewName) ;

Phone := NewStr (NewPhone);
end;

destructor TClient.Done;
begin
DisposeStr (Account) ;
DisposeStr (Name) ;
DisposeStr (Phone) ;
end;

TClient.Done will be called automatically for each client when you
dispose of the entire collection. Now you just instantiate a
collection to store your clients, and insert the client records into it.
The main body of the program looks like this:

var
ClientList: PCollection;

begin
ClientList := New(PCollection, Init (50, 10));
with ClientList” do
begin
Insert (New (PClient, Init{(’90-167', ’Smith, Zelda’,
' (800) 555-12127)));
Insert (New (PClient, Init(’90-160’, ’Johnson, Agatha’,
" (302) 139-89137)));
Insert (New(PClient, Init{’90-177', ’Smitty, John’,
" (406) 987-4321")));
Insert (New (PClient, Init(’91-100’, ’Anders, Smitty’,
7 (406) 111-2222")));
end;
PrintAll (ClientList);
Writeln; Writeln;
SearchPhone (ClientList, ' (406)7);
Dispose(ClientList, Done);
end.

PrintAll and SearchPhone are Notice how easy it was to build the collection. The first statement

140

procedures that will be

discussed later.

allocates a new TCollection called ClientList with an initial size of
50 clients. If more than 50 clients are inserted into ClientList, its

Turbo Vision Guide

size will increase in increments of 10 clients whenever needed.
The next 2 statements create a new client object and insert it into
the collection. The Dispose call at the end frees the entire
collection—clients and all.

Nowhere did you have to tell the collection what kind of data it
was collecting—it just took a pointer.

[ferator methods

The ForEach
iterator

Chapter 7, Collections

Insert and deleting items aren’t the only common collection
operations. Often you'll find yourself writing for loops to range
over all the objects in the collection to display the data or perform
some calculation. Other times, you'll want to find the first or last
item in the collection that satisfies some search criterion. For these
purposes, collections have three iterator methods: ForEach,
FirstThat, and LastThat. Each of these takes a pointer to a
procedure or function as its only parameter.

ForEach takes a pointer to a procedure. The procedure has one
parameter, which is a pointer to an item stored in the collection.
ForEach calls that procedure once for each item in the collection, in
the order that the items appear in the collection. The PrintAll
procedure in TVGUID17 shows an example of a ForEach iterator.

procedure PrintAll (C: PCollection); { print info for all clients }
procedure PrintClient (P: PClient); far; { local procedure }
begin
with P* do

Writeln(Account”, ’’:20-Length(Account”), { show client info }
Name”, ‘’:20-Length (Name"),
Phone”, ’’:20-Length(Phone"));

end; { end of local procedure }
begin { PrintAll }

Writeln;

Writeln;

C*.ForEach (@PrintClient); { Call PrintClient for each item in C }
end;

For each item in the collection passed as a parameter to PrintAll,
the nested procedure PrintClient is called. PrintClient simply
prints the client object information in formatted columns.

141

Iterators must call far local
procedures.

The FirstThat and
LastThat iterators

142

You need to be careful about what sort of procedures you call

with iterators. In this example, PrintClient must be a procedure—
it cannot be an object’s method—and it must be local to (nested in -
the same block with) the routine that is calling it. It must also be
declared as a far procedure, either with the far directive or with
the $F+ compiler directive. Finally, the procedure must take a
pointer to a collection item as its only parameter.

In addition to being able to apply a procedure to every element in
the collection, it is often useful to be able to find a particular
element in the collection based on some criterion. That is the
purpose of the FirstThat and LastThat iterators. As their names
imply, they search the collection in opposite directions until they
find an item meeting the criteria of the Boolean function passed as
an argument.

FirstThat and LastThat return a pointer to the first (or last) item
that matches the search conditions. Consider the earlier example
of the client list, and imagine that you can’t remember a client’s
account number or exactly how his last name is spelled. Luckily,
you distinctly recall that this was the first client you acquired in
the state of Montana. Thus you want to find the first occurrence of
a client in the 406 area code (since your list happens to be in
chronological order). Here’s a procedure using the FirstThat
method that would do the job

procedure SearchPhone(C: PClientCollection; PhoneToFind: String);

function PhoneMatch(Client: PClient): Boolean; far;

begin
PhoneMatch := Pos(PhoneToFind, Client”.Phone*) <> 0;
end;
var
FoundClient: PClient;
begin

FoundClient := C*.FirstThat (€PhoneMatch);
if FoundClient = nil then
Writeln(’No client met the search requirement’)
else
with FoundClient” do
Writeln('Found client: ', Account”, ' ', Name”, ' ', Phone");
end;

Turbo Vision Guide

Again notice that PhoneMatch is nested and uses the far call
model. In this case, it’s a function that returns True only if the
client’s phone number and the search pattern match. If no object
in the collection matches the search criteria, a nil pointer is
returned.

Remember: ForEach calls a user-defined procedure, while FirstThat
and LastThat each call a user-defined Boolean function. In all
cases, the user-defined procedure or function is passed a pointer
to an object in the collection.

Sorted collections

Chapter 7, Collections

Sometimes you need to have your data in a certain order. Turbo
Vision provides a special type of collection that allows you to -
order your data in any manner you want: the TSortedCollection.

TSortedCollection is a descendant of TCollection which
automatically sorts the objects it is given. It also automatically
checks the collection when a new member is added and rejects
duplicate members.

TSortedCollection is an abstract type. To use it, you must first
decide what type of data you're going to collect and define two
methods to meet your particular sorting requirements. To do this,
you will need to derive a new collection type from
TSortedCollection. In this case, call it TClientCollection.

Your TClientCollection already knows how to do all the real work
of a collection. It can Insert new client records and Delete existing
ones—it inherited all this basic behavior from TCollection. All you
have to do is teach TClientCollection which field to use as a sort
key and how to compare two clients and decide which one
belongs ahead of the other in the collection. You do this by
overriding the KeyOf and Compare methods and implementing
them as shown here:

PClientCollection = "“TClientCollection;
TClientCollection = object (TSortedCollection)
function KeyOf (Item: Pointer): Pointer; virtual;
function Compare(Keyl, Key2: Pointer): Integer; virtual;
end;

function TClientCollection.KeyOf(Item; Pointer): Pointer;
begin
KeyOf := PClient (Item)".Name;

143

Keys must be typecast

because they are untyped

pointers.

This is TVGUID 18.PAS.

end;

function TClientCollection.Compare (Keyl, Key2: Pointer): Integer;

begin
if PString(Keyl)” = PString(Key2)” then
Compare := 0 { return 0 if they’re equal }
else if PString(Keyl)* < PString(Key2)” then
Compare := -1 { return -1 if Keyl comes first }
else
Compare := 1; { otherwise return 1; Key2 comes first }
end;

KeyOf defines which field or fields should be used as a sort key. In
this case, it’s the client’s Name field. Compare takes two sort keys
and determines which one should come first in the sorted order.
Compare returns -1, 0, or 1, depending on whether Key1 is less
than, equal to, or greater than Key2. This example uses a straight
alphabetical sort of the key (Name) strings.

Note that since the keys returned by KeyOf and passed to Compare
are untyped pointers, you need to typecast them into PStrings
before dereferencing them.

That’s all you have to define! Now if you redefine ClientList as a
PClientCollection instead of a PCollection (changing the var
declaration and the New call), you can easily list your clients in
alphabetical order:

var
ClientList: PClientCollection;
begin
ClientList := New(PClientCollection, Init (50, 10));
end.
Notice also how easy it would be if you wanted the client list
sorted by account number instead of by name. All you would

have to do is change the KeyOf method to return the Account field
instead of the Name field.

String collections

144

Many programs need to keeping track of sorted strings. For this
purpose, Turbo Vision provides a special purpose collection,
TStringCollection. Note that the elements in a TStringCollection are
not objects—they are pointers to Turbo Pascal strings. Since a

Turbo Vision Guide

This is TVGUID19.PAS.

[terators revisited

Chapfter 7, Collections

string collection is a descendant of TSortedCollection, duplicate
strings are not stored.

Using a string collection is easy. Just declare a pointer variable to
hold the string collection. Allocate the collection, giving it an
initial size and an amount to grow by as more strings are added

var
WordList: PCollection;
WordRead: String;

begin
WordList := New(PStringCollection, Init (10, 5));:

WordList holds ten strings initially and then grows in increments
of five. All you have to do is insert some strings into the
collection. In this example, words are read out of a text file and
inserted into the collection:

repeat

if WordRead <> '’ then
WordList”.Insert (NewStr (WordRead));

until WordRead = '';

Dispose (WordList, Done};

Notice that the NewStr function is used to make a copy of the
word that was read and the address of the string copy is passed to
the collection. When using a collection, you always give it control
over the data you're collecting. It will take care of de-allocating
the data when you're done. And that’s exactly what the call to
Dispose does; it disposes each element in the collection, and then
disposes the WordList collection itself.

The ForEach method traverses the entire collection one item at a
time, and passes each one to a procedure you provide. Continuing
with the previous example, the procedure PrintWord is given a
pointer to a string to display. Note that PrintWord is a nested (or
local) procedure. Wrapped around it is another procedure, Print,
which is given a pointer to a TStringCollection. Print uses the
ForEach iterator method to pass each item in its collecton to the
PrintWord procedure. '

145

The CallDraw procedure in
TVGUID20.PAS shows how to
call a method from inside an
iterator call.

Finding an item

procedure Print(C: PCollection);

procedure PrintWord(P :
begin

Writeln(P*);
end;

PString); far;

{ Display the string }

begin { Print }

Writeln;

Writeln;

C”.ForEach (@PrintWord) ;
end;

{ Call PrintWord }

PrintWord should look familiar; it’s just a procedure that takes a
string pointer and passes its value to Writeln. Note the far
directive after PrintWord's declaration. PrintWord cannot be a
method—it must a procedure. And it must be a nested procedure
as well. Think of Print as a wrapper around a procedure that has
the job of doing something—displaying or modifying data,
perhaps—with each item in the collection. You can have more
than one procedure like the preceding PrintWord, but each has to
be nested inside Print and each has to be a far procedure (using
the far directive or {$F+}).

Sorted collections (and therefore string collections) have a Search
method that returns the index of an item with a particular key.
But how do you find an item in a collection that may not be
sorted? Or when the search criteria don’t involve the key itself?
The answer, of course, is to use FirstThat and LastThat. You simply
define a Boolean function to test for whatever criteria you want,
and call FirstThat.

Polymorphic collections

146

You've seen that collections can store any type of data
dynamically, and there are plenty of methods to help you access
collection data efficiently. In fact, TCollection itself defines 23
methods. When you use collections in your programs, you'll be
equally impressed by their speed. They’re designed to be flexible
and implemented to be fast.

But now comes the real power of collections: items can be treated
polymorphically. That means you can do more than just store an
object type on a collection; you can store many different objects
types, from anywhere in your object hierarchy.

Turbo Vision Guide

This is TVGUID20.PAS.

Chapter 7, Collections

If you consider the collection examples you've seen so far, you’'ll
realize that all the items on each collection were of the same type.
There was a list of strings in which every item was a string. And
there was a collection of clients. But collections can store any
object that is a descendant of TObject, and you can mix these
objects freely. Naturally, you'll want the objects to have
something in common. In fact, you'll want them to have an
abstract ancestor object in common.

As an example, here’s a program that puts 3 different graphical
objects into a collection. Then a ForEach iterator is used to traverse
the collection and display each object.

This example uses the Graph unit and BGI drivers, so make sure
GRAPH.TPU is in the current directory or on your unit path
(Options | Directories | Unit directory) when you compile. When
you run the program, change to the directory that contains the
.BGI drivers or modify the call to InitGraph to specify their
location (for example, C:\TP\BGI).

The abstract ancestor object is defined first.

type
PGraphObject = “TGraphObject;
TGraphObject = object (TObject)
X,Y: Integer;
constructor Init;
procedure Draw; virtual;
end;

You can see from this declaration that each graphical object can
initialize itself (Init) and display itself on the graphics screen
(Draw). Now define a point, a circle, and a rectangle, each
descended from this common ancestor:

PGraphPoint = ~TGraphPoint;

TGraphPoint = object (TGraphObject)
procedure Draw; virtual;

end;

PGraphCircle = *TGraphCircle;
TGraphCircle = object (TGraphObject)
Radius: Integer;
constructor Init;
procedure Draw; virtual;
end;

PGraphRect = “TGraphRect;
TGraphRect = object (TGraphObject)

147

Width, Height: Integer;

constructor Init;

procedure Draw; virtual;
end;

These three object types all inherit the X and Y fields from
PGraphObject, but they are all different sizes. PGraphCircle adds a
Radius, while PGraphRect adds a Width and Height. Here’s the code

to make the collection:
List := New(PCollection, Init(10, 5)); { Create collection }
for I :=1to 20 do
begin
case I mod 3 of { Create an object }

0: P := New(PGraphPoint, Init);
1: P := New(PGraphCircle, Init);
2: P := New(PGraphRect, Init);
end;
List”.Insert (P); { Add it to collection }
end;

As you can see, the for loop inserts 20 graphical objects into the
List collection. All you know is that each object in List is some
kind of TGraphObject. But once inserted, you'll have no idea
whether a given item in the collection is a circle, point or
rectangle. Thanks to polymorphism, you don’t need to know
since each object contains the data and the code (Draw) it needs.
Just traverse the collection using an iterator method and have
each object display itself:

procedure DrawAll(C: PCollection);

procedure CallDraw(P: PGraphObject); far;
begin

P*.Draw; { Call the Draw method }
end;

begin { Drawall }
C*.ForEach(@CallDraw); { Draw each object }
end;

var

GraphicsList: PCollection;
begin

DrawAll (GraphicsList);

end.

148 Turbo Vision Guide

This ability of a collection to store different but related objects
leans on one of the powerful cornerstones of object-oriented
programming. In the next chapter, you'll see this same principal
of polymorphism applied to streams with equal advantage.

Collections and memory management

Chapter 7, Collections

A TCollection can grow dynamically from the initial size set by Init
to a maximum size of 16,380 elements. The maximum collection
size is stored by Turbo Vision in the variable MaxCollectionSize.
Each element you add to a collection only takes four bytes of
memory, because the element is stored as a pointer.

No library of dynamic data structures would be complete unless
it provided some provision for error detection. If there is not
enough memory to initialize a collection, a nil pointer is returned.

If memory is not available when adding an element to a
TCollection, the method TCollection.Error is called and a run-time
heap memory error occurs. You may want to override
TCollection.Error to provide your own error reporting or recovery
mechanism.

You need to pay special attention to heap availability, because the
user has much more control of a Turbo Vision program than a
traditional Pascal program. If the user is the one who controls the
adding of objects to a collection (for example, by opening new
windows on the desktop), the possibility of a heap error may not
be so easy to predict. You may need to take steps to protect the
user from a fatal run-time error, with either memory checks of
your own when a collection is being used, or a run-time error
handler that lets the program recover gracefully.

149

150 Turbo Vision Guide

Chapfter 8, Streams

Streams

Object-oriented programming techniques and Turbo Vision give
you a powerful way of encapsulating code and data, and
powerful ways of building an interrelated structure of objects. But
what if you want to do something simple, like store some objects
on disk?

Back in the days when data sat by itself in a record, writing data
to disk was pretty clear-cut, but the data within a Turbo Vision
program is largely bound up within objects. You could, of course,
separate the data from the object and write the data to a disk file.
But you've achieved something important by joining the two
together in the first place, and it would be a step backwards to
take them apart.

Couldn’t OOP and Turbo Vision themselves somehow be enlisted
in solving this problem? That’s what streams are all about.

A Twibu Visius strcaltt 1s a Lulleciivi ul u'ujcu.i.a vl ii> way
somewhere: typically to a file, EMS, a serial port, or some other
device. Streams handle I/O on the object level rather than the
data level. When you extend a Turbo Vision object, you need to
provide for handling any additional data fields that you define.
All the complexity of handling the object representation is taken
care of for you.

161

The question: Object I/O

As a Pascal programmer, you know that before you can do any
fileI/O, you must tell the compiler what type of data you will be
reading or writing to the file. The file must be typed, and the type
must be determined at compile time.

Turbo Pascal implements a very useful workaround to this rule:
an untyped file accessed with BlockWrite and BlockRead. But the
lack of type checking creates some extra responsibilities for the
programmer, although it does let you perform very fast binary
I/0.

A second problem, though, is that you can’t use files directly with
objects. Turbo Pascal doesn’t allow you to create a typed file of
objects. And because objects may contain virtual methods who
addresses are determined at run-time, storing the VMT
information outside the program is pointless; reading such
information into a program is even more so.

Again, you can work around the problem. You can copy the data
out of your objects and store the information in some sort of file,
then rebuild the objects from the raw data again later. But thatis a
rather inelegant solution at best, and complicates the construction
of objects.

The answer: Streams

152

Streams are
polymorphic

Turbo Vision allows you to overcome both of these difficulties,
and gives you some side benefits as well. Streams provide a
simple, yet elegant, means of storing object data outside your
program.

A Turbo Vision stream gives you the best of both typed and
untyped files: type checking is still there, but what you intend to
send to a stream doesn’t have to be determined at compile time.
The reason is that streams know they are dealing with objects, so
as long as the object is a descendant of TObject, the stream can
handle it. In fact, different Turbo Vision objects can as easily be
written to the same stream as a group of identical objects.

Turbo Vision Guide

Sireams handle

objects an you have to do is define for the stream which objects it needs
to handle, so it knows how to match data with VMTs. Then you
can put objects onto the stream and get them back effortlessly.

But how can the same stream read and write such widely
differing objects as a TDeskTop and a TDialog, and not even need
to know at compile time what objects it is going to be handed?
This is very different from traditional Pascal I/O. In fact, a stream
can even handle new object types that weren't even created when
the stream was compiled.

The answer is registration. Each Turbo Vision object type (and any
new object types you derive from the hierarchy) is assigned a
unique registration number. That number gets written to the
stream ahead of the object’s data. Then, when you go to read the
object back from the stream, Turbo Vision gets the registration
number first, and based on that knows how much data to read
and what VMT to attach to your data.

Essential stream usage

On a fairly fundamental level, you can think about streams much
as you think about Pascal files. At its most basic, a Pascal file can
be simply a sequential I/O device: you write things to it, and you
read them back. A stream, then, is a polymorphic sequential I/O
device, meaning that it behaves much like a sequential file, but
you can also read or write various types of objects at the current
point.

Streams can also (like Pascal files) be viewed as a random-access

LI X g Y [PAUL ISR, PRI DN . 7 K N I 1 Ny o) [P S, U
A N VALV ALLU, FYALLAL Y UM ULLLY LU W P UULLITAL L4 LA LAy AL VLYY saee

at that point, return the position of the file pointer, and so on.
These operations are also available with streams, and are
described in the section “Random-access streams.”

There are two different aspects of stream usage that you need to

master, and luckily they are both quite simple. The first is setting
up a stream, and the second is reading and writing objects to the
stream.

Chapter 8, Sfreams 153

Sefting up a
stfream

Reading and
writing a stream

154

All you have to do to use a stream is initialize it. The exact syntax
of the Init constructor will vary, depending on what type of
stream you're dealing with. For example, if you're opening a DOS
stream, you need to pass the name of the DOS file and the access
mode (read-only, write-only, read /write) for the file containing
the stream.

For example, to initialize a buffered DOS stream for loading the
desktop object into a program, all you need to is this:

var
SaveFile: TBufStream;
begin
SaveFile.Init (" SAMPLE.DSK’, stOpen, 1024);

Once you've initialized the stream, you're ready to go—that’s all
there is to it.

TStream is an abstract stream mechanism, so you can’t actually
create an instance of it, but useful stream objects are all derived
from TStream. These include TDosStream, which provides disk
I/0, and TBufStream, which provides buffered disk I/O (useful if
you read or write a lot of small pieces to disk), and TEmsStream, a
stream that sends objects to EMS memory (especially useful for
implementing fast resources).

Turbo Vision also implements an indexed stream, with a pointer
to a place in the stream. By relocating the pointer, you can do
random stream access.

TStream, the basic stream object implements three basic methods
you need to understand: Get, Put, and Error. Get and Put roughly
correspond to the Read and Write procedures you would use for
ordinary file I/O operations. Error is a procedure that gets called
whenever a stream error occurs.

Turbo Vision Guide

Putting it on

Getting it back

Chapter 8, Streams

Let’s look first at the Put procedure. The general syntax of a Put
method is this:

SomeStream.Put (PSomeObject) ;

where SomeStream is any object descended from TStream that has
been initialized, and PSomeObject is a pointer to any object
descended from TObject that has been registered with the stream.
That'’s all you have to do. The stream can tell from PSomeObject’s
VMT what type of object it is (assuming the type has been ‘
registered), so it knows what ID number to write, and how much
data to write after it.

Of special interest to you as a Turbo Vision programmer,
however, is the fact that when you Put a group with subviews
onto a stream, the subviews are automatically written to the
stream as well. Thus, saving complex objects is not complex at
all—in fact, it's automatic! You can save the entire state of your
program simply by writing the desktop onto a stream. When you
restart your program and load the desktop back in, it will be in
the same condition it was in when you saved it.

Getting objects back from the stream is just as easy. All you have
to do is call the stream’s Gef function:

PSomeObject := SomeStream.Get;

where again, SomeStream is an initialized Turbo Vision stream,
and PSomeObject is a pointer to any type of Turbo Vision object.
Get simply returns a pointer to whatever it has pulled off the
stream. How much data it has pulled, and what type of VMT it
has assigned to that data, is determined not by the type of
PSomeObject, but by the type of object found on the stream. Thus,
if the object at the current position of SomeStream is not of the

-~ B BT LI o PP e | SO . 4 | RN R R P I SRR X R
CULLIL LY U U0 4 DU/ UfULEy Y U 1Y 1L et GUA AL il va s iiatas/ate

As with Put, Get will retrieve complex objects. Thus, if the object
you retrieve from a stream is a view that owns subviews, the
subviews will be loaded as well.

1565

In case of error

Shutting down
the stream

Finally, the Error procedure determines what happens when a
stream error occurs. By default, TStream.Error simply sets two
fields (Status and ErrorInfo) in the stream. If you want to do
anything fancier, like generating a run-time error or popping up
an error dialog box, you’ll need to override the Error procedure.

When you're finished using a stream, you call its Done method,
much as you would normally call Close for a disk file. As with any
Turbo Vision object, you do this as

Dispose (SomeStream, Done);

so as to dispose of the stream object as well as shutting it down.

Making objects streamable

166

Load and Store
methods

All standard Turbo Vision objects are ready to be used with
streams, and all Turbo Vision streams know about the standard
objects. When you derive a new object type from one of the
standard objects, it is very easy to prepare it for stream use, and to
alert streams to its existence.

The actual reading and writing of objects to the stream is handled
by methods called Load and Store. While each object must have
these methods to be usable by streams, you never call them
directly. (They are called by Get and Put.) So all you need to do is
make sure that your object knows how to send itself to the stream
when called upon to do so.

Because of OOP, this job is very easy, since most of the
mechanism is inherited from the ancestor object. All your object
has to handle is loading or storing the parts of itself that you
added; the rest is taken care of by calling the ancestor’s method.

For example, let’s say you derive a new kind of view from
TWindow, named after the surrealist painter Rene Magritte, who
painted many famous pictures of windows:

Turbo Vision Guide

Warning!

Stream
registration

Turbo Vision registers all the
standard objects, so you
don’t have fo.

Chapter 8, Streams

type
TMagritte = object (TWindow)
Painted: Boolean;
constructor Load(var S: TStream);
procedure Draw; : '
procedure Store(var S: TStream);
end;

All that has been added to the data portion of the window is one
Boolean field. In order to load the object, then, you simply read a
standard TWindow, then read an additional byte to accommodate
the Boolean field. The same applies to storing the object: you
simply write a TWindow, then write one more byte. Typical Load
and Store methods for descendant objects look like this:

constructor TMagritte.Load(var S: Stream);

begin
TWindow.Load(S); { load the ancestor type }
S.Read(Painted, SizeOf (Boolean)); { read additional fields }
end;

procedure TMagritte.Store(var S: Stream);

begin
TWindow.Store(S); { store the ancestor type }
S.Write(Painted, SizeOf (Boolean)); { write additional fields }
end;

It is entirely your responsibility to ensure that the same amount of
data is stored as is loaded, and that data is loaded in the same
order that it is stored. The compiler will return no errors. This can
cause huge problems if you are not careful. If you modify an
object’s fields, make sure to update both the Load and Store
methods.

In addition to defining the Load and Store methods for a new
object, you will also have to register your new object type with the
streams. Registration is a simple, two-step process: you define a
stream registration record, and you pass it to the global procedure
RegisterType.

To define a stream registration record, just follow the format.
Stream registration records are Pascal records of type TStreamRec,
which is defined as follows:

PStreamRec = "TStreamRec;
TStreamRec = record

167

Object ID numbers

The automatic fields

158

ObjType: Word;

VmtLink: Word;

Load: Pointer;

Store: Pointer;

Next: Word;
end;

By convention, all Turbo Vision stream registration records are
given the same name as the corresponding object type, with the
initial “T” replaced by an “R.” Thus, the registration record for
TDeskTop is RDeskTop, and the registration record for TMagritte is
RMagritte. Abstract types such as TObject and TView do not have
registration records because there should never be instances of
them to store on streams.

The ObjType field is really the only part of the record you need to
think about; the rest is mechanical. Each new type you define will
need its own, unique type-identifier number. Turbo Vision
reserves the registration numbers 0 through 99 for the standard
objects, so your registration numbers can be anything from 100
through 65,535.

It is your responsibility to create and maintain a library of ID.
numbers for all your new objects that will be used in stream I/O,
and to make the IDs available to users of your units. As with
command constants, the numbers you assign may be completely
arbitrary, as long as they are unique.

The VmtLink field is a link to the objects virtual method table
(VMT). You simply assign it as the offset of the type of your
object:

RSomeObject .VmtLink := Ofs(TypeOf (TSomeObject)*);

The Load and Store fields contain the addresses of the Load and
Store methods of your object, respectively.

RSomeObject.Load := @TSomeObject.Load;
RSomeObject.Store := @TSomeObject.Store;

The final field, Next, is assigned by RegisterType, and requires no
intervention on your part. It simply facilitates the internal use of a
linked list of stream registration records.

Turbo Vision Guide

Register here

Registering
standard objects

Once you have constructed the stream registration record, you
call RegisterType with your record as its parameter. So, to register
your new TMagritte object for use with streams, you would
include the following code:

const
RMagritte: TStreamRec = (
ObjType: 100;
VmtLink: Ofs(TypeOf (TMagritte)*);
Load: @TMagritte.Load;
Store: Q@IMagritte.Store
)i

RegisterType (RMagritte);

That’s all there is to it. Now you can Put instances of your new
object type to any Turbo Vision stream and read instances back
from streams.

Turbo Vision defines stream registration records for all its
standard objects. In addition, each Turbo Vision unit defines a
RegisterXXXX procedure that automatically registers all of the
objects in that unit.

The stream mechanism

The Put process

Chapter 8, Streams

Now that you've examined the process you go through to use
streams, you should probably take a quick look behind the scenes
to see just what Turbo Vision does with your objects when you

Mot mu Dasdk thhavma THA an Avanllant avanmanla Af Alinnte infarankine

T e S Bt DS L

and using the methods built into each other.

When you send an object to a stream with the stream’s Put
method, the stream first takes the VMT pointer from offset 0 of
the object and looks through the list of types registered with the
streams system for a match. When it finds the match, the stream
retrieves the object’s registration ID number and writes it to the

159

The Get process

Handling nil
object pointers

stream’s destination. The stream then calls the object’s Store
method to finish writing the object. The Store method makes use
of the stream’s Write procedure, which actually writes the correct
number of bytes to the stream’s destination.

Your object doesn’t have to know anything about the stream—it
could be a disk file, an chunk of EMS memory, or any other sort of
stream—your object merely says “Write me to the stream,” and
the stream handles the rest.

When you read an object from the stream with the Get method, its
ID number is retrieved first, and the list of registered types is
scanned for a match. When the match is found, the registration
record provides the stream with the location of the object’s Load
method and VMT. The Load method is then called to read the
proper amount of data from the stream.

Again, you simply tell the stream to Get the next object it contains
and stick it at the location of the new pointer you specify. Your
object doesn’t even care what kind of stream it's dealing with. The
stream takes care of reading the proper amount of data by using
the object’s Load method, which in turn relies on the stream’s Read
method.

All this is transparent to the programmer, but it shows you how
crucial it is to register a type before attempting stream I/O with it.

You can write a nil object to a stream. However, when you do, a
word of 0 is written to the stream. On reading an ID word of 0,

the stream returns a nil pointer. 0 is therefore reserved, and cannot
be used as a stream object ID number.

Collections on streams: A complete example

160

In Chapter 7, “Collections,” you saw how a collection could hold
different, but related, objects. The same polymorphic ability
applies to streams as well, and they can be used to store an entire
collection on disk for retrieval at another time or even by another
program. Go back and look at TVGUID20.PAS. What more must
you do to make that program put the collection on a stream?

Turbo Vision Guide

The answer is remarkably simple. First, start at the base object,
TGraphObject, and “teach” it how to store its data (X and Y) on a
stream. That’s what the Store method is for. Then, similarly define
a new Store method for each descendant of TGraphObject that adds
additional fields (TGraphCircle adds a Radius; TGraphRec adds
Width and Height).

Next, build a registration record for each object type that will
actually be stored and register each of those types when your
program first begins. And that’s it. The rest is just like normal file
I/0O: declare a stream variable; create a new stream; put the entire
collection on the stream with one simple statement; and close the
stream.

Adding Store methods Here are the Store methods. Notice that PGraphPoint doesn’t need
one, since it doesn’t add any fields to those it inherits from
PGraphObject

type
PGraphObject = ~TGraphObject;
TGraphObject = object (TObject)

H

procedure Store(var S: TStream); virtual;
end;

PGraphCircle = “TGraphCircle;
TGraphCircle = object (TGraphObject)
Radius: Integer;

procedure Store(var S: TStream); virtual;
end;

PGraphRect = “TGraphRect;
TGraphRect = object (TGraphObject)
Width, Heioht: Intecer:

procedure Store(var S: TStream); virtual;
end;

Implementing the Store is quite straightforward. Each object calls
its inherited Store method, which stores all the inherited data.
Then the stream’s Write method to write the additional data

TGraphObject doesn’t call procedure TGraphObject.Store(var S: TStream);
TObject.Store because begin

TObject has no data to store. S.Write (X, SizeOf (X)):

S.Write(Y, SizeOf(Y)):
end;

Chapter 8, Sfreams 161

procedure TGraphCircle.Store({var S: TStream);
begin

TGraphObject.Store (S);

S.Write(Radius, SizeOf (Radius));
end;

procedure TGraphRect.Store(var S: TStream);
begin

TGraphObject.Store(S);

S.Write (Width, SizeOf (Width));

S.Write (Height, SizeOf (Height));
end;

Note that TStream’s Write method does a binary write. Its first
parameter can be a variable of any type, but TStream.Write has no
way to know how big that variable is. The second parameter
provides that information and you should follow the convention
of using the standard SizeOf function. That way, if you decide to
change the coordinate system to use floating point numbers, you
won’t have to revise your Store methods.

Registration records Defining a registration record constant for each of the descendent
types is our last step. It’s a good idea to follow the Turbo Vision
naming convention of using an R as the initial letter, replacing the

type’s T.

= Remember, each registration record gets a unique object ID
number (Objtype). Turbo Vision reserves 0 through 99 for its
standard objects. It’s a good idea to keep track of all your objects
stream ID numbers in one central place to avoid duplication.

const
RGraphPoint: TStreamRec = (
ObjType: 150;
VmtLink: Ofs (TypeOf (TGraphPoint)");
Load: nil; { No load method yet }
Store: @TGraphPoint.Store);

RGraphCircle: TStreamRec = (
ObjType: 151;
VmtLink: Ofs (TypeOf (IGraphCircle)”);
Load: nil; { No load method yet }
Store: @TGraphCircle.Store);

RGraphRect: TStreamRec = (
ObjType: 152;
VmtLink: Ofs(TypeOf (TGraphRect)*);
Load: nil; { No load method yet }
Store: @TGraphRect.Store);

162 Turbo Vision Guide

You don’t need a registration record for TGraphObject beause it’s
an abstract type and thus won’t everbe instantiated or put onto a
collection or stream. Each registration record’s Load pointer is set
nil here because this example is only concerned with storing data
onto a stream. Load methods will be defined and the registration
records will be updated in the next example (TVGUID22.PAS).

Registering You must always remember to register each of these records
before performing any stream I/O. The easiest way to do this is to
wrap them all in one procedure and call it at the very beginning
of your program (or in your application’s Init method)

procedure StreamRegistration;
begin
RegisterType (RCollection);
RegisterType (RGraphPoint) ;
RegisterType (RGraphCircle);
RegisterType (RGraphRect) ;
end;

Notice that you have to register the TCollection (using its
RCollection record—now you see why naming conventions make
programming easier) even though you didn’t define TCollection.
The rule is simple and unforgiving: it’s your responsibility to
register every object type that your program will put onto a
stream.

Writing fo the stream All that’s left to follow is the normal file I/O sequence of: create a
stream; put the data (a collection) onto it; close the stream. You
don’t have to write a ForEach iterator to stream each collection
item. You just tell the stream to Put the collection on the stream:

This is TVGUID21.PAS. var

GraphicsList: PCollection;
GraphicsStream: TBufStream;
begin
StreamRegistration; { Register all streams }

{ Put the collection in a stream on disk }
GraphicsStream. Init (GRAPHICS.STM’, stCreate, 1024);

GraphicsStream.Put {GraphicsList); { Output collection }
GraphicsStream.Done; { Shut down stream }
end.

This creates a disk file that contains all the information needed to
“read” the collection back into memory. When the stream is

Chapter 8, Stfreams 163

opened and the collection is retrieved (see TVGUID22.PAS), all
the hidden links between the collection and its items, and objects
and their virtual method tables will be magically restored. This
same technique is used by the Turbo Pascal IDE to save its
desktop file. The next example shows you how to do that. But first
you have to learn about streaming objects that contain links to
other objects.

Who gets to store things?

164

Subview
instances

An important caution about streams: the owner of an object is the
only one that should write that object to a stream. This caution is
similar to one with which you have probably become familiar
while using traditional Pascal: the owner of a pointer is the one
that should dispose of the pointer.

In the midst of the complexity of a real-life application, numerous
objects will often have a pointer to a particular structure. When
the time arrives for stream I/0O, you need to decide who “owns”
the structure; that owner alone should be the one to send that
structure to the stream. Otherwise, you'll end up with multiple
copies in the stream of what was initially just one structure. When
you then read the stream, multiple instances of the structure will
be created, with each of the original objects now pointing at their
own personal copy of the structure instead of at the original single
structure.

Many times you'll find it convenient to store pointers to a group’s
subviews in local instance variables. For example, a dialog box
will often store pointers to its control objects in mnemonically
named fields for easy access (fields like OKButton or
FileInputLine). When that view is then inserted into the view tree,
the owner has two pointers to the subview, one in the field and
one in the subview list. If you don’t make allowances for this,
reading back the object from a stream will result in duplicate
instances.

The solution is provided in the TGroup methods called
GetSubViewPtr and PutSubViewPtr. When storing a field that is
also a subview, rather than writing the pointer as if it were just
another variable, you call PutSubViewPtr, which stores a reference

Turbo Vision Guide

Peer view
instances

Chapter 8, Streams

to the ordinal position of the subview in the group’s subview list.
This way, when you Load the group back from the stream, you can
call GetSubViewPtr, which makes sure the field and the subview
list point to the same object.

Here's a quick example using GetSubViewPtr and PutSubViewPtr
in a simple window:

type
TButtonWindow = object (TWindow)
Button: PButton;
constructor Load(var S: TStream);
procedure Store(var S: TStream);
end;

constructor Load(var S: TStream);
begin
TWindow.Load(S);
GetSubViewPtr (S, Button):
end;

procedure Store(var S: TStream);
begin
TWindow.Store(S);
PutSubViewPtr(S, Button);
end;

Let’s take a look at how this Store method differs from a normal
Store. After storing the window normally, all you have to do is
store a reference to the Button field, rather than storing the field
itself as you would normally do. The actual button object is stored
as a subview of the window when you call TWindow.Store. All you
have to do in addition is put information on the stream indicating
that Button is to point to that subview. The Load method does the
same thing in reverse, first loading the window and its button
subview, then restoring the pointer to that subview to Button.

A similar situation can arise when a view has a field that points to
one of its peers. A view is called a peer view of another if both
views are owned by the same group. An excellent example is that
of a scroller. Because the scroller has to know about two scroll
bars which are also members of the same window that contains
the scroller, it has two fields that point to those views.

As with subviews, you can run into problems when reading and
writing references to peer views to streams. The solution,

1656

however, is also similar. The TView methods PutPeerViewPtr and
GetPeerViewPtr provide a means for accessing the ordinal position
of another view in the owner object’s list of subviews.

The only thing to worry about is loading references to peer views
that have not yet been loaded (that is, they come later in the
subview list, and therefore later on the stream). Turbo Vision
handles this automatically, keeping track of all such forward
references and resolving them when all the subviews of the group
have been loaded. The part you may need to consider is that peer
view references are not valid until the entire Load has been
completed. Because of this, you should not put any code into Load
methods that makes use of subviews that depend on their peer
subviews, as the results will be unpredictable.

Storing and loading the desktop

166

If the object you save to a stream is the desktop, the desktop will
in turn save everything it owns: the entire desktop environment,
including all current views.

If you intend to let the user save the desktop, you need to ensure
that all possible views have proper Store and Load methods, and
that all views are registered, since what the desktop contains at
any moment will most likely be up to the user.

To do this, you can use something like the following code:

procedure TMyApp.RestoreDeskTop;
var

SaveFile: TBufStream;

Temp: PDeskTop;

begin
SaveFile.Init(’T.DSK’, stOpen, 1024); { Open a buffered file }
Temp := PDeskTop(SaveFile.Get); { Read a desktop object }
SaveFile.Done; { Close the file }
if Temp <> nil then { If we got something... }
begin
Dispose {DeskTop, Done); { ...get rid of the old desktop }
DeskTop := Temp; { ...assign the one we read to DeskTop }
Insert (DeskTop) ; { ...and insert it into the application }
DeskTop”.DrawView; { Show us what we got! }
end;
if SaveFile.Status <> 0 then ErrorReadingFile;
end;

Turbo Vision Guide

You can even go a step further and save and restore whole
applications. A TApplication object can save and restore itself.

Copying a stream

TStream has a method CopyFrom(S,Count), which copies Count
bytes from the given stream S. CopyFrom can be used to copy the
entire contents of a stream to another stream. If you repeatedly
access a disk-based stream, for example, you may want to copy it
to an EMS stream for more rapid access:

NewStream := New (TEmsStream, Init (0OldStream”.GetSize)):
0ldStream”,Seek (0);
NewStream”.CopyFrom(0ldStream, OldStream”.GetSize);

Random-access streams

Resources are discussed in
Chapter 9, "Resources.”

Chapter 8, Streams

So far, we have dealt with streams as sequential devices: you Put
objects at the end of a stream, and Get them back in the same
order. But Turbo Vision provides more capabilities than that.
Specifically, it allows you to treat a stream as a virtual, random-
access device. In addition to Get and Put, which correspond to
Read and Write on a file, streams provide features analogous to a
file’s Seek, FilePos, FileSize, and Truncate.

m The Seek procedure of a stream moves the current stream
pointer to a specified position (in bytes from the beginning of
the stream), just like the standard Turbo Pascal Seek procedure.

m The GetPos function is the inverse of the Seek procedure. It
returns a Longint with the current position of the stream.

m The GetSize function returns the size of the stream in bytes.

m The Truncate procedure deletes all data after the current stream
position, making the current position the end of the stream.

While these routines are useful, random access streams require
you to keep an index, outside the stream, noting the starting
position of each object in the stream. A collection is ideal for this
purpose, and is, in fact, the means used by Turbo Vision with
resource files. If you want to use a random access stream, consider
whether using a resource file would do the job for you.

167

Non-objects on streams

You can write things that are not objects onto streams, but you
have to use a somewhat different approach to do it. The standard
stream Get and Put methods require that you load or store an
object derived from TObject. If you want to create a stream of
non-objects, go directly to the lower-level Read and Write
procedures, each of which reads or writes a specified number of
bytes onto the stream. This is the same mechanism used by Get
and Put to read and write the data for objects; you're simply
bypassing the VMT mechanism provided by Get and Put.

Designing your own streams

168

Stream error
handling

This section summarizes the methods and error-handling capabil-
ities of Turbo Vision streams so that you know what you can use
to create new types of streams.

TStream itself is an abstract object that must be extended to create
a useful stream type. Most of TStream’s methods are abstract and
must be implemented in your descendant, and some depend
upon TStream abstract methods. Basically, only the Error, Get, and
Put methods of TStream are fully implemented. GetPos, GetSize,
Read, Seek, SetPos, Truncate, and Write must be overridden. If the
descendant object type has a buffer, the Flush method should be
overridden as well.

TStream has a method called Error(Code, Info), which is called
whenever the stream encounters an error. Error simply sets the
stream’s Status field to one of the constants listed in Chapter 14,
“Global reference” under “stXXXX constants.”

The ErrorInfo field is undefined except when Status is stGetError or
stPutError. If Status is stGetError, the ErrorInfo field contains the
stream ID number of the unregistered type. If Status is stPutError,
the Errorlnfo field contains the VMT offset of the type you tried to
put onto the stream. You can override TStream.Error to generate
any level of error handling, including run-time errors.

Turbo Vision Guide

Resources

A resource file is a Turbo Vision object that will save objects
handed to it, and can then retrieve them by name. Your
application can then retrieve the objects it uses from a resource
rather than initializing them. Instead of making your application
initialize the objects it uses, you can have a separate program
create all the objects and save them to a resource.

The mechanism is really fairly simple: a resource file works like a
random-access stream, with objects accessed by keys, which are
simply unique strings identifying the resources.

Unlike other portions of Turbo Vision, you probably won’t need
or want to change the resource mechanism. As provided,
resources are robust and flexible. You really should only need to
learn to use them.

Why use resources?

Chapfter 9, Resources

There are a number of advantages to using a resource file.

Using resources allows you to customize your application
without changing the code. For example, the text of dialog boxes,
the labels of menu items, and the colors of views can all be altered
within a resource, allowing the appearance of your application to
change without anyone having to get inside of it.

169

You can normally save code by putting all your object Inits in a
separate program. Inits often turn out to be fairly complex,
containing calculations and other operations that can make the
rest of your code simpler. You still have a Load in your application
for each object, but loads are trivial compared to Inits. You can
usually expect to save about 8% to 10% of your code size by using
a resource.

Using a resource also simplifies maintaining language-specific
versions of an application. Your application loads the objects by
name, but the language that they display is up to them.

If you want to provide versions of an application with differing
capabilities, you can, for example, design two sets of menus, one
of which provides access to all capabilities and another which
provides access to only a limited set of functions. That way you
don’t have to rewrite your code at all, and you don’t have to
worry about accidentally stripping out the wrong part of the code.
And you can upgrade the program to full functionality by
providing cnly a new resource, instead of replacing the whole
program.

In short, a resource isolates the representation of the objects in
your program, and makes it easier for it to change.

What's in a resource?

Before digging into the details of resources, you might want to
make sure you're comfortable with streams and collections,
because the resource mechanism uses both of them. You can use
resources without needing to know just how they work, but if you
plan to alter them in any way, you need to know what you're
getting into.

A TResourceFile contains both a sorted string collection and a
stream. The strings in the collection are keys to objects in the
stream. TResourceFile has an Init method that takes a stream, and a
Get method that takes a string and returns an object.

170 Turbo Vision Guide

Creating a resource

Chapter 9, Resources

Creating a resource file is essentially a four-step process. You
need to open a stream, initialize a resource file on that stream,
store one or more objects with their keys, and close the resource.

program BuildResource;
uses Drivers, Objects, Views, App, Menus;

type
PHaltStream = ~“THaltStream;
THaltStream = object (TBufStream)
procedure Error (Code, Info: Integer); virtual;
end;

const cmNewDlg = 1001;
var
MyRez: TResourceFile;
MyStrm: PHaltStream;

procedure THaltStream.Error(Code, Info: Integer);
begin
Writeln(’Stream error: ’, Code, ' (’,Info,’)’);
Halt (1);
end;

procedure CreateStatusLine;
var

R: TRect;

StatusLine: PStatusLine;

begin

R.Assign(0, 24, 80, 25);

StatusLine := New(PStatusLine, Init (R,
NewStatusKey (’ ~Alt-X~ Exit’, kbAltX, cmQuit,
NewStatusKey (’ ~F3~ Open’, kbF3, cmNewDlg,
NewStatusKey (’ ~F5~ Zoom’, kbF5, cmZoom,
NewStatusKey (’ ~Alt-F3~ Close’, kbAltF3, cmClose,
nil)))),

nil)

))i

MyRez.Put (StatusLine, ‘Waldo’);

Dispose (StatusLine, Done);

end;

begin
MyStrm := New(PHaltStream, Init('MY.REZ’, stCreate, 1024));

The following code creates a simple resource file called MY.REZ
containing a single resource: a status line with the key ‘Waldo.

171

MyRez.Init (MyStmm);
RegisterType (RStatusLine);
CreateStatusLine;
MyRez.Done;

end.

Reading a resource

Retrieving a resource from a resource file is just as simple as
getting an object from a stream: You just call the resource file’s Get
function with the desired resource’s key as a parameter. Get
returns a generic PObject pointer.

The status line resource created in the previous example can be
retrieved and used by an application in this way:

program MyApp;
uses Objects, Drivers, Views, Menus, Dialogs, App:

var
MyRez: TResourceFile;

type
PMyApp = “TMyApp;
TMyApp = object (TApplication)
constructor Init;
procedure InitStatusLine; virtual;
end;

constructor TMyApp.Init;
const
MyRezFileName: FNameStr = 'MY.REZ’;.
begin
MyRez.Init (New(PBufStream, Init (MyRezFileName, stOpen, 1024)));
if MyRez.Stream”.Status <> 0 then Halt(1);
RegisterType (RStatusLine);
TApplication.Init;
end;

procedure TMyApp.InitStatusLine;
begin

StatuslLine := PStatusLine (MyRez.Get (’Waldo’));
end;

var WaldoRpp: TMyApp;
begin
WaldoApp.Init;
WaldoApp.Run;
WaldoApp.Done;

172 Turbo Vision Guide

String lists

end.

When you read an object off a resource, you need to be aware of
the possibility of receiving a nil pointer. If your index name is
invalid (that is, if there is no resource with that key in the file), Get
returns nil. After your resource code is debugged, however, this
should no longer be a problem. :

You can read an object repeatedly off a resource. It’s unlikely that
you would want to do so with our example of a status line, but a
dialog box, for example, might typically be retrieved many times
by a user during the course of an application’s running. A
resource just repeatedly provides an object when it is requested.

This can potentially produce problems with slow disk I/O, even
though the resource file is buffered. You can adjust your disk
buffering, or you can copy the stream to an EMS stream if you
have EMS installed.

Chapter 9, Resources

In addition to the standard resource mechanism, Turbo Vision
provides a pair of specialized objects that handle string lists. A
string list is a special resource access object that allows your
program to access resourced strings by number (usually
represented by an integer constant) instead of a key string. This
allows a program to store strings out on a resource file for easy
customization and internationalization.

For example, the Turbo Pascal IDE uses a string list object for all
its error messages. This means the program can simply call for an
error message by number, and different versions in different
countries will find different strings in their resources.

The string list object is by design not very flexible, but it is fast
and convenient when used as designed.

The TStringList object is used to access the strings. To create the
string list requires the use of the TStrListMaker object. The
registration records for both have the same object type number.

The string list object has no Init method. The only constructor it
has is a Load method, because string lists only exist on resource
files. Similarly, since the string list is essentially a read-only
resource, it has a Get function, but no Put procedure.

173

Making string lists

174

The TStrListMaker object type is used to create a string list on a
resource file for use with TStringList. In contrast to the string list,
which is read-only, the string list maker is write-only. Basically, all
you can do with a string list maker is initialize a string list, write
strings onto it sequentially, and store the resulting list on a

stream.

Turbo Vision Guide

10

Hints and fips

This chapter contains a few additional suggestions on how to use
Turbo Vision more effectively. Because object-oriented
programming and event-driven programming are fairly new
concepts to even experienced programmers, we want to try to
provide some guidance in using these new paradigms.

Debugging Turbo Vision applications

If you have tried stepping or tracing through any of the example
programs provided in this cookbook, you have probably noticed
that you don’t get very far. Because Turbo Vision programs are
event-driven, much (or even most) of the program’s time is spent
running through a rather tight loop in TGroup.Execute, waiting for
some sort of event to occur. As a result, stepping and tracing is
not very meaningtul at that pont.

= The key to debugging Turbo Vision applications is breakpoints,
breakpoints, and breakpoints.

Let’s look at how well-placed breakpoints can help you find
problems in Turbo Vision programs.

Chapter 10, Hints and tips 175

It doesn’t get
there

Hiding behind a mask

176

Stolen events

One problem in debugging your application might be that some
portion of your code is not being executed. For example, you
might click on a status line item or select a menu option that you
know is supposed to bring up a window, but it doesn't.

Your normal instinct might tell you to step through your program
until you get to that command, and then figure out where
execution does go instead of where you expected. But if you try it,
it doesn’t help. You step, and you end up right back where you
were.

The best approach in this situation is to set a breakpoint in the
HandleEvent method that should be calling the code that isn’t
getting executed. Set the breakpoint at the beginning of the
HandleEvent method and when it breaks, inspect the event record
that’s being processed to make sure it’s the event you expected. At
this point you can also start stepping through your code, because
the HandleEvent and any code responding to your own commands
will be code you have written, and therefore code you can trace
through.

Keep in mind, however, that there are a couple of reasons why
your object may never get to see the event you intend it to handle.
The first and simplest mistake is leaving a type of event out of
your object’s event mask. If you haven’t told your object that it is
allowed to handle a certain kind of event, it won’t even look at
those events!

A second possibility you need to consider is that some other
object is “stealing” the event. That is, the event is being handled
and cleared by some object other than the one you intended to
give it to.

There are a couple of things which could cause this. The first is
duplicate command declarations: if two commands have been
assigned the same constant value, they could be handled
interchangeably. This is why it is crucial to keep track of which
constants you have assigned which values, particularly in a
situation when you are reusing code modules.

Another possible cause of this would be duplicate command
labels, particularly in reused code. Thus, if you assign a command

Turbo Vision Guide

cmJump, and there is a HandleEvent method in some other object
that already responds to a command cmjump that you have
forgotten about and never deleted, you could have conflicts.
Always check to see if some other object is handling the events
that seem to get “lost.”

Blame your parents Finally, check to make sure that the event isn’t being handled in a
call to the object’s ancestor. Often, the HandleEvent method of a
derived type will rely on the event handler of its ancestor to deal
with most events, and it may be handling one that you didn’t
expect. Try trapping the event before the call to the ancestor’s
HandleEvent.

[t doesn’t do

what | expect Perhaps your window does show up, but it displays garbage, or
something other than what you expected. That indicates that the
event is being handled properly, but the code that responds to the
event is either incorrect or perhaps overridden. In this instance, it
is best to set a breakpoint in the routine that gets called when the
event occurs. Once execution breaks, you can step or trace
through your code normally.

It hangs

Hang bugs are among the most difficult to track down, but they
can be found. First you might try some combination of the
breakpointing methods suggested previously to narrow down
just where the hang occurs. The second thing to look for is
pointers being disposed of twice. This can happen when a view is
disposed of by its owner, and then you try to dispose of it directly.
For example:
Warning! var
This code will hang your

system. Do not run it! It is only
an illustration.

Bruce, Pizza: PGroup;
R: TRect;

begin
R.Assign{5, 5, 10, 10);
Pizza := New(PGroup, Init(R));
R.Assign{10, 10, 20, 20);
Bruce := New(PGroup, Init(R));
Bruce”.Insert (Pizza);

Dispose (Bruce, Done); { dispose of Bruce and subviews }
Dispose(Pizza, Done); { This will hang your system }
end;

Chapter 10, Hints and tips 177

Disposing of the group Bruce also disposes of Bruce’s subview,
Pizza. If you then try to dispose of Pizza, your program will hang.

Hangs can also be cause by such things as reading stream data
into the wrong type of object and incorrectly typecasting data
from collections.

Porting applications to Turbo Vision

178

Scavenge your
old code

If you want to port an existing application to Turbo Vision, your
first inclination might be to try to port the Turbo Vision interface
into the application, or to put a Turbo Vision layer on top of your
application. This will be an exercise in frustration. Turbo Vision
applications are event-driven, and most existing applications will
not shift easily, if at all, to that paradigm.

There is an easier way. By now, you know that the essence of
programming a specific application in Turbo Vision is
concentrated in the application’s Init, Draw, and HandleEvent
methods. The better approach to porting an existing application is
first to write a Turbo Vision interface that parallels your existing
one, and then scavenge your old code into your new application.
Most of the scavenged code will end up in new view’s Init, Draw,
and HandleEvent methods.

You need to spend some time thinking about the essence of your
application, so you can divide your interface code from the code
that carries out the work of your application. This can be difficult,
because you have to think differently about your application.

The job of porting will involve some rewriting to teach the new
objects how to represent themselves, but it will also involve a lot
of throwing away of old interface code. This shouldn’t introduce a
lot of new bugs, and can actually be a fun thing to do.

If you port an application, you will be amazed to discover how
much of your code is dedicated to handling the user interface.
When you let Turbo Vision work for you, a lot of the user
interface work you did before will simply disappear.

We discovered how rewarding this can be when we ported Turbo
Pascal’s integrated environment to Turbo Vision. We scavenged
the compiler, the editor, the debugger—all the various engines—

Turbo Vision Guide

Rethink your
organization

Chapter 10, Hints and fips

from the old user interface, and brought them into a user interface
written in Turbo Vision.

Programming in this new paradigm takes some getting used to. In
traditional programming, we tend to think of the program from
the perspective of the code. We are the code, and the data is “out
there,” something on which we operate. At first glance, we might
be tempted to organize a program such as Turbo Pascal’s
integrated environment around an editor object. After all, that’s
what you’re doing most of the time in the environment, editing.
The editor would edit, and at intervals, it would call the compiler.

But we need to make some shifts in perspective to use the true
power of object-oriented programming. It makes more sense in
the integrated environment to make the application itself the
organizing object. When it’s time to edit, the application calls up
an editor. When it’s time to compile, the application brings up the
compiler, initializes it, and tells it what files to compile.

If the compiler hits an error, how is the user returned to the point
of error in the source code? The application calls the compiler, and
it gets a result back from it. If the compiler returns an error result,
it also returns a file name and a line number. The application
looks to see if it already has an editor open for that file, and if not,
it opens it. It passes the error information, including the line
number, to the editor and constructs an error message string for
the editor.

There’s no reason for the editor to know anything about a
compiler, or the compiler to know about an editor. The center of it
all is the application itself. It’s the application that needs the editor
and the anplication that needs the comniler After all what ic an
application but something that binds things together? If we had
continued to look on the application as just a lump of data that
should be “out there” somewhere, and we might have been
tempted to put the center of the application elsewhere. We would
then have had to carry a burden of excessive and strained
communications among parts of the program.

All in all, the job of writing the integrated environment in Turbo
Vision took a fraction of the time that writing the environment
from scratch would have taken. We look forward to you
discovering the same strengths when you write your next
application.

179

Using bitmapped fields

180

Flag values

Bit masks

Turbo Vision’s views use several fields which are bitmapped. That
is, they use the individual bits of a byte or word to indicate
different properties. The individual bits are usually called flags,
since by being set (equal to 1) or cleared (equal to 0), they indicate
whether the designated property is activated.

For example, each view has a bitmapped Word-type field called
Options. Each of the individual bits in the word has a different
meaning to Turbo Vision. Definitions of the bits in the Options
word follow:

In the diagram, msb indicates the “most significant bit”, also
called the “high-order bit” because in constructing a binary
number that bit has the highest value (21%). The bit at the lowest
end of the binary number is marked Isb, for “least significant bit,”
also called the “low-order bit.”

So, for example, the fourth bit is called ofFramed. If the ofFramed bit
is set to 1, it means the view has a visible frame around it. If the
bit is a 0, the view has no frame.

As it turns out, you really don’t have to worry about what the
actual values of the flag bits are unless you plan to define your
own, and even in that case, you really only need to be concerned
that your definitions be unique. For instance, the six highest bits
in the Options word are presently undefined by Turbo Vision. You
may define any of them to mean anything to the views you
derive.

A mask is simply a shorthand way of dealing with a group of bit
flags together. For example, Turbo Vision defines masks for
different kinds of events. The evMouse mask simply contains all
four bits that designate different kinds of mouse events, so if a
view needs to check for mouse events, it can compare the event
type to see if it’s in the mask, rather than having to check for each
of the individual kinds of mouse events.

Turbo Vision Guide

Bitwise operatfions

Sefting a bit

Don’t do this!

Clearing a bif

Chapter 10, Hints and tips

Turbo Pascal provides quite a number of useful operations to
manipulate individual bits. Rather than giving a detailed
explanation of how each one works, this section will simply tell
you what to do to get the job done.

To set a bit, use the or operator. For instance, to set the
ofPostProcess bit in the Options field of a button called MyButton,
you would use this code:

MyButton.Options := MyButton.Options or ofPostProcess;

Note that you should not use addition to set bits unless you are
absolutely sure what you are doing. For example, if instead of the
preceding code, you used

MyButton.Options := MyButton.Options + ofPostProcess;

your operation would work if and only if the ofPostProcess bit was
not already set. If the bit was set before you added another one,
the binary add would carry over into the next bit (ofBuffered),
setting or clearing it, depending on whether it was clear or set to
start with.

In other words: adding bits can have unwanted side effects. Use
the or operation to set bits instead.

Before leaving the topic of setting bits, note that you can set
several bits in one operation by oring the field with several bits at
once. The following code would set two different grow mode
flags at once in a scrolling view called MyScroller:

MyScroller.GrowMode := MyScroller.GrowMode or {(gfGrowHiX +
gfGrowHiY) ;

Clearing a bit is just as easy as setting it. You just use a different
operation. The best way to do this is actually a combination of
two bitwise operations, and and not. For instance, to clear the
dmLimitLoX bit in the DragMode field of a label called ALabel, you
would use

ALabel.DragMode := ALabel.DragMode and not dmLimitLoX;

As with setting bits, multiple bits may be set in a single operation.

181

182

Checking bits

Using masks

Summary

Quite often, a view will want to check to see if a certain flag bit is
set. This uses the and operation. For example, to see if the
window AWindow may be tiled by the desktop, you need to check
the ofTileable option flag like this:

if AWindow.Options and ofTileable = ofTileable then ...

Much like checking individual bits, you can use and to check to
see 'if one or more masked bits are set. For example, to see if an
event record contains some sort of mouse event, you could check

if Event.What and evMouse <> 0 then ...

The following list summarizes the bitmap operations:
Setting a bit:
field := field or flag;
Clearing a bit:
field := field and not flag;
Checking if a flag is set:
if field and flag = flag then ...
Checking if a flag is in a mask:

if flag and mask <> 0 then ...

Turbo Vision Guide

Turbo Vision Reference

183

184

Turbo Vision Guide

11

How fo use the reference

The Turbo Vision reference describes all the standard objects and
methods in the Turbo Vision hierarchy together with the
mnemonic identifiers and miscellaneous constants and records
needed to develop Turbo Vision applications. It is not intended as
a tutorial.

By their nature, complex libraries of objects like those in Turbo
Vision have a multitude of components. In order to avoid endless
repetition of material, we have put as much complete information
into the alphabetical lookup sections (Chapters 13 and 14), along
with other, less detailed material that allows you to see Turbo
Vision’s components in their hierarchical and physical
relationships, with references to the more detailed information.

How to find what vou want

Chapter 12, “Unit cross reference” describes the various units that
comprise Turbo Vision. It includes lists of all the types, constants,
variables, procedures and functions declared in each unit.

Chapter 13, “Object reference,” is an alphabetical lookup chapter
for all the Turbo Vision standard object types, including all their
fields and methods.

Chapter 14, “Global reference,” is an alphabetical lookup chapter
for all the global constants, variables, procedures and functions in

Chapter 11, How to use the reference 185

Turbo Vision. In general, if it's not an object or a part of an object,
you'll find it listed here.

Keep in mind that the lookup chapter only covers the aspects of
each object that are particular to it. Most of the objects will have
fields and methods inherited from other objects. Thus, if you want
to find a method for an object, check that object first. If you don’t
find the method listed for that object, check it’s immediate
ancestor object type. There is a diagram at the beginning of the
entry for each object that depicts its relationships to its ancestors
and immediate descendants.

Objects in general

Remember that each object (apart from the base object TObject,
and the two special objects TPoint and TRect) inherits the fields
and methods of its parent object. New objects that you derive will
also inherit their parents’ methods and fields. Many of the
standard objects have abstract methods which must be overridden
by your derived objects. Other methods are marked virtual,
meaning that you will normally want to override them. There are
other methods that provide useful default actions in the absence
of overrides.

Naming conventions

186

All the standard Turbo Vision object types have a set of names
using a mnemonic set of prefixes. The first letter of the identifier
tells you whether you are dealing with the object type, a pointer
to it, its stream registration record, or its color palette.

m Object types start with T: TObject

m Pointers to objects start with P: PObject = ~TObject
m Stream registration records start with R: RObject

m Color palettes start with C: CObject

All Turbo Vision constants have two-letter mnemonic prefixes
that indicate their usage.

Turbo Vision Guide

Table 11.1

Turbo Vision constant prefixes Prefix Meaning Example
ap Application palette apColor
bf Button flag bfNormal
cm Command emQuit
co Collection code coOverFlow
dm Drag mode dmDragGrow
ev Event constant evMouseDown
gf Grow mode flag gfGrowLoX
he Help context hcNoContent
kb Keyboard constant ~ kbAltX
mb Mouse button mbLeftButton
of Option flag ofTopSelect
sb Scroll bar sbLeft Arrow
sf State flag sfVisible
sm Screen mode smMono
st Stream code stOK
wf Window flag wfMove
wn Window numbers wnNoNumber
wp Window palette wpBlueWindow

Chapter 11, How to use the reference

187

188 Turbo Vision Guide

C H A P T E R
This chapter describes briefly the contents of each of the modules
that make up Turbo Vision. First we'll take an overview of the
Turbo Vision units, then each of the units will be described in
more detail.

Turbo Vision consists of nine units:
Table 12.1 -
Turbo Vision units Unit Contents

App All object definitions for writing event-driven applications

Dialogs ~ Tools and controls for use in dialog boxes

Drivers Mouse support, keyboard handler, system error handler,
etc.

HistList History lists for input lines

Memory Memory management system

Menus Objects for adding menus and status bars to Turbo Vision
applications

Objects Basic object definitions, including all object types for
Abunnman AATTAAL A A A wanAsrnman

TextView More specialized views for presenting text

Views Base objects for using windows in your applications:

The Objects unit

views, windows, frames, scroll bars, etc.

The Objects unit contains the basic object definitions for Turbo
Vision, including the base object for the Turbo Vision hierarchy,
TObject, as well as all the non-visible elements of Turbo Vision:
streams, collections, and resources.

Chapter 12, Unit cross reference

189

Types

Type conversion
records

Objects unit types

Constants

Stream access modes

190

Type Use

FNameStr String to hold a DOS file name

LongRec Converts a Longint into low- and high-order Words
PChar Pointer for dynamic character allocation

PString Pointer for dynamic strings

PtrRec Converts a Pointer value into offset and segment parts

TByteArray Array of Byte values used for typecasting
TWordArray Array of Word values used for typecasting
WordRec Converts a Word into low- and high-order Bytes

Type Use
TBufStream A buffered Turbo Vision DOS stream
TCollection Basically a polymorphic array
TDosStream A Turbo Vision stream on a DOS file
TEmsStream A Turbo Vision stream in EMS memo
TItemList An array of pointers, used by collections
TObject Base object for the Turbo Vision hierarchy
TPoint Object designating a point on the screen
TRect Simple object composed of two points for
defining a region on the screen
TResourceCollection ~ Specialized TCollection for resources
TResourceFile Object for storing resources on disk
TSortedCollection Specialized TCollection that sorts automatically
TStream Basic object defining a Turbo Vision stream
TStreamRec Stream registration record
TStrIndex Array of TStrIndexRec
TStrIndexRec Record of string indexes used by TStrIndex
TStringCollection Specialized TSortedCollection for strings
TStringList String list object used for string resources
TStrListMaker Special object for constructing string lists
Constant Value Meaning
stCreate $3C00 Creates new file

stOpenRead $3D00 Read access only
stOpenWrite $3D01 Write access only
stOpen $3D02 Read and write access

Turbo Vision Guide

Stream error codes
Error code

Value Meaning

stOk

stError
stInitError
stReadError
stWriteError
stGetError
stPutError

0 Noerror
-1 Access error
-2 Cannot initialize stream
-3 Read beyond end of stream
—4 Cannot expand stream
-5 Get of unregistered object type
—6 Put of unregistered object type

Maximum collection

) Constant
size

Value Meaning

MaxCollectionSize 16,380 Maximum size of a TCollection

Collection error codes

Error code Value Meaning
colndexError -1 Index out of range
coOverflow -2 Overflow

Variables
Variable Type Initial value Meaning
EmsCurHandle Word $FFFF Current EMS handle
EmsCurPage Word $FFFF Current EMS page

Procedures and
functions Procedure Operation

Abstract Default routine for methods that must be
overridden

DisposeStr Disposes of a string created with NewStr

RegisterType Registers an object type with Turbo Vision
ctranme

Function Operation

LongDiv Divides a long integer by an integer

LongMul Multiplies two integers into a long integer

NewStr Allocates a string on the heap

Chapter 12, Unit cross reference

191

The Views unit

192

Types

Constants

TView State masks

The Views unit contains the basic elements of views, the visible
portions of Turbo Vision. Included are both abstract types such as
TView and TGroup and useful components of more complex
groups, such as window frames and scroll bars. More complex
visible elements are found in the Dialogs and TextView units.

Type Use

TCommandSet Allows groups of commands to be enabled or
disabled

TDrawBuffer . Buffer used by draw methods

TFrame Frame object used by windows

TGroup Abstract object for complex views

TListViewer Base type for list boxes and such

TPalette Color palette type used by all views

TScrollBar Object defining a scroll bar

TScrollChars Scroll bar component characters

TScroller Base object for scrolling text windows

TTitleStr Title string used by TFrame

TVideoBuf Video buffer used by screen manager

TView Abstract object; base of all visible objects

TWindow Base object for resizable windows

Constant Value Meaning

sfVisible $0001 View is visible

sfCursorVis $0002 View has visible cursor

sfCursorlns $0004 View'’ cursor is block for insert mode

sfShadow $0008 View has a shadow

sfActive $0010 View is, or is owned by, the active window

sfSelected $0020 View is owner’s selected view

sfFocused $0040 View has the focus

sfDragging $0080 View is being dragged

sfDisabled $0100 View is disabled

sfModal $0200 View is in modal state

sfExposed $0800 View is attached to the application

Turbo Vision Guide

Views unit constants

TView Option masks

TView GrowMode
masks

T\/iaw DrvN Ao
SR A AL =

masks

Constant Value Meaning

heNoContext 0 Neutral help context code

hcDragging 1 Help context while view is dragged

MaxViewWidth 132 Maximum width in characters of a view

wnNoNumber 0 TWindow number constant

Constant Value Meaning

ofSelectable $0001 View can be selected

ofTopSelect $0002 Selecting view moves it to top of owner’s
subviews

ofFirstClick $0004 Mouse click selects and performs action

ofFramed $0008 View has a visible frame

ofPreProcess $0010 View sees focused events before focused
view

of PostProcess $0020 View sees focused events after focused
view

of Buffered $0040 Group should have a cache buffer

ofTileable $0080 View can be tiled on the desktop

ofCenterX $0100 Center view horizontally within owner

ofCenterY $0200 Center view vertically within owner

ofCentered $0300 Center view both horizontally and
vertically within owner

Constant Value Meaning

gfGrowLoX $01 Left side follows owner’s right side

8fGrowLoY $02 Top follows owner’s bottom

gfGrowHiX $04 Right side follows owner’ right side

gfGrowHiY $08 Bottom follows owner’s bottom

gfGrowAll $0F View follows owner’s lower-right corner

8fGrowRel $10 Keep relative size when screen size
changes

vonstant vaiue wiedning

dmDragMove $01 View can move

dmDragGrow $02 View can change size

dmLimitLoX $10 View’s left side cannot move outside
Limits

dmLimitLoY $20 View’s top cannot move outside Limits

dmLimitHiX $40 View’s right side cannot move outside
Limits

dmLimitHiY $80 View’s bottom cannot move outside
Limits

dmLimitAll $F0 No part of view can move outside Limits

Chapter 12, Unit cross reference

193

Scroll bar part codes

194

Window flag masks

TWindow palette

entries

Standard view

commands

Variables

Constant Value Meaning

sbLeftArrow 0 Horizontal bar’s left arrow

sbRightArrow 1 Horizontal bar’s right arrow

sbPageLeft 2 Horizontal bar’s left paging area

sbPageRight 3 Horizontal bar’s right paging area

sbUpArrow 4 Vertical bar’s top arrow

sbDownArrow 5 Vertical bar’s bottom arrow

sbPagellp 6 Vertical bar’s upward paging area

sbPageDown 7 Vertical bar’s downward paging area

sbIndicator 8 Scroll bar indicator tab

Constant Value Meaning

wfMove 501 Window frame’s top line can move window

wfGrow $02 Window frame has resize corner

wfClose $04 Window frame has close icon

wfZoom $08 Window frame has zoom icon

Constant Value Meaning

wpBlueWindow 0 Window text is yellow on blue

wpCyanWindow 1 Window text is blue on cyan

wpGrayWindow 2 Window text is black on gray

Constant Value Meaning

cmReceivedFocus 50 View has recieved focus

cmReleasedFocus 51 View has released focus

cmCommandSetChanged 52 Command set has changed

cmScrollBarChanged 53 Scroll bar has changed value

cmScrollBarClicked 54 Scroll bar was clicked on

cmSelect WindowNum 55 User wants to select a window by
number

cmRecordHistory 56 History list should save contents of
input line

Variable Type Initial value Meaning

MinWinSize TPoint (X:16;Y:6) Minimum window size

ShadowSize TPoint (X:2; Y:1) Window shadow size

ShadowAttr ~ Byte $08 Window attribute

Turbo Vision Guide

Function

Function

Operation

Message

Sends user-defined messages between views

The Dialogs unit

The Dialogs unit defines most of the elements most often used in

constructing dialog boxes. These include dialog boxes themselves
(which are specialized windows) as well as various controls such
as buttons, labels, check boxes, radio buttons, input lines and

history lists.
Types
Type Use
TButton Pushbuttons to generate commands
TCheckBoxes Clusters of on/off toggle switches
TCluster Abstract type for check boxes and radio buttons
TDialog Specialized window for dialog boxes
THistory List of previous entries for an input line
TInputLine Text input editor
TLabel Smart Iabel for a cluster or an input line
TListBox Scrollable list for user choices
TParamText Formatted static text
TRadioButtons Cluster of buttons, only one of which may be
pressed at a time
TSltem String items in a linked list, used by clusters
TStaticText Plain text
Constants
Button flags Constant Value Meaning
bfNormal $00 Button is a normal button
bfDefault $01 Button is the default button
bfLeftJust $02 Button text should be left-justified

Chapter 12, Unit cross reference

195

Procedures and

functions

The App unit

Function Operation

NewSItem Creates a new string item for a list box

Procedure Operation

RegisterDialogs Registers all objects in the Dialogs unit for use with

streams

196

Types

Variables

The App unit (provided in source code form) provides the
elements of the Turbo Vision application framework. Four very
powerful object types are defined in App, including the TProgram
and TApplication objects which actually serve as Turbo Vision
programs, and the desktop object that controls most of the other
elements in a windowing application.

Type Use
TApplication Application object with event manager, screen
manager, error handling, and memory management

TBackground Colored background for desktop

TDeskTop Group object to hold windows and dialog boxes

TProgram Abstract application object

Variable Type Initial value Meaning

Application PProgram nil Pointer to current
application

DeskTop PDeskTop nil Pointer to current desktop

StatusLine PStatusLine nil Pointer to current status
line

MenuBar PMenuView nil Pointer to current menu
bar

Turbo Vision Guide

The Menus unit

The Menus unit provides all the objects and support routines for
the Turbo Vision menuing systems, including pull-down and
pop-up menus and active status line items.

Types
Type Use
TMenu Linked list of TMenultem records
TMenuBar Horizontal menu header, connected to menus
TMenuBox Pull-down or pop-up menu box
TMenultem Record linking a label text, a hot key, a command, and
a help context for use within a menu
TMenuStr String type for menu labels
TMenuView Abstract object type for menu bars and menu boxes
TStatusDef Record linking a range of help contexts with a list of
status line items
TStatusltenm Record linking a label text, a hot key, and a command
for use on a status line
TStatusLine ~ Message line for the bottom of the application screen,
including a list of TStatusDef records
Procedures and
functions
TMenultem functions Function Operation
Newltem Creates a new menu item
NewLine Creates a line across a menu box
NewSubMenu Creates a menu off a menu bar or menu box
Hvienu 1oullnes Routine Operation
NewMenu function Allocates a menu on the heap

DisposeMenu procedure Deallocates menu from heap

TStatusLine functions Function

Operation

NewStatusDef

NewStatusKey

Defines a range of help contexts and a pointer to a
list of status items

Defines a status line item and binds it to a command
and an optional hot key

Chapfter 12, Unit cross reference

197

The Drivers unit

The Drivers unit contains all the specialized drivers used by Turbo
Vision, including mouse and keyboard drivers, video support,
and system error handling along with the event manager for
event-driven programs.

Types
Type Use
TEvent Event record type
TSysErrorFunc System error handler function type
Constants
Mouse button state Constant Value Meaning
masks
mbLeftButton $01 Left mouse button

mbRightButton $02 Right mouse button

Event codes

Constant Value Meaning
evMouseDown $0001 Mouse button pressed
evMousellp $0002 Mouse button released
evMouseMove $0004 Mouse changed location
evMouseAuto $0008 Automatic mouse repeat event
evKeyDown $0010 Event is a keystroke
evCommand $0100 Event is a command
evBroadcast $0200 Event is a broadcast

Event masks Constant Value Meaning
evNothing $0000 Event has been cleared
evKeyboard $0010 Event came from keyboard
evMouse $000F Event came from mouse
evMessage $FF00 Event is a message or command

198 Turbo Vision Guide

Keyboard state and

. Constant Value Meaning
shift masks
kbRightShift $0001 Right shift key pressed
kbLeftShift $0002 Left shift key pressed
kbCtriShift $0004 Ctrl and shift keys pressed
kbAltShift $0008 Alt and shift keys pressed
kbScrollState $0010 Scroll lock set
kbNumState $0020 Num lock set
kbCapsState $0040 Caps lock set
kbInsState $0080 Insert mode on
Standard command Command Value Meaning
codes
cmValid 0 Check validity of a new view
cmQuit 1 Terminate the application
cmError 2 Undefined
cmMenu 3 Move focus to menu bar
cmClose 4 Close the current window
cmZoom 5 Zoom (or unzoom) a window
cmResize 6 Resize a window
cmNext 7 Make the next window active
cmPrev 8 Make the previous window active
TDialog standard Command Value Meaning
commands
cmOK 10 Ok button pressed
cmCancel 11 Cancel button or Esc key pressed
cmYes 12 Yes button pressed
cmNo 13 No button pressed
cmDefault 14 Default button or Enter pressed
Screen modes Constant Value Meaning
smBW80 $0002 Black and white screen mode
smCO80 $0003 Color screen mode
oustviviw 30007 Monzchromeo coroon mede
smFont8x8 $0100 43- or 50-line mode (EGA /VGA)

Chapter 12, Unit cross reference

199

Variables

Initialized variables

Uninitialized variables

System error handler
variables

200

Variable Type Initial value Meaning
ButtonCount Byte 0 Number of buttons on the
mouse
MouseEvents Boolean False Indicates whether a mouse
was detected
DoubleDelay ~ Word 8 Maximum delay time
between double clicks
RepeatDelay ~ Word 8 Delay between automatic
mouse repeats
Variable Type Meaning
MouselntFlag ~ Byte Internal use only
MouseButtons Byte Which button was pressed
MouseWhere TPoint Position of the mouse cursor
StartupMode ~ Word Screen mode when program was started
ScreenMode Word Current screen mode
ScreenWidth Byte Width of screen in columns
ScreenHeight Byte Height of screen in lines
CheckSnow Boolean Determines whether to slow output for
CGA adapters
HiResScreen Boolean Screen can display 43 or 50 lines
(EGA/VGA)
ScreenBuffer Pointer Pointer to video screen buffer
CursorLines Word Beginning and ending scan lines, for
setting cursor type
Variable Type Initial value Meaning
SysErrorFunc TSysErrorFunc SystemError ~ Function called by
the system error
manager when a
system error occurs
SysColorAttr ~ Word $4E4F Video attributes for
error messages on
color screen
SysMonoAttr ~ Word $7070 Video attributes for
error messages on
monochrome screen
CtriBreakHit ~ Boolean False Indicates whether
user pressed Ctrl-Break
SaveCtrlBreak Boolean False Status of Ctrl-Break
checking at startup
of program

Turbo Vision Guide

Procedures and

Operation

Initializes the event manager

Shuts down the event manager

Displays the mouse cursor

Hides the mouse cursor

Creates event record from mouse action
Creates event record from keyboard input

Operation

Initializes the screen manager

Shuts down the screen manager

Selects screen mode (color, black & white, mono-
chrome, high resolution)

Clears the screen in any video mode

Operation

Displays an error message on the bottom line of the
screen and prompts for abort or retry

Operation

Initializes the system error manager
Shuts down the system error manager

Operation

Returns character from keyboard
Retiirne aran code fram kevhnard

Operation

functions
Event manager Procedure
procedures
InitEvents
DoneEvents
ShowMouse
HideMouse
GetMouseEvent
GetKeyEvent
Screen manager Procedure
procedures
InitVideo
DoneVideo
SetVideoMode
ClearScreen
Default system error Function
handler function
SystemError
System error handler Procedure
procedures
InitSysError
DoneSysError
Keyboard support ¢, noion
functions
GetAltChar
Cot ACnde
String formatting Procedure
procedure
FormatStr

Formats a string and the parameters passed with it

Chapter 12, Unit cross reference

201

Buffer move

P ti
procedures rocedure Operation
MoveBuf Moves a buffer into another buffer
MoveChar Moves one or more copies of a character into a
buffer
MoveCStr Moves a control string into a buffer
MoveStr Moves a string into a buffer
String length function Function Operation
CStrLen Returns length of a control string, ignoring tildes
Driver inificlization Procedure Operation
InitDrivers Initialize drivers unit

The TextView unit

The TextView unit contains several specialized views for
displaying text in a scrolling window.

Types
Type Use
TTerminal TTY-like scrolling text device
TTerminalBuffer Circular text buffer for TTerminal
TTextDevice Abstract text device object
Procedure
Procedure Operation

AssignDevice Assigns a text file device for input and /or output

The Memory unit

The Memory unit contains Turbo Vision’s memory management
routines, which provide heap management functions that
facilitate safe programming.

202 Turbo Vision Guide

Variables

Variable Type Initial value

Meaning

LowMemSize Word 4096 div 16
MaxBufMem Word 65536 div 16

Size of safety pool
Maximum memory for cache
buffers

Procedures and
functions

Procedure Operation

DoneMemory Shuts down the memory manager
FreeBufMem Deallocate cache buffer for a group
GetBufMem Allocate cache buffer for a group
InitMemory Initializes the memory manager
SetMemTop Sets top of application’s memory block

Function Operation

LowMemory Indicates whether safety pool has been eaten into
MemAlloc Allocates memory with safety pool check
MemAllocSeg Allocates segment-aligned memory block

The HistList unit

The HistList unit contains all the variables, procedures and
functions needed to implement history lists.

Variables

varianie 1ype Iniuai vaiue neaning

HistoryBlock Pointer nil Memory buffer to hold all
history list items

HistorySize Word 1024 Size of history block

HistoryUsed Word 0 Offset into history block
indicating amount of
block used

Chapter 12, Unit cross reference

203

Procedures and

204

functions

Procedure Operation

ClearHistory Clears all history lists

DoneHistory Shuts down the history list manager
HistoryAdd Adds a string to a history list

InitHistory Initialized the history list manager

Function Operation

HistoryCount ~ Returns the number of strings in a history list
HistoryStr Returns a particular string from a history list

Turbo Vision Guide

13

Objecft reference

This chapter contains an alphabetical listing of all the standard Turbo
Vision object types, with explanations of their general purposes and
usage, their fields, methods and color palettes.

To find information on a specific object, keep in mind that many of the
properties of the objects in the hierarchy are inherited from ancestor
objects. Rather than duplicate all that information endlessly, this chapter
only documents fields and methods that are new or changed for a
particular object.

To save yousome For example, if you want to know about the Owner field of a TLabel object,
a’;’_)‘g’g;’egfhgg‘iﬁ you might first look under TLabel’s fields, where you won’t find Owner
indexed. listed. You would then check TLabel’s immediate ancestor in the hierarchy,
TStaticText. Again, Owner will not be listed. You would next check
TStaticText's immediate ancestor, TView. There you will find complete

information about Owner. which is inherited unchanged bv TLabel.

Each object’s entry in this chapter has a graphical representation of the
object’s ancestors and immediate descendants, so it should be easy for you
to find the objects from which fields and methods are inherited.

Each object’s entry is laid out in the following format:

Chapter 13, Object reference 205

TSample object

TSample object Object’s unit

TObject
TSample

TDescendant

Fields

This section will list all fields for each object, alphabetically. In addition to
showing the declaration of the field and an explanation of its use, there is
a Read only or Read/write designation. Read-only fields are generally
fields that are set up and maintained by the object’s methods, and they
should not be on the left side of an assignment statement.

AField arield: SomeType; Read only

AField is a field that holds some information about this sample object. This
text explains how it functions, what it means, and how you use it.

See also: related fields, methods, objects, global functions, etc.
AnotherField AnotherField: Word; Read/write

AnotherField has similar information to that for AField.

Methods

This section lists all methods which are either newly defined for this
object or which override inherited methods. For virtual methods, an
indication will be given as to how often you will probably need to
override the method: Never, Seldom, Sometimes, Often, or Always.

Init constructor Init(AParameter: SomeType);
Init creates a new sample object, setting the AField field to AParameter.
Zilch procedure Zilch; virtual;
Override: The Zilch procedure causes the sample object to perform some action.

Sometimes
See also: TSomethingElse.Zilch

206 Turbo Vision Guide

TApplication

TA

TApplication App

Methods

Init

|]
l TWindow l I TDeskTop | l TProgram I

TApplication

TApplication is a simple “wrapper” around TProgram, and only differs
from TProgram in its constructor and destructor methods. T Application.Init
first initializes all Turbo Vision subsystems (the memory, video, event,
system error, and history list managers) and then calls TProgram.Init.
Likewise, TApplication.Done first calls TProgram.Done and then shuts down
all Turbo Vision subsystems.

Normally you will want to derive your own applications from
TApplication. Should you require a different sequence of subsystem
initialization and shut down, however, you can derive your application
from TProgram, and manually initialize and shut down the Turbo Vision
subsystems along with your own.

constructor Init;

The actual implementation of T Application.Init is shown below:

constructor TApplication.Init;
begin

InitMemory;

InitVideo;

InitEvents;

InitSysError;

InitHistory;

TProgram.Init;
end;

See also: TProgram.Init

Chapter 13, Object reference 207

TApplication

Done destructor Done; virtual;

Override: The actual implementation of TApplication.Done is shown below:
Sometimes

destructor TApplication.Done;
begin

TProgram.Done;

DoneHistory;

DoneSysError;

DoneEvents;

DoneVideo;

DoneMemory;
end;

TBackground App

TObject

TBackGround

TBackground is a simple view consisting of a uniformly patterned
rectangle. It is usually owned by a TDeskTop.

Field
Pattern pattern: Char; Read only
The bit pattern giving the view’s background.
Methods

Init constructor Init(var Bounds: TRect; APattern: Char);

Creates a TBackground object with the given Bounds by calling TViewInit.
GrowMode is set to gfGrowHiX + gfGrowHiY, and the Pattern field is set to
APattern.

See also: TView.Init, TBackground.Pattern

Lload constructor Load(var S: TStream);

208 Turbo Vision Guide

TBackground

Creates a TBackground object and loads it from the stream S by calling
TView.Load and then reading the Pattern field.

See also: TView.Load
Draw procedure Draw; virtual;

Override: Seldom Fills the background view rectangle with the current Pattern in the default
color.

GefPalefte function GetPalette: PPalette; virtual;
Override: Seldom Returns a pointer to the default background palette, CBackground.
Store procedure Store(var S: TStream);

Stores the TBackground view on the stream by calling TView.Store and then
writing the Pattern field.

See also: TView.Store, TBackground.Load

Palette

Background objects use the default palette CBackground to map onto the
first entry in the application palette.

TBufStream Objects

TObject
TStream

TBufStream

TBufStream implements a buffered version of TDosStream. The additional
fields specify the size and location of the buffer, together with the current
and last positions within the buffer. In addition to overriding the eight
methods of TDosStream, TBufStream defines the abstract TStream.Flush

Chapter 13, Object reference 209

TBufStream

210

Fields

Buffer

BufSize

BufPir

BufEnd

Methods

Init

Done

Override: Never

Flush

Override: Never

method. The TBufStream constructor creates and opens a named file by
calling TDosStream.Init, then creates the buffer with GetMem.

TBufStream is significantly more efficient than TDosStream when a large
number of small data transfers take place on the stream, such as when
loading and storing objects using TStream.Get and TStream.Put.

Buffer: Pointer; Read only
A pointer to the start of the stream’s buffer

BufSize: Word; Read only
The size of the buffer in bytes

BufPtr: Word; Read only

An offset from the Buffer pointer indicating the current position within the
buffer.

BufEnd: Word; Read only

If the buffer is not full, BufEnd gives an offset from the Buffer pointer to the
last used byte in the buffer.

constructor Init(FileName: FNameStr; Mode, Size: Word);

Creates and opens the named file with access mode Mode by calling
TDosStream.Init. Also creates a buffer of Size bytes with a GetMem call. The
Handle, Buffer and BufSize fields are suitably initialized. Typical buffer
sizes range from 512 bytes to 2,048 bytes.

See also: TDosStream.Init

destructor Done; virtual;

Closes and disposes of the file stream; flushes and disposes of its buffer.
See also: TBufStream.Flush

procedure Flush; virtual;

Flushes the calling file stream’s buffer provided the stream is stOK.

See also: TBufStream.Done

Turbo Vision Guide

GetPos

Override: Never

GelSize

Override: Never

Read

Override: Never

Seek

Override: Never

Truncate

Override: Never

Write

Override: Never

Chapter 13, Object reference

TBufStream

function GetPos: Longint; virtual;

Returns the value of the calling stream’s current position (not to be
confused with BufPtr, the current location within the buffer).

See also: TBufStream.Seek

function GetSize: Longint; virtual;

Flushes the buffer then returns the total size in bytes of the calling stream.
procedure Read(var Buf; Count: Word); virtual;

If stOK, reads Count bytes into the Buf buffer starting at the calling
stream’s current position.

Note that Buf is not the stream’s buffer, but an external buffer to hold the
data read in from the stream.

See also: TBufStream.Write, stReadError
procedure Seek(Pos: Longint); virtual;

Flushes the buffer then resets the current position to Pos bytes from the
start of the calling stream. The start of a stream is position 0.

See also: TBufStream.GetPos, TBufStream.GetPos
procedure Truncate; virtual;

Flushes the buffer then deletes all data on the calling stream from the
current position to the end. The current position is set to the new end of
the stream.

See also: TBufStream.GetPos, TBufStream.Seek
procedure Write(var Buf; Count: Word); virtual;

If stOK, writes Count bytes from the Buf buffer to the calling stream,

J T T X o N] =
Crtas tiis WL LA LMARLALL PUULLIV AL

Note that Buf is not the stream’s buffer, but an external buffer to hold the
data being written to the stream. When Write is called, Buf will point to
the variable whose value is being written.

See also: TBufStream.Read, stWriteError

211

TButton

TButton

Dialogs

212

Fields

Title

Command

TButton

A TButton object is a box with a title and a shadow that generates a
command when pressed. These are the buttons that are used extensively

/in the IDE (e.g., OK and Cancel on dialog boxes). A button can be selected

by pressing the highlighted letter, by tabbing to the button and pressing
Spacebar, by pressing Enter when the button is the default (indicated by
highlighting), or by clicking on the button with a mouse.

With color and black & white palettes, a button has a three-dimensional
look that moves when selected. On monochrome systems, a button is
bordered by brackets, and other ASCII characters are used to indicate
whether the button is default, selected, etc.

Like the other controls defined in the Diglogs unit, TButton is a “terminal”
object. It can be inserted into any group and is intended for use without
having to override any of its methods.

A button is initialized by passing it a TRect, a title string, the command to
generate when the button is pressed, and byte of flags. To define a
shortcut key for the button, the title string may contain tildes (~) around
one of its characters, which becomes the shortcut. The AFlag parameter
indicates whether the title should be centered or left justified, and
whether or not the button should be the default (and therefore selectable
by Enter).

There can only be one default button in a window or dialog at any given
time. Buttons that are peers in a group grab and release the default state
via evBroadcast messages. Buttons can be enabled or disabled using
SetState and the CommandEnabled methods.

Title: PString; Read only
A pointer to the button label’s text.
Command: Word; Read only

The command word of the event generated when this button is pressed.

Turbo Vision Guide

TButton

TB

See also: TButton.Init, TButton.Load
Flags Flags: Byte; Read/write

Flags is a bitmapped field used to indicate whether button text is left-
justified or centered. The individual flags are described in Chapter 14,
under “bfXXXX button flag constants.”

See also: TButton.Draw, bfXXXX button flag constants
AmbDefault AmDefault: Boolean; Read only

If True, the button is the default (and therefore selected when Enter is
pressed). Otherwise the button is “normal.”

See also: bfXXXX button flag constants

Methods

Init constructor Init(var Bounds: TRect; ATitle: TTitleStr; ACommand: Word;
AFlags: Byte);

Creates a TButton object with the given size by calling TView.Init.
NewStr(ATitle) is called and assigned to Title. AFlags serves two purposes:
If AFlags and bfDefault is nonzero, AmDefault is set to True; in addition,
AFlags indicates whether the title should be centered or left-justified by
testing whether AFlags and bfLeftJust is nonzero.

Options is set to (ofSelectable + ofFirstClick + ofPreProcess + of PostProcess).
EventMask is set to evBroadcast. If the given ACommand is not enabled,
sfDisabled is set in the State field.

See also: TView.Init, bfXXXX button flag constants

Load constructor Load(var S: TStream);

[e o o B S R e T 1 Ty vy
AL M A AL VPR PV WA et WAL AL LALAMLLLINAT AL pryvreey lAl\a ELV Cit ou\.u.un U] \,uu.uls

TView.Load(S). Other fields are set via S.Read calls, and State is set
according to whether the command in the Command field is enabled. Used
in conjunction with TButton.Store to save and retrieve TButton objects on a
TStream.

See also: TView.Load, TButton.Store
Done destructor Done; virtual;

Override: Never Disposes the memory assigned to the button’s Title, then calls TView.Done
to destroy the view.

See also: TView.Done

Chapter 13, Object reference 213

TBufton

Draw

Override: Seldom

GetPalette
Qverride:
Sometimes
HandleEvent

OQverride:
Sometimes

MakeDefault

SetState

Override: Seldom

214

Store

procedure Draw; virtual;

Draws the button with appropriate palettes for its current state (normal,
default, disabled) and positions the label according to the bfLeftJust bit in
the Flags field.

function GetPalette: PPalette; virtual;
Returns a pointer to the default palette, CButton
procedure HandleEvent (var Event: TEvent); virtual;

Responds to being pressed in any of three ways: mouse clicks on the
button, its shortcut key being pressed, or being the default button when a
cmDefault broadcast arrives. When the button is pressed, a command
event is generated with TView.PutEvent, with the TButton.Command field
assigned to Event.Command and Event.InfoPtr set to @Self.

Buttons also recognize the broadcast commands cmGrabDefault and
cmReleaseDefault, to become or “unbecome” the default button, as
appropriate, and cmCommandSetChanged, which causes them to check
whether their commands have been enabled or disabled.

See also: TView.HandleEvent
procedure MakeDefault (Enable: Boolean);

This method does nothing if the button is already the default button.
Otherwise, the button’s Owner is told of the change in the button’s default
status. If Enable is True the cmGrabDefault command is broadcast,
otherwise the cmReleaseDefault is broadcast. The button is redrawn to
show the new status.

See also: TButton.AmDefault, bfDefault
procedure SetState (AState: Word; Enable: Boolean); virtual;

Calls TView.SetState, then DrawView'’s the button if the button has been
made sfSelected or sfActive. If focus is received (i.e., if AState is sfFocused),
the button grabs or releases default from the default button by calling
MakeDefault.

See also: TView.SetState, TButton.MakeDefault
procedure Store(var S: TStream);

Stores the TButton object on the given TStream by calling TView.Store(S)
followed by S.Write calls to store the Title and Command values. Used in
conjunction with TButton.Load to save and retrieve TButton objects on
streams.

Turbo Vision Guide

TButton

See also: TView.Store, TButton.Load, TStream.Write

Palette
Button objects use the default palette CButfon to map onto CDialog palette
entries 10 through 15.
1 2 3 4 5 6 71 8
CButton || 1o|11|12|13|14|14|14|15 |
Text Normal—————-I L———Shadow
Text Default———-—————J |-—————-——Shor'ccuf: Selected
Text Selected——— L Shortcut Default
Text Disabled Shortcut Normal

TCheckBoxes Dialogs

TCluster
TCheckBoxes

TCheckBoxes is a specialized cluster of one to sixteen controls. Unlike radio
buttons, any number of check boxes can be marked independently, so
there is no default check box in the group. Marking can be made with
mouse clicks, cursor movements, and Alfletter shortcuts. Each check box
can be highlighted and toggled on/off (with the Spacebar). An X appears in
the box when it is selected. Other parts of your application typically
examine the state of the check boxes to determine which options have
been chosen by the user (the IDE, for example, has compiler/linker
opuons seiecred In tis way). CNeck DOX CIUSTErs are oiten assoclated witn

TLabel objects.

TRadioButtons

Fields

None apart from Value and Sel, which are inherited from TCluster. The
Value word is interpreted as a set of 16 bits (0 through 15), with a 1 in the
Item’th bit position meaning that the Itern’th check box is marked.

Chapter 13, Object reference 216

TCheckBoxes

Methods

Note that TCheckBoxes does not override the TCluster constructors,
destructor, or event handler. Derived object types, however, may need to
override them.

Draw procedure Draw; virtual;

Override: Seldom Draws the TCheckBoxes object by calling the inherited TCluster.DrawBox
method. The default check boxis " [] " when unselected and " [X] "
when selected.

Note that if the boundaries of the view are sufficiently wide, check boxes
may be displayed in multiple columns.

See also: TCluster.DrawBox
Mark function Mark(Item: Integer): Boolean; virtual;

Override: Seldom Returns True if the Item’th bit of Value is set, that is, if the Item’th check
box is marked. You can override this to give a different interpretation of
the Value field. By default, the items are numbered 0 through 15.

See also: TCheckBoxes.Press
Press procedure Press(Item: Integer); virtual;

Toggles the Item’th bit of Value. You can override this to give a different
interpretation of the Value field. By default, the items are numbered 0
through 15.

See also: TCheckBoxes.Mark

Palette

By default, check boxes objects use CCluster, the default palette for all
cluster objects.

couser [[w5

Text Normal Shortcut Selected
Text Selected Shortcut Normal

216 Turbo Vision Guide

TCluster

TCluster Dialogs

| TRadioButtons IL TCheckBoxes |

A cluster is a group of controls that all respond in the same way. TCluster
is an abstract object type from which the useful group controls
TRadioButtons and TCheckBoxes are derived. Cluster controls are often
associated with TLabel objects, letting you select the control by selecting
on the adjacent explanatory label.

While buttons are used to generate commands and input lines are used to
edit strings, clusters are used to toggle bit values in the Value field, which
is of type Word. The two standard descendants of TCluster use different
algorithms when changing Value: TCheckBoxes simply toggles a bit, while
TRadioButtons toggles the enabled one and clears the previously selected
bit. Both inherit almost all of their behavior from TCluster.

Fields

Value value: Word; Read only
Current value of the control. The actual meaning of this field is
aetermined Dy the Metnoas developea In tne Opject types derivea Irom
TCluster.

Sel sel: Integer; Read only

The currently selected item of the cluster.

Strings strings: TStringCollection; Read only

The list of items in the cluster.

Chapter 13, Object reference 217

TCluster

218

Methods

Init

Load

Done

Override:
Sometimes

DataSize

constructor Init(var Bounds: TRect; AStrings: PSItem);

Clears the Value and Sel fields. The AStrings parameter is usually a series
of nested calls to the global function NewSIter. In this way, an entire
cluster of radio buttons or check boxes may be created in one constructor
call:

var
Control: PView;

R.Assign(30, 5, 52, 7);

Control := New(PRadioButtons, Init(R,
NewSItem(’~F~orward’,
NewSItem(’~B~ackward’, nil))));

When adding additional radio buttons or check boxes to a cluster (or
menus and status lines, for that matter), just copy the first call to NewSItem
and replace the title with the desired text. Then add an additional closing
parenthesis for each new line you added and the statement will compile
without syntax errors. Alternatively, just keep re-compiling and adding
one additional closing parenthesis until the compiler accepts the
statement.

See also: TSItem type
constructor Load(var S: TStream);

Creates a TCluster object by calling TView.Load(S) then setting the Value
and Sel fields with S.Read calls. Finally the Strings field for the cluster is
loaded from S with Strings.Load(S). Used in conjunction with
TCluster.Store to save and retrieve TCluster objects on a stream.

See also: TCluster.Store, TView.Load
destructor Done; virtual;

Disposes of the cluster’s string memory allocation then destroys the view
with a TView.Done call.

See also: TView.Done

function DataSize: Word; virtual;

Turbo Vision Guide

Override: Seldom

DrawBox

GetData

Override: Seldom

GetHelpCix

Override: Seldom

GetPalette

Override:
Sometimes
HandleEvent

Override: Seldom

Mark

Override: Always

MovedTo

TCluster

Returns the size of Value. Must be overridden in derived object types that
change Value or add other data fields, in order to work with GetData and
SetData.

See also: TCluster.GetData, TCluster.SetData

procedure DrawBox(Icon: String; Marker: Char);

Called by the Draw methods of descendant types to draw the box in front
of the string for each item in the cluster. Icon is a 5-character string (* [] '
for check boxes, {)} ' for radio buttons). Marker is the character to use
to indicate the box has been marked (‘X' for check boxes, '+’ for radio
buttons).

See also: TCheckBoxes.Draw, TRadioButtons.Draw
procedure GetData(var Rec); virtual;

Writes the Value field to the given record and DrawView’s the cluster.
Must be overridden in derived object types that change the Value field, in
order to work with DataSize and SetData.

See also: TCluster.DataSize, TCluster.SetData, TView.DrawView
function GetHelpCtx: Word; virtual;

Returns the value of Sel added to HelpCtx. This enables you to have
separate help contexts for each item in the cluster. Reserve a range of help
contexts equal to HelpCtx plus the number of cluster items minus one.

function GetPalette: PPalette; virtual;
Returns a pointer to the default palette, CCluster.
procedure HandleEvent (var Event: TEvent); virtual;

Calls TView.HandleEvent then handles all mouse and keyboard events
appropriate to this cluster. Controls are selected by mouse click or cursor
movement Keys (INCIUAINg SP4CceDdr). 1ne CIUSIer 1 redrawn to Snow te
selected controls.

See also: TView.HandleEvent
function Mark(Item: Integer): Boolean; virtual;

Called by Draw to determine which items are marked. The default
TCluster.Mark returns False. Mark should be overridden to return True if
the Item’th control in the cluster is marked, otherwise False.

procedure MovedTo(Item: Integer); virtual;

Chapter 13, Object reference 219

TCluster

Override: Seldom Called by HandleEvent to move the selection bar to the Item’th control of
the cluster. ‘

Press procedure Press(Item: Integer); virtual;

Override: Always Called by HandleEvent when the Item’th control in the cluster is pressed
either by mouse click or keyboard event. This abstract method must be
overridden.

SetData procedure SetData(var Rec); virtual;

Override: Seldom Reads the Value field from the given record and DrawView's the cluster.
Must be overridden in derived cluster types that require other fields to
work with DataSize and GetData.

See also: TCluster.DataSize, TCluster.GetData, TView.DrawView
SetState procedure SetState (AState: Word; Enable: Boolean); virtual;
Override: Seldom Calls TView.SetState, then DrawView's the cluster if AState is sfSelected.
See also: TView.SetState, TView.DrawView
Store procedure Store(var S: TStream);

Stores the TCluster object on the given stream by calling TView.Store(S),
writing Value and Sel to S, then storing the cluster’s Strings field by using
its Store method. Used in conjunction with TCluster.Load to save and
retrieve TCluster objects on a stream.

See also: TCluster.Load, TStream.Write

Palette
TCluster objects use CCluster, the default palette for all cluster objects, to
map onto entries 16 through 18 of the standard dialog box palette.

1 2z 3 4

coseer [[[]

Text Normal Shortcut Selected
Text Selected: Shortcut Normal

220 Turbo Vision Guide

TCollection

TCollection Objects W

TObject
TCollection

TSortedCollection
TStringCollection

| TResourceCollection I

TCollection is an abstract type for implementing any collection of items,
including other objects. TCollection is a more general concept than the
traditional array, set, or list. TCollection objects size themselves
dynamically at run time and offer a base type for many specialized types
such as TSortedCollection, TStringCollection, and TResourceCollection. In
addition to methods for adding and deleting items, TCollection offers
several iterator routines that call a procedure or function for each item in
the collection.

Fields

ltems Items: PItemList; Read only
A pointer to an array of item pointers.

See also: TItemList type

Nanind AT U TSI U Danad amies
o —u s R N Y 4 e wasey

The current number of items in the collection, up to MaxCollectionSize.
See also: MaxCollectionSize variable
Limit Limit: Integer; Read only
The currently allocated size (in elements) of the Items list.
See also: Delta, TCollection.Init
Delta Dpelta: Integer; Read only

Chapter 13, Object reference 221

TCollection

222

Methods

Init

Load

Done

Override: Often

At

AiDelete

The number of items by which to increase the Items list whenever it
becomes full. If Delta is zero, the collection cannot grow beyond the size
set by Limit.

Increasing the size of a collection is fairly costly in terms of performance.

To minimize the number of times it has to occur, try to set the initial Limit
to an amount that will encompass all the items you might want to collect,
and set Delta to a figure that will allow a reasonable amount of expansion.

See also: Limit, TCollection.Init

constructor Init (ALimit, ADelta: Integer);

Creates a collection with Limit set to ALimit and Delta set to ADelta. The
initial number of items will be limited to ALimit, but the collection is
allowed to grow in increments of ADelta until memory runs out or the
number of items reaches MaxCollectionSize.

See also: TCollection.Limit, TCollection.Delta
constructor Load({var S: TStream);

Creates and loads a collection from the given stream. TCollection.Load calls
Getltem for each item in the collection.

See also: TCollection.Getltem
destructor Done; virtual;

Deletes and disposes of all items in the collection by calling
TCollection.FreeAll and setting Limit to 0

See also: TCollection.FreeAll, TCollection.Init
function At (Index: Integer): Pointer;

Returns a pointer to the item indexed by Index in the collection. This
method lets you treat a collection as an indexed array. If Index is less than
zero or greater than or equal to Count, the Error method is called with an
argument of colndexError, and a value of nil is returned.

See also: TCollection.IndexOf
procedure AtDelete (Index: Integer);

Deletes the item at the Index’th position and moves the following items up
by one position. Count is decremented by 1, but the memory allocated to
the collection (as given by Limit) is not reduced. If Index is less than zero

Turbo Vision Guide

TCollection

or greater than or equal to Count, the Error method is called with an
argument of colndexError.

See also: TCollection.Freeltem, TCollection.Free, TCollection.Delete
Atinsert procedure AtInsert (Index: Integer; Item: Pointer);

Inserts Item at the Index’th position and moves the following items down
by one position. If Index is less than zero or greater than Count, the Error
method is called with an argument of colndexError and the new Item is not
inserted. If Count is equal to Limit before the call to AtInsert, the allocated
size of the collection is expanded by Delta items using a call to SetLimit. If
the SetLimit call fails to expand the collection, the Error method is called
with an argument of coOverflow and the new Item is not inserted.

See also: TCollection.At, TCollection.AtPut
AtPut procedure AtPut(Index: Integer; Item: Pointer);

Replaces the item at index position Index with the item given by Item. If
Index is less than zero or greater than or equal to Count, the Error method
is called with an argument of colndexError.

See also: TCollection.At, TCollection.AtInsert
Delete procedure Delete(Item: Pointer);

Deletes the item given by Item from the collection. Equivalent to
AtDelete(IndexOf(Item)).

See also: TCollection.AtDelete, TCollection.Delete All
DeleteAll procedure DeleteAll;
Deletes all items from the collection by setting Count to zero.

See also: TCollection.Delete, TCollection.AtDelete

Errnr meanadisma Tvrar INAdA Tnfas Tnkannrl o erirénale.
————— - ey —eee e e

F bt atndd == -

Override: Called whenever a collection error is encountered. By default, this method
Somefimes produces a run-time error of (212 — Code).

See also: coXXXX collection constants
FirstThat function FirstThat (Test: Pointer): Pointer;

FirstThat applies a Boolean function, given by the function pointer Test, to
each item in the collection until Test returns True. The result is the item
pointer for which Test returned True, or nil if the Test function returned
False for all items. Test must point to a far local function taking one Pointer
parameter and returning a Boolean value. For example

Chapter 13, Object reference 223

TCollection

ForEach

Free

FreeAll

Freeltem

224

function Matches (Item: Pointer): Boolean; far;
The Test function cannot be a global function.
Assuming that List is a TCollection, the statement
P := List.FirstThat (@Matches);
corresponds to

I:=0;
while (I < List.Count) and not Matches(List.At(I)) do Inc(I);
if I < List.Count then P := List.At(I) else P := nil;

See also: TCollection.LastThat, TCollection.ForEach
procedure ForEach (Action: Pointer);

ForEach applies an action, given by the procedure pointer Action, to each
item in the collection. Action must point to a far local procedure taking
one Pointer parameter. For example

function PrintItem(Item: Pointer); far;
The Action procedure cannot be a global procedure.
Assuming that List is a TCollection, the statement
List.ForEach (@PrintItem);
corresponds to
for I := 0 to List.Count - 1 do PrintItem(List.At(I));
See also: TCollection.FirstThat, TCollection.LastThat
procedure Free (Item: Pointer);
Deletes and disposes of the given Item. Equivalent to

Delete(Item);
Freeltem(Item);

See also: TCollection.Freeltem, TCollection.Delete
procedure FreeAll;
Deletes and disposes of all items in the collection.

See also: TCollection.DeleteAll

procedure FreeItem(Item: Pointer); virtual;

Turbo Vision Guide

Qverride:
Sometimes

Getltem

Qverride:
Sometimes

IndexOf

Override: Never

Insert

OQverride: Never

LastThat

TCollection

The Freeltem method must dispose the given Item. The default
TCollection.Freeltem assumes that Item is a pointer to a descendant of
TObject, and thus calls the Done destructor:

if Item <> nil then Dispose(PObject (Item), Done);
Freeltem is called by Free and FreeAll, but it should never be called directly.
See also: TCollection.Free, TCollection.FreeAll
function TCollection.GetItem(var S: TStream): Pointer; virtual;

Called by TCollection.Load for each item in the collection. This method can
be overridden but should not be called directly. The default
TCollection.Getltem assumes that the items in the collection are
descendants of TObject, and thus calls TStream.Get to load the item:

GetItem := S.Get;
See also: TStream.Get, TCollection.Load, TCollection.Store
function IndexOf (Item: Pointer): Integer; virtual;

Returns the index of the given Item. The converse operation to
TCollection.At. If Item is not in the collection, IndexOf returns —1.

See also: TCollection.At
procedure Insert(Item: Pointer); virtual;

Inserts Item into the collection, and adjusts other indexes if necessary. By
default, insertions are made at the end of the collection by calling
Atlnsert(Count, Item);

See also: TCollection.AtInsert
function LastThat (Test: Pointer): Pointer;

LastThat applies a Boolean function, given by the function pointer Test, to
each item in the collection in reverse order until I'est returns 1rue. I'he
result is the item pointer for which Test returned True, or nil if the Test
function returned False for all items. Test must point to a far local function
taking one Pointer parameter and returning a Boolean, for example

function Matches(Item: Pointer): Boolean; far;
The Test function cannot be a global function.
Assuming that List is a TCollection, the statement
P := List.LastThat (@Matches);

corresponds to

Chapter 13, Object reference 225

TCollection

Pack

Putltem

Override:
Sometimes

SefLimit

Override: Seldom

Store

226

I := List.Count - 1;
while (I >= 0) and not Matches(List.At(I)) do Dec(I);
if I >= 0 then P := List.At(I) else P := nil;

See also: TCollection.FirstThat, TCollection.ForEach

procedure Pack;

Deletes all nil pointers in the collection.

See also: TCollection.Delete, TCollection.DeleteAll

procedure PutItem(var S: TStream; Item: Pointer); wvirtual;

Called by TCollection.Store for each item in the collection. This method can
be overridden but should not be called directly. The default
TCollection.Putltem assumes that the items in the collection are
descendants of TObject, and thus calls TStream.Put to store the item:

S.Put (Item);
See also: TCollection.Getltem, TCollection.Store, TCollection.Load
procedure SetLimit (ALimit: Integer); virtual;

Expands or shrinks the collection by changing the allocated size to ALimit.
If ALimit is less than Count it is set to Count, and if ALimit is greater than
MaxCollectionSize it is set to MaxCollectionSize. Then, if ALimit is different
from the current Limit, a new Items array of ALimit elements is allocated,
the old Items array is copied into the new array, and the old array is
disposed.

See also: TCollection.Limit, TCollection.Count, MaxCollectionSize variable
procedure Store(var S: TStream);

Stores the collection and all its items on the stream S. TCollection.Store calls
TCollection.Putltem for each item in the collection.

See also: TCollection.Putltem

Turbo Vision Guide

TDeskTop

TDeskTop App

TDialog TApplication

TDeskTop is a simple group that owns the TBackground view upon which
the application’s windows and other views appear. TDeskTop represents
the desktop area of the screen between the top menu bar and bottom
status line.

TDeskTop

Methods

Init constructor Init(var Bounds: TRect);

Creates a TDeskTop group with size Bounds. The default GrowMode is
8fGrowHiX + gfGrowHiY. Init also calls NewBackground to insert a
TBackground view into the group.

See also: TDeskTop.NewBackground, TGroup.Init, TGroup.Insert
Cascade procedure Cascade(var R: TRect);

Redisplays all tileable windows owned by the desktop in cascaded
format. The first tileable window in Z-order (the window “in back”) is
zoomed to fill the desktop, and each succeeding window fills a region
heoinning ane line lower and one snace farther to the right than the one

before. The active window appears “on top,” as the smallest window.
See also: ofTileable, TDeskTop.Tile
NewBackground function NewBackground: PView; virtual;

Override: Returns a pointer to the background to be used in the desktop. This
Somefimes method is called in the TDeskTop.Init method. Descendant objects can
change the background type by overriding this method.

See also: TDeskTop.Init

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Chapter 13, Object reference 227

TDeskTop

Override: Seldom

Tile

TileError

Override:
Sometimes

TDialog

Calls TGroup.HandleEvent and takes care of the commands cmNext
(usually the hot key F6) and cmPrevious by cycling through the windows
(starting with the currently selected view) owned by the desktop.

See also: TGroup.HandleEvent, cnXXXX command constants
procedure Tile(var R: TRect);

Redisplays all ofTileable views owned by the desktop in tiled format.
See also: TDeskTop.Cascade, ofTileable

procedure TileError; virtual;

TileError is called if an error occurs during TDeskTop.Tile or
TDeskTop.Cascade. By default it does nothing. You may wish to override it
to notify the user that the application is unable to rearrange the windows.

See also: TDeskTop.Tile, TDeskTop.Cascade

Dialogs

228

I]
| THindow | l TDeskTop | | TProgram |

TDialog TApplication

TDialog is a simple child of TWindow with the following properties:

m GrowMode is zero; that is, dialog boxes are not growable.

m Flag masks wfMove and wfClose are set; that is, dialog boxes are
moveable and closable (a close icon is provided).

m The TDiglog event handler calls TWindow.HandleEvent but additionally
handles the special cases of Esc and Enfer key responses. The Esc key
generates a cmCancel command, while Enter generates the cmDefault
command.

m The TDialog.Valid method returns True on cmCancel, otherwise it calls its
TGroup.Valid.

Turbo Vision Guide

TDialog

Methods

Init constructor Init (var Bounds: TRect; ATitle: TTitleStr);

Creates a dialog box with the given size and title by calling
TWindow.Init(Bounds, ATitle, wnNoNumber). GrowMode is set to 0, and
Flags is set to wfMove + wfClose. This means that, by default, dialog boxes
can move and close (via the close icon) but cannot grow (resize).

Note that TDialog does not define its own destructor, but uses Close and
Done inherited via TWindow, TGroup, and TView.

See also: TWindow.Init
HandleEvent procedure HandleEvent(var Event: TEvent); virtual;

Override: Calls TWindow.HandleEvent(Event), then handles Enter and Esc key events
Sometimes specially. In particular, Esc generates a cmCancel command, and the Enter
key broadcasts a cmDefault command. This method also handles cmOK,
cmCancel, cmYes, and cmNo command events by ending the modal state of
the dialog box. For each of the above events handled successfully, this
method calls ClearEvent.

See also: TWindow.HandleEvent
GetPaleftte function GetPalette: PPalette; virtual;
Override: Seldom This method returns a pointer to the default palette, CPalette.
Valid function Valid(Command: Word): Boolean; virtual;

Override: Seldom Returns True if the command given is cmCancel or if all the group controls
return True.

See also: TGroup.Valid

Faieiie
Dialog box objects use the default palette CDialog to map onto the 32nd
through 63rd entries in the application palette.

1 2 3 4 5 6 71 8 9

Cpialog [32]33[3s]35]36]37]3s]30]a0]

Frame Passive—] | l [—Label shortcut
Frame Activ Label Highlight
Frame Icon Lo | abel Normal
ScrollBar Page: StaticText
Scrol1Bar Controls

Chapter 13, Object reference 229

TDialog

10 11 12 13 14 15 16 17 18

tbialog [a1]aa|as[aa]as[a6]ar[a8]a0]

Button Normal———————rI L__ciuster Shortcut
Button Default luster Selected
Button Selected————— " ———Cluster Normal
Button Disabled Button Shadow
Button Shortcut:

19 20 21 22 23 24 25

cpialog 50]s1]s2]s3]sa]ss]56]

InputLine Nor-ma]—-——J | |—HistoryN1‘ndow Scrol1Bar controls
InputLine Selected: istoryWindow ScroliBar page
InputLine Arrows L History Sides

History Arrow

26 27 28 29 30 31 32

Chialog]| 57 | 58 | 59 | 60 | 61] 62 | 63 ||
ListViewer Normal——-r L Reserved
ListViewer Fo«:used—l |—Reserved
ListViewer Selectedq—— l——InfoPane
ListViewer Divider

See also: GetPalette method for each object type

TDosStream Objects

TDosStream
TBufStream

TDosStream is a specialized TStream derivative implementing unbuffered
DOS file streams. The constructor lets you create or open a DOS file by
specifying its name and access mode: stCreate, stOpenRead, stOpenWrite, or
stOpen. The one additional field of TDosStream is Handle, the traditional
DOS file handle used to access an open file. Most applications will use the
buffered derivative of TDosStream called TBufStream. TDosStream
overrides all the abstract methods of TStream except for TStream.Flush.

230 : Turbo Vision Guide

Fields

Handle

Methods

Init

Done

Override: Never

GetPos

Override: Never

GelSize
Override: Never

Read

Override: Never

Seek

Override: Never

Truncate

Override: Never

Chapter 13, Object reference

TDosStream

Handle: Word Read only

Handle is the DOS file handle used to access an open file stream.

constructor Init(FileName: FNameStr; Mode: Word);

Creates a DOS file stream with the given FileName and access mode. If
successful, the Handle field is set with the DOS file handle. Failure is
signaled by a call to Error with an argument of stInitError.

The Mode argument must be set to one of the values stCreate, stOpenRead,
stOpenWrite, or stOpen. These constant values are explained in Chapter 14
under “stXXXX stream constants.”

destructor Done; virtual;

Closes and disposes of the DOS file stream

See also: TDosStream.Init

function GetPos: Longint; virtual;

Returns the value of the calling stream’s current position.
See also: TDosStream.Seek

function GetSize: Longint; virtual;

Returns the total size in bytes of the calling stream.
procedure Read(var Buf; Count: Word); virtual;

Reads Count bytes into the Buf buffer starting at the calling stream’s
current position.

See also: TDosStream.Write, stReadError
procedure Seek (Pos: Longint); virtual;

Resets the current position to Pos bytes from the beginning of the calling
stream.

See also: TDosStream.GetPos, TDosStream.GetSize

procedure Truncate; virtual;

Deletes all data on the calling stream from the current position to the end.

231

TDosStream

See also: TDosStream.GetPos, TDosStream.Seek

Write procedure Write(var Buf; Count: Word); virtual;
Writes Count bytes from the Buf buffer to the calling stream, starting at the
current position.
See also: TDosStream.Read, st WriteError
TEmMsStream Objects
TEmsStream is a specialized TStream derivative for implementing streams
in EMS memory. The additional fields provide an EMS handle, a page
count, stream size, and current position. TEmsStream overrides the six
abstract methods of TStream as well as providing a specialized constructor
and destructor.
= When debugging a program using EMS streams, the IDE cannot recover
EMS memory allocated by your program if your program terminates
prematurely or if you forget to call the Done destructor for an EMS stream.
Only the Done method (or rebooting) can release the EMS pages owned by
the stream. '
Fields
Handle Handle: Word; Read only
The EMS handle for the stream.
PageCount PageCount: Word; Read only
The number of allocated pages for the stream, with 16K per page.
Size Size: Longint; Read only
The size of the stream in bytes.
Position Position: Longint; Read only

232

The current position within the stream. The first position is 0.

Turbo Vision Guide

Methods

Init

Done

Override: Never

GetPos

Qverride: Never

GetfSize

Override: Never

Read

Override: Never

Seek

Override: Never

Truncate

Override: Never

Write

Override: Never

Chapter 13, Object reference

TEmsStream

constructor Init (MinSize: Longint);

Creates an EMS stream with the given minimum size in bytes. Calls
TStream.Init then sets Handle, Size and PageCount. Calls Error with an
argument of stInitError if initialization fails.

TE
See also: TEmsStream.Done

destructor Done; virtual;

Disposes of the EMS stream and releases EMS pages used.
See also: TEmsStream.Init

function GetPos: Longint; virtual;

Returns the value of the calling stream’s current position.
See also: TEmsStream.Seek

function GetSize: Longint; virtual;

Returns the total size of the calling stream.

procedure Read(var Buf; Count: Word); virtual;

Reads Count bytes into the Buf buffer starting at the calling stream’s
current position.

See also: TEmsStream.Write, stReadError
procedure Seek (Pos: Longint); virtual;

Resets the current position to Pos bytes from the start of the calling
stream.

See also: TEmsStream.GetPos, TEmsStream.GetSize
procedure Truncate; virtual;

Deletes all data on the calling stream from the current position to the end.
The current position is set to the new end of the stream.

See also: TEmsStream.GetPos, TEmsStream.Seek
procedure Write(var Buf; Count: Word); virtual;

Writes Count bytes from the Buf buffer to the calling stream, starting at the
current position.

233

TFrame

See also: TStream.Read, TEmsStream.GetPos, TEmsStream.Seek

TFrame Views
TFrame provides the distinctive frames around windows and dialog
boxes. Users will probably never need to deal with frame objects directly,
as they are added to window objects by default.

Methods
Init constructor Init(var Bounds: TRect);
Calls TView.Init, then sets GrowMode to gfGrowHiX + gfGrowHiY and sets
EventMask to EventMask or evBroadcast, so TFrame objects default to
handling broadcast events.
See also: TView.Init
Draw procedure Draw; virtual;

Override: Seldom

GetPalette

Override: Seldom

HandleEvent

Override: Seldom

234

Draws the frame with color attributes and icons appropriate to the current
State flags: active, inactive, being dragged. Adds zoom, close and resize
icons depending on the owner window’s Flags. Adds the title, if any, from
the owner window’s Title field. Active windows are drawn with a double-
lined frame and any icons, inactive windows with a single-lined frame
and no icons.

See also: sfXXXX state flag constants, wfXXXX window flag constants
function GetPalette: PPalette; virtual;

Returns a pointer to the default frame palette, CFrame.

procedure HandleEvent (var Event: TEvent); virtual;

Calls TView.HandleEvent, then handles mouse events. If the mouse is
clicked on the close icon, TFrame generates a cmClose event. Clicking on
the zoom icon or double-clicking on the top line of the frame generates a
cmZoom event. Dragging the top line of the frame moves the window, and

Turbo Vision Guide

SetState

Override: Seldom

Palette

TGroup

TFrame

dragging the resize icon moves the lower-right corner of the view and
therefore changes its size.

See also: TView.HandleEvent
procedure SetState (AState: Word; Enable: Boolean); virtual;

Calls TView.SetState, then if the new state is sfActive or sfDragging, calls
DrawView to redraw the view. TF

See also: TView.SetState

Frame objects use the default palette, CFrame, to map onto the first three
entries in the standard window palette.

1 2 3 4 5
CFrame ||1|1!2|2(ﬂ|

Passive Fr‘ame—I I I—Ic:ons
Passive Titl ctive Title

Active Frame—————o-——

Views

TObject

=

TWindow ITDeskTop ' rﬁ;ogram|

l ivialog | TApplication

TGroup objects and their derivatives (which we call groups for short)
provide the central driving power to Turbo Vision. A group is a special
breed of view. In addition to all the fields and methods derived from
TView, a group has additional fields and methods (including many
overrides) allowing it to control a dynamically linked list of views
(including other groups) as though they were a single object. We often talk
about the subviews of a group even when these subviews are often

groups in their own right.

Chapter 13, Object reference 235

TGroup

236

Fields

Last

Current

Buffer

Although a group has a rectangular boundary from its TView ancestry, a
group is only visible through the displays of its subviews. A group
conceptually draws itself via the Draw methods of its subviews. A group
owns its subviews, and together they must be capable of drawing (filling)
the group’s entire rectangular Bounds. During the life of an application,
subviews and subgroups are created, inserted into groups, and displayed
as a result of user activity and events generated by the application itself.
The subviews can just as easily be hidden, deleted from the group, or
disposed of by user actions (such as closing a window or quitting a dialog
box).

The three derived object types of TGroup, namely TWindow, TDeskTop, and
TApplication (via TProgram) illustrate the group and subgroup concept.
TApplication will typically own a TDeskTop object, a TStatusLine object, and
a TMenuView object. TDeskTop is a TGroup derivative, so it, in turn, can
own TWindow objects, which in turn own TFrame objects, TScrollBar
objects, and so on.

TGroup objects delegate both drawing and event handling to their
subviews, as explained in Chapter 4, “Views” and Chapter 5, “Event-
driven programming”.

Many of the basic TView methods are overridden in TGroup in a natural
way. For example, storing and loading groups on streams can be achieved
with single calls to TGroup.Store and TGroup.Load.

TGroup objects are not usually instantiated; rather you would instantiate
one or more of TGroup’s derived object types: TApplication, TDeskTop, and
TWindow.

 Last: PView Read only

Points to the last subview in the group (the one furthest from the top in
Z-order). The Next field of the last subview points to the first subview,
whose Next field points to the next subview, and so on, forming a circular
list.

Current: PView; Read only

Points to the subview that is currently selected, or is nil if no subview is
selected.

See also: sfSelected, TView.Select
Buffer: PVideoBuf; Read only

Turbo Vision Guide

TGroup

Points to a buffer used to cache redraw operations, or is nil if the group
has no cache buffer. Cache buffers are created and destroyed
automatically, unless the ofBuffered flag is cleared in the group’s Options
field.

See also: TGroup.Draw, TGroup.Lock, TGroup.Unlock

Phase Phase: (phFocused, phPreProcess, phPostProcess); Read only

The current phase of processing for a focused event. Subviews that have
the of PreProcess and /or ofPostProcess flags set can examine Owner/.Phase to

determine whether a call to their HandleEvent is happening in the TG
phPreProcess, phFocused, or phPostProcess phase.

See also: ofPreProcess, ofPostProcess, TGroup.HandleEvent

Methods

Init: constructor Init(var Bounds: TRect);

Calls TView.Init, sets ofSelectable and ofBuffered in Options, and sets
EventMask to $FFFF.

See also: TView.Init, TGroup.Load
load constructor Load(var S: TStream);

Loads an entire group from a stream by first calling the inherited
TView.Load and then using TStream.Get to read each subview. Once all
subviews have been loaded, a pass is performed over the subviews to fix
up all pointers that were read using GetPeerViewPtr.

If an object type derived from TGroup contains fields that point to
subviews, it should use GetSubViewPtr within its Load to read these fields.

See also: TView.Load, TGroup.Store, TGroup.GetSubViewPtr
Done destructor Done; virtual;

Override: Often Overrides TView.Done. Hides the group using Hide, disposes each
subview in the group using a Dispose(P, Done), and finally calls the
inherited TView.Done.

See also: TView.Done
ChangeBounds procedure ChangeBounds (var Bounds: TRect); virtual;

Overide: Never Overrides TView.ChangeBounds. Changes the group’s bounds to Bounds
and then calls CalcBounds followed by ChangeBounds for each subview in
the group.

Chapter 13, Object reference 237

TGroup

DataSize

Override: Seldom

238

Delete

Draw

Override: Never

EndModal

Overiide: Never

EventError

Override:
Sometimes

ExecView

See also: TView.CalcBounds, TView.ChangeBounds
function DataSize: Word; virtual;

Overrides TView.DataSize. Returns total size of group by calling and
accumulating DataSize for each subview.

See also: TView.DataSize
procedure Delete (P: PView);

Deletes the subview P from the group and redraws the other subviews as
required. P’s Owner and Next fields are set to nil.

See also: TGroup.Insert
procedure Draw; virtual;

Overrides TView.Draw. If a cache buffer exists (see TGroup.Buffer field)
then the buffer is written to the screen using TView. WriteBuf.
Otherwise, each subview is told to draw itself using a call to
TGroup.Redraw.

See also: TGroup.Buffer, TGroup.Redraw
procedure EndModal (Command: Word); virtual;

If this group is the current modal view, it terminates its modal state.
Command is passed to ExecView (which made this view modal in the first
place), which returns Command as its result. If this group is not the current
modal view, it calls TView.EndModal.

See also: TGroup.ExecView, TGroup.Execute
procedure EventError (var Event: TEvent); virtual;

EventError is called whenever the modal TGroup.Execute event-handling
loop encounters an event that cannot be handled. The default action is: If
the group’s Owner is not nil, EventError calls its owner’s EventError.
Normally this chains back to TApplication’s EventError. You can override
EventError to trigger appropriate action.

See also: TGroup.Execute, TGroup.ExecView, sfModal
function ExecView(P: PView): Word;

ExecView is the “modal” counterpart of the “modeless” Insert and Delete
methods. Unlike Insert, after inserting a view into the group, ExecView
waits for the view to execute, then removes the view, and finally returns
the result of the execution. ExecView is used in a number of places
throughout Turbo Vision, most notably to implement T Application.Run
and to execute modal dialog boxes.

Turbo Vision Guide

TGroup

ExecView saves the current context (the selected view, the modal view,
and the command set), makes P modal by calling PA.SetState(sfModal,
True), inserts P into the group (if it isn’t already inserted), and calls

P/ Execute. When PA.Execute returns, the group is restored to its previous
state, and the result of P/ .Execute is returned as the result of the ExecView
call. If P is nil upon a call to ExecView, a value of cmCancel is returned.

See also: TGroup.Execute, sfModal.
Execute function Execute: Word; virtual;

Override: Seldom Overrides TView.Execute. Execute is a group’s main event loop: It repeat-
edly gets events using GetEvent and handles them using HandleEvent. The
event loop is terminated by the group or some subview through a call to
EndModal. Before returning, however, Execute calls Valid to verify that the
modal state can indeed be terminated.

The actual implementation of TGroup.Execute is shown below. Note that
EndState is a private field in TGroup which gets set by a call to EndModal.

function TGroup.Execute: Word;
var
E: TEvent;
begin
repeat
EndState := 0;
repeat
GetEvent (E) ;
HandleEvent (E);
if E.What <> evNothing then EventError(E);
until EndState <> 0;
until Valid(EndState);
Execute := EndState;
end;

See also: TGroup.GetEvent, TGroup.HandleEvent, TGroup.EndModal,
TGroup.Valid

First function First: PView;

Returns a pointer to the first subview (the one closest to the top in Z-
order), or nil if the group has no subviews.

See also: TGroup.Last
FirstThat function FirstThat (Test: Pointer): PView;

FirstThat applies a boolean function, given by the function pointer Test, to
each subview in Z-order until Test returns True. The result is the subview
pointer for which Test returned True, or nil if the Test function returned

Chapter 13, Object reference 239

TGroup

ForEach

GetData

240

False for all subviews. Test must point to a far local function taking one
Pointer parameter and returning a Boolean value. For example:

function MyTestFunc (P: PView): Boolean; far;

The SubViewAt method shown below returns a pointer to the first
subview that contains a given point.

function TMyGroup.SubViewAt (Where: TPoint): PView;

function ContainsPoint (P: PView): Boolean; far;

var
Bounds: TRect;
begin
P~.GetBounds (Bounds) ;
ContainsPoint := {P*.State and sfVisible <> 0) and
Bounds.Contains (Where) ;
end;
begin
SubViewAt := FirstThat (@ContainsPoint);
end;

See also: TGroup.ForEach
procedure ForEach(Action: Pointer);

ForEach applies an action, given by the procedure pointer Action, to each
subview in the group in Z-order. Action must point to a far local
procedure taking one Pointer parameter, for example:

procedure MyActionProc(P: PView); far;

The MoveSubViews method show below moves all subviews in a group by
a given Delta value. Notice the use of Lock and Unlock to limit the number
of redraw operations performed, thus eliminating any unpleasant flicker.

procedure TMyGroup.MoveSubViews (Delta: TPoint);

procedure DoMoveView(P: PView); far;
begin
P~ .MoveTo(P~.0rigin.X + Delta.X, P*.Origin.Y + Delta.Y);
end;
begin
Lock;
ForEach (@DoMoveView) ;
Unlock;
end;

See also: TGroup.FirstThat

procedure GetData(var Rec); virtual;

Turbo Vision Guide

TGroup

Override: Seldom Overrides TView.GetData. Calls GetData for each subview in reverse Z-
order, incrementing the location given by Rec by the DataSize of each
subview.

See also: TView.GetData, TGroup.SetData
GetHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom Returns the help context of the current focused view by calling the
selected subviews’ GetHelpCtx method. If no help context is specified by
any subview, GetHelpCtx returns the value of its own HelpCix field.

GetSubViewPir procedure GetSubViewPtr(var S: TStream; var P);

Loads a subview pointer P from the stream S. GetSubViewPfr should only
be used inside a Load constructor to read pointer values that were written
by a call to PutSubViewPtr from a Store method.

See also: TView.PutSubViewPtr, TGroup.Load, TGroup.Store
HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Often Overrides TView.HandleEvent. A group basically handles events by
passing them on to the HandleEvent methods of one or more of its
subviews. The actual routing, however, depends on the event class.

For focused events (by default evKeyDown and evCommand, see
FocusedEvents variable), event handling is done in three phases: First, the
group’s Phase field is set to phPreProcess and the event is passed to
HandleEvent of all subviews that have the ofPreProcess flag set. Next, Phase
is set to phFocused and the event is passed to HandleEvent of the currently
selected view. Finally, Phase is set to phPostProcess and the event is passed
to HandleEvent of all subviews that have the ofPostProcess flag set.

For positional events (by default evMouse, see PositionalEvents variable),
the event is passed to the HandleEvent of the first subview whose

) ISR RPN, PRSPPIy SIS A Ny S U Ny o NSRS 7} (N
-~ —————m—— o - evaa OA\.- WAL ARLMALA LS AR rVAAlb bLV\-AA UJ e A A2 N T2 'll-blb

For broadcast events (events that aren’t focused or positional), the event is
passed to the HandleEvent of each subview in the group in Z-order.

= If a subview’s EventMask field masks out an event class,
TGroup.HandleEvent will never send events of that class to the subview.
For example, the default EventMask of TView disables evMousellp,
evMouseMove, and evMouseAuto, so TGroup.HandleEvent will never send
such events to a standard TView.

See also: FocusedEvents, PositionalEvents, evXXXX event constants,
TView.EventMask, HandleEvent methods

Chapter 13, Object reference 241

TGroup

242

Insert

InsertBefore

Lock

PutSubViewPir

Redraw

procedure Insert (P: PView);

Inserts the view given by P in the group’s subview list. The new subview
is placed on top of all other subviews. If the subview has the ofCenterX
and/or ofCenterY flags set, it is centered accordingly in the group. If the
view has the sfVisible flag set, it will be shown in the group—otherwise it
remains invisible until specifically shown. If the view has the ofSelectable
flag set, it becomes the currently selected subview.

See also: TGroup.Delete, TGroup.ExecView, TGroup.Delete
procedure InsertBefore(P, Target: PView);

Inserts the view given by P in front of the view given by Target. If Target is
nil, the view is placed behind all other subviews in the group.

See also: TGroup.Insert, TGroup.Delete
procedure Lock;

Locks the group, delaying any screen writes by subviews until the group
is unlocked. Lock has no effect unless the group has a cache buffer (see
ofBuffered and TGroup.Buffer). Lock works by incrementing a lock count,
which is decremented correspondingly by Unlock. When a call to Unlock
decrements the count to zero, the entire group is written to the screen
using the image constructed in the cache buffer.

By “sandwiching” draw-intensive operations between calls to Lock and
Unlock, unpleasant “screen flicker” can be reduced if not eliminated. For
example, the TDeskTop.Tile and TDeskTop.Cascade methods use Lock and
Unlock in an attempt to reduce flicker.

Lock and Unlock calls must be balanced, otherwise a group may end up in a
permanently locked state, causing it to not redraw itself properly when so
requested.

See also: TGroup.Unlock
procedure PutSubViewPtr(var S: TStream; P: PView);

Stores a subview pointer P on the stream S. PutSubViewPtr should only be
used inside a Store method to write pointer values that can later be read
by a call to GetSubViewPtr from a Load constructor.

See also: TGroup.GetSubViewPtr, TGroup.Store, TGroup.Load
procedure Redraw;

Redraws the group’s subviews in Z-order. TGroup.Redraw differs from
TGroup.Draw in that redraw will never draw from the cache buffer.

Turbo Vision Guide

TGroup

See also: TGroup.Draw
SelectNext procedure SelectNext (Forwards: Boolean);

If Forwards is True, SelectNext will select (make current) the next selectable
subview (one with its ofSelectable bit set) in the group’s Z-order. If Forwards
is False, the method selects the previous selectable subview.

See also: of XXX X option flag constants
SetData procedure SetData(var Rec); virtual;

Override: Seldom QOverrides TView.SetData. Calls SetData for each subview in reverse Z-
order, incrementing the location given by Rec by the DataSize of each
subview.

See also: TGroup.GetData, TView.SetData
SetState procedure SetState (AState: Word; Enable: Boolean); virtual;

Override: Seldom Qverrides TView.SetState. First calls the inherited TView.SetState, then
updates the subviews as follows:

If AState is sfActive, sfExposed, or sfDragging then each subview’s SetState is
called to update the subview correspondingly.

If AState is sfFocused then the currently selected subview is called to focus
itself correspondingly.

See also: TView.SetState
Store procedure Store(var S: TStream);

Stores an entire group on a stream by first calling the inherited
TView.Store and then using TStream.Put to write each subview.

If an object type derived from TGroup contains fields that point to
subviews, it should use PutSubViewPtr within its Store to write these
fielde

See also: TView.Store, TGroup.PutSubViewPtr, TGroup.Load

Unlock procedure Unlock;

Unlocks the group by decrementing its lock count. If the lock count
becomes zero, then the entire group is written to the screen using the
image constructed in the cache buffer.

See also: TGroup.Lock

Valid function Valid(Command: Word): Boolean; virtual;

Chapter 13, Object reference 243

TGroup

THistory

Overrides TView.Valid. Returns True if all the subview’s Valid calls return
True. TGroup.Valid is used at the end of the event handling loop in
TGroup.Execute to confirm that termination is allowed. A modal state
cannot terminate until all Valid calls return True. A subview can return
False if it wants to retain control.

See also: TView.Valid, TGroup.Execute

Dialogs

244

Fields

Link

HistorylD

THistory

A THistory object implements a pick-list of previous entries, actions, or
choices from which the user can select a “rerun”. THistory objects are
linked to a TInputLine object and to a history list. History list information
is stored in a block of memory on the heap. When the block fills up, the
oldest history items are deleted as new ones are added.

THistory itself shows up as an icon () next to an input line. When the
user clicks on the history icon, Turbo Vision opens up a history window
(see THistoryWindow) with a history viewer (see THistoryViewer)
containing a list of previous entries for that list.

Different input lines can share the same history list by using the same ID
number.

Link: PInputLine; Read only
A pointer to the linked TInputLine object.
HistoryID: Word; Read only

Each history list has a unique ID number, assigned by the programmer.
Different history objects in different windows may share a history list by
using the same history ID.

Turbo Vision Guide

THistory

Methods

Init constructor Init(var Bounds: TRect; ALink: PInputLine; AHistoryId: Word);

Creates a THistory object of the given size by calling TView.Init, then
setting the Link and Historyld fields with the given argument values. The
Options field is set to of PostProcess and EventMask to evBroadcast.

See also: TView.Init
load constructor Load(var S: TStream);

Creates and initializes a THistory object from the given TStream by calling
TView.Load(S) and reading Link and Historyld from S.

See also: TView.Store
Draw procedure Draw; virtual;
Override: Seldom Draws the THistory icon in the default palette.
GetPalefte function GetPalette: PPalette; virtual;
Override: Returns a pointer to the default palette, CHistory.
Sometimes
Store procedure Store(var S: TStream);

Saves a THistory object on the target TStream by callmg TView.Store(S)
then writing Link and Historyld to S.

See also: TView.Load

Palette

History icons use the default palette, CHistory, to map onto the 22nd and
23rd entries in the standard dialog box palette.

1 2

Arro Sides

Chapter 13, Object reference 245

THistoryViewer

THistoryViewer

Didlogs

Field

Historyld

Methods

Init

GetPalette
Override:
Sometimes
GetText

Override: Seldom

HandleEvent

Override:
Sometimes

246

THistoryViewer is a rather straightforward descendant of TListViewer. It is
used by the history list system, and appears inside the history window set
up by clicking on the history icon. For details on how THistory,
THistoryWindow, and THistoryViewer cooperate, see the entry for THistory
in this chapter.

HistoryId: Word; Read only

HistoryID is the ID number of the history list to be displayed in the view.

constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar;
AHistoryId: Word);

Inijtializes the viewer list by first calling TListViewer.Init to set up the
boundaries, a single column, and the two scroll bars passed in
AHScrollBar and AV ScrollBar. The view is then linked to a history list,
with the HistoryID field set to the value passed in AHistory. That list is
then checked for length, so the range of the list is set to the number of
items in the list. The first item in the history list is given the focus, and the
horizontal scrolling range is set to accommodate the widest item in the
list.

See also: TListViewer.Init

function GetPalette: PPalette; virtual;

Returns a pointer to the default palette, CHistoryViewer.

function GetText (Item: Integer; MaxLen: Integer): String; virtual;

Returns the Item’th string in the associated history list. GetText is called by
the virtual Draw method for each visible item in the list.

See also: TListViewer.Draw, HistoryStr function
procedure HandleEvent (var Event: TEvent); virtual;

The history viewer handles two kinds of events itself; all others are passed
to TListViewer.HandleEvent. Double clicking or pressing the Enter key will
terminate the modal state of the history window with a cmOK command.

Turbo Vision Guide

HistoryWidth

Paletfte

THistoryViewer

Pressing the Esc key, or any cmCancel command event, will cancel the
history list selection.

See also: TListViewer.HandleEvent
function HistoryWidth: Integer;

Returns the length of the longest string in the history list associated with
HistoryID.

History viewer objects use the default palette CHistoryViewer to map onto
the 6th and 7th entries in the standard dialog box palette. TH
1 2 3 4 5
cistoryviewer [6 | 6] 7] 6] 6|
Active——— L—pivider

Inactive: Selected
Focused

THistoryWindow Dialogs

Field

Viewer

Methods

Init

THistoryWindow is a specialized descendant of TWindow used for holding
a history list viewer when the user clicks on the history icon next to an
input line. By default, the window has no title and no number. The history
window’s frame has a close icon so the window can be closed, but cannot
be resized or zoomed.

For details on the use of history lists and their associated objects, see the
entry for THistory in this chapter.

Viewer: PListViewer; Read only

Viewer points to a list viewer to be contained in the history window.

constructor Init(var Bounds: TRect; HistoryId: Word);

Calls TWindow.Init to set up a window with the given bounds, a null title
string, and no window number (wnNoNumber). The TWindow.Flags field is

Chapter 13, Object reference 247

THistoryWindow

GetPalette
Override:

Sometimes
GetSelection

Override: Never

InitViewer

Override: Never

Palefte

TInputLine

set to wfClose to provide a close icon, and a history viewer object is created
to show the items in the history list given by HistoryID.

See also: TWindow.Init, THistoryWindow.InitViewer
function GetPalette: PPalette; virtual;

Returns a pointer to the default palette, CHistory Window.
function GetSelection: String; virtual;

Returns the string value of the focused item in the associated history
viewer.

See also: THistoryViewer.GetText
procedure InitViewer (HistoryId: Word); virtual;

Instantiates and inserts a THistoryViewer object inside the boundaries of
the history window for the list associated with the ID Historyld. Standard
scroll bars are placed on the frame of the window to scroll the list.

See also: THistoryViewer.Init

History window objects use the default palette CHistoryWindow to map
onto the 19th through 25th entries in the standard dialog box palette.

1 2 3 4 5 6 7
CHistoryWindow || 19 [19 [21 [24 [25 [19| 20 |
Frame passive—————-I l I L—-—HistoryViewer selected text
Frame activ . istoryViewer normal text

Frame icon Scrol1Bar controls
Scrol1Bar page area

Dialogs

248

TObject

TInputLine

A TInputLine object provides a basic input line string editor. It handles
keyboard input and mouse clicks and drags for block marking and a
variety of line editing functions (see TInputLine.HandleEvent). The selected
text is deleted and then replaced by the first text input. If MaxLen is

Turbo Vision Guide

Tinputline

greater than the X dimension (Size.X), horizontal scrolling is supported
and indicated by left and right arrows.

The GetData and SetData methods are available for writing and reading
data strings (referenced via the Data pointer field) into the given record.
TInputLine.SetState simplifies the redrawing of the view with appropriate
colors when the state changes from or to sfActive and sfSelected.

An input line frequently has a TLabel and /or a THistory object associated
with it.

TInputLine can be extended to handle data types other than strings. To do
so, you'll generally add additional fields and then override the Init, Load,
Store, Valid, DataSize, GetData, and SetData methods. For example, to
define a numeric input line, you might want it to contain minimum and
maximum allowable values which will be tested by the Valid function.
These minimum and maximum fields would be Loaded and Stored on the
stream. Valid would be modified to make sure the value was numeric and
within range. DataSize would be modified to include the size of the new
range fields (probably SizeOf(Longint) for each). Oddly enough, in this
example it would not be necessary to add a field to store the numeric
value itself. It could be stored as a string value (which is already managed
by TInputLine) and converted from string to numeric value and back by
GetData and SetData respectively.

Fields
Data pata: PString; Read/write
Pointer to the string containing the edited information.
MaxLen MaxLen: Integer; Read only
Maximum length allowed for string to grow. excliding the length hute
See also: TInputLine.DataSize
CurPos CurPos: Integer; Read/write
Index to insertion point (that is, to the current cursor position).
See also: TInputLine.SelectAll
FirstPos FirstPos: Integer; Read/write

Index to the first displayed character.
See also: TInputLine.SelectAll

Chapfter 13, Object reference 249

TinputlLine

SelStart

SelEnd

Methods

Init

Load

Done

Override: Seldom

250

SelStart: Integer; Read only

Index to the beginning of the selection area (that is, to the first character
block marked).

See also: TInputLine.SelectAll
SelEnd: Integer; Read only

Index to the end of the selection area (that is, to the last character block
marked).

See also: TInputLine.SelectAll

constructor Init(var Bounds: TRect; AMaxLen: Integer);

Creates an input box control with the given argument values by calling
TInputLine.Init. State is set to sfCursorVis, Options is set to (ofSelectable +
ofFirstClick), and MaxLen is set to AMaxLen. Memory is allocated and
cleared for AMaxlen+1 bytes and the Data field set to point at this
allocation.

See also: TView.Init, TView.sfCursorVis, TView.ofSelectable,
TView.ofFirstClick

constructor Load(var S: TStream);

Creates and initializes a TInputLine object by calling TView.Load(S) to load
the view off the given stream, then reads the integer fields off the stream
using S.Read, allocates MaxLen+1 bytes at Data with GetMem, and finally
sets the string-length byte and loads the data from the stream with two
more S.Read calls. Load is used in conjunction with TInputLine.Store to save
and retrieve TInputLine objects on a TStream.

Override this method if you define descendants that contain additional
fields.

See also: TView.Load, TInputLine.Store, TStream.Read
destructor Done; virtual;

Deallocates the Data memory allocation, then calls TView.Done to destroy
the TInputLine object.

See also: TView.Done

Turbo Vision Guide

Tinputline

DataSize function DataSize: Word; virtual;

Override: Returns the size of the record for TInputLine.GetData and
Sometimes Tryputline.SetData calls. By default, it returns MaxLen+1. Override this
method if you define descendants to handle other data types.

See also: TInputLine.GetData, TInputLine.SetData
Draw procedure Draw; virtual;

Override: Seldom Draws the input box and its data. The box is drawn with the appropriate
colors depending on whether the box is sfFocused or not (that is, whether
the box view owns the cursor or not), and arrows are drawn if the input
string exceeds the size of the view (in either or both directions). Any
selected (block marked) characters are drawn with the appropriate
palette.

GetData procedure GetData(var Rec); virtual;

Override: Writes DataSize bytes from the string Data” to given record. Used with
Somefimes Tlnputline.SetData for a variety of applications, e.g., temporary storage or
passing on the input string to other views. Override this method if you
define descendants to handle non-string data types. Use this method to
convert from a string to your data type after editing by TInputLine.

See also: TInputLine.DataSize, TInputLine.SetData
GetPalefte function GetPalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CInputLine.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Calls TView.HandleEvent, then handles all mouse and keyboard events if
Somefimes the input box is selected. This method implements the standard editing
capability of the box.

FAitine Fn—:&-uvne n-\n]"rln hlaol m—u-]z_wwv writh mantico clinlk and f"'aﬂ hlnct

deletion; insert or overwrite control with automatic cursor shape change,
automatic and manual scrolling as required (depending on relative sizes
of Data string and Size.X); manual horizontal scrolling via mouse clicks on
the arrow icons; manual cursor movement by arrow, Home, and End keys
(and their standard Cir/ key equivalents); character and block deletion with
Deland Cirl-G. The view is redrawn as required and the TInputLine fields
are adjusted appropriately.

See also: sfCursorIns, TView.HandleEvent, TInputLine.SelectAll
SelectAll procedure SelectAll(Enable: Boolean);

Chapter 13, Object reference 251

TinputLine

SetData

Override:
Sometimes

SelState

Override: Seldom

252

Store

Palette

Sets CurPos, FirstPos, and SelStart to 0. If Enable is set True, SelEnd is set to
Length(Data”) thereby selecting the whole input line; if Enable is set False,
SelEnd is set to 0, thereby deselecting the whole line. Finally, the view is
redrawn by calling DrawView.

See also: TView.DrawView
procedure SetData(var Rec); virtual;

By default, reads DataSize bytes from given record to the Data” string and
calls SelectAll(True) to reset CurPos, FirstPos, and SelStart to zero; SelEnd is
set to the last character of Data” and the view is DrawView’d. Override
this method if you define descendants to handle non-string data types.
Use this method to convert your data type to a string for editing by
TInputLine.

See also: TInputLine.DataSize, TInputLine.GetData, TView.DrawView
procedure SetState (AState: Word; Enable: Boolean); virtual;

Called when the input box needs redrawing (for example, palette
changes) following a change of State. Calls TView.SetState to set or clear
the view’s State field with the given AState bit(s). Then if AState is sfSelected
or if AState is sfActive and the input box is sfSelected, Select All(Enable) is
called.

See also: TView.SetState, TView.DrawView
procedure Store(var S: TStream);

Stores the view on the given stream by calling TView.Store(S), then stores
the five integer fields and the Data string with S.Write calls. Used in
conjunction with TInputLine.Load for saving and restoring entire
TInputLine objects. Override this method if you define descendants that
contain additional fields.

See also: TView.Store, TInputLine.Load, TStream.Write

Input lines use the default palette, CInputLine, to map onto the 19th
through 21st entries in the standard dialog palette.

1 2 3 4

N BB
Passive Arrow
Active: Selected

Turbo Vision Guide

TLabel

TLabel Dialogs

TStaticText
TLabel

A TLabel object is a piece of text in a view that can be selected

(highlighted) by mouse click, cursor keys, or Al-letter shortcut. The label is

usually “attached” via a PView pointer to some other control view such as

an input line, cluster, or list viewer to guide the user. Selecting (or l
TL

“pressing”) the label will select the attached control. Conversely, the label
is highlighted when the linked control is selected.

Fields
Link Link: PView; Read only
Pointer to the control associated with this label.
Light 1Light: Boolean; Read only
If True, the label and its linked control has been selected and will be
highlighted.
Methods

Init constructor Init(var Bounds: TRect; AText: String; ALink: PView);

Creates a TLabel object of the given size by calling TStaticText.Init, then
sets the Link field to ALink for the associated control (make ALink nil if no
control is needed). The Options field is set to of PreProcess and ofPostProcess.
The EventMask is set to evBroadcast. The AText field is assigned to the Text
field by TStaticText.Init. AText can designate a shortcut letter for the label
by surrounding the letter with tildes (‘~*). :

See also: TStaticText.Init

Load constructor Load(var S: TStream);

Chapter 13, Object reference 253

TLabel

Draw

Override: Never
GelPalette
Override:
Sometimes
HandleEvent

Override: Never

Store

Palette

254

Creates and loads a TLabel object from the given stream by calling
TStaticText.Load, then calling GetPeerViewPtr(S, Link) to reestablish the link
to the associated control (if any).

See also: TLabel.Store

procedure Draw; virtual;

Draws the view with the appropriate colors from the default palette.
function GetPalette: PPalette; wvirtual;

Returns a pointer to the default palette, CLabel.

procedure HandleEvent (var Event: TEvent); virtual;

Handles all events by calling TStaticText.HandleEvent. If an evMouseDown
or shortcut key event is received, the appropriate linked control (if any) is
selected. This method also handles cmReceivedFocus and cmReleasedFocus
broadcast events from the linked control in order to adjust the value of the
Light field and redraw the label as necessary.

See also: TView.HandleEvent, cmXXXX command constants
procedure Store(var S: TStream);

Stores the view on the given stream by calling TStaticText.Store, then
records the link to the associated control by calling PutPeerViewPtr.

See also: TLabel.Load

Labels use the default palette, CLabel, to map onto the 7th, 8th and 9th
entries in the standard dialog palette.

1 2 3 4
et [7] 8] o] 9]
Text Normal Shortcut Selected
Text Selected Shortcut Normal

Turbo Vision Guide

TListBox

TListBox Dialogs

TListViewer
TListBox

TListBox is derived from TListViewer to help you set up the most

commonly used list boxes, namely those displaying collections of strings

such as file names. TListBox objects represent displayed lists of such items l
TL

in one or more columns with an optional vertical scroll bar. The horizontal
scroll bars of TListViewer are not supported. The inherited TListViewer
methods let you select (and highlight) items by mouse and keyboard
cursor actions. TListBox does not override TListViewer.HandleEvent or
TListViewer.Draw, so you should refer to the sections describing these
before using TListBox in your applications.

TListBox has an additional field called List not found in TListViewer. List
points to a TCollection object that provides the items to be listed and
selected. Inserting data into the TCollection is your responsibility, as are
the actions to be performed when an item is selected.

TListViewer inherits its Done method from TView, so it is also your
responsibility to dispose of the contents of List when you are finished with
it. A call to NewList will dispose of the old list, so calling NewList(nil) and
then disposing the list box will free everything.

Field

List 1ist: PCollection; Read only

List points at the collection of items to scroll through. Typically, this might
be a collection of PStrings representing the item texts.

Chapter 13, Object reference 255

TListBox

256

Methods

Init

Load

DataSize -

Override:
Sometimes

GetData

Override:
Sometimes

GetText

Override:
Sometimes

constructor Init(var Bounds: TRect; ANumCols: Word; AScrollBar:
PScrollBar);

Creates a list box control with the given size, number of columns, and a
vertical scroll bar referenced by the AScrollBar pointer. This method calls
TListViewer.Init with a nil horizontal scroll bar argument.

The List field is initially nil (empty list) and the inherited Range field is set
to zero. Your application must provide a suitable TCollection holding the
strings (or other objects) to be listed. The List field must be set to point to
this collection using NewList.

See also: TListViewer.Init, TListBox.NewList
constructor Load(var S: TStream);

Creates a TListBox object and loads it with values from the given TStream.
This method calls TListViewer.Load then sets List by reading a List pointer
from S with S.Get.

See also: TListViewer.Load, TListBox.Store, TStream.Get
function DataSize: Word; virtual;

Returns the size of the data read and written to the records passed to
TListBox.GetData and TListBox.SetData. These three methods are useful for
initializing groups. By default TListBox.DataSize returns the size of a
pointer plus the size of a word (for the List and the selected item). You
may need to override this method for your own applications.

See also: TListBox.GetData, TListBox.SetData
procedure GetData(var Rec); virtual;

Writes TListBox object data to the target record. By default, this method
writes the current List and Focused fields to Rec. You may need to over