
OBJECT-ORIENTED PROGRAMMING GUIDE

BORLAND

5AA

Turbo Pascal5,5®

Object-Oriented Programming
Guide

COPYRIGHT © 1989. ALL RIGHTS RESERVED
BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P () R()'l(MrYY'Il c:r()TT~ \/.411 ~v r".4 Ol'\nM..lYYll

This manual was produced with Sprint@: The Professional Word Processor

Rl

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
About this manual 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Installation 0 • 0 •••• 0 •• 0 0 • 0 • • • • • •• 2

Special Notes 0 0 •• 0 0 • 0 •• 0 • • • • • • • • •• 3
Online help . 0 ••• 0 •• 0 • 0 ••••••• 0 • 0 • • •• 4
How to contact Borland 4

Chapter 1 All about OOP 7
Objects? 0 ••••••••• 0 • 0 ••• 0 ••••••••••• 8
Inheritance 0 ••• 0 ••• 0 0 •••••••• 0 9
Objects: records that inherit 10

Instances of object types . 0 • • • • • • • •• 13
An object's fields 0 0 •••••• 0 • •• 13
Good practice and bad practice 0.... 13

Methods 0.0 ••••••• 0 •••••• 14
Code and data together. 0 •••••••••• 16
Defining methods 0 •• 0 • • • • •• 16
Method scope and the Self
parameter 0 • • • • • • • •• 17
Object data fields and method formal
parameters 19
Objects exported by units 19
Programming in the active voice 22
Encapsulation 23
Methods: no downside 24
Extending objects 25
Inheriting static methods 27
Virtual methods and polymorphism . 29
Early binding vs. late binding 30
Object type compatibility 31
Polymorphic objects 33
Virtual methods 35

Range checking virtual method
calls 0 ••••••• 37
Once virtual, always virtual 37

An example of late binding 38

E N T s

Procedure or method? 39
Object extensibility 46
Sta tic or virtual methods 48
Dynamic objects 49
Allocation and initialization with
New 50
Disposing dynamic objects 51
Destructors 52
An example of dynamic object
allocation 54

Disposing of a complex data structure
on the heap ... 0 0 o ••••• 0 •••• 0 ••• 055

Where to now? 0 ••• 0 •• 0 ••••••••••••• 0 60
Conclusion 0 • • • • • • • • • • • • • • 61

Chapter 2 Object-oriented
debugging 63

Object-oriented debugging in the IDE .. 63
Stepping and tracing method calls ... 63
Objects in the Evaluate window 64
Objects in the Watch window 64
Expressions in the Find Procedure
command o •••••••••••••• 64

TurboDebugger 65
Stepping and tracing method calls ... 65
SCope o ••• 0 •••••••••• 65
Evaluate Window 66

Calling methods in the Evaluate
window 67

Watch window 67
The Object Hierarchy window 67

The object type list pane 68
The local menu 68
The hierarchy tree pane 68

The Object Type Inspector window .. 69
The local menus 69

Object Instance Inspector window .. 70
Local menus 71

New error messages 72

Chapter 3 Turbo Pascal 5.5 language
definition 73

New reserved words 73
Object types 73
Assignment compatibility 78
Object component designators. 78
Dynamic object type variables 79
Instance initialization 79
Object type constants. 80
@ with a method 80
Function calls 81
Assignment statements 81
Procedure statements 81
Case statements 82
With statements 82
Method declarations 83
Constructors and destructors 84
Variable parameters 85
Extensions to New and Dispose 86
Compiler directive conditional
symbols 87

ii

Chapter 4 Overlays 89
Overlay buffer management 89
Variables 91

OvrTrapCount 91
OvrLoadCount. 92
OvrFileMode 92
OvrReadBuf 92

Procedures and functions 94
OvrSetRetry 94
OvrGetRetry 95

Overlays in .EXE files 95

Chapter 5 Inside Turbo Pascal 97
Internal data format of objects 97

Virtual method tables 98
The SizeOf standard function 100
The TypeOf standard function 101
Virtual method calls 101

Method calling conventions 102
Constructors and destructors 102

Assembly language methods 103
Constructor error recovery 106

Appendix A New and modified error
messages 111

Index 113

F G

1.1: A partial taxonomy chart of insects .. 9
1.2: Layout of program ListDemo's data

stru.ctures 55
4.1: Loading and disposing overlays 90

u

III

R E s

5.1: Layouts of instances of Location, Point,
and Circle 98

5.2: Point and Circle's VMT layouts ... 100

N T R o D u c T o N

Turbo Pascal 5.5 gives you the power and efficiency of object­
oriented programming at turbo speed. In addition to the Turbo
Pascal features you have come to rely on, this new version offers
you the programming techniques of the future:

• both static objects for maximum efficiency and dynamic objects
for maximum run-time flexibility

• both static and virtual methods
• constructors and destructors that create and deallocate objects

(which saves programming time and improves readability of
your code)

• object constants-static object data is initialized automatically
• greater speed-Turbo Pascal 5.5 compiles even faster
• an improved overlay manager (which lets overlays run faster,

with less disk I/O)

• enhanced help screens that let you cut and paste examples into
your code

• an online tutorial to introduce you to Turbo Pasca1's integrated
development environment

The object-oriented extensions in Turbo Pascal 5.5 were inspired
by Larry Tesler's "Object Pascal Report" (Apple, 1985) and Bjarne
Stroustrup's "The C++ Programming Language" (1986, Addison­
Wesley).

About this manual

Introduction

This manual contains information on the new object-oriented
features of Turbo Pascal 5.5. For all other information about Turbo
Pascal, refer to the Turbo Pascal User's Guide or the Turbo Pascal
Reference Guide.

Installation

2

Here's a breakdown of the chapters and appendixes in this
volume:

• Chapter 1: All about OOP introduces you to the main concepts
of object-oriented programming-how objects differ from
records, the advantages of encapsulated data and code,
inheritance, polymorphism, static versus dynamic object
instances-and uses practical examples to demonstrate the
principles of object-oriented programming.

• Chapter 2: Object-oriented debugging covers modifications to
Turbo Debugger to support Turbo Pascal 5.5, including Object
Inspectors and the Object Hierarchy window.

• Chapter 3: Turbo Pascal 5.5 language definition contains the
formal definition of all object-oriented extensions to Turbo
Pascal.

• Chapter 4: Overlays discusses improvements to the Turbo
Pascal overlay manager.

• Chapter 5: Inside Turbo Pascal explains the implementation of
the object-oriented features of Turbo Pascal 5.5.

• Appendix A: New and modified error messages lists new
compiler error messages and warnings specific to object­
oriented Turbo Pascal.

The first thing you'll want to do is install Turbo Pascal on your
system. Your Turbo Pascal package includes all the files and pro­
grams necessary to run·both the integrated environment and
command-line versions of the compiler. The INSTALL program
sets up Turbo Pascal on your system, and it works on both hard­
disk and floppy-based systems.

INSTALL walks you through the installation process. All you
have to do is follow the instructions that appear on screen at each
step. Please read them carefully. If you're installing onto floppies,
rather than onto a hard disk,-be sure to have at least four blank,
formatted 360K disks on hand.

To run INSTALL:

1. Insert the distribution disk labeled Installation Disk in Drive
A.

Turbo Pascal OOP Guide

1111..,

Special Notes

Introduction

2. Type A: and press Enter.
3. Type INSTALL and press Enter.

From this point on, just follow the instructions that INSTALL
displays onscreen.

As soon as INSTALL is finished running, you are ready to start
using Turbo Pascal.

After you've tried out the Turbo Pascal integrated development
environment, you may want to customize some of the options. To
do that, use the program TINST, which is discussed in Appendix
D of the User's Guide.

• If you use INSTALL's Upgrade option, version 5.5 files will
overwrite any version 5.0 files that have the same names.

• If you install the graphics files into a separate subdirectory (C:\
TP\BGI, for example), remember to specify the full path to the
driver and font files when you call InitGraph. For example,
InitGraph(Driver, Mode, 'C:\TP\BGI');

• If GRAPH.TPU is not in the current directory, you'll need to
add its location to the unit directories with'the Options/Direc­
tories/Unit Directories command (or with the / U option in the
command-line compiler) in order to compile a BGI program.

• If you have difficulty reading the text displayed by the
INSTALL or TINST programs, they will both accept an optional
command-line parameter that forces them to use black-and­
white colors:

..
• A:INSTALL /B
• A:TINST /B

Forces INSTALL into BW80 mode
Forces TINST into BWBO mode

You may need to specify the /B parameter if you are using an
LCD screen or a system that has a color graphics adapter and a
monochrome or composite monitor. To find out how to
permanently force the integrated environment to use black­
and-white colors with your LCD screen (or eGA and mono­
chrome/ composite monitor combination), see the note on page
26 of the User's Guide.

3

Online help

You can get online help about both the integrated environment
and language-specific items. To bring up help when you're on a
menu item or within a window, press F1; to bring up the main
index to the help system, press F1 again.

Language-specific help is available only when you're in the Edit
window by pressing Ctrl-F1. You can get help about the syntax of
Pascal reserved words or the usage and parameters of a particular
procedure or function, cut and paste examples into your file, or
find out about compiler switches, and more.

For language help, position your cursor on the item in the Edit
window you want to know more about and then press Ctrl-F1.

To cut and paste from help, follow these easy steps:

1. Once you've brought up the help screen you want to copy
from, press C. This activates the cursor so you can position it
anywhere on the help screen.

2. After you've placed the cursor at the beginning of the text you
want to copy, press Bto begin. Then use the t, -1.,~, and ~
arrow keys to move to the end of your block (highlighting the
text you're copying at the same time). Pressing B again resets
the beginning of the block to the cursor position.

3. To end cut-and-paste and to place the text in your edit file,
press Enter.

4. The text is pasted into the editor and is marked as a block,
which allows you to easily move the pasted block.

How to contact Borland

4

If, after reading this manual and using Turbo Pascal, you'd like to
contact Borland with comments for technical support, we suggest
the following procedures:

• The best way is to log on to Borland's forum on CompuServe:
Type GO BPROGA at the main CompuServe menu and follow the
menus to section 2. Leave your questions or comments here for
the support staff to process .

• If you prefer, write a letter and send it to

Turbo Pascal OOP Guide

Introduction

Technical Support Department
Borland International

P.O. Box 660001
1800 Green Hills Road

Scotts Valley, CA 95066-0001
Note! 1111" If you include a program example in your letter, it must be

limited to 100 lines or less. We request that you submit it on
disk, include all the necessary support files on that disk, and
provide step-by-step instructions on how to reproduce the
problem. Before you decide to get technical support, try to
duplicate the problem with the code contained on the floppy
disk, just to be sure we can duplicate the problem using the
disk you provide us .

• You can also telephone our Technical Support department at
(408) 438-5300. To help us handle your problem as quickly as
possible, have these items handy before you call:

• product name and version number

• product serial number
• computer make and model number
• operating system and version number

5

6 Turbo Pascal OOP Guide

c H

Chapter 7, All about OOP

A p T E R

1

All about OOP

Object-oriented programming is a method of programming that
closely mimics the way all of us get things done. It is a natural
evolution from earlier innovations to programming language
design: It is more structured than previous attempts at structured
programming; and it is more modular and abstract than previous
attempts at data abstraction and detail hiding. Three main
properties characterize an object-oriented programming languag~:

• Encapsulation: Combining a record with the procedures and
functions that manipulate it to form a new data type: an object.

• Inheritance: Defining an object and then using it to build a
hierarchy of descendant objects, with each descendant
inheriting access to all its ancestors' code and data.

• Polymorphism: Giving an action one name that is shared up and
down an object hierarchy, with each object in the hierarchy
implementing the action in a way appropriate to itself.

Turbo Pasca15.5's language extensions give you the full power of
object-oriented programming: more structure and modularity,
more abstraction, and reusability built right into the language. All
these features add up to code that is more structured, extensible,
and easy to maintain.

The challenge of object-oriented programming (OOP) is that it
sometimes requires you to set aside habits and ways of thinking
about programming that have.been considered standard for many
years. Once that is done, however, OOP is simple, straight-

7

Objects?

Objects keep al/ their
characteristics and behavior

together.

8

forward, and superior for solving many of the problems that
plague traditional software programs.

A note to you who have done object-oriented programming in other
languages: Put aside your previous impressions of OOP and learn
Turbo Pascal 5.5's object-oriented features on their own terms.
OOP is not one single way; it is a continuum of ideas. In its object
philosophy, Turbo Pascal 5.5 is more like C++ than Smalltalk.
Smalltalk is an interpreter, while from the beginning, Turbo
Pascal has been a pure native code compiler. Native code
compilers do things differently (and far more quickly) than
interpreters. Turbo Pascal was designed to be a production
development tool, not a research tool.

And a note to you who haven't any notion at all what OOP is about:
That's just as well. Too much hype, too much confusion, and too
many people talking about something they don't understand
have greatly muddied the waters in the last year or so. Strive to
forget what people have told you about OOP. The best way (in
fact, the only way) to learn anything useful about OOP is to do
what you're about to do: Sit down and try it yourself.

Yes, objects. Look around you ... there's one: the apple you brought
in for lunch. Suppose you were going to describe an apple in soft­
ware terms. The first thing you might be tempted to do is pull it
apart: Let S represent the area of the skin; let J represent the fluid
volume of juice it contains; let F represent the weight of fruit
inside; let D represent the number of seeds

Don't think that way. Think like a painter. You see an apple, and
you paint an apple. The picture of an apple is not an apple; it's just
a symbol on a flat surface. But it hasn't been abstracted into seven
numbers, all standing alone and independent in a data segment
somewhere. Its components remain together, in their essential
relationships to one another.

Objects model the characteristics and behavior of the elements of
the world we live in. They are the ultimate data abstraction (so
far).

An apple can be pulled apart, but once it's been pulled apart it's
not an apple anymore. The relationships of the parts to the whole
and to one another are plainer when everything is kept together

Turbo Pascal OOP Guide

Inheritance

Figure 1.1
A partial taxonomy chart of

insects

Chapter 7, All about OOP

in one wrapper. This is called encapsulation, and it's very
important. We'll return to encapsulation in a little while.

Of equal importance is the fact that objects can inherit
characteristics and behavior from what we call ancestor objects.
This is an intuitive leap; inheritance is perhaps the single biggest
difference between object-oriented Pascal and Turbo Pascal pro­
gramming today.

The goal of science is to describe the workings of the universe.
Much of the work of science, in furthering that goal, is simply the
creation of family trees. When entomologists return from the
Amazon with a previously unknown insect in a jar, their funda­
mental concern is working out where that insect fits into the giant
chart upon which the scientific names of all other insects are
gathered. There are similar charts of plants, fish, mammals, rep­
tiles, chemical elements, subatomic particles, and external
galaxies. They all look like family trees: a single overall category
at the top, with an increasing number of categories beneath that
single category, fanning out to the limits of diversity.

Within the category insect, for example, there are two divisions:
insects with visible wings, and insects with hidden wings or no
wings at all. Under winged insects is a larger number of cate­
gories: moths, butterflies, flies, and so on. Each category has
numerous subcategories, and beneath those subcategOries are
even more subcategories (see Figure 1.1).

9

This classification process is called taxonomy. It's a good starting
metaphor for the inheritance mechanism of object-oriented
programming.

The questions that a scientist asks in trying to classify some new
animal or object are these: How is it similar to the others of its general
class? How is it different? Each different class has a set of behaviors
and characteristics that define it. A scientist begins at the top of a
specimen's family tree and starts descending the branches, asking
those questions along the way. The highest levels are the most
general, and the questions the simplest: Wings or no wings? Each
level is more specific than the one before it, and less general.
Eventually the scientist gets to the point of counting hairs on the
third segment of the insect's hind legs-specific indeed. (And a
good reason, perhaps, not to be an entomologist.)

The important point to remember is that once a characteristic is
defined, all the categories beneath that definition include that char­
acteristic. So once you identify an insect as a member of the order
diptera (flies), you needn't make the point again that a fly has one
pair of wings. The species of insect we call flies inherits that
characteristic from its order.

As you'llieam shortly, object-oriented programming is very
much the process of building family trees for data structures. One
of the important things object-oriented programming adds to
traditional languages like Pascal is a mechanism for data types to
inherit characteristics from simpler, more general types. This
mechanism is inheritance.

Objects: records that inherit

10

In Pascal terms, an object is very much like a record, which is a
wrapper for joining several related elements of data together
under one name. In a graphics environment, we might gather
together the X and Y coordinates of a position on the graphics
screen and call it a record type named Location:

Location = record
X, Y : Integer;

end;

Location here is a record type; that is, it's a template that the com­
piler uses to create record variables. A variable of type Location is
an instance of type Location. The term instance is used now and

Turbo Pascal OOP Guide

Chapter 1, All about OOP

then in Pascal circles, but it is used all the time by OOP people,
and you'll do well to start thinking in terms of types and instances
of those types.

With type Location you have it both ways: When you need to
think of the X and Y coordinates separately, you can think of them
separately as fields X and Y of the record. On the other hand,
when you need to think of the X and Y coordinates working
together to pin down a place on the screen, you can think of them
collectively as Location.

Suppose you wanted to display a point of light at a position
described on the screen by a Location record. In Pascal you might
add a Boolean field indicating whether there is an illuminated
pixel at a given location, and make it a new record type:

Point = record
X, Y : Integer;
Visible : Boolean;

end;

You might also be a little more clever and retain record type
Location by creating a field of type Location within type Point:

Point = record
Position : Location;
Visible : Boolean;

end;

This works, and Pascal programmers do it all the time. One thing
this method doesn't do is force you to think about the nature of
what you're manipulating in your software. You need to ask
questions like, IIHow does a point on the screen differ from a
location on the screen?" The answer is this: A point is a location
that lights up. Think back on the first part of that statement: A
point is a location

There you have it!

Implicit in the definition of a point is a location for that point.
(Pixels exist only on the screen, after all.) In object-oriented pro­
gramming, we recognize that special relationship. Because all
points must contain a location, we say that type Point is a descen­
dant type of type Location. Point inherits everything that Location
has, and adds whatever is new about Point to make Point what it
must be.

This process by which one type inherits the characteristics of
another type is called inheritance. The inheritor is called a descen-

11

Note the use of parentheses
here to denote Inheritance.

12

dant type; the type that the descendant type inherits from is an
ancestor type.

The familiar Pascal record types cannot inherit. Turbo Pascal 5.5,
however, extends the Pascal language to support inheritance. One
of these extensions is a new category of data structure, related to
records but far more powerful. Data types in this new category
are defined with a new reserved word: object. An object type can
be defined as a complete, stand-alone type in the fashion of Pascal
records, or it can be defined as a descendant of an existing object
type, by placing the name of the ancestor type in parentheses after
the reserved word object.

In the graphics example you just looked at, the two related object
types would be defined this way:

type
Location = object

X, Y : Integer;
end;

Point = object(Location)
Visible : Boolean;

end;

Here, Location is the ancestor type, and Point is the descendant
type. As you'll see a little later, the process can continue
indefinitely: You can define descendants of type Point, and de­
scendants of Point's descendant type, and so on. A large part of
designing an object-oriented application lies in building this object
hierarchy expressing the family tree of the objects in the
application.

All the eventual types inheriting from Location are called Location's
descendant types, but Point is one of Location's immediate descen­
dants. Conversely, Location is Poinrs immediate ancestor. An object
type (just like a DOS subdirectory) can have any number of
immediate descendants, but only one immediate ancestor.

Objects are closely related to records, as these definitions show.
The new reserved word object is the most obvious difference, but
there are numerous other differences, some of them quite subtle,
as you'll see la ter.

For example, the X and Y fields of Location are not explicitly writ­
ten into type Point, but Point has them anyway, by virtue of inher-

Turbo Pascal OOP Guide

Instances of
object types

An object/s fields

Don't forget: An object's
Inherited fields are not

treated specially simply
because they are inherited.

Good practice
and bad practice

Chapter 7, All about OOP

itance. You can speak about Point's X value, just as you can speak
about Location's X value.

Instances of object types are declared just as any variables are
declared in Pascal, either as static variables or as pointer referents
allocated on the heap:

type
PointPtr = APoint;

var
Stat Point : Point; { Ready to go! }
DynaPoint : PointPtr; {Must allocate with New before use }

You access an object's data fields just as you access the fields of an
ordinary record, either through the with statement or by dotting.
For example,

MyPoint.Visible := False;

with MyPoint do
begin

X := 341;
Y := 42;

end;

You will just have to remember at first (it will eventually come
naturally) that inherited fields are just as accessible as fields
declared within a given object type. For example, even though X
and Yare not part of Point's declaration (they are inherited from
type Location), you can specify them just as though they were
declared within Point:

MyPoint.X := 17;

Even though you can access an object's fields directly, it's not an
especially good idea to do so. Object-oriented programming
principles require that an object's fields be left alone as much as
possible. This restriction might seem arbitrary and rigid at first,
but it's part of the big picture of OOP that we're building in this
chapter. In time you'll see the sense behind this new definition of
good programming practice, though there's some ground to cover

13

An object's data fields are
what an object knows: its

methods are what on object
does.

Methods

14

before it all comes together. For now, take it on faith: Avoid
accessing object data fields directly.

So-how are object fields accessed? What sets them and reads
them?

The answer is that an object's methods should be used to access an
object's data fields whenever possible. A method is a procedure or
function declared within an object and tightly bonded to that
object.

Methods are one of object-oriented programming's most striking
attributes, and they take some getting used to. Start by harkening
back to that fond old necessity of structured programming,
initializing data structures. Consider the task of initializing a
record with this definition:

Location = record
X, Y : Integer;

end;

Most programmers would use a with statement to assign initial
values to the X and y fields:

var
MyLocation : Location;

with MyLocation do
begin

X := 17;
Y := 42;

end;

This works well, but it's tightly bound to one specific record
instance, MyLocation. If more than one Location record needs to be
initialized, you'll need more with statements that do essentially
the same thing. The natural next step is to build an initialization
procedure that generalizes the with statement to encompass any
instance of a Location type passed as a parameter:

procedure InitLocation(var Target: Location;
NewX, NewY : Integer);

begin
with Target do
begin

Turbo Pascal OOP Guide

X := NewX;
Y := NewY;

end;
end;

This does the job, all right-but if you're getting the feeling that
it's a little more fooling around than it ought to be, you're feeling
the same thing that object-oriented programming's early
proponents feIt.

It's a feeling that implies that, well, you've designed procedure
InitLocation specifically to serve type Location. Why, then, must
you keep specifying what record type and instance InitLocation
acts upon? There should be some way of welding together the
record type and the code that serves it into one seamless whole.

Now there is. It's called a method. A method is a procedure or
function welded so tightly to a given type that the method is
surrounded by an invisible with statement, making instances of
that type accessible from within the method. The type definition
includes the header of the method. The full definition of the me­
thod is qualified with the name of the type. Object type and object
method are the two faces of this new species of structure called an
object:

type
Location = object

X, Y : Integer;
procedure Init(NewX, NewY : Integer);

end;

procedure Location. Init (NewX, NewY : Integer);
begin

X := NewX; { The X field of a Location object }
Y := NewY; { The Y field of a Location object }

end;

Now, to initialize an instance of type Location, you simply call its
method as though the method were a field of a record, which in
one very real sense it is:

var
MyLocation : Location;

MyLocation.Init(17, 42); {Easy, no? }

Chapter 1, All about OOP 15

Code and data
together One of the most important tenets of object-oriented programming

is that the programmer should think of code and data together
during program design. Neither code nor data exists in a vacuum.
Data directs the flow of code, and code manipulates the shape and
values of data.

When your data and code are separate entities, there's always the
danger of calling the right procedure with the wrong data or the
wrong procedure with the right data. Matching the two is the pro­
grammer's job, and while Pascal's strong typing does help, at best
it can only say what doesn't go together.

Pascal says nothing, anywhere, about what does go together. If it's
not in a comment or in your head, you take your chances.

By bundling code and data declarations together, an object helps
keep them in sync. Typically, to get the value of one of an object's
fields, you call a method belonging to that object that returns the
value of the desired field. To set the value of a field, you call a
method that assigns a new value to that field.

Turbo Pascal 5.5 does not enforce this, however. Like structured
programming, object-oriented programming is a discipline you
must enforce upon yourself, using tools provided by the
language. Turbo Pascal allows you to read and write an object's
fields directly from outside the object-but it encourages you to
follow good OOP practice and create methods to manipulate an
object's fields from within the object.

Defining methods

16

The process of defining an object's methods is reminiscent of
Turbo Pascal units. Inside an object, a method is defined by the
header of the function or procedure acting as a method:

type
Location = object

X, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;

Turbo Pascal OOP Guide

All data fields must be
declared before the first

method declaration.

Method scope
and the Self
parameter

Chapter 7 I All about OOP

As with procedure and function declarations in a unit's interface
section, method declarations within an object tell what a method
does, but not how.

The how is defined outside the object definition, in a separate
procedure or function declaration. When methods are fully de­
fined outside the object, the method name must be preceded by
the name of the object type that owns the method, followed by a
period:

procedure Location. Init (InitX, InitY : Integer);
begin

X := InitX;
Y := InitY;

end;

function Location.GetX : Integer;
begin

GetX := X;
end;

function Location.GetY : Integer;
begin

GetY := Y;
end;

Method definition follows the intuitive dotting method of
specifying a field of a record. In addition to having a definition of
Location.GetX, it would be completely legal to define a procedure
named GetX without the identifier Location preceding it. However,
the "outside" GetX would have no connection to the object type
Location and would probably confuse the sense of the program as
well.

Notice that nowhere in the previous methods is there an explicit
with object do ... construct. The data fields of an object are freely
available to that object's methods. Although separated in the
source code, the method bodies and the object's data fields really
share the same scope.

This is why one of Location's methods can contain the statement
Get Y : = Y without any qualifier to Y. It's because Y belongs to the
object that called the method. When an object calls a method, there is
an implicit statement to the effect with myself do method linking
the object and its method in scope.

17

This example Is not fully
correct syntactically: it's here

simply to give you a fuller
appreciation for the special
link between an object and

its methods.

Explicit use of Self is legal. but
you should avoid situations

that require it.

Methods implemented as
externals in assembly

language must take Self into
account when they access
method parameters on the

stack. For more details on
method call stack frames,

see page 102.

18

This implicit with statement is accomplished by the passing of an
invisible parameter to the method each time any method is called.
This parameter is called Self, and is actually a full 32-bit pointer to
the object instance making the method call. The GetY method
belonging to Location is roughly equivalent to the following:

function Location.GetY(var Self: Location) : Integer;
begin

GetY := SelLY;
end;

Is it important for you to be aware of Self? Ordinarily, no. Turbo
Pascal's generated code handles it all automatically in virtually all
cases. There are a few circumstances, however, when you might
have to intervene inside a method and make explicit use of the
Self parameter.

Self is actually an automatically declared identifier, and if you
happen to find yourself in the midst of an identifier conflict
within a method, you can resolve it by using the Self identifier as a
qualifier to any data field belonging to the method's object:

type
MouseStat = record

Active: Boolean;
X, Y : Integer;
LButton, RButton : Boolean;
Visible : Boolean;

end;

procedure Location.GoToMouse(MousePos : MouseStat);
begin

Hide;
with MousePos do
begin

Self.X := X;
SelL Y := Y;

end;
Show;

end;

This example is necessarily simple, and the use of Self could be
avoided simply by abandoning the use of the with statement
inside Location.GoToMouse. You might find yourself in a situation
inside a complex method where the use of with statements sim­
plHies the logic enough to make Self worthwhile. The Self param­
eter is part of the physical stack frame for all method calls.

Turbo Pascal OOP Guide

Object data fields
and method

formal
parameters

Objects exported
by units

Exported means • defined
within the Interface section

ofa unit."

Chapter 7, All about OOP

One consequence of the fact that methods and their objects share
the same scope is that a method's formal parameters cannot be
identical to any of the object's data fields. This is not some new
restriction imposed by object-oriented programming, but rather
the same old scoping rules that Pascal has always had. It's the
same as not allowing the formal parameters of a procedure to be
identical to the procedure's local variables:

procedure Crunch It (Crunchee : MyDataRec,
Crunchby, ErrorCode : Integer);

var
A, B : Char;
ErrorCode : Integer; { This declaration will cause an error! }

begin

A procedure's local variables and its formal parameters share the
same scope and thus cannot be identical. You'll get "Error 4:
Duplicate identifier" if you try to compile something like this; the
same error occurs if you attempt to give a method a formal
parameter identical to any field in the object that owns the
method.

The circumstances are a little different, since having procedure
headers inside a data structure is a wrinkle new to Turbo Pascal
5.5, but the guiding principles of Pascal scoping have not changed
at all.

It makes good sense to define objects in units, with the object type
declaration in the interface section of the unit and the procedure
bodies of the object type's methods defined in the implementation
section of the unit. No special syntactic considerations are
necessary to define objects within a unit.

Units can have their own private object type definitions within the
implementation section, and such types are subject to the same
restrictions as any types defined in a unit implementation section.
An object type defined in the interface section of a unit can have
descendant object types defined in the implementation section of
the unit. In a case where unit B uses unit A, unit B can also define
descendant types of any object type exported by unit A.

19

20

The object types and methods described earlier can be defined
within a unit in this way:

unit Points;

interface

ulel Graph;

type
Location = object

X, Y : Integer;
procedure Init(InitX, InitY Integer);
function GetX Integer;
function GetY : Integer;

end;

Point = object(Location)
Visible : Boolean;
procedure Init(InitX, InitY Integer);
procedure Show;
procedure Hide;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);

end;

implautation

{--I
{ Location's method implementations: }
{--I
procedure Location. Init (InitX, InitY : Integer);
begin

X := InitX;
Y := InitY;

end;

function Location.GetX Integer;
begin

GetX := X;
end;

function Location.GetY Integer;
begin

GetY := Y;
end;

{--I
{ Points's method implementations: }
{--I
procedure Point.Init(InitX, InitY : Integer);

Turbo Pascal OOP Guide

beqin
Location. Init (InitX, InitY);
Visible := False;

end;

procedure Point.Show;
begin

Visible := True;
PutPixel(X, Y, GetColor);

end;

procedure Point. Hide;
begin

Visible := False;
PutPixel(X, Y, GetBkColor);

end;

function Point.IsVisible : Boolean;
begin

IsVisible := Visible;
end;

procedure Point.MoveTo(NewX, NewY Integer);
beqin

Hide;
X := NewXi
Y := NewY;
Show;

end;

end.

To make use of the object types and methods defined in unit
Points, you simply use the unit in your own program, and declare
an instance of type Point in the var section of your program:

program MakePoints;

uses Graph, Points;

var
APoint : Point;

To create and show the point represented by APoint, you simply
call APoint's methods using the dot syntax:

APoint.Init(151, 82); { Initial X,Y at 151,82
APoint.Show; { APoint turns itself on }
APoint.MoveTo(163, 101); {APoint moves to 163,101 }
APoint.Hide; { APoint turns itself off}

Chapter 7, All about OOP 21

Objects can also be typed Objects, being very similar to records, can also be used inside
constants; see page 80. with statements. In that case, naming the object that owns the

Programming in
the active voice

Object-oriented languages
were once called -actor

languages' with this
metaphor In mind.

22

method isn't necessary:

with APoint do
begin

Init (151, 82);
Show;
MoveTo(163, 101);
Hide;

end;

{ Initial X,Y at 151,82 }
{ APoint turns itself on }
{ APoint moves to 163,101 }
{ APoint turns itself off }

Just as with records, objects can be passed to procedures as
parameters and (as you'll see later on) be allocated on the heap.

Most of what's been said about objects so far has been from a
comfortable, Turbo Pascal-ish perspective, since that's most likely
where you are coming from. This is about to change, as we move
into OOP concepts with fewer precedents in standard Pascal pro­
gramming. Object-oriented programming has its own particular
mindset, due in part to OOP's origins in the (somewhat insular)
research community, but also simply because the concept is truly
and radically different.

One often amusing outgrowth of this is that OOP fanatics
anthropomorphize their objects. Data structures are no longer
passive buckets for you to toss values in. In the new view of
things, an object is looked upon as an actor on a stage, with a set
of lines (methods) memorized. When you (the director) give the
word, the actor recites from the script.

It can be helpful to think of the statement APoint.MoveTo(242,118)
as giving an order to object APoint, saying "Move yourself to
location 242,118." The object is the central concept here. Both the
list of methods and the list of data fields contained by the object
serve the object. Neither code nor data is boss.

Objects aren't being described as actors on a stage just to be cute.
The object-oriented programming paradigm tries very hard to
model the components of a problem as components, and not as
logical abstractions. The odds and ends that fill our lives, from
toasters to telephones to terry towels, all have characteristics
(data) and behaviors (methods). A toaster's characteristics might
include the voltage it requires, the number of slices it can toast at

Turbo Pascal OOP Guide

Encapsulation

Chapter 71 All about OOP

once, the setting of the light/dark lever, its color, its brand, and so
on. Its behaviors include accepting slices of bread, toasting slices
of bread, and popping toasted slices back up again.

If we wanted to write a kitchen simulation program, what better
way to do it than to model the various appliances as objects, with
their characteristics and behaviors encoded into data fields and
methods? It's been done, in fact; the very first object-oriented
language (Simula-67) was created as a language for writing such
simulations.

This is the reason that object-oriented programming is so firmly
linked in conventional wisdom to graphics-oriented environ­
ments. Objects should be simulations, and what better way to
simulate an object than to draw a picture of it? Objects in Turbo
PascalS.S should model components of the problem you're trying
to solve. Keep that in mind as you further explore Turbo Pascal's
new object-oriented extensions.

The welding of code and data together into objects is called
encapsulation. If you're thorough, you can provide enough
methods so that a user of the object never has to access its fields
directly. Some other object-oriented languages like Smalltalk
enforce encapsulation, but in Turbo PascalS.5 you have the
choice, and good object-oriented programming practice is very
much your responsibility.

Location and Point are written such that it is completely
unnecessary to access any of their internal data fields directly:

type
Location = object

x, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;

Point = object(Location)
Visible : Boolean;
procedure Init(InitX, InitY : Integer);
procedure Show;
procedure Hide;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);

end;

23

24

Methods: no
downside

A note about data
abstraction 1111.,

There are only three data fields here: X, Y, and Visible. The
MoveTo method loads new values into X and Y, and the GetX and
GetY methods return the values of X and Y. This leaves no further
need to access X or Y directly. Show and Hide toggle the Boolean
Visible between True and False, and the Is Visible function returns
Visible's current state.

Assuming an instance of type Point called APoint, you would use
this suite of methods to manipulate APoint's data fields indirectly,
like this:

with APoint do
begin

Init (0, 0);
Show;

end;

{ Init new point at 0,0 }
{ Make the point visible }

Note that the object's fields are not accessed at all except by the
object's methods.

Adding these methods bulks up Point a little in source form, but
the Turbo Pascal smart linker strips out any method code that is
never called in a program. You therefore shouldn't hang back
from giving an object type a method that might or might not be
used in every program that uses the object type. Unused methods
cost you nothing in performance or .EXE file size-if they're not
used, they're simply not there.

There are powerful advantages to being able to completely
decouple Point from global references. If nothing outside the
object "knows" the representation of its internal data, the
programmer who controls the object can alter the details of the
internal data representation-as long as the method headers
remain the same.

Within some object, data might be represented as an array, but
later on (perhaps as the scope of the application grows and its
data volume expands), a binary tree might be recognized as a
more efficient representation. If the object is completelyencapsu­
lated, a change in data representation from an array to a binary
tree will not alter the object's use at all. The interface to the object
remains completely the same, allowing the programmer to fine­
tune an object's performance without breaking any code that uses
the object.

Turbo Pascal OOP-Guide

Extending objects

Chapter 1, All about OOP

People who first encounter Pascal often take for granted the
flexibility of the standard procedure WriteLn, which allows a
single procedure to handle parameters of many different types:

WriteLn(CharVar)i
WriteLn(IntegerVar)i
WriteLn(RealVar);

{ Outputs a character value }
{ Outputs an integer value }
{ Outputs a floating-point value

Unfortunately, standard Pascal has no provision for letting you
create equally flexible procedures of your own.

Object-oriented programming solves this problem through
inheritance: When a descendant type is defined, the methods of
the ancestor type are inherited, but they can also be overridden if
desired. To override an inherited method, simply define a new
method with the same name as the inherited method, but with a
different body and (if necessary) a different set of parameters.

A simple example should make both the process and the
implications clear. Let's define a descendant type to Point that
draws a circle instead of a point on the screen:

type
Circle = Object(Point)

Radius : Integer;
procedure Init(InitX, InitY : Integer;

InitRadius : Integer);
procedure Show;
procedure Hide;
procedure Expand(ExpandBy : Integer);
procedure MoveTo(NewX, NewY : Integer);
procedure Contract (ContractBy : Integer);

and;

procedure Circle.Init(InitX, InitY : Integer;
InitRadius : Integer);

Point.Init(InitX, InitY);
Radius := InitRadius;

and;

procedure Circle. Show;
begin

Visible := True;
Graph.Circle(X, Y, Radius);

and;

25

26

procedure Circle. Hide;
var

TempColor : Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph.Circle(X, Y, Radius);
Graph.SetColor(TempColor);

end;

procedure Circle.Expand(ExpandBy Integer);
begin

Hide;
Radius := Radius + ExpandBy;
if Radius < 0 then Radius := 0;
Show;

end;

procedure Circle. Contract (ContractBy : Integer);
begin

Expand(-ContractBy);
end;

procedure Circle.MoveTo(NewX, NewY Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

A circle, in a sense, is a fat point: It has everything a point has (an
X,¥ location, a visible/invisible state) plus a radius. Object type
Circle appears to have only the single field Radius, but don't forget
about all the fields that Circle inherits by being a descendant type
of Point. Circle has X, ¥, and Visible as well, even if you don't see
them in the type definition for Circle.

Since Circle defines a new field, Radius, initializing it requires a
new Init method that initializes Radius as well as the inherited
fields. Rather than directly assigning values to inherited fields like
X, Yand Visible, why not reuse Point's initialization method
(illustrated by Circle.Init's first statement). The syntax for calling
an inherited method is Ancestor.Method, where Ancestor is the type
identifier of an ancestral object type and Method is a method
identifier of that type.

Note that calling the method you override is not merely good
style; it's entirely possible that Point.lnit (or Location.Init for that

TVrbo Pascal OOP Guide

Important!
1111.

Inheriting static
methods

Chapter 7 I All about OOP

matter) performs some important, hidden initialization. By calling
the overridden method, you ensure that the descendant object
type includes its ancestor's functionality. In addition, any changes
made to the ancestor's method automatically affects all its
descendants.

After calling Point.Init, Circle.Init can then perform its own
initialization, which in this case consists only of assigning Radius
the value passed in InitRadius.

Instead of drawing and hiding your circle point by point, you can
make use of the BGI Circle procedure. If you do, Circle will also
need new Show and Hide methods that override those of Point.
These rewritten Show and Hide methods appear in the example on
page 25.

Dotting resolves the potential problems stemming from the name
of the object type being the same as that of the BGI routine that
draws the object type on the screen. Graph.Circle is a completely
unambiguous way of telling Turbo Pascal that you're referencing
the Circle routine in GRAPH.1PU and not the Circle object type.

Whereas methods can be overridden, data fields cannot. Once you
define a data field in an object hierarchy, no descendant type can
define a data field with precisely the same identifier.

One additional Point method is overridden in the earlier
definition of Circle: MoveTo. If you're sharp, you might be looking
at MoveTo and wondering why MoveTo doesn't use the Radius
field, and why it doesn't make any BGI or other library calls
specific to drawing circles. After all, the GetX and GetY methods
are inherited all the way from Location without modification. Also,
Circle.MoveTo is completely identical to Point.MoveTo. Nothing
was changed other than to copy the routine and give it Circle's
qualifier in front of the MoveTo identifier.

This example demonstrates a problem with objects and methods
set up in this fashion. All the methods shown so far in connection
with the Location, Point, and Circle object types are static methods.
(The term static was chosen to describe methods that are not
virtual, a term we will introduce shortly. Virtual methods are in
fact the solution to this problem, but in order to understand the
solution you must first understand the problem.)

27

28

The symptoms of the problem are these: Unless a copy of the
MoveTo method is placed in Circle's scope to override Point's
MoveTo, the method will not work correctly when it is called from
an object of type Circle. If Circle invokes Poinrs MoveTo method,
what is moved on the screen is a point rather than a circle. Only
when Circle calls a copy of the MoveTo method defined in its own
scope will circles be hidden and drawn by the nested calls to Show
and Hide.

Why so? It has to do with the way the compiler resolves method
calls. When the compiler compiles Point's methods, it first en­
counters Point. Show and Point.Hide and compiles code for both
into the code segment. A little later down the file it encounters
Point.MoveTo, which calls both Point.Show and Point.Hide. As with
any procedure call, the compiler replaces the source code
references to Point. Show and Point.Hide with the addresses of their
generated code in the code segment. Thus, when the code for
Point.MoveTo is called, it in turn calls the code for Point.Show and
Point.Hide and everything'S in phase.

So far, this scenario is all classic Turbo Pascal, and would have
been true (except for the nomenclature> since version 1.0. Things
change, however, when you get into inheritance. When Circle in­
herits a method from Point, Circle uses the method exactly as it
was compiled.

Look again at what Circle would inherit if it inherited
Point.MoveTo:

procedure Point.MoveTo(NewX, NewY : Integer);
begin

Hide; { Calls Point.Hide }
X := NewX;
Y := NewY;
Show; { Calls Point.Show }

end;

The comments were added to drive home the fact that when Circle
calls Point.MoveTo, it also calls Point.Show and Point.Hide, not
Circle. Show and Circle.Hide. Point. Show draws a point, not a circle.
As long as Point.MoveTo calls Point.Show and Point.Hide,
Point.MoveTo can't be inherited. Instead, it must be overridden by
a second copy of itself that calls the copies of Show and Hide
defined within its scope; that is, Circle. Show and Circle.Hide.

The compiler's logic in resolving method calls works like this:
When a method is called, the compiler first looks for a method of

Turbo Pascal OOP Guide

Virtual methods
and

polymorphism

that name defined within the object type. The Circle type defines
methods named lnit, Show, Hide, Expand, Contract, and MoveTo. If
a Circle method were to call one of those five methods, the
compiler would replace the call with the address of one of Circle's
own methods.

If no method by a name is defined within an object type, the
compiler goes up to the immediate ancestor type, and looks
within that type for a method of the name called. If a method by
that name is found, the address of the ancestor's method replaces
the name in the descendant's method's source code. If no method
by that name is found, the compiler continues up to the next
ancestor, looking for the named method. If the compiler hits the
very first (top) object type, it issues an error message indicating
that no such method is defined.

But when a static inherited method is found and used, you must
remember that the method called is the method exactly as it was
defined and compiled for the ancestor type. If the ancestor's method
calls other methods, the methods called will be the ancestor's
methods, even if the descendant has methods that override the
ancestor's methods.

The methods discussed so far are static methods. They are static
for the same reason that static variables are static: The compiler
allocates them and resolves all references to them at compile time.
As you've seen, objects and static methods can be powerful tools
for organizing a program's complexity.

Sometimes, however, they are not the best way to handle
methods.

Problems like the one described in the previous section are due to
the compile-time resolution of method references. The way out is
to be dynamic-and resolve such references at run time. Certain
special mechanisms must be in place for this to be possible, but
Turbo Pascal provides those mechanisms in its support of virtual
methods.

IMPORTANT! 1111., Virtual methods implement an extremely powerful tool for
generalization called polymorphism. Polymorphism is Greek for
"many shapes," and it is just that: A way of giving an action one
name that is shared up and down an object hierarchy, with each

Chapter 7, All about OOP 29

30

Early binding vs.
late binding

object in the hierarchy implementing the action in a wayappro­
priate to itself.

The simple hierarchy of graphic figures already described provide
a good example of polymorphism in action, implemented through
virtual methods.

Each object type in our hierarchy represents a different type of
figure on the screen: a point or a circle. It certainly makes sense to
say that you can show a point on the screen, or show a circle.
Later on, if you were to define objects to represent other figures
such as lines, squares, arcs, and so on, you could write a method
for each that would display that object on the screen. In the new
way of object-oriented thinking, you could say that all these
graphic figure types had the ability to show themselves on the
screen. That much they all have in common.

What is different for each object type is the way it must show itself
to the screen. A point is drawn with a point-plotting routine that
needs nothing more than an X, Y location and perhaps a color
value. A circle needs an entirely separate graphics routine to
display itself, taking into account not only X and Y, but a radius
as well. Still further, an arc needs a start angle and an end angle,
and a more complex drawing algorithm to take them into
account.

Any graphic figure can be shown, but the mechanism by which
each is shown is specific to each figure. One word, "Show," is
used to show (literally) many shapes.

That's a good example of what polymorphism is, and virtual
methods are how it is done in Turbo Pascal 5.5.

The difference between a static method call and a virtual method
call is the difference between a decision made now and a decision
delayed. When you code a static method call, you are in essence
telling the compiler, "You know what I want. Go call it." Making
a virtual method call, on the other hand, is like telling the
compiler, "You don't know what I want-yet. When the time
comes, ask the instance."

Think of this metaphor in terms of the MoveTo problem
mentioned in the previous section. A call to Circle.MoveTo can
only go to one place: the closest implementation of MoveTo up the
object hierarchy. In that case, Circle.MoveTo would still call Point's

Turbo Pascal OOP Guide

Object type

definition of MoveTo, since Point is the closest up the hierarchy
from Circle. Assuming that no descendent type defined its own
MoveTo to override Point's MoveTo, any descendent type of Point
would still call the same implementation of MoveTo. The decision
can be made at compile time and that's all that needs to be done.

When MoveTo calls Show, however, it's a different story. Every
figure type has its own implementation of Show, so which imple­
mentation of Show is called by MoveTo should depend entirely on
what object instance originally called MoveTo. This is why the call
to the Show method within the implementation of MoveTo must be
a delayed decision: When compiling the code for MoveTo, no
decision as to which Show to call can be made. The information
isn't available at compile time, so the decision has to be deferred
until run time, when the object instance calling MoveTo can be
queried.

The process by which static method calls are resolved un­
ambiguously to a single method by the compiler at compile time
is early binding. In early binding, the caller and the callee are
connected (bound) at the earliest opportunity, that is, at compile
time. With late binding, the caller and the callee cannot be bound
at compile time, so a mechanism is put into place to bind the two
later on, when the call is actually made.

The nature of the mechanism is interesting and subtle, and you'll
see how it works a little later.

compatibility Inheritance somewhat changes Turbo Pascal's type compatibility
rules. In addition to everything else, a descendant type inherits
type compatibility with all its ancestor types. This extended type
compatibility takes three forms:

Chapter 7, All about OOP

• between object instances
• between pointers to object instances
• between formal and actual parameters

In all three forms, however, it is critical to remember that type
compatibility extends only from descendant to ancestor. In other
words, descendant types can be freely used in place of ancestor
types, but not vice versa.

31

An ancestor object can be
assigned an Instance of any

of Its descendant types.

32

Consider these declarations:

type
LocationPtr = ALocation;
PointPtr = APoint;
CirclePtr = ACircle;

var
ALocation : Location;
APoint : Point;
ACircle : Circle;
PLocation : LocationPtr;
PPoint : PointPtr;
PCircle : CirclePtr;

With these declarations, the following assignments are legal:

ALocation := APoint;
APoint := ACircle;
ALocation := ACircle;

The reverse assignments are not legal.

This is a concept new to Pascal, and it might be a little hard to
remember, at first, which way the type compatibility goes. Think
of it this way: The source must be able to completely fill the destination.
Descendant types contain everything their ancestor types contain
by virtue Qf inheritance. Therefore a descendant type is either
exactly the same size or (usually) larger than its ancestors, but
never smaller. Assigning an ancestor object to a descendant object
could leave some of the descendant's fields undefined after the
assignment, which is dangerous and therefore illegal.

In an assignment statement, only the fields that the two types
have in common will be copied from the source to the destination.
In the assignment statement

ALocation := ACircle;

only the X and Y fields of A Circle will be copied to ALocation,
since X and Yare all that types Circle and Location have in
common.

Type compatibility also operates between pointers to object types,
under the same general rules as with instances of object types:
Pointers to descendants can be assigned to pointers to ancestors.
Again, given the earlier definitions, these pointer assignments are
legal:

PPoint := PCircle;

Turbo Pascal OOP Guide

PLocation := PPoint;
PLocation := PCircle;

Remember, the reverse assignments are not legal.

A formal parameter (either value or var) of a given object type can
take as an actual parameter an object of its own, or any descen­
dant type. Given this procedure header,

procedure Draglt(Target : Point);

actual parameters could legally be of type Point or Circle, but not
type Location. Target could also be a var parameter; the same type
compatibility rules apply.

Warning! 1111" However, keep in mind that there's a drastic difference between a
value parameter and a var parameter: A var parameter is a
pointer to the actual object passed as a parameter, whereas a value
parameter is only a copy of the actual parameter. That copy,
moreover, only includes the fields and methods included in the
formal value parameter's type. This means the actual parameter is
literally translated to the type of the formal parameter. A var
parameter is more similar to a typecast, in that the actual
parameter remains unaltered.

Polymorphic
objects

Chapter 7, All about OOP

Similarly, if a formal parameter is a pointer to an object type, the
actual parameter can be a pointer to that object type or a pointer
to any of that object's descendant types. Given this procedure
header,

procedure Figure.Add(NewFigure : PointPtr)i

actual parameters could legally be of type PointPtr or CirclePtr,
but not type LocationPtr.

In reading the previous section, you might have asked yourself: If
any descendant type of a parameter's type can be passed in the
parameter, how does the user of the parameter know which object
type it is receiving? In fact, the user does not know, not directly.
The exact type of the actual parameter is unknown at compile
time. It could be anyone of the object types descended from the
var parameter type, an~ is thus called a polymorphic object.

Now, exactly what are polymorphic objects good for? Primarily,
this: Polymorphic objects allow the processing of objects whose type is
not known at compile time. This whole notion is so new to the Pascal

33

34

way of thinking that an example might not occur to you
immediately. (You'll be surprised, in time, at how natural it
begins to seem. That's when you'll truly be an object-oriented
programmer.)

Suppose you've written a graphics drawing toolbox that supports
numerous types of figures: points, circles, squares, rectangles,
curves, and so on. As part of the toolbox, you want to write a
routine that will drag a graphics figure around the screen with the
mouse pointer.

The old way would have been to write a separate drag procedure
for each type of graphics figure supported by the toolbox. You
would have had to write DragCircle, DragSquare, DragRectangle,
and so on. Even if the strong typing of Pascal allowed it (and
don't forget, there are always ways to circumvent strong typing),
the differences between the types of graphics figures would seem
to prevent a truly general dragging routine from being written.

After all, a circle has a radius but no sides, a square has one length
of side, a rectangle two different lengths of side, and curves,
arrgh

At this point, clever Turbo Pascal hackers will step forth and say,
do it this way: Pass the graphics figure record to procedure DragIt
as the referent of a generic pointer. Inside DragIt, examine a tag
field at a fixed offset inside the graphics figure record to deter­
mine what sort of figure it is, and then branch using a case
statement:

ca •• FigureIDTag of
Point : DragPoint;
Circle : DragCircle;
Square : DragSquare;
Rectangle : DragRectanglei
Curve : DragCurvei

Well, placing seventeen small suitcases inside one enormous suit­
case is a slight step forward, but what's the real problem with this
way of doing things?

What if the user of the toolbox defines some new graphics figure
type?

What indeed? 'Alhat if the user designs traffic signs and wants to
work with octagons for stop signs? The toolbox does not have an
Octagon type, so DragIt would not have an Octagon label in its

Turbo Pascal OOP Guide

Virtual methods

case statement, and would therefore refuse to drag the new
Octagon figure. If it were presented to Draglt, Octagon would fall
out in the case statement's else clause as an "unrecognized
figure."

Plainly, building a toolbox of routines for sale without source
code suffers from this problem: The toolbox can only work on
data types that it "knows," that is, that are defined by the design­
ers of the toolbox. The user of the toolbox is powerless to extend
the function of the toolbox in directions unanticipated by the
toolbox designers. What the user buys is what the user gets.
Period.

The way out is to use Turbo Pascal's extended type compatibility
rules for objects and design your application to use polymorphic
objects and virtual methods. If a toolbox DragIt procedure is set
up to work with polymorphic objects, it will work with any
objects defined within the toolbox-and any descendant objects
that you define yourself. If the toolbox object types use virtual
methods, the toolbox objects and routines can work with your
custom graphics figures on the figures' own terms. A virtual method
you define today is callable by a toolbox .TPU unit file that was
written and compiled a year ago. Object-oriented programming
makes it possible, and virtual methods are the key.

Understanding how virtual methods make such polymorphic
method calls possible requires a little background on how virtual
methods are declared and used.

A method is made virtual by following its declaration in the
object type with the new reserved word virtual. Remember that if
you declare a method in an ancestor type virtual, all methods of
the same name in any descendant must also be declared virtual to
a void a compiler error.

Here are the graphics shape objects you've been seeing, properly
virtualized:

type
Location = object

X, Y : Integer;
procedure Init(InitX, InitY : Integer);
function GetX : Integer;
function GetY : Integer;

end;

Chapter 7, All about OOP 35

Every object type that has
virtual methods must have a'

constructor.

We suggest the use of the
identifier Init for object con­

structors.

Warning! 1111"

36

Point = object(Location)
Visible : Boolean;
constructor Init(InitX, InitY : Integer);
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);

end;

Circle = Object(Point)
Radius : Integer;
constructor Init(InitX, InitY : Integer;

InitRadius : Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Expand(ExpandBy : Integer); virtual;
procedure Contract(ContractBy : Integer); virtual;

end;

Notice first of all that the MoveTo method shown in the last
iteration of type Circle is gone from Circle's type definition. Circle
no longer needs to override Point's MoveTo method with an unmo­
dified copy compiled within its own scope. Instead, MoveTo can
now be inherited from Point, with all of MoveTo's nested method
calls going to Circle's methods rather than Point's, as happens in an
all-static object hierarchy.

Also, notice the new reserved word constructor replacing the
reserved word procedure for Point.Init and Circle.Init. A construc­
tor is a special type of procedure that does some of the setup work
for the machinery of virtual methods. Furthermore, the construc­
tor must be called before any virtual method is called. Calling a
virtual method without previously calling the constructor can
cause system lockup, and the compiler has no way to check the
order in which methods are called.

Each individual instance of an object must be initialized by a
separate constructor call. It is not sufficient to initialize one in­
stance of an object and then assign that instance to additional in­
stances. The additional instances, while they might contain correct
data, will not be initialized by the assignment statements, and will
lock up the system if their virtual methods are called.

What do constructors construct? Every object type has something
called a virtual method table (VMT) in the data segment. The VMT
contains the object type's size, and for each of its virtuai methods,
a pointer to the code implementing that method. What the con-

Turbo Pascal OOP Guide

Range checking virtual c

method calls

The default state of SR Is
inactive, {SR-}.

Once virtual, always
virtual

Chapter 1, All about OOP

structor does is establish a link between the instance calling the
constructor and the object type's VMT.

That's important to remember: There is only one virtual method
table for each object type. Individual instances of an object type
(that is, variables of that type) contain a link to the VMT -they do
not contain the VMT itself. The constructor sets the value of that
link to the VMT -which is why you can launch execution into
nowhere by calling a virtual method before calling the
constructor.

During program development, you might wish to take ad vantage
of a safety net that Turbo Pascal 5.5 places beneath virtual method
calls. If the $R toggle is in its active state, ($R+}, all virtual method
calls are checked for the initialization status of the instance
making the call. If the instance making the call has not been
initialized by its constructor, a range check run-time error occurs.

Once you've shaken out a program and are certain that no method
calls from uninitialized instances are present, you can speed your
code up somewhat by setting the $R toggle to its inactive state,
($R-). Method calls from uninitialized instances will no longer be
checked for, and will probably lock up your system if found.

You'll notice that both Point and Circle have methods named Show
and Hide. All method headers for Show and Hide are tagged as
virtual methods with the reserved word virtual. Once an ancestor
object type tags a method as virtual, all its descendant types that
implement a method of that name must tag that method virtual as
well. In other words, a static method can never override a virtual
method. If you try, a compiler error will result.

You should also keep in mind that the method heading cannot
change in any way downward in an object hierarchy once the
method is made virtual. You might think of each definition of a
virtual method as a gateway to all of them. For this reason, the
headers for all implementations of the same virtual method must
be identical, right down to the number and type of parameters.
This is not the case for static methods; a static method overriding
another can have different numbers and types of parameters as
necessary.

37

38

An example of
late binding

A note about abstract
objects

1111.,

To show how to use polymorphic objects with late binding in a
Turbo Pascal 5.5 program, let's return to the graphics figures unit
described earlier on page 20. The goal is to create a unit that
exports several graphics figure objects (like Point and Circle) and a
generalized means of dragging any of them around the screen.
The unit, named Figures, will be a simple implementation of the
graphics toolbox discussed earlier. To demonstrate Figures, let's
build a simple program that defines a new figure object type
unknown to Figures and then uses virtual methods to drag that
new figure type around the screen.

Think about how graphiCS figures are alike and how they differ.
The differences are obvious, and all involve shapes and angles
and curves drawn on the screen. In the simple graphics program
we'll describe, figures displayed on a screen share these
attributes:

• They have a location, given as X, Y. The point within a figure
considered to lie at this X,Y position is called the figure's anchor
point .

• They can be either visible or invisible, specified by a Boolean
value of True (visible) or False (invisible).

If you recall the earlier examples, these are precisely the
characteristics of the Location and Point object types. Point, in fact,
represents a sort of "grandparent" type from which all graphics
figure objects are descended.

The rationale demonstrates an important principle of object­
oriented programming: In defining a hierarchy of object types,
gather all common attributes into a single type and allow the
hierarchy of types to inherit all common elements from that type.

Type Point acts as a template from which its descendant object
types can take elements common to all types in the hierarchy. In
this example, no object of type Point will ever actually be drawn
to the screen, though no harm would come of doing so. (Calling
Point.Show would obviously display a point on the screen.) An
object type specifically designed to provide inheritable
characteristics for its descendants we call an abstract object type.
The point of an abstract type is to have descendants, not
instances.

Turbo Pascal OOP Guide

Procedure or
method?

Chapter 7, All about OOP

Go back to page 35 and read Point over once more, this time as a
compendium of all the things that graphics figures have in com­
mon. Point inherits X and Y from the even earlier Location type,
but Point contains X and Y nonetheless, and can bequeath them to
its descendant types. Note that none of Point's methods address
the shape of a figure, but all figures can be visible or invisible, and
be moved around on the screen.

Point also has an important function as a "broadcasting station"
for changes to the object hierarchy as a whole. If some new feature
is devised that applies to all graphics figures (color support, for
example), it can be added to all object types descended from Point
simply by adding the new features to Point. The new features are
instantly callable from any of Point's descendant types. A method
for moving a figure to the current position of the mouse pointer,
for example, could be added to Point without changing any
figure-specific methods, since such a method would only affect
the two fields X and Y.

Obviously, if the new feature must be implemented differently for
different figures, there must be a whole family of figure-specific
virtual methods added to the hierarchy, each method overriding
the one belonging to its immediate ancestor. Color, for example,
would require minor changes to Show and Hide up and down the
line, since the syntax of many GRAPH.TPU drawing routines
depends on how drawing color is specified.

A major goal in designing the FIGURES.P AS unit is to allow users
of the unit to extend the object types defined in the unit-and still
make use of all the unit's features. It is an interesting challenge to
create some means of dragging an arbitrary graphics figure
around the screen in response to user input.

There are two ways to go about it. The way that might first occur
to traditional Pascal programmers is to have FIGURES.P AS export
a procedure that takes a polymorphic object as a var parameter,
and then drags that object around the screen. Such a procedure is
shown here:

procedure DragIt(var AnyFigure : Point; DragBy : Integer);
var

DeltaX,DeltaY : Integer;
FigureX,FigureY : Integer;

39

This procedure works fine, but
the OOP way of doing it is

more elegant (see page 42).

40

begin
AnyFigure.Showi
FigureX := AnyFigure.GetXi
FigureY := AnyFigure.GetYi

{ This is the drag loop }

{ Display figure to be dragged }
{ Get the initial X,Y of figure}

while GetDelta(DeltaX, DeltaY) do
begin { Apply delta to figure X,Y:

FigureX := FigureX + (DeltaX * DragBY)i
FigureY := FigureY + (DeltaY * DragBY)i
{ And tell the figure to move }
AnyFigure.MoveTo(FigureX, FigureY);

end;
end;

DragIt calls an additional procedure, GetDelta, that obtains some
sort of change in X and Y from the user. It could be from the
keyboard, or from a mouse, or a joystick. (For simplicity's sake,
our example will obtain input from the arrow keys on the
keypad.)

What's important to notice about DragIt is that any object of type
Point or any type descended from Point can be passed in the
AnyFigure var parameter. Instances of Point or Circle, or any type
defined in the future that inherits from Point or Circle, can be
passed without complication in AnyFigure.

How does Drag/t's code know what object type is actually being
passed? It doesn't-and that's OK. DragIt only references
identifiers defined in type Point. By inheritance, those identifiers
are also defined in any descendant of type Point. The methods
GetX, GetY, Show, and MoveTo are just as truly present in type
Circle as in type Point, and would be present in any future type
defined as a descendant of either.

GetX, GetY, and MoveTo are static methods, which means that
DragIt knows the procedure address of each at compile time.
Show, on the other hand, is a virtual method. There is a different
implementation of Show for both Point and Circle-and DragIt
does not know at compile time which implementation is to be
called. In brief, when Draglt is called, Draglt looks up the address
of the correct implementation of Show in the VMT of the instance
passed in AnyFigure. If the instance is a Circle, Draglt calls
Circle. Show. If the instance is a Point, DragIt calls Point.Show. The
decision as to which implementation of Show will be called is not
made until run time, and not, in fact, until the moment in the pro­
gram when DragIt must call virtual method Show.

Turbo Pascal OOP Guide

Chapter 7 I All about OOP

Now, Draglt works quite well, and if it is exported by the toolbox
unit, it can drag any descendant type of Point around the screen,
whether that type existed when the toolbox was compiled or not.
But you have to think a little further: If any object can be dragged
around the screen, why not make dragging a feature of the
graphics objects themselves?

In other words, why not make Draglt a method?

Make it a method!

Indeed. Why pass an object to a procedure to drag the object
around the screen? That's old-school thinking. If a procedure can
be written to drag any graphics figure object around the screen,
then the graphics figure objects ought to be able to drag them­
selves around the screen.

In other words, procedure Draglt really ought to be method Drag.

Adding a new method to an existing object hierarchy involves a
little thought. How far up the hierarchy should the method be
placed? Think about the utility provided by the method and
decide how broadly applicable that utility is. Dragging a figure
involves changing the location of the figure in response to input
from the user. Metaphorically, you might think of a Drag method
as MoveTo with an internal power source. In terms of inherit­
ability, it sits right beside MoveTo-any object to which MoveTo is
appropriate should also inherit Drag. Drag should thus be added
to our abstract object type, Point, so that all Point's descendants
can share it.

Does Drag need to be virtual? The litmus test for making any
method virtual is whether the functionality of the method is
expected to change somewhere down the hierarchy tree. Drag is a
closed-ended sort of feature. It only manipulates the X, Y position
of a figure, and one doesn't imagine that it would become more
than that. Therefore, it probably doesn't need to be virtual.

Use caution in any such decision: If you don't make Drag virtual,
you lock out all opportunities for users of FIGURES.P AS to alter it
in their efforts to extend FIGURES.P AS. You might not be able to
imagine the circumstances under which a user might want to
rewrite Drag. That doesn't for a moment mean that such
circumstances will not arise.

For example, Drag has a joker in it that tips the balance in favor of
its being virtual: It deals with event handling, that is, the intercep­
tion of input from devices like the keyboard and mouse, which

41

42

occur at unpredictable times yet must be handled when they
occur. Event handling is a messy business, and often very
hardware-specific. If your user has some input device that does
not meld well with Drag as you present it, the user will be
helpless to rewrite Drag. Don't burn any bridges. Make Drag
virtual.

The process of converting DragIt to a method and adding the
method to Point is almost trivial. Within the Point object
definition, Drag is just another method header:

Point = object(Locationl
Visible : Boolean;
constructor Init(InitX, InitY Integerl;
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integerl;
procedure Drag (DragBy : Integerl; virtual;

end;

The position of Drag's method header in the Point object definition
is unimportant. Remember, methods can be declared in any order,
but data fields must be defined before the first method
declaration.

Changing the procedure DragIt to the method Drag is almost
entirely a matter of applying Point's scope to Drag It. In the DragIt
procedure, you had to specify AnyFigure.Show, AnyFigure.GetX,
and so on. Drag is now a part of Point, so you no longer have to
qualify method names. AnyFigure.GetX is now simply GetX, and
so on. And of course, the AnyFigure var parameter is banished
from the parameter line. The implied Self parameter now tells you
which object instance is calling Drag.

The complete source code for FIGURES.P AS, including Drag
implemented as a virtual method, is shown next:

unit Figures; (Virtual methods & polymorphic objects)

interface

use. Graph, Crt;

type
Location = object

X, Y : Integer;
procedure Init(InitX, InitY : Integerl;
function GetX : Integer;
function GetY : Integer;

Turbo Pascal OOP Guide

Chapter 7, All about OOP

and;

PointPtr = APoint;

Point = object(Location)
Visible : Boolean;
constructor Init(InitX, InitY Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
function IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);
procedure Drag(DragBy : Integer); virtual;

and;

CirclePtr = ACircle;

Circle = object (Point)
Radius : Integer;
constructor Init(InitX, InitY : Integer;

InitRadius : Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Expand(ExpandBy : Integer); virtual;
procedure Contract(ContractBy : Integer); virtual;

and;

implementation

{--I
{ Location's method implementations: }

{--I
procedure Location. Init (InitX, InitY : Integer);
begin

X := InitX;
Y := InitYi

Udi

function Location.GetX Integer;
begin

GetX := X;
ud;

function Location.GetY Integer;
begin

GetY := Y;
end;

{--I
{ Point's method implementations: }
{--I

43

44

constructor Point.Init(InitX, InitY Ipteger);
begin

Location. Init (InitX, InitY);
Visible := False;

end;

destructor Point.Done;
begin

Hide;
end;

procedure Point.Show;
begin

Visible := True;
PutPixel(X, Y, GetColor);

eDd;

procedure Point.Hide;
begin

Visible := False;
PutPixel(X, Y, GetBkColor);

end;

function Point.IsVisible : Boolean;
begin

IsVisible := Visible;
end;

procedure Point.MoveTo(NewX, NewY Integer);
begin

Hide;
X := NewX;
Y := NewY;
Show;

end;

function GetDelta(var DeltaX Integer;
var DeltaY Integer) Boolean;

var
KeyChar Char;
Quit : Boolean;

begin
DeltaX := 0; DeltaY := 0;
GetDelta := True;
repeat

KeyChar := ReadKey;
Quit := True;
caS8 Ord(KeyChar) of

o means no change in position;
True means we return a delta

First, read the keystroke
Assume it's a useable key

0: begin 0 means an extended, 2-byte code
KeyChar := ReadKey; Read second byte of code
case Ord(KeyChar) of

72: DeltaY := -1; {Up arrow; decrement Y }

Turbo Pascal OOP Guide

80: DeltaY := 1;
75: DeltaX := -1;
77: DeltaX := 1;
el.e Quit := False;

end; { ca.e }
end;

Down arrow; increment Y }
Left arrow; decrement X }
Right arrow; increment X }
Ignore any other code }

13: GetDelta := False; CR pressed means no delta
el.e Quit := False; Ignore any other keystroke

end; {ca.e}
until Quit;

end;

procedure Point.Drag(DragBy Integer);
var

DeltaX, DeltaY : Integer;
FigureX, FigureY Integer;

begin
Show;
FigureX := GetX;
FigureY := GetY;

Display figure to be dragged }
Get the initial position of figure

{ This is the drag loop : }
while GetDelta(DeltaX, DeltaY) do
begin { Apply delta to figure X,Y:

FigureX := FigureX + (DeltaX * DragBy);
FigureY := FigureY + (DeltaY * DragBy);
MoveTo(FigureX, FigureY); { And tell the figure to move}

end;
end;

{--}
{ Circle's method implementations: }
{--}
constructor Circle.Init(InitX, InitY : Integer;

InitRadius : Integer);
begin

Point.Init(InitX, InitY);
Radius InitRadius;

end;

procedure Circle. Show;
begin

Visible := True;
Graph.Circle(X, Y, Radius);

end;

procedure Circle.Hide;
var

TempColor : Word;
begin

TempColor .= Graph.GetColor;

Chapter 7, All about OOP 45

46

Object
extensibility

Graph.SetColor(GetBkColor);
Visible := False;
Graph.Circle(X, Y, Radius);
Graph.SetColor(TempColor);

end;

procedure Circle.Expand(ExpandBy Integer);
begin

Hide;
Radius := Radius + ExpandBy;
if Radius <0 then Radius := 0;
Show;

end;

procedure Circle.Contract(ContractBy : Integer);
begin

Expand(-ContractBy);
end;

{ No initialization section }

end.

By now, you should be thinking in terms of building functionality
into objects in the form of methods rather than building proced­
ures and passing objects to them as parameters. Ultimately you'll
come to design programs in terms of activities that objects can do,
rather than as collections of procedure calls that act upon passive
data.

It's a whole new world.

The important thing to notice about toolbox units like
FIGURES.P AS is that the object types and methods defined in the
unit can be distributed to users in linkable .TPU form only, with­
out source code. (Only a listing of the interface portion of the unit
need be released.) Using polymorphic objects and virtual me­
thods, the users of the .TPU file can still add features to it to suit
their needs.

This novel notion of taking someone else's program code and
adding functionality to it without benefit of source code is called
extensibility. Extensibility is a natural outgrowth of inheritance:
You inherit everything that all your ancestor types have, and then
you add what new capability you need. Late binding lets the new
meld with the old at run time, so the extension of the existing

Turbo Pascal OOP Guide

Chapter 7, All about OOP

code is seamless and costs you no more in performance than a
quick trip through the virtual method table.

The following program makes use of the Figures unit, and extends
it by creating a new graphics figure object, Arc, as a descendant
type of Circle. The object Arc could have been written long after
FIGURES.P AS was compiled, and yet an object of type Arc can
make use of inherited methods like MoveTo or Drag without any
special considerations. Late binding and Arc's virtual methods
allows the Drag method to call Arc's Show and Hide methods even
though those methods might have been written long after
Point.Drag itself was compiled:

program FigureDemo; { Extending FIGURES.PAS with type Arc

u ••• Crt, DOS, Graph, Figures;

type
Arc = object (Circle)

StartAngle, EndAngle : Integer;
CODstructor Init(InitX, InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle Integer);

procedure Show; virtual;
procedure Hide; virtual;

end;

var
GraphDriver : Integer;
GraphMode : Integer;
ErrorCode : Integer;
AnArc : Arc;
ACircle : Circle;

{--I
{ Arc's method declarations: }
{--I
COD.tructor Arc.Init(InitX,InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle Integer);

begin
Circle.Init(InitX, InitY, InitRadius);
StartAngle := InitStartAngle;
EndAngle := InitEndAngle;

end;

procedure Arc.Show;
begin

Visible := True;

47

Static or virtual

Graph.Arc(X, Y, StartAngle, EndAngle, Radius);
end;

procedure Arc.Hide;
var

TempColor : Word;
begin

TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
(Draw the arc in the background color to hide it
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);
SetColor(TempColor);

end;

{--I
{ Main program: }
{--I
begin

GraphDriver := Detect; { Let the BGI determine what board
you're using}

InitGraph(GraphDriver, GraphMode,");
if GraphResult <> GrOK then
begin

WriteLn('»Halted on graphics error:',
GraphErrorMsg(GraphDriver));

Halt(1);
end;

All descendants of type Point contain virtual methods and
must be initialized before use through a constructor call.

ACircle.Init(151, 82,
50) ;

AnArc.Init(151, 82,
25, 0, 90);

Initial X,Y at 151,82 }
Initial radius of 50 pixels
Initial X,Y at 151,82 }
Initial radius of 50 pixels
Start angle: 0; End angle: 90

Replace AnArc with ACircle to drag a circle instead of an }
arc. Press Enter to stop dragging and end the program. }

AnArc.Drag(5);
CloseGraph;

end.

{ Parameter is t of pixels to drag by }

methods In generai, you shouid make methods virtuaL Use static methods
only when you want to optimize for speed and memory
efficiency. The tradeoff, as you've seen, is in extensibility.

48 Turbo Pascal OOP Guide

Dynamic objects

Chapter 7, All about OOP

Let's say you are declaring an object named Ancestor, and within
Ancestor you are declaring a method named Action. How do you
decide whether Action should be virtual or static? Here's the rule
of thumb: Make Action virtual if there is a possibility that some
future descendant of Ancestor will override Action, and you want
that future code to be accessible to Ancestor.

Now apply this rule to the graphics objects you've seen in this
chapter. In this case, Point is the ancestor object type, and you
must decide whether to make its methods static or virtual. Let's
consider its Show, Hide, and MoveTo methods. Since each different
type of figure has its own means of displaying and erasing itself,
Show and Hide will be overridden by each descendant figure.
Moving a graphics figure, however, seems to be the same for all
descendants: Call Hide to erase the figure, change its X, Y
coordinates, and then call Show to redisplay the figure in its new
location. Since this MoveTo algorithm can be applied to any figure
with a single anchor point at X,Y, it's reasonable to make
Point.MoveTo a static method that will be inherited by all
descendants of Point; but Show and Hide will be overridden and
must be virtual so that Point.MoveTo can call its descendants' Show
and Hide methods.

On the other hand, remember that if an object has any virtual
methods, a VMT will be created for that object type in the data
segment and every object instance will have a link to the VMT.
Every call to a virtual method must pass through the VMT, while
static methods are called directly. Though the VMT lookup is very
efficient, calling a method that is static is still a little faster than
calling a virtual one. And if there are no virtual methods in your
object, then there is no VMT in the data segment and-more
significantly-no link to the VMT in every object instance.

The added speed and memory efficiency of static methods must
be balanced against the flexibility that virtual methods allow:
extension of existing code long after that code is compiled. Keep
in mind that users of your object type might think of ways to use
it that you never dreamed of, which is, after all, the whole point.

All the object examples shown so far have had static instances of
object types that were named in a var declaration and allocated in
the data segment and on the stack.

49

The use of the word static
does not relate in any way to

static methods.

50

Allocation and
initialization with

New

var
ACircle : Circle;

Objects can be allocated on the heap and manipulated with
pointers, just as the closely related record types have always been
in Pascal. Turbo Pascal 5.5 includes some powerful extensions to
make dynamic allocation and deallocation of objects easier and
more efficient.

Objects can be allocated as pointer referents with the New
procedure:

var
PCircle : ACirclei

New(PCircle);

As with record types, New allocates enough space on the heap to
contain an instance of the pointer's base type, and returns the
address of that space in the pointer.

If the dynamic object contains virtual methods, it must then be
initialized with a constructor call before any calls are made to its
methods:

PCircleA.lnit(600, 100, 30);

Method calls can then be made normally, using the pointer name
and the reference symbol A (a caret) in place of the instance name
that would be used in a call to a statically allocated object:

OldXPosition := PCircleA.GetXi

Turbo Pascal 5.5 extends the syntax of New to allow a more
compact and convenient means of allocating space for an object
on the heap and initializing the object with one operation. New
can now be invoked with two parameters: the pointer name as the
first parameter, and the constructor invocation as the second pa­
rameter:

New(PCircle,Init(600, 100, 30));

When you use this extended syntax for New, the constructor Init
actually performs the dynamic allocation, using special entry code
generated as part of a constructor's compilation. The instance
name cannot precede Init, since at the time New is called, the
instance being initialized with Init does not yet exist. The com-

Turbo Pascal OOP Guide

A new standard procedure,
Fail, helps you do error

recovery In constructors: see
page 107.

Disposing
dynamic objects

Chapter 7, All about OOP

piler identifies the correct Init method to call through the type of
the pointer passed as the first parameter.

New has also been extended to allow it to act as a function
returning a pointer value. The parameter passed to New is the
type of the pointer to the object rather than the pointer variable
itself:

type
ArcPtr = "Arc;

var
PArc : ArcPtr;

PArc := New(ArcPtr);

Note that with version 5.5, the function-form extension to New
applies to all data types, not only to object types:

type
CharPtr = "Char; {Char is not an object type •••

var
PChar : CharPtr;

PChar := New(CharPtr);

The function form of New, like the procedure form, can also take
the object type's constructor as a second parameter:

PArc := New(ArcPtr, Init(600, 100, 25, 0, 90));

A parallel extension to Dispose has been defined for Turbo Pascal
5.5, as fully explained in the following sections.

Just like traditional Pascal records, objects allocated on the heap
can be deallocated with Dispose when they are no longer needed:

Dispose(PCircle);

There can be m9re to getting rid of an unneeded dynamic object
than just releasing its heap space, however. An object can contain
pointers to dynamic structures or objects that need to be released
or "cleaned up" in a particular order, especially when elaborate
dynamic data structures are involved. Whatever needs to be done
to clean up a dynamic object in an orderly fashion should be
gathered together in a single method so that the object can be
eliminated with one method call:

51

We suggest the identifier
Done for cleanup methods
that ·close up shop" once

an object is no longer
needed.

Destructors

S2

MyComplexObject.Done;

The Done method should encapsulate all the details of cleaning up
its object and all the data structures and objects nested within it.

It is legal and often useful to define multiple cleanup methods for
a given object type. Complex objects might need to be cleaned up
in different ways depending on how they were allocated or used,
or depending on what mode or state the object was in when it was
cleaned up.

Turbo PascalS.S provides a special type of method called a
destructor for cleaning up and disposing of dynamically allocated
objects. A destructor combines the heap deallocation step with
whatever other tasks are necessary for a given object type. As
with any method, multiple destructors can be defined for a single
object type.

A destructor is defined with all the object's other methods in the
object type definition:

Point = object(Location)
Visibl~ : Boolean;
Next : PointPtr;
cODstructor Init(InitX, InitY : Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
functioD IsVisible : Boolean;
procedure MoveTo(NewX, NewY : Integer);
procedure Drag (DragBy : Integer); virtual;

ed;

Destructors can be inherited, and they can be either static or
virtual. Because different shutdown tasks are usually required for
different object types, we recommend that destructors always be
virtual so that in every case the correct destructor will be executed
for its object type.

Keep in mind that the reserved word destructor is not needed for
every cleanup method, even if the object type definition contains
virtual methods. Destructors really operate only on dynamically
allocated objects. In cleaning up a dynamically allocated object,
the destructor performs a special service: It guarantees that the
correct number of bytes of heap memory will always be released.
There is, however, no harm in using destructors with statically

Turbo Pascal OOP Guide

Chapter 7 I All about OOP

allocated objects; in fact, by not giving an object type a destructor,
you prevent objects of that type from getting the full benefit of
Turbo Pascal's dynamic memory management.

Destructors really come into their own when polymorphic objects
must be cleaned up and their heap allocation released. A poly­
morphic object is an object that has been assigned to an ancestor
type by virtue of Turbo Pascal's extended type compatibility rules.
In the running example of graphics figures, an instance of object
type Circle assigned to a variable of type Point is an example of a
polymorphic object. These rules apply to pointers to objects as
well; a pointer to Circle can be freely assigned to a pointer to type
Point, and the referent of that pointer will also be a polymorphic
object.

The term polymorphic is appropriate because the code using the
object doesn't know at compile time precisely what type of object
is on the end of the string-only that the object will be one of a
hierarchy of objects descended from the specified type.

The size of object types differ, obviously. So when it comes time to
clean up a polymorphic object allocated on the heap, how does
Dispose know how many bytes of heap space to release? No
information on the size of the object can be gleaned from a poly­
morphic object at compile time.

The destructor solves the conundrum by going to the place where
the information is stored: in the instance variable's VMT. In every
object type's VMT is the size in bytes of the object type. The VMT
for any object is available through the invisible Self parameter
passed to the method on any method call. A destructor is just a
special kind of method, and it receives a copy of Self on the stack
when an object calls it. So while an object might be polymorphic
at compile time, it is never polymorphic at run time, thanks to late
binding.

To perform this late-bound memory deallocation, the destructor
must be called as part of the extended syntax for the Dispose
procedure:

Dispose(PPoint,Done)i

(Calling a destructor outside of a Dispose call does no automatic
deallocation at all.) What happens here is that the destructor of
the object pointed to by PPoint is executed as a normal method
call. As the last thing it does, however, the destructor looks up the
size of its instance type in the instance's VMT, and passes the size

53

54

An example of
dynamic object

allocation

to Dispose. Dispose completes the shutdown by deallocating the
correct number of bytes of heap space that had previously
belonged to PPoint". The number of bytes released will be correct
whether PPoint points to an instance of type Point or to one of
Point's descendant types like Circle or Arc.

Note that the destructor method itself can be empty and still
perform this service:

de.tructor AnObject.Done;
begin
end;

What performs the useful work in this destructor is not the
method body but the epilog code generated by the compiler in
response to the reserved word destructor. In this, it is similar to a
unit that exports nothing, but performs some "invisible" service
by executing an initialization section before program startup. The
action is all behind the scenes.

The final example program provides some practice in the use of
objects allocated on the heap, including the use of destructors for
object deallocation. The program shows how a linked list of
graphics objects might be created on the heap and cleaned up
using destructor calls when no longer required.

Building a linked list of objects requires that each object contain a
pointer to the next object in the list. Type Point contains no such
pointer. The easy way out would be to add a pointer to Point, and
in doing so ensure that all of Point's descendant types also inherit
the pointer. However, adding anything to Point requires that you
have the source code for Point, and as said earlier, one advantage
of object~riented programming is the ability to extend existing
objects without necessarily being able to recompile them.

The solution that requires no changes to Point creates a new object
type not descended from Point. Type List is a very simple object
whose purpose is to head up a list of Point objects. Because Point
contains no pointer to the next object in the list, a simple record
type, Node, provides that service. Node is even simpler than List, in
that it is not an object, has no methods, and contains no data
except a pointer to type Point and a pointer to the next node in the
list.

Turbo Pascal OOP Guide

Figure 1.2
Layout of program

ListDemo's data structures

Disposing of a complex
data structure on the

heap

Chapter 7 I All about OOP

List has a method that allows it to add new figures to its linked
list of Node records by inserting a new instance of Node immedi­
ately after itself, as a referent to its Nodes pointer field. The Add
method takes a pointer to a Point object, rather than a Point object
itself. Because of Turbo Pascal 5.5's extended type compatibility,
pointers to any type descended from Point can also be passed in
the Item parameter to List.Add.

Program ListDemo declares a static variable, AList, of type List,
and builds a linked list with three nodes. Each node points to a
different graphics figure that is either a Point or one of its
descendants. The number of bytes of free heap space is reported
before any of the dynamic objects are created, and then again after
all have been created. Finally, the whole structure, including the
three Node records and the three Point objects, are cleaned up and
removed from the heap with a single destructor call to the static
List object, AList.

List Node Node Node

x X X

Y Y Y

Visible Visible Visible

Data
segment Heap

(static) (dynamic)

List.Done is well worth a close look. Shutting down a List object
involves disposing of three different kinds of structures: the poly­
morphic graphics figure objects in the list, the Node records that
hold the list together, and (if it is allocated on the heap) the List
object that heads up the list. The whole process is invoked by a
single call to AList's destructor:

55

56

AList.Done;

The code for the destructor merits examination:

destructor List.Done;
var

N: NodePtr;
begin

while Nodes <> nil do
begin

N := Nodes;
Dispose(N~.Item, Done);
Nodes := N~.Next;
Dispose(N);

end;
end;

The list is cleaned up from the list head by the "hand-over-hand"
algorithm, metaphorically similar to pulling in the string of a kite:
Two pointers, the Nodes pointer within AList and a working
pointer N, alternate their grasp on the list while the first item in
the list is disposed of. A dispose call deallocates storage for the
first Point object in the list (Item"); then Nodes is advanced to the
next Node record in the list by the statement Nodes := N" .Next; the
Node record itself is deallocated; and the process repeats until the
list is gone.

The important thing to note in the destructor Done is the way the
Point objects in the list are deallocated:

Dispose(N~.Item,Done);

Here, N".ltem is the first Point object in the list, and the Done
method called is its destructor. Keep in mind that the actual type
of N".ltem" is not necessarily Point, but could as well be any de­
scendant type of Point. The object being cleaned up is a poly­
morphic object, and no assumptions can be made about its actual
size or exact type at compile time. In the earlier call to Dispose,
once Done has executed all the statements it contains, the
"invisible" epilog code in Done looks up the size of the object in­
stance being cleaned up in the object's VMT. Done passes that size
to Dispose, which then releases the exact amount of heap space the
polymorphic object actually occupied.

Remember that polymorphic objects must be cleaned up this way,
through a destructor call passed to Dispose, if the correct amount
of heap space is to be reliably released.

Turbo Pascal OOP Guide

Chapter 1, All about OOP

In the example program, AList is declared as a static variable in
the data segment. AList could as easily have been itself allocated
on the heap, and anchored to reality by a pointer of type ListPtr. If
the head of the list had been a dynamic object too, disposing of
the structure would have been done by a destructor call executed
within Dispose:

val'
PList : ListPtr;

Dispose(PList,Done);

Here, Dispose calls the destructor method Done to clean up the
structure on the heap. Then, once Done is finished, Dispose deallo­
cates storage for PList's referent, removing the head of the list
from the heap as well.

The following program uses the same FIGURES.P AS unit
described on page 42. It implements an Arc type as a descendant
of Point, creates a List object heading up a linked list of three poly­
morphic objects compatible with Point, and then disposes of the
whole dynamic data structure with a single destructor call to
AList.Done.

program ListDemo; {Dynamic objects & destructors

uses Graph, Figures;

type
ArcPtr = "Arc;
Arc = object(Circle)

StartAngle, EndAngle : Integer;
CODstructor Init(InitX, InitY : Integer;

InitRadius : Integer;
InitStartAngle, InitEndAngle Integer);

procedure Show; virtual;
procedure Hide; virtual;

end;

NodePtr = "Node;
Node = record

Item : PointPtr;
Next : NodePtr;

ed;

ListPtr = "List;
List = object

Nodes: NodePtr;
CODstructor Init;
destructor Done; virtual;

57

58

procedure Add(Item PointPtr);
procedure Report;

end;

var
GraphDriver : Integer;
GraphMode : Integer;
Temp : String;
AList : List;
PAre : ArcPtr;
PCircle : CirclePtr;
RootNode : NodePtr;

(--I
{ Procedures that are not methods: }
(--I

procedure OutTextLn(TheText : String);
begin

OutText(TheText);
MoveTo(O, GetY + 12);

end;

procedure HeapStatus(StatusMessage String);
begin

Str(MemAvail : 6, Temp);
OutTextLn(StatusMessage + Temp);

end;

(--I
{ Arc's method implementations: }
{--I

constructor Arc.Init(InitX, InitY : Integer;
InitRadius : Integer;
InitStartAngle, InitEndAngle Integer);

begin
Circle.Init(InitX, InitY, InitRadius);
StartAngle := InitStartAngle;
EndAngle := InitEndAngle;

end;

procedure Arc.Show;
begin

Visible := True;
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);

end;

procedure Arc.Hide;
var

TempColor : Word;

Turbo Pascal OOP Guide

Chapter 7, All about OOP

begin
TempColor := Graph.GetColor;
Graph.SetColor(GetBkColor);
Visible := False;
Graph.Arc(X, Y, StartAngle, EndAngle, Radius);
SetColor(TempColor);

end;

{--}
{ List's method implementations: }

{--}
constructor List.lnit;
begin

Nodes := nil;
end;

destructor List.Done;
var

N : NodePtr;
begin

while Nodes <> nil do
begin

N := Nodes;
Dispose(NA.ltem, Done);
Nodes := NA.Next;
Dispose(N);

end;
end;

procedure List.Add(Item PointPtr);
var

N : NodePtr;
begin

New(N) ;
NA.ltem := Item;
NA.Next := Nodes;
Nodes := N;

end;

procedure List.Report;
var

Current : NodePtr;
begin

Current := Nodes;
while Current <> nil do

begin
Str(CurrentA.ltemA.GetX 3, Temp);
OutTextLn('X = '+Temp);

59

Where to now?

60

end;

Str(CurrentA.ltemA.GetY : 3, Temp);
OutTextLn('Y = '+Temp);
Current := CurrentA.Next;

end;

{--}
{ Main program: }
{--}
baqin

{ Let the BGI determine what board you're using:
InitGraph(GraphDriver, GraphMode,");
if GraphResult <> GrOK then

begin
WriteLn('»Halted on graphics error: "

GraphErrorMsg(GraphDriver));
Halt(l);

end;

HeapStatus('Heap space before list is allocated: ')i

{ Create a list }
AList. Init;

(Now create and add several figures to it in one operation
AList.Add (New (ArcPtr, Init(151, 82, 25, 200, 330)))i
AList.Add (New (CirclePtr, Init(400, 100, 40)));
AList.Add (New (CirclePtr, Init(305, 136, 5)));

(Traverse the list and display X,Y of the list's figures
AList.Report;

HeapStatus('Heap space after list is allocated ');

{ Deallocate the whole list with one destructor call
AList.Done;

HeapStatus('Heap space after list is cleaned up: ');

OutText('Press Enter to end program: ');
ReadLn;

CloseGraph;
end.

As with any aspect of computer proo~anurdng, you don't get
better at object-oriented programming by reading about it; you
get better at it by doing it. Most people, on first exposure to

Turbo Pascal OOP Guide

Conclusion

Chapter 1, All about OOP

object-oriented programming, are heard to mutter "I don't get it"
under their breath. The "Aha!" comes later that night when, in the
midst of putting their own objects in place, the whole concept
comes together in the sort of perfect moment we used to call an
epiphany. Like the face of woman emerging from a Rorschach
inkblot, what was obscure before at once becomes obvious, and
from then on it's easy.

The best thing to do for your first object-oriented project is to take
the FIGURES.P AS unit shown on page 42 (you have it on disk)
and extend it. Points, circles, and arcs are by no means enough.
Create objects for lines, rectangles, and squares. When you're
feeling more ambitious, create a pie-chart object using a linked list
of individual pie-slice figures.

One more subtle challenge is to implement objects with relative
position. A relative position is an offset from some base point,
expressed as a positive or negative difference. A point at relative
coordinates -17,42 is 17 pixels to the left of the base point, and 42
pixels down from that base point. Relative positions are necessary
to effectively combine figures into single larger figures, since
multiple-figure combination figures cannot always be tied
together at each figure's anchor point. Better to define an RX and
RY field in addition to anchor point X, Y, and have the final posi­
tion of the object on the screen be the sum of its anchor point and
relative coordinates.

Once you've had your "Aha!," start building object-oriented
concepts into your everyday programming chores. Take some
existing utilities you use every day and rethink them in object
oriented terms. Take another look at your hodgepodge of
procedure libraries and try to see the objects in them-then
rewrite the procedures in object form. You'll find that libraries of
objects are much easier to reuse in future projects. Very little of
your initial investment in programming effort will ever be
wasted. You will rarely have to rewrite an object from scratch. If it
will serve as is, use it. If it lacks something, extend it. But if it
works well, there's no reason to throwaway any of what's there.

Object-oriented programming is a direct response to the
complexity of modern applications, complexity that has often
made many programmers throw up their hands in despair. Inher-

61

62

itance and encapsulation are extremely effective means for
managing complexity. (It's the difference between having ten
thousand insects classified in a taxonomy chart, and ten thousand
insects all buzzing around your ears.) Far more than structured
programming, object-orientation imposes a rational order on soft­
ware structures that, like a taxonomy chart, imposes order
without imposing limits.

Add to that the promise of the extensibility and reusability of
existing code, and the whole thing begins to sound almost too
good to be true. Impossible, you think?

Hey, this is Turbo Pascal.

"Impossible" is undefined.

Turbo Pascal OOP Guide

c H A p T E R

2

Object -oriented debugging

To meet the needs of the object-oriented revolution, both the
Turbo Pascal integrated development environment (IDE) and
Turbo Debugger have been enhanced to support object-oriented
programming. To use these object-oriented features, you must
have version 5.5 of Turbo Pascal and version 1.5 of Turbo
Debugger.

Object-oriented debugging in the IDE

You don't need to make any
special preparations to

debug an object-oriented
program.

Stepping and
tracing method

calls

Working with objects under the IDE involves two functional
areas: stepping and tracing through method calls, and examining
object data. The integrated debugger "understands" objects and
handles them automatically in a fashion consistent with related
language components like procedures and records.

A method call is treated by the IDE as an ordinary procedure or
function call. FB (Step) treats a method call as an indivisible unit,
and executes it without displaying the method's internal code;
whereas F7 (Trace) loads the method's code if it's available and
traces through the method's statements.

There is no difference between tracing static method calls and
tracing virtual method calls. Virtual method calls are resolved at
run time, but because debugging happens at run time, there is no

Chapter 2, Object-oriented debugging 63

Objects in the
Evaluate window

Objects in the
Watch window

Expressions in the
Find Procedure

command

64

ambiguity, and the integrated debugger always knows the correct
method to execute next.

The Call Stack window displays the names of methods prefixed
by the object type that defines the method (for example, Circle.Init
rather than simply Init).

When they are displayed in the Evaluate window, objects appear
in a fashion very similar to records. All the same format specifiers
apply, and all expressions that would be valid for records are
valid for objects.

Only the data fields are displayed when the object name as a
whole is presented to Evaluate. However, when the specific
method name is evaluated, as in

ACircle.MoveTo

a pointer value is displayed indicating the address of the method's
code. This is true for both static and virtual methods. The
integrated debugger handles virtual method lookup transparently
through the virtual method table (VMT), and the address of a
virtual method for a given object instance is the true address of
the correct method code for that instance.

When it is tracing inside a method, the IDE "knows" about the
scope and presence of the Self parameter. You can evaluate or
watch Self, and you can follow it with format specifiers and field
or method qualifiers.

An object can be added to the Watch window just as a record can;
all expressions that would be valid for records are also valid for
objects.

Turbo Pascal 5.5 allows the entry of expressions at the prompt for
the Find Procedure command of the Debug menu. To be legal, an
expression must evaluate to an address in the code segment. Note
that this applies to procedural variables and parameters as well as
to object methods.

Turbo Pascal OOP Guide

Turbo Debugger

Stepping and
tracing method

calls

Scope
The examples of fully

qualified expressions in this
discussion are also valid in

the Turbo PascallDE~ Watch
and Evaluate windows and
Find Procedure command.

As with the integrated debugger in Turbo Pascal's integrated
development environment (IDE), Turbo Debugger version 1.5 has
been enhanced to allow you to debug object-oriented programs.
Like the IDE, Turbo Debugger is smart about objects.

During Tracing (Fl) or Stepping (FB), Turbo Debugger treats
methods just as if they were functions or procedures. F7 traces
into the method's source code if it's available, while FB treats the
method call as if it were one statement and steps over it.

Like the IDE, Turbo Debugger correctly handles late binding of
virtual methods: It always executes and displays the correct code.
And Turbo Debugger's Stack window displays the names of
methods prefixed by the object type that defines the method.

The "scope" of a symbol is where the debugger looks for that
symbol. Turbo Debugger uses the current cursor position to
decide a current scope. (See the section, "Implied scope for
expression evaluation," in Chapter 9 of the Turbo Debugger
manual.) If no Module window is open, Turbo Debugger derives
the current scope from the CS:IP values in the CPU window. If a
symbol is not in the current scope, you can fully qualify its "path"
and Turbo Debugger will find it for you. The following syntax
describes how to fully qualify an identifier's scope. Brackets []
indicate optional items, while braces {} indicate optional items
that may be repeated:

[Unit.] [ObjectType.Method.] {Proc.} [Var]

Here are some examples that don't involve objects and methods:

• AVar: Variable AVar accessible in the current scope.
• AProc: Procedure AProc accessible in the current scope.
• AProc.A Var: Local variable AVar accessible in procedure AProc

accessible in the current scope.

• AProc.ANestedProc: Procedure ANestedProc accessible in
procedure AProc accessible in the current scope.

Chapter 2, Object-oriented debugging 65

Evaluate Window

66

• AUnit.AProc.AVar: Local variable AVar accessible in procedure
AProc accessible in unit AUnit.

• AUnit.AProc.ANestedProc.AVar: Local variable AVar accessible
in procedure ANestedProc accessible in procedure AProc
accessible in unit AUnit.

Here are some examples that involve objects and methods:

• Anlnstance: Instance Anlnstance accessible in the current scope.

• Anlnstance.AField: Field AField accessible in instance Anlnstance
accessible in the current scope.

• AnObjectType.AMethod: Method AMethod accessible in object
type AnObjectType accessible in the current scope.

• Anlnstance.AMethod: Method AMethod accessible in instance
Anlnstance accessible in the current scope.

• AUnit.Anlnstance.AField: Field AMethod accessible in instance
Anlnstance accessible in unit AUnit.

• AUnit.AnObjectType.AMethod: Method AMethod accessible in
object type AnObjectType accessible in unit AUnit.

• AUnit.AnObjectType.AMethod.ANestedProc.AVar: Local variable
AVar accessible in procedure ANestedProc accessible in method
AMethod accessible in object type AnObjectType accessible in
unit AUnit.

You can enter such qualified identifier expressions anywhere an
expression is valid (including in the Evaluate and Watch
windows), for example, when you're changing an expression in
an Inspector window or using the local menu in the Module
window to Goto a method or procedure address in the source
code.

Turbo Debugger's Evaluate window treats an object instance just
like the IDE does: The fields are displayed and any format
specifier that can be used in evaluating a record can also be used
in evaluating an object instance.

When you're tracing inside a method, Turbo Debugger knows
about the scope and presence of the Self parameter. You can
evaluate (or watch) Self, and you can follow it with format
specifiers and field or method qualifiers.

Turbo Pascal OOP Guide

Calling methods in the
Evaluate window

Watch window

The Object
Hierarchy window

Turbo Debugger also lets you call a method from inside the
Evaluate window. Just type the object instance name followed by
a dot, followed by the method name, followed by the actual
parameters (or empty parentheses if there are no parameters).
\Vith these declarations,

type
Point = object

X, Y : Integer;
Visible : Boolean;
constructor Init(InitX, InitY : Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo(NewX, NewY : Integer);

end;

Tar

APoint : Point;

you could enter any of these expressions in Turbo Debugger's
Evaluate window:

Expression

APoint.X
APoint
APoint.MoveTo
APoint.MoveTo(10,10)
APoint.ShowO

Result

5 ($5) : Integer
(5,23,FALSE): Point
@6F4F:OOBE
calls method MoveTo
calls method Show

Note that you cannot execute constructor or destructor methods
in the Evaluate window.

An object can be added to the Watch window just as a record and
the same expressions that can be entered in the Evaluate window
can also be entered in the Watch window.

Turbo Debugger provides an entirely new window for examining
object hierarchies. You can bring up the Object Hierarchy window
by pressing H in the View menu.

Chapter 2, Object-oriented debugging 67

68

Use Tab to move between
the two panes.

The object type list
pane

The two-paned Object Hierarchy window displays information on
object types rather than object instances. The left pane lists in
alphabetical order the object types used by the module being
debugged. The right pane shows all objects in their hierarchies,
using a line graphic that places the base object type at the left
margin of the pane and displays descendant objects beneath and
to the right of the base object, with lines indicating ancestor and
descendant relationships.

The left pane provides an alphabetical list of all object types used
by the current module. It supports an incremental match feature
to eliminate the need to cursor through large lists of object types:
When the highlight bar is in the left pane, simply start typing the
name of the object type you're looking for. At each keypress, the
pane will highlight the first object type matching all keys pressed
up to that point.

Press Enter to open an Object Type Inspector window for the high­
lighted object type. Object Type Inspectors are described on page
69.

The local menu Press Alt-F10 to display the local menu for the pane. You can use
the Ctrl-key shortcuts if you've enabled shortcuts with TDINST.
This local menu contains two items:

The hierarchy tree
pane

• Inspect (Ctrl-/): Displays an object type inspector window for the
highlighted object type .

• Tree (Ctrl- D: Moves to the right pane of the window, in which
the object hierarchy tree is displayed, and places the highlight
bar on the object type that was highlighted in the left pane.

The right pane displays the hierarchy tree for all objects used by
the current module. Ancestor and descendant relationships are
indicated by lines, with descendant objects to the right of and
below their ancestors.

To locate a single object type in a complex hierarchy tree, go back
to the left pane and use the incremental search feature; then
choose the Tree item from the local menu to move back into the
hierarchy tree. The matched type will be under the highlight bar.

lAT on 'un.n ~"" ~nfll' .,.n r"Ihio"f. 'T' .. T....a 1n"....a"f.n. ",;nl"ln.UT .,.a.,. ... "
, ... ~''-.1.l]\..1 y,&,'-~\;J ""''''', ""4' ""'vJ"""&.] Y'-' .A.4'~y'-'""' .. "' ... 't'Y ~ .. ,."...'"' "yt'''''''''''''&'10.7

for the highlighted object type.

Turbo Pascal OOP Guide

The Object Type

The hierarchy tree's local menu (Alt-F10 in the right pane) has only
one item: Inspect. When you choose it, an Object Type Inspector
window appears for the highlighted type. However, a faster and
easier method is simply to press Enter when you wish to inspect
the highlighted object type.

Inspector window Turbo Debugger provides a new type of Inspector window to
allow you to inspect the details of an object type: the Object Type
Inspector window. The window summarizes type information, but
does not reference·any particular object instance.

The window is divided into two panes horizontally, with the top
pane listing the data fields of the object type, and the bottom pane
listing the method names and (if the selected method is a
function) the function return type. Use the Tab key to move
between the two panes of the Object Type Inspector window.

If the highlighted data field is an object type or a pointer to an
object type, pressing Enter opens another Object Type Inspector
window for the highlighted type. (This action is identical to
selecting the Inspect item in the local menu for this window.) In
this way, complex nested structures of objects can be inspected
quickly with a minimum of keystrokes.

For brevity's sake, method parameters are not shown in the Object
Type Inspector window. To examine method parameters,
highlight the method and press Enter. A Method Inspector win­
dow will appear. The top pane of the window displays the code
address for the object type's implementation of the selected
method, and the names and types of all method parameters. The
bottom pane of the window indicates whether the method is a
procedure or a function.

Pressing Enter from anywhere within the Method Inspector win­
dow brings the Module window to the foreground, with the
cursor at the code that implements the method being inspected.

As with standard inspectors, Esc closes the current Inspector
window and F3 closes them all.

The local menus Pressing Alt-F10 brings up the local menu for either pane. If etrl-key
shortcuts are enabled (through TDINST), you can get to a local
menu item by pressing Gtrl and the first letter of the item. The top
pane contains these menu items:

Chapter 2, Object-oriented debugging 69

Object Instance
Inspector window

70

Bring up this window by
placing your cursor on an

object instance In the
Module window, then press

elrl-I.

• Inspect (Ctr/-/): If the highlighted field is an object type or a
pointer to one, a new Object Type Inspector window is opened
for the highlighted field.

• Hierarchy (Ctr/-H): Opens an Object Hierarchy window for the
object type being inspected. The Object Hierarchy window is
described on page 67.

II Show Inherited (Ctr/-S): Yes is the default value of this toggle.
When it is set to Yes, all data fields and methods are shown,
whether they are defined within the type of the inspected object
or inherited from an ancestor object type. When it is set to No,
only those fields and methods defined within the type of the
inspected object are displayed.

These are the local menu items for the bottom pane:

• Inspect (Ctr/-/): A Function Inspector window is opened for the
highlighted method. If you press Ctr/-/ when the cursor is
positioned over the address shown in the Function Inspector
window, the Module window is brought to the foreground with
the cursor at the code implementing the method being
inspected.

• Hierarchy (Ctr/-H): Opens an Object Hierarchy window for the
object type being inspected. The Object Hierarchy window is
described on page 67.

• Show Inherited (Ctr/-S): Yes is the default value of this toggle.
When it is set to Yes, all methods are shown, whether defined
within the type of the inspected object or inhe"rited from an
ancestor object type. When it is set to No, only those methods
defined within the type of the inspected object are displayed.

Object Type Inspector windows provide information about object
types, but say nothing about the data contained in a particular
object instance at a particular time during program execution.
Turbo Debugger provides an extended form of the familiar record
inspector window specifically to inspect object instances.

Most Turbo Debugger data record Inspector windows have two
panes: a top pane summarizing the record's field names and their
current values, and a bottom pane displaying the type of the field
highlighted in the top pane. An Object instance Inspector window
provides both of those panes, and also a third pane between them.
This new pane summarizes the object instance's methods with the

Turbo Pascal OOP Guide

code address of each. (The code address takes into account poly­
morphic objects and the VMT.)

Local menus Each of the top two panes of the Object Instance Inspector win­
dow has its own local menu, displayed by pressing Alt-F10 in that
pane. Again, you can use the Ctrl-key shortcuts to get to individual
menu items if you've enabled shortcuts with TDINST. As with
Record Inspector windows, the bottom pane serves only to
display the type of the highlighted field, and does not have a local
menu.

This toggle Is remembered by
the next inspector to be

opened.

Use Descend when you're
tracing through a

complicated data structure
and would prefer not to

open a separate Inspector
window for each Item

inspected.

The top pane, which summarizes the data fields for an object, has
the following local menu commands:

• Range (Ctrl-R): This command is unchanged from earlier
versions. It allows the range of array items to be displayed. If
the inspected item is not an array or a pointer, the item cannot
be accessed.

• Change (Ctrl-C): By choosing this command, you can load a new
value into the highlighted data field. This command is also
unchanged from earlier versions of Turbo Debugger.

• Methods (Ctrl-M): This command is new to Turbo Debugger 1.5.
It is a Yes/No toggle, with Yes as the default condition. When it
is set to Yes, methods are summarized in the middle pane.
When it is set to No, the middle pane does not appear.

• Show Inherited (Ctrl-S): Agaul, an item new to Turbo Debugger
1.5, and also a Yes/No toggle. When it is set to Yes, all data fields
and methods are shown, whether they are defined within the
type of the inspected object, or inherited from an ancestor object
type. When it is set to No, only those fields and methods
defined within the type of the inspected object are displayed.

• Inspect (Ctrl-/): As with earlier versions of Turbo Debugger,
choosing this command opens a Data Inspector window on the
highlighted field. Pressing Enter over a highlighted field does
the same thing.

• Descend (Ctrl-D): This command has not changed from earlier
versions of Turbo Debugger. The highlighted item takes the
place of the item in the current Inspector window. No new
Inspector window is opened. However, you cannot return to
the previously inspected field, as you could if you had used the
Inspect option.

• New Expression (Ctrl-N): No change from earlier versions. This
command prompts you for a new data item or expression to

Chapter 2, Object-oriented debugging 71

inspect. The new item replaces the current one in the window;
it doesn't open another window .

• Hierarchy (Ctrl-H): This command is new to Turbo Debugger 1.5.
When you choose it, an Object Hierarchy window opens. The
full description of this window appears on 67.

The middle pane summarizes the methods of an object. The only
difference between the method pane's local menu and the local
menu for the data field (top) pane is the absence of the Change
command. Unlike data fields, methods cannot be changed during
execution, so there is no need for this command.

The bottom pane is there to display the type of the item high­
lighted in the upper two windows.

New error messages

72

Constructors and destructors cannot be called.

You probably tried to evaluate a method that's either a constructor
or a destructor. This is not allowed.

Not an object Pascal program.

You tried to open an Object Hierarchy window and there are no
objects in your program.

Turbo Pascal OOP Guide

c H A p T E R

3

Turbo Pascal 5,5 language definition

The material in this chapter comprises additions to chapters 1
through 11 of the Turbo Pascal Reference Guide for Turbo Pascal 5.0.
Use the references in the margin of this chapter to look up related
material in your 5.0 manuals.

New reserved words

See Chapter 1, -rokens and
Constants, " in the Reference

Guide.

Object types

See Chapter 3, -Types," In
the Reference GUide.

Turbo Pascal version 5.5 adds the following new reserved words:

constructor
destructor
object
virtual

User-defined identifiers are not allowed to use the same spelling
as these, or the existing reserved words.

An object type is a structure consisting of a fixed number of com­
ponents. Each component is either a field, which contains data of a
particular type, or a method, which performs an operation on the
object. Analogous to a variable declaration, the declaration of a
field specifies the data type of the field and an identifier that
names the field; and analogous to a procedure or function decla-

Chapter 3, Turbo Pascal 5.5 language definition 73

74

ration, the declaration of a method specifies a procedure, function,
constructor, or destructor heading.

An object type can inherit components from another object type. If
T2 inherits from TI, then T2 is a descendant of TI, and Tl is an an­
cestor of T2.

Inheritance is transitive, that is, if T3 inherits from T2, and T2
inherits from TI, then T3 also inherits from TI. The domain of an
object type consists of itself and all its descendants.

object type

heritage --~~~ object type identifier ~......----.~

field list t identifier list ~

method list r method heading I

method heading J procedure heading I
j

function heading

~ constructor heading I

destructor heading L

The following code shows examples of object type declarations.
These declarations are referred to by other examples throughout
this chapter.

type
Point = object

x, Y : Integer;
end;

Turbo Pascal OOP Guide

Rect = object
A, B : Point;
procedure Init(XA, YA, XB, YB : Integer);
procedure Copy (var R : Rect);
procedure Move(DX, DY : Integer);
procedure Grow(DX, DY : Integer);
procedure Intersect(var R : Rect);
procedure Union(var R : Rect);
function Contains(P : Point) : Boolean;

end;

StringPtr = hString;

FieldPtr = AField;

Field = object
X, Y, Len : Integer;
Name : StringPtr;
constructor Copy(var F : Field);
constructor Init(FX, FY, FLen : Integer; FName String);
destructor Done; virtual;
procedure Display; virtual;
procedure Edit; virtual;
function GetStr : String; virtual;
function PutStr(S : String) : Boolean; virtual;

end;

StrFieldPtr = AStrField;

StrField = object (Field)
Value : StringPtr;
constructor Init(FX, FY, FLen : Integer; FName String);
destructor Done; virtual;
function GetStr : String; virtual;
function PutStr(S : String) : Boolean; virtual;
function Get : String;
procedure Putts : String);

end;

NumFieldPtr = ANumField;

NumField = object (Field)
Value, Min, Max : Longint;
constructor Init(FX, FY, FLen : Integer; FName String;

FMin, FMax : Longint);
function GetStr : String; virtual;
function PutStr(S : String) : Boolean; virtual;
function Get : Longint;
procedure Put(N : Longint);

end;

ZipFieldPtr = AZipField;

Chapter 3, Turbo Pascal 5.5 language definition 75

76

ZipField = object(NumField)
function GetStr : String; virtual;
function PutStr(S : String) : Boolean; virtual;

end;

Contrary to other types, an object type can be declared only in a
type declaration part in the outermost scope of a program or unit.
Thus, an object type cannot be declared in a variable declaration
part or within a procedure, function, or method block.

The component type of a file type cannot be an object type, or any
structured type with an object type component.

The scope of a component identifier extends over the domain of
its object type. Furthermore, the scope of a component identifier
extends over procedure, function, constructor, and destructor
blocks that implement methods of the object type and its descen­
dants. For this reason, the spelling of a component identifier must
be unique within an object type and all its descendants and all its
methods.

The declaration of a method within an object type corresponds to
a forward declaration of that method. Thus, somewhere after the
object type declaration, and within the same scope as the object
type declaration, the method must be implemented by a defining
declaration.

When unique identification of a method is required, a qualified
method identifier is used. It consists of an object type identifier,
followed by a period (.), followed by a method identifier. Like any
other identifier, a qualified method identifier can be prefixed with
a unit identifier and a period if required.

Within an object type declaration, a method heading can specify
parameters of the object type being declared, even though the de­
claration is not yet complete. This is illustrated by the Copy,
Intersect, and Union methods of the Rect type in the previous
example.

Methods are by default static, but can, with the exception of con­
structor methods, be made virtual through the inclusion of a
virtual directive in the method declaration. The compiler resolves
calls to static methods at compile time, whereas calls to virtual
methods are resolved at run time. The latter is sometimes referred
to as late binding.

If an object type declares or inherits any virtual methods, then
variables of that type must be initialized through a constructor call

Turbo Pascal OOP Guide

before any call to a virtual method. Thus, any object type that de­
clares or inherits any virtual methods must also declare or inherit
at least one constructor method.

An object type can override (redefine) any of the methods it
inherits from its ancestors. If a method declaration in a descen­
dant specifies the same method identifier as a method declaration
in an ancestor, then the declara tion in the descendant overrides
the declaration in the ancestor. The scope of an override method
extends over the domain of the descendant in which it is
introduced, or until the method identifier is again overridden.

An override of a static method is free to change the method
heading in any way it pleases. In contrast, an override of a virtual
method must match exactly the order, types, and names of the
parameters, and the type of the function result, if any. Further­
more, the override must again include a virtual directive.

An object is instantiated, or created, through the declaration of a
variable or typed constant of an object type, or by applying the
New standard procedure to a pointer variable of an object type.
The resulting object is called an instance of the object type.

vu:
F : Field;
Z : ZipField;
FP : FieldPtr;
ZP : ZipFieldPtr;

Given these variable declarations, F is an instance of Field, and Z
is an instance of ZipField. Likewise, after applying New to FP and
ZP, FP will point to an instance of Field, and ZP will point to an
instance of ZipField.

A pointer to an object type is assignment compatible with a
pointer to any ancestor object type, therefore during execution of
a program, a pointer to an object type might point to an instance
of that type, or to an instance of any descendant type.

For example, a pointer of type ZipFieldPtr can be assigned to
pointers of type ZipFieldPtr, NumFieldPtr, and FieldPtr, and during
execution of a program, a pointer of type FieldPtr might be either
nil or point to an instance of Field, StrField, NumField, or ZipField,
or any other instance of a descendant of Field.

These pointer assignment compatibility rules also apply to object
type variable parameters. For example, the Field.Copy method

Chapter 3, Turbo Pascal 5.5 language definition 77

might be passed an instance of Field, StrField, NumField, ZipField,
or any other instance of a descendant of Field.

A method is activated through a method designator of the form
InstanceMethod, where Instance is an instance of an object type,
and Method is a method of that object type.

For static methods, the declared (compile-time) type of Instance
determines which method to activate. For example, the designa­
tors F lnit and FP" lnit will always activate Fieldlnit, since the de­
clared type of F and FP" is Field.

For virtual methods, the actual (run-time) type of Instance governs
the selection. For example, the designator FP" .Edit might activate
Field.Edit, StrField.Edit, NumField.Edit, or ZipField.Edit, depending
on the actual type of the instance pointed to by FP.

In general, there is no way of determining which method will be
activated by a virtual method designator. You can develop a
routine (such as a forms editor input routine) that activates
FP".Edit, and later, without modifying that routine, apply it to an
instance of a new, unforeseen descendant type of Field. When
extensibility of this sort is desired, you should employ an object
type with an open-ended set of descendant types, rather than a
record type with a closed set of variants.

Assignment compatibility

See Chapter 3, -Types, ·In The rules of assignment compatibility are extended as follows:
the Reference Guide.

• An object type T2 is assignment compatible with an object type
TI if T2 is in the domain of Tl .

• A pointer type P2, pointing to an object type T2, is assignment
compatible with a pointer type Pl, pointing to an object type
TI, if T2 is in the domain of TI.

Object component designators

78

See Chapter 3, -rypes,· In
the Reference Guide.

The format of an object component designator is the same as that
of a record field designator; that is, it consists of an instance (a
variable reference), followed by a period and a component identi­
fier. A component designator that designates a method is called a
method designator. A with statement can be applied to an instance

Turbo Pascal OOP Guide

of an object type, in which case the instance and the period can be
omitted in referencing components of the object type.

The instance and the period can also be omitted within any
method block, and when they are, the effect is the same as if Self
and a period was written before the component reference.

Dynamic object type variables

See Chapter 3, -Types," in
the Reference Guide.

The syntax of the New and Dispose standard procedures has been
extended to allow a constructor or destructor call as a second
parameter when object type pointers are allocated and disposed.
For further details, see the later section "Extensions to New and
Dispose" on page 86.

Instance initialization

See Chapter 3, -rypes," in
the Reference Guide.

If an object type contains virtual methods, then instances of that
object type must be initialized through a constructor call before
any call to a virtual method. Here's an example:

var
S : StrFieldi

begin
S.Init(l, 1, 25, 'Firstname')i
S.Put ('Frank') i
S.Display;

S.Done;
ed;

If S.Init had not been called, then the call to S.Display would cause
this example to fail.

The rule of required initialization also applies to instances that are
components of structured types. For example,

var
Comment: array[1 .• 5] of StrField;
I : Integer;

begin
for I := 1 to 5 do Comment [I] .Init(l, I + 10, 40, 'Comment');

for I := 1 to, 5 do Comment [I] .Done;

Chapter 3, Turbo Pascal 5.5 language definition 79

end;

For dynamic instances, initialization is typically coupled with
allocation, and cleanup is typically coupled with deallocation,
using the extended syntax of the New and Dispose standard
procedures. Here's an example:

var
SP : StrFieldPtr;

begin
New(SP, Init(l, 1, 25, 'Firstname'));
SpA.Put('Frank');
SpA.Display;

Dispose(SP, Done);
ud;

Object type constants

See Chapter 5, -Typed
Constants, " In the Reference

Guide.

The declaration of an object type constant uses the same syntax as
the declaration of a record type constant. No value is, or can be,
specified for method components. Referring to the earlier object
type declarations, here are some examples of object type
constants:

conat
ZeroPoint : Point = (X : 0; Y : 0);
ScreenRect : Rect. =

(A : (X : 0; Y : 0); B : (X : 80; Y : 25));
CountField : NumField = (X : 5; Y : 20; Len : 4; Name : nil;

Value: 0; Min: -999; Max: 999);

Constants of an object type that contains virtual methods need not
be initialized through a constructor call-this initialization is
handled automatically by the compiler.

@ with a method

See Chapter 6, -Expressions,"
in the Reference Guide.

80

You can apply@ to a qualified method identifier to produce a
pointer to the method's entry point.

Turbo Pascal OOP Guide

Function calls

See Chapter 6, "Expressions,"
in the Reference Guide.

The syntax of a function call has been extended to allow a method
designator or a qualified method identifier denoting a function to
replace the function identifier.

The discussion of extensions to procedure statements in a later
section, "Procedure Statements," also applies to function calls.

Assignment statements

See Chapter 7, "Statements,"
in the Reference Guide.

The rules of object type assignment compatibility allow an in­
stance of an object type to be assigned an instance of any of its
descendant types. Such an assignment constitutes a projection of
the descendant onto the space spanned by its ancestor. For
example, given an instance F of type Field, and an instance Z of
type ZipField, the assignment F := Z will copy only the fields X, Y,
Len, and Name.

Assignment to an instance of an object type does not entail
initialization of the instance. Referring to the preceding example,
the assignment F := Z does not mean that a constructor call for F
can be omitted.

Procedure statements

See Chapter 7, "Statements,"
in the Reference Guide.

The syntax of a procedure statement has been extended to allow a
method designator denoting a procedure, constructor, or destruc­
tor to replace the procedure identifier.

The instance denoted by the method designator serves two pur­
poses. First, in the case of a virtual method, the actual (run-time)
type of the instance determines which implementation of the
method is activated. Second, the instance itself becomes an impli­
cit actual parameter of the method; it corresponds to a formal
variable parameter named Self that possesses the type
corresponding to the activated method.

Within a method, a procedure statement allows a qualified
method identifier to denote activation of a specific method. The
object type given in the qualified identifier must be the same as

Chapter 3, Turbo Posca/5.5/onguoge definition 81

the method's object type, or an ancestor of it. This type of
activation is called a qualified activation.

The implicit Self parameter of a qualified activation becomes the
Self of the method containing the call. A qualified activation never
employs the virtual method dispatch mechanism-the call is
always static, and always invokes the specified method.

A qualified activation is generally used within an override
method 'to activate the overridden method. Referring to the types
declared earlier, here are some examples of qualified activations:

constructor NumField.Init(FX, FY, FLen : Integer;
FName : String; FMin, FMax : Longint);

begin
Field.Init(FX, FY, FLen, FName);
Value := 0;
Min := FMin;
Max := FMax;

end;

function ZipField.PutStr(S : String) : Boolean;
begin

PutStr := (Length(S) = 5) and NumField.PutStr(S)i
end;

As these examples demonstrate, a qualified activation allows an
override method to "reuse" the code of the method it overrides.

Case statements

See Chapter 7, .. statements,"
in the Reference Guide.

With statements

See Chapter 7, "statements,"
in the Reference Guide.

82

The case statement previously did not allow the selector to be of
type Word. This restriction is now gone, and a case selector may
be of any byte-sized or word-sized ordinal type.

The with statement has been extended to accept object types as
well as record types.

Turbo Pascal OOP Guide

Method declarations

See Chapter 8, -Procedures
and Functions, M In the

Reference Guide.

The declaration of a method within an object type corresponds to
a forward declaration of that method. Thus, somewhere after the
object type declaration, and within the same scope as the object
type declaration, the method must be implemented by a defining
declaration.

For procedure and function methods, the defining declaration
takes the form of a normal procedure or function declaration,
with the exception that the procedure or function identifier in this
case is a qualified method identifier.

For constructor methods and destructor methods, the defining
declaration takes the form of a procedure method declaration,
except that the procedure keyword is replaced by a constructor or
destructor keyword.

A method's defining declaration can optionally repeat the formal
parameter list of the method heading in the object type. The de­
fining declaration's method heading must in that case match
exactly the order, types, and names of the parameters, and the
type of the function result, if any.

In the defining declaration of a method, there is always an impli­
cit parameter with the identifier Self, corresponding to a formal
variable parameter that possesses the object type. Within the
method block, Self represents the instance whose method compo­
nent was designated to activate the method. Thus, any changes
made to the values of the fields of Self are reflected in the instance.

The scope of a component identifier in an object type extends over
any procedure, function, constructor, or destructor block that im­
plements a method of the object type. The effect is the same as if
the entire method block was embedded in a with statement of the
form

with Self do begin ... end

For this reason, the spellings of component identifiers, formal
method parameters, Self, and any identifiers introduced in a
method implementation must be unique.

Here are some examples of method implementations:

procedure Rect.lntersect(var R : Rect);
begin

Chapter 3, Turbo Pascal 5.5 language definition 83

if A.X < R.A.X than A.X := R.A.X;
if A.Y < R.A.Y than A.Y := R.A.Y;
if B.X > R.B.X than B.X := R.B.X;
if B.Y > R.B.Y than B.Y := R.B.Yi
if (A.X >= B.X) or (A.Y >= B.Y) then Init(O, 0, 0, 0);

andi

procedure Field.Display;
begin

GotoXY(X, Y);
WIite(Name~, ' " GetStr);

and;

function NumField.PutStr(S : String) Boolean;
var

E : Integer;
begin

VallS, Value, E)i
PutStr := (E = 0) and (Value >= Min) and (Value (= Max)i

and;

Constructors and destructors

See Chapter 8, "Procedures
and Functions, " In the

Reference Guide.

84

Constructors and destructors are specialized forms of methods.
Used in connection with the extended syntax of the New and
Dispose standard procedures, constructors and destructors have
the ability to allocate and deallocate dynamic objects. In addition,
constructors have the ability to perform the required initialization
of objects that contain virtual methods. Like other methods, con­
structors and destructors can be inherited, and an object can have
any number of constructors and destructors.

Constructors are used to initialize newly instantiated objects.
Typically, the initialization is based on values passed as
parameters to the constructor. Constructors cannot be virtual,
because the virtual method dispatch mechanism depends on a
constructor first having initialized the object.

Here are some examples of constructors:

constructor Field.Copy(var F : Field);
begin

Self := F;
and;

constructor Field.Init(FX, FY, FLen : Integer; FName : String);
begin

X := FX;

Turbo Pascal OOP Guide

Destructors can be virtual,
and often are. Destructors

seldom take any parameters.

Y := FY;

Len := FLen;
GetMem(Name , Length (FName) + 1);
Name" := FName;

and;

constructor StrField.Init(FX, FY, FLen Integer; FName String);
begin

Field.Init(FX, FY, FLen , FName);
GetMem(Value , Len);
Value" := I I ;

end;

The first action of a constructor of a descendant type, such as the
preceding StrFieldlnit, is almost always to call its immediate an­
cestor's corresponding constructor to initialize the inherited fields
of the object. Having done that, the constructor then initializes the
fields of the object that were introduced in the descendant.

Destructors are the counterparts of constructors, and are used to
clean up objects after their use. Typically, the cleanup consists of
disposing any pointer fields in the object.

Here are some examples of destructors:

destructor Field.Done;
begin

FreeMem(Name, Length (Name") + 1);
end;

destructor StrField.Done;
begin

FreeMem(Value, Len);
Field.Done;

end;

A destructor of a descendant type, such as the preceding
StrField.Done, typically first disposes the pointer fields introduced
in the descendant, and then, as its last action, calls the correspon­
ding destructor of its immediate ancestor to dispose any inherited
pointer fields of the object.

Variable parameters

See ChapterB, -Procedures
and Functions, • in the

Reference Guide.

The rules of object type assignment compatibility also apply to
object type variable parameters: For a fonnal parameter of type
TI, the actual parameter might be of type T2 if T2 is in the domain
of 11. For example, the Field.Copy method might be passed an in-

Chapter 3, Turbo Pasca/5.5/anguage definition 85

stance of Field, StrField, NumField, ZipField, or any other instance
of a descendant of Field.

Extensions to New and Dispose

See Chapter II, "standard
Procedures and Functions, "

in the Reference Guide.

86

The New and Dispose standard procedures have been extended to
allow a constructor call or destructor call as a second parameter
for allocating or disposing a dynamic object type variable. The
syntax is

New(P, Construct)

and

Dispose(P, Destruct)

where P is a pointer variable, pointing to an object type, and
Construct and Destruct are calls to constructors and destructors of
that object type. For New, the effect of the extended syntax is the
same as executing

New(P)i
P".Constructi

And for Dispose, the effect of the extended syntax is the same as
executing

P".Destruct;
Dispose(P)i

Without the extended syntax, occurrences of such "pairs" of a call
to New followed by a constructor call, and a destructor call fol­
lowed by a call to Dispose would be very common. The extended
syntax improves readability, and also generates shorter and more
efficient code.

The following illustrates the use of the extended New and Dispose
syntax:

Val:

SP : StrFieldPtri
ZP : ZipFieldPtrj

begin
New(SP, Init(l, 1, 25, 'Firstnarne'))i
New (ZP, Init (1, 2, 5, 'Zip code', 0, 99999)) i

SP".Edit;
ZP".Editj

Turbo Pascal OOP Guide

Dispose(ZP, Done);
Dispose(SP, Done);

end;

An additional extension allows New to be used as a function,
which allocates and returns a dynamic variable of a specified
type. The syntax is

New(T)

or

New(T, Construct)

In the first form, T can be any pointer type. In the second form, T
must point to an object type, and Construct must be a call to a con­
structor of that object type. In both cases the type of the function
result is T.

Here's an example:

var
Fl, F2 : FieldPtr;

begin
Fl := New(StrFieldPtr, Init(l, 1,25, 'Firstname'));
F2 := New(ZipFieldPtr, Init(l, 2, 5, 'Zip code', 0, 99999));

WriteLn(FIA .GetStr); { calls StrField.GetStr }
WriteLn(F2 A .GetStr); { calls ZipField.GetStr }

Dispose(F2, Done); { calls Field.Done }
Dispose(Fl, Done); { calls StrField.Done }

end;

Notice that even though Fl and F2 are of type FieldPtr, the ex­
tended pointer assignment compatibility rules allow Fl and F2 to
be assigned a pointer to any descendant of Field; and since GetStr
and Done are virtual methods, the virtual method dispatch
mechanism will correctly call StrField.GetStr, ZipField.GetStr,
Field.Done, and StrField.Done, respectively.

Compiler directive conditional symbols

See Appendix B, ·Compiler The VERSO conditional symbol, which is automatically defined by
Directives, , In the Reference Turbo Pascal 5.0, has been replaced by VE.R55 in Turbo Pascal 5.5.

Guide.

Chapter 3, Turbo Pascal 5.5 language definition 87

88 Turbo Pascal OOP Guide

c H A p T E R

4

Overlays

This chapter describes the new features found in Turbo Pascal
5.5's overlay manager. The new Overlay unit is fully compatible
with Turbo Pascal 5.0's Overlay unit, so any existing overlaid
applications can simply be recompiled.

Overlay buffer management

Chapter 4, Overlays

The Turbo Pascal 5.0 overlay buffer is best described as a ring
buffer that has a head pointer and a tail pointer. Overlays are
always loaded at the head of the buffer, pushing "older" ones
toward the tail. When the buffer becomes full (that is, when there
is not enough free space between the head and the tail), overlays
are disposed at the tail to make room for new ones.

Since ordinary memory is not circular in nature, the actual imple­
mentation of the overlay buffer involves a few more steps in order
to make the buffer appear to be a ring. Figure 4 illustrates the
process. The figure shows a progression of overlays being loaded
into an initially empty overlay buffer. Overlay A is loaded first,
followed by B, then C, and finally D. Shaded areas indicate free
buffer space.

89

90

Figure 4.1
Loading and disposing

overlays

Step 1 Step 2

Head -> I--------t
Overlay B

Head ->
Overlay A Overlay A

Tail -> Tail -> 1..-___ ---'

Step 3 Step 4 ...• _.
Head ->

Overlay C

Overlay C
Overlay B

Overlay B Tai 1 -> I--------t
.:::: :: :,::' :';

Head ->
Overlay A Overlay 0

Tail ->

As you can see, a couple of interesting things happen in the
transition from step 3 to step 4. First, the head pointer wraps
around to the bottom of the overlay buffer, causing the overlay
manager to slide all loaded overlays (and the tail pointer)
upward. This sliding is required to always keep the free area
located between the head pointer and the tail pointer. Second, in
order to load overlay D, the overlay manager has to dispose over­
lay A from the tail of the buffer. Overlay A in this case is the least
recently loaded overlay, and therefore the best choice for disposal
when something has to go. The overlay manager continues to
dispose overlays at the tail to make room for new ones at the
head, and each time the head pointer wraps around, the sliding
operation is repeated.

This is how Turbo Pascal 5.0's overlay manager operates, and is
also the default mode of operation for Turbo PascaI5.5's overlay
manager. New in Turbo Pascal 5.5, however, is an optional
optimization of the overlay management algorithm.

Imagine that overlay A contains a number of frequently used
routines. Even though these routines are used all the time, A will
still occasionally be thrown out of the overlay buffer, only to be
reloaded again shortly aftenvard. The problem here is that the
overlay manager knows nothing about the frequency of calls to

Turbo Pascal OOP Guide

Variables

OvrTrapCount

Chapter 4, Overlays

routines in A-all it knows is that when a call is made to a routine
in A and A is not in memory, it has to load A. One solution to this
problem might be to trap every call to routines in A, and then at
each call move A to the head of the overlay buffer to reflect its
new status as the most recently used overlay. Such call
interception is unfortunately very costly in terms of execution
speed, and may in some cases slow down the application even
more than the additional overlay load operations.

Turbo Pascal 5.5 provides a compromise solution that incurs
practically no performance overhead and still maintains a high
degree of success in identifying frequently used overlays that
shouldn't be unloaded: When an overlay gets close to the tail of
the overlay buffer, it is put on "probation." If, during this
probationary period, a call is made to a routine in the overlay, it is
"reprieved," and will not be disposed when it reaches the tail of
the overlay buffer. Instead, it is simply moved to the head of the
buffer, and thus gets another free ride around the overlay buffer
ring. If, on the other hand, no calls are made to an overlay during
its probationary period, indicating less frequent use, the overlay is
disposed of when it reaches the tail of the overlay buffer.

The net effect of the probation/reprieval scheme is that frequently
used overlays are kept in the overlay buffer, at the cost of inter­
cepting just one call every time the overlay gets close to the tail of
the overlay buffer.

Two new overlay manager routines, OvrSetRetry and OvrGetRetry,
control the probation/reprieval mechanism. OvrSetRetry sets the
size of the area in the overlay buffer to keep on probation, and
OvrGetRetry returns the current setting. If an overlay falls within
the last OvrGetRetry bytes before the overlay buffer tail, it is
automatically put on probation. Any free space in the overlay
buffer is considered part of the probation area.

This section describes the new variables that Turbo Pascal 5.5
adds to the Overlay unit.

var OvrTrapCount : Word;

91

OvrLoadCount

OvrFileMode

OvrReadBuf

92

Each time a call to an overlaid routine is intercepted by the over­
lay manager, either because the overlay is not in memory or
because the overlay is on probation, the OvrTrapCount variable is
incremented. The initial value of OvrTrapCount is O.

var OvrLoadCount : Word;

Each time an overlay is loaded, the OvrLoadCount variable is
incremented. The initial value of OvrLoadCount is zero.

By examining OvrTrapCount and OvrLoadCount (for example, in
the debugger's watch window) over identical runs of an
application, you can monitor the effect of different probation area
sizes (set with OvrSetRetry) to find the optimal size for your
particular a pplica tion.

var OvrFileMode : Byte;

The OvrFileMode variable determines the access code to pass to
DOS when the overlay file is opened. The default OvrFileMode is
0, corresponding to read-only access. By assigning a new value to
OvrFileMode before calling Ovrlnit, you can change the access
code, for example, to allow shared access on a network system.
For further details on access code values, refer to your DOS
Programmer's Reference Manual.

type OvrReadFunc = function(OvrSeg : Word) : Integer;
var OvrReadBuf : OvrReadFunc;

The Ovr ReadBuf procedure variable allows you to intercept over­
lay load operations, for example, to implement error handling or
to check that a removable disk is present. Whenever the overlay
manager needs to read an overlay, it calls the function whose
address is stored in OvrReadBuf.H the function returns zero, the
overlay manager assumes that the operation was successful; if the
function result is nonzero, run-time error 209 is generated. The
OvrSeg parameter indicates what overlay to load, but as you'll see
later, you never need to access this information.

Turbo Pascal OOP Guide

You must never attempt to
call any overlaid routines

from within your overlay read
function-such calls would

crash the system.

Chapter 4, Overlays

To install your own overlay read function, you must first save the
previous value of Ovr ReadBuf in a variable of type Ovr ReadFunc,
and then assign your overlay read function to OvrReadBuf. Within
your read function, you should call the saved read function to
perform the actual load operation. Any validations you want to
perform, such as checking that a removable disk is present,
should go before the call to the saved read function, and any error
checking should go after the call.

The code to install an overlay read function should go right after
the call to OvrInit, at which point OvrReadBufwill contain the
address of the default disk read function.

If you also call OvrInitEMS, it uses your read function to read
overlays from disk into EMS memory, and if no errors occur, it
stores the address of the default EMS read function in
OvrReadBuf. If you also wish to override the EMS read function,
simply repeat the installation process after the call to OvrInitEMS.

The default disk read function returns zero in case of success, or a
DOS error code in case of failure. Likewise, the default EMS read
function returns 0 in case of success, or an EMS error code
(ranging from $80 through $FF) in case of failure. For details on
DOS error codes, refer to the "Run-time Errors" section in
Appendix D of the Turbo Pascal Reference Guide. For details on
EMS error codes, refer to the Lotus/Intel/Microsoft Expanded
Memory Specification.

The following code fragment demonstrates how to write and
install an overlay read function. The new overlay read function
repeatedly calls the saved overlay read function until no errors
occur. Any errors are passed to the DOS Error or EMSError
procedures (not shown here) so that they can present the error to
the user. Notice how the Ovr Seg parameter is just passed on to the
saved overlay read function, and never directly handled by the
new overlay read function.

uses Overlay;
var

SaveOvrRead : OvrReadFunc;
UsingEMS : Boolean;

{$F+}

function MyOvrRead(OvrSeg : Word) Integer;
var

E : Integer;

93

begin
repeat

E := SaveOvrRead(OvrSeg);
if E <> 0 then
if UsingEMS then

EMSError(E) 81s8 DOSError(E);
until E = 0;
MyOvrRead := 0;

end;

{$F-}

begin
OvrInit('MYPROG.OVR')i
SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrReadi
UsingEMS := False;
OvrInitEMS;
SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrRead;
UsingEMS := True;

end.

Save disk default
Install ours }

Save EMS default
Install ours }

Procedures and functions

OvrSetRetry

94

This section describes the new procedures and functions that
Turbo Pascal 5.5 adds to the Overlay unit.

procedure OvrSetRetry(Size : Longint);

The OvrSetRetry procedure sets the size of the "probation area" in
the overlay buffer. If an overlay falls within the Size bytes before
the overlay buffer tail, it is automatically put on probation. Any
free space in the overlay buffer is considered part of the probation
area. For reasons of compatibility with earlier versions of the
overlay manager, the default probation area size is zero, which
effectively disables the probation/ reprieval mechanism. Here's an
example of how to use OvrSetRetry:

OvrInit('MYPROG.OVR')i
OvrSetBuf(BufferSize)i
OvrSetRetry(BufferSize div 3);

Turbo Pascal OOP Guide

OvrGetRetry

There is no empirical formula for determining the optimal size of
the probationary area-however, experiments have shown that
values ranging from one-third to one-half of the overlay buffer
size provide the best results.

function OvrGetRetry : Longint;

The OvrGetRetry function returns the current size of the probation
area, that is, the value last set with OvrSetRetry.

Overlays in .EXE files

Chapter 4, Overlays

Turbo Pascal 5.5 allows you to store your overlays at the end of
your application's .EXE file rather than in a separate .OVR file. To
attach an .OVR file to the end of an .EXE file, use the DOS COpy
command with a jB command line switch, for example,

COPY/B MYPROG.EXE + MYPROG.OVR

You must make sure that the .EXE file was compiled without
Turbo Debugger debug information. Thus in the IDE, make sure
that Debug/Standalone Debugging is set to Off; with the
command-line version of the compiler, make sure not to specify a
/V switch.

To read overlays from the end of an .EXE file instead of from a
separate .OVR file, simply specify the .EXE file name in the call to
Ovrlnit. If you are running under DOS 3.x, you can use the
ParamStr standard function to obtain the name of the .EXE file, for
example,

Ovrlnit(ParamStr(O));

95

96 Turbo Pascal OOP Guide

c H A p T E R

5

Inside Turbo Pascal

This chapter is an addendum to Chapter 15, HInside Turbo
Pascal," in the Turbo Pascal 5.0 Reference Guide.

Internal data format of objects

The internal data format of an object resembles that of a record.
The fields of an object are stored in order of declaration, as a
contiguous sequence of variables. Any fields inherited from an
ancestor type are stored before the new fields defined in the de­
scendant type.

If an object type defines virtual methods, constructors, or destruc­
tors, the compiler allocates an extra field in the object type. This
16-bit field, called the virtual method table (VMT) field, is used to
store the offset of the object type's VMT in the data segment. The
VMT field immediately follows after the ordinary fields in the
object type. When an object type inherits virtual methods, con­
structors, or destructors, it also inherits a VMT field, so an
additional one is not allocated.

Initialization of the VMT field of an instance is handled by the
object type's constructor(s). A program never explicitly initializes
or accesses the VMT field.

The following examples illustrate the internal data formats of
object types.

Chapter 5, Inside Turbo Pascal 97

Figure 5.1
Layouts of Instances of

Location, Point, and Circle

Virtual method

type
LocationPtr = ~Location;

Location = object
X, Y: Integer;
procedure Init{PX, PY: Integer);
function GetX: Integer;
function GetY: Integer;

end;

PointPtr = ~Point;
Point = object (Location)

Color: Integer;
constructor Init{PX, PY, PColor: Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo{PX, PY: Integer); virtual;

end;

CirclePtr = ~Circle;
Circle = Object{Point)

Radius: Integer;
constructor Init{PX, PY, PColor, PRadius: Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Fill; virtual;

end;

Figure 5.1 shows layouts of instances of Location, Point, and Circle;
each box corresponds to one word of storage.

Location Point Circle

B X X

y y

Color Color

YMT YMT

Radius

Because Point is the first type in the hierarchy that introduces
virtual methods, the VMT field is allocated right after the Color
field.

tables Each object type that contains or inherits virtual methods, con­
structors, or destructors has a VMT associated with it, which is

98 Turbo Pascal OOP Guide

stored in the initialized part of the program's data segment. There
is only one VMT per object type (not one per instance), but two
distinct object types never share a VMT, no matter how identical
they appear to be. VMTs are built automatically by the compiler,
and are never directly manipulated by a program. Likewise,
pointers to VMTs are automatically stored in object type instances
by the object type's constructor(s) and are never directly
manipulated by a program.

The first word of a VMT contains the size of instances of the
associated object type; this information is used by constructors
and destructors to determine how many bytes to allocate or
dispose of, using the extended syntax of the New and Dispose
standard procedures.

The second word of a VMT contains the negative size of instances
of the associated object type; this information is used by the
virtual method call validation mechanism to detect uninitialized
objects (instances for which no constructor call has been made),
and to check the consistency of the VMT. When virtual call
validation is enabled (using the ($R+} compiler directive, which
has been expanded to include virtual method checking), the
compiler generates a call to a VMT validation routine before each
virtual call. The VMT validation routine checks that the first word
of the VMTis not zero, and that the sum of the first and the
second word is zero. If either check fails, run-time error 210 is
generated.

Enabling range-checking and virtual method call checking slows
down your program, and makes it somewhat larger, so use the
($R+} state only when debugging, and switch to the ($R-} state for
the final version of the program.

Finally, starting at offset 4 in the VMT, comes a list of 32-bit
method pointers, one per virtual method in the object type, in
order of declaration. Each slot contains the address of the
corresponding virtual method's entry point.

Figure 5.2 shows the layouts of the VMTs of the Point and Circle
types (the Location type has no VMT, since it contains no virtual
methods, constructors, or destructors); each small box
corresponds to one word of storage, and each large box
corresponds to two words of storage.

Chapter 5, Inside Turbo Pascal 99

Figure 5.2
Point and Circle's VMT

layouts

The SizeOf

Point VMT Circle VMT

$0008 $OOOA

$FFF8 $FFF6

@Point.Done @Point.Done

@Point.Show @Circle.Show

@Point.Hide 'Circle.Hide

@Point.MoveTo 'Point.MoveTo

'Circle.Fill

Notice how Circle inherits the Done and MoveTo methods from
Point, and how it overrides the Show and Hide methods.

As mentioned already, an object type's constructors contain
special code that stores the offset of the object type's VMT in the
instance being initialized. For example, given an instance P of
type Point, and an instance C of type Circle, a call to P lnit will
automatically store the offset of Point's VMT in P's VMT field, and
a call to Clnit will likewise store the offset of Circle's VMT in C's
VMT field. This automatic initialization is part of a constructor's
entry code, so when control arrives at the begin of the construc­
tor's statement part, the VMT field Self will already have been set
up. Thus, if the need arises, a constructor can make calls to virtual
methods.

standard function When applied to an instance of an object type that has a VMT,
SizeD/returns the size stored in the VMT. Thus, for object types
that have a VMT, SizeDf always returns the actual size of the
instance, rather than the declared size.

100 Turbo Pascal OOP Guide

The TypeOf
standard function Turbo Pascal 5.5 adds a new standard function, TypeDf, which

returns a pointer to an object type's VMT. TypeOf takes a single
parameter, which can be either an object type identifier or an
object type instance. In both cases, the result, of type Pointer, is a
pointer to the object type's VMT. TypeDf can be applied only to
object types that have a VMT-all other types result in an error.

Virtual method

The TypeDf function can be used to test the actual type of an
instance. For example,

if TypeOf(Self) = TypeOf(Point) then •..

calls To call a virtual method, the compiler generates code that picks
up the VMT address from the VMT field in the object, and then
calls via the slot associated with the method. For example, given a
variable PP of type PointPtr, the call ppA .Show generates the fol­
lowing code:

les di,PP ;Load PP into ES:DI
push es ;Pass as Self parameter
push di
mov di,es:[di+6] ;Pick up VMT offset from VMT field
call DWORD PTR [di+8] ;Call VMT entry for Show

The type compatibility rules of object types allow PP to point at a
Point or a Circle, or at any other descendant of Point. And if you
examine the VMTs shown here, you'll see that for a Point, the
entry at offset 8 in the VMT points to Point.Show, whereas for a
Circle, it points to Circle.Show. Thus, depending upon the actual
run-time type of PP, the CALL instruction calls Point.Show or
Circle. Show, or the Show method of any other descendant of Point.

If Show had been a static method, this code would have been
generated for the call to PPA.Show:

les di,PP ;Load PP into ES:DI
push es ;Pass as Self parameter
push di
call Point.Show ;Directly call Point.Show

Here, no matter what PP points to, the code will always call the
Point.Show method.

Chapter 5, Inside Turbo Pascal 101

Method calling conventions

Constructors and
destructors

102

Methods use the same calling conventions as ordinary procedures
and functions, except that every method has an additional impli­
cit parameter, called Self, that corresponds to a var parameter of
the same type as the method's object type. The Self parameter is
always passed as the last parameter, and always takes the form of
a 32-bit pointer to the instance through which the method is
called. For example, given a variable PP of type PointPtr as
defined earlier, the call PPAMoveTo(10,20) is coded as follows:

mov ax,lO jLoad 10 into AX
push ax jPass as PX parameter
mov ax,20 iLoad 20 into AX
push ax iPass as PY parameter
les di,PP iLoad PP into ES:DI
push es jPass as Self parameter
push di
mov di,es: [di+6] jPick up VMT offset from VMT field
call DWORD PTR [di+16] iCall VMT entry for MoveTo

Upon returning, a method must remove the Self parameter from
the stack, just as it must remove any normal parameters.

Methods always use the FAR CALL model, regardless of the
setting of the $F compiler directive.

Constructors and destructors use the same calling conventions as
normal methods, except that an additional word-sized parameter,
called the VMT parameter, is passed on the stack just before the
Self parameter.

For constructors, the VMT parameter contains the VMT offset to
store in Selfs VMT field in order to initialize Self.

Furthermore, when a constructor is called to allocate a dynamic
object, using the extended syntax of the New standard procedure,
a nil pointer is passed in the Self parameter. This causes the con­
structor to allocate a new dynamic object, the address of which is
passed back to the caller in DX:AX when the constructor returns.
If the constructor could not allocate the object, a nil pointer is
returned in DX:AX,(See "Consm..lctor error recovery" on page
106.)

Turbo Pascal OOP Guide

Finally, when a constructor is called using a qualified method
identifier (that is, an object type identifier), followed by a period
and a method identifier, a value of zero is passed in the VMT pa­
rameter. This indicates to the constructor that it should not
initialize the VMT field of Self.

For destructors, a 0 in the VMT parameter indicates a normal call,
and a nonzero value indicates that the destructor was called using
the extended syntax of the Dispose standard procedure. This
causes the destructor to deallocate Self just before returning (the
size of Self is found by looking at the first word of Selfs VMT).

Assembly language methods

Method implementations written in assembly language can be
linked with Turbo Pascal programs using the $L compiler
directive and the external keyword. The declaration of an external
method in an object type is no different than that of a normal
method; however, the implementation of the method lists only the
method header followed by the reserved word external.

In an assembly language source text, an @ is used instead of a
period (.) to write qualified identifiers (the period already has a
different meaning in assembly language, and cannot be part of an
identifier). For example, the Pascal identifier Rectlnit is written as
Rect@Init in assembly language. The @ syntax can be used to de­
clare both PUBLIC and EXTRN identifiers.

As an example of assembly language methods, we've imple­
mented a simple Rect object.

type
Rect = object

Xl, YI, X2, Y2: Integer;
procedure Init(XA, YA, XB, YB: Integer);
procedure Union(var R: Rect);
function Contains (X, Y: Integer): Boolean;

end;

A Rect represents a rectangle bounded by four coordinates, Xl,
Yl, X2, and Y2. The upper left comer of a rectangle is defined by
Xl and Yl, and the lower right comer is defined by X2 and Y2.
The Init method assigns values to the rectangle's coordinates; the
Union method calculates the smallest rectangle that contains both
the rectangle itself and another rectangle; and the Contains

Chapter 5, Inside Turbo Pascal , 103

104

method returns True if a given point.is within the rectangle, or
False if not. Other methods, such as moving, resizing, calculating
intersections, and testing for equality, could easily be imple­
mented to make Rect a more useful object.

The Pascal implementations of Reet's methods list only the
method header followed by an external keyword.

{$L RECTI

procedure Rect.Init(XA, YA, XB, YB: Integer); external;
procedure Rect.Union(var R: Rect); external;
function Rect.Contains(X, Y: Integer): Boolean; external;

There is, of course, no requirement that all methods be imple­
mented as externals. Each individual method can be implemented
in either Pascal or in assembly language, as desired.

The assembly language source file, RECT.ASM, that implements
the three external methods is listed here.

TITLE Rect
LOCALS @@

Rect structure

Rect STRUC
Xl OW
Y1 DW
X2 OW
Y2 DW
Rect ENDS

code SEGMENT BYTE PUBLIC

ASSUME cs:code

; procedure Rect.Init(XA, YA, XB, YB: Integer)

PUBLIC Rect@Init

Rect@Init PROC FAR

@XA EQU (WORD PTR [bp+16))
@YA EQU (WORD PTR [bp+14))
@XB EQU (WORD PTR [bp+12))
@YB EQU (WORD PTR [bp+lO))
@Self EQU (DWORD PTR [bp+6))

push bp ;Save bp
mov bp,sp ;Set up stack frame
1 __

.J': "'("1_''& .T __ ..l ("1_'& .:_~_ n~.nT

LC., I.lL, ~O:>CLL i~vau O:>~LL LU~U ~O:>iUL

cld ;Move forwards
mov ax,@XA ;Xl := XA

Turbo Pascal OOP Guide

stosw
mov ax,@YA iY1 := YA
stosw
mov ax,@XB iX2 := XB
stosw
mov ax,@YB iY2 := YB
stosw
pop bp iRestore BP
ret 12 ;Pop parameters and return

Rect@Init ENDP

procedure Rect.Union(var R: Rect)

PUBLIC Rect@Union

Rect@Union PROC FAR

@R EQU (OWORD PTR [bp+lO])
@Self EQU (OWORD PTR [bp+6])

push bp iSave BP
mov bp,sp iSet up stack frame
push ds iSave OS
Ids si,@R iLoad R into OS:SI
les di,@Self iLoad Self into ES:OI
cld iMove forward
lodsw ilt R.XI >= Xl goto @@l
scasw
jge @@l
dec di iX1 := R.Xl
dec di
stosw

@@l: lodsw ilt R.Yl >= Yl goto @@2
scasw
jge @@2
dec di iY1 := R. Y1
dec di
stosw

@@2: lodsw ilt R.X2 <= X2 goto @@3
scasw
jle @@3
dec di iX2 := R.X2
dec di
stosw

@@3: lodsw ilt R.Y2 <= Y2 goto @@4
scasw
jle @@4
dec di iY2 := R.Y2
dec di
stosw

@@4: pop ds iRestore OS

Chapter 5, Ins/de Turbo Pascal 105

pop
ret

bp
8

Rect@Union ENDP

iRestore BP
iPOP parameters and return

function Rect.Contains(X, Y: Integer): Boolean

PUBLIC Rect@Contains

Rect@Contains PROC FAR

@X EQU
@Y EQU
@Self EQU

(WORD PTR [bp+12J)
(WORD PTR [bp+l0J)
(DWORD PTR [bp+6J)

push
mov
les
mov
mov
cmp
jl
cmp
jg
mov
cmp
jl
cmp
jg
inc

@@l: pop
ret

Rect@Contains

code ENDS

END

bp
bp,sp
di,@Self
al,O
dx,@X
dx,es: [diJ.X1
@@l
dx,es: [diJ.X2
@@l
dx,@Y
dx, es: [diJ. Yl
@@l
dx,es: [di].Y2
@@l
ax
bp
8

ENDP

i Save BP
iSet up stack frame
iLoad Self into ES:DI
iReturn false
iIf (X < Xl) or (X > X2) goto @@l

iIf (Y < Yl) or (Y > Y2) goto @@2

iReturn true
iRestore BP
iPOP parameters and return

Constructor error recovery

106

As described in Chapter 15 of the Reference Guide, Turbo Pascal
allows you to install a heap error function through the HeapError
variable in the System unit. This functionality is still supported in
Turbo Pascal 5.5, but now it also affects the way object type con­
structors work.

By default, when there is not enough memory to allocate a
dynamic instance of an object type, a constructor call using the
extended syntax of the New standard procedure generates run-

Turbo Pascal OOP Guide

There's a new standard
procedure called Fall.

time error 203. If you install a heap error function that returns 1
rather than the standard function result of 0, a constructor call
through New will return nil when it cannot complete the request
(instead of aborting the program).

The code that performs allocation and VMT field initialization of a
dynamic instance is part of a constructor's entry sequence: When
control arrives at the begin of the constructor's statement part, the
instance will already have been allocated and initialized. If alloca­
tion fails, and if the heap error function returns I, the constructor
skips execution of the statement part and returns a nil pointer;
thus, the pointer specified in the New construct that called the
constructor is set to nil.

Once control arrives at the begin of a constructor's statement part,
the object type instance is guaranteed to have been allocated and
initialized successfully. However, the constructor itself might
attempt to allocate dynamic variables, in order to initialize pointer
fields in the instance, and these allocations might in turn fail. If
that happens, a well-behaved constructor should reverse any
successful allocations, and finally deallocate the object type
instance so that the net result becomes a nil pointer. To make such
''backing out" possible, Turbo Pascal implements a new standard
procedure called Fail, which takes no parameters, and which can
be called only from within a constructor. A call to Fail causes a
constructor to deallocate the dynamic instance that was allocated
upon entry to the constructor, and causes the return of a nil
pointer to indicate its failure.

When dynamic instances are allocated through the extended
syntax of New, a resulting value of nil in the specified pointer
variable indicates that the operation failed. Unfortunately, there is
no such pointer variable to inspect after the construction of a
static instance or when an inherited constructor is called. Instead,
Turbo Pascal allows a constructor to be used as a Boolean
function in an expression: A return value of True indicates
success, and a return value of False indicates failure due to a call
to Fail within the constructor.

The following program implements two simple object types that
contain pointers. This first version of the program does not imple­
ment constructor error recovery.

type
LinePtr = "Line;
Line = string[79];

Chapter 5, Inside Turbo Pascal 107

108

BasePtr = "Base;
Base = object

L1, L2: LinePtr;
constructor Init(Sl, S2: Line);
destructor Done; virtual;
procedure Dump; virtual;

end;

DerivedPtr = "Derived;
Derived = object(Base)

L3, L4: LinePtr;
constructor Init(Sl, S2, S3, S4: Line);
destructor Done; virtual;
procedure Dump; virtual;

ad;

var
BP: BasePtr;
DP: DerivedPtr;

constructor Base.lnit(Sl, S2: Line);
bagin

New(L1);
New(L2);
11" .- S1;
12" := S2;

ad;

destructor Base.Done;
begin

Dispose(L2);
Dispose(L1);

ad;

procedure Base.Dump;
begin

Write1n('B: " L1", " " L2", '.');
ad;

constructor Derived. Init (Sl, S2, S3, S4: Line);
begin

Base.lnit(Sl, S2);
New(L3);
New(L4);
13" .- S3;
14" := S4;

and;

destructor Derived.Done;
begin

Dispose(L4);
Dispose(L3);

Turbo Pascal OOP Guide

Base.Done;
end;

procedure Derived.Dump;
begin

WriteLn('D: " L1A, " ',L2A, " " L3A, " " L4A, '.');
end;

begin
New(BP, Init('Turbo', 'Pascal'));
New (DP, Init('North', 'East', 'South', 'West'));
BPA.Dump;
DPA.Dump;
Dispose (DP, Done);
Dispose (BP, Done);

end.

The next example demonstrates how the previous one can be
rewritten to implement error recovery. The type and variable de­
clarations are not repeated, because they remain the same.

Chapter 5, Ins/de Turbo Pascal

constructor Base.lnit(Sl, 52: Line);
begin

New(L1);
New(L2);
if (L1 = nil) or (L2 = nil) then
begin

Base.Done;
Fail;

end;
L1A := 51;
L2A := 52;

end;

destructor Base.Done;
begin

if L2 <> nil then Dispose(L2);
if L1 <> nil then Dispose(L1);

end;

constructor Derived. Init (Sl, S2, S3, 54: Line);
begin

if not Base.lnit(51, S2) then Fail;
New(L3);
New(L4);
if (L3 = nil) or (L4 = nil) then
begin

Derived.Done;
Fail;

end;
L3" := 53;

109

110

L4" := S4;
end;

destructor Derived.Done;
begin

if L4 <> nil then Dispose(L4);
if L3 <> nil then Dispose(L3);
Base.Done;

end;

{$F+}
function HeapFunc(Size: Word): Integer;
begin

HeapFunc := 1;
end;
{$F-}

begin
HeapError := @HeapFunc; {Install heap error handler
New (BP, Init (' Turbo', , Pascal')) ;
New(DP, Init('North', 'East', 'South', 'West'));
if (BP = nil) or (DP = nil) then

WriteLn('Allocation error')
else
begin

BP".Dump;
DP".Dump;

end;
if DP <> nil then Dispose(DP, Done);
if BP <> nil then Dispose(BP, Done);

end.

Notice how the corresponding destructors in Base.lnit and
Derived.lnit are used to reverse any successful allocations before
Fail is called to finally fail the operation. Also notice that in
Derived.lnit, the call to Base.lnit is coded within an expression so
that the success of the inherited constructor can be tested.

Turbo Pascal OOP Guide

A p p E N D x

A

New and modified error messages

The following compiler error messages have been modified or
added in Turbo Pascal 5.5.

24 File components may not be files or objects

The component type of a file type cannot be an object type or a file
type, or any structured type with an object type or file type
component.

147 Object type expected.

The identifier does not denote an object type.

148 Local object types are not allowed.

Object types can be defined only in the outermost scope of a
program or unit. Object type definitions within procedures and
functions are not allowed.

149 VIRTUAL expected.

The keyword virtual is missing.

150 Method identifier expected.

The identifier does not denote a method.

New and modified error messages 111

112

151 Virtual constructors are not allowed.

A constructor method must be static.

152 Constructor identifier expected.

The identifier does not denote a constructor.

153 Destructor identifier expected.

The identifier does not denote a destructor.

154 Fail only allowed within constructors.

The Fail standard procedure can be used only within constructors.

Turbo Pascal OOP Guide

N

$ See compiler directives
@ (address operator)

with method designators 80

A
activation, qualified 82
ancestors 9, 12, 68, 74

assigning descendants to 32
immediate 12

arrays
range checking 71

assignment
compatibility 77,78,81
statements 81

B
/B command-line option

in TINSf or INSTALL 3
binding

early 31
late 31,76

Turbo Debugger and 65
with polymorphic objects 38

Borland, contacting
CompuServe 4
mailing address 4

buffers
overlay 89

C

loading and freeing up 90
optimization algorithm 90
probationary area 91

C++ 8
calling conventions

constructors and destructors 102

Index

D E

methods 81, 102
case (keyword)

statements 82
Change command (Turbo Debugger) 71
compatibility

assignment 77, 78, 81
object 31, 33
parameter type 86
pointers to objects 32

compiler directives
$L 103
$R

virtual method checking 37, 99
computerized simulations 23
constants

typed
object type 80

constructor (keyword) 36, 73
constructors

calling conventions 102
declaring 83
defined 36, 84
error recovery 106
implementation 83
inherited 77
virtual methods and 36
VMTP and 37,50, 79, 84, 97, 100

customizing See TINST

D
data

objects
changing 71
inspecting 70,71

structures
tracing through 71

x

debugger, integrated See methods, debugging;
objects, debugging

113

debugging
methods See methods, debugging
objects See objects, debugging

declaration
constructors 83
destructors 83
methods IS, 16, 76, 83
object instances 13
object types 74

Descend command (Turbo Debugger) 71
descendants 12,68,74

immediate 12
designators

field 19,79
method 78, 79

@ (address operator) with 80
destructor (keyword) 73
destructors 84

calling conventions 102
declaring 52, 83
defined 52, 84
dynamic object disposal 54
implementation 83
polymorphic objects and 53
static versus virtual 52

directives See compiler directives
Dispose procedure

extended syntax 51,99, 103
constructor passed as parameter 79, 84, 86

domain, object 74
dotting 13, 17, 21
dynamic object instances 49-60

allocation and disposal 50, 54, 102

E
early binding 31
encapsulation 9, 23
error checking

dynamic object allocation 106
virtual method calls 99

error messages
compiler 111
Turbo Debugger 72

Evaluate window
calling methods in 67
objects and 64, 66

114

event handling
virtual methods and 42

exported object types 19
extensibility 47, 78
external (keyword) 103

F
fields, object 13, 74

accessing 14, 16,23
designators 19, 79
inherited 13
scope 17, 76, 83

method parameters and 19
files

graphics, installing 3
obsolete, deleting 3

Find Procedure command
methods and 64

format specifiers
objects 64

Function Inspector window (Turbo Debugger)
70

functions
heap error 106
methods denoting 81
OvrGetRetry 91, 95
SizeOf 100
TypeOf 101

G
GRAPH.TPU

installed in a separate directory 3
graphics

files, installed in a separate directory 3

H
heap error function 106
hierarchies

object 12
common attributes in 38, 41

tree 68
Hierarchy command (Turbo Debugger) 70, 72

IDE See integrated development environment

Turbo Pascal OOP Guide

immediate ancestors and descendants 12
implementation

constructors 83
destructors 83
methods 76, 83

inheritance 9, 10, 11, 74
showing during debugging 70, 71

InitGraph procedure
path name to graphics directory 3

Inspect command (Turbo Debugger) 68, 69, 70,
71

INSfALL2
/B command-line option 3
LCD or composite screen display

adjusting 3
installing Turbo Pascal 2
instances

defined 11
dynamic object 49-60
object 77

declaring 13
linked lists of 54

static object 10-49
integrated debugger See methods, debugging;

objects, debugging

K
keywords

L

case 82
constructor 36,73
destructor 73
external 103
object 12,73
virtual 35, 73, 76
with 79,82

$L compiler directive 103
laptop computers

display, adjusting 3
late binding 31, 76

Turbo Debugger and 65
with polymorphic objects 38

LCD mode
display, adjusting 3

linked lists 54

Index

M
methods See also objects

activation, qualified 82
assembly language 18, 103
calling 15

as functions or procedures 81
conventions 81, 102

debugging 63, 65
declaring 15, 16,83
defined 14, 74
designators 78, 79

@ (address operator) with 80
external 18, 103
Find Procedure command and 64
Function Inspector window 70
identifiers, qualified 76

accessing object fields 21, 79
in method calls 78, 82
in method declarations 15, 17, 83
scope and 65

implementation 76, 83
inspecting 69-70,71
overridden, calling 82
overriding inherited 25, 77
parameters

naming 19
Self 18, 81,82, 83

debugging and 64, 66
defined 102
explicit use of 18

type compatibility 86
positioning in hierarchy 41
procedures versus 41
qualified activation 82
scope 17
static 29, 76

calling 78
problems with inherited 27

virtual 30, 76
calling 78, 81, 101

error checking 99
event handling and 42
polymorphic objects and 35
static versus 41

methods. declaring 76
Methods command (Turbo Debugger) 71

115

N
New Expression command (Turbo Debugger)

71
New procedure 50

extended syntax 50, 99
constructor passed as parameter 79, 84, 86,
102

used as function 51, 87

o
object (keyword) 12, 73
Object Hierarchy window (Turbo Debugger) 70,

67-72
Object Instance Inspector window (Turbo

Debugger) 70
array ranges 71
changing data values 71
methods and 71

Object Type Inspector window (Turbo
Debugger) 68, 69
complex data structures and 71

objects See also methods
ancestor 12, 74
constructors

declaring 83
defined 36, 84
error recovery 106
implementation 83
inherited 77
virtual methods and 36
VMTP and 37,50,79,84,97, 100

data
changing 71
inspecting 70,71

debugging 63
Evaluate window and 64
stepping and tracing 63
Watch window and 64

defined 8
descendant 12, 74
destructors 84

116

declaring 52, 83
defined 52, 84
dynamic object disposal 54
implementation 83
polymorphic objects and 53

static versus virtual 52
domain 74
dynamic instances 49-60

allocation and disposal 50, 54,79,84, 102
extensibility 47
fields 13, 74

accessing 14, 16, 23
designators 19, 79
inherited 13
scope 17, 76, 83

method parameters and 19
hiding data representation 24
hierarchies 12

common attributes in 38,41
inspecting 67
tree 68

inheritance 74
showing during debugging 70, 71

inspecting 69-70
instances 77

declaring 13
linked lists of 54

internal data format 97
passed as parameters

compatibility 33
pointers to 77

com patibility 32
polymorphic 33, 77, 78, 81, 86

late binding and 38
relative position 61
static instances 10-49
Turbo Debugger and 65
typed constants of type 80
types 74

com patibility
31

exported by units 19
inspecting 69-70
list of 68

types. declaring 74
units and 19
virtual method table 99

pointer 97
initialization 37, 100

virtuai methods
call error checking 99
calling 101

Turbo Pascal OOP Guide

Overlay unit 89
procedures and functions 91, 94
variables 91

overlays
buffer 89

loading and freeing up 90
optimization algorithm 90
probationary area 91

in .EXE files 95
load operations, customizing 92
manager 89

overridden methods, calling 82
overriding inherited methods 25,77
OvrGetRetry function 91, 95
OvrSetRetry procedure 91, 94

p
parameters

method, naming 19
Self 18, 81, 82, 83

debugging and 64, 66
defined 102
explicit use of 18

type compatibility 86
VMT102

pointers
assignment compatibility 77
to objects 77

polymorphic objects 33
late binding and 38
virtual methods and 35

polymorphism 30, 31, 32, 33
assignment compatibility 78
object instance assighment 81
parameter type compatibility 86
pointer assignment 77

probationary area, overlay buffer 91
procedures

Dispose
extended syntax 51, 99, 103

constructor passed as parameter 79,84,
86

methods denoting
calls to 81

methods versus 41
New 50

extended syntax 50,99

Index

constructor passed as parameter 79, 84,
86, 102

used as function 51, 87
OvrSetRetry 91, 94
statements 81

programs
debugging See debugging

Q
qualified activation 82
qualified method identifiers 76

R

accessing object fields 21, 79
in method calls 78, 82
in method declarations 15, 83
scope and 65

$R compiler directive
virtual method checking 37, 99

Range command (Turbo Debugger) 71
records

types 11
relative position 61

5
scope

object fields and methods 65
scope, object fields and methods 17
Self parameter 18, 81, 82, 83

debugging and 64, 66
defined 102
explicit use of 18

Show Inherited command (Turbo Debugger) 70,
71

Simula-67 23
simulations, computerized 23
SizeOf function 100
Smalltalk 8, 23
statements

assignment 81
case 82
procedure 81
with 13, 22, 79,82

implicit 17
static methods 29, 76

calling 78

117

problems with scope of inherited 27
static object instances 10-49
Step Over command

methods and 63, 65

T
taxonomy 10
technical support 4, 5
TINST

IB command-line option 3
LCD or composite screen display

adjusting 3
Trace Into command

methods and 63, 65
Tree command (Turbo Debugger) 68
trees

object hierarchy 68
Turbo Debugger See also methods, debugging;

objects, debugging
Change command 71
Descend command 71
Function Inspector window 70
Hierarchy command 70, 72
Inspect command 68, 69, 70, 71
Methods command 71
New Expression command 71
Object Hierarchy window 70,69-72
Object Instance Inspector window 70
Object Type Inspector window 68, 69
objects and See objects
Range command 71
Show Inherited command 70, 71
Tree command 68

Turbo Pascal
installing 2

typed constants
object type 80

TypeOf function 101
types

object 74

118

u

exported by units 19
object. declaring 74
record 11

IU command-line option
GRAPH.TPU file and 3

Unit Directories command
GRAPH.TPU file and 3

units
objects in 19
Overlay 89

utilities See INSTALL; TINST

V
VER55 symbol 87
virtual (keyword) 35, 73, 76
virtual method table 37, 99

pointer 97
initialization 37, 100

virtual methods 30, 76
calling 78, 81, 101

error checking 99
event handling and 42
polymorphic objects and 35
static versus 41

VMT See virtual method table
VMT parameter 102
VMTP See virtual method table pointer

W
Watch

window
objects and 64

with (keyword)
statement 13, 22, 79, 82

implicit 17

Turbo Pascal OOP Guide

B o R L A N D
1800 GREEN HILLS ROAO, P.O. BOX 660001 , scans VALLEY, CA 95066-0001 , (40B) 438-5300 •• PART ~ llMN-PAS03-55 • BaR 1309
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK, TWYFORO, BERKSHIRE, RG10 9NN-ENGLANO
43 AVENUE DE L'EUROPE-BP 6, 78141 VELIZY VILLACOUBLAY CEDEX, FRANCE

