

TURBB PABCAl®

'''''B
Borland's No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions.
Therefore, you must treat this software just like 0 book, with the following single exception. Borland
International authorizes you to make archival copies of the software for the sole purpose of backing­
up our software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used by any number
of people and may be freely moved from one computer location to another, so long as there is no
possibility of it being used at one location while it's being used at another. Just like a book that can't
be read by two different people in two different places at the same time, neither can the software
be used by two different people in two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

Borland International grants you (the licensed owner of Turbo Pascal Tutor) the right to incorporate
toolbox routines into your programs. You may distribute your programs that contain Turbo Pascal
Tutor routines in executable form without restriction or fee, but you may not give away or sell any
part of the actual Turbo Pascal Tutor source code. You are not, of course, restricted from distributing
your own source code.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International,
Inc. ("Borland") warrants the same to be free of defects in materials and workmanship for a period
of 60 days from the date of purchase. In the event of notification within the warranty period of defects
in material or workmanship, Borland will replace the defective diskette or documentation. If you need
to return a product. call the Borland Customer Service Department to obtain a return authorization
number. The remedy for breach of this warranty shall be Ii mited to replacement and shall not encompass
any other damages, including but not limited to loss of profit, and special, incidental, consequential,
or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but
not limited to implied warranties of merchantability and fitness for a particular purpose with respect
to defects in the diskette and documentation, and the program license granted herein in particular,
and without Ii miting operation of the program license with respect to any particular application, use,
or purpose. In no event shall Borland be liable for any loss of profit or any other commercial damage,
including but not limited to special, incidental, consequential or other damages.

GOVERNING LAW
This statement shall be construed, interpreted, and governed by the laws of the state of California.

First Edition
Printed in USA

9 8 7 6 5 4 3 2

Turbo Pascal® Tutor
A Self-Study Guide to Turbo Pascal on the Macintosh™

Copyright @1987
All rights reserved

Borland International
4585 Scotts Valley Drive
Scotts Valley, CA 95066

U.S.A.

INTERNATIONAL

Turbo Pascal. Turbo Tutor, and SideKick are registered trademarks of
Borland Intemational. Inc. Other brand and product names are trade­

marks or registered trademarks of their respective holders.

Printed in the U.S.A.

10 9 8 7 6 5 4 3 2 1

Table of Contents

Introduction 1
How to Use this Book .. 1
What this Book Isn't .. 2
The Disk .. 2
Typographical Conventions 3
A Note on Terminology .. 3
What You'll Need .. 3
Contacting Borland .. 4

Part 1 TURBO PASCAL FOR THE ABSOLUTE NOVICE

Chapter 1 Getting Started with Turbo Pascal 7
Information Resources 8
Files on the Disk ... 8

Chapter 2 Computer Basics 11
Myth versus Reality ... 11

Computers Are Fast .. 12
Computers Are Stupid .. 12
Computers Are Literal .. 12

Computer Hardware .. 13
Central Processing Unit ... 13
Memory .. 13
Mass Storage .. 15
Input and Output Devices .. 15

Digital Data ~ 16
Addresses ... 17

Computer Software .. 17
System Software ... 18
Application Software ... 18

Characters ... 19
Review .. 21

Chapter 3 A Brief History of Programming 23
In the Beginning .. 23
Programming Shorthand .. 24
High-Level Languages ... 25
Programming Languages and Microcomputers 25

And Finally ... Pascal .. 26
Interpreters and Compilers 26
The Turbo Pascal Advantage. .. 28

Chapter 4 Getting Ready to Use Turbo Pascal 29
Backing Up: Why and How to 29

Single-Drive Machines .. 30
Two-Drive Machines ... 31
Hard Disk Users ... 31

Using Turbo Tutor .. 32
The Test Option .. 32
Modifying the Examples .. 33

Chapter 5 Using Turbo Pascal 35
Starting Turbo Pascal .. 35
The Menu Bar .. 36
The Editor Window ... 36

Editing Text .. 37
Highlighting Lines ".................................... 38
Deleting Text .. 37

Edit Menu Commands. .. 38
The Undo Option ... 38
The Cut and Copy Operations 39
The Paste Operation .. 39

Scrolling 39
Sizing and Moving Windows 40

Command-Key Equivalents 40
A Quick Tour of the Menus .. 40

The Apple Menu. .. 41
The File Menu ... 41
The Edit Menu. .. 43
The Search Menu .. 44
The Format Menu .. 45
The Font Menu .. 46
The Compile Menu. .. 46

Entering a Program. .. 47
Compiling and Running FirstEffort 48
Saving Your Source Program 51
Saving the Object Program 52
Finishing Up ... 53
Review .. 54

ii

Part 2 A PROGRAMMER'S GUIDE TO TURBO PASCAL,

Chapter 6 The Basics of Pascal 57
Some Pascal Terms .. 57

Data Types .. 58
Predefined Data Types. .. 59
User-Defined Data Types· 60

Identifiers .. 61
How to Read a Syntax Diagram 62

Exercises 64
Reserved Words. .. 64
Constants .. 65

Constant Definitions .. 65
Variables ... 66

Variable Declarations ... 66
Operators .. 67
Expressions .. 68

The Order of Operations in Expressions: Precedence 69
Exercises , .. 70

Statements ... 71
Comments ... 72

A Programming Example 72
The Program Heading 73
The Declaration Part .. 74
The Statement Part .. 74

Exercises .. 77
Review .. 78

Chapter 7 Program Structure 79
The Program Heading ... 80
The Declaration Part .. 81

Formatting Your Declarations .. 82
The Statement Part .. 83

Formatting Your Statements 83
Statement Types ... 84

Comments: The Rest of the Story 86
Review .. 88

Chapter 8 Predefined Data Types 91
Integers .. 92

Integer Operators .. 92
Integers and Arithmetic Overflow .. 93
Exercises .. 94

Long Integers .. 95

iii

Converting Between Types LongInt and Integer 95
Real ... 96

Real Operators. .. 96
Exponential Notation ... 96

Exercises .. 98
Boolean .. 98
Char ... 99
Strings ... 99

String Constants ... 99
Declaring String Variables 100

Review ... 102

Chapter 9 Defined Scalar Types 103
Enumerated Scalar Types. .. 104

Ordinal Values ... 106
Standard Functions for Scalar Types 106
Cyclical Enumerated Types and Range Errors .. 108

Exercises .. 109
Compiler Directives: Range-Checking 109

A Useful Trick: Undefined Values in Enumerated Types 110
Subranges .. 111

Subranges as Anonymous Types 112
Input and Output .. 113
Memory Usage .. 113
Review ... 114

Chapter 10 Control Structures 115
Conditional Execution: The If Statement .. 115

The Compound Statement 116
Boolean Expressions .. 118
More Boolean Operators 119

Repetitive Tasks .. 120
Iteration ... 120
The While Statement .. 121
Repeat ... Until .. 121
The For Statement. .. 122
Endless Loops .. 125

In Case of Infinite Loop, Break Glass 126
The Case Statement. .. 127

The Constant List ... 130
Review ~ 130

Chapter 11 Procedures and Functions 132
Subprograms .. 132

iv

Procedures .. 133
Scope ... 136

Exercises .. 140
The Lifetime of Local Variables. .. 141
Parameters .. 142
Functions ... 146
Recursive Procedures ... 148
Forward Declarations ... 150
Scope and Recursion. .. 151
The Exit Procedure .. 152
Review ... 154

Chapter 12 Arrays 155
Array Assignments .. 159
Range-Checking and Arrays 160
Initializing Arrays .. 161
Representing an Array in Memory 163
Packed Arrays ... 164
Review ... 164

Chapter 13 Strings 165
String Types 166
String Operators, Functions, and Procedures 167

String Assignments .. 167
The Length Function .. 167
The Concat Function and the + Operator 168
The Copy Function .. 169
The Pos Function .. 169
The Delete and Insert Procedures 170
The Chr Function ... 172

Representing Strings in Memory: Strings as Arrays :...... 173
String Comparisons .. 175
Passing Strings to Procedures and Functions 176
Review ... 177

Chapter 14 Records 179
The With Statement .. 183
Variant Records .. 186
Free Unions: Omitting the Tag Field 189
Review ... 191

Chapter 15 Sets 193
Building a Set: The Set Constructor 194
Defining a Set Type .. 195
Set Operations 196

v

Set Membership: The In Operator 196
Set Equality and Inequality 196
Set Union, Intersection, and Difference 197
Set Inclusion Operators .. 197
Set Disjunction ... 198

Review ... 198

Chapter 16 Pointers and Dynamic Allocation 199
Pointers .. 200
Assigning to Pointer Types 201
Dereferencing Pointers .. 201
Dynamic Allocation: The New Procedure. .. 202
Assigning to Pointers ... 203
The Special Pointer Value Nil 204
Pointers and Checkbook Data .. 206
A Second Approach: The Linked List 208
Adding Checks to the List 209
The Heap ... 211

The MaxAvail Function .. 211
Deallocation of Dynamic Variables: Memory Management 212

Dispose .. 212
Dangling Pointers .. 213
Multiple Pointers to the Same Object. .. 213

Review ...•............. 214

Chapter 17 Files 215
Turbo Pascal's I/O Procedures 215

Read and ReadLn ... 216
Write and WriteLn .. 216

Controlling Numeric Formatting: Write Parameters 217
File Types ... 218
Reading and Writing Text Files 219

Read and ReadLn with Text Files .. 220
Eof, Eoln, SeekEof, and SeekEoln , 220

The Macintosh File System 221
Volumes ... 221
Files ... 221
Colons and File Names: Path Names 222
Types and Creators .. 223

Creator ... 224
Data Forks and Resource Forks 224

Creating a Text File with Turbo Pascal 225
Rewrite .. 226
Sending Text to the File 227

vi

Close ... 227
Reading a Text File .. 228

Random-Access Files ... 229
Properties of Random-Access Files 230
The Seek Procedure· ; .. 230

The FilePos Function ... 231
Creating a Random File 231

Miscellaneous File Routines 233
Talking to Your Computer's Peripherals: Device I/O '" .. 234

Logical Devices 234
Advanced Keyboard Handling: KeyPressed and ReadChar 234

1/ a Error Handling .. 235
Review ... 238

Chapter 18 Units 239
Pascal and Big Programs .. 239
The $I(nc1ude) Directive .. 240
Units ... 243

How Units Work .. 243
Unit Syntax: Interface and Implementation 245
Using a Unit. .. 249
Linking .. 250
Initializing a Unit ... 250
Moving Units into Turbo Pascal. .. 251

Review ... 253

Chapter 19 A Sample Program 255
Turbo Typist. .. 255
About TypistHelper's Uses Clause 257
Step 1: The Main Program 258
Step 2: File I/O ... ' 259
Step 3: The Main Control Loop .. 259
Animation .. 260
Dare to Experiment .. 263
Review ... 263

Part 3 ADVANCED TOPICS IN TURBO PASCAL

Chapter 20 Stacks, Queues, Deques, and Lists 267
Linked Lists ... 267

Single versus Double Links .. 268
Starting a Linked List 268

Circular Linked Lists .. 269
Insertion .. 270
Deletion ... 271

vii

Stacks .. 272
Queues ... 274
Deques ... 275
Lists .. 277
Review ... 278

Chapter 21 Trees, Graphs, and Other Nonlinear Structures 279
An Introduction to Trees .. 279

Binary Trees .. 280
Searching Binary Trees 281
Inserting into Binary Trees 281
Traversing Binary Trees 282
Deleting Nodes and Subtrees 283

Non-Binary Trees ... 284
Graphs ... 285
Sparse Arrays. .. 286

Mixed Sparse Arrays .. 289
When to Use Sparse Arrays 290

Review ... 290

Chapter 22 Sorting and Searching 292
Sorting. .. 292

Insertion Sort .. 293
Shellsort ... 294
Quicksort .. 296

Searching .. 298
Sequential Search ... 298
Binary Search .. 299
Hashing ... 300
External Search ... 301

Review ... 302

Chapter 23 Writing Large Programs 305
Faking Large Arrays .. 306
32K of Global Variables ... 308
Stack Data. .. 308

Large Local Variables .. 309
Passing Large Structures by Value 310
Recursion .. 310

Segmentation: The $S Directive 311
Compile-Time Memory ... 313

Chapter 24 The Goto Statement 315
Syntax of the Goto Statement 315
How to Use the Goto Statement-And Why Not to 316

viii

Review ... 317

Chapter 25 Computer Numbering Systems: Boolean Operations
on Integers 319

Numbers as Bits and Bytes: Representing Integers in Memory 319
Place Value ... 319

Exercises .. 322
Reversing Base Values 322

Exercises .. 323
The Special Relationship between Binary and Hex 324

Representing Numbers in Memory 325
Two's Complement Notation: Representing Negative Integers 325
Boolean Operations on Integers 327

Fixing Bit 7 of W.S. Files 327
Using And for Fast Modulo Arithmetic 328

The Shift Operators: Shl and Shr .. 329
Review ... 330

Part 4 USING THE POWER OF THE MACINTOSH
Beyond ReadLn and WriteLn 332

Chapter 26 The Visual User Interface 333
The User Interface: Human Meets Machine 333

Simulating the Real World. .. 334
Standardization .. -. 335

The Mouse .. 337
Review ... 338

Chapter 27 Macintosh Hardware 339
The Processor .. 339
The Display ... 340

Accessing the Screen Buffer Directly 342
The Mouse .. 344
The Keyboard ... 344

Special Keys .. 345
Keyboard Hardware. .. 345

Internal Drive. .. 345
Speaker .. 346
Expansion Connectors: Closed versus Open Architecture 346
The Ports. .. 347
Battery-Protected Clock and Option Settings 347
Review ... 348

Chapter 28 ROM Software: The Toolbox 349
The Hardware/Software Pyramid 349

ix

The Routines in ROM .. 350
Pascal and Macintosh: A Perfect Marriage 351
Units and the Toolbox .. 351

Tapping the Toolbox. .. 351
Unit Memtypes .. " 352
Unit QuickDraw .. 352
Unit OSIntf ... 353
Unit ToolIntf .. 353
Unit PackIntf .. 353

The Trap Mechanism ... 353
The Inline Directives .. 354
A-Line Traps ... 356
Units and Inline Directives 356

Review ... 357

Part 5 PROGRAMMING THE MACINTOSH

Chapter 29 Memory Management: Theory 361
Stack and Heap: The Memory Map 361
About the Stack .. 362

Size Limits of Stack Variables .. 366
Summarizing Stack Usage .. 366
Stack Overflow ... 368

Under the Stack: The Heap 368
Sharing the Heap ... 370

Review ... 371

Chapter 30 Memory Management: Practice 373
Heap Zones ... 373
NewPtr = New. .. 374
The Fragmented Heap .. 377
Compacting the Heap. .. 380

Relocatable Blocks and Handles .. 383
It's Up to You .. 386
Applications for Relocatable Blocks 386
Checkbook Program #49 .. 387

Error Detection ... 388
Master Pointer Blocks .. 388
Purging and Heap Compaction 389

How an Application Can Tell if a Block Has Been Purged 390
Locking a Relocatable Block 391
Setting the Boundary between Stack and Heap 392
Simulating Big Arrays .. 393
Review ... 394

x

Chapter 31 Resources and Resource Files 395
The Need for Resources 395
Data and Resource Forks 396
The System File .. 397
Application Resources .. 397
Resource Manager Routines 398

Releasing Resources 399
A Sample Program .. 399

Creating a Resource File: RMaker .. 400
Running RMaker .. 401
Review ... 403

Chapter 32 QuickDraw: Theory 405
Points, Rectangles, and the Coordinate Plane 406

Pascal and Points ... 407
Rectangles ... 409

Drawing into Bits .. 410
Bit Images. .. 411

Of Points and Pixels ... 414
More QuickDraw Data Types 414

GrafPorts .. 415
QuickDraw's Global Variables 417
The Pen ... 418

Pen Transfer Modes ... 418
Clipping and Regions .. 420

Chapter 33 QuickDraw: Sample Programs 423
Doing without the Terminal Window 423
Drawing Lines .. 425

Drawing Lines with the Mouse 427
Automatic Art: The Random Function 428
Drawing Rectangles .. 429

Drawing Ovals ... 431
Round-Cornered Rectangles .. 431

Drawing Text .. 432
The Text-Drawing Routines 433
Fancier Text .. 434

Converting Numbers to Text 436
Manipulating Rectangles .. 437
Regions and Clipping .. 439
ScreenBits and Other BitMaps. .. 441
Drawing Pictures. .. 445
Stuff a Wild Cursor ... 446
Review ... 447

xi

Chapter 34 Events 449
The GetNextEvent Routine 449

Using GetNextEvent ... 450
Buffering .. 451
Null Events ... 451
Common Keyboard Events 452
Mouse Events. .. 453
GetNextEvent and the Structure of Macintosh Programs 454
The EventWorkbench Sample Program .. 454

Running EventWorkbench 456
Testing the Modifiers Field 457
Studying Mouse Events .. 458
Disk Insertion Events .. 459
Application-Defined Events 459
Extra Credit 459

Review ... 460

Chapter35 Windows 461
What's a Window? ... 461
What the Window Manager Does for You. .. 464
Windows Equal GrafPorts .. 465

The Fields beyond the GrafPort 465
Structure and Content Regions .. 466

Pointers, GrafPorts, WindowRecords, and Type Coercion. 467
Drawing a Window .. 468

Key Window Manager Routines 470
Using the Window Manager .. 471

About WindowDemo.Pas 474
Initializing ... 474
Creating a Window ... 474
The Window Appears 475

Once More, with Feeling .. 478
Update Event Processing. .. 478
Procedure DoUppate .. 479
TrackGoAway ... 482
Activate Events .. 483

Experiment .. 483
Review ... 484

Chapter 36 Controls 485
Controls: Active and Inactive 487
Part Codes .. 487
The Control Record. .. 487
Key Control Manager Routines. .. 488

xii

Reading and Writing a Control's Value 490
ControlDemo.Pas .. 490

ControlDemo.R .. 491
Defining CNTL Resources .. 492
Defining WIND Resources 492
Running ControlDemo .. 492
Initializing ControlDemo .. 493

The Sound Manager 493
Loading Control Resources .. 494
Update Events and Controls .. 495
Processing Activate Events .. 495
Mouse-Downs ... 496
Handling the Radio Buttons .. 497

Review ... 498

Chapter 37 Menus and Desk Accessories 499
Menu Data Structures. .. 499
Special Characters in the Menu Item String 501
Menu Manager Routines .. 501

Interpreting MouseDowns in the Menu Bar .. 502
Fine Points 503

Supporting Desk Accessories 503
Mouse-Downs and DA Windows 504
DA Menus ... 504

Summarizing DA Support-Requirements 505
MenuDemo.Pas .. 505

New Data Structures .. 505
Procedure Initialize .. 506

DAs and Menus .. 508
Key-Down Processing for Command-Key Equivalents 509

Extra Credit ... 509
Review ... 510

Chapter 38 Dialogs 511
Classes of Dialogs .. 511
Dialog Data Structures .. 513
Dialogs and Resources .. 514

Dialogs and RMaker ... 514
Describing Items in the Item List 515
EditText Items .. 516

Dialog Manager Routines 517
ProcPtrs: Customizing ModalDialog 517
Processing ItemHit .. 518
Getting Information on the Items in the Item List 518

xiii

Getting Information About EditText Items 519
Program DialogDemo.Pas 519

Working with the Beep Dialog 521
Copious Constants 522

Processing Check Boxes .. 524
Handling the EditText Field 525

Experiment ... '. 526
MemoryDemo.Pas .. 526

Review ... 526

Chapter 39 Reading and Writing Files 529
Terminology: Volumes and Files 530

Path Names .. 530
Types and Creators .. 531

The File Manager's View of Files 531
Working with Files: The Routines. .. 532

Type OSErr and I/O Error Handling. .. 533
Back to FSOpen .. 533
Setting the Mark .. 534
Getting Volume Reference Numbers .. 535
Reading Files: Putting It All Together 535
Writing a File ... 536

An Example of Writing to a File .. 537
Miscellaneous File Manager Routines 537
Fetching Finder Information .. 538

The Standard File Package. .. 538
SFPutFile .. 539
SFGetFile .. 541

Macintosh File I/O: The Short Form 541
FileDemo.Pas .. 542

Inside FileDemo.Pas .. 543
DoOpen's Local Variables 545
Calling SFGetFile .. 545
Opening the File 546
Reading File RefNum .. 546
Sending Content Bytes to the Screen .. 547

Find the Bug ... 547
Review ... 548

Chapter 40 MacTypist: A Macintosh Program 549
Using MacTypist .. 549

Fine Points 550
MacTypist's Tricks: The Background File 551
Animation .. 553

xiv

Data Structures .. 553
MacTypist's Rectangles ... 555
The Main Program ... 556
Initializing MacTypist .. 556

Initializing the Managers .. 557
Initializing the Sound Buffer .. 558
Decoding Background.Data 559

Loading the Offscreen Bit Image 560
Initializing MyBitMap ... 562
Loading Background.Data 562

An Aside on Alerts ... " 562
Unpacking the File .. " 563
Defining the Image Rectangles " 564
The Rest of Initialization 565

Window Processing: Activate Events .. " " 566
Update Events 567
A Few Passes through the Main Event Loop 569
Getting the Word to Spell .. 570
Procedure MyTasks .. 571

Moving the Car ... " 573
Crashes .. 574
IncrementOdometer ... " 574
Key-Down Processing ... 576

MacTypist.R .. 579
Defining ALRT Templates .. 579
Defining String Lists ... " 580
Icon Resources ' 581
Finder Resources .. 582
File Reference and Bundle Resources 583

Review ... 584

Chapter 41 Debugging 586
Think First, Then Type .. 586
Errors: Compile Time versus Run Time 587
Run-Time Errors ... 587
Range Testing ... 588
Running Out of Heap ... " 590
Stack Overflow .. 591
Common Problems .. 592
The Toolbox and Error Checking 593
Handle Pitfalls: What Your Mother Didn't Tell You " .. '" 593

Handle Problems II .. " 596
Code Segments and Dangling Pointers 597

xv

A voiding Heap Problem II 597
Strategies in Debugging .. 598

MacsBug .. 599
The Programmer's Switch 600
Getting Into MacsBug ... 601
The Ocean of Hex ... 602

Review ... 604

Appendixes

Appendix A Summary of Key Toolbox Routines 609
Memory Manager .. 609
Resource Manager. .. 611
QuickDraw .. 612
Font Manager. .. 620
Event Manager .. 621
Window Manager .. 622
Control Manager .. 625
Menu Manager .. 627
Desk Manager ... 629
Dialog Manager .. 629
File Manager .. 631
Standard File .. 633
Miscellaneous Routines ... 634

Appendix B Answers to Exercises 637
Chapter 3 ... 637
Chapter 6 ... 637
Chapter 9 ... 638

First Set. .. 638
Second Set .. 638
Third Set. .. 638

Cha pter 10 .. 639
Chapter 25 .. 639

First Set. .. 639
Second Set .. 639

Appendix C Help! 641

Appendix D Error Codes 647
System Errors (Bomb Alert IDs) 647
I/O Errors (File System/Memory Manager /Resource Manager) 648

xvi

Appendix E The Macintosh Character Set 651

Suggested References 653
Books ... 653
Magazines .. 654
Information Services 654
Other ... 654

Glossary 655

Index 663

xvii

N T R o D u c T o N

Welcome to Turbo Tutor, the tutorial for Borland's Turbo Pascal for the
Macintosh. This book, in tandem with the sample programs on the disk,
teaches you how to write programs on the Macintosh in Turbo Pascal.

How to Use this Book

This book is really two books in one: a textbook on Turbo Pascal and a
textbook on writing Macintosh programs in that language. The first three
sections describe how to use Macintosh Turbo Pascal to write "standard"
Pascal programs; that is, programs that run on the Macintosh pretty much
as they would run on a standard personal computer such as an IBM PC.

You won't get into Macintosh-specific material until Part 4, "Using the
Power of the Macintosh." If you already know standard Pascal (perhaps
you've used the IBM PC version of Turbo Pascal), you may choose to skim
these first three sections and plow right into the Macintosh material. But be
warned: True Macintosh programming requires a good grasp of the
language, particularly of pointers and data typing.

If you're a novice computer user or programmer, begin with Part 1, "Turbo
Pascal for the Absolute Novice." It introduces basic information about
computers and programming. There's also a simple Pascal program
example that you learn to compile and execute.

If you're a more experienced programmer, you may want to glance over the
first part and then plunge into Part 2, "A Programmer's Guide to Turbo
Pascal." This section provides the basic elements of programming in Pascal,
moving step by step through the different aspects of Pascal in general and

Introduction

Turbo Pascal in particular. You'll see how easy Turbo Pascal makes it to
move existing standard Pascal programs over to the Macintosh.

Initially, you'll write simple programs. As you progress, you'll tackle
increasingly sophisticated code. Part 3, "Advanced Topics in Turbo Pascal,"
introduces such subjects as nonlinear data structures, linked lists, stacks,
typed constants, and writing large programs.

Part 4, "Using the Power of the Macintosh," provides an overview of the
remarkable Macintosh computer-the hardware and software features that
make it so different from conventional personal computers.

Part 5, "Programming the Macintosh," digs into the Macintosh/Pascal
relationship, working through the major components of the software
Toolbox. By the end of Part 5, you'll have seen the insides of a true double­
clickable Macintosh application.

Appendices provide reference information. Appendix A is a synopsis of the
key Toolbox procedures and functions built into the Macintosh, B gives the
answers to the exercises sprinkled within the book, and C provides answers
to common questions about Turbo Pascal. Appendix D lists and explains
the system error codes, while E is a chart of the Macintosh character set.

Following the appendices are a suggested references list, a glossary of
technical terms, and an index.

What this Book Isn't

This book is intended to complement, not replace, the Turbo Pascal Reference
Manual. It will help you grasp basic Pascal principles and apply them to the
Macintosh programming environment. The reference manual can then be
used to give exact definitions of the Turbo Pascal implementation. In other
words, read this book from beginning to end, then use the reference
manual like a dictionary when specific questions come up.

The Disk

The disk that accompanies this package contains the source form of all the
the programs discussed in the book. The disk also contains an application
called Turbo Tutor-see the next chapter for the complete list of the disk's
contents and an explanation of how to use Turbo Tutor.

2 Turbo Pascal Tutor for the Macintosh

Typographical Conventions

All typefaces used in this manual were produced by Borland's Sprint: The
Professional Word Processor. Remember that any boldface type in this book
within program code is for clarity only: Turbo Pascal itself does not
recognize or care about such special type treatment of words.

Roman

Keycaps

Monospace

Italics

Boldface

The body is set in normal, roman type.

This typeface is used for keys on the computer
keyboard, such as Return and Options.

Program code is in typewriter-like type.

Italics emphasize certain concepts-identifiers, units,
types, procedures, and functions.

Terms that may be unfamiliar are also italicized when
first mentioned.

Boldface type highlights reserved Pascal keywords like
begin and end. (What's a keyword? Stay tuned.)

A Note on Terminology

You may find references in this manual to the Command and Backspace keys.
On the Macintosh SE and II, Apple has renamed these keys Apple and Delete,
respectively. Some keyboards have both the Apple and cloverleaf symbols
on the Command key.

The functions and uses of these keys haven't changed; only their names
have.

What You'll Need

Besides this tutorial and the Turbo Pascal Reference Manual, you'll need a
few other things. First and foremost, you'll need a Macintosh. This is very
much a hands-on course: The best way to learn Pascal is to actually do the
things we tell you to do as you work through this book. Only by actually

Introduction 3

writing Turbo Pascal programs can you gain an appreciation for the
language.

You'll also need a supply of blank disks, unless your computer has a hard
disk, in addition to the Turbo Pascal program disk and the disk that came
with this book.

It will be helpful to have a printer connected to your computer. Bugs are
often easier to spot on paper than on the screen.

Contacting Borland

The best way to contact Borland for any assistance is to log on to Borland's
forum on CompuServe: Type GO BOR from the main CompuServe menu
and select ENTER LANGUAGE PRODUCTS FORUM from Borland's main menu.
Leave your questions and comments for the support staff here.

If you prefer, write a letter describing your problem in detail and address it
to Technical Support Department, Borland International, 4585 Scotts Valley
Drive, Scotts Valley, CA 95066, USA.

As a last resort, you can telephone Technical Support. Please have the
following information handy before you call:

• the product name and version number

• your computer make and model number

• your operating system and version number

Now find a comfortable and quiet place, preferably with a large work area
so that you can spread out your work and keep everything handy. If there's
a phone nearby, unplug it. Take a deep breath, and enjoy your exploration
of Turbo Pascal.

4 Turbo Pascal Tutor for the Macintosh

p A R

TURBO PASCAL FOR THE
ABSOLUTE NOVICE

T

1

5

6 Turbo Pascal Tutor for the Macintosh

c H A p T E R

1

Getting Started with Turbo Pascal

There is no easy way to learn a "foreign" language. Going through the
material in this book will take time and effort. But when you finish, you'll
have acquired the skills necessary to use what many consider to be the
most elegant and powerful programming language available today: Turbo
Pascal.

We don't know how much you already know about computers. So we'll
assume that you're like most people when they get their first computer and
consider programming it: a bit overwhelmed, maybe even intimidated by
all the jargon attendant to programming.

We further assume a basic level of Macintosh competence. You should
already know how to turn the machine on, insert and eject disks, point and
click, choose from pull-down menus, start up applications, and manipulate
files (copy, delete, rename). If you would like to review these procedures
before beginning, your Macintosh owner's manual is a gold mine of
informa tion.

If you've spent some time with MacWrite or another word-processing
program, you'll find that the Turbo Pascal editor works similarly.

The Macintosh is the most sophisticated personal computer to date, yet it's
the simplest to learn to use. Turbo Pascal for the Macintosh is one of the
most sophisticated program development systems available on any
computer, at any price; it, too, is relatively straightforward to learn. Its fast
compilation, windowing editor, and integrated design make it an ideal
choice for anyone considering Macintosh programming: professional
developer, hobbyist, or student.

Getting Staried with Turbo Pascal 7

Information Resources

Successful programming depends less on having a Vulcan-like memory
than in knowing where to find answers. Programmers work best with a few
key references within easy reach, and we hope Turbo Tutor becomes that
sort of resource for you. Later in your studies, it will be helpful to have
access to the set of technical manuals known as Inside Macintosh, which
provides the detailed information necessary to write complex Macintosh
applications. Inside Macintosh supplements the information presented in
Part 5 of this book.

People are good resources, too. The dealer who sold you your Macintosh is
a potential information source. If you don't have a helpful dealer or
Macintosh-knowledgeable friend, a local Macintosh users' group can be
invaluable. You can find out about such groups in computer magazines or
by asking around at computer stores.

Files on the Disk

The disk contains a variety of programs that you can study and adapt for
your own purposes. There's an interactive tutorial program called Turbo
Tutor: It lets you peruse the source code of several programs, each
demonstrating a particular aspect of Pascal and its output. These exercises
come complete with quizzes to test your understanding. Turbo Tutor is
explained more fully in Chapter 4.

The following table contains a brief description of the disk's contents.

Readme

Turbo Tutor

Tutor.Pas

Tutor.R

Tutor.Rsrc

8

Table 1.1: Files on the Distribution Disk

This file contains any information more current
than that in this manual. To read it, double-click
its icon.

A tutorial program that teaches Turbo Pascal
concepts on the Macintosh.

The source-code form of the Turbo Tutor
program. It requires a number of include files
(ending in the extension .Inc) for compilation.
Resource source file for Turbo Tutor program
(that is, the RMaker input file).
Output of the RMaker program (resource
compiler) given in the file Tutor.R. Must be

Turbo Pascal Tutor for the Macintosh

Typist

Typist. Pas

Typist. Data

TypistHelper.Pas
TypistHelper

MacTypist

MacTypist.Pas
MacTypist.R
MacTypist.Rsrc
Background.Data

Lessons

Miscellaneous

Manual.Pas

Animals.Pas

EventWorkbench.Pas
Window Demo. Pas

Control Demo

ControlDemo.Pas
ControlDemo.R
ControlDemo.Rsrc

Dialog Demo

DialogDemo.Pas

present to run Turbo Tutor from within Turbo
Pascal.

A typing game using standard (non-Macintosh)
terminal input/ output.
The data fife for the game, containing the words
to be typed out.
Source code for unit TypistHelper.
The object form of unit TypistHelper (a
UnitMover document).

The same typing game as a true Mac application.
The RMaker input file.
The RMaker output file.
MacPaint file needed by MacTypist.

contains sample procedures for Turbo Tutor.
These procecfures are included automatically
when you compile the Turbo Tutor program. You
can also compile each .Inc file separately by
following the instructions at the end of each file:

Arrays l.1nc Recursion.lnc
Arrays2.1nc ReEeatUntil.Inc
Chars.lnc Scalars.lnc
ForDo.lnc Setsl.1nc
IfCase.lnc Sets2.1nc
Integers.lnc Strings l.1nc
Pointers.lnc Strings2.1nc
RandomFiles.lnc WhileDo.lnc
ReadText.lnc WriteText.lnc
Reals.lnc

has all the source code examples shown in this
book. Take advantage of it if you don't want to
type in a long examEle.
uses binary trees ana. artificial intelligence to play
a guessing game.
demonstrates event processing.
demonstrates window management.

demonstrates control processing.
The RMaker input file.
The RMaker output file.

demonstrates dialog processing.

Getting Staried with Turbo Pascal 9

DialogDemo.R
DialogDemo.Rsrc

File Demo

FileDemo.Pas
FileDemo.R
FileDemo.Rsrc

Menu Demo

MenuDemo.Pas
MenuDemo.R
MenuDemo.Rsrc

QuickDraw Examples

The RMaker input file.
The RMaker output file.

illustrates choosing and reading files.
The RMaker input file.
The RMaker output file.

shows menu and desk accessory processing.
The RMaker input file.
The RMaker output file.

contains .Pas files demonstrating QuickDraw
calls.

Now, let's begin by briefly discussing computers in general-the myths
surrounding them, their capabilities and limitations, and some hardware
and software basics.

10 Turbo Pascal Tutor for the Macintosh

c H A p T E R

2

Computer Basics

"Things are always at their best in their beginning."
-Blaise Pascal, Lettres Provinciales, No.4

There are serious misconceptions about what computers are and what they
can do-so many that we're going to devote the first part of this chapter to
myth debunking. We'll then look at some basic properties of computers:
hardware, digital information, software, and characters.

Myth versus Reality

If you are new to computers, you may have some unrealistic expectations
based on movies or science-fiction books. Authors tend to give computers
powers beyond those of mere machines, such as true intelligence and
human emotions.

So what are computers really like? Well, beyond the misconceptions lie
three basic properties shared by all modern computers:

• Computers are fast.
• Computers are stupid.
• Computers are literal.

Computer Basics 11

Computers Are Fast

Computers are incredibly fast at certain simple, repetitive, usually numeric
tasks-like adding numbers. For instance, a Turbo Pascal program that
counts from zero to a million by ones would finish the job in six seconds. (If
you were to count a number every second, you would take eleven and a
half days to reach a million.)

Computers Are Stupid

Computers are stupid in the extreme: They cannot do anything without
being told explicitly to do so.

Every single action a computer takes is based on an instruction given to it.
The actual, physical hardware is useless without software; that is, without the
necessary commands to make it do useful work. If you turn on a Macintosh
without built-in software, it does absolutely nothing. It doesn't know how
to display characters on the screen or accept characters from the keyboard.
This is why the Macintosh, like all modern computers, has startup software
built into its electronic circuits-enough to display an opening screen and
to read other programs (like the Finder) from disk.

Computers Are Literal

Computers take every instruction they are given literally. They do exactly
what they are told-no more, no less. Even if you tell it to do something
unreasonable, the computer blindly follows your orders. For example, if
you were to write a program that told the Macintosh to count from zero to
a trillion by zeros, it would count o ... 0 .•• 0 •.• very quickly, and
potentially forever, until you stopped it. A human being would quickly see
that counting by zeros accomplishes nothing and give up; the computer has
no such wisdom.

The bottom line is that computers aren't magic. They don't do everything
well.

All that said, there is a certain fascination in making that mass of wire and
silicon do what you want it to. Be forewarned: you may find yourself
spending countless hours hunched over your keyboard, adding just one
more feature or removing one last bug.

12 Turbo Pascal Tutor for the Macintosh

Just keep in mind that you must tell your computer exactly what you want
it to do, and when and how you want it to do the task. Fortunately, this
process is now much simpler than it used to be-as you shall see in the next
sections.

Computer Hardware

Hardware refers to the physical equipment that makes up a computer
system. A Macintosh consists of the following components:

• Central Processing Unit (CPU)
• Memory: Random-Access Memory (RAM) and Read-Only Memory

(ROM)
• Mass storage device(s): floppy disks or hard disk drive
• Input devices (keyboard, mouse)
• Output devices (screen, printer)

Central Processing Unit

The CPU is the "brain" of the computer. (Brain may be too strong a word,
because the CPU isn't very smart-it is capable of executing only very
simple instructions.) The CPU can do such things as retrieve a number
stored in a memory location, get another number, add the two numbers,
and store the result in yet another memory location.

The CPU type determines the kinds of programs your computer can run.
Some popular CPUs (also known as microprocessors) are the 8080 and Z-80
(which are used in computers running the CP/M operating system) and the
8086 family (used in IBM PCs and compatibles to run MS-DOS).
Macintoshes use processors made by Motorola, the 68000 (in the Plus and
SE) and the 68020 (in the Macintosh II).

Memory

Every Macintosh has read/write, random-access memory (RAM), which
stores programs and information while the machine is turned on. It's called
"random-access" because its microprocessor can read or write any part at
any time, rather than having to access things in a particular order. You can

Computer Basics 13

change what's stored in RAM very quickly: It takes the processor on the
order of a millionth of a second (0.000001 seconds) to read or write a single
data item in RAM. A Macintosh contains anywhere from 128,000 to over
4,000,000 memory cells of RAM.

There's also read-only memory (or ROM). ROM stores the instructions
(programs) permanently built into the computer and is just as "random­
access" as RAM. The Macintosh has hundreds of subroutines built into
ROM that are available for use by programs you write; you'll learn how to
use them in Part 5 of this book. ROM also has a startup routine that is
automatically executed every time you flip on the power switch; it
performs a self test, displays the familiar "Welcome to Macintosh" screen,
and loads and runs the Finder. Most Macintoshes currently contain 128K of
ROM.

The Macintosh Plus is extremely difficult to take apart (the process requires
two tools not often found outside an Apple repair depot or a well-equipped
surgical suite), but the Macintosh II and SE aren't. If you look inside a Mac,
you'll see the logic board nestled at the bottom of the case. On this board are
the ROM, RAM, and CPU chips that form the heart of the Macintosh. The
various connectors on the back of the machine tie directly into the logic
board; the screen and disk drive are connected by cables.

Logic Board Processor

Figure 2.1 : The Insides of a Macintosh

14 Turbo Pascal Tutor for the Macintosh

Mass Storage

Computers have a limited amount of RAM. (A rule of thumb holds that at
any given time a personal computer has about half as much RAM as its
owner would like.)

RAM has room for a relatively small amount of information at anyone
time, certainly not all the programs and data you would prefer to have
available. Another limitation is that for most types of RAM, including that
used in the Macintosh, turning off the power for even a fraction of a second
causes everything stored in RAM to be lost.

The solution to RAM's limitations is mass storage. Also called secondary
storage to differentiate it from primary storage (memory), these peripheral
devices store large amounts of data with or without the power turned on.
Macintosh mass storage takes the form of one or more disk drives. Every
Macintosh has a built-in 3 1/2-inch drive. Even though there isn't anything
flexible about the hard shell that encases a Macintosh disk, for historical
reasons removable disks of this type are called floppy disks. (They are floppy
inside the shell.)

You may also have an external floppy drive (which doubles your storage)
or, on an SE or II, two internal floppy drives. If you're lucky, you have a
hard disk. It not only stores huge amounts of data, it also works with that
data many times faster than a floppy disk drive does.

For this book's purposes, we refer to mass storage as a disk drive unless it is
important to distinguish between a floppy disk and a hard disk.

Input and Output Devices

An input device sends data to the computer. The Macintosh's input devices
are its mouse and keyboard. The mouse sends position information
whenever it is moved and button status information (pressed or not)
continuously. The keyboard transmits data whenever a key is pressed.

An output device receives data from the computer. The Macintosh's primary
output device is the screen. A less important output mechanism is the
speaker. Other output devices include printers and modems.

Computer Basics 15

Digital Data

Your Macintosh's memory (RAM and ROM) can be thought of as a huge
wall of switches. Each switch has only two positions, on and off. When a
switch is on, it lets electricity flow to another part of the computer; when
it's off, electricity can't flow. Let's call the on state of the switch 1 and the off
state O.

A single switch controls (or represents) only a single bit (binary digit) of
information. If you arrange two switches side by side, four different things
can be controlled or represented, as shown here:

Switch A Switch B Number Represented

OFF a OFF a a
ON 1 OFF a 1
OFF a ON 1 2
ON 1 ON 1 3

And, if you have eight switches arranged next to one another, you can
control or represent 256 different things. Each switch you add doubles the
number of possible states. This system of representing quantities by as and
Is is called the binary system (or base 2). The system of numbers you're most
familiar with is the decimal system (base 10).

Now let's look at how the computer's memory stores instructions and
information. For the moment, think of RAM as a group of switches
arranged in a matrix of 8 columns by n rows. For a 64K memory, 65536
rows of switches are required. (In the context of programming, 1K equals
1024, so 64K = 64 * 1024 = 65536.) Each row can store an 8-bit code
representing a number, a character, or an instruction that the CPU
understands. The CPU is "told" what operation to perform via such a
coded instruction from memory.

As it turns out, 8 bits is an especially handy number of bits for computers to
work with, so a group of 8 bits is given a special name: a byte. If your
system contains 512K of RAM, it has the equivalent of 8 columns by 524288
rows of switches.

The switches that make up RAM are microscopic electronic circuits capable
of controlling the flow of electricity. They are contained in small (though
not microscopic) packages called integrated circuits, or chips, that are
mounted on the logic board along with the processor and other
components.

16 Turbo Pascal Tutor for the Macintosh

Addresses

Each byte of memory has a unique address: in a 128K system, addresses
range from 0 to 131071; in a 512K system, from 0 to 524287; and so on. The
processor uses this address to access a particular byte of memory, similar to
the way the telephone network uses phone numbers to access individual
phones out of millions.

The CPU retrieves instructions stored in RAM by :requesting ("dialing") the
contents of a particular address in memory. The binary code (1s and Os)
contained in memory passes over wires (or printed circuits) to the CPU.
CPU instructions are numeric codes that instruct the CPU to move data
from one location to another; add, subtract, multiply, and divide data; and
perform other basic operations. This binary code is called machine language.

If the instruction retrieved by the CPU happens to require additional data,
the instruction tells the CPU to go to a particular memory address and get
that data. If the instruction creates new data (say, the result of adding two
numbers), it instructs the CPU to place the new data in a vacant memory
location.

The individual operations that a CPU can perform are surprisingly
limited-reading and writing memory and basic arithmetic. The processor
may have a small repertoire, but it can perform that repertoire at the rate of
hundreds of thousands of instructions per second; this allows elaborate
operations to be built up by combining simple ones.

Computer Software

So far, we've tried to restrict our discussion to computer hardware. This is
difficult, however, because software is so closely related to hardware. One
without the other is useless. Computer software refers to instructions that
the computer can read to make it perform some function. Software that is
permanently encoded in ROM is called firmware-a semantic compromise
between hardware and software.

In general, computer software can be divided into two broad categories:
system software (or operating systems) and application software.

Computer Basics 17

System Software

When you program, you don't want to have to continually tell the
computer how to perform certain basic tasks-such as accept characters
from the keyboard, display characters on the screen, send characters to the
printer in the correct format, write a byte of data to the disk, read a byte of
data from the disk, or create and delete files. Indeed, if you had to tell the
computer how to do all these things, you'd never get around to the original
problem you set out to solve: Not only are these functions menial, they're
exceptionally hard to program.

Such tasks are handled by a program that is already written, usually by the
computer's manufacturer. It's called the operating system. An operating
system performs basic functions in response to commands that your
programs issue. This frees you to concentrate on the bigger issues of your
task, rather than the fine details of keyboard and disk hardware.

On the Macintosh, the role of the operating system has been expanded far
beyond that available on previous personal computers. There are some 600
separate operations that the Macintosh operating system will do for you
(including the utilities in the Macintosh Toolbox). When you have
advanced a bit in your studies, you'll realize that about 80 percent of
Macintosh programming is learning to use these Toolbox routines properly.

Application Software

Application software consists of task-specific programs. Some of these
programs may come with your computer; others are available for purchase.
Application software can be written also by you, your friends, or your
company to solve a particular problem. Examples of application software
are word processors like MacWrite and Microsoft Word, spreadsheets like
Excel, database managers like Reflex, and communications programs like
SideKick's MacTerm.

Assemblers, compilers, and interpreters are programmers' applications-a
special class of software used in the development process to translate
programs written in a computer language, such as Pascal or BASIC, into a
form your computer can run. For example, Turbo Pascal was written using
an assembler and is itself a compiler. We'll talk more about this in the next
chapter.

18 Turbo Pascal Tutor for the Macintosh

Characters

In the processor's world, everything is a number. Circuits inside the
keyboard convert the action of a finger pressed against a key into numbers
sent down the curly cable to the logic board; circuits in an ImageWriter
convert numbers sent down the printer cable into alphanumeric ink-on­
paper images that mean something to human beings.

To a programmer, the term character refers to the letters, numbers, and
punctuation marks displayed by your computer's screen or printer and
depicted on its keyboard. This definition of a character also includes certain
non printing control characters that are used to send commands (for example,
Tab and Return) rather than to represent a printable form. So characters are
divided into two groups: the printing characters, which have a visual
equivalent, and the control characters, which don't.

The printing characters are on the Macintosh keyboard. They include the 26
letters of the alphabet (in both uppercase and lowercase), the digits 0
through 9, and various punctuation symbols ('./?!#&, and so forth). Spaces
(the gap between words produced by pressing the space bar) are
considered characters in their own right. Additional printing characters can
be produced by using the Option key as a second "shift." The Key Caps Desk
Accessory that comes on your Macintosh system disk provides software
key caps to describe what keys to press to get these additional characters.
For example, Option-G produces ©, the copyright symbol.

Characters aren't represented pictorially in memory; instead, numeric
codes stand for the characters. For example, internally the Macintosh
represents a question mark (?) with a code value of 63; A is code 65; a space
is code 32.

It would be very confusing if different computer manufacturers used their
own codes for representing characters. Fortunately, most follow a standard
called the American Standard Code for Information Interchange, ASCII
(pronounced as' -key) for short.

The ASCII character set (shown in Figure 2.2) is nothing more than an
agreement that associates a number between 0 and 127, inclusive, with 128
common printable and non-printable control characters. With the adoption
of ASCII in the 1960s, it became possible for Manufacturer X to hook his
printer up to Manufacturer Y's computer and have both machines agree on
the code that represents A.

Computer Basics 19

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
0 00 43 2B + 86 56 V
1 01 44 2C 87 57 W
2 02 45 2D 88 58 X
3 03 ETX 46 2E 89 59 y
4 04 47 2F / 90 SA Z
5 05 48 30 0 91 5B [
6 06 49 31 1 92 5C \
7 07 50 32 2 93 5D]
8 08 BS 51 33 3 94 5E 1\

9 09 TAB 52 34 4 95 SF -
10 OA 53 35 5 96 60

,

11 OB 54 36 6 97 61 a
12 OC 55 37 7 98 62 b
13 OD CR 56 38 8 99 63 c
14 OE 57 39 9 100 64 d
15 OF 58 3A 101 65 e
16 10 59 3B 102 66 f
17 11 60 3C < 103 67 g
18 12 61 3D 104 68 h
19 13 62 3E > 105 69
20 14 63 3F ? 106 6A j
21 15 64 40 @ 107 6B k
22 16 65 41 A 108 6C 1
23 17 66 42 B 109 6D m
24 18 67 43 C 110 6E n
25 19 68 44 D 111 6F 0

26 lA 69 45 E 112 70 P
27 1B ESC 70 46 F 113 71 q
28 1C FS 71 47 G 114 72 r
29 ID GS 72 48 H 115 73 s
30 IE RS 73 49 I 116 74 t
31 IF US 74 4A J 117 75 u
32 20 space 75 4B K 118 76 v
33 21 ! 76 4C L 119 77 w
34 22 " 77 4D M 120 78 x
35 23 # 78 4E N 121 79 Y 36 24 $ 79 4F 0 122 7A z
37 25 % 80 50 P 123 7B
38 26 & 81 51 Q 124 7C
39 27 82 52 R 125 7D
40 28 83 53 5 126 7E
41 29 84 54 T 127 7F DEL
42 2A * 85 55 U

Figure 2.2: Partial Character Set (Standard ASCII Only)

Examine this chart for a few minutes. Note that each lowercase letter's code
is exactly 32 greater than its uppercase equivalent. A is ASCII code 65, a is
code 97; B is 66, b is 98. This means that you can convert a lowercase letter
to uppercase by subtracting 32 from its ASCII code (or, to do the reverse, by
adding 32). Note also that the codes for the decimal digits can be translated
into their numeric value by subtracting 48. For example, the ASCII code for
2 is 50; 50 minus 48 equals 2. This sort of translation comes in handy.

20 Turbo Pascal Tutor for the Macintosh

The characters you can create with the Option key have code values above
127 and aren't part of the ASCII standard. They result from Apple's
engineers taking a fresh look at ASCII's omissions. The copyright symbol ©
has code value 169, which means you'll never see a copyright symbol in a
text file that originated with a standard ASCII computer. It also means that
if you send an Option key character to a non-Macintosh computer, it won't
know what to do with it.

Review

A modern microcomputer consists of a central processing unit (CPU),
random-access memory (RAM), read-only memory (ROM), a mass storage
device (disk drive), a keyboard, and a screen. An operating system
provides you with a base of low-level subroutines that can be accessed by
application programs. ASCII is a near-universal method of representing
textual information by converting letters, numbers, and punctuation
symbols into numeric form the computer can understand.

Let's now discuss programming languages in general, and Pascal in
particular.

Computer Basics 21

22 Turbo Pascal Tutor for the Macintosh

c H A p T E R

3

A Brief History of Programming

While you don't have to know the history of computer programming to use
Turbo Pascal, this chapter will give you an appreciation of just how far
computer technology has come in a short period of time. (If you need to
start programming in Pascal right away, skip ahead to Chapter 4 and save
this one for later.)

In the Beginning

In the early days of computers (about 40 years ago), there were no
programming languages. Programs were created by physically connecting
wires inside bulky machines. Wires were moved and suddenly a computer
could calculate IO-inch cannon projectile trajectories instead of 8-inch
trajectories. Then someone (probably a wirecutter, er, programmer) had the
marvelous idea of installing switches in the place of the wires. To this day,
many computers have such switches for entering small programs.

To program by flipping switches, you had to convert everything to a binary
number: The switch was on for 1 and off for o. (We referred to this in
Chapter 2 as a binary, or base 2, system.) You would set an instruction by
flipping as many as 64 switches (representing one number or code), press
another switch to enter the instruction, then repeat this process to enter the
next instruction. A series of lights corresponding to each switch indicated
the contents of the instruction entered. In many cases, the result of running
a program was simply a display of lights that had to be converted into a

A Brief History of Programming 23

meaningful number. The programmer was in big trouble if a bulb burned
out.

Let's say you wanted the computer to calculate the result of 2 + 2. You
would have to convert these numbers to binary form (0000000000000010 +
0000000000000010), enter them, and then enter the binary code to add the
contents of the two memory locations holding those numbers (perhaps a
code such as 0001100011010001). You'd then press the Run button, the
lights would blink, and the answer would be displayed as a row of lights.
In this case, the correct answer is 0000000000000100, which is the binary
representation of the decimal number 4. If, instead, the answer presented
was 1, you probably set a switch that told the computer to divide rather
than add. You can imagine the complications of dealing with negative
numbers and fractions.

Programming Shorthand

The practice of entering instructions as binary numbers, called machine
language, was tedious and prone to error. Frustrated programmers soon
devised ways to make the computers themselves perform this chore, using
an English-like method of representing instructions. This shorthand is
assembly language.

Using assembly language, programmers can enter a line such as MOVE

(16) , (211) to move the contents of memory location 16 to memory
location 211. The computer does the dirty work of converting the
programmer's shorthand into binary machine code. The program that
performs the conversion is called an assembler.

Assemblers are still widely used today-in fact, Turbo Pascal itself was
written in assembly language. Work in assembly language requires an
assembler designed specifically for the CPU in your computer and a solid
understanding of your computer's hardware. It also helps to have an
inexhaustible supply of patience and a cyborg-like brain.

The one-to-one relationship between assembly language and the target
CPU's instruction set allows a programmer to create the smallest, fastest
programs possible for a given machine-which is why Turbo Pascal is
written in assembly language. However, both the assembler and the
assembly-language programs written for it can only be used with one
particular CPU type. If you spend many months and thousands of dollars
writing an assembly-language program for a particular computer, you'll
have to spend even more time and dollars to rewrite it for another

24 Turbo Pascal Tutor for the Macintosh

computer with a different CPU and assembly language. This is one reason
high-level programming languages, such as Pascal, were invented.

High-Level Languages

In a high-level language, a single line of programming code may
implement ten or more lines of assembly language. In theory, high-level
languages allow one programmer do the work of ten assembly-language
programmers. The trade-off is that the programs produced by a high-level
language aren't as fast or conservative of memory as an equivalent
assembly-language effort.

A high-level language also makes it unnecessary for the programmer to
know many of the machine's technical details. By and large, high-level
languages "look" the same to the programmer, no matter what computer is
being used. The programmer need only be familiar with the language. For
example, a program written in Turbo Pascal for the IBM PC usually
requires only minor modifications to run on the Macintosh.

There are several prominent high-level languages. When the United States
Department of Defense decided that it wanted to run its programs on many
kinds of machines, it chose the COmmon Business Oriented Language, or
COBOL for short. (It has since switched to Ada, a Pascal-like language.)
When scientists learned that computers could help in their calculations,
they invented a language specifically designed to process scientific
formulas called FORmula TRANslator (FORTRAN). FORTRAN is still
widely used today due to IBM's adoption of it as the "official" language for
its mainframe computers.

Other languages-such as PROLOG, C, BASIC, ALGOL, APL, and
LISP-have also appeared on the scene. Each has special features for a
particular kind of work. PROLOG, for example, is used in artificial
intelligence (AI) research, and APL is suited to scientific and statistical
work.

Programming Languages and
Microcomputers

When the microcomputer came along in the mid-seventies, it had very little
memory and ran much slower than its larger cousins. Languages like

A Brief History of Programming 25

FORTRAN and COBOL stretched the microcomputer's resources in
addition to being too complex for the average microcomputer user to learn.

A simpler language was needed, and the language tha t most
microcomputer manufacturers chose was BASIC (Beginner's All-purpose
Symbolic Instruction Code). BASIC is relatively easy to learn and is still an
excellent choice for solving simple problems. However, it's difficult to
divide a BASIC program into many small parts and construct each part
separately, so it can be less appropriate for sophisticated applications.
Pascal was developed as one educator's divide-and-conquer approach to
programming.

And Finally ... Pascal

Pascal is a relatively young programming language. It was developed by a
distinguished computer scientist named Niklaus Wirth in Zurich,
Switzerland, in the early seventies. Wirth based some of Pascal's concepts
on some other languages he helped develop, PL/l and ALGOL. (If there
was a Programming Languages Hall of Fame, Wirth's bust would be in a
place of honor.)

Professor Wirth designed Pascal to teach his students how to program
effectively. Good programming starts with accurately defining the problem,
breaking it down into small parts, and then writing commands that solve
each of these smaller problems (which may need further subdivision).
Pascal is said to be a "structured" language: You write programs in small
chunks, following predefined steps. Certain parts must be placed in specific
locations within a program and must follow certain rules.

You'll find that the statements in a Pascal program read much like English
sentences. In a well-written Pascal program, the definition of a problem, the
smaller parts that make it up, and the ways in which the smaller problems
are solved are easy to see.

Interpreters and Compilers

Regardless of which high-level language you use, something has to
translate the English-like words of the program into the binary 1s and Os
(machine language) that the computer's CPU understands. The programs
that perform this translation can be divided into two categories: interpreters

26 Turbo Pascal Tutor for the Macintosh

and compilers. Turbo Pascal and most other high-level languages are
compiled.

The difference between interpreting and compiling concerns how programs
are executed.

An interpreter translates your instructions during execution. You run the
interpreter program every time you want to execute your program. The
interpreter then reads each statement of the program one at a time, figures
out the operation being requested, and then performs the necessary acts.

By contrast, a compiler translates your entire program into machine (or
some other low-level) language before the program begins to run. Once
translation is finished, the compiler is no longer needed-the application
program can run on its own. Because the translation isn't performed at run
time, a compiled program almost always runs faster than one that must be
interpreted.

Which of these two approaches is best? It depends on your requirements. A
large program written with an interpreter tends to require less memory
than an equivalent compiled program, but may execute as much as 10 to 50
times more slowly. Programs compiled with a powerful, efficient compiler
can approach the size and speed of assembly language; however, the
program must be recompiled each time a change is made. This means the
speed with which you can test your program, find errors, fix those errors,
and retest the program is greatly reduced.

An interpreted language is most efficient during the process of testing and
modifying your program. There is no need to wait for the program to
recompile-you can give the interpreter the Run command and road test
your program at any time.

With traditional compilers, you must write your application program using
a stand-alone text editor, then start up the compiler and give it the name of
t~le file you want to compile. Most compilers take several minutes to
compile a moderately complex program. Then, when you return to execute
your program, you'll probably find mistakes (commonly referred to as
bugs). So you'll have to restart your editor, reload the original program, and
try to figure out what went wrong (known as debugging). Then, you must
recompile the program and test it again. You usually have to repeat this
edit-compile-test cycle many times to produce a program that works the
way you want it to.

Ideally, then, one would like a compiler that is so fast that using it is like
using an interpreter. And that's exactly what Turbo Pascal for the
Macintosh is: It's a compiled language that's as convenient to use as an
interpreted language.

A Brief History of Programming 27

The Turbo Pascal Advantage

Turbo Pascal is a compiler, but it doesn't put you through the grueling
cycle just described. You can perform all the functions necessary to write a
program without leaving the Turbo Pascal environment. And the compiler
is so fast you can compile most programs in a matter of seconds instead of
minutes. Once compiled, you can run your program to test it without
leaving the Turbo Pascal environment. Finally, when errors are found,
Turbo Pascal shows you the line of the program that caused the error.

Turbo Pascal's edit/compile/test cycle is so fast that, in most cases, there is
virtually no distinction between it and an interpretive language-except
that your programs execute 10 to 50 times faster. In the next chapter, you'll
learn how to prepare your computer for Turbo Pascal.

28 Turbo Pascal Tutor for the Macintosh

c H A p T E R

4

Getting Ready to Use Turbo Pascal

Before using Turbo Pascal, you should make working copies of your master
disks (both Turbo Pascal and Turbo Tutor). This chapter explains how to
make these backups. It also describes how to use the Macintosh Turbo
Tutor teaching program that came with this book.

Backing Up: Why and How to

Although the Macintosh's shirt-pocket-sized disks are better than their 5
1/4-inch ancestors in this regard, they can still be rendered unreadable by
many things-coffee, dogs, two-year-olds, magnetic fields, heat, and the
most pernicious of all: accidental erasure due to operator error.

At some point most of us fall prey to one or more of these disk-destroying
perils. Losing an occasional disk is a fact of computer life. Losing work
doesn't have to be, if you back up your work. There are two types of backups,
corresponding to the two types of files you work with.

Some files never change. For example, the RMaker program on the Turbo
Pascal Utilities & Sample Programs disk never changes, no matter how
many thousands of times you use it. So it only needs to be backed up once.

Other files change daily. When working with Turbo Pascal, the most
dynamic files are the text files you create and edit. These files need to be
backed up whenever you have more work in them than you can afford to
lose. Given that it takes only a minute or two to protect yourself, most
people should probably back up every few hours.

Getting Ready to Use Turbo Pascal 29

To back up your master Turbo Pascal and Turbo Tutor disks, follow the
instructions below that describe your configuration (single drive, two
drive, and hard disk).

NOTE: Turbo Pascal is shipped on two 400K floppies. The disk labeled
Program Disk is a bootable disk and contains the compiler itself (the file
Turbo, with the checkered flag icon). Also on this disk is a System file and
the Finder program. The disk labeled Utilities & Sample Programs contains
various auxiliary programs (RMaker, Font+DA Mover), and a number of
example programs in source form~

For safety's sake, write-protect your originals before beginning the copy
procedure. A disk is write-protected by sliding open the tab in the upper
right-hand corner (look at the back of the disk). If you can see light through
the hole, the disk is said to be write-protected, and any attempt to alter its
contents will fail. (You can still zap a disk by leaving it on the dashboard of
a black car in Houston, Texas, in August, for example, so backing up is
essen tial.)

Single-Drive Machines

1. Insert the Turbo Pascal Program Disk and turn the Macintosh on.

2. Select the disk's icon (put the pointer on it and click) and choose Eject
from the File menu. Note that this is not the same as dragging it to the
trash. The Program Disk's icon is dimmed as the disk is ejected from
the drive.

3. Insert a blank disk (or a disk whose contents you don't need any
more). If it needs formatting, this operation takes place automatically.
If you have a double-sided (BOOK) drive, you'll be asked if you want to
format the disk as single or double sided. Assuming you inserted a
disk certified for double-sided use, choose double sided.

4. Select the dimmed icon of the Turbo Pascal system disk and drag it on
top of the blank disk's icon.

5. The Finder then asks if you want to replace the entire contents of the
blank disk with the contents of the Turbo Pascal Program disk. Click
OK.

6. When the copy completes (several swaps are necessary), the formerly
blank disk will be identical to the Turbo Pascal Program distribution
disk, although it will have a different name. You can name your new
backup disk by clicking in the area under the disk icon and typing a
new name, such as TP Work Disk.

30 Turbo Pascal Tutor for the Macintosh

7. Repeat this process with the Utilities & Sample Programs and the
Turbo Tutor disks.

Two-Drive Machines

1. Boot with the Turbo Pascal system disk in the internal drive.

2. Insert a blank disk into the external drive. If it needs formatting, that
takes place automatically: If you have a double-sided drive, click on
Two-sided when asked by the Finder.

3. Select the icon of the Turbo Pascal system disk and drag it on top of
the blank disk's icon.

4. The Finder will ask if you want to replace the entire contents of the
blank disk with the contents of the Turbo Pascal system disk. Click
OK.

5. When the copy operation is finished, the formerly blank disk is
identical to the Turbo Pascal program distribution disk, although it
will have a different name. You can name your new backup disk by
clicking on the area under the disk icon and typing a new name, such
as TP Work Disk.

6. Repeat this process with the Utilities & Sample Programs and Turbo
Tutor disks.

Once you have created your backup copies of the Turbo Pascal and Turbo
Tutor disks, we suggest that you place your originals in a safe place, to be
used only if something happens to the copies of the program disks.

Hard Disk Users

Create a new folder named Turbo Pascal in the root window (highest level)
of your hard disk's file system. Into this folder, copy everything from both
distribution disks except the System folder from the program disk. You have a
System file and Finder on your hard disk already; you don't need another
set.

Finally, store the originals in a safe place.

Getting Ready to Use Turbo Pascal 31

Using Turbo Tutor

You'll find a tutorial program named Turbo Tutor on your distribution
disk Designed to demonstrate various Pascal topics, this program is
provided in source form and must be compiled before you run it. You'll
find that we refer you to the appropriate sample Turbo Tutor program
throughout this book Chapter 1 lists the sample procedures in "Files on the
Disk"

Double-click the Turbo Tutor folder to open it. Then, double-click file
Tutor.Pas. This launches Turbo Pascal. Turbo Tutor makes extensive use of
the $Hnclude) compiler directive to access the source code for each
topic-the same text that appears when you run the program and choose
that topic.

To run the Tutor program, choose Run from the Compile menu. Once the
program begins, you'll see two windows. The upper one shows the output
generated when running one of the sample procedures; the lower window
displays its source code.

(If you're running off a 400K disk, Tutor.Pas won't compile correctly. An
error box will come up; dismiss the error message and follow the
instructions you find there.)

After first choosing a topic with the File menu's Open command, the source
code demonstrating that topic is loaded from disk (from the Lessons folder)
and displayed in the source window. You're then free to peruse-but not
edit-the source code for that topic's procedure, using standard Macintosh
scrolling techniques. At any time, you can choose Run from the File menu
to execute this code, causing its output to appear in the upper window.

Click the mouse button at any time to terminate the run. This program
demonstrates, among other things, techniques involved in mixing and
matching code from a traditional personal computer (such as the IBM PC)
and the Macintosh User Interface.

The Test Option

Try out your knowledge of the subject by choosing Test from the File menu.
This brings up a series of questions on the selected topic; choose the Hint
option under the File menu if you get stuck.

32 Turbo Pascal Tutor for the Macintosh

Modifying the Examples

Once you've studied an example using the Tutor program, you can make
changes to the example procedure in order to master its material. Here's
how you'd modify and test the code in example Arrayl, for example:

Using the Finder's Duplicate option, make a copy of Arrayl.Inc. The
resulting file (Copy of Arrayl.Inc) serves as a backup. Now start up Turbo
Pascal and edit file Arrayl.lnc in any way you see fit. You can't compile this
file directly (it holds a procedure, not a program), so after first saving your
changes, Open and Compile Tutor.Pas. When you execute the resulting
program and Open lesson file Arrayl.Inc, you'll see the result of your
change in the source and execution windows.

Each sample procedure contains instructions that tell you how to run it.

In the next chapter, you'll learn how to start Turbo Pascal; use the editor to
create, look at, and modify programs; and use menu selections to compile
and run a program.

Geffing Ready to Use Turbo Pascal 33

34 Turbo Pascal Tutor for the Macintosh

c H A P T E R

5

Using Turbo Pascal

In this chapter, you'll sit down at your Macintosh and go through the steps
required to write, compile, and run a simple program. Have your original
Turbo Pascal disks filed safely away and working copies ready to go. You
may want some paper and a pencil so you can take notes. Ready? Let's
begin.

Starting Turbo Pascal

Boot your system on your Turbo Pascal work disk (the one we labeled TP
Work Disk in the previous chapter) or, for hard-disk users, boot up like
always. When the Finder appears, find the checkered-flag icon labeled
Turbo that represents the Turbo Pascal application. Although dozens of
files are included on the two disks shipped with Turbo Pascal, this single
file is Turbo PascaL It contains everything you need to write programs.

Turbo
Figure 5.1: The Turbo Pascal Icon

Start up Turbo Pascal by double-clicking on its icon. After a few seconds,
the main screen appears (see Figure 5.2).

Using Turbo Pascal 35

" File Edit Search Fonnat Font Compile T n.fer

Untitled

Figure 5.2: The Turbo Pascal Main Screen

Turbo's main screen resembles that of many Macintosh applications.
There's a menu bar at the top, and beneath it a large, empty window
named "Untitled."

The Menu Bar

The menu bar contains eight menu options, with the various commands
that you'll use to run Turbo Pascal: Apple, File, Edit, Search, Format, Font,
Compile, and Transfer. We'll go over these menus individually later in this
chapter.

The empty window under the menu bar is for creating and working with
Pascal source programs. It's the "text editor" part of Turbo Pascal. Working
in this window is very much like using MacWrite or some other Macintosh
word-processing program. Unlike MacWrite, however, you can have as
many as eight windows (corresponding to eight separate programs) open
at one time.

The Editor Window

Experiment with the editor: press a few keys, type your name. (Heck, go
ahead-type Philippe Kahn's name.) The default font is 9-point Monaco.

36 Turbo Pascal Tutor for the Macintosh

While not one of the most beautiful fonts around, Monaco has an important
virtue: Each character has the same width.

Most fonts are proportionally spaced; for instance, i's are narrower than
m's. Monaco's fixed spacing makes it easy to neatly line up groups of
statements, and, in Pascal, neatness counts. The 9-point size was chosen to
get as many characters on a line as possible while still being readable. In
any case, you can change both the size and font.

Editing Text

You can edit text that you've entered in the window with various standard
Macintosh techniques. First, let's review some terminology and shortcuts.
When you move the pointer into the editing window, it changes from an
arrow to a shape known as the I-beam cursor. The I-beam shape is ideal for
pointing operations related to working with text. Move it out of the
window, and it changes back to an arrow.

Use the mouse to move the I-beam cursor between any two characters (can
you see why the I-beam shape is preferable to the arrow?) and click the
button. A flashing vertical line called the insertion point appears. This places
anything you type between the characters bracketing the insertion point.

You can select a word by double clicking on that word. Furthermore, if you
double click and drag, the selection proceeds a word at a time rather than a
character at a time. This shortcut saves keystrokes, so remember it.

If you're new to Macintosh editing, you may be surprised to learn that
Macintosh editors have no overstrike mode; that is, you can't type over
existing text. New characters are always inserted, pushing existing text to
the right and down, as necessary.

Highlighting Lines

In working with program text, you'll often highlight whole lines at a time.
The best way to select one or more entire lines is not to drag from left to
right across the full width of the window, but rather to manipulate the 1-
beam at the left edge of the screen. Click and hold just before the first
character on a line; then drag straight down. With some practice, you'll find
that you can highlight lines with a minimum of motion.

Using Turbo Pascal 37

Deleting Text

Pressing Backspace moves the insertion point one position to the left,
deleting one character in the process. To delete several characters at once,
use the dragging technique to highlight (in reverse video) the text that you
want deleted.

This is a two-step process; first highlight, then delete. To highlight, move
the pointer to the beginning of the text to be deleted and then press and hold
the mouse button. Now move the pointer to the-last character to be deleted,
keeping the button pressed; this is called dragging. Keep cool if the black
background spills into areas you don't want highlighted; nothing happens
as long as you keep the button down. When you've highlighted what you
want, release the button. Now relax. It stays highlighted until your next
move.

Highlighting text is a precursor to performing an operation on it. It's a key
Macintosh user-interface concept: Select (highlight) something, then
perform an action on what's selected. In this case, you want to delete the
selected text.

Selected text is deleted by pressing Backspace. If no text is selected, pressing
Backspace deletes only one character to the left of the cursor. If text (up to
thousands of characters) is selected, then pressing Backspace deletes every
character in the highlighted range.

If text is highlighted and you type any character, say, A, then the text is
deleted and A is substituted.

Edit Menu Commands

There are several particularly handy commands under the Edit Menu.
These are Undo, Cut, Copy, and Paste.

The Undo Option

One of the under-praised advances of the Macintosh is the ungrammatical
first option of the Edit menu, Undo. Well-bred Macintosh applications
support Undo, a sort of universal "oops" eraser. For example, if you
accidentally backspace across more characters than you mean to delete,
choosing Undo restores the characters.

38 Turbo Pascal Tutor for the Macintosh

Undo can't fix every editing mishap, especially if you don't choose it
immediately after the error. Luckily, most mistakes are inadvertent
deletions that you realize about one millisecond after touching Backspace.

The Cut and Copy Operations

In addition to deleting highlighted text, there are other operations that you
can perform on selected text, the two most important being Cut and Copy.
Cut is like Delete, except that the text deleted from the file isn't thrown
away; it's moved to the Clipboard, a hidden and temporary repository for
text.

Copy is similar, except that the highlighted text isn't deleted from the file; it
is simply copied to the Clipboard.

The Paste Operation

The Clipboard wouldn't be useful without the Paste feature, which lets you
move text out of it. The Paste operation inserts whatever text is in the
Clipboard, from one character to thousands, at the insertion point. If you
perform a Paste operation when text is highlighted, the pasted text replaces
the highlighted text.

To sum up, Undo "erases" your more recent editing. Cut and Copy move
text to the Clipboard; Paste takes text from the Clipboard. All these
commands are in the Edit menu.

Scrolling

If you enter more text than can fit on the screen, either horizontally or
vertically, the screen scrolls to show you that text.

Unlike most word-processing programs, the Turbo Pascal editor doesn't
automatically wrap text when you get to the edge of the window. The
window scrolls horizontally to accommodate any characters you continue
to enter. To move down to the next line, you must press Return. This is
because the Turbo Pascal editor is designed for creating Pascal source files,
and Pascal source files are organized into sequences of lines (usually fairly
short lines) with a Return control character at the end of each one.

USing Turbo Pascal 39

Sizing and Moving Windows

The symbol in the extreme lower-right corner of an editing window is
called a size box. By dragging the size box, you can make the editing
window larger or smaller. This capability is particularly useful when more
than one window is open on the screen.

You can move a window by dragging in the window's so-called title bar
(the area with the horizontal lines and "Untitled").

Command-Key Equivalents

After working with Turbo Pascal for a while, you may find that it's a hassle
to reach over, grab the mouse, and pull down a menu to perform every
little Cut and Paste. For this reason, Turbo Pascal supports Command-key
equivalents for its most common operations. (The Command key is another
feature unique to the Macintosh. It's the one with the cloverleaf symbol [~]
on it; on some keyboards, the cloverleaf symbol is joined by the Apple
symbol.)

A Command-key equivalent is produced by holding down the Command key
and typing a letter. If a menu option has a key equivalent, it will be listed to
the right of the option. For example, the File menu defines a number of
keyboard equivalents, including Command-N to open a new, empty file and
Command-O to open an existing file.

A Quick Tour of the Menus

Like most Macintosh applications, Turbo Pascal is wholly controlled by the
commands in its eight pull-down menus.

40 Turbo Pascal Tutor for the Macintosh

The Apple Menu

,. a File Edit Search Format Font Compile Trensfer
About Turbo ...

Cament
Chooser
CllckOn'" Worksheet
Control Panel
Find File
Key Caps
MacClock
MacTerm
Notepad+
Outlook'"
QulkSheets

Untitled

<.jJ I Il!!!!l!i!l!~!!!!!l! .!!!!li!!!!!!!!!!l!!!I!l!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!!!!!!!!!@!!!!!!!!!I!!!!!I!!!!!I!!!!@!!!!!!!!!I!!!!!!!!!I!!! 'r'

Figure 5.3: The Apple Menu

.,

In the Apple menu, you'll find an About Turbo option that lists copyright
and version information about the Turbo Pascal application itself. The
various desk accessories you have installed in your system file are also
listed.

The File Menu

Page Setup ...
Pr1nt ...

Edit Transfer ...
$aue Defaults

Transfer... KT
Quit KQ

Font Compile Tran.fer

UntItled

'!!j~!!!!!~i!!!i!!!!!!.:.:!!!i!i!i!i!i!!!~! . .]!!Q!.! .•. ! !! . .:..!.. .. .!!I!! !... .. !!.: ... !.~.!! .. J~ .. !·.,..i! ..•• :! j .!i...) .. ,,,!C ..)!I!!. !L .. L .. !!!!!!! .••

Figure 5.4: The File Menu

Using Turbo Pascal

.,

41

You'll use the File menu most often for opening, saving, and closing text
files. In a moment, we're going to create a program, and we'll come to this
menu to save it to disk.

The File menu also has commands for printing your source files on paper
(Page Setup and Print).

The Edit Transfer option is more unusual. It allows you to create entries for
the Transfer menu (the menu at the extreme right of the menu bar). The
Transfer menu is a quick way to leave Turbo Pascal and run another
application (typically, one related to the software development process)
without the bother of quitting Turbo, returning to the Finder, and then
launching that program.

Take a look at the Transfer menu. You will see the single dimmed message
No i terns installed. Dimmed menu selections can't be chosen, usually
because a particular option can't be chosen in the current context. For
example, the Edit menu's Cut and Copy options are dimmed when no text
is highlighted: There's no text to Cut or Copy.

As shipped from Borland, Turbo Pascal's Transfer menu is empty because
we don't know what applications you'll want to. Transfer to and what
folders those applications will be in on your working floppy or hard disk.
The Edit Transfer command is provided so that you can customize the
Transfer menu to your own needs.

For example, one program that you will soon find convenient to transfer to
is RMaker. You need this program, which is on the Utilities & Sample
Programs Disk, to produce true Macintosh applications. To make trans­
ferring to RMaker an option under the Transfer menu, choose Edit Transfer
from the File menu.

Turbo Pascal presents a dialog box in which to edit the name of the RMaker
program (and as many as 30 others). Be sure to include the path and name
of any directories that it may be concealed in. For example, if RMaker is in
a folder called Utilities, you must include the name of this folder and the
name of the disk that contains it, along with the name of the program, all
separated by colons; for example, startup:utilities:RMaker.

After entering a path to a utility program, click OK. Now pull down the
Transfer menu and see the change. Don't choose this option just yet,
though. You've only performed a temporary patch of the Turbo Pascal
program. Unless you make this patch permanent, it won't be available the
next time you run the program.

To save this newly acquired entry to the Transfer menu, you must choose
the next option in the File menu, Save Defaults. There will be a moment of

42 Turbo Pascal Tutor for the Macintosh

disk activity as the default information is written to disk inside the Turbo
program itself; the next time you start Turbo Pascal, the Transfer menu will
be as you left it. This also means that the copy of Turbo Pascal on your
working disk is no longer quite identical to the one on the original disk you
have stored away.

The Transfer ... option of the File menu (not to be confused with the Transfer
menu itself, which you just edited) is a Finder-bypassing shortcut for
running programs that aren't in the Transfer menu. It presents a standard
Get-File box listing all the programs on the indicated disk.

The last option in the File menu is Quit (Command-Q); you'll use it to return
to the Finder when you're finished with Turbo Pascal.

The Edit Menu

Cut XH
Copy XC
Paste XU
Clear

Shin Lett :1(:(
Shift JlI~,ht ~i'l

Options ...

Font Compile Tren.fer

Untitled

. :.!!!~!i!!!!~m!!!!!~@!!!g~i!!!!!!!~!~!~!!!!!!!! !!!@!(. •• :!: !! !! .. ~.! ... "'!!: .••. !!!I!i 1 !! :! !! . .J! !,. .. :!! .•.• :!!!!!!!!~!! :I!!!!: ,.:! ...

Figure 5.5: The Edit Menu

Most Macintosh applications have an Edit menu with the same first four
options: Undo, Edit, Cut, Copy, and Paste. We discussed these commands
earlier, under "Edit Menu Commands." Even if these operations don't
mean anything to that application, many desk accessories (like the
Notepad+) require that they be present.

Clear deletes selected text; this is the same operation performed by the
Backspace key.

The Shift Left and Shift Right options are time savers when working with
Pascal source programs. They shift all the characters in the highlighted
block one column to the left or right. The Command-key equivalents

Using Turbo Pascal 43

Command-[and Command-J are easier to use than choosing repeatedly from
this menu.

The Search Menu

r " File Edit IaliForml!lt Font Compile Transfer
,

Find... XF ntltled
Find N~Ht lj(IO
Change... XA _._ .. -._-_._._-_ ..
Home Cursor XH _._ .. _. __ . __ ._.-.-.
Window XW

Figure 5.6: The Search Menu

The Search menu is primarily for Find and Find-and-Replace operations on
text files. Use it to locate a particular spot in a large file-the Turbo Editor
can work with files thousands of lines long, memory permitting-and to
replace one word or phrase with another. For example, if you consistently
misspelled the word "procedure" as "proccedure," you can use this menu's
Change ... option to make the correction throughout the file automatically.

44 Turbo Pascal Tutor for the Macintosh

The Format Menu

,. .. File Edit Search Font Compile Trensfer
stack Windows
Tile Windows
Zoom Window
~------

.19 point
10 point
12 point
14 point
18 point
24 point

i<,;J I P,~i!!!!!!!!!!l!!!!m!!!l!!!!!!!!!!!!!!!!!i!!!!!i!!li!!!!!i!!!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!!!!!!!!!l!!!!!!!!!@!!l!!'-'!!!!!!!!! ..•.. i ..••. ! .•. :.: ••

Figure 5.7: The Format Menu

,

The Format menu performs two functions: First, it has commands related to
working with multiple windows. The Stack Windows option causes
windows to overlap each other. The Tile Windows option organizes
windows into a tile-like pattern so that no two windows overlap. Zoom
Window expands the current window to the full width of the screen; if it's
already full sized, then this command shrinks it to its regular size. You can
also do this by double-clicking on a window's title bar.

Second, the Format menu lets you set the size of the text in the active
(topmost) window. You can work with a different font and size in each
window; however, since font information isn't stored on disk along with
the text, you'll have to change it back from 9-point Monaco (the default)
whenever you begin a session on a window.

Using Turbo Pascal 45

The Font Menu

• File Edit Search Format IIImII Compile Tran.fer
Borden
Broadway E
Chicago
Courier
Geneue
Heluetlca
Los Angeles

./Moneco
New York
NY Nights
San FnlOclsc:o
Scen
Symbol
lallesln
TImes
Denice

Figure 5.8: The Font Menu

The Font menu selects the font for the active window. Although you can
create programs in any font that exists in your System file, most of the time
you'll be working in the non-proportional Monaco font. The LaserWriter
font Courier makes a decent programming font, although it isn't much use
smaller than 12 point.

The Compile Menu

• File Edit Search Format Font

:0 Until

Transfer
Run XR

To Memory XM
To Disk XI(

Check SyntaR XY
rind Error lj(cE

Get Info XI
1--._ .. __ ._._._._._ .. _.

Options ...

Figure 5.9: The Compile Menu

46 Turbo Pascal Tutor for the Macintosh

Here's the good stuff. Without the Compile menu, Turbo Pascal would be
just an exceptionally fast eight-window text editor. The Run command
executes programs from within Turbo Pascal. If the program represented
by the active (topmost) window needs compiling, it'll be compiled first.
When programs executed by the Run command terminate, Turbo Pascal
regains control. With Run, it's easy to hop quickly back and forth between
editing and executing programs.

The To Memory option compiles the contents of the active window to
memory. It's the same operation performed by Run-except that the
program isn't executed. The To Disk option causes the output of the
compiler to be sent to disk rather than memory. The Check Syntax option
performs a syntax analysis on the active window, but doesn't actually
produce any code.

Entering a Program

Rather than go into each command in great detail (the Turbo Pascal for the
Macintosh reference manual does that), we're going to show you how to use
the most important commands by having you enter, compile, and run a
program.

This manual, in keeping with Borland's style convention, prints certain key
components of Pascal (reserved words) in boldface type (for example,
program, begin, and end). This notation helps to clarify program structure.
Turbo's editor doesn't support boldfacing (and if it did, the compiler
wouldn't care anyway), so don't worry about duplicating this aspect of
program FirstEffort.

Start with a clean window: Select every character in the window (named
"Untitled") you've been practicing in and press Backspace. Now type in the
following program exactly (except for the boldfacing, of course) as shown.
Punctuation is important to the compiler, although spacing is not-you
could insert twenty blank lines between the first and second lines and not
affect the meaning of the program one bit. You can substitute your name, or
some other proper noun, for Robin Jones. If you make a mistake, use
Backspace or the mouse editing techniques to correct it.

program FirstEffort;
begin

WriteLn('This program compliments of Robin Jones');
ReadLn

end.

Using Turbo Pascal 47

These five lines constitute a complete, if less than overwhelmingly useful,
Turbo Pascal program. The first line starts with the word program and
gives the program a name-in this case, FirstEffort. This line always ends
with a semicolon; no Pascal compiler would tolerate this semicolon's
absence. The next line contains only begin, which signals the beginning of
the "action" part of the program.

The third line's WriteLn command displays on the screen the text enclosed
in parentheses and single quote marks. Leave out a parenthesis or a quote
mark, or use double quotes, and you've got a program that won't compile.
There's a semicolon after this line. as well.

The ReadLn command in the fourth line creates a pause in the program so
that you can admire its output; without it, the program would execute so
quickly you'd only get a glimpse of the line. The ReadLn statement pauses
execution indefinitely until Return is pressed on the keyboard. Note that
there isn't a semicolon after this line.

Finally, the word end followed by a period defines the stopping point of
the program. These semicolons and periods almost call to mind an English
sentence:

Here's the program's name; now do this; and this and you're done.

We'll delve deeply into Pascal punctuation in good time.

Compiling and Running FirstEffort

Check FirstEffort over one last time; a single misplaced character can
reduce an otherwise perfect Pascal program to second-class status in the
eyes of the compiler. Actually, it may be faster to let the compiler do the
checking. Choose Check Syntax from the Compile menu (or use the
Command-key equivalent, Command- Y). If the compiler finds something it
doesn't like, it'll tell you so in an alert box.

In the following figure, WriteLn is misspelled, which makes the third line a
mystery to the compiler. Turbo Pascal brings up an error box and highlights
the questionable identifier on the screen.

48 Turbo Pascal Tutor for the Macintosh

• File Edit Search Format Font Tren.fer * Error 41: Unknown Identifier.

program FlrstEffort;
b~

lIIIID<'Thls program compliments of Robin Jones');
RelldLn

end.

! :!!.

Figure 5.10: The Compiler Finds an Error

If Check Syntax finds something wrong with your program, don't take it
personally. Simply click the mouse button (or press any key) to dismiss the
error message~ then edit your program to correct the error.

Once the Check Syntax option scans your version of FirstEffort without
producing an error, it's ready to be run. Choose To Memory from the
Compile menu; with Turbo Pascal, compiling to memory is over in
seconds.

There are now two versions of FirstEffort in memory: a source form,
created by you with the editor, and the resulting object program (68000-
family machine language) created by the compiler. You can't see the object
program, because there's no easy way to represent it for human
consumption; it makes sense only to a CPU.

Now, let's execute the compiled object form of FirstEffort. Choose Run
from the Compile menu (or use its keyboard equivalent, Command-roo The
screen is quickly cleared and replaced by a lone window entitled
FirstEffort.

Using Turbo Pascal 49

r '* File Edit Search Format Font

Compiling: Untitled

program FlrstEffort;
begin

WriteLn(Thls program compliments of Robin Jones');
ReadLn

end.

Figure 5.11: Compiling FirstEffort

This terminal window was created to give FirstEffort a well-defined place in
which to write its output. The terminal window simulates a standard 80-
column by 25-line character display (such as that on the IBM PC) and uses
the same 9-point Monaco typeface as the editor.

These startup operations (clearing the screen and creating an 80-by-25
terminal window) are done automatically; FirstEffort didn't have to ask for
it. FirstEffort's first action was to execute the WriteLn command and output
the message This program compliments of Robin Jones to the screen.
All this happened in a fraction of a second; meanwhile, the program has
been executing the ReadLn command and waiting for you to press Return.

The flashing horizontal line on the display is the equivalent of the cursor
used on traditional computers to indicate where future output will go. It
started out on the first line of the terminal window, and the WriteLn
command caused it to drop down to the second line.

There's no menu bar, for what would it contain? FirstEffort didn't define
any menus. Unless you accidentally bump your mouse, there isn't any
pointer either, because FirstEffort doesn't define any mouse interaction.
You'll be well into your study of Pascal before you begin to add these user­
interface niceties to your programs.

When the glow of pride at seeing your name in phosphor begins to fade,
press Return. Since the ReadLn command is the last command in the
program, FirstEffort is over when ReadLn finishes. (end isn't a command; it
just indicates the end of a program.) This causes Turbo Pascal to regain
control and display what was on the screen before the program was
launched.

50 Turbo Pascal Tutor for the Macintosh

If all that happened too fast, do an instant replay: Simply choose Run from
the Compile menu again.

Saving Your Source Program

The source form of FirstEffort (the text that you just entered) exists only in
RAM at this point. If you (or a squirrel frolicking on a nearby transformer)
were to suddenly deprive your Macintosh of power, your typing effort
would be lost. To save this program to disk, choose Save from the File
menu.

Turbo Pascal is reluctant to save a file named Untitled, so it asks you to
give it a name and, optionally, to specify the folder in which it should be
stored. This is done via the standard Save As dialog box. Enter

FirstEffort.Pas

as the title, and if you like, put it in a folder someplace. Actually, you can
name the file anything. There doesn't have to be any similarity between the
name of a text file that happens to be a Pascal program and the word that
appears after the word program in that file. (NOTE: Don't use any colons
in the file name unless you know what you're doing. Colons in file names
are interpreted by the Macintosh's file-management routines to indicate
volumes and folders, a subject we won't come to for many chapters.)

Edit Search Format Font Compile Transfer

~ FlrstEffort·
begin

IIrlteLn
Readln

end.
I (g) TP Work Disk I

Cl MyFiles
Cl System Folder
~ Turbo 1.00

Saue teKt as:

I FirstEffort.Pas

Q (g) TP Work D •••

Eject)

Driue

Saue

(Cancel)

Figure 5.12: The Save As Dialog Box

,

After you name and save the file to disk, it remains in memory as welL The
only visible change is that the window's title bar now reflects the file's
name. As an exercise, let's close file FirstEffort. You can choose Close from

USing Turbo Pascal 51

the File menu (Command-key equivalent Command-.) or click the window's
close box.

Now the editor has no open windows on the screen. Without a text
window to refer to, many menu commands no longer make sense and so
are dimmed (made unselectable), such as the File menu's Close and Save
options.

Let's reload FirstEffort from disk. Choose Open from the File menu, and
select FirstEffort.Pas. The beauty of Turbo Pascal is how easy it is to
experiment with a program. Using the Lisa development system, it would
take minutes to see the result of a one-character change to FirstEffort. Using
Turbo Pascal, it takes about a second.

Change the message output by the WriteLn statement. Instead of the
Compile-then-Run approach we used the first time, just choose Run. Turbo
Pascal is smart enough to recognize that you've changed the program since
the last compilation and automatically recompiles FirstEffort before
running it.

Once a file has a name, it's almost painless to save it to disk. Press Return to
return to the Turbo Pascal menu bar. Then simply choose Save from the File
menu (or use its Command-key equivalent, Command-S).

Saving the Object Program

When you select the Run command, Turbo compiles the source program
contained in the topmost window and runs it. The object form of the
program is only in memory and will be lost when you turn off the power or
exit Turbo Pascal back to the Finder. It's not that much of a problem since
you've saved your source program and can recreate the object program in a
matter of seconds. However, sometimes, that's not convenient. It would be
better if you could save your executable program to disk, where it could be
executed directly by the Finder without Turbo Pascal having to get
involved.

You can do this by choosing the To Disk option of the Compile menu. This
causes FirstEffort.Pas to be recompiled and the result of that compilation to
be written to disk rather than memory. For a file name, Turbo uses the
program name (FirstEffort), not the name of the source file. In fact, this is
the only function served by the program's "internal" name.

After a few seconds of disk activity, Turbo Pascal will have created a file
called FirstEffort.

52 Turbo Pascal Tutor for the Macintosh

Finishing Up

You've come a long way in this chapter. You started Turbo Pascal, typed in
a program, and compiled it to memory. You ran the program in memory,
saved the source code to disk, and finally, the object program as well. Now
it's time to go to the Finder.

Choose Quit (Command-Q) from the File menu. If you've made changes to
FirstEffort.Pas since your last Save, you'll get one last chance to save them.

When you're safely back at the Finder, look for the two files you created in
this session: FirstEffort.Pas, a text file containing the source of the program,
and FirstEffort, a brand-new application.

~D TP Work Disk t!1§
5 items 346K in disk 433K available

m Q

0 0
System Folder Turbo 1.00 My Files

§J ~
FirstEffort.Pas FirstEffort

~ ()
~I 10 Q]

Figure 5.13: FirstEffort's Two Icons

FirstEffort.Pas is a text file, internally exactly like the text files created by
MacWrite and a number of other applications, although the Finder knows
to associate this file with Turbo Pascal. That's why the Finder gave it the
checkered icon. If you were to double-click this file, the Finder would know
to launch Turbo Pascal.

FirstEffort, on the other hand, is an application. It has the same status to the
Finder as Turbo Pascal, MacPaint, or any other application. Since we didn't
define a fancy icon, it gets the plain application icon. If you double-click it,
you don't run Turbo Pascal; instead, you run this program.

Double-click FirstEffort. You'll see the same message in the same terminal
window that you saw from within Turbo Pascal. When you press Return to
end the program, however, you'll return to the Finder instead of Turbo
Pascal.

Using Turbo Pascal 53

Just for fun, perform the Finder's Get Info function on file FirstEffort (Get
Info is an option under the File menu). You'll find that it's surprisingly big
(about 5000 bytes). Does this mean that your compiled programs take up
about 2500 bytes per executable statement? No, thank goodness. What
you're seeing is about 100 bytes generated by the compilation and 4900
bytes worth of library routines.

Library routines are utility functions that are used as a resource by
compiled programs; for example, the code that maintains the terminal
window. These routines are within Turbo Pascal itself and are uglued" to
programs that are compiled to diskas needed.

Review

There are obviously many more commands available in Turbo Pascal than
what we've covered so far, but you can get by with what you've learned in
this chapter for quite some time. You should now be able to do the
following:

• Start Turbo Pascal from your bootable work disk or hard disk.
• Use the editor to create and edit source programs.
• Check the syntax of a source program.
• Compile your program into memory and run it.
• Save your source program on disk.
• Save your object program on disk.
• Exit from Turbo Pascal back to the Finder.
• Recognize the icons of Turbo Pascal text files and object programs.

You've cleared a substantial hurdle: You've used Turbo Pascal to write your
first program. Now all you need to learn is how to create your own
programs. And that's the subject of the rest of this book.

54 Turbo Pascal Tutor for the Macintosh

p A R

A PROGRAMMER'S GUIDE TO
TURBO PASCAL

T

2

55

56 Turbo Pascal Tutor for the Macintosh

c H A p T E R

6

The Basics of Pascal

In the last chapter, you learned how to enter, compile, and run a simple
Turbo Pascal program that displays some text on the screen. Before moving
on, make sure you've acquired the skills necessary to

• Start up your Turbo Pascal work disk.
• Start up Turbo Pascal.
• Load or create a program source file.
• Enter and modify a source program.

If you're not comfortable performing these operations, review Chapter 5.

Some Pascal Terms

You're ready to learn some of the basic concepts of Pascal. Let's begin by
defining some terms and the ideas behind them:

Data type Variable
Identifier Operator
Reserved Word Expression
Constant Statement

The Basics of Pascal

Comment
Program heading
Declaration part
Statement part

57

Data Types

Niklaus Wirth, the father of Pascal, once coined a marvelously succinct
definition of computer programs:

Algorithms + Data Structures = Programs

An algorithm is a plan of action for accomplishing some goal. In Wirth's
formula, algorithms refer to the action side of a program-the steps that a
program takes to accomplish its goal; operations like adding two numbers,
testing one number against another, and moving values in memory.

Data structures are the other primary components of programs-a
component that most languages don't do justice to. Data structures are the
objects in memory that algorithms act on. The better a program's data
structures-the more closely they model the problem, the more options
they offer the programmer-then the simpler (and usually faster and
shorter) the algorithm necessary to work with them will be.

In other words, good data structures encourage good algorithms and
therefore efficient programs. Pascal goes to great lengths to help you create
effective data structures.

One of the underpinnings of Pascal is that all data structures (data objects)
have a type; only certain operations are legal for data of a given type. Before
Turbo Pascal can perform an operation on a piece of data, you must first
specify what type of data it is. By specifying data types (which you'll learn
how to do later), you define what operations can be performed on data .of
that type.

Suppose that your data consists of the numbers 3 and 4. Because 3 and 4 are
numbers, it makes sense for Turbo Pascal to be able to add them and return
the sum, 7.

Now suppose your data items consist of Tuesday and March (this may seem
unlikely at this point, but Pascal can handle this sort of non-numeric data
with ease). Clearly, it doesn't make much sense to add them together (that
is, Tuesday + March is an illegal operation), and, in fact, Turbo Pascal won't
let you. However, it may be possible to perform a different operation on
these items, say, finding the first Tuesday in March. If you invent such an
operation and explain to Turbo Pascal exactly how to go about doing it,
Turbo Pascal will gladly perform the operation on data items of that type.

58 Turbo Pascal Tutor for the Macintosh

Predefined Data Types

Certain fundamental data types are used in almost every program. For this
reason, Turbo Pascal provides you with a number of predefined data types:

Type Examples

Integer 3 0 -17382
LongInt 14 -150321 6681012
Real 3.14159 0.00 -6.67E-22
Char 'A' '$' '0'
Boolean True False

We'll discuss the details of these types in later chapters. For the moment,
here's a synopsis of their properties.

Integers are what mathematicians call "whole numbers," that is, numbers
without a fractional component. Integers can be less than, equal to, or
greater than zero. 5, -20, 0, and -32355 are all integers, but 3.5 is not,
because it contains a decimal point and fractional part. Pascal Integers have
a limited range of values: They can't be bigger than 32767 or smaller (more
negative) than -32768. These size restrictions have an important basis in
Macintosh hardware: Integers are formed from compact 2-byte chunks of
memory that the Mac's processor can process with exceptional alacrity.

A LongInt (long integer) is a whole number with a much larger range than
the standard Integer type, all the way from -2,147,483,648 to 2,147,483,647
(call it -2 billion to +2 billion) Long integers are handy in situations that
require speed, but need more range than that afforded by integers. Long
integers require 4 bytes of storage each and are processed efficiently by the
processor (but not quite as quickly as integers).

A Real is a number that can (but doesn't have to) contain a fractional part,
like 1.5, -0.33335, or 24E15. (The E means that the number is interpreted to
be in scientific notation; that is, it is to be read as 24 x 1015

.) Data objects of
type Real (which are sometimes called floating-point numbers) have a vast
range-all the way from 1.4E-45 (a number microscopically close to zero:
0.0014) to 3.4E38
(340,000,000,000,000,000,000,000,000,000,000,000,000). Values of type Real
can be positive or negative and require 4 bytes of storage each.

If real numbers sound too good to be true (the vast range, including
decimal points, in the same storage as a long integer), they are. Unlike
integers and long integers, Turbo Pascal's internal representation of real
numbers is not exact. Although you can represent very large and very

The Basics of Pascal 59

small numbers, no single number has more than seven digits of accuracy.
For example, 123,456,789 would be represented as a Real as 1.23456E8; the
last three digits of precision are lost.

Furthermore, because of the internal structure used to represent reals, most
decimal fractions, even those with seven or fewer digits, cannot be
represented exactly. A figure like $1.10 can only be approximated by a Real
value. That approximation may be very close ($1.0999999), but it still lacks
the total accuracy provided by integers.

Turbo Pascal also offers three additional floating-point types-Double,
Extended, and Comp-that offer more range and accuracy than type Real.
For more information about floating-point types, see Chapter 26 of the
Turbo Pascal for the Macintosh manual. Because the processor is significantly
less efficient in performing calculations with real numbers, don't use type
Real unless you need its range or fractional capability. A surprising variety
of programs can be written without reals.

A Char is exactly what it sounds like: an ASCII character. It's useful for
handling textual information, like a file from a word-processing program.

A Boolean is a data item that can have only two values, True and False,
spelled out just like that. Boolean items are useful as flags when your
program needs to remember whether something is true or not.

User-Defined Data Types

Besides having predefined data types, Turbo Pascal lets you define your
own data types. For instance, in a scheduling program, it might be useful to
define the days of the week as

type
day = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);

Turbo Pascal would then recognize all of the words listed between the
parentheses as being of the new type Day.

Turbo Pascal allows fantastic flexibility in creating and manipulating data
types. In fact, data typing may be the single most notable aspect of Pascal
relative to other languages. We'll cover the hows and whys of user-defined
data types later in this tutorial.

60 Turbo Pascal Tutor for the Macintosh

Identifiers

Another term vital to your understanding of Pascal is identifier. An
identifier is, very simply, a name for something-a piece of data, a part of
your program, a place in your program, or a data type. When you write a
program, you name its parts by declaring identifiers to represent them. In
the last example, eight identifiers were used to name and declare the data
type Day: Day, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and
Saturday.

Turbo Pascal automatically declares some identifiers for you. For instance,
the names of the predefined data types (such as Integer and LongInt) are
predeclared.

An identifier must begin with a letter; numbers and punctuation characters
won't do. This first letter may be followed by any combination of letters
and digits, but may not contain spaces! An identifier may be as short as a
single character or as long as you like, although only the first 63 characters
are significant.

Standard Pascal (that is, Pascal as described in the book American National
Standard Pascal Computer Programming Language, published by the IEEE
standards committee) allows only letters and digits in an identifier. Turbo
Pascal, however, allows you to use one additional character, the underscore·
(_). Underscores are handy in place of spaces. So,

An Identifier

is illegal (it contains a space), but

An Identifier

which reads almost the same, is acceptable.

The Turbo Pascal compiler ignores the case differences within an identifier;
the following are all considered to be the same identifier:

STARTINGLOCATION
Startinglocation
starting location
StartingLocation
starting Location

The last two forms are easier to read than the others, so identifiers are
depicted these two ways in this manual and other Borland books. Note that
adding an underscore is the same as adding another character-it
completely changes the meaning of the identifier.

Here are some examples of legal identifiers:

The Basics of Pascal 61

TURBO
square
persons counted
BirthDate
DayOfTheWeek
AVeryLongldentifierlndeed
The_2nd_Extremely_Long_Yet_Quite_Acceptable_Identifier

And here are some illegal ones:

3rd Root Starts with a digit instead of a letter
Two Words Contains a space
Two& Two Contains an illegal character (&)

To illustrate how the pieces of Pascal go together, we'll use a visual aid
known as a syntax diagram. Let's look at the syntax diagram for an identifier
shown in Figure 6.1.

label identifier,
constant identifier,
type identifier,
field identifier,
variable identifier,
procedure identifier,
function identifier,
program identifier,
unit identifier

underscore -.g...--.
Figure 6.1 : Syntax Diagram of an Identifier

Like all syntax diagrams, this one defines the language elements (parts of
speech, if you will) named at the upper left-hand corner of the diagram. In
this case, the diagram shows the syntax of all the different kinds of
identifiers in the Pascal language.

How to Read a Syntax Diagram

Start at the arrow at the upper left-hand corner of the diagram; follow the
arrows through any boxes, ovals, or circles until you reach the arrow that
leaves the diagram at the right. As you pass through each box, oval, or
circle, whatever is specified inside the figure must also appear (in that
order) in the program element you are checking. If not, you must back up
and try another path.

62 Turbo Pascal Tutor for the Macintosh

If you are able to make it through the syntax diagram without breaking any
of these rules, then the syntax of the program element is correct.

The boxes, ovals, and circles in a syntax diagram have distinct meanings. A
box contains a word that represents an object defined in another syntax
diagram. An oval or a circle contains a symbol or a word that must be
typed exactly as shown.

For example, the top left-hand corner of Figure 6.1 has a box with the word
"letter" in it. This means, as mentioned earlier, that the first thing that must
exist in an identifier is a letter. Following the arrow from the first box, you
can either exit to the right (if your identifier consists of a single letter) or
follow the path down to one of two boxes: one contains the word "letter,"
the other contains the word "digit." After leaving either of these boxes, you
can follow the arrow up and exit, or you can go through the loop again,
adding either another letter or another digit each time through.

Since each word in this diagram is enclosed in a box, each word is defined
by another syntax diagram. Figure 6.2 shows the syntax diagram for letter.

letter

Figure 6.2: Syntax Diagram of Letter

Starting at the top left-hand corner of Figure 6.2, you are presented with a
number of alternate paths, each to a single letter of the alphabet. Since each
letter is in a circle, that letter must be entered exactly as shown. Finally, if
you trace a path from any letter, you'll find that the only path is one that
exits the diagram. This means that each time you see the word "letter" in
any syntax diagram, only one letter may be used.

The syntax diagram for the word "digit" is shown in Figure 6.3.

digit

Figure 6.3: Syntax Diagram of Digit

You can read this diagram exactly as you did the letter diagram. Each pass
through the diagram results in only one digit being selected.

The Basics of Pascal 63

Exercises

For practice, use the preceding syntax diagrams to check the syntax of the
following "identifiers." Can you make it through the whole diagram with
any of them? (The answers to all exercises are in Appendix B.)

Hen3ry
_Turbo_Pascal
5th_Amendment
Three+Four
Good Work

Syntax diagrams may be overkill for explaining identifiers, letters, and
digits, but will prove valuable when we get to more complex constructs.

Reserved Words

When you begin writing programs, you'll see that identifiers are used
virtually everywhere. You'll create identifiers for almost every data type,
data object, and piece of code that you use. In addition to the syntax
requirements just covered (for example, no spaces), there are a few
combinations of letters that cannot be used as identifiers because Pascal
uses them itself; these are called reserved words.

Reserved words (listed in Table 6.1) have special meaning to the Turbo
Pascal compiler and cannot be used for any other purpose (except in
comments-we'll talk more about that later on). For example, you can't
declare a data type named program or name a program begin, because
program and begin are reserved words. You can use reserved words only
in the way Pascal decrees.

To help you distinguish reserved words in sample programs, they are
shown in boldface type throughout this and other Borland manuals.
(Remember that reserved words don't need to be bold when you type them
into a program-the text editor part of Turbo Pascal doesn't know that
they're special.)

64

and
array
begIn
case
const

Table 6.1 : Pascal Reserved Words

external
file
for
forward
function

mod
nil
not
of
or

shl
shr
string
type
unit

Turbo Pascal Tutor for the Macintosh

div ~oto then until
do If to uses
downto otherwise procedure var
~mplementation packed program while
In Inline record with
else interface repeat xor
end label set

Constants

A constant is a piece of information (a number, perhaps, or some text) that
remains the same while you're running your program. Suppose you want
to calculate a percentage based on a fraction, as follows:

100 * Numerator / Denominator

where * represents multiplication, / represents division, Numerator and
Denominator are identifiers representing numbers, and 1/100" is a constant.

Constants are not limited to numbers, as shown in the sample program at
the end of Part 1. When you write

WriteLn ('This program compliments of Robin Jones')

the sequence of characters "This program compliments of Robin Jones" is a
constant; specifically, it is a string constant.

In addition to string constants, Standard Pascal allows you to use constants
of types Integer, LongInt, Real, Char, and Boolean.

Constant Definitions

To show how a constant definition might be useful, consider the following
example: A programmer at a bank has to write a program to compute
compound interest on a bank account. An important Real value, known as e
in math texts (the so-called base of natural logarithms, approximately
2.71828), is used in the compound-interest calculation.

Since the program needs this value in several different places, without
constant definitions, the programmer would have to type it in at each place.
This repetitiveness creates room for error-one that could cost the bank
money. To avoid this problem, a constant is declared as an identifier to
stand in for it:

The Basics of Pascal 65

const
e = 2.71828;

This replaces the ponderous string of digits with a single character! After
this definition, every use of the identifier e is equivalent to 2.71828. As you
work .through this book, you may think that we've gone overboard on
constants-especially if you have a background in BASIC. But constants
work to improve program readability, even if they're used only once.

Constants are defined in the constant definition part of a Pascal program. The
syntax of this part of a program is shown in Figure 6.4.

constant declaration

Figure 6.4: Syntax Diagram of a Constant Definition Part

To practice your use of syntax diagrams, you may want to again trace
through the previous diagrams to verify that the declaration of e has the
correct syntax.

Variables

Almost every program needs pieces of data whose values change during
program execution. These data items are called variables. A variable is one
or more bytes in memory where data is kept; the processor goes to this
address to read or change the value of the variable.

All variables have names; this name is an identifier and must conform to
the syntax for an identifier as shown previously. If you intend to use a
variable in your program, you must give the compiler the variable's name
and data type. This is called a variable declaration: It causes Turbo Pascal to
set aside a place in memory for it and to remember its name.

Variable Declarations

Variables are declared in the variable declaration part of a program. Here are
some examples:

var
FirstInteger

66

Integer;

Turbo Pascal Tutor for the Macintosh

SecondInteger, ThirdInteger
BigInteger: LongInt;
ASCII_Character : Char;
RealNumber : Real;

Integer;

The preceding declarations define three variables of type Integer, plus one
each of types LongInt, Char, and Real. Variables of the same type can be
grouped into the same declaration, separated by commas. (SecondInteger
and ThirdInteger are declared this way.)

The syntax of this part of a program is shown in Figure 6.5.

variable declaration identifier list

Figure 6.5: Syntax Diagram of a Variable Declaration Part

Operators

An operator is a punctuation symbol or reserved word that Turbo Pascal
uses to indicate that some operation (such as addition) is to be performed
on one or more pieces of data. Some operators, like +, are already familiar
to you from arithmetic or algebra. Others, like / for division, represent
familiar operations that have been adapted to the constraints of ASCII,
which doesn't define the standard division symbol +. Still others, like shl
and Of, perform exotic boolean operations on data.

Here are Turbo Pascal's operators:

unary minus operator
* / di v mod + - math operators
not and or xor boolean operators
shl shr bit operators
= < > <= >= <> relational (comparing) operators
in set membership operator

The unary minus operator (-) works as you might expect: It changes a
numeric value's sign. Thus, if variable A has the value 5, writing -A yields
the value -5.

The * and / operators indicate multiplication and division, respectively.
The div operator represents integer division, in which the remainder is
thrown away. mod (short for modulo), by contrast, divides two integers,
throws away the quotient, and returns the remainder. + and - are the same

The Basics of Pascal 67

folks you worked with in the first grade. They produce the sum and
difference, respectivelYI of two numbers.

The not operator takes a boolean value (True or False) and inverts it. Thus,
not True is the same as False, not False is the same as True, not (not True) is
the same as True, and not (not (not True» is False. (This is how George
Boole got his kicks.)

The and and or operators work on pairs of boolean values. The value True
is produced by and if both of its operands are True; it's produced by or if
either of its operands are True. These two operators can also be used to do
boolean math on integers; more on this in Chapter 25, "Computer
Numbering Systems: Boolean Operations on Integers."

The shl and shr bit operators are special low-level operations that shift the
bits of an integer or long integer. We describe how they work in later
chapters.

The relational operators (=, <, >, <=, >=, and <» compare numbers and
return boolean values based on the results. They should all be familiar,
except possibly <>, which means "not equal." The standard "not equal"
symbol (*) wasn't available on computer keyboards when Pascal was
created (another ASCII omission).

Finally, the in operator determines whether or not an object is in a set.
(We'll discuss sets shortly.)

Expressions

You've probably seen expressions before, perhaps in a science or math class
as formulas. Formulas that calculate such things as the circumference of a
circle or the velocity of a falling object with respect to time are pretty close
to what Pascal means by an expression. In fact, FORTRAN (one of the
earliest programming languages) stands for FORmula TRANslator.

Expressions are combinations of identifiers, constants, and operators that
describe how to calculate a new piece of data from one or more existing
ones. When an expression is evaluated, the operations within it are carried
out. The result is a single value, which is often assigned to a variable.

Like all data used in a Turbo Pascal program, the result of an expression
has a data type. This type is usually, but not necessarily, the same as that of
the constants or variables within it. For instance, an expression such as

first_Integer + second_Integer + third_Integer

68 Turbo Pascal Tutor for the Macintosh

which adds the contents of three Integer variables, is said to be an Integer
expression because evaluating it produces an Integer value. However, the
expression

first_Integer < second_Integer

compares two integers and yields a boolean value (True or False),
depending on whether or not first_Integer is less than second_Integer.

The Order of Operations in Expressions: Precedence

If you've taken a course in algebra, you may remember the Order of
Operations-which means the order in which you perform operations in an
expression. In this section, we demonstrate why this ordering (or
precedence) is necessary and how Pascal handles expressions in which order
makes a difference.

Suppose you ask Turbo Pascal to evaluate the expression 3 + 4 * 2
(remember that * denotes multiplication). The following shows two
possible ways the computer could calculate the result:

3
+4

7
* 2

14

4
* 2

8
+3

11

The example on the left adds 3 to 4 totaling 7, then multiplies the total by 2
to get 14. The example on the right first multiplies 4 by 2 to get 8, then adds
3 to get 11. Which answer is correct? Well, a long time ago, mathematicians
ran into this dilemma and set up a series of rules to determine how to
evaluate expressions in an unambiguous way. Pascal follows these rules
and adds a few of its own.

The first rule is that multiplication and division are performed before
addition and subtraction, unless the addition or subtraction operation is
enclosed in parentheses, thereby causing the multiplication or division
operation to follow. By applying this rule, we can see that the expression in
the previous example evaluates to 11, not 14. However, if we were to add
parentheses to the previous expression to make (3 + 4) * 2, the addition is
performed first and then the multiplication.

The Basics of Pascal 69

The second rule is that operations with the same precedence (multiplication
and division, addition and subtraction) are performed from left to right.
Thus, the expression 10/5 * 2 is evaluated as shown:

10 5
/ 5 * 2

and not
2 10

* 2 / 10

4 1

To get the second answer, write the expression as 10 / (5 * 2). In this case,
the parentheses indicate that the multiplication should occur first.

The third rule is that unary operations (that is, operations that operate on
only one object) are performed before any of the others. For instance, in the
expression -5 + 10, the unary minus before 5 applies only to the 5, not to
the whole expression 5 + 10. The result of the expression therefore is 5, not
-15.

Parentheses can be used to override the order of operations for unary
operators, as well. The expression -(5 + 10) evaluates to -15, as you might
expect.

Pascal extends the rules just described to relational and set membership
operations as well. Relational operations are performed after addition
operations, and set membership operations follow. The complete table of
operators given earlier was, in fact, intentionally laid out in order of
precedence-that is, with the operations that are done first above those that
are done afterward.

Exercises

Evaluate each of the following expressions according to the Order of
Operations used in Pascal. (The answers are in Appendix B.)

1. 4*6/2+3

2. (4 * 6) / 2 + 3

3. 4 * (6 / 2 + 3)

4. (4 * (6 / 2) + 3)

5. 4 * ((6 / 2) + 3)

6. (4 * 6) / (2 + 3)

70 Turbo Pascal Tutor for the Macintosh

Now, insert the expressions into the following short program and run it to
check your answers. The program as shown is ready to run the first
example.

program calculate;
begin

WriteLn(4 * 6 / 2 + 3);
ReadLn;

end.

Statements

A statement is a part of a program that tells the computer to perform some
action. In the sample program from Chapter 5, the statement

WriteLn('This program compliments of Robin Jones')

tells the computer to display a message on the screen. Usually, programs
have many statements, and when statements occur in succession, they must
be separated from one another by a semicolon (;). Here are more examples
of statements:

Value1 .= Value2 + Value3;

Radius .- 40.25;

if Value1 > 100 then
WriteLn('Value1 is greater than 100');

The first two examples are assignment statements. The first causes the
computer to evaluate the expression Value2 + Value3 and assign the result
to variable Valuel. (That is, it writes the result to the memory address
reserved for Valuel.) Valuel retains this result until it is specifically changed
by the program, for example, by another assignment statement. The second
statement assigns the constant 40.25 to variable Radius.

The last example is an if statement. It instructs the computer to perform a
certain action only if a particular condition is met; in this case, if Valuel is
greater than 100. Note that this statement contains another statement (the
WriteLn statement). This is a common occurrence in Pascal, and we'll say
more about it later.

The Basics of Pascal 71

Comments

Lastly, there's the Pascal construct that causes the computer to do nothing
at all: the comment. A comment is a string of characters starting with a left
brace ({) and ending with a right brace (}). The space within the braces can
contain any kind of text at all (except more braces, which would tend to
confuse things). Everything within braces is ignored by the compiler.
(Chapter 7 details another method of commenting.)

{ This is a comment. Turbo Pascal will ignore this text. }

If comments are ignored, why are they part of the language at all? Because
comments assist the flesh-and-blood human being trying to understand a
program. Even though Pascal is designed to make programs readable, it is
still possible to come back to your own code a month after writing it and
discover that even you no longer understand how it works.

A Programming Example

Let's write a Pascal program to accept two numbers typed at the keyboard,
add them together, and display the result-in other words, a program that
turns a state-of-the-art personal computer into a pale hhitation of a $5
calculator. Before you read the discussion of it, look at the program
carefully and try to understand how it works.

program Simple; { This is the Program Heading.
{ A simple Pascal program to display the sum of two numbers.
DATE: March 19, 1987

AUTHOR: put your name here }

{ This is the beginning of the Declaration Part of the program, where identifiers
are declared. }

const
YourName = 'Friend'; This is a string constant used in the greeting message.

Change to contain your name if you'd like. }

var
A,B,C : Integer; { Variables }

{ This is the beginning of the Statement Part of the program. It contains
statements--the parts of a Pascal program that tell the computer what to do.

begin { Main body of program Simple }

{ Start by greeting the user. As in our very first program, we use a WriteLn
("Write Line") statement to write to the screen. }

72 Turbo Pascal Tutor for the Macintosh

WriteLn('Hello, " YourName, , .');

{ The WriteLn statement can take a LIST of things to write on a line, as well as
just one thing. We wrote three things: the constant string 'Hello, " the value of
the constant identifier YourName (another string), and a period (a character
constant) . }

{ Then write a string to the terminal asking the user for an Integer. A message
like this, which requests a response of some kind, is often called a "prompt." }

WriteLn('Please type an Integer, followed by a Return.');

{ Wait for the user to type a number, then place that number in the variable A.
ReadLn, which is read as "Read Line," tells the computer to wait for the Return key
to be pressed before assuming that the number is complete. }

ReadLn (A);

Repeat the two steps for a second number.

Prompt for another number }

WriteLn('Now please type another Integer, followed by a Return.');
ReadLn(B); { Read the number and place it in variable B. }
C := A + B; { Add A and B and place the result in variable C. }

Write a line containing a message and the value of variable C. }

WriteLn('The sum of the two Integers is: " C);

{ Putting an identifier (here, C) in the list of things that a WriteLn statement
is to write causes its VALUE to be written, rather than its name. If we wanted to
print the letter "C," we would enclose it in single quotes--as we did with the
period in the first WriteLn statement. }

ReadLn

{ This ReadLn performs the same "delay" function that we saw in FirstEffort;
without it, the screen would disappear before we had a chance to read the answer.

end. { of program Simple }

The first thing you should notice about this program (actually the second:
the first is that we went overboard on comments) is that it is divided into
three sections, each starting with a reserved word (program, const, and
begin). Let's now discuss the functions of each part of the program.

The Program Heading

The first line (the one with the reserved word program) indicates that the
lines of code are a program (later we'll learn about another structure Turbo
Pascal can compile besides programs). It also gives the program's name,

The Basics of Pascal 73

"Simple." (The importance of program headings is discussed in detail in
Chapter 7.)

program Simple; {This is the Program Heading.

The Declaration Part

Next is the declaration part, where identifiers are declared. As mentioned
previously, an identifier is a name you give to something (a constant, a
variable, a place in your code, or a piece of your code). The declaration part
occurs after the program header and before the rest of the program. In this
program, we declare the constant You rNa me and variables A, B, and C.

A constant declaration consists of two pieces of information that must be
supplied to the compiler: the name of the constant and its value. These are
separated by an equal sign (=), and the whole thing is followed by a
semicolon. A group of one or more constant declarations is preceded by the
reserved word const.

We declared the constant YourName as follows:

const
YourName = 'Friend'; { This is a string constant used in

the greeting message. Change to
contain your name if you'd like. }

Remember that comments are ignored-even if they span more than one
line in the program.

A variable declaration also provides the compiler with two facts: the name
of the variable being declared and its type. These two pieces of information
are separated by a colon, and each declaration statement must end with a
semicolon. To let the compiler know that a group of one or more variable
declarations is coming, we use the reserved word var:

var
A,B,C : Integer; { Variables }

The variables in our program are A, B, and C, and they are all of the type
Integer. Thus, the only type of data that variables A, B, and C can contain
are integers (positive and negative numbers without fractional parts).

The Statement Part

The remainder of the program is enclosed by the reserved words begin and
end. This part of the program consists of one or more statements and is
therefore called the statement part. The computer starts with the first

74 Turbo Pascal Tutor for the Macintosh

statement in the statement part and continues to execute the statements, in
top to bottom order, until it reaches the final end:

beqin { Main body of program Simple }

(Statements go here)

end. { of program Simple }

Adjoining statements are separated by semicolons. Since the last statement
is not followed by another statement (end isn't a statement), no semicolon
is needed-although having one doesn't hurt. (This is one of the few
instances in which you'll get a break from Pascal syntax.) There is a period
after the final end in the program. This lets the compiler know that the
program is finished.

The first statement in the sample program is a WriteLn statement:

{ Start by greeting the user. As in our very first program, we use a WriteLn
("Write Line") statement to write a line to the screen. }

WriteLn (' Hello, " YourName, '.');

{ The WriteLn statement can take a LIST of things to write on a line, as well as
just one thing. We wrote three things: the constant string 'Hello, " the value of
the constant identifier YourName (another string), and a period (a character
constant). }

As mentioned in the comment, the WriteLn statement takes a list of
variables, constants, or expressions and writes their value(s) to the screen.
(It is also possible to have a WriteLn statement without a list of things to
write, although we didn't show this in our program. The statement
WriteLn; simply outputs a blank line to the screen.)

The program then prompts (that is, asks) for an Integer value to place in the
variableA.

{ Then write a string to the terminal asking the user for an Integer. A message
like this, which requests a response of some kind, is often called a "prompt."

WriteLn('Please type an Integer, followed by a Return.');

{ Wait for the user to type a number, then place that number in the variable A.
ReadLn, which is read as "Read Line," tells the computer to wait for the Return key
to be pressed (starting a new line) before assuming that the number is complete. }

ReadLn (A);

The Basics of Pascal 75

The ReadLn statement does the work of getting the Integer we asked for
from the keyboard. Like WriteLn, ReadLn can take a list of values to get
from the terminal or can be used with no list at all. The statement

ReadLn;

just waits for the user to press Return, as we saw in our first program.

Our program then does a second WriteLn and a second ReadLn to get
another number and adds the first number to the second:

Repeat the two steps for a second number.

Prompt for another number}

WriteLn('Now please type another Integer, followed by a Return.');
ReadLn(B); { Read the number and place it in variable B. }
C := A + B; { Add A and B and place the result in variable C. }

The last statement of the preceding group is an assignment. The expression
A + B is evaluated by adding the values contained in variables A and B
together. The result of this operation is then placed in variable C.

It helps to think of the assignment operator, :=, as an arrow pointing to the
left, indicating the flow of information from the expression on the right­
hand side to the variable on the left-hand side. When a program is read
aloud, the assignment operator can be read as "gets," as in "e gets A plus
B."

Now our sample program displays the value saved a moment ago in
variable C:

Write a line containing a message and the value of the variable C.

WriteLn('The sum of the two Integers is: " C)

{ Putting an identifier (here, C) in the list of things that a WriteLn statement is
to write causes its VALUE to be written, rather than its name. If we wanted to
print the letter "C," we would enclose it in single quotes--as we did with the
period in the first WriteLn statement. }

Finally, the program reaches the final end and stops.

Throughout the sample program, everything has been arranged in an
orderly fashion. Since the compiler doesn't care about spacing between
words (unless, of course, the spaces are within a quoted string of
characters), we have spaced and aligned everything for clarity.

If you'd like to actually execute this program, type it in and run it under
Turbo Pascal (feel free to expunge the comments). Alternatively, the source
code of every example program in this book in contained in file Manual.Pas

76 Turbo Pascal Tutor for the Macintosh

on the Turbo Tutor disk. Simply open this file under Turbo Pascal, locate
the program Simple (do a Find operation on the string Simple;), and copy it
into a new window.

We've covered a lot of ground in this chapter. So, before you move on, take
the time to perform the following exercises. They are designed to reinforce
what you have learned so far and prepare you for the material in chapters
to come (answers in Appendix B).

Exercises

1. Review the previous sample program. How many identifiers can you
find? (Hint: The names of data types, like Integer, are identifiers). How
many constants? How many statements?

2. Use Turbo Pascal to load and run this program in its original form.
Change the value of the constant YourName so that the computer writes
your name when the program is run (don't cheat by typing in the name
of one of the 25 bones in the human foot).

3. Modify the sample program so that it prints not only the sum of the two
numbers (A + B), but the difference (A - B) as well. Add a new variable,
D, to hold the difference.

4. Modify the program to return the following values:

a. Twice the difference between A and B
b. A minus twice B
c. Five times A, minus the quantity three times B
d. The product of A and B
e. A modulo B (Watch out if you enter a value of 0 for BD

Check your work by accumulating results for several values of A and B.

5. Try typing a number with a decimal point when asked for one by the
program. What happens? Can you explain why?

6. Now, change the variables in the program so that they are all of the type
Real. Repeat Exercise 5 with this new program. Can you explain the
results? (The compiler will complain if you try Exercise 4(e) with the
variables A and B as Real numbers; the mod operator only works on
integers.)

The Basics of Pascal 77

Review

Each of the topics presented in this chapter deserves (and gets) more
explanation. Our objective here has been to define some of the basic
concepts of Pascal, and you should have at least a basic understanding of
the terms data type, identifier, reserved word, operator, constant, variable,
expression, statement, and comment. If you feel comfortable using these
terms, you're ready to go on to the next chapter.

78 Turbo Pascal Tutor for the Macintosh

c H A P T E R

7

Program Structure

In Chapter 6, we took a brief look at the most important Pascal terms and
concepts and used them in a simple program. This chapter covers the rules
governing the structure of a Pascal program.

Let's quickly review what we've learned about program structure. A Pascal
program consists of three distinct parts: the program heading, the
declaration part, and the statement part. Figure 7.1 shows the syntax of a
program.

program -+/ program heading r.o r. :~ block t--O
~ uses Claus~ j-J .

Figure 7.1 : Syntax Diagram of a Program

The program heading's primary function is to name the program.

The declaration part consists of zero or more declarations that describe to
Pascal the various pieces of data and code with which the program will
work. It is possible to write simple programs without a declaration part
(program FirstEffort from Chapter 5, for example).

Program Structure 79

Finally, the statement part (see Figure 7.3) is one or more program
statements that describe the actual work to be performed, such as adding
numbers, making assignments, and printing information to the screen. The
statements are enclosed between the reserved words begin and end,
followed by a period indicating the end of the program. This part of the
program is also called the main program.

The Program Heading

In standard Pascal, the first non-comment line in a program must be a
program declaration consisting of the following, in this order:

• the reserved word program
• the name you want to give to your program (which can be any legal

identifier)

• a list of identifiers naming the files that the program will use (called
"program parameters")

• a semicolon

The syntax diagram for the program heading is shown in Figure 7.2.

program
heading

program parameters

program parameters --..1 identifier list ~

Figure 7.2: Syntax Diagram of a Program Heading

Here are some sample program headings:

program BudgetAnalysis;
program Digestion (input, output);
program With_A_Very_Long_Name_Indeed (file!, file2);

The optional program-parameters list gives some compilers information
about the files the program will use. Many compilers require that programs
that perform ReadLn and WriteLn operations declare the special files
"input" and "output"; Turbo Pascal, however, does not-in fact, it totally
ignores program parameters.

80 Turbo Pascal Tutor for the Macintosh

The Declaration Part

The declaration part of a program follows the program heading and
consists of listing all labels, constants, types, variables, procedures, and
functions that the program uses. (Procedures and functions are pieces of
your program-something like BASIC's subroutines-that are invoked by
name. More about them later.)

Each declaration lists one or more identifiers, then gives information about
the meaning(s) of these identifiers. Label declarations are rare: They serve
to tell the compiler that the associated identifier will be used as the target of
a goto statement in the program, which are seldom used in Pascal.

The declaration part of a program may be divided into five subparts:

• Label declaration part
• Constant definition part
• Type definition part
• Variable declaration part
• Procedure and function declaration part

Standard Pascal requires that each of these subparts occur only once (if at
all) and in the exact order listed. Turbo Pascal, however, doesn't care about
the order in which things are declared, as long as they're declared before
they are used. With Turbo Pascal, you can make any kind of declaration, any
number of times, and in any order.

Since the compiler has no idea what an identifier means until you tell it,
you must declare all of the identifiers you will use in your program (except,
of course, the "standard" identifiers, like ReadLn and WriteLn, which are
already part of Turbo Pascal). This includes all labels, constants, types,
variables, and procedures and functions that you create as you build your
program. If you use an identifier that has not been declared, Turbo (like all
Pascal compilers) produces an error message and refuses to compile or run
your program.

Pascal's rule of identifier declaration is so fundamental that we need to call
special attention to it. Memorize this rule well: All identifiers must be declared
before they are used.

Program Structure 81

Formatting Your Declarations

Pascal allows considerable freedom in how the declarations can be laid out
in a source program. This section presents some sample variable decla­
rations to illustrate this flexibility. The same principles apply to constant
and type declarations.

A group of variable declarations (that is, a variable declaration part of a
program) is preceded by the reserved word var. Each declaration consists
of one or more names (identifiers) for variables, a colon, a type (another
identifier) for the variable(s), and, finally, a semicolon. The result looks like
this:

var
A,B,C : Integer;

This example defines three variables of type Integer: A, B, and C.

The reserved word var can be followed by several variable declarations
without being repeated. Thus, if you want to declare A, B, and C on
separate lines in an effort to make your program more readable, you can
write

var
A: Integer;
B: Integer;
C: Integer;

without repeating the var.

Here are some sample variable declarations for each of the predefined
types discussed in Chapter 6:

var
Alive, Breathing
Age, Height, Weight
Income
Ratio, Percentage
First,Middle,Last

Boolean;
Integer;
LongInt;
Reali
Chari

Pascal is a "free-format" language-it doesn't care how the text of your
program is broken into lines (unlike BASIC and other languages that stick
their noses into the text-editing business). As long as the syntax of the
declarations agree with the syntax diagram, Pascal doesn't care how you
arrange things. If, for some reason, you want to arrange your declarations
in a long, narrow column, you could rewrite the previous example as

var
Alive,
Breathing

82 Turbo Pascal Tutor for the Macintosh

: Boolean;
Age,
Height,
Weight
: Integer;
Income
: LongInt;
Ratio,
Percentage
: Real;
First,
Middle,
Last
: Char;

Here's yet another variation:

var
Alive : Boolean; Breathing : Boolean; Age : Integer;

Height : Integer; Weight : Integer; Ratio : Real;
Percentage: Real; First: Char; Middle: Char; Last: Char;

In this book, we use a format that we think is easy to read and understand.
Most Pascal programmers ultimately evolve a unique style-but our
conventions make a good starting point.

The Statement Part

The statement part of a program consists of the reserved word begin,
followed by any number of statements, then the reserved word end (see
Figure 7.3). The statement part of a program is followed by a period (.)
right after the closing end to indicate the program is finished. Execution
starts with the first statement after begin and proceeds sequentially to the
last statement before end, unless a statement directs the program flow
elsewhere than to the next sequential statement. Other than a comment, the
period after the last end must be the last thing in a Pascal program.

Figure 7.3: Syntax Diagram of a Statement Part

Program Structure 83

Formatting Your Statements

As mentioned earlier, spaces and line breaks don't affect the meaning of the
program-unless, of course, they occur in the middle of a string. For this
reason, we could have written our first program (FirstEffort) like this:

program MyNamei begin WriteLn('This program compliments of ... ')iReadLn end.

Pascal also doesn't make a distinction between uppercase and lowercase
letters. It doesn't care if you write Program, PROGRAM, or program, as long
as you spell it right. This means more freedom in controlling the
appearance of your program, which, initially, you should use with
restraint. Again, the examples shown in this book are written in what we
think is a readable, easy-to-use format that can be understood by anyone
knowledgeable in Pascal.

Statement Types

A large portion of this tutorial is devoted to discussing the different kinds
of statements available to you in Turbo Pascal. Let's look at the syntax
diagram of a statement (shown in Figure 7.4) to get an overview of what's
to come.

statement -r-----------.... T"""T"~

if statement

repeat statement

while statement

for statement

case statement

with statement

goto statement

inline statement

Figure 7.4: Syntax Diagram of a Statement

84 Turbo Pascal Tutor for the Macintosh

You have already been introduced to the first kind of statement shown in
the diagram, the assignment statement. The assignment statement gives
values to variables and, if necessary, evaluates expressions to produce this
value.

A procedure statement causes the named procedure to be executed. The
ReadLn and WriteLn statements used in the example programs thus far are
actually procedure calls to procedures ReadLn and WriteLn, which are
predefined by Turbo Pascal. We'll talk more about procedures, and how to
define your own, in chapters to come.

A compound statement is zero or more statements grouped between the
reserved words begin and end. If you think this sounds similar to the
statement part of a program, you're absolutely right: The statement part is
an example of a compound statement. Compound statements have other
uses, which we'll discuss shortly. (If you've ever looked at a large Pascal
program, with begins and ends all over the place, then you know how
common compound statements are.)

The if and case statements are used to make decisions about what the
program should do next.

The repeat, while, and for statements are loop builders; all cause the
computer to repeat actions until a particular condition is met. We say more
about them in Chapter 10, "Control Structures."

The with statement helps the programmer by shortening certain variable
names. We'll cover this in Chapter 14, "Records."

The golo statement tells the computer to jump to a particular place in the
program (indicated by a label) and start executing statements there. Unlike
less structured languages like Fortran and BASIC, Pascal never presents a
situation where a goto is absolutely necessary, and you should avoid them.
However, we've included a brief explanation of golo in Part 3.

If you have programmed in BASIC or Fortran, it is important to kick the
golo habit, even though it may be difficult. Once you've mastered Pascal's
structured techniques, then you can resort to gotos, if you must.

Finally, the null statement is represented by the arrow that completely
bypasses all of the other statements in the previous syntax diagram (Figure
7.4). In some places where the Pascal language requires a statement, you
can tell the computer to do nothing. The null statement provides you with
a way to convey that message to the compiler.

The path shown in gray in Figure 7.4 shows the format of a label-the
target of a go to statement. As previously mentioned, we strongly

Program Structure 85

recommend against goto statements; this is shown simply for your
information.

Comments: The Rest of the Story

An important part of any serious program is its documentation-text that
explains what the program does and why. Comments are used to help the
reader of the program understand how it works. Comments explain the
uses of identifiers, the actions of the program, the situation that will occur
when a certain condition is met, the date the program was written, the
name of the author, and anything else the author thinks is relevant.

Commenting takes a little effort, but it is an invaluable aid in debugging,
maintaining, and enhancing your programs. Someone other than yourself
may have to modify the source code of your program someday: If your
program didn't have comments, it would be like cooking a gourmet meal
from a recipe that lists all the ingredients but gives no instructions on how
to combine them.

As mentioned in Chapter 6, comments are ignored by the compiler, which
means they have no effect whatsoever on an object program: They do not
increase its size or affect its execution speed.

Comments begin with a left brace (0 and end with a right brace 0). These
symbols are known as comment delimiters. A comment can start and end
almost anywhere, and it can occupy as many lines as needed.

About the only potentially confusing aspect of comments is when you use
nested comments-comments embedded within comments. Say you've
written the following section of a program:

WriteLn (date);
old a := a;
ReadLn (a);

{ Write the date }
{ Save the old value of a }
{ Read a new value for a }

Suppose you want to temporarily remove the last two statements shown.
You don't want to delete them from the program forever, just keep them
from being performed during this run. This can be done by "commenting
out" a section of code. At first glance, it appears that you could simply put

86 Turbo Pascal Tutor for the Macintosh

comment symbols before and after the statements you want to comment
out, as follows:

WriteLn (date);
{
old a := a;
ReadLn (a);
}

{ Write the date }

{ Save the old value of a }
{ Read a new value for a }

This approach doesn't work. The compiler recognizes the first comment
({Write the date}) and understands that the next left brace (at the beginning
of the second line) is the beginning of another comment. However, when
the compiler encounters the right brace at the end of the third line, it
assumes the comment is over. Thus, the statement ReadLn (a) is compiled
into the program, even though we didn't want that to happen.

In this particular case, the compiler then finds the extra right brace in the
last line of the example and signals with an error message that something is
wrong. Sometimes, however, this sort of error goes undetected, causing
many debugging headaches.

One solution to this problem is to delete some of the comment symbols
within the section that is commented out. But that would be more trouble
(and probably cause more errors) than removing the entire section of code.
Fortunately, there's a better way.

There's an alternate pair of comment symbols: a left parenthesis paired
with an asterisk 1/(*" to begin a comment and an asterisk paired with a right
parenthesis 1/*)" to end a comment.

Turbo Pascal allows you to place one kind of comment within the other, as
a natural result of the way comments work. If you begin a comment with a
left brace (0, everything after it is ignored, including the set of parentheses
and asterisks «* and *», until the right brace (}) appears. The reverse is also
true: When a comment begins with a left parenthesis and an asterisk «*),
everything up to the next asterisk and right parenthesis (*) is ignored,
including a set of braces ({ n.
So, the solution to the problem of nested comments is to always use one set
of comment delimiters for descriptive comments, and the other set of
comment delimiters for commenting out sections of code. In this manual,
we use curly braces as comment delimiters for ordinary text comments. If
the situation requires that sections of code be commented out, we use the

Program Structure 87

parenthesis-asterisk comment delimiters. Now, let's rewrite our latest
example using both sets of comment delimiters:

WriteLn (date);
(*

old a := a;
ReadLn (a);

*)

{ Write the date

Save the old value of a
{ Read a new value for a

The program runs just fine now, with the sections of code between (* and *)
ignored by the compiler. You can use this technique to test various parts of
programs, to isolate problems, or to prove that a section of your program
does what you intend.

You can insert comments almost anywhere, except in the middle of an
identifier or a reserved word, or inside a string. In the first case, the
compiler thinks that the reserved word or identifier ends where the
comment begins; in the second, it thinks that the comment is part of the
string. The statement

WriteLn('Hello, world, my name is {not} Joe.');

produces the output

Hello, world, my name is {not} Joe.

Review

The structure of a Pascal program follows this form:

program Name ({optional file identifiers});

label label declarations here

const {constant declarations here

type type declarations here

var variable declarations

88 Turbo Pascal Tutor for the Macintosh

{ subprograms (procedures and functions) declared here }
begin
{ main body of program }
end.

Pascal is a free-format language. It allows declarations and statements to be
formatted in many ways, subject to certain simple constraints. Pascal
provides a rich variety of statements from which to choose.

Turbo Pascal is more flexible than Standard Pascal in that label, const, type,
var, and subprogram declarations can be placed in any order and can occur
more than once.

Comments are used to document programs and to prevent certain sections
of code from being run during tests. The two sets of comment delimiters-{
and } and (* and *)-allow the programmer to nest comments within one
another. Comments can be used anywhere, except in the middle of a string,
a reserved word, or an identifier.

Now you're ready to tackle predefined data types.

Program Structure 89

90 Turbo Pascal Tutor for the Macintosh

c H A p T E R

8

Predefined Data Types

In this chapter, we'll explore Turbo Pascal's predefined data types-the
ones that you will use most often. They include Integer, LongInt, Real,
Boolean, and Char. We'll explain and give examples of each. In addition,
we'll cover string types, which allow you to manipulate textual data.

Every data object in a Pascal program has a type. You must therefore tell the
compiler the type of every constant and every variable your program uses.
For constants, the type is implicit in its declaration. For example,

const
peopleCount = 13;
e = 2.71818;

Given these declarations, the compiler figures out that peopleCount is an
Integer, because it fits in the range of integers and has no decimal point.
Similarly, e's decimal point marks it as a Real.

In determining the type of variables, the compiler doesn't have to guess,
because you are required to explicitly state the type in the declaration:

var
HeadCount: Integer;
Acreage: Real;

Pascal's data types can be classified as either simple types, which are used
for information that is always manipulated as a whole, and structured types,
which are used for information consisting of smaller pieces that can be
manipulated individually or as a whole.

Predefined Data Types 91

Turbo Pascal's predefined data types are the ones that you will use most
often. All of Turbo's predefined types fall into the simple category; they
include Integer, LongInt, Real, Boolean, and Char. String types allow you to
manipulate textual data; while not part of Standard Pascal, strings are a
common extension.

Integers

Integers are whole numbers, negative and positive, in the range -32768 to
32767. 12 is an integer, as are 456 and -12000. On the other hand, 1.234,2.0,
and -0.54234312 are not: They have decimal points. You use Integer data
types when your data is strictly numeric, doesn't contain fractions, and fits
in the prescribed range. Figure 8.1 shows the syntax diagram for an
unsigned integer (an integer constant without a + or - sign).

unsigned integer ----.--;~ digit sequence

®--+ hex digit sequence

Figure 8.1 : Syntax Diagram of an Unsigned Integer

In Turbo Pascal, you can specify an integer constant in hexadecimal (base 16,
also known as hex) notation as well as ordinary decimal (base 10) notation.
A hexadecimal constant consists of a series of hex digits (0 through 9 or a
through t> preceded by a dollar sign ($). Declaring hex constants is an
advanced technique we'll delve into in Chapter 25.

A Turbo Pascal integer occupies 2 bytes of memory. Because there are only
so many unique values that can be expressed by 16 bits (65,536, to be exact),
objects of type Integer are limited to the range -32768 through 32767. Each
integer you declare will occupy 2 bytes regardless of its value; for example,
the integers 0, 37, and 32,000 are all stored in 2 bytes. For your convenience,
there's a predefined constant called MaxInt equal to 32767.

Integer Operators

In performing calculations with integers, you can use the operations that
you expect to work on any kind of number: +, -, *, and /. (The / operator
actually divides real numbers, but works on integers because its operands

92 Turbo Pascal Tutor for the Macintosh

are converted to reals before the division. The result of the / operator is
always of type Real.) If a value with a fractional part is assigned to an
integer variable, the fraction is removed (truncated) and the integer
assumes the value of the non-fractional part of the number.

The relational operators can also be used with integers. These include >, <,
>=, <=, =, and <>. In addition, Turbo Pascal has two special operations that
can be applied only to integers: div and mod.

The div operator performs integer division. Integer division works much like
/ -style division, except that the operands must both be integers and the
result is always an integer (any fractional part is dropped during the
division). Using div to process integers is preferable to using /, since
integer division is processed by the Macintosh's processor approximately
10 times faster than real division.

The mod (modulo) operator divides its two operands, again using integer
division, and returns the remainder. This operation is useful for "clock
arithmetic." (As you know, the hours on a clock go up to 12, then start at 1
again, so the next hour is the current hour plus 1, mod 12.) The mod
operator also helps determine if a number is a multiple of another (if A is a
multiple of B, then A mod B = 0). For example, 48 mod 16 = 0, because 16
goes into 48 three times, with a remainder of 0; therefore, 48 is a multiple of
16.

Integers and Arithmetic Overflow

We know that integers are limited to a specific range of values. What
happens, you may ask, if the result of an integer operation falls outside this
range-as in the following program:

program Test;
var

A: integer;
begin

A := 30000 + 30000
end.

The answer: A bad thing known as arithmetic overflow. If you calculate a
value that is too positive or too negative to store in the -32768 to 32767
range of integers, overflow occurs. Overflow is especially pernicious when
it occurs in the middle of a calculation.

For example, consider program MightOverflow:

program MightOverflow;

Predefined Data Types 93

var
A,B,C: Integer;

begin
A := 1000;
B := 100;
C := A * B div 50;
WriteLn (e);
ReadLn

end.

This program doesn't assign to C the value you might expect (2000) because
of overflow-even though 2000 is in the acceptable integer range. Instead,
C gets the mysterious (and completely wrong) value, -621.

How did this happen-especially since arithmetic is the one thing
computers do rapidly and dependably? Let's follow through the actions a
Turbo Pascal program performs in executing this statement. First, Turbo
Pascal multiplies 1000 by 100. Since A and B are both Integer constants (the
compiler can tell, just by looking), it uses integer multiplication.

This multiplication routine has only 16 bits in which to return an answer.
Unfortunately, 100000 doesn't fit in 16 bits. So, the multiplication instead
returns a value of -31072, which happens to be the value of the lower 16
bits of 100000. The rest of the number is simply lost. -31072 is then integer­
divided by 50, producing -621. The compiler and computer have both done
their jobs correctly, yet still produce the wrong result.

Integers have two main benefits: They require only 2 bytes of storage, and
operations on them execute fast (as much as 100 times faster than certain
operations on reals). The price you pay for these benefits is the caution you
must exercise when calculating. No run-time error is produced as a result
of arithmetic overflow, so it's important to keep alert for this problem. In
the previous example, writing the assignment as

c := A * (B div 50)

would have produced the correct result.

Exercises

Which of the following are valid constants of type Integer? Why aren't the
others valid?

1. 40000

2. -10,000

3. $b

94 Turbo Pascal Tutor for the Macintosh

4. Maxlnt

5. -32768

6. $A21H

7.2.0

8. 0

Long Integers

There are times you'll need an Integer variable, but find the range
constraints of integers too limiting. For such situations, Turbo Pascal
provides the Longlnt (long integer) type. Values of type Longlnt must be
whole numbers but can range all the way from -2,147,483,648 to
2,147,483,647 (call it ± 2 billion).

Converting Between Types LongInt and Integer

Turbo Pascal automatically performs the necessary conversion in assigning
integer values to long integers and vice versa. For example,

program Test;
var

A: Integer;
B: LongInt;

begin
A := 1234;
B := A;
B := 100000;
A := B;
WriteLn (A) ;
ReadLn

end.

does not produce any compile-time or run-time errors. Turbo Pascal lets
you freely mix operations involving integers and long integers. Going from
integers to long integers never causes problems; however, overflow can
result when you assign long integer values to integers, as in the example.
This program writes -31072 to the screen, which happens to be the lower 16
bits of 100,000.

Predefined Data Types 95

Real

A real constant, like all numeric constants, must begin with at least one
digit. To be recognized as a real, it must then contain a decimal point
followed by one or more digits, or an exponent. Thus, 100.0 and 1E2 are
real constants, while 100 is an integer.

The Macintosh's processor isn't as comfortable working with real numbers
as with integers. (You may have surmised this from our statement that real
division and multiplication are slower than the corresponding integer
operations.)

Real Operators

You can perform the four basic arithmetic operations (+, -, x, and +) on
values of type Real. It is important to note that if any of these operations is
done on one value of type Integer and another of type Real, the result will be
of type Real. In other words, in evaluating the expression (50 x 50.0) the
Integer constant 50 is converted to a real before being multiplied with the
Real constant 50.0.

The relational operators may also be applied to values of type Real. Again,
if operands of types Integer or LongInt are mixed with real numbers in an
expression, they are converted to reals before the operation is performed.

Exponential Notation

What's an exponent? Since real numbers must encompass both very large
and very small values, Pascal allows exponential, or scientific, notation to
represent them. For instance, it is a well-known fact that Scotts Valley,
California, is 5,890,000,000,000 inches from the sun. In college-level
engineering texts, this important physical constant is represented as

5.89 x 10 12

To accommodate the lack of superscripts on most computer screens and
keyboards, it is conventional in programming languages to replace the x 10
part of the number with the letter E (for exponent). The Scotts Valley Solar
Constant can be represented by a Turbo Pascal real as

5.89E12

96 Turbo Pascal Tutor for the Macintosh

Exponential notation is also used to represent very small numbers; that is,
values that are close to zero. For example, Frank Borland's height,
expressed in light years as 0.00000000000000019, is represented in scientific
notation as

1.9 x 10-16

and as a Turbo Pascal real constant by

1.9E-16

The number to the left of the E is called the mantissa; the value to the right
is the exponent. To convert a number from exponential notation to ordinary
notation, move the decimal point in the mantissa the number of places to
the right indicated by the exponent, and fill in any gap with zeros. (If the
exponent is negative, you move the decimal point to the left.)

To convert a number to exponential notation, move the decimal point until
it is just to the right of the leftmost non-zero digit in the number. The
exponent then becomes the number of digits you move the decimal point.
(If the number is negative, you move the decimal point to the right; if
positive, you move it to the left.)

Values of type Real can store numbers in the range ±10E38. Of course, it
takes more space to store this information than it does to store an integer,
but there are times when no other type will do.

The following are examples of real numbers:

1E5
3.1415926
-3546.3
0.0034
32.E4
5.679E21
-1.324E-2
21343.0
0.0
0.1

The following are invalid real numbers:

-.123423
25.
E14

No digit to the left of the decimal
No digit to the right of the decimal
No mantissa

If you write a number that you intend to be a real constant without a
decimal point or exponent, the compiler doesn't complain as long as the
constant is within the range of integers (or long integers). Instead, the
compiler interprets the number as an integer (or long integer). Since Turbo
Pascal automatically converts integers to real numbers when necessary, this

Predefined Data Types 97

never causes your code to execute incorrectly; however, the conversion
slows things down slightly.

Exercises

Convert each of the following numbers to a legal Pascal constant in
scientific notation.

1. 20,000

2. -.000025

3. +42.77

4. -530000.5

Convert each of the following constants from scientific notation to standard
notation.

1. 1.5E-l0

2. -5.545454E12

3.2EO

Boolean

Objects of the type Boolean are limited to only two values: True and
False-spelled out, just like that. This type is named in honor of 19th­
century English mathematician George Boole, who developed the rules
(now called boolean algebra) that govern the operation of computers at the
hardware level.

Pascal programs use boolean values to evaluate the truth of an
assertion-especially when the computer must decide what to do next. You
may recall that the results of all relational operators are of type Boolean; we
show you how to use them to make decisions in Chapter 10, "Control
Structures." Here's an example:

98 Turbo Pascal Tutor for the Macintosh

program BooleanDemo;
var

A: Boolean;
begin

A := True;
if A then

WriteLn('A is true')
else

WriteLn('A is false')
end.

Char

Data objects of type Char hold ASCII characters; that is, they hold a number
from 0 to 127 that represents the corresponding printable or control char­
acter. Actually, a variable of type Char can have 256 values, including the
128 characters in the standard ASCII set and the Macintosh's extensions.
(See Figure 2.2.)

As you may recall, the ASCII character set includes both printing and
nonprinting characters. You represent printing characters by enclosing
them in single quote marks, as follows:

, a' , $' , , , J'

Notice in the third example that a space is a printing character like any
other and is represented as a space enclosed in single quotes.

N onprinting characters can be represented by preceding a character's
ASCII value with the pound-sign symbol (#). For example, #13 equals
carriage return; #9 equals tab.

Strings

Briefly, a string is a sequence of characters with a specific length. A string
can be treated as a single entity, and the characters that make it up can be
accessed individually, hence its status as a structured type.

For example, 'Enter first value: ' is a string. The single quotes or apostrophes
(') show where it starts and stops; the string contains the characters E, n, t,
e, r, and so on. Its length-the number of characters between the single
quotes-is 19, including the space before the close quote.

Predefined Data Types 99

String Constants

A string constant consists of a group of characters, enclosed in single
quotes. Figure 8.2 displays the syntax diagram for a string constant.

character string

string character

unsigned integer t------"

string character any char except 0 or CR t--r-----.

Figure 8.2: Syntax Diagram of a String Constant

The following are examples of legal string constants:

, a' 'Hello, how"s it going?' 'blipvert' , ,

The second of these examples demonstrates how to get a single quote into a
string constant. Two consecutive single quotes represent a single quote.
When this string is output to the screen, the result is

Hello, how's it going?

The fourth example, a string constant that consists of nothing but two
single quotes, is called the null string. The null string has zero length and
does not show anything when written.

Declaring String Variables

You declare a variable of a string type as you would declare any other
variable: identifier, colon, and type. In this case, the type is a string type.
Figure 8.3 shows how this works. .

100

string type -----c string)--.(D---.J constant

Figure 8.3: Syntax Diagram of a String Type

Turbo Pascal Tutor for the Macintosh

The unsigned integer in the string-type definition is a value from 1 to 255,
which declares the maximum number of characters a string of that type can
hold. A string can therefore be no longer than 255 characters. When you
declare a variable of type string[n], where n is an integer, Turbo Pascal sets
aside n + 1 bytes of memory to hold that string's contents: n bytes to hold
the characters themselves, and one byte to hold the current length of the
string.

Here's an example of a string declaration:

var
CompanyName : string[39];

This makes the compiler set aside 40 bytes for CompanyName. If you then
execute the statement

CompanyName := 'Borland';

the current length of CompanyName is 7, even though the maximum length
is still 39. We'll get into the storage format of strings in more detail later, but
here's a sneak preview: Strings are stored as a series of characters in
successive bytes of memory, with the very first byte of storage containing
the current length. After string variable CompanyName is assigned the
constant 'Borland', the first byte contains the value 7, the second byte the
character B, the third byte the character 0, and so on. The unused characters
(positions 8 through 39) at the end of the string variable can contain
anything at all; however, with the length information in the first byte,
Turbo Pascal knows to not use them.

It's easy to confuse the maximum length of a string with its current length.
It may be helpful to think of this distinction in terms of compile time versus
run time. A string variable's maximum length is determined at compile
time according to the type given the string in its declaration. This length
serves as the upper limit on how much data can be placed in this string at
run time. A variable of type string[10], for example, can never contain more
than 10 characters.

The current length of a string variable, by contrast, varies during program
execution according to the value most recently assigned to it. For example:

Program StringTest;
var

s: string[lO];
begin

s := ' Hello' ;
s := 'Hi';

end.

Predefined Data Types 101

String s is allocated 11 bytes of storage by the compiler (10 plus 1 for the
length byte). After executing the first assignment statement, its length
becomes 5-but s still has 11 bytes of storage allocated for it. After the
second assignment, its length byte has the value 2. Routines that access
variable s (WriteLn, for instance) know to look at the length byte to see just
how many of those bytes are in use.

Review

In this chapter, we introduced you to Turbo Pascal's predefined data types
(Integer, LongInt, Real, Boolean, and Char) and to strings.

To summarize, an integer is a positive or negative whole number, including
zero. Integers require 2 bytes of memory each, and can be in the range
-32768 through 32767. Processing with integers is quicker than with any
other numeric type.

A LongInt (long integer) is like an integer with a vastly expanded range,
approximately ±2 billion. Long integers require 4 bytes of storage.

Real values consist of a mantissa and an optional positive or negative
exponent. The mantissa may have up to seven significant digits. The range
of reals is approximately ±IE38.

Logical values of True and False are handled by the data type Boolean. A
Boolean value occupies one byte of memory.

The type Char is one of 256 ASCII characters, including both printing and
non printing characters. Char data types occupy one byte of memory each.

Finally, the string data types can have a defined length of 1 to 255
characters and are declared with a maximum length. A string occupies 1
more byte in memory than its maximum length.

Now that you have a fundamental understanding of the predefined types,
you are ready to tackle defined scalar types in the next chapter.

102 Turbo Pascal Tutor for the Macintosh

c H A p T E R

9

Defined Scalar Types

In the real world, there are many types of objects that have a limited range
of values and a definite order. A day of the week, for example, ranges from
Sunday to Saturday, and the days come one after the other in a fixed
sequence. Pascal lets you define and manipulate this type of data as scalar
types.

A scalar type is one in which all possible values can be said to be in
order-from the first to the last-with no gaps. Some of the predefined
types are scalar-namely, Integer, LongInt, Boolean, and Char.

Scalar types are representable internally by the same binary technique used
for integers. Real is not a scalar type, because adding 1 to a real doesn't
produce the next real number-in fact, there is no "next" real number after,
say, 5.0. Between 5.0 and 6.0 come a host of values, including 5.01,5.1,5.11,
5.1109,5.3, and so on. Similarly, string types are not scalar.

A defined scalar type has a user-defined range of values and a user-defined
order. The range of values is defined by the number of elements you
declare, and the order is defined by the order in which the elements are
declared. Properly used, these types can result in a better representation of
the real-world entity your program must process. Defined scalar types also
improve readability, save memory space, and allow automatic checking to
be performed on your program. We'll discuss two kinds of defined scalar
types: enumerated and subranges.

Defined Scalar Types 103

Enumerated Scalar Types

Good programming style means being considerate of the human beings
who have to read and understand your code (including yourself). For
example, to hold a day of the week in a program, you could declare a
variable DayOfWeek of type Integer, and then use numbers for the days. But
it isn't clear which day you understand to be the first day of the
week-Sunday or Monday? Nor is it obvious if your program represents
the first day of the week by a 0 or a 1. Anyone -who tries to modify your
program has to determine what number stands for which day.

The way to address these potential problems is not to declare DayOfWeek to
be of type Integer. Instead, you can declare a type specifically for the
purpose of holding a day of the week and enumerate, or list, the values it
can have:

program Day Of Week Example;
type - - -

Days = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sun day);
var

DayOfWeek : Days;

begin
DayOfWeek := Thursday;

if DayOfWeek = Saturday then
WriteLn('It"s Saturday. Why are you at work?');

end.

Now there's no confusion over converting between numbers and days.

To declare a scalar type, you must first give an identifier for the type, then
list in parentheses, in order, identifiers for all of the values the type can
have. You can declare scalar types for just about any set of values, including
those with no inherent order, for example,

type
precipitation = (rain, snow, sleet);
color = (black, white, blue, green, red, yellow);

If order is important, declare your list of values from the first to the last.

You define user-defined types in the type definition part of a program. The
syntax of this part of the program is shown in Figure 9.1.

104 Turbo Pascal Tutor for the Macintosh

type declaration

type simple type

pointer type

structured type

string type

type identifier

Figure 9.1: Syntax Diagram of a Type Definition Part

Each type definition names the type to be defined, then tells the compiler
the details of the type. An enumerated scalar type is a simple type (see
Figure 9.2).

simple type

real type --+I real type identifier ~

Figure 9.2: Syntax Diagram of a Simple Type

It is important to remember that when you list the values of an enumerated
type, you are in fact declaring the names of those values as identifiers. It is
therefore not legal to declare:

type
Days = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sun day);
DaysOff = (Saturday,Sunday);

because to do so would be to declare Saturday and Sunday twice. Each
identifier must have one, and only one, type. (Later, we'llieam how to use
sets to handle a situation like this gracefully.)

Defined Scalar Types 105

Ordinal Values

Enumerated scalar types (indeed, all scalar types) are inherently ordered. In
other words, there is a lowest value, a highest value, and a number of
distinct values in between. It is often convenient to turn a member of an
enumerated type into the underlying integer value that represents it.

In type Days in the previous example, Monday is the lowest value and
Sunday is the highest value. The lowest value is considered to have an
ordinal value of 0, while the highest value has an ordinal value equal to the
total number of values defined, minus 1 (because we started counting at 0;
there are many cases in Pascal programming in which counting starts at 0,
so be alert for this). For example, here are the ordinal values of the type
Days:

Element

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Ordinal Value

o
1
2
3
4
5
6

Standard Functions for Scalar Types

To simplify the use of enumerated types and scalar types in general, Pascal
provides operations to manipulate objects of these types. In particular,
these functions help you to find

• the value that comes before a value of the type (its predecessor)
• the value that comes after a value of the type (its successor)
• the position of a value in the list of values in the type definition

Here's a scenario that helps explain why this information can be useful.
Imagine that in your program you have defined the type Days and two
variables of that type, DayOfWeek and NextDay:

106 Turbo Pascal Tutor for the Macintosh

type
Days = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sun day);

var
DayOfWeek, NextDay : Days;

Now suppose that somewhere in your program you want to set NextDay
equal to the day following DayOfWeek. How do you do it?

Well, one thing you cannot do is add 1 to the value of DayOfWeek. The
statement

NextDay := DayOfWeek + 1:

causes the compiler to give you a Type Mismatch error-and rightly so.
The operation of addition is not defined for objects of the type Days. Yet
you know intuitively that you want an operation that somehow adds 1 to a
day of the week, finding its successor in the list of weekdays.

Pascal comes to the rescue by providing this exact operation in the form of
the Succ (successor) function. Using it, you can write

NextDay := Succ(DayOfWeek);

and achieve the desired effect. If DayOfWeek has the value Tuesday, NextDay
is assigned the value Wednesday. If it's Wednesday already, NextDay becomes
Thursday, and so on.

A function is an operation that takes one or more values (called parameters,
or sometimes arguments) and uses them to produce a new value. The sine
function, for instance, takes an angle as a parameter and returns the sine of
that angle. In the previous example, you made the function Succ work on
the parameter DayOfWeek to produce (return) a new value, which was the
next value in the type Days. The new value was then assigned to the
variable NextDay.

The Succ function is one of three predefined "standard" functions that
manipulate scalar types. The others are Pred and Ord.

As you might already have guessed, the Pred function is the reverse of the
Succ function: It returns the predecessor of the value given to it as a
parameter. The Ord function returns the ordinal value of its parameter.

Here are some examples of the results of using these functions. Given that
DayOfWeek = Wednesday, then

Defined Scalar Types 107

Pred(DayOfWeek)
Succ(DayOfWeek)
Pred(Pred(DayOfWeek))
Succ (Succ (DayOf Week))
Pred(Succ(DayOfWeek))
Succ(Pred(DayOfWeek))
Ord(DayOfWeek)
Ord(Pred(DayOfWeek))
Ord(Succ(DayOfWeek))

= Tuesday
= Thursday
= Monday
= Friday
= Wednesday
= Wednesday
= 2
= 1
= 3

Ord always returns a value greater than or equal to 0 for all scalar types
except Integer. That is, except for integers, scalar types never have negative
ordinal values; their first value always has an ordinal value of O.

Given an integer or long integer parameter, Ord returns the actual integer
value. There's no reason to use Ord with these types (although it's legal).

The examples also demonstrate that it is perfectly legal to nest
functions-that is, to apply a function to the result of another. The
expression Pred(Pred(DayOfWeek» is a convenient way to get the day two
days before DayOfWeek.

Cyclical Enumerated Types and Range Errors

One thing to watch out for when using Suee and Pred is inadvertently
calculating a nonexistent successor or predecessor. For instance, suppose
variable DayOfWeek in the previous example had the value Sunday, and you
tried to perform this assignment:

NextDay := Succ(DayOfWeek);

You might expect NextDay to roll over to the first day of the week, Monday.
But Turbo Pascal has no way of knowing that the days of the week run in a
cycle, so it tries to assign to NextDay a value with the ordinal value 7 (one
more than the ordinal value of Sunday, which is 6).

The result of this assignment depends on the conditions present when you
compiled your program. If you compiled your program with range­
checking turned on (explained in the next section), it realizes that there is
no successor for Sunday; the program stops and displays an error message.
If range-checking wasn't turned on when the program was compiled
(which is the default), the error isn't caught and your program will behave
erratically, that is, who knows what value will be assigned to NextDay.

Neither of these reactions is especially desirable. To achieve the correct
result, use an if statement to handle the special case:

108 Turbo Pascal Tutor for the Macintosh

if DayOfWeek = Sunday then
NextDay := Monday

else
NextDay := Succ(DayOfWeek);

While we haven't described the if statement in detail yet, the preceding
example is a pretty clear English description of what needs to be done. If
DayOfV\f?ek has the value Sunday, then we want to explicitly set NextDay to
the value Monday; otherwise, the Succ function will provide the correct
value.

Exercises

Rewrite the previous code fragment to set the variable Yesterday to the day
before DayOfWeek. How do you handle Sunday? (Solutions are in Appendix
B.)

Of course, the same situation can arise even if the enumerated type in
question is not cyclical-though it is less likely. If you define the type

Rank = (Programmer,Peon,Manager,SeniorMgr,VicePres,President,Chairrnan);

and try to find the next rank after Chairman, the same type of error occurs.

Compiler Directives: Range-Checking

Defined scalar types are designed to help you restrict the values of your
variables to within certain predetermined limits. However, Turbo Pascal
does not enforce those limits unless it is specifically told to do so. The
previous example, in which we attempted to take the successor of the last
value of an enumerated type, does not cause an error message in Turbo
Pascal unless a feature called range-checking is enabled when the program is
compiled.

Range-checking is turned on by a compiler directive. Pascal compilers
traditionally use special Uactivated comments" as a way to control the
compiler. A compiler directive (also called a metastatement or metacommand)
consists of a comment in which the very first character is a dollar sign ($).
For example,

{$U MyUnit)
{$It)

demonstrate two of Turbo Pascal's directives. The $U directive tells the
compiler to search disk file MyUnit for information that this program will

Defined Scalar Types 109

use. The $1+ directive turns input/output (I/O) checking on; we'll learn
more about it in Chapter 17. Units are explained in Chapter 18.

Compiler directives are unlike standard language elements like identifiers,
key words, and statements in that they don't describe actions and data
objects to be used at run time. Instead, they instruct and assist the compiler
at compile time.

The compiler directive that turns range-checking on is {$R+}. {$R-} turns
range-checking off; it's the default, so if you don't want range-checking you
don't have to include it. We recommend that you put {$R+} before the
program heading of every program you write; it will save you many hours
of debugging. Once a program is known to be free of potential range errors,
you can compile it a final time with range-checking turned off to generate a
faster, more compact program.

A Useful Trick: Undefined Values in
Enumerated Types

In working with defined scalar types, it can be useful to consider what will
happen if no value is provided for a variable, or if your program must have
a "none of the above" choice for a value. For example, there may be times
when you need to begin a program with your variables set to a known
value, but one that is not normally associated with your type. (Putting your
variables into a known state before doing anything else is known as
initializing .)

A good way to do this is to add an extra value to your type to reflect this
"undefined" state. For instance, in the first example in this chapter, we
could have written

program Day Of Week Example;
type - - -

Days = (Noday, Monday, Tuesday, Wednesday, Thursday,
Friday,Saturday,Sunday);

var
DayOfWeek : Days;

begin
DayOfWeek := Noday;

end.

110 Turbo Pascal Tutor for the Macintosh

Now, when the program begins, DayOfWeek has a known value: Noday. If,
later in the program, you want to test whether or not you have assigned a
value to DayOfWeek, you can test to see whether DayOfWeek still equals
Noday.

Subranges

Another important kind of scalar type is called a subrange. A subrange is a
group of consecutive values that is part of another scalar type. It is useful
when you want to limit the possible number of values a variable can have
to a subset of the original type.

A subrange is specified by the minimum and maximum values to be
allowed in the subrange, separated by two periods (..). This sounds more
complicated than it really is. In the following example, we define an
enumerated scalar type and two subranges of that type:

type
Days = (Noday, Monday, Tuesday, Wednesday, Thursday,

Friday,Saturday,Sunday);
Workdays = Monday .. Friday;
Weekend = Saturday .. Sunday;

The type from which the subrange is derived is called the base type of the
subrange. Therefore, Workdays is a subrange of Days and Days is the base
type of Workdays and Weekend.

As you might expect in declaring subranges, the minimum value (the one
specified first in the declaration) must not have a greater ordinal value than
the maximum value (the one specified last in the declaration).

Here are more examples of subranges:

type
CompassRange
ValidEntry
MonthlyIncome
Hours
Minutes

= 0 .. 360; {Subrange of the base type Integer
= 'A' .. 'F'; {Subrange of the base type Char
= 10000 .. 30000;
= 0 .. 23; Subrange of integer}
= 0 .. 59; { }

{ Here is a defined scalar type ... }
MusicType = (Notype,Classical,Jazz,Folk,RhythmBlues,Rock,

HardRock,AcidRock,HeavyMetal);

{ ... and here is a subrange of that type. }
MusicILike = Classical .. Rock; { Subrange of the base type MusicType

Defined Scalar Types 111

5ubranges can be used to design menus (or any other user-interface
element of your program) in which the only valid entries are a subrange of
an existing type.

5ubranges are often used in defining other elements of Pascal, such as
arrays and records; these uses are described in chapters 12 and 14.

Subranges as Anonymous Types

50 far we've defined subranges in type declarations, implying that to use a
subrange type you must first define it, then declare variables with it. You
can also specify a subrange directly in the variable declaration.

For instance, after declaring

Days = (Noday, Monday, Tuesday, Wednesday, Thursday,
Friday,Saturday,Sunday);

you can write

var
Workday Monday .. Friday; { This subrange type has no name.}

rather than

type
WorkingDay = Monday .. Friday;

var
Workday : WorkingDay;

The ability to specify subranges in this way saves you from inventing a
name for every subrange you want to use. Because the subrange type is
never named, it is called an anonymous type.

Enumerated types can be defined anonymously as well, though this
practice is not recommended. It is legal to declare

var
Dayl : (Mon,Tue,Wed,Thu,Fri,Sat, Sun) ;

Note, however, that the identifiers Mon through Sun are now defined as
part of the anonymous type and may not be used for anything else. For this
reason, you may not declare

var
Dayl
Day2

112

(Mon,Tue,Wed,Thu,Fri,Sat,Sun) ;
(Mon,Tue,Wed,Thu,Fri,Sat,Sun) ;

Turbo Pascal Tutor for the Macintosh

If you attempt to compile this, you will get an error when the compiler gets
to the second declaration since the second anonymous, but distinct, type
uses the same identifiers as the first. This declaration, however, would
work:

var
Dayl,Day2 : (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

Two other restrictions apply to anonymous enumerated types. First, you
cannot coerce variables to an anonymous scalar type (that is, convert them
from other types to an anonymous type), because the name of the type is
required to perform the operation. Don't worry, this will make more sense
when you learn about type coercion.

Second, you cannot pass such variables as typed parameters to a subroutine
or procedure, since there is no data type to use in the declaration of the
formal parameter. These restrictions will be more important to you later,
when you begin writing code using these advanced features.

Input and Output

It would be convenient if you could read and write objects of enumerated
scalar types directly, but Pascal doesn't allow it. For example, it would be
handy to say the following to display the current value of DayOfWeek:

WriteLn('Today is ' ,DayOfWeek);

But this statement won't compile. The same is true for reading enumerated
types from the keyboard:

ReadLn(DayOfWeek) ;

To overcome this limitation, you need to explicitly tell the compiler to
write, or look for, specific strings. In chapters 10 and 12, respectively, we'll
show you how to use the case statement and arrays to accomplish this.

Memory Usage

Another advantage of defined scalar types is that they use memory
efficiently. A variable of a defined scalar type with up to 128 possible values
uses only one byte of memory.

Defined Scalar Types 113

Furthermore, if you define a subrange of type Integer that has a minimum
value greater than or equal to -128 and a maximum value less than or equal
to 127, only one byte of storage is required for a variable of that type.

Review

Defined scalar types are data types that you define yourself. They include
enumerated types and subranges of existing scalar types. Defined scalar
types can be of great help in program development, documentation, and
maintenance.

Take a moment to study the quiz on Scalars in the Turbo Tutor program on
your distribution disk.

Now that you're clear on the use of types, you can move on to the use of
control structures in Pascal.

114 Turbo Pascal Tutor for the Macintosh

c H A p T E R

10

Control Structures

In the sample programs we've seen thus far, statements are executed
sequentially, top to bottom, from beginning to end. While this sort of
execution is straightforward and easy to understand, it doesn't lend itself to
repetitive tasks or to making decisions and acting on them. If all Macintosh
programs executed each statement once and once only, the machine would
be about as useful as a dull Ginsu knife.

Fortunately, Pascal provides control structures-special statements that
divert execution from the usual top to bottom sequence. These structures
fall into four categories: conditional (the if statement), iterative (the for,
while, and repeat ... until statements), case (the case statement), and goto
(the goto statement).

Conditional Execution: The If Statement

In earlier chapters, we touched briefly on the if statement, a Pascal device
that tells the machine to do something only if a certain condition is true.
Chapter 9 used this simple example:

if DayOfWeek = Saturday then
WriteLn('It"s Saturday. Why are you at work?');

Here we tell the computer, "Compare the value of variable DayOfWeek to
the constant Saturday. If they are equal, then perform this WriteLn
statement; otherwise, do nothing."

Control Structures 115

This is the simplest form of the if statement:

• the reserved word if
• a boolean expression (that is, one that yields the value True or False)
• the reserved word then
• a statement

Note that the semicolon at the end of the example marks the end of the if
statement, not of the enclosed WriteLn statement. If the if statement wasn't
followed by another statement, the semicolon could be omitted. Semicolons
are statement separators-not statement terminators.

An extension of the if statement allows the computer to choose one of two
possible actions based on the truth of a boolean expression. In another
example from the last chapter, we wrote

if DayOfWeek = Sunday then
NextDay := Monday

else
NextDay := Succ(DayOfWeek);

Here we've added the reserved word else and a statement to be executed if
the expression Day Of Week = Sunday isn't True. Since the if statement
doesn't end after the enclosed statement NextDay := Monday, and there can
be only one nested statement, there is no semicolon there. This is an
important part of the format of the if statement. A semicolon before an else
causes the compiler to generate an error message, because it tells the
compiler that the if statement is over-and no Pascal statement type begins
with the else keyword.

The syntax diagram for the if statement is shown in Figure 10.1.

if statement ~ expression I

Figure 10.1: Syntax Diagram of an If Statement

The Compound Statement

As mentioned earlier (and as you can see from Figure 10.1), the if statement
allows only one statement in the if clause and only one in the optional else
clause. If this seems overly restrictive, we agree. In many cases, you need to
have the computer do more than one thing if a certain condition is met.

116 Turbo Pascal Tutor for the Macintosh

A brute-force way to accomplish this would be to write a separate if
statement for each and every statement you want to execute conditionally.
However, this would tend to clutter a program with if statements and slow
down execution, because the test must be performed repeatedly. Messy.

Not surprisingly, there's a better way. In Pascal, one can group a series of
statements together so that the if statement controls the group as a whole.
A group of statements that the compiler perceives as a single statement is
called a compound statement. It's constructed by enclosing the statement
group between the reserved words begin and end. This creates a sort of
program within a program.

The syntax of a compound statement is, in fact, exactly the same as that of
the statement part of a program, as shown in Figure 10.2. The ramifications
of this are important: Any number of any type of statement can appear in a
compound statement (including additional if statements), which
themselves can contain still more compound statements. This is an example
of Pascal's recursive, egg-within-an-egg character.

Figure 10.2: Syntax Diagram of a Compound Statement

Thus, if we want our first example to do more than one thing when it
discovers that our user is working on Saturday, we could write

if DayOfWeek = Saturday then
begin

WriteLn('It"s Saturday. Why are you at work?'};
WriteLn('Why not go home and watch TV instead?'}

end;

Furthermore, if we want to put more than one statement into an else
clause, we could do that as well:

if DayOfWeek = Saturday then
WriteLn('It"s Saturday. Why are you at work?'}

else
begin

WriteLn('It isn"t Saturday.'};
WriteLn('Quit messing around and get to work!'};

end;

You'll find compound statements (also known as begin/end blocks) useful
when working with the while and for statements covered later in this
chapter.

Control Structures 117

Boolean Expressions

The expression DayOfWeek = Saturday in the previous example is a boolean
expression; when it's evaluated it yields a value of either True or False.
(That is, the expression is either True or False.)

Boolean expressions are often formed by using the relational operators to
compare two numbers. For example, suppose integer variables Score and
Maximum are equal to 10 and 0, respectively. Here are some boolean
expressions that apply relational operators to these variables and the
results that they yield:

Score) Maximum ---) True (is greater than)
Score = Maximum ---) False (is equal to)
Score < Maximum ---> False (is less than)
Score)= Maximum ---> True (is greater than or equal to)
Score <= Maximum ---> False (is less than or equal to)
Score <> Maximum ---> True (is not equal to)

The relational operators don't just apply to numbers, however. All of the
relations shown can be applied to objects of any scalar type, even
enumerated types (since enumerated types have a definite ordering). Thus,
it is legal to write

if DayOfWeek > Friday then
WriteLn('It"s the weekend!');

Relational operators aren't the only operators that yield boolean results.
The not operator, for example, "inverts" its boolean operand: not False
yields True, and not True yields False.

A boolean expression can, of course, also contain one or more variables of
type Boolean, and a boolean variable can be assigned the result of a boolean
expression. For instance, if we declare

var
NewMaximum : Boolean;

then we can write the assignment statement

NewMaximum := Score> Maximum;

and use variable NewMaximum to remember the result of the comparison.

Combining this with our earlier example, we can create a series of
statements that determines if the player of a game has set a new high score,
then prints an appropriate message:

NewMaximum := Score> Maximum; { NewMaximum is True if new high score }

118 Turbo Pascal Tutor for the Macintosh

if NewMaximum then
begin

Maximum := Score;
WriteLn('Congratulations!');
WriteLn('Your new high score is " Maximum)

end
else
begin

WriteLn('Your score was', Score);
WriteLn('Not bad for a carbon unit.')

end;

More Boolean Operators

You can create more complex expressions (for more elaborate tests) using
the boolean operators and, or, and xor.

The and operator returns the value True if (and only if) both of its operands
are True; thus,

False and False
False and True
True and False
True and True

--->
--->
--->
--->

False
False
False
True

It is convenient to show the effect of a boolean operator with a truth table.
This table shows the result of the operation for all possible combinations of
values of the operands, much like a multiplication table shows the results
for various combinations of multiplication operands. The truth table for the
and operation is

and I FIT I
---+---+---+
F I F I F I

---+---+---+
T I FIT I

---+---+---+

You read a truth table as you would a multiplication table: Find the values
of the operands on the edges of the chart, then find where the row and
column of the two operands intersect. The value in that box is the result of
the operation.

For practice, try reading the results listed for the and operator in the
previous truth table. Do they agree with the results shown earlier?

The or operator, as you might have already guessed, returns the value True
if either or both of its operands are True. Its truth table looks like this:

Control Structures 119

or I FIT I
---+---+---+
F I FIT I

---+---+---+
TIT I T I

---+---+---+

Finally, the xor, or exclusive or, operator returns the value True if one, but
not both, of its operands has the value True (in other words, if they have
the opposite value). The truth table for the xor operation is

xorl FIT I
---+---+---+
F I FIT I

---+---+---+
TIT I F I

---+---+---+

Using these operators, you can create such expressions as

(Score> Maximum) or (Score > 30000) (True if either Score is greater than
Maximum, or Score is greater than 30000);

(Score> 10000) and (Score <= 20000) (True if Score is both greater than 10000
and less than or equal to 20000); or

not (NewMaximum or (Maximum = 0)) (True if neither NewMaximum nor the
expression Maximum = a is True) .

If we assume that Score, Maximum, and NewMaximum have the values 10, 0,
and True, then the first expression yields the value True, while the other
two yield False.

Note the copious use of parentheses in these examples. Since Turbo Pascal
allows some of the boolean operators to apply to integer as well as boolean
values (a feature we'll discuss in the advanced part of this tutorial), it is
important to enclose your boolean expressions in parentheses to be sure
they do what you intend them to.

Repetitive Tasks

Iteration

In Part 1, we said that computers are at their best performing tedious,
repetitive tasks. Without the ability to execute instructions repetitively, a
Macintosh would have the general-purpose utility of a shoehorn.

120 Turbo Pascal Tutor for the Macintosh

Pascal provides three ways of repeating one or more statements until some
condition is met. Using the while, repeat ... until, and for statements, you
are able to say in effect, "Do this 10 times," or "Do this until the task is
completed." This kind of repetitive processing is known as iteration, and the
section of code that performs this activity is known collectively as a loop.

The While Statement

The first kind of iterative statement we'll discuss is the while statement. It
tells the computer to repeat a nested statement (which may be a compound
statement) as long as a certain condition remains true. Program WaitForKey
illustrates:

program WaitForKey;
begin

Write('Waiting for a keystroke');
while not KeyPressed do {Write dots continuously until a key is hit.

Write(' .'); { The KeyPressed function
end. { returns True only after a key has been str\lck.

Take a moment and type this program into Turbo Pascal, then compile and
run it. The periods keep coming until you press a key.

The syntax of the while statement is shown in Figure 10.3.

while statement ~ expression ~ statement ~

Figure 10.3: Syntax Diagram of a While Statement

The while statement consists of

• the reserved word while
• a boolean expression
• the reserved word do
• the statement to be repeated

When the while loop is encountered during execution of the program, the
boolean expression is evaluated. If the expression is False, the nested
statement inside the while statement is never executed at all. If the
expression returns True, the nested statement is executed. The expression is
then evaluated again, and the process of test-execute-test-execute continues
until the expression returns False.

Control Structures 121

Repeat ... Until

Like the while statement, the repeat ... until statement causes a process to
repeat until a condition is satisfied. The syntax of the repeat ... until
statement is shown in Figure 10.4.

repeat statement ~epeat ~ ~~I expression ~

Figure 10.4: Syntax Diagram of a Repeat Statement

Unlike either the if or the while statement, the repeat ... until statement can
enclose as many statements as desired-separated by semicolons if there is
more than one. Thus, there is no need to use a compound statement to
make the repeat ... until statement execute more than one statement on each
iteration.

The repeat ... until statement also differs from the while statement in that
the statements within the loop are always executed at least once. The test
for the loop terminating condition is performed after the enclosed
statements are executed. If the expression yields the value False, the loop is
repeated; otherwise, execution continues with the next sequential
statement.

The following program illustrates the repeat ... until statement. It asks the
player to guess a number from 1 to 10. The player is always asked to guess
at least once, but the game stops when the user gets the number right. It is
therefore an apt situation for a repeat ... until loop.

program GuessingGame;
{$R+ Turn range-checking on }
const

Answer = 3; { Don't look at this line!

var
Guess : Integer;

begin
WriteLn('In this program, you will guess an integer from 1 to 10.');
repeat

WriteLn('You have not guessed the number yet.');
Write('Type an integer from 1 to 10 as your guess: ');
ReadLn(Guess) ;

until Guess = Answer;
end.

122 Turbo Pascal Tutor for the Macintosh

The For Statement

So far, we've discussed two kinds of iterative statements: One says "Do this
while the following condition is True," and the other says "Repeat this until
the following condition is True." We now come to the third type of looping
statement in Pascal-one that says "Do this n times."

The for statement uses a scalar variable as a counter (or, in more formal
terms, a control variable) to keep track of how many times a loop has been
executed. You define the value at which the counter will be started and
what the final value will be, and the compiler does the rest.

The syntax of the for statement is depicted in Figure 10.5.

for statement control variable

control variable ---+l variable identifier 1--+
initial value ---+l expression ~

final value ---+l expression ~
Figure 10.5: Syntax Diagram of a For Statement

In executing a for statement, the counter variable is assigned the value of
the first expression. If the counter is less than or equal to the second
expression, then the statement is executed. The counter is then incremented
(if to is used) or decremented (if downto is used). This process continues
until the value of the counter is greater than the second expression. (If the
the first expression is greater than the second expression, then the
statement isn't executed a single time.)

Here's an example. If the variable Index is declared to be of type Integer,
then the loop

for Index := 1 to 10 do
WriteLn('n = , ,Index,' n*n = " Index * Index);

writes out the integers from 1 to 10 in increasing order, each followed by its
square. If you were to write the loop like this,

Control Structures 123

for Index := 10 downto 1 do
WriteLn('n = " Index, , n*n = " Index * Index);

then the same values would be printed but in decreasing order, from 10
down to 1.

Note that there is no rule that says you must use your control variable
within the loop. In the statement

for Index := 1 to 10 do
WriteLn('He11o!');

you merely tell the Mac to output the string Hello! 10 times.

One point about for loops catches many novice programmers unawares.
The value of the counter variable is undefined after the for statement
finishes; that is, it can have any value at all. For example, after completing
this loop

for n := 1 to 10 do
WriteLn('Hello');

you might expect n to have the value 11. And, in fact, sometimes it will. But
at other times, it won't-it may have the value 10 or even something else.

If you've used BASIC, you may be wondering how to specify a step value
other than 1, that is, how to increment the control variable by 5 or 17 or 0.2
with each iteration. Well, in Pascal, you can't. You can cause the same effect
with a while or repeat ... untilloop, although you'll have to do most of the
work yourself. For example, this BASIC For/Next loop

for n = 2 to 8 step 2
print n

next n
print "Who do we appreciate?"

can be simulated in Pascal as

n := 2;
while n <= 8 do
begin

WriteLn(n);
n := n + 2;

end;
WriteLn('Who do we appreciate?');

Pascal doesn't permit such foolishness in a for loop, because it uses the·
counter variable to keep track of how many times the loop has been
executed. From Pascal's point of view, it doesn't make sense to increment
(or decrement) the counter by anything other than one each time.

124 Turbo Pascal Tutor for the Macintosh

However, Pascal does permit you to build loops that are impossible in
BASIC: You can use any scalar type as the loop index, including Longlnt,
Char, Boolean, or any enumerated type you define. Given appropriate
definitions and declarations, the following for loops are all valid:

for Ch := 'A' to 'z' do
WriteLn('Hello');

for Flag := True downto False do
WriteLn('Hello');

for Day := Mon to Fri do
WriteLn('Hello');

As with the if and while statements, a compound statement can be
controlled by the for statement to make more than one thing happen each
time through the loop:

for Index := 20 to 30 do
begin

end;

{ First statement here }

{ Last statement here }

We claimed back in Chapter 2 that a Macintosh can count to a million in six
seconds. Here's proof:

program FastCount;
var

N : LongInt;
begin

Write('Press Return to begin counting');
ReadLn;
for N := 0 to 1000000 do; {don't do anything but count up }
Write (' Done! ') ;

ReadLn;
end.

Endless Loops

One of the mutations that you will doubtless create during your
programming career is an endless loop-a loop that, for some reason, never
finishes. Such a loop can occur due to bad data, or you may even have a
reason for programming one intentionally. Most often, however, an endless
loop is caused by programmer error.

Control Structures 125

The following program was intended by its author, a curious fellow, to list
the integers between 1 and 20 that are evenly divisible by 3. He expected it
to quickly display a few values and then stop. Instead, it never prints
anything and runs forever. Can you find the bug?

program Oops;
var

N: Integer;
begin

N := 1;
repeat

if (N mod 3) = 0 then { If true, then N is evenly divisible by 3 }
begin

WriteLn(N);
N := Succ(N); { Increment N by 1 }

end;
until N = 20;

end.

The problem is that Oops only increments N if it is divisible by 3. Thus, the
program considers the number 1 again and again and again at high speed,
never moving on to test 2 or any other value.

This program can be repaired by moving N := Succ(N) to just before the
until, so that N is incremented on every pass.

In Case of Infinite Loop, Break Glass

It's easy to recover from an infinite loop, thanks to some "programmer
friendly" engineering built into the Mac-the so-called programmer's
switch. It's a plastic widget that snaps into the slots on the bottom left side
of the computer.

Once installed, the programmer's switch reaches through the ventilation
slots to contact two pushbuttons on the logic board (you can see the
pushbuttons if you look between the slots closely). The frontmost of the
two buttons on the switch is labeled Reset; pressing it has precisely the
same effect as turning the machine off and then on again-only without the
hardware stress and strain associated with powering-on.

The second lever, labeled Interrupt, has a less drastic-and more
useful-effect. When a program launched from Turbo Pascal is interrupted,
you're (usually) able to get back to your source program and Turbo Pascal.
Just how you accomplish this depends on whether or not you have a
debugger (such as MacsBug) installed.

If MacsBug isn't installed, you'll end up in a mini-debugger built into ROM
in the Mac Plus and SE (this doesn't work for Mac 512s). To return to Turbo

126 Turbo Pascal Tutor for the Macintosh

Pascal and your source program, enter the following strange, but effective,
lines (be sure to press Return after each):

SM 0 A9F4
G 0

Assuming your program hasn't done anything too drastic, this restores
control to Turbo with your source file uncorrupted.

If MacsBug is installed, pressing the interrupt switch puts you in MacsBug.
Type ES ("Exit to Shell"), press Return, and you'll be back in Turbo; more on
MacsBug in Chapter 41.

With the programmer's switch, recovering from an infinite loop such as
that in program Oops is as simple as pressing a button. Without the switch,
you have no choice but to cycle the power and reboot-a bitter pill if the
latest version of your source program hasn't yet been saved to disk.

Even with the programmer's switch, it's good practice to save your source
text before running experimental programs-especially those that work
with pointers, which we introduce in Chapter 16. Pointers make it all too
easy to write programs that can trash the system beyond hope of
resumption. Nothing ruins a day quite like losing an hour of good work to
a system crash. To Save, just press Command-S before every Command-R. To
perform an automatic Save before every run, click on the Auto Save Text
check box in the Options dialog box of the Compiler menu.

The Case Statement

In many of your programs, you will want the computer to perform one of a
list of actions, depending on the current value of a variable. For example,
you might want to display a menu, accept the user's choice, and then
perform the action that was chosen. We already have the capability to do
this with a series of if statements:

Write('Enter your choice: U)p, D)own, 1)eft, R)ight:');
Read1n(Ch); { Ch is of type Char}

if (Ch = 'U') then
y := Y + 1

else
if (Ch = 'D') then

y := Y - 1
else

if (Ch = '1') then
X := X - 1

else

Control Structures 127

if (Ch = 'R') then
X := X + 1

else
WriteLn('Invalid command!');

Note that we have nested a number of if statements; each time a condition
is not satisfied, the program tries the next until it finds the appropriate
action.

However, a long chain of ifs is messy and hard to follow. So, Pascal
simplifies matters with its case statement.

In the case statement, you provide the compiler with an expression (which
must be of a scalar type), followed by a list of values and actions
(constants). When the program runs, the action associated with the current
value of the variable is performed.

The following case statement expresses the intent of the previous example
much more clearly:

Write('Enter your choice: U)p, O)own, L)eft, R)ight:');
ReadLn(Ch); { Ch is of type Char

case Ch of
'u' : Y := Y + 1;
'0' : Y := Y - 1;
'L' : X := X - 1;
'R' : X := X + 1;

otherwise
WriteLn('Invalid command!'); { Do this if Ch is none of the above

end;

The syntax of the case statement is shown in Figure 10.6.

128 Turbo Pascal Tutor for the Macintosh

case statement

otherwise clause

case lL..__~_' c_on_sta_nt_---jI~L..-c-on-sta-nt-t~ statement r-

otherwise clause --.(otherWise)----.J statement ~

Figure 10.6: Syntax Diagram of a Case Statement

When the case statement is executed, the computer inspects the lists of
constant values preceding each action. If the value of the expression is
present in one of these lists, the specified action is taken. Each action must
be expressed as a single statement; use a compound statement if more than
one statement needs to be executed. The end of the case statement is
marked by the reserved word end.

What if the expression has a value other than those listed in the case
statement? Under the original definition of the Pascal language, the result is
undefined. Turbo Pascal, however, extends this definition in a logical way.

With Turbo, you can specify the default action (the statement(s) to be
executed if no match is found) in an otherwise clause. In an earlier
example, we used the otherwise clause to make a noise and write an error
message. There can be as many statements between the otherwise and the
case's final end statement as desired; a begin/end block isn't necessary.

If a case statement doesn't have an otherwise clause and none of the
specified case conditions apply, execution continues with the statement
following the case.

Control Structures 129

The Constant List

In the case statement, the list of constants for each possible action can be
specified in a number of ways: as individual values, as a subrange, or as a
combination of the two. A subrange is specified exactly as it is in the
definition of a subrange type: the lower bound (boundary) followed by two
periods and the upper bound.

Subranges can simplify case statements. The following two case statements
are completely equivalent:

case Age of { Age is of type Integer
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17:
WriteLn('You are not old enough to vote yet.');
otherwise

WriteLn('You are old enough to vote. Who will you vote for?');
end; { case}

case Age of { Age is of type Integer }
0 .. 17: WriteLn('You are not old enough to vote yet.')
otherwise

WriteLn('You are old enough to vote. Who will you vote for?');
end; { case }

To mix subranges with individual items in the constant list, you need only
separate them with commas. The following is perfectly legal:

case Age of
0,1,2 .. 5,6,7,8,9,
10 .. 17: WriteLn('You aren't old enough to vote yet.');

otherwise
WriteLn('You are old enough to vote. Who will you vote for?');

end;

Review

In this chapter, we introduced Pascal's control structures-the statements
that enable a program to make decisions and perform actions repetitively.
We also discussed boolean expressions and operations in some detail and
showed how the compound statement can be used to make one statement
out of many.

You can test your understanding of the various control structures by
studying the appropriate exercises in Turbo Tutor. These include ForDo,
If Case, RepeatUntil, and WhileDo.

130 Turbo Pascal Tutor for the Macintosh

Now that you know how to control the order in which your program's
statements execute, you are ready to learn how to subdivide your code into
logical groups called procedures and functions, making programs more
readable and efficient.

Procedures and Functions 131

c H A p T E R

11

Procedures and Functions

In previous chapters, procedures and functions (known collectively as
subprograms) were used in some of the sample programs. This chapter
describes the concepts behind subprograms and shows how and where to
place them in a Pascal program. It also introduces the notion of scope, which
determines what the identifiers used in a subprogram mean and where a
subprogram can be called from. Finally, it discusses parameters, the data
objects a subprogram works on.

Subprograms

You've learned that a Pascal program can be divided into the Big Three: a
program heading, a declaration part, and a statement part (or main
program). You've also learned that each statement in the main program is
normally executed in order-from beginning to end-unless a conditional
(if or case) or iterative (for, repeat ... until, or while) statement alters that
pattern.

Subprograms allow you to associate an identifier with a series of
statements. Once defined, the actions represented by the subprogram can
be invoked simply by naming the desired subprogram (calling it).

Here's an example of a situation in which a subprogram might come in
handy. The following statement asks the user for a number, then checks the
number to see if it is within range. If so, the value entered is assigned to the
variable NewNumber.

132 Turbo Pascal Tutor for the Macintosh

WriteLn('Please enter an integer from', Minimum, , to " Maximum, ': ');
ReadLn(Temporary); { Temporary is of type Integer}
while (Temporary < Minimum) or (Temporary > Maximum) do
beqin

WriteLn('The integer you have entered is out of range.');
WriteLn('Please try again: ');
ReadLn(Temporary);

end;

NewNumber := Temporary; { NewNumber is of type Integer }

Suppose there are several places in your program where you need to
perform this function. A crude technique would be to copy all of these
statements into each place. While a good text editor like Turbo Pascal's
makes this approach feasible, it increases the size of both your source and
executable programs and slows down compilations. Worse, if you had to
make a change to this number-entry routine, you'd need to find and alter
every occurrence.

Fortunately, Pascal (and virtually every other programming language)
provides a solution to this problem. Instead of copying the group of
statements, you can give it a name and cause the entire group to be
executed by mentioning that name. In Pascal, such a group of statements is
called either a procedure or a function; both correspond to what BASIC and
FORTRAN call subroutines.

We'll look first at procedures; most of what we'll say about them applies to
functions as well.

Procedures

To create a procedure, you declare its name as an identifier (as you declare
all identifiers), and present the compiler with the code that is to go by that
name. The syntax of a procedure declaration is shown in Figure 11.1.

Procedures and Functions 133

procedure declaration ~ procedure heading ~ procedure body ~

procedure
heading

procedure body

formal parameter list

inlin. body --< inlin. T co2):T
Figure 11 .1 : Syntax Diagram of a Procedure Declaration

A procedure declaration begins with the reserved word procedure,
followed by the identifier to be associated with that procedure. Then there's
an optional list of parameters (which we describe in the next paragraphs)
and a semicolon. The body of the procedure follows, and a closing
semicolon finishes things off.

A procedure body consists of the same sequence of declaration
part/statement part that comes after the heading of a program. About the
only difference is that the closing end is followed by a semicolon instead of
a period.

A procedure is essentially a mini-program embedded within a larger
program. A procedure can declare its own constants and variables, just like
a main program. The acid test for "main program likeness" is, Can you
declare a procedure from within a procedure? Yes! And you can declare
procedures within that procedure, and so on ad infinitum. (Well, not quite.
All compilers cop out this side of infinity; Turbo Pascal permits at least 16
levels-and programs rarely use more than three or four.)

Where do you put procedures in your program? In Standard Pascal, they
come after all other declarations (label, constant, type, and variable) and
before the opening begin of the main program. Turbo Pascal is more

134 Turbo Pascal Tutor for the Macintosh

flexible on this score and lets you place them anywhere in the declaration
part.

Let's rewrite our earlier sequence of number-inputting statements as a
procedure to show how we might build a small program around it.

program Sample;
const

Ten = 10;
var

NewNumber, Index : Integer;

procedure GetNumber;
const

Minimum = 0;
Maximum = 25;

type

Get a number from the user and store
it in the global variable NewNumber

Response = Minimum .. Maximum; { A type for a legal response
var

Temporary: Response; {A temporary place for the user's integer
begin { Statement Part of procedure GetNumber

WriteLn('Please enter an integer from', Minimum, , to " Maximum, '. ');
ReadLn(Temporary);
while (Temporary < Minimum) or (Temporary > Maximum) do
begin

WriteLn('The integer you have entered is not between 0 and 25,');
WriteLn('inclusive. Please try again.');
ReadLn(Temporary);

end;
NewNumber := Temporary;

end;

begin
GetNumber;

for Index := 1 to 10 do
begin

GetNumber;

end

GetNumber;
case NewNumber of

{ procedure GetNumber

program Sample's main program

0: WriteLn('You have selected option 0');

25: WriteLn('This is option 25: ');
end;

end.

Procedures and Functions 135

Note that procedure GetNumber's const, type, and var declarations are
formatted exactly like those of a Pascal program.

Besides avoiding duplication, procedures make programs easier to write
and understand. They allow you to break down big, complicated tasks into
a series of smaller, easier tasks. This divide-and-conquer approach is the
way to write programs, and if you only carry a single piece of mental
baggage away from this book, this should be it.

As a rule of thumb, if a main program is too long to fit on a sheet of paper,
it's too long-break it down into one or more procedures. And if one of
those procedures ends up being longer than a page, break it down also.
Ultimately you're left with a series of easy procedures that collectively
perform a tough job.

In addition, procedures and functions can serve as reusable modules for
pasting into new programs.

Changes to procedures instantly affect all parts of the program that call
it-without any additional rewriting. Also, when a program involves more
than one author, each programmer can write one or more procedures, then
combine them into the finished product. This modular approach allows
each author to perfect his or her part of the program without having to
directly modify the work of others.

Scope

You know that you can't use the same identifier twice in the declaration
part of a program. Since it is possible to declare types, constants, and
variables in a procedure, you may well ask, What happens if the same
identifier is declared in both the main program and a procedure? Or in two
procedures?

Well, since each identifier can only refer to one thing, it seems as though the
compiler would flag the second use of the identifier as an error.

Type in and check the syntax (Command- Y) of this program. (Don't bother to
run it.)

program testl;
const

J = 13;

procedure testProcedure;
var

J: Integer;

136 Turbo Pascal Tutor for the Macintosh

begin
end;

begin
end.

If you performed this exercise, you know that no error resulted from
redefining 1 in procedure testProcedure. But this next program does produce
a Duplicate Identifier error:

program test2;
const

J = 13;
var

J: Integer;

begin
end.

What's the difference between these two programs? Test2 declared two
identifiers at the same level-in the declaration part of the main program.
This is verboten. If it weren't, and you said WriteLn(J), how would the
compiler know if you were talking about variable 1 or constant I? Testl,
however, declared an identifier named 1 at different levels; one at the
highest level of the program and a second one at a lower level.

It would be easy to write a compiler that wouldn't accept Testl's declaration
of I. However, if Pascal worked that way, programming in modules would
be difficult. You'd have to keep track of all the identifiers used in a
program-and typing errors and other goofs would make it easy to alter
variables unpredictably.

To avoid this problem, the concept of scope was developed. Pascal's scope
rules specify, in a rigorous way, what object any identifier refers to at a
given time. It is scoping rules that enable Turbo Pascal to cope with two
identifiers with the same name in program Testl.

Scope Rule #1: Each identifier has meaning only within the block in which
it is declared, and only after the point in that block at which it is declared.

Thus, in the previous example, variable Temporary only has meaning within
the procedure GetNumber, and even then only after its declaration. By the
same rule, the declarations

const
Minimum = 0;
Maximum = 25;

and

Procedures and Functions 137

type
Response = Minimum .. Maximumi {A type for a legal response}

can't occur in the reverse order. If they do, the constants Minimum and
Maximum aren't defined when the type Response is defined using them, and
the compiler indicates an error.

Another consequence of the first scope rule is that procedure GetNumber
has access to variables that were declared before GetNumber in the
declaration part of the program Sample. Thus, the statement

NewNumber := TemporarYi

does what one would expect, assigning the value of Temporary to the
variable NewNumber, which was declared in the main program. An
identifier like NewNumber, which is declared at a higher level and is
accessible within GetNumber, is said to be global to the procedure
GetNumber.

The converse, however, is not true. In the main program, we cannot write
the statement

Temporary := NewNumberi

because the variable Temporary is undefined outside of GetNumber.
Temporary is said to be local to GetNumber and is not visible outside that
block. By the time the compiler gets around to compiling the statements of
the main program, it has forgotten everything it knew about variable
Temporary.

Scope Rule #2: If a global identifier is redefined within a block, then the
innermost (most deeply nested) definition takes precedence from the point
of declaration until the end of the block.

What does this mean? The following program illustrates:

program Ai
const

J = Ii
K = 2i

var
R, S : Integeri

procedure Bi
const

{ These are the "global" identifiers of program A.
{ They are visible everywhere within the program,

unless hidden by local symbols with the same name.

L = Ki { L is defined to be 2 (NOT 3!) }
K = 3i { K is now defined locally to be 3, "hiding" the K defined in A }

begin { Statement Part of procedure B }

138

Within the Statement Part of procedure B, the following
identifiers are visible:

Turbo Pascal Tutor for the Macintosh

identifier I defined in
-----------+-----------
B, J, R, S I A

K, LIB

The local constant L derives its value from the GLOBAL constant
K, not the local one, since the global identifier was not yet
"hidden" when L was defined. Note that there is no identifier
A visible. Turbo Pascal, unlike most other compilers, ignores
the program heading entirely, including the program name. }

end; { procedure B }

var
T, U: Integer; { These identifiers are not visible within procedure B! }

procedure C;
var

V : Integer;

procedure D;
var

{ local to procedure C

R, T : Integer;
begin

{ These declarations "hide" the Rand T declared in A
{ Statement Part of procedure D

end;

var

Within the Statement Part of procedure D, the following identifiers
are visible:

identifier I defined in
---------------+-----------

B, C, J, K, S, U I A
D, V I C
R, TID

Note that the constant K is seen as having the value 2 here, since
the local K (with a value of 3) defined in B is visible only there.

B integer; This declaration "hides" procedure B within
the Statement Part of procedure C. However,
procedure B is still callable from procedure D,
and this Integer is not visible to D. }

begin { Statement Part of procedure C

end;

Within the Statement Part of procedure C, the following
identifiers are visible:

identifier I defined in
---------------------+-----------
C, J, K, R, S, T, U I A

B, D, V I C

begin

procedure C

{ program A

{ Within the Statement Part of program A, the following identifiers

Procedures and Functions 139

are visible:

identifier I defined in
------------------------+-----------

)
end.

B, C, J, K, R, S, T, U I A

{ program A)

In each procedure (and also within the statement part of the main
program), we've listed which identifiers are visible and what they refer to.

To understand how this information is derived, it helps to pretend that you
are the compiler, scanning the program from top to bottom. Each time you
encounter a definition that overrides a previous one, you make a note of
the new definition, and use it until the current block is exited. When you
exit a block, all the identifiers declared locally within that block become
undefined, and all the identifiers that were temporarily "hidden" by
definitions in that block become visible once more.

Exercises

Consider the following program. At each of the points marked { 1 }, { 2 },
and { 3 }, list the identifiers that are accessible and the procedure (or
program) where they were defined. For the constant identifiers, also list
their values. For the variables and types, list their base types (that is, the
predefined type from which their types are derived).

program ScopeTest;
type

A = Integer;
B = Real;

const
J = 5;
K = 14;

var
Q : A;
R : B;

procedure First;
type

B = A;
var

R : B;
const

K = J;
J = K;

begin
{ 1

end;

140

{ procedure First

{ procedure First

Turbo Pascal Tutor for the Macintosh

procedure Secondi
var

First : Ai
const

L = Ki
{ 2 }
K = 3i

type
A = Bi

procedure Thirdi
var

First : A;
begin
end;

begin
end;

var
S : A;

begin
{ 3 }

end.

{ procedure Third }
{ procedure Third }

{ procedure Second }
{ procedure Second }

{ program ScopeTest

{ program ScopeTest

Now consider the following program. Will it compile without errors? What
will it output to the screen when run? Why? Test your answer using Turbo
Pascal.

program Scope2;
var

A : Integer;

procedure SetA;
var

A : Integer;
begin

A := 4
end;

begin
A := 3;
SetA;
WriteLn(A)

end.

Statement Part of procedure SetA }

{ procedure SetA

Statement Part of program Scope2

{ program Scope2 }

The Lifetime of Local Variables

Unlike the global variables that are declared in the declaration part of the
main program, a procedure's local variables are created (assigned places in

Procedures and Functions 141

memory) each time the procedure is called and destroyed (the memory
they occupied is taken back) each time control returns to the calling
program or procedure. Thus, the lifetime of a local variable-that is, the
time during which it will be able to retain its assigned value-is limited to
the current invocation of the procedure that contains it.

What does this mean? Well, suppose you have a procedure A, which
declares the local Integer variable X. Now, call A and assign to X the value
3. When you call A again, can you assume that X will still be 3? No! The old
X disappeared when procedure A returned the first time; with the next
invocation of A, X can have any value whatsoever. A procedure's local
variables are undefined upon entrance to that procedure.

Local variables are said to be dynamically allocated. Pascal compilers
generate code that creates the storage for local variables on an internal
structure called the stack just before a procedure is called, and that disposes
of this storage as the procedure returns. Each time the procedure is called,
the storage may have a different address; even if it has the same address, it
will almost certainly have been overwritten with some other data since the
last use. We return to the stack and dynamic allocation in later chapters.

Parameters

In our first example of a procedure (GetNumber), each call to the procedure
causes a number the user types in to be assigned to global variable
NewNumber-in fact, that assignment is GetNumber's main job. Since the
variable NewNumber is overwritten each time GetNumber is called, to keep
track of the value the user entered it is necessary to save the value of
NewNumber in some other variable immediately after the call, like this:

GetNumber;
Choicel := NewNumber;

GetNumber;
Choice2 := NewNumber;

While this works, it has the potential for problems. First, you must always
remember to perform the assignment. If you don't, the value the user
entered is lost. Second, since NewNumber is the information-passing
connection between GetNumber and the main program, it must be declared

142 Turbo Pascal Tutorfor the Macintosh

globally. If not, because of scope rules there would be no way to
communicate between GetNumber and the main program. By making it
global, we make it global for every procedure in the program. Even though
only GetNumber has any business using it, we might forget and assign
values to NewNumber from another place in the program-thus mucking
up the communications channel.

There's a third problem: If GetNumber is called from a procedure that
defines a local variable named NewNumber, then scoping rules cause that
local identifier to mask the global identifier NewNumber, and it becomes
impossible to communicate with GetNumber. All of these problems may
seem somewhat far-fetched, and, in truth, many excellent programs have
been produced with BASIC, a scopeless, parameterless language.

Still and all, any way you can reduce interference between subroutines and
their callers is helpful: It's one less way a program can fail. One reason for
using procedures is to avoid this sort of potential identifier conflict. Local
variables solve this problem for data objects that are used entirely within a
procedure, and a feature called parameter passing handles the problem of
naming data that is passed to and from a procedure.

You already used parameters when you called the built-in procedures
ReadLn and WriteLn. In the statement ReadLn(A); the variable A is passed as
a parameter to the procedure ReadLn, which in turn gets data from the
keyboard and places that data in the variable. In the statement

WriteLn('This program compliments of Robin Jones');

the string constant 'This program compliments of Robin Jones' is passed as
a parameter to the WriteLn procedure.

Let's rewrite procedure GetNumber to return a number in a parameter,
rather than in a global variable:

procedure GetNumber (var NewNumber : integer);

const
Minimum = 0;
Maximum = 25;

type

{ Get a number from the user and return
it in the variable parameter NewNumber.

Response = Minimum .. Maximum; { A type for a legal response
var

Temporary: Response; { A temporary place for the user's integer
begin (Statement Part of procedure GetNumber

WriteLn('Please enter an integer from', Minimum, , to " Maximum, ,. ');
ReadLn(Temporary);
while (Temporary < Minimum) or (Temporary > Maximum) do
begin

WriteLn('The integer you have entered is not between 0 and 25,');
WriteLn('inclusive. Please try again.');

Procedures and Functions 143

ReadLn(Temporary);
end;
NewNumber := Temporary;

end; { procedure GetNumber }

Note that the only change made to this procedure (not counting comments)
was in the very first line, where we changed the procedure heading to read

procedure GetNumber (var NewNumber : integer);

What does this accomplish? First, it tells the compiler that when the
procedure is called, it can expect to find the name of an integer variable in
parentheses following the procedure name. Second, it says that, inside the
procedure, that data object will be referred to by the name NewNumber,
regardless of what it might have been named in the part of the program
calling the procedure. Finally, the var preceding the name NewNumber
indicates that a variable (rather than an expression or a constant) must be
passed for that parameter, and that GetNumber has the ability to alter the
value of that variable.

It is important to note that NewNumber is not a variable itself; rather, it is an
identifier that "stands in" for another variable whose identity is decided at
run time when the procedure is called. Such an object is called a formal
parameter or dummy parameter. If we make a call to GetNumber as follows,

GetNumber (A) ;

then the procedure acts exactly as if variable A were present everywhere
NewNumber is mentioned. In this situation, A is said to be the actual
parameter. If we then made the call

GetNumber(B);

the actual parameter is B, and any assignments made inside GetNumber to
its formal parameter NewNumber are actually made to variable B.

A procedure can also declare formal parameters without the reserved word
var. This changes things at both the calling and receiving ends. First, any
expression can be passed as the actual parameter, rather than only
variables. Second, any changes (such as assignments) that are made to the
formal parameter in the procedure don't affect the value of the actual
parameter. Instead, they are made to a copy of the value of the expression,
which is created when the procedure is entered.

Such parameters are called value parameters, and the one-way information
flow they provide is useful for two reasons. First of all, they allow the
values of constants and expressions, as well as variables, to serve as input
to a procedure. Without them, statements such as

WriteLn('This program compliments of Robin Jones');

144 Turbo Pascal Tutor for the Macintosh

would be impossible, because 'This program ... ' isn't a variable.

The second benefit of value parameters is as a precautionary measure.
Because a procedure works on a copy of a value parameter, rather than on
the value parameter itself, it can't make unwanted, accidental modifications
to that parameter.

A common mistake made by beginning programmers is to forget to declare
a procedure parameter that needs to be alterable as a var parameter. If so,
the compiler won't complain (it's legal to assign to non-var parameters in a
procedure), but the variables you pass to this procedure never have their
values altered.

Figure 11.2 shows the syntax of a formal parameter list-the part of a
procedure declaration where you specify the names and types of the
procedure's formal parameters.

formal parameter list ~ parameter declaration ~

- I~-----1 ____ ~~~4.------~~ -

parameter declaration

parameter type

Figure 11.2: Syntax Diagram of a Formal Parameter List

A procedure can have any number of parameters of practically any type. In
practice, though, most procedures declare only a few, and many none at all.

One more point: Because a procedure's formal parameters are considered
to have the same scope as identifiers within the procedure, they can hide
identifiers declared at a higher level of the program just as other local
identifiers can. For this reason, a locally declared constant, type, or variable
may not have the same identifier as a formal parameter.

Procedures and Functions 145

Functions

As we've seen, a procedure can change the values of variable (var)
parameters passed to it. Often you'll only want a single value back from the
procedure, and it can be inconvenient to set aside a variable just to hold
that value.

Suppose, for example, that you were to write a procedure to find the square
root of an integer, approximated to the nearest integer:

procedure ISqrt(Val Integer; var Root Integer);
var

OddSeq,Square Integer;
begin

OddSeq := -1;
Square := 0;
repeat

OddSeq := OddSeq + 2;
Square := Square + OddSeq

until Val < Square;
Root := Succ(OddSeq div 2);
if Val <= Square - Root

then Root := Pred(Root)
end;

{ procedure ISqrt }

{ procedure ISqrt }

Procedure ISqrt takes Val, determines its square root, and sets Root to that
value. A calling program might use it as follows:

repeat
Write('Enter value (0 to quit): '); ReadLn(Square);
ISqrt(Square , Root);
WriteLn('The square root is I I Root)

until Square = 0;

Variable Root's only purpose is to carry the value of the square root from
the call to ISqrt to the WriteLn statement. If there are many "transfer"
variables like this in a program, it can become clumsy to keep track of them
all-and since most of them will not be in use most of the time, memory is
wasted.

Functions work to reduce the need for variables. You may remember from
Chapter 9 that function identifiers appear in expressions. At run time, the
function is called in the process of evaluating the expression. Structurally, a
function is simply a procedure that returns a value.

Functions are declared just like procedures, with two exceptions. First, you
must specify the type of the returned value in the header-so that Turbo
Pascal knows how to fit the returned value into expressions properly.

146 Turbo Pascal Tutor for the Macintosh

Second, at some point in the body of the function, you must assign a value
to the function's name; this determines the value the function returns.

The syntax of a function declaration is shown in Figure 11.3.

function declaration --.[function heading ~ function body ~

function heading

formal parameter list

result type

Figure 11.3: Syntax Diagram of a Function Declaration

Here's an example of a function equivalent to the square root procedure
shown earlier. Note that there is no parameter to hold the root-the name
of the function itself is used to represent the value.

function ISqrt(Val : Integer) : Integer;
var

OddSeqlSquare,Root
begin

ISqrt := Root

end;

Integer;
{ Statement Part of function ISqrt }

{ same code as before }
The value is returned by assigning to

the function name as if it were a variable
(function ISqrt

The function can now be used in a program like this:

repeat
Write ('Enter value: '); ReadLn(Square);
WriteLn('The square root is ' ,ISqrt(Square))

until Square = 0;

With ISqrt written as a function, the main program doesn't need an
additional variable to hold the square root. This means a simpler program,
with less room for name conflicts and errors.

A function can be used anywhere that a constant or an expression of the
same data type can be used. Suppose you want to find the fourth root of an
Integer. You could say:

repeat
Write ('Enter value: '); ReadLn(FourthPower);

Procedures and Functions 147

WriteLn('The fourth root is ' ,ISqrt(ISqrt(FourthPower)))
until FourthPower = 0;

When writing a function, take care to ensure that you have set the function
identifier to some value before exiting. As shown previously, you do this by
performing an assignment to the function name, as if it were a variable.
Strictly speaking, the compiler doesn't require that you make any
assignment at all.

While you can assign to the function identifier, you may not retrieve the
value you assigned to that identifier by including it in an expression, even
though it can be tempting to do so, as in,

ISqrt := ISqrt + 1;

Why? Because the compiler interprets that use of the function name as
another call to ISqrt. This is why we made Root a local variable, rather than
eliminating it entirely from our function in the previous example. Had we
tried to use the identifier ISqrt to hold the intermediate values of the root as
it was being computed, we would have had no way of getting them back.

Since an attempt to get the value of the function identifier within a function
is construed by the compiler as another call to the same function, it follows
that functions (and procedures as well) can call themselves. This is
impossible in many languages. But in Pascal, the ability of a subroutine to
call itself produces the opportunity for spectacular algorithms (and equally
spectacular confusion). Procedures or functions that call themselves are
said to be recursive.

Recursive Procedures

Sometimes, the easiest way to describe a task or object is in terms of itself.
For example, there's an operation in mathematics called the factorial
function. Used extensively in statistics (and in Pascal tutorials for
describing recursion), a factorial of an integer is the product of all the
positive integers up to, and including, that integer. For instance,S factorial
(written as 5!) is 5 x 4 x 3 x 2 x 1 (120), and 8 factorial is 8 x 7 x 6 x 5 x 4 x 3
x 2 x 1 (40,320). Factorials are usually defined in math books this way:

For a positive integer n, if n is greater than 1, then n! = n * (n-V!; if n equals 1,
then n! = 1

This definition is recursive. It says that the factorial of a number is equal to
the number times the factorial of the number minus 1. It is possible to

148 Turbo Pascal Tutor for the Macintosh

translate this definition almost verbatim into a working Pascal program to
calculate factorials.

Here's a recursive implementation of the factorial operation:

function Factorial(N : Integer) : Real;
begin

if N > 1 then
Factorial := N * Factorial(N - 1) { the statement that causes recursion

else
Factorial := 1

end;

We defined Factorial to accept an Integer parameter-and produce a Real
result, because factorials have a way of getting big in a hurry (30! = 2.65 x
1032).

When this function is called, it looks to see if the value of the parameter N
is equal to 1. If it is, there is no multiplying to be done, since 1 f is 1 by
definition (and, incidentally, Of is considered to be 1 as well). Otherwise, we
set the function identifier Factorial equal to N times the Factorial of N - 1.

Note the very different meanings when a function identifier appears on the
left- and right-hand sides of the assignment operator. On the left, the
identifier is used without a list of parameters and represents the return
value of the function. On the right, the same identifier is used with a list of
parameters to represent the result of a call to that function. The calls "nest"
more and more deeply until Factorial is finally called with the value 1; at
that point, the calls unwind, doing the necessary multiplication at each
step.

Factorials don't have to be calculated recursively. A simple loop suffices
and, in fact, executes more quickly than the recursive routine:

function Factorial(N : Integer) : Real;
var

Total: Real;
M: Integer;

begin
Total := 1;
for M := 1 to N do

Total := Total * M;
Factorial := Total;

end; { function Factorial }

Procedures can be recursive as well. It is also possible to build complex
recursive structures where one procedure or function calls a second, which
calls the first, which calls the second, and so on. This is called indirect
recursion.

Procedures and Functions 149

Recursive procedures can simplify certain programming problems. But
beware, because like loops (another repetitive process), it is possible for
recursion to get out of control. The calls nest until the machine no longer
has enough memory to keep track of them. (Remember, space for local
variables is allocated each time a procedure is called. Thus, each call uses
up a block of memory, and the available space can be exhausted very
quickly.)

So use recursion with care. Make sure that there's at least one path through
the routine that doesn't cause more recursion (like the previous statement
Factorial: = 1) in every recursive procedure.

Forward Declarations

Occasionally, Pascal's rule that all identifiers must be declared before they
are used can cause problems in defining recursive programs. For instance,
as mentioned earlier, you may want to write a procedure that calls another,
which in turn calls the first, and so on. The problem is, Which appears first
in your program? No matter which one you choose, the other procedure
will not have been defined yet, and therefore you will not be able to call it.
This program ilJustrates the problem:

program Example;
var

Alpha : integer;
procedure Testl(var A integer);
begin

A := A - 1;
if A > 0 then

Test2(A);
WriteLn(A);

end;

procedure Test2(var A integer);
begin

A := A div 2;
if A > 0 then

Testl (A);
WriteLn (A) ;

end;

procedure Tc~tl

{ procedure Testl

{ procedure Test2

{ procedure Test2 }

begin Statement Part of program Example
Alpha := 15;
Testl (Alpha)

end. { program Example

Test1 calls Test2, and Test2 calls Test1. As it stands, this program won't
compile: You'll get an Unknown identifier error when it finds the

150 Turbo Pascal Tutor for the Macintosh

reference to Test2 within Test1. If you swapped Testl and Test2, you'd get a
similar error within Test2.

The solution to this problem is to tell the compiler, before it gets to the
procedure Test1, that the procedure Test2 will be declared later. This is done
with a forward declaration, as shown in the following example:

program Example;
var

Alpha Integer;

procedure Test2(var A : Integer); forward;

procedure Test1(var A : Integer);
begin

end;

{ procedure Test1

{ procedure Test1

procedure Test2 {(var A Integer)}; {We've commented out the}
begin { procedure Test2 }

{ parameter list; it was }
{ supplied earlier. }

end; { procedure Test2 }

begin
Alpha := 15;
Testl (Alpha)

end.

Statement Part of program Example }

{ program Example }

The forward declaration of Test2 contains only its heading and the reserved
word forward-the information necessary for the compiler to check any
calls to it for a correct name and parameter list. The actual body of Test2
occurs after Test1. Now Testl can call Test2 (because of the forward
declaration) and Test2 can call Testl (since the latter precedes the former).

Note that when Test2 is finally declared, its parameter list is omitted
(though we recommend showing it in a comment as a reminder of what the
parameters and their types are). The parameter list may not be repeated;
Turbo Pascal already knows what the parameters are and doesn't need the
redundant (and possibly inconsistent) information.

Scope and Recursion

The subject of recursion brings us to Pascal's third and final scope rule. As
you may remember, Scope Rule 2 states that if an identifier is declared in an
outer block and then again in an inner block, the inner declaration takes
precedence until the end of the inner block. This is true regardless of which
procedures call which others; it is the position of the variables in the text of

Procedures and Functions 151

the program at compile time that decides which symbol refers to which
object.

The problem of scope becomes more complex when recursion is involved.
For instance, suppose we wrote the following set of nested procedures, and
then called function A with the parameter 5. What would be written? And
what would A return?

function A(G : Integer): Integer;
var

X : Integer;

procedure B;
begin

WriteLn(X);
end;

begin
if G > 1 then

X := A(G - 1)
else

X := 0;
B;
A := G;

end:

To understand the result of this program, we need Scope Rule 3: When
procedures are invoked recursively, a reference to a global variable always
refers to the instance of the variable in the most recent invocation of the
procedure in which that variable is defined.

This rule applies to the previous procedure B, when it references variable X
defined in function L1. SO when B is invoked and executes the statelnent
WriteLn(X), the X that is written is the one that exists in the storage area
allocated by the most recent call of the procedure A. The correct answer to
our question then is that A(5) would return the value 5, and would write
the numbers 0, 1, 2, 3, and 4.

The Exit Procedure

Sometimes in writing a procedure or function, you reach a point in the
middle of the body of the procedure at which it would be handy to return
immediately-without executing the rest of the procedure-to the calling
program. Standard Pascal offers no way to do this; you must structure the
procedure (using if statements, perhaps) so that all statements from then on
to the end of the procedure can be skipped.

152 Turbo Pascal Tutor for the Macintosh

Here's a sample program that shows how involved things can get in
Standard Pascal. Function RunningTotal accepts numbers from the
keyboard, one at a time, then returns the total:

function RunningTotal Real;
var

Subtotal, NewNumber Real;
beqin

Subtotal := 0.0;
repeat

Write ('Enter a number (-1 to quit): ');
ReadLn (NewNumber);
if NewNumber <> -1.0 then {Only add if number is not -1

Subtotal := Subtotal + NewNumber;
until NewNumber = -1.0; { Exit the loop if number is -1
RunningTotal := Subtotal;

end;

Note that RunningTotal returns when the user ente"rs a special value: -1.
Such a value, used as a signal to the program to do something, is known as
a sentinel. Here, the sentinel value -1 indicates that there are no more
numbers to be entered. While RunningTotal works, it is both confusing and
inefficient. In particular, we test twice to see if variable NewNumber has the
value -1: once to determine whether to add it to the running total and a
second time to see if we should leave the procedure.

The second test wouldn't be necessary if we could put a statement in the
repeat. .. until loop that says, "If NewNumber is -1, return the total
immediately without doing anything else." Turbo Pascal allows a return
from any point in a procedure or function with the predefined procedure
Exit. Using Exit both simplifies and speeds up RunningTotal:

function RunningTotal Real;
var

Subtotal, NewNumber Real;
beqin

Subtotal := 0.0;
repeat

Write ('Enter a number (-1 to quit): ')i
ReadLn (NewNumber);
if NewNumber = -1.0 then
beqin

RunningTotal := Subtotal; { Set the function result and exit }
Exit

end
else

Subtotal := Subtotal + NewNumber

until False; { Since we exit the loop from the middle,
we never want the until to be satisfied }

end;

Procedures and Functions 153

This technique becomes even more important when the point from which
you want to exit is deeply nested in structured statements, such as its and
whiles. It can also make your program more readable, since the reader will
be able to recognize immediately where the exit occurs and what value is
returned.

As you might guess, calling Exit from within the main program causes the
program to terminate-it's like hitting the final end.

Review

In this chapter, we introduced the two types of program subdividers in
Pascal: procedures and functions. We described the format of procedure
and function declarations, and we explained Pascal's rules about the scope
and lifetime of identifiers declared within procedures and functions.

We touched on the topic of recursion. We discussed how to declare forward
procedures and functions and how to determine the scope of identifiers
during recursion. Finally, we presented the predefined procedure Exit,
which causes an immediate exit from a subprogram or main program.

In the next chapter, we cover arrays: what they are and how to use them.

154 Turbo Pascal Tutor for the Macintosh

c H A p T E R

12

Arrays

We've discussed the five predefined data types-Integer, LengInt, Real,
Boolean, and Char-as well as declared scalar types. A variable of one of
these types can hold only one value at a time. For example, if you define

var
Index : Integer;

Index has a single value at any moment. There are situations in which it's
convenient for a single identifier to represent a series of values, such as a
list of numbers or characters. That's where arrays come in.

Suppose, for example, you want to write a program to balance your
checkbook. One thing your program will need is a list of all your checks
and the amounts they were written for. To reserve space for this
information, you could declare a variable for each check:

var
Checkl : Real; { Amount of check 1 }
Check2 : Real; { Amount of check 2 }
Check3 : Real; { Amount of check 3 }

Check50 : Real; { Amount of check 50 }

This approach quickly becomes tedious if you write a lot of checks. Also, it
is impossible to write a loop to go through all the checks and do something
with each-say, add them to a running total. You can't write the following:

for Check := Checkl to Check50 do
Total := Total + Check;

Arrays 155

How, then, do we accomplish the task we've described? The answer is to
store the check amounts in an array.

An array is a list of variables of identical type, each of which can be referred
to. by specifying the name of the list and the variable's position in the list.
Suppose that you declare

var
Check: array[1 .. 10] of Real;

This declaration tells the compiler that identifier Check refers to a list of ten
variables of type Real, each with a number (called its index) from 1 to 10.

Each item of an array is referred to by the name of the array, followed by its
index enclosed in square brackets ([D. Thus, array Check contains the 10
variables Check[ll, Check[2], Check[3], Check[4], Check[S], Check[6], Check[7],
Check[8), Check[9}, and Check[10}. You can use any of these variables
wherever you would use a regular Real variable. Furthermore-and this is
what makes arrays useful-the index value doesn't have to be a constant. It
can be any expression that yields an integer in the range 1..10. For example,
if the variable Index is of the type Integer, the statement

for Index := 1 to 10 do
Check [Index] := 0.0;

zeros each variable.

How do arrays solve the problem of adding up check amounts? You can
now refer to each check by its index and write

Total := 0.0; { initialize the "accumulator" variable
for Index := 1 to 10 do

Total := Total + Check[Index];

Figure 12.1 shows the syntax of an array type.

array type --.c array ~ index type ~
L...----tO\olll41----'

Figure 12.1: Syntax Diagram of an Array Type

To specify an array type, you must give the compiler two pieces of
information: the array's index type and the type of each of the items of the
array, the base type.

156 Turbo Pascal Tutor for the Macintosh

The index type, which appears between the square brackets, must be scalar,
usually an integer subrange, for example, 1 . .10. Occasionally another type
is appropriate. For example, for a program to encrypt a secret message
using a cipher, you might want an array that holds the code for each
possible object of the type Char. In that case, you could declare the array

var
Cipher : array [char] of char;

filling each location of the array with the replacement character for the
corresponding index character. Then, to encode a character, you could write

MsgChar := Cipher[MsgChar];

and each character in the secret message would be replaced by the code for
that character.

There are other limits to the index type of an array, one being that the type
cannot have so many possible values that the total size of the array is
greater than 32,767 bytes (32K). The declaration

type
BigArrayType = array[1 .. 20000] of Integer;

causes a Structure Too Large error during compilation, because a list of
20,000 integers, at 2 bytes each, requires 40,000 bytes.

The reason for this constraint stems from the Macintosh's processor. While
the processor can work with objects larger than 32K, its most efficient
(fastest) addressing mode is restricted. to objects less than 32K bytes long.
We'll come up against the 32K limitation again in other contexts as well.

There are various ways around the 32K array size limitation, allowing the
creation of objects as large as you have memory for. We'll deal with this
topic in detail in Chapters 16 and 23.

It can be handy to use an enumerated type in declaring an array:

type
Days

var
Regular
Overtime
Present

= (Mon,Tues,Wed,Thur,Fri,Sat,Sun);

array[Mon .. Fri] of Integer;
array [Days] of Integer;
array [Days] of Boolean;

Array Regular has a subrange of type Days as its index type, while the
arrays Overtime and Present have the entire type Days as their index type.
Array Regular consists of five integers. If an Integer variable occupies 2 bytes
and a Boolean 1 byte, can you tell the total amount of memory (in bytes)

Arrays 157

taken up by each array? (Note that the compiler always pads data
structures out to an even length, for example, 5-byte data structures are
padded to 6 bytes.) The answers are 10, 14, and 8.

The base type of an array can be almost any data type at all-just as long as
the total size of the array does not exceed 32,767 bytes. In fact, you can
declare arrays that contain other structured types, including other
arrays-there's that recursive quality of Pascal again. Arrays of arrays
(called multidimensional arrays) are useful for describing objects in a table or
grid, such as a cell in a spreadsheet (which is located by its row and
column) or a point on a piece of graph paper (located by its horizontal and
vertical coordinates).

Consider a program that plays checkers. An important data structure for
this program would be the array that tracks the state of the board. One way
to represent the board might be like this:

type
Square = (RedSquare, EmptyBlackSquare, RedPiece, BlackPiece,

RedKing, BlackKing); {possible contents of a square}

var
CheckerBoard: array [1 .. 8) {outer array} of

array [1 .. 8) {inner array} of Square;

How would you access a particular square of the board given this
declaration of array CheckerBoard? In Pascal, you specify the subscript of the
outer array, followed by the subscript of the inner array. Thus, if you let each
of the inner arrays be a column (horizontal file) of the board, you could
specify the square in the third column from one player's left and the fourth
row (vertical rank) from the same side of the board (see Figure 12.2).

158 Turbo Pascal Tutor for the Macintosh

R
a

8

7 I

6

5

n 4
k ---------------------------------

3 I x I I Square [3] [4]

2

1

2 5 8

F i 1 e

Figure 12.2: Accessing the Game Board

Because it is inconvenient to type multiple sets of brackets, Pascal allows a
shorthand notation for multidimensional arrays. Instead of Square[3][4],
you can substitute Square[3,4]. Similarly, when specifying array
CheckerBoard's type, you can write

var
CheckerBoard: array [1 .. 8, 1 .. 8] of Square;

which is equivalent to what's shown in Figure 12.1.

You can create arrays with three or more dimensions. For example, here's
the board for five-dimensional (neo-Vulcan) chess:

var
Chess5D : array [1 .. 8, 1 .. 8, 1 .. 3, 1 .. 3, 1 .. 9] of Chess5DSquareType;

Turbo Pascal allows an array to have as many dimensions as you want, as
long as you observe the 32K total limit.

Array Assignments

Standard Pascal permits assignments on the individual objects within an
array, but not on an array as a whole. Thus, if you declare

Arrays 159

var
A, B: array [1 .. 10,1 .. 20) of Integer;

and you want to transfer all the elements of A into B, you'd have to write
the double loop

for I := 1 to 10 do
for J := 1 to 20 do

B[I,J) := A[I,J);

This loop transfers each element of A into B, one at a time. Can you see how
it works?

While this approach gets the job done, what we really want is code that
automatically takes everything in A and moves it to B. Turbo Pascal
permits this, as long as both arrays have the same type. Thus, the single
assignment

B := A;

does the job in one fell swoop. Turbo Pascal also lets you work with arrays
that are nested within other arrays. Thus, if you want to transfer just one
row of array A to a row of array B, you could write

A[8] := B[3];

Remember that the declaration

var
A, B: array [1 .. 10,1 .. 20) of Integer;

is shorthand for

var
A, B: array [1 .. 10) of array [1 .. 20) of Integer;

so that B[3J means Lithe third 20-element array of B." These special features
of Turbo Pascal make working with arrays easier.

Range-Checking and Arrays

A common run-time error involving arrays is trying to access elements that
don't exist. For instance, if you declare

var
Check: array[1 .. 10] of Real;

and then process it with this loop,

160 Turbo Pascal Tutor for the Macintosh

for i := 1 to 11 do
WriteLn(Check[ij);

you're asking for trouble. The first 10 values in array Check would be
written to the screen. But what happens on the last pass when the program
tries to find Check[ll}?

The answer depends on whether or not range-checking was enabled (using
the $R directive) when the program was compiled. If range-checking is off
(which is the default), the program looks where it thinks Check[11} ought to
be in memory, namely, immediately after Check[10}. It then interprets
whatever is there to be a real number and writes that number to the screen.
This place in memory could be another variable, a combination of two
smaller variables, or even part of a program; the number displayed is
meaningless.

With range-checking turned on, run time error 5, Range Check Error,

occurs when the program attempts to access array Check's eleventh
element.

Reading an out-of-range array element is bad enough; writing to one is
even worse:

for N := 1 to 11 do
Check[Nj := 0;

With range-checking turned off, this loop fills 4 bytes of memory just past
the end of array Check with zeros, overwriting whatever was there before.

We can't overemphasize the importance of making sure that array
subscripts (as well as variables of subrange and enumerated types) do not
go out of range. Until you are sure a program is free from errors of this sort,
compile with range-checking on. Get into the habit of making {$R+} the first
line of every program you write.

Initializing Arrays

Like any variable, before you use an array you must initialize it, that is, set
its elements equal to some starting set of values. (Before a variable is
assigned a value, it can have any value at all.) If all values are to be the
same, the process is simple. For example, suppose you want to set all
elements in the array A (defined earlier) to O. One way to do this is to use a
pair of for loops:

for X := 1 to 10 do

Arrays 161

for Y := 1 to 20 do
A[X, Yj := 0;

This method works, although it could befaster and it uses up a bit of space
for code and variables. Turbo Pascal, however, provides you with a faster
way: the predefined procedure FillChar. A call to FillChar looks like this:

FillChar(Dest,Length,Data);

where Dest is the variable (of any type) to be filled, Length is the number of
bytes to initialize, and Data is an integer value between 0 and 255 to be
written to each byte. You want to fill B with the integer 0, which is
represented as 2 bytes of Os. So, use B for Dest, and 0 for the data byte.

Now you just need the length in bytes. You can calculate this value given
your knowledge of arrays and the storage requirements of various types.
For example, array A, of type array [1 .. 10, 1 . .20] of Integer, contains 10 * 20
integers at 2 bytes each, and therefore occupies 800 bytes.

A better way is to use the built-in function SizeD! and let the compiler do
the work for you. SizeD! takes as its only parameter either a variable or a
data type and returns the size of that variable (or that type) in bytes. So to
initialize A, you could write either

FillChar(A,800,O)

or

FillChar(A,SizeOf(A),O);

This statement sets each byte in the memory-address range occupied by
array A to o. The combination of FillChar and SizeD! is the fastest way to
initialize an array variable in Turbo Pascal (although the nested for loop·
method isn't all that slow).

Be warned, however, that the FillChar technique may not work as intended
when you wish to initialize all the elements of an array to a value other
than o. If you try to set all of the elements of B to 1 by using the statement

FillChar(B,SizeOf(B),l);

you would discover that, after this "initialization," each element of B has
the value 257, not 1. This is because B is an array of type Integer, and an
integer with both of its bytes set to 1 equals 257. So be careful when using
FillChar to initialize arrays whose components are larger than a single byte.

162 Turbo Pascal Tutor for the Macintosh

Representing an Array in Memory

The elements of an array are stored in memory in a specific order. If the
array is one-dimensional-that is, if it has only one index-then the
elements are stored in ascending order. For example, array Check (defined
as array [1 .. 10] of Real) stores Check[1] at the lowest address, Check[2]
at an address 4 bytes higher than Check[1], and so on, as you might expect.
But what about multidimensional arrays, like CheckerBoard:

var
CheckerBoard: array [l .. S, 1 .. S] of Square;

Are the elements in CheckerBoard stored as CheckerBoard[1,1]'
CheckerBoard[2,1], CheckerBoard[3,1], and so on? Or are they stored as
CheckerBoard[1,ll, CheckerBoard[1,2], CheckerBoard[1,3], and so on?

Pascal hints at the answer to this question. Remember that the previous
definition is just shorthand for

var CheckerBoard: array [1 .. 8] of array [1 .. 8] of Square;

Thus, the first index of CheckerBoard[3,4] (which can also be written as
CheckerBoard[3][4]) selects a column of the board, which is an array [1 .. 8]

of Square. The second index selects a square within that array, and those
elements are stored sequentially, just as in Check. CheckerBoard[1,1] says to
pick the first element of the first array; CheckerBoard[1,2], the second
element of the first array; and so on. The squares are stored in the order

CheckerBoard[l, 1]
CheckerBoard[l, 2]
CheckerBoard[l, 3]

CheckerBoard [2, 1]
CheckerBoard[2, 2]

CheckerBoard[S, 7]
CheckerBoard[S, S]

Remember that the index furthest to the right-the last index-changes the
fastest, regardless of the number of dimensions in the array. The array

var BigOne : array[O .. 3,O .. 4,O .. 5,O .. 2] of byte;

is stored as

BigOne[O,O,O,O]
BigOne[O,O,O,l]
BigOne[O,O,O,2]
BigOne[O,O,l,O]
BigOne[O,O,l,l]

Arrays 163

BigOne[3,4,5,1]
BigOne[3,4,5,2]

Packed Arrays

To save space, arrays can be packed. Packed arrays, indicated with the
packed keyword, make more efficient use of storage for byte-sized array
elements such as characters and small integer subranges (with 256 or fewer
values). For example, consider the following two types:

type
T1 = array [1 .. 10] of chari
T2 = packed array [1 .. 10] of chari

Variables of type T1 are 20 bytes long and those of type T2 are 10 bytes
long.

Review

In this chapter, you learned how to declare and access arrays, which is a
structured type that consists of a list of variables of any type. You further
saw how to work with multidimensional arrays and how to initialize
arrays. Also described was how arrays are stored in memory.

Take a moment to study the two array exercises in Turbo Tutor.

You'll see arrays used throughout the rest of this book. Chapter 13
introduces string types, a special application for arrays.

164 Turbo Pascal Tutor for the Macintosh

c H A p T E R

13

Strings

Niklaus Wirth had mainframes, not Macintoshes, in mind when he
designed Pascal. This orientation is evident when we study strings and
how this concept has been expanded in Turbo Pascal.

The mainframes of the late 1960s accepted programs and information in the
form of punched cards and magnetic tapes. Programs were submitted as
"batch jobs"; the program and data (usually numbers) went in, the
computer worked on them, and the results came out. No one
communicated with the program while it was running.

In time, this situation changed. "Timesharing" computers capable of
serving many users at once became common. CRT terminals became
available to more users. Minicomputers became popular, and users began
to insist on interactive programs-programs that communicated with the
user while being run. Many of these programs performed functions, such
as word processing, that would have been impossible as batch programs.

Because it originated in the world of batch-oriented, number-crunching
mainframes, Standard Pascal was not given facilities for working with
strings (groups of ASCII characters). In Standard Pascal, strings can only be
stored as arrays of characters, and no special operations for reading,
writing, or processing them are provided. This makes writing programs to
handle text difficult.

Turbo Pascal, like many modern versions of Pascal, has extensions for
handling strings simply and quickly.

Strings 165

String Types

A string is a one-dimensional array of ASCII characters, that is, an array of
type Char. Turbo Pascal keeps track of both a string's contents and its
length. Using various operators and built-in procedures and functions, you
can manipulate a string: Add characters to it, delete characters from it,·
combine it with other strings, and more.

You create a string variable by declaring it to be of a string type. To specify
a string type, you tell the compiler the maximum number of characters that
a string of that type can contain (so it can reserve enough memory). The
syntax of a string type is shown in Figure 13.1.

string type --C sIr1ng) I:. . . .~,~
~ unsigned Integer ~

Figure 13.1: Syntax Diagram of a String Type

The constant in the specification of the string type must be in the range
1..255. Here is a sample declaration of string types:

const
MaxstringSize = 255;

type
Bigstring : string[MaxstringSize];
Littlestring : string[15];

Here are some string variable declarations:

var
MyName
Token
MyBigString

string[80] ;
Littlestring;
Bigstring;

The constant used in the specification of a string type sets the maximum
number of characters each string can hold. The variable MyName holds up
to 80 characters; Token holds only 15. The following assignment

Token := 'this is too long a string for Token' ;

would store only the first 15 characters ("this is too Ion") into Token.
MyBigString has the maximum length possible for a string in Turbo Pascal:
255 characters. This string length has particular relevance in Macintosh
programming, as we shall see in Part 5 of this book.

166 Turbo Pascal Tutor for the Macintosh

String Operators, Functions, and Procedures

Turbo provides a rich assortment of operators, procedures, and functions to
manipulate variables of string types, as shown in Table 13.1.

Table 13.1: String Procedures and Functions

Procedure/Function

Concat(Stl, St2 {, St3, ... ,Stn})

Copy(St, Position, Len)

Delete(St, Position, Num)

Insert(Source, Destination, Position)

Length(St)

Pos(Pattern,Target)

String Assignments

Definition

Returns string composed of Stl
through Stn concatenated together;
the plus sign (+) can also be used.

Returns string composed of
St[Position] ... St[Position+Len-1].

Deletes Num characters from St
starting at St[Position].

Inserts Source into Destination
starting at Destination[Position].

Returns current length of st.
Returns position (index) of Pattern
within Target.

Assignments to string variables work pretty much as they do with other
variC:\ble types, with one difference: If the destination string is too small to
hold all the characters assigned to it, those characters are dropped. (In other
words, the string is truncated.) For instance, if string variable Fruit is of type
string[5], then the assignment

Fruit := 'Watermelon';

gives Fruit the value 'Wzter'.

The Length Function

One of the most frequently used string functions is Length, which returns
the current length of a string. (Don't confuse this with the maximum

Strings 167

possible length of the string that is declared as part of its type.) If St is a
string variable, then the expression

Length (St)

returns the number of characters currently in St. The following example
demonstrates the Length function.

program LengthTest;
type

SmallStr = string[15];
var

Test : SmallStr;

procedure ShowLength(St : SmaIIStr);
{ Write out a string and its length }
begin

WriteLn('The length of "',St,'" is ',Length(St))
end;

begin
Test := 'hello, there';
ShowLength(Test);
Test : = ' hi' ;
ShowLength(Test);
Test := ";
ShowLength(Test);
ReadLn

{ the null string }

end.

Procedure ShowLength accepts a string as its parameter, and then writes out
the string, followed by its length. When this program is run, it produces the
output

The length of "hello, there" is 12
The length of "hi" is 2
The length of "" is 0

The Concat Function and the + Operator

Another useful function is Concat, which concatenates (combines) two or
more strings to make one large string. If Stl is a string variable with the
value 'Robin Jones', then the expression

Concat(fThis program compliments of ff Stl f f .f)

yields

This program compliments of Robin Jones.

The general syntax of the Concat function is

168 Turbo Pascal Tutor for the Macintosh

Concat(Stl, St2 {, St3, ... ,Stn})

where Stl, St2, and so on are string variables or constants.

Like WriteLn, Concat can accept a variable number of parameters; unlike
WriteLn, it must have at least two. Beyond this, its only restriction is that
the total length of all the concatenated strings must be less than or equal to
255. Characters past position 255 are lost.

In lieu of calling the Concat function, Turbo Pascal lets you concatenate
strings using the plus sign as an operator. The expression

'This program compliments of ' + Stl + '.'

performs exactly the same operation as the earlier Concat example.

The Copy Function

The next string function that you may find useful is Copy, which allows you
to make a copy of any part of a string (that is, a substring). It takes as
parameters the string, two integers indicating the position of the first
character at which to begin copying, and the number of characters to copy.
The expression

Copy('This string has no character', 20, 9);

returns the value 'character'. The syntax of the Copy function is

Copy (Source, Position, Len)

where Source is a string and Position and Len are integers.

There are a few restrictions on the parameters passed to Copy. The second
parameter, which indicates the position at which to start copying from the
string, must be in the range 1 through 255. Secondly, if you try to use Copy
to copy beyond the end of a string, only the characters within the string
will be returned. If the starting position is already beyond the end of the
string, then Copy will return a null string, that is, a string with a length of 0
containing no characters at all.

The Pos Function

Another handy string function is Pas. It looks for the first occurrence of a
substring inside another string; if it finds the substring, it tells you where.
Pas's syntax is as follows:

Strings 169

Function Pos(Substring, S);

where Substring and S are both string expressions. Pos takes the string to
search for as its first parameter, and the string to search in as its second
parameter. If it finds Substring lurking in S, Pos returns an integer giving the
location in S where Substring begins; otherwise, Pos returns O.

Suppose you want to see if the word "to" occurs in string variable S:

S:= 'To be or not to be';

Location := Pos('to', S);

Variable Location (assumed to be of type Integer) would get the value 14.
(NOTE: Case is significant, so the To at the beginning of S isn't matched.) If
the target string is not found, Pos returns the value o.

The Delete and Insert Procedures

Two operations you'll undoubtedly perform on strings are to delete
characters from and insert characters into them. The Delete procedure lets
you remove a section of a string; like Copy, it requires the string, the
starting position, and the number of characters to delete.

Suppose you've found the word "to" in a soliloquy somewhere and want to
remove it and the following blank space from the string. You can do this by
calling the following Delete procedure:

Delete (S, Location, 3);

It removes three characters from S, starting at the character indicated by
Location. Alternatively, you could perform the entire operation in one
masterstroke by writing

Delete (S, Pos('to', S), 3);

which omits the need for variable Location entirely. In either case, S
becomes 'To be or not be.'

The syntax of the Delete procedure is

Delete(S, Position, Num)

where S is a string and Position and Num are integers.

If Position is beyond the last character of the string, no characters are
removed. If it is not a value from 1 to 255, a run-time error occurs. Even if
you attempt to delete past the end of the string, only characters in the string
are removed.

170 Turbo Pascal Tutor for the Macintosh

Combined with Pos and Copy, you can use Delete to separate a string of text
into individual words. The following procedure gets the first word from a
line of text (where "word" is defined to be a sequence of characters starting
with a non-space character and followed by a space).

procedure GetWord(var Line, Word: BigStr);

const
Space = ' ';

var
Len Integer;

begin
while Pos(Space,Line) = 1 do

Delete(Line,1,1);
Len := Pos(Space,Line) - 1;
if Len = 0 then
begin

Word := Line;
Line := "

end
else
begin

Word := Copy(Line,1,Len);
Delete(Line,1,Len + 1

end
end;

{ Get the next word from the string line

remove leading blanks

{ look for blank
{ no blanks left

get word--might be null string if none left
{ now make line the null string

get word and delete from line
{ get all but blank

delete word plus blank

{ procedure GetWord)

The Insert procedure is the reverse of the Copy/Delete operation: It takes one
string and stuffs it inside another. The first parameter of Insert is the string
to insert, the second is the string into which it's to be inserted, and the last
is the location where the insertion should occur.

For example, if you want to put "to" back into S, you can write:

Insert(S, Location, 'to ');

The syntax of the Insert procedure is

Insert (Source, Destination, Position)

where Source and Destination are strings and Position is an integer.

Position must be in the range 1 .. 255. If the result is longer than the
maximum length of Destination, the extra characters at the end are
truncated. Furthermore, if an attempt is made to insert a string at a position
after the end of Destination (that is, Position is greater than
Length(Destination», then Source is concatenated onto the end of Destination.

Insert and Delete can be used together to substitute one substring for
another. Suppose you are writing a program that takes a form letter and
inserts the appropriate names, dates, and so on. Within the form letter,
these name and date strings can be represented by tokens (groups of

Strings 171

symbols that show you where to put the information). For example, the
salutation might look like this:

Dear <title> <last name>:

where the information to be filled in is represented using variable-like
tokens such as "<title>". The following procedure, then, can be used for
replacement purposes:

procedure Replace (var Line: BigStr; Token,Sub : TokStr);
{ Look for Token in Line and replace with Sub

var
Index, Len : Integer;

begin
repeat

Index := Pos(Token,Line);
if Index > 0 then
begin

Delete(Line,Index,Length(Token));
Insert (Sub,Line,Index)

end
until Index = 0

end;

The statements

{ procedure Replace }

Line := 'And so, <title> <last>, the entire <last> family';
Replace(Line,'<title>' ,'Dr.');
Replace(Line,'<last>' ,'Lewis');
WriteLn (Line) ;

produce

And so, Dr. Lewis, the entire Lewis family

This is how personalized junk mail is generated, as you might have
guessed.

The Chr Function

The Chr function takes a value of any scalar type with an ordinal value of 0
to 255 and returns the corresponding character (a data object of type Char)
with that ASCII code. This sounds like double talk, since we know that a
character is nothing but an ASCII value anyway. All Chr does is change the
compiler's perspective on the underlying ordinal value-it doesn't perform
any action at run time; no memory is changed or moved. For instance, the
following program prints all of the characters in the font (Monaco) used in
the terminal window:

172 Turbo Pascal Tutor for the Macintosh

program PrintASCII;
{Print the characters corresponding to codes 0 to 255.}
var i :Integer;
begin

for i := 0 to 255 do
WriteLn(i, ' --) " Chr(i));

ReadLn;
end.

Any parameter passed to Chr should be between 0 and 255. If it isn't, no
run-time error occurs, but the parameter modulo 256 (that is, the lower byte
of the parameter) is used.

Representing Strings in Memory: Strings as
Arrays

You can work with strings as complete entities, and the characters that
make up a string can be accessed individually. A variable of type string[n]
can be treated as though it were an array[O .. n] of Char.

That the array starts with 0 and not 1 is significant. You can reference
individual characters in a string variable using standard array
notation-for instance, the first character of Token (of type string[80]) is
Token[1], the second is Token[2], and so on. The first element of the
array-the one with an index of O-contains the current length of the
string. If you execute the assignment

Token := 'this string';

then Token[O] is a character with ASCII value 11, since there are 11
characters in 'this string'. This implies that Token[O] performs the same
function as Length(Token). It does, but beware: You've got to play by
Pascal's typing rules if you want to look in position 0 to get a string's
length, as this program shows:

program Mismatch;
var

Token : string[15];
Len : Integer;

begin
Token := 'this string';
Len := Token[O]; { The compiler won't like this line
WriteLn('The length of Token is ',Len)

end.

Type in and compile this program. What's wrong with the seventh line?

Strings 173

Since Token[O] is of type Char, the compiler won't let you assign it to an
Integer variable, any more than it would let you perform the assignment

Len : = , c' ;

Your intentions are honorable, but Pascal is picky about mixing and
matching types in assignment statements. You can reassure the compiler by
substituting the statement

Len := Ord(Token[O]);

which returns the ordinal (numeric) value of Token[O], which happens to be
11 .. Of course, the Length function does this for you, so there is usually no
need for this technique.

Using array notation, you can access any individual character of a string.
As mentioned previously, each element of a string is a variable of type
Char, and you can treat it as such. For example, here's a procedure to
convert all letters in a string to uppercase ('A' .. 'Z'):

type
MaxString = string[255)i

procedure UpperCase (var s: MaxString)i
var

Index : Integeri
begin

for Index := 1 to Length(S) do
if (S[Index] >= 'a') and (S[Index] <= 'z') then

S[Index] := Chr(Ord(S[Index) - 32))i
endi

At times, even Pascal lovers get put out by the grief Pascal puts you
through when performing numeric operations on character data. Let's
work through the next to the last line of procedure UpperCase:

S[Index] := Chr(Ord(S[Index] - 32));

At this point, we know that S[Index] is a lowercase letter. ASCII is designed
so that each lowercase letter has a code value 32 greater than the
corresponding uppercase character. It would therefore be nice to say

S[Index] := S[Index] - 32;

In weakly typed languages like C, this is exactly what you'd do. But Pascal
won't let you subtract apples from oranges, months from days, or integers
from characters. Even though you and I know there's a numeric value
hiding in the byte of memory represented by S[Index}, Pascal requires that
we first change S[Index} into an integer value (Ord(S[Index))), perform the
subtraction, and then convert the whole thing back into a character for
assignment to the string.

174 Turbo Pascal Tutor for the Macintosh

The Chr and Ord functions are unlike most of Pascal's built-in functions in
that they don't cause any run-time processing. They simply perform type
coercion; that is, they cause the compiler to permit operations that typing
considerations would otherwise prevent. The code generated by this line
would therefore be simple and quick. Wirth made Pascal picky to make
sure you know what you're doing when you put together such a statement.

Now that you know how strings work internally, be careful. Avoid messing
with any elements beyond the current length of the string. Turbo Pascal
won't give you any sort of error, but you need to be aware that you've just
changed a portion of the string and it won't print unless you change the
length as well. For example, the sequence

Token := 'Hello';
Token [6] : = '!';
WriteLn(Token)i

outputs Hello rather than Hello!. This is because Token[O] still contains a
value of 5, and that's what the WriteLn procedure looks at when it gets
ready to display the contents of Token. If you add the statement Token[O] :=
Chr(6) just before the WriteLn command, you'll write out the complete
string. Usually, this sort of "string surgery" isn't necessary, because of the
many string functions available. The correct way to add emphasis to Token
is

Token := Concat(Token,' !')i

or, perhaps more intuitively,

Token := Token + ' !';

String Comparisons

Strings can be compared to each other with the same operators that you use
for numbers: =, <, >, <=, >=, and <>. But the meanings of these operations
aren't as obvious as for numbers. For example, what does it mean to use the
less-than symbol to compare two strings?

if 'cat' < 'dog' then ...

Strings are compared using two criteria: their underlying ASCII values and
their length, in that order. For example, cat is less than dog because the
ASCII value of c is less than the ASCII value of d. Two strings are equal
only if they contain exactly the same characters. If two strings have
different lengths, but are identical up to the length of the shorter string,

Strings 175

then the shorter string is considered to be less than the longer string. This
means that cat is less than cats.

Case is significant in string comparisons. Cat is less than cat because
uppercase letters have lower ASCII values than their lowercase equivalent.
For this reason, you will probably want to call a case-conversion routine
before comparing two strings, unless you know ahead of time that case
distinctions won't cloud the issue. It is worth noting that all characters
(spaces, symbols, and control characters as well) are included in the
comparison according to their ASCII value; for example, cat# is less than
catl because # has a lower value than I.

Passing Strings to Procedures and Functions

You may have noticed in these examples that whenever we've passed a
string to a procedure or function, we've always given that parameter a
named type, like BigStr or TokStr, rather than an anonymous string type
like string[80]. For example, we used

procedure GetWord(var Line, Word: BigStr);

instead of

procedure GetWord(var Line, Word: string[255]);

not to be tidy or pedantic, but because Turbo Pascal requires it. Think of it
from the compiler's point of view. Because of Pascal's strong typing, the
compiler won't allow you to pass a parameter to a procedure unless both
the parameter to be passed and the formal parameter used to define the
procedure are the same type of object. And if they don't have the same
type, the compiler considers them to be different.

When passing strings as parameters to procedures, it is often a good idea to
pass them as var parameters, rather than value parameters (that is, not
preceded by var in the parameter list). Parameters passed by value are
copied when the subprogram is called-requiring more time and stack
space than var parameters, which require only that a 4-byte address be
passed. Passing a string of type string[255] by value requires 256 bytes of
stack space, as well as the time to make the copy. Doing the same transfer
by reference takes 4 bytes (and concomitantly less time).

However, when a string is passed as a var parameter, the compiler imposes
an important restriction: Namely, that the formal and actual parameters
have the same maximum length. This program won't compile:

176 Turbo Pascal Tutor for the Macintosh

program StringTest;
type

StringlO = string[lO];
String20 = string[20];

var
Str: String20;

procedure P(var 5: StringlO);
begin
end;

begin
P (Str)

end.

because the compiler won't generate code that sends a 21-byte object
(variable Str) to be processed by a procedure defined to process an II-byte
object (a StringlO). You'll get a Type Mismatch error at the point where the
main program calls procedure P.

If you think about it, you'll see why. Except under rare circumstances,
Pascal doesn't permit a variable of one type to be assigned a value of
another type. Passing a variable to a procedure as a var parameter is treated
just like an assignment, because the called procedure is free to change the
value of that variable. Therefore, it doesn't let you pass Real variables to
procedures that accept Integer parameters, nor a value of type string[20] to
a procedure defined to accept parameters of type string[10] (or vice versa).

The IBM version of Turbo Pascal has a compiler directive that causes the
compiler to permit passing strings of differing lengths as var parameters;
Turbo Pascal for the Macintosh does not. One way around the problem is to
make all strings the same type, say, string[80] or string[255]. You can
minimize the potential for wasting space (four strings of type string[255]
require IK of RAM) by declaring strings as local variables, so that they are
allocated on the stack.

Review

In this chapter, we learned about Turbo Pascal's string types, and how to
use them to create arrays of characters. We looked at the syntax of a string
type declaration and discussed such operations as string comparison, string
assignment, and Turbo Pascal's built-in string procedures and functions.
We ended with a discussion of some of the finer points of using string
parameters.

Strings 177

There are two exercises on strings in Turbo Tutor. Take a moment to study
them now.

In the next chapter, we discuss records, a structured type for combining
data of different types into one neat packet.

178 Turbo Pascal Tutor for the Macintosh

c H A p T E R

14

Records

So far, you've learned about two structured types, arrays and strings. Both
are collections of objects of the same type. Pascal also allows you to create
structures called records, which are named groupings of different types.

This chapter explains records, the with statement, variant records, and free
unions, followed by exercises that incorporate these features.

Let's return to the checkbook example at the start of Chapter 12. Originally,
we declared an array of real numbers to hold the check amounts:

var
Check: array[l .. 10] of Real;

Suppose that, in addition to the amount of each check, you want to store
information such as the date it was written on and who it was made out to.

You could declare many arrays, each using the check number as an index,
to hold each piece of information about a check. The arrays might look
something like this:

type
CheckNurnType = 1 .. 1000;
MonthType = (January, February, March, April, May, June,

var

DayType
YearType
PayeeType

CheckArnt
CheckMonth
CheckDay
CheckYear

Records

July, August, September, October, November, December);
= 1. .31;
= 1980 .. 2000;
= string [40];

array [CheckNurnType] of Real;
array [CheckNurnType] of MonthType;
array [CheckNurnType] of DayType;
array [CheckNurnType] of YearType;

179

CheckPayee : array [CheckNumType) of PayeeTypei

This technique is used in some languages (BASIC, for instance), because
they have no alternative. Intuitively, however, it doesn't seem logical to
break a single entity (in this case, a check) into five separate pieces.
Furthermore, the code resulting from this approach is messy. You'd need
five assignments to make a working copy of the information for check N,
for instance:

CheckCopyAmt := CheckAmt[N)i
CheckCopyMonth := CheckMonth[N)i
CheckCopyDay := CheckDay[N)i
CheckCopyYear := CheckYear[N)i
CheckCopyPayee := CheckPayee[N)i

Instead, you should be able to write something like

CheckCopy := Check [N) i

and transfer all of the information with a single statement.

Pascal's records solve this problem by allowing you to create a data object
that consists of smaller objects of different types bundled together. These
smaller objects, called fields, can be accessed individually, or you can refer
to the record as a whole by name. This structuring lets you model many
real-world situations and, as you gain familiarity with the technique, will
become one of your most important problem-solving tools.

To create a record type for the checkbook example, you want each variable
of this type to contain all information related to a single check: amount,
date, and to whom it was written. Here's how the record type might be
declared:

type
Check = record { "record" identifies a record type
Amt Reali {each field of the record has a name and a type
Month : MonthTypei
Day DayTypei
Year YearTypei
Payee : PayeeTypei

endi { "end" marks the end of the record }

What does this definition mean? It defines a record type called Check. Each
object of type Check consists of a group of five fields, each with a name and
a type. Field Amt, which holds the check amount, is of type Real; the next
field, Month, contains an object of type MonthType, which holds the month
the check was written; and so on.

180 Turbo Pascal Tutor for the Macintosh

Now, suppose you have a variable called MyCheck, which you have
declared to be of type Check. You access the individual objects within
MyCheck by writing the name of the record variable (MyCheck) followed by
a period, followed by the name of the field. Thus, you can refer to the
amount of MyCheck by writing

MyCheck.Amt

MyCheck.Amt can be used wherever you would use a conventional Real
variable. Here is a program fragment that declares the variable MyCheck
and fill its fields with values.

var
MyCheck : Check;

beg-in
MyCheck.Amt
MyCheck.Month
MyCheck.Day
MyCheck.Year
MyCheck.Payee

end.

:= 100.00;
:= February;
:= 10;
:= 1987;
:= 'Philippe Kahn';

As suggested previously, one of the benefits of records is that they can be
copied all at once by a single assignment statement. If MyCheck and
YourCheck are both variables of type Check, then the statement

YourCheck := MyCheck;

copies all of the fields from MyCheck into YourCheck.

What kinds of data objects can you use as the fields of a record? As you
have probably come to expect of Pascal, practically anything-arrays,
strings, scalars, and even other records-can be the fields of a record.

Suppose you declared a record type like this:

type
Transaction = record

Purpose string-l80];
Payment : Check;

end;

The record type Transaction contains two fields: Purpose, a string of 80
characters, and Payment, a record of type Check. If Sale were a variable of
type Transaction, then you could refer to the Payment field of Sale as
Sale.Payment, and to the Amt field of Sale.Payment as Sale.Payment.Amt. And
so on and so on. (Yes, Pascal is a remarkable language.)

Records 181

You can also use records in conjunction with other structured types. One
especially handy construction is an array of records. For example, we can
rewrite the data structures for this checkbook-balancing program as

type
MonthType = (January, February, March, April, May, June,

DayType
YearType
PayeeType

July, August, September, October, November, December);
= 1. .31;
= 1980 .. 2000;
= string [40] ;

Check = record

var

Amt : Real;
Month : MonthType;
Day : DayType;
Year YearType;
Payee : PayeeType;
end;

CheckBook : array[1 .. 500] of Check;

which is exactly what we wanted in the first place. We chose the size of the
array carefully. Each check uses 50 bytes of storage, so 500 checks represent
a 25,000-byte array, which begins to push the 32K limit. 500 checks is too
severe a limit, so, in Chapter 23, we'll disclose a technique to smash the
SOO-check barrier.

To work with an individual field of a check within the array CheckBook, we
could write statements of the form

for N := 1 to NumChecks do { Total the amounts of the checks }
Total := Total + CheckBook[N] .Amt;

Figures 14.1 and 14.2 depict the formal syntax diagrams for a record type
declaration. For the moment, disregard the box labeled "variant part."

record type -----.(record)t--r----------: t--'~8--+

~ field list j-J

Figure 14.1: Syntax Diagram of a Record Type

182 Turbo Pascal Tutor for the Macintosh

field list r fixed part I~, ~fl~,f ~
~ variant part ~ LOJ

fixed part

Figure 14.2: Syntax Diagram of a Field List

The With Statement

Previously, we showed you how to access each field of a record
individually in order to assign values to those fields. You typed in the name
of the record variable, a period, and the name of the field for every
assignment:

MyCheck.Amt := 100.00;
MyCheck.Month := February;
MyCheck.Day := 10;

This can get tedious, especially if many fields are to be assigned-and
records are common in Pascal programming. Some Macintosh data
structures covered in Part 5 are records with dozens of fields. For this
reason, Pascal provides you with a typing shortcut: the with statement.

Using the with statement, you can tell the compiler the name of the record
variable you are using and then refer to its fields using the field names
only. The following code sample uses with to perform the same
assignments as the previous example:

with MyCheck do
begin

Amt := 100.00;
Month := February;
Day := 10;

end;

{ Assigns to MyCheck.Amt }
{ Assigns to MyCheck.Month }

{ Assigns to MyCheck.Day }

The syntax diagram of the with statement is shown in Figure 14.3.

Records 183

with statement

Figure 14.3: Syntax Diagram of a with Statement

While it isn't good practice, Pascal allows you to have field identifiers that
are the same as the names of variables, types, constants, procedures, and so
on. Thus, when using the with statement, you are creating a special scope
in which the field names take precedence over-and perhaps hide-other
identifiers. Had there been a global variable called Month in the previous
example, it would not have been accessible within the with statement.

with statements can be nested:

var
Sale : Transaction; { As defined in the earlier example

begin

with Sale do
with Payment do
beqin

Amt : = 100. 00 ;
Month := February;
Day .= 10;

end;
end.

{ Assigns to Sale.Payment.Amt
Assigns to Sale.Payment.Month
{ Assigns to Sale.Payment.Day

Of course, the variables specified in the nested with statements need not
have any relationship to each other at all. For example, we can write

var
FirstRecord : record

Fieldl, Field2 Integer;

Field3
end;

SecondRecord
Field4
FieldS

end;

begin

Real;

record
Real;
Integer;

with FirstRecord do
with SecondRecord do
begin

{ An "anonymous" record type
If fields are of the same type,
{ we can declare them together

{ Another "anonymous" record type }

Within this begin/end block, the fields of both
records (Fieldl ... Field5) can be accessed by their field names

184 Turbo Pascal Tutor for the Macintosh

end;
end.

However, if with statements are nested and two of the with variables have
fields of the same name, the most deeply nested with takes precedence. If
we modify the previous example so that some of the field names are the
same, we can see what happens:

var
FirstRecord : record

Fieldl, Field2 Integer;
Field3 : Real;

end;

SecondRecord
Fieldl
Field2

end;

begin

record
Real;
Integer;

with FirstRecord do
with SecondRecord do
begin

Within this compound statement, the identifiers Fieldl and
Field2 refer to SecondRecord.Fieldl and SecondRecord.Field2,
respectively. Field3 still refers to FirstRecord.Field3, since
there is no overlap. The "hidden" fields of FirstRecord can
still be accessed by their full names: FirstRecord.Fieldl and
FirstRecord.Field2.}

end;

Instead of nesting with statements, you may specify a list of record
variables in a single with statement to accomplish the same thing. The
statement

with FirstRecord, SecondRecord do

is precisely equivalent to

with FirstRecord do
with SecondRecord do

There's one more point to remember when using the with statement: When
the with variable is an element of an array, do not change the value of the
index inside the with statement. This code demonstrates what not to do:

program UnsafeWith;
var

Records 185

c : array[1 .. 2J of record

N : Integer;
begin

a, b: Integer;
end;

c[1J.a := 1; c[1J.b := 2;
c[2J.a := 3; c[2J.b := 4;
N := 1;
with c [NJ do
begin

WriteLn(a,' ',b);
N := 2;
WriteLn(a,' ',b);
ReadLn;

end;
end.

This program outputs 12 both times, because the compiler doesn't consider
the possibility that you might change the index of C within the with block.
Therefore, even after the assignment to N, the with statement continues to
refer to Cll] .

. with statements can get you into trouble in a couple of other ways. While
we haven't discussed pointer variables yet, the same restriction applies when
the with variable is pointed to by a pointer: The pointer may not be
changed. In general, the rule is Don't do anything that might change the
identity of the with variable. This is an important consideration in Part 5 of
this book.

These warnings notwithstanding, the with statement results in concise
source code and, as a bonus, faster execution.

Variant Records

Occasionally, you'll need a record to store one set of fields under certain
circumstances and a second set under others. For instance, imagine a record
type to keep track of sales transactions in a store. You'll want to track some
information under all conditions-for example, the amount of the purchase
and the date of the transaction.

Other facts related to the transaction could vary according to the type of
transaction. For example, if the person pays with a credit card, you'll want
to record the kind of credit card, the credit card number, and the expiration
date. And if the person pays with a check, you'll want the check number,
the amount of the check (in case the customer got cash back from the
transaction), and the customer's driver's license number.

186 Turbo Pascal Tutor for the Macintosh

One way to handle this is to allocate a separate field for every possible
piece of information and, at run time, simply not fill in fields that don't
apply. The record type definition might look something like this:

type
MonthType

OayType
YearType
Payment Type
CardType

= (January, February', March, April, May, June,
July August, September, October, November, December);

= 1. .31;
= 1980 .. 2000;
= (Cash, Check, CreditCard);
= (Amex, Visa, MC);

Purchase = record
Amount Real;
Month MonthType;
Day OayType;
Year YearType;
Hour O .. 23;
Minute O .. 59;
MethodOfPayment: PaymentType;
CheckNumber: Integer; {These fields used for check purchases only
CheckAmt: Real;
LicenseNumber: string[20];
Card : CardType; { These fields used for card purchases only
ExpMonth: MonthType;
ExpYear: YearType;

end; { record Purchase }

While this approach works, it wastes storage. No matter what kind of
purchase is made, some of the fields are guaranteed to be left empty.

To alleviate this situation, Pascal provides a feature called a variant record,
which allows mutually exclusive fields (fields that will never be used at the
same time) to share the same storage space within the record. This can
result in a dramatic reduction in memory consumption.

Here's how to define a variant part for the previous record, allowing the
mutually exclusive fields for check and credit card information to overlap.
Note that the variant part of a record must come after all normally existing
fields (the fixed part).

Purchase = record
Amount : Real;

Minute: 0 .. 59;
Beginning of variant part }

{ First variant: }
{ MethodOfPayment = Check }

case MethodOfPayment : Payment Type of
Check : (CheckNumber : Integer;

CheckAmt: Real;
LicenseNumber: string [20]);

CreditCard (Card: CardType; { Second variant: }
{ MethodOfPayment = CreditCard } ExpMonth: MonthType;

ExpYear: YearType);
end; { record Purchase }

Records 187

The variant part of a record begins with the reserved word case (unrelated
to its use in the case statement), followed by the name and type of a special
field of the record, called the tag field. Here the tag field is
MethodOfPayment. This field, besides carrying information about the
purchase, serves another purpose: By looking at MethodOfPayment, your
program can decide what information it expects to find in the rest of the
record.

The reserved word of follows the definition of the tag field, then one or
more lists of field definitions. Each list, called a variant, describes how the
remaining space in the record is used for a different value of the tag field.

If the value of MethodOfPayment is Check, then the rest of the space in the
record holds the fields CheckNumber (the number of the check),
CheckAmount (the amount of the check), and LicenseNumber (the driver's
license number of the issuer of the check).

On the other hand, if MethodOfPayment has the value Credit Card, then the
same space holds the fields Card (the kind of credit card used), ExpMonth
(the expiration month of the card), and ExpYear (the expiration year of the
card). If MethodOfPayment has the value Cash, there are no additional fields
in the record and the remaining space contains no useful information.

The syntax of this optional part of a record definition, the variant part, is
shown in Figure 14.4.

tag field type ~ ordinal type identifier ~

variant rtco~,tant IrercD : (~I.-----'J~"0--+
Lv-J ~ field list I

Figure 14.4: Syntax Diagram of a Variant Part

As you can see in the diagram, the same variant might be used for more
than one value of the tag field. To illustrate this, suppose we add the value
TCheck (for traveler's check) to the type PaymentType, and we want the

188 Turbo Pascal Tutor for the Macintosh

same information for this form of payment as we do for a check. We could
redefine the program as follows:

type
PaymentType = (Cash, Check, CreditCard);

Purchase = record
Amount : Real;

Minute : 0 .. 59;
case MethodOfPayment : Payment Type of

Check, TCheck (CheckNumber: Integer; { Variant now serves for 2 values
CheckAmt: Real;
LicenseNumber: string[20]);

CreditCard (Card: CardType;

end;

ExpMonth: MonthType;
ExpYear: YearType);

{ record Purchase }

When using variant records, it is important to keep track of which variant
you are using at any given moment. Despite the fact that Pascal lets you
define different field names and types for different values of the tag field, it
does not check to make sure you are using the right ones. Careless use of
variant records can lead to scrambled data and disaster.

A case statement is ideal for handling the variants of a record:

case ThisPurchase.MethodOfPayment of
Cash: begin

end;

Check, TCheck:
begin

CheckAmt .- ... etc.

end;
CreditCard:

begin

Card '= ... etc.

end;
end.

Free Unions: Omitting the Tag Field

The computer-science term for a variant record that includes a tag field is a
discriminated union, which is a combination, or union, of field definitions

Records 189

that are discriminated from one another by the value of the tag field. Pascal
also allows you to use another kind of variant record, or union, called a free
union.

In the syntax diagram for a variant part (Figure 14.4), you may have
noticed a path not mention earlier: There is an arrow that goes around the
identifier (and the subsequent colon) for the tag field. This means that it is
possible to define a variant part with no tag field, though a type must still
be given.

A free union is a variant record with no tag field. Usually, it is used in one
of two cases: when the correct set of fields to be used can be determined
some other way than from a tag field, or when the programmer
intentionally wants to look at a location in memory that is of two different
types simultaneously-depending on which field name is being used.
Here's an example of a free union:

program FreeUnionDemo;
type

FreeUnionRec = Record
case Boolean of

False: (i: Longlnt);
True: (r: Real);

end;
var

num: FreeUnionRec;
begin

num.i := 12345678;
WriteLn(num.i,num.r);
num.r := 3.14159;
WriteLn(num.i,num.r);
ReadLn

end.

Note that the declaration of type FreeUnionRec contains no constant
part-only a variant part. Type Boolean is used in the declaration to tell the
compiler that two variations are forthcoming.

In this example, variable num occupies 4 bytes in memory. If we choose to
interpret those 4 bytes as a long integer, we select the first variant (num.i);
to treat them as a real, use the second (num.r). The underlying 4 bytes don't
change; only the way the program interprets them does. We'll show you
how this can be useful in Part 3 of this tutorial.

190 Turbo Pascal Tutor for the Macintosh

Review

In this chapter, we introduced an important structured type, called records,
that hold collections of variables of other types. Records consist of fields
that hold these variables, with each field having a distinct name and type.
Records are a natural device for making a program's data structures more
like the real-world objects they represent-and more natural data
structures always result in simpler, more efficient programs.

The with statement can be used to make referring to the fields of records
easier. Variant records can save storage space by using the space in a record
variable to hold more than one data object, depending on the value of a tag
field.

Free unions (or variant records without tag fields) can be used when there
is no need for a tag field, or for when there is a need for some advanced
programming techniques.

In the next chapter, we'll discuss one more kind of structured type-the set
type.

Records 191

192 Turbo Pascal Tutor for the Macintosh

c H A p T E R

15

Sets

You may remember sets from an early math class. Well, Pascal sets are
similar. This chapter explains how to build a set and define a set type, as
well as the different set operations.

In Pascal, a set is a collection of zero or more objects of the same scalar type
(called the base type). Sets have certain properties that make them
especially efficient for representing certain types of information.

You may occasionally want to check whether a value of a scalar type (for
example, Integer, Char, or Boolean) belongs to a set of values of that type. For
example, suppose a spelling-checking program needs to test whether Ch, a
variable of type Char, contains a vowel. With what you've learned so far
about Pascal, you'd accomplish that by a long, drawn-out if statement:

if (Ch = 'A') or (Ch = 'E') or (Ch = 'I') or
(Ch = '0') or (Ch = 'U') then

Intuitively, it seems that Pascal should offer a better way than this messy
approach-and it does.

To rewrite the previous test using sets, we could create a set that contains
all the vowels by listing them between square brackets. Then, we could use
the special set operator in to see if Ch is a "member" of that set. Using sets,
the test becomes

if Ch in [' A' ,'E' ,'I' ,'0' ,'U' 1 then '"

which is easier to read and understand.

Sets 193

['A','E','I','O','U'] happens to be a set of characters, but a set can hold
objects of any scalar data type. There is one restriction: The base type of the
set (the type of objects contained within it) must not have more than 256
possible values. Thus, you can define a set of objects of the type Char, which
has exactly the maximum number of possible values, or a set of objects of
the subrange type 75 .. 98. But you can not define a set of objects of the type
Integer, because it would have 65,536 possible values.

Pascal sets are what mathematicians call proper sets. This means that no
object can be contained in a set more than once, that is, ['a','b','a'] is illegal.
Thus, a Pascal set can have at most 256 members. To remember whether or
not an object is in a set, Pascal sets or clears a single bit in memory. A set of
256 members is only 32 (256/8) bytes long-an efficient use of storage.

Building a Set: The Set Constructor

A set constructor is a list of expressions of the same scalar type, separated by
commas and enclosed by square brackets ([and D. If there are elements
with consecutive ordinal values, you can use subrange notation, that is, two
expressions separated by two periods (' .. '). Here are some examples of set
constructors:

[]
[1,3,5,7,9]
[' A' .. ' Z']
[Mon, Wed .. Fri]
[Jan .. Aug, Oct .. Dec]

{ empty set--contains nothing }
{ set of integer subrange }

{ set of Char }
{ set of Days }

{ set of Months }

The objects within a set constructor need not be constants. They can be any
kind of expression whose result is of the base type of the set. This feature
makes the use of sets even more convenient. For instance, suppose A is a
variable of type Char. To construct a set that consists of all the characters
from the character stored in A to the letter 'w', you could write the set
constructor

[A .• 'w']

Of course, if there are no characters between A and 'w' (that is, A is past 'w'
in the ASCII character set), the result is an empty set.

194 Turbo Pascal Tutor for the Macintosh

Defining a Set Type

To define an object of a set type, use the reserved words set of, followed by
the name of the base type. Or, you can supply an anonymous type-usually
a subrange-as the base type. Here are some examples of set types:

type
CharSet = set of char;
MonthDays = set of 1 .. 31;

{ Set of objects of the type Char
{ Set of objects of the

(anonymous) subrange type "1 .. 31"
DayType = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
Days = set of DayType; { Set of objects of DayType
WorkWeek = set of Mon .. Fri; { Set of objects of the

(anonymous) subrange type "Mon .. Fri". }
Colors = set of (Red, Green, Blue); {Set of objects of the

anonymous enumerated type (Red, Green, Blue) }

The syntax diagram in Figure 15.1 shows how to specify a set type.

set type ---i~~~ ordinal type ~

Figure 15.1: Syntax Diagram of a Set Type

Here's an example that shows a good use for sets: It makes sure that a
character input from the user is a legal command for a program.

program CharTest;
type

CharSet
Prompt

var
Cmd

= set of Char;
= string[80];

: Char;

procedure GetChar(var Ch : Char; Msg : Prompt; OKSet : CharSet);

{ Write a message, then get a character from the user. Ignore any
character not in the set OKSet. }

begin
Write (Msg) ;
repeat

Ch := ReadChar
until Ch in OKSet;
WriteLn(Ch)

end;

begin
repeat

{ Get a character without echo }

Getchar(Cmd,'CharTest> S)peak, C)ount, Q)uit:
[' S', 'C', 'Q' 1);

case Cmd of
's' : WriteLn('Woof! Woof!');

Sets 195

'c' : WriteLn('l, 2, 3, 4, 5, 6, 7, 8, 9, 10')
end

until Cmd = 'Q'
end.

GetChar prompts the user with a message, then lets him or her type in a
single character. It then checks to see if the letter typed is a valid command
(that is,S, C, or Q). If not (note that this program is case sensitive), it waits
until a valid character is entered. The in operator checks that the character
is in the set of legal characters.

The in operator is only one of a large selection of operations available for
use on sets, as you will see in the next section.

Set Operations

Pascal provides operators to find the union, intersection, and difference of
any two sets. In addition, there are the membership operator (in), the
subset operators «= and >=), and the equality operators (= and <».

Set Membership: The In Operator

In the sample program, we used the operator in to determine whether a
character was part of a set of characters. The expression

Object in SetOfObjects

returns True if and only if Object is of the base type of Seta/Objects, and
Object is a member of Seta/Objects. Note that Object can also be represented
by an expression as long as it is of the proper type.

Set Equality and Inequality

The equality and inequality operators, = and <>, do precisely what you
might expect. Two sets are equal if and only if they have exactly the same
members. In setting up tests for equality and inequality, it isn't required
that the sets have exactly the same base type, as long as the base types are
compatible. Try to predict the output of the following program fragment:

program EqualityTesti

196 Turbo Pascal Tutor for the Macintosh

var
Setl : set of Chari
Set2 : set of 'a' .. 'X'i

beqin
Set2:= ['a', 'b', 'g' .. 'W')i
Setl:= ['g' .. 'w', 'a', 'b')i
WriteLn(Setl = Set2)i
ReadLn

end.

If you guessed True, you are correct. Since Setl and Set2 contain the same
characters, they are considered to be equal. (Order doesn't matter.)

Set Union, Intersection, and Difference

The set union operator (+) returns a set that contains all members of either
of its operands. The set intersection operator (*) returns the elements that
are common to both of its operands. The set difference operator (-) returns
the elements that are in its first operand, but not in its second.

Here are some examples that illustrate the use of these operators. Given the
sets A, B, and C, all of the type set of Char, suppose

A .= ['A' .. 'Z')
B := ['A', 'C', 'E', 'G')
C := ['A' .. 'O', 'Z').

then

A * B
A * C
B * C

['A' ,'C' ,'E' ,'G')
['A' .. '0' ,'Z']
['A' ,'C']

A - B = ['B','O','F','H' .. 'Z']
A - C = ['E' .. 'y,)
B-C= ['E','G')

A + B = ['A' .. 'Z')
A + C = ['A' .. 'Z']
B + C = ['A' .. '0' ,'E' ,'G' ,'Z')

B - A = [)
C - A = [)
C - B = ['B','O','Z')

Set Inclusion Operators

The operators <= and >= have special meanings when used with sets. The
>= operator returns True when its second operand is a proper subset of the
first; that is, when all the elements of the second operand are included in
the first. Similarly, the <= operator returns True if and only if the first
operand is a proper subset of the second. Thus, given A, B, and C from the
previous example,

Sets 197

A <= B , B => A --> False
A <= C , C => A --> False
B <= C , C => B --> False

Set Disjunction

B <= A , A => B --> True
C <= A , A => B --> True
C <= B , B => C --> False

Finally, the condition of set disjunction, in which two sets have no members
in common, can be tested by evaluating the expression

A * B = [)

That is, if the set of elements in common between the two sets is the empty
set, then they are disjoint.

Review

In this chapter, we explained Pascal sets: how they're constructed, how set
types are defined, and the operations that can be performed on sets.

This would be a good time to study the two exercises on sets in Turbo
Tutor. In the next chapter, we'll begin our discussion of pointers-the
facility that allows Pascal programs to create and dispose of data objects
while running.

198 Turbo Pascal Tutor for the Macintosh

c H A p T E R

16

Pointers and Dynamic Allocation

This chapter introduces the concept of pointers and the various pointer
types. The address operator @ and the New procedure are also explained.
Finally, it shows you how to create a linked list and to use Dispose to get
back dynamically allocated memory.

Up to this point, whenever we've created a data structure, we've had to
allocate storage for the structure in advance. In the checkbook example
from Chapter 15, we reserved space for an array variable of 500 records,
each holding information about a single check:

type
CheckNumType = 1 .. 500;
MonthType = (January, February, March, April, May, June,

July, August, September, October, November, December);
DayType = 1 .. 31;
PayeeType = string[40];

Check = record

var

Amt : Real;
Month : MonthType;
Day DayType;
Year YearType;
Payee : PayeeType;
end;

CheckBook : array [CheckNumType] of Check;

Variable CheckBook contains space for 500 checks; its size (25,000 bytes) is an
inseparable part of its type.

Pointers and Dynamic Allocation 199

This approach is inflexible, and it wastes memory. If the program were
called upon to balance a large checkbook, 500 records might not be enough.
Conversely, if only a few checks were involved, memory would be wasted
(50 bytes per unused record).

How, then, do we allocate just enough memory for our data? How can we
change our minds about how much memory we need while the program is
running? With Pascal's pointer and dynamic memory allocation features.
Pointers are a key concept in true Macintosh programming, as explained
further in Part 5 of this book, so pay close attention.

Pointers

In a single sentence, a pointer is a variable that holds the address of a variable.
Instead of data, a pointer contains the address of data. A pointer is said to
"point to" a variable. Pointers are used to access dynamically created data
objects; that is, those created at run time, rather than compile time.

A few examples make this concept clearer.

Suppose, for instance, a program needs to be able to create new data objects
of the record type Check as it runs. To do this, you'd need at least one
pointer variable to keep track of check data. So, you might declare a pointer
variable as follows:

var
ChkPointer : ACheck;

The notation "Check is called a pointer type and is read as "pointer to
Check." When we declare variable ChkPointer to be of type "Check, we are
saying that ChkPointer is a pointer, and that, moreover, it points to objects of
the type Check. ChkPointer itself isn't a Check record, so you can't go around
assigning Check information to it. For example, this assignment won't
compile:

ChkPointer.amount := 99.95;

You can create pointer types that point to any type of data object, and you
can define as many pointer variables of that type as you like. For instance,
here's how to define a pointer type to point to a record of type Check and
create a few pointers of that type:

type
CheckPointerType = ACheck; { A type of pointer which is to be

used to point to objects of the type Check

200 Turbo Pascal Tutor for the Macintosh

var
CheckPointerl
CheckPointer2
CheckPointer3

CheckPointerType
CheckPointerType
CheckPointerType

Three pointer variables, each of which
can point to an object of type Check }

The syntax used to specify a pointer type is shown in Figure 16.1.

Assigning to Pointer Types

As we said, you can't go around assigning Check fields to check pointer
variables; they point to checks but aren't themselves checks. Pointers
contain memory addresses-and though memory addresses at a low level
happen to be binary numbers indistinguishable from long integers, it can
be dangerous to blithely assign numeric values to them. So the compiler
throws roadblocks in your path.

What you can assign to pointer types is addresses. One way to get an
address is to use the address operator-the at sign (@)-on a variable. If X
is an Integer variable, then @X represents the address in memory at which X
is stored, and this value can be assigned to a pointer variable.

For example,

type
ptr = AInteger;

var
N: Integer;
Pl, P2: ptr;

begin
N := 6;
Pl := N;
Pl := @N;
P2 := Pl;

end.

{ A normal assignment to an Integer variable }
Illegal and won't compile; the types don't match}

{ Pl now holds the address of variable N }
{ Pl and P2 "point to" the Integer value 6 }

Dereferencing Pointers

Now it gets interesting. Pointer variables can be treated as though they
were variables of the type that they point to, by simply putting a caret (1\)
after their identifier. This is called dereferencing the pointer. For example,
continuing the pointer games from the last paragraphs:

type
ptr = AInteger;

var

Pointers and Dynamic Allocation 201

N,M: Integer;
PI, P2: ptr;

begin
N := 6;
PI := @N;
WriteLn(PI A

);

P2 := PI;
M := P2 A

;

Wri teLn (M) ;
WriteLn(P2);

end.

{ A normal assignment to an Integer variable }
{ PI --> N }
{ Prints 6 }
{ P2 --> N }

pointer type

Like saying M := N; }
{ Prints 6 }

Illegal--can't print addresses}

base type ---.J type identifier ~

Figure 16.1: Syntax Diagram of a Pointer Type

Dynamic Allocation: The New Procedure

Let's now look at how pointers allow us to create and manipulate data
objects at run time. To create a new data object, Pascal provides a routine
that does the bulk of the work: the New procedure.

In the first example, we'll use the pointer variable ChkPointer (defined
earlier) to create storage for a variable of type Check. This takes only a call
to New:

New (ChkPointer) ;

This call creates a new variable of type Check in an unused portion of
memory. Actually, "creates" may be too strong a word: We've simply
caused a 50-byte area of memory to be reserved. It doesn't yet have any
particular check character; it's just a range of bytes (with undefined values)
that we can now treat like a Check record. Pointer variable ChkPointer is
changed to point to the new variable.

So, New performs two operations. In addition to finding a place in memory
to put a Check record (it knows to reserve 50 bytes, because it's smart
enough to know that record type is 50 bytes long), it also assigns the
address of that spot to ChkPointer.

What happens if we make the call New(ChkPointer) a second time? Well,
Pascal obliges us by reserving space for yet another variable of type Check
and changes ChkPointer to point to that object.

202 Turbo Pascal Tutor for the Macintosh

What happens to the 50-byte area previously allocated? Does it go away?
No, its place in memory is reserved just as before. However, the second call
to New overwrote the old value of ChkPointer, which was the only record of
that variable's location. The variable is still there (that is, the 50 bytes are
still allocated), but we have both literally and figuratively lost its address.

A dereferenced pointer can be used anywhere it would be legal to use an
object of the type that it points to. If a pointer points to an array, then
element selection braces follow immediately after the caret. For instance,

type
BigArray = array [0 .. 9999] of Integer;

var
BigArrayPtr: ABigArray;
i: Integer;

begin
New(BigArrayPtr); reserve 20,000 bytes
for i := 0 to 9999 do

BigArrayPtrA[i] := 0; { initialize it

Similarly, if we want to write out the fifth letter in the name of the payee of
a check pointed to by ChkPointer, we can write

Write(ChkPointerA.Payee[5]);

In fact, the convoluted notation ChkPointer".Payee[5] can be used anywhere
a value of type Char is permitted. If you can look at ChkPointer".Payee[5]
and see a variable of type Char, you're starting to think in Pascal.

Work through it:

• ChkPointer is a pointer.
• ChkPointer" is a check.
• ChkPointer".payee is a string[40].
• ChkPointer".payee[5] is a character.

Assigning to Pointers

Pointers, like all variables, can be assigned the value of variables of the
same type, that is, of pointers that point to the same type they do. The
assignment

CheckPointer2 := CheckPointerl;

does what you'd expect: It assigns the value of CheckPointerl to
CheckPointer2, so that both point to the same data object, that is, to the same

Pointers and Dynamic Allocation 203

memory address. This means that if you change the information in
CheckPointerl ", you'll simultaneously change CheckPointer2".

Conversely, it's illegal to assign a pointer that points to type X to a pointer
that points to type Y. The statement

IntPointer := CheckPointerl;

won't compile, even though IntPointer and CheckPointerl are both pointers.
Later, we'll learn ways to relax the compiler's stance on assignments of this
sort. .

We've covered some rugged country so far in this chapter, so let's do a
quick review.

Pointer variables are variables that hold the address of objects of some type.
They are declared by putting a caret before a data type, in effect telling the
compiler that they point to an object of that type. Pointer variables hold
machine addresses, which under normal circumstances aren't printed out
or examined directly. Pointer variables can be assigned values in one of
three ways: by assigning the result of applying the address operator (@) to
a variable, by the New procedure, or by assigning a pointer variable of the
same type to them:

(Three ways to assign a value to a pointer variable }
var

P, Q, R: "Integer;
N: Integer;

begin
P := @N;
New(Q) ;
R := Q;

end ;

{ Address operator }
{ New Procedure }

{ Assignment from a pointer of the same type }

The New procedure allocates blocks of memory at run time. New is passed a
pointer variable, and it finds an unused block of memory just large enough
for the type of object that the pointer points to. It then assigns the address
of that block to the pointer variable passed to it. A dereferenced pointer (a
pointer variable followed by a caret) can be used in any statement where
you'd use a variable of the type that the pointer points to.

The Special Pointer Value Nil

Pointers can produce subtle and elegant solutions to storage problems.
They can also get you into trouble in a hurry:

204 Turbo Pascal Tutor for the Macintosh

program Kerpow;
var

P: "Integer;
begin

P" := 1234
end .

This seemingly innocent six-liner contains the seeds of utter destruction,
although it will compile without error. What's wrong with it?

The compiler will generate code to write the value 1234 to memory, at the
address stored in pointer variable P. But since we never assigned to P with
the @ operator or by calling New, its value at the moment of the assignment
is undefined. Like all variables in Pascal, a pointer variable can initially
have any value at all. So the address to which the 1234 is written might be
one of the thousands of important addresses that system routines use to
keep track of the time or to read the keyboard or disk drive.

Few programs appreciate having a number dropped, bomb-like, into their
midst. You may get lucky and hit an unused area of memory-or you may
get unlucky and clobber an important system routine, but not see its effect
until you're ready to save a text file you've been working on for an hour.

When you dereference a pointer, make sure that the pointer contains a
reasonable address. This is one error that can't be checked at run time.
Changing the memory location pointed to by such a pointer can alter any
part of memory at all, including the operating system, your program, or its
data.

To help avoid this calamity, Pascal provides a special value to which you
can set a pointer as a signal that it doesn't point to anything and shouldn't
be dereferenced. This value is represented by the reserved word nil.

Pascal's handling of pointers illuminates an important difference between
Pascal and its macho cousin, C. Both languages provide pointer
manipulations. In Pascal, pointer variables are considered to contain semi­
imaginary values that, theoretically, can't be printed out, added, subtracted,
or otherwise manipulated. In C, none of these restrictions exist. Since
addresses are 4-byte binary numbers exactly like long integers, C says "Be
my guest" when you assign to them directly.

Whenever you use pointers, it's good practice to set them to nil when you
know they don't currently point to valid data, and then test pointers
against nil before using them.

The special value nil can be assigned to any variable of a pointer
type-regardless of the type the pointer is bound to. You can test to see
whether a pointer is equal to nil or not by using a comparison of the form

Pointers and Dynamic Allocation 205

if IntPointer = nil

or

if IntPointer <> nil

Equality and inequality are the only relational operators that can be used
on pointers. Therefore, even though there are numbers lurking behind
pointer variables, you can't say

var
P1,P2: Alnteger;

begin
if P1 < P2 then ... { illegal! }

Pointers and Checkbook Data

Armed with what we've learned about pointers, we're ready to find better
solutions to the problem of maintaining checkbook data.

One approach is to store check data with an array of pointers, one for each
check. Then, as needed, create new variables to hold the check information
itself. For example, consider these declarations:

type
CheckNumType = 1 .. 500;
MonthType = (January, February, March, April, May, June,

DayType
YearType
PayeeType

July, August, September, October, November, December);
= 1 .. 31;
= 1980 .. 2000;
= string [40] ;

Check = record
Amt : Real;
Month : MonthType;
Day DayType;
Year YearType;
Payee : PayeeType;

end;

CheckPointer = ACheck;

var
CheckBook : array [CheckNumType] of CheckPointer; { Now an array of pointers }

In Chapter IS, array CheckBook was a SOD-element array of records of type
Check. Now it's a SOD-element array of pointers, variables of type
CheckPointer. How does this save space?

206 Turbo Pascal Tutor for the Macintosh

Remember that a record of type Check consumes 50 bytes of memory. A
pointer, however, takes only 4 bytes. Thus, we have initially allocated only
2,000 bytes (500 * 4), instead of 25,000 bytes (500 * 50). We'll allocate space
for the checks themselves only as needed. This also makes it possible to
store over 8,000 checks before we come up against the 32K array limitation.
(32K/4 bytes per pointer).

Before using this data structure, we should first initialize all of the elements
of the CheckBook array to nil.

for N := 1 to 500 do
CheckBook[Nj := nil;

As checks are written, we call the New procedure on progressively higher
elements of array CheckBook. For example, assuming Integer variable
CheckCount tracks the number of checks that have been written so far, here's
how to allocate a new check:

procedure NewCheck;
begin

CheckCount := CheckCount + 1;
New(Checkbook[CheckCountj);

end.

To access information stored on check number N, we dereference pointer
number N in array CheckBook:

if CheckBook[Nj = nil then
WriteLn('No information on this check!')

else
WriteLn('The amount of check #' ,N,' is " CheckBook[NjA.Amt);

Again, before using it, we check that the pointer about to be dereferenced is
something other than nil.

While this array-of-pointers-to-checks method is much more efficient than
the array-of-checks approach, it still wastes space if a substantial
percentage of the pointers in array CheckBook aren't used. Also, if the
number of checks turns out to be larger than the number of pointers in
CheckBook, we'd once again face the problem of running out of room in the
array. It comes close but doesn't quite live up to the promise of a storage
scheme that doesn't waste a single byte of memory, regardless of the
number of checks involved.

Pointers and Dynamic Allocation 207

A Second Approach: The Linked List

With some unobvious programming, it's possible to dynamically allocate
not only the records, but the pointers to them as well. The key is a data
structure built from dynamically allocated record variables held together
with pointers: the linked list.

U sing a linked list, we can string check records together like beads on a
string, because each block of check information contains a pointer to the
next record in the list. Thus, each time we allocate a new record, we allocate
a new pointer as well, so that there is always a pointer available to point to
the next object added.

Like many sophisticated operations in Pascal, linked lists are a consequence
of a sophisticated data structure. Let's look at a new declaration for type
Check, one which includes a pointer to the next check in the list.

type
CheckPointer = AChecki
Check = record

CheckNumber : CheckNumTypei
Amt : Reali
Month : MonthTypei
Day : DayTypei
Year YearTypei
Payee PayeeTypei
NextCheck : CheckPointeri

endi

You win a gold star if you noticed a Pascal axiom being tarnished in this
example. These declarations demonstrate an exception to the rule that
identifiers must be declared before they are used. We declare the pointer
type CheckPointer before we declare the type it points to (namely Check), so
that we can use it as the type of a field in Check itself.

Having defined the type CheckPointer, we can include a field of this type in
the record type Check (called NextCheck). Each NextCheck field provides the
link with which the checks will be strung together.

Before we can create that first check, there needs to be an anchor to which
to connect the start of the linked list. Let's define a single variable of type
CheckPointer for this purpose. We'll want to set it to nil to begin with, so
that the program can tell that there are no items in the list.

var
FirstCheck : CheckPointeri

begin

208 Turbo Pascal Tutor for the Macintosh

FirstCheck := nil;

Until we store the first check, pointer variable FirstCheck (at 4 bytes) is all
the storage needed; compare this value to the 25,000 bytes and 2,000 bytes
of overhead, respectively, for the previous two solutions to the check
storage problem.

Adding Checks to the List

When it comes time to create a record for the first check, we use the
statement

New(FirstCheck);

We've taken the first step to create our linked list. To understand the
situation that exists in memory after this call, let's have another drill:

• FirstCheck is a pointer.
• FirstCheck" is a check record.
• FirstCheck" .amount is a real.
• FirstCheck".payee[5] is a character.

• FirstCheck" .nextCheck is a pointer.
• FirstCheck" .nextCheck" is another check record, or at least, it has the

potential to be. Right now, since FirstCheck".nextCheck has never been
assigned a value, it doesn't point to anything and can't be safely
dereferenced.

We'll want to set the NextCheck field of the new record to nil, to indicate
that there is no next check in the list. That's done like this:

FirstCheckA.NextCheck := nil;

As additional checks are written, we reserve storage for each new check by
calling New with the NextCheck field of the record currently at the end of
the chain. We make the NextCheck pointer of the previous check on the list
point to the new check, and we set the NextCheck pointer of the new last
check to nil. After three checks, the list looks like this:

POinters and Dynamic Allocation 209

CheckBook-> (Check Info) I --------------
I NextCheck--I-> (Check Info) I -------------­
-------------- I NextCheck--I-> (Check Info) I

------------ I NextCheck--I-> nil

This figure goes left to right for convenience only; there's no guarantee or
requirement that all subsequent records get spots in memory higher than
the previous record. In practice, they go wherever the allocation routines
can find 50 free bytes.

To find a check with a particular number, we scan the list from beginning to
end until we find the one we're looking for. The following shows a function
that takes a check number and a pointer to a list of checks and returns a
pointer to the check with that number:

function FindCheck (Num: CheckNumType;
FirstCheck : CheckPointer) : CheckPointer;

{ Given Num, the number of a check, and FirstCheck, a pointer to
the first of a linked list of checks, return a pointer to the
first check found on that list with the given number. If no
check with that number is found, return nil. }

begin { FindCheck
{ Start by assuming failure FindCheck := nil ;

while FirstCheck <> nil do { Stop if end of list
{ Check found?

end;

if FirstCheckA.CheckNum = Nurn then
begin

FindCheck := FirstCheck;{If so, set the function result and
Exit { Exit from the routine right away

end
else

FirstCheck := FirstCheckA.NextCheck;{ Number doesn't match;
{ point to next check, if any
{ Note that since FirstCheck
{ is not a var parameter, we
{ only change our local copy

This program uses some tricks to save memory and make the code as
efficient as possible. First, since FirstCheck is not passed as a var parameter,
we use it as the "moving" pointer to scan the list. (If FirstCheck were a var
parameter, we couldn't change it without losing the main program's only
pointer to the list.) We also use the special built-in procedure, Exit, to exit
from the middle of the function. If we didn't have this out, we'd have to
either traverse the rest of the list unnecessarily or force the loop to
terminate by setting FirstCheck to nil. The use of Exit here is simpler and
more efficient than the previously described techniques.

210 Turbo Pascal Tutor for the Macintosh

This process of reading through a linked list is called traversing the list, and
it can be done with surprising quickness. Using pointer variables and
linked lists results in fast programs, because they rely on a characteristic of
computers that often isn't fully exploited, namely, that central processing
units, like the Macintosh's processor, are inherently random-access devices.
In addition to their talent for performing arithmetic, processors are absolute
magicians when it comes to reading and writing memory. The processor
can read from addresses millions of locations apart almost as easily as it can
access adjacent addresses.

The Heap

We've learned that the New procedure finds a place in memory for
dynamically allocated variables. For instance, if we use New on pointer
variable CheckPointerl (as defined earlier), we would allocate 50 bytes for
the new variable and return the address of that variable in CheckPointerl.

These 50 bytes come from "free space," that is, memory that isn't currently
being used for anything else. When a Turbo Pascal program runs, a large
chunk of memory known as the heap is reserved for the program's use.
Depending on the amount of memory in your Macintosh and other factors
(such as whether or not Switcher is around), the heap can range from a few
thousand bytes to several megabytes.

Unlike the operation of the heap in most versions of Pascal, including
Turbo Pascal for the IBM PC, Macintosh Turbo Pascal's heap is shared by
other routines. For example, the 9-point Monaco font used by the terminal
window routines resides in the heap right along with objects you create
with the New procedure. In Part 5 of this book, we discuss more about the
heap and memory management in general.

The MaxAvail Function

How can you make sure that there's enough room on the heap to allocate a
variable? The predefined function MaxAvail gives you the size of the largest
free block of space currently available on the heap. For example, suppose
you'd like to create a large array:

type
bigArray = array [1 .. 16000] of Integer;

var

Pointers and Dynamic Allocation 211

theArray: AbigArray;

Creating an object of type bigArray requires that the heap have a contiguous
chunk of 32,000 bytes available. MaxAvail tells you whether or not it does:

if MaxAvail >= sizeof(bigArray) then
beqin

New (theArray)
for N := 1 to 16000 do

theArrayA[NJ := 0
end
else

WriteLn('Not enough memory');

{ initialize it }

If you don't use MaxAvail before attempting to declare a heap object, you
run the risk that the New procedure will be unable to accommodate your
request. If it can't find the needed memory, New assigns nil to the pointer
passed to it, and testing for that value upon return is a valid detection
method for successful allocation. For example, if there were only 20,000
bytes available, after

New (theArray) ;

theArray would have the value nil.

Deallocation of Dynamic Variables: Memory
Management

Once New creates a variable, the storage allocated for it remains reserved
until the program terminates, or until the space is explicitly freed with the
Dispose procedure.

Dispose

When a dynamically allocated variable is no longer needed, call the Dispose
procedure and pass to it a pointer to the memory block no longer needed.
The memory formerly allocated to this variable is then released; the next
call to New is free to use the deallocated block as it sees fit. For instance, to
release the 50 bytes of memory allocated for a check record pointed to by
variable CheckPointer, you would write

Dispose(CheckPointer);

212 Turbo Pascal Tutor for the Macintosh

Dispose complements New: New allocates space from the heap, Dispose gives
it back. Calls to New are therefore usually matched by calls to Dispose,
unless memory is to remain allocated until the program terminates (when
all heap objects are destroyed automatically).

Dangling Pointers

In the process of deallocating heap space, you'd expect the Dispose
procedure to set the pointer variable passed to it to nil-as it no longer
points to anything reasonable-but it doesn't. For example, the value of
CheckPointer doesn't change after a call to Dispose. The check record that
CheckPointer formerly pOinted to will be overwritten if the heap allocation
routines see fit to put some other object there. This mayor may not happen
in the course of the program, depending on memory usage factors, so such
problems can be hard to detect. Until it is assigned another legitimate value
(or the value nil), CheckPointer points to an address in the heap that is no
longer reserved.

Such a pointer is called a dangling pointer. Dangling pointers are every bit as
dangerous as uninitialized pointers-they can destroy data, Turbo Pascal's
internal data structures, or both. And if you attempt to Dispose an
uninitialized or dangling pointer, you will almost certainly cause a crash:
Memory management routines wreak havoc when told to deallocate
memory that was never allocated in the first place.

Multiple Pointers to the Same Object

After using pointers for a while, you start to get brave with them. It
becomes easy to think of a dereferenced pointer being exactly like a
variable of that type, which it isn't.

For example, consider this code fragment:

var
A, B: "integer;

begin
New (A) ;
A" := 15; { A --> 15}
B := A; { B --> 15}

. {In this range, we can safely assume that B" = 15 }

Pointers and Dynamic Allocation 213

Dispose(A);

. {Down here, assuming that BA = 15 is unsafe }

WriteLn (BA) ;
end .

Depending on the amount of heap activity that has transpired since A was
disposed, B mayor may not point to the value 15 any more, so any integer
value may be printed.

Review

In this chapter, we introduced pointers-variables that hold the addresses
of other variables. We explained the notion of a pointer type, a type that is
bound to the type of object it points to. We touched on the address operator,
which returns the address of a variable for assignment to a pointer variable.
We also explained the use of the New procedure to allocate anonymous
variables that are referenced using pointers. We then showed how to create
a linked list and how to use Dispose to reclaim dynamically allocated
memory.

Part 5 of this book examines Macintosh heap management, including
"pointers to pointers" (called handles) that offer even more flexible and
powerful solutions to dynamic storage.

Study the exercise Pointers in Turbo Tutor at this time.

In the next chapter, we'll discuss file handling. You'll learn how to read and
write disk files, and how to treat the keyboard and terminal window as
special files.

214 Turbo Pascal Tutor for the Macintosh

c H A p T E R

17

Files

You've worked your way through dozens of programs that create and
manipulate various data structures and have stored check information
alone three different ways. But all of these programs have been memory
based: When Chapter 16's linked-list checkbook program ends, through
either normal mechanisms or a sudden power failure, the linked list and
the data it holds disappear. If you had just entered 114 checks, you
wouldn't appreciate having to retype the information.

How, then, can data survive the death of a program? By being stored in a
file. A file is a named sequence of bytes that can be written from memory to
a peripheral device (usually a disk drive) or vice versa.

Turbo Pascal's 1/0 Procedures

We've used Read, Write, ReadLn, and WriteLn to send information to the
screen and read it from the keyboard. These same four procedures are
employed to exchange information with a disk drive.

We've been able to use them so far without knowing anything about files,
because when you don't explicitly tell these procedures what file to read or
write, they automatically refer to two standard "device" files: Input (also
known as the keyboard) for Read and ReadLn and Output (the screen) for
Write and WriteLn. First, let's discuss in more detail the properties of these
basic procedures.

Files 215

Read and ReadLn

The Read and ReadLn procedures read one or more data objects from a file.
Their syntax is as follows:

Read({FileVariable,} (Varl, Var2 ... VarN});
ReadLn({FileVariable,} (Varl, Var2 ... VarN});

The optional FileVariable parameter specifies the file that the procedure is to
work with. If no file is specified, which is the way we've always used them,
the keyboard becomes the source of input.

Read reads data and returns it immediately, while ReadLn waits for the end
of a line. When reading data from the keyboard, however, both procedures
wait for the end of the line, that is, for the Return key to be pressed. (If Read
didn't wait for a return, it would have no way of knowing when you were
finished.) When reading from other places, like a disk drive, Read doesn't
wait for a return character.

Both Read and ReadLn can be called without any parameters at all, in which
case the parentheses must be omitted. This causes Turbo to simply wait for
Return to be pressed. If Read is called with a file· variable but no other
parameters, it skips over the next object in that file on that line. If ReadLn is
called in the same way, it skips to the next line in the file.

Write and WriteLn

The Write and WriteLn procedures write one or more data objects to a file.
Their syntax is as follows:

Write ({FileVariable, } (, Varl, Var2 ... VarN});
WriteLn({FileVariable,} (, Varl, Var2 ... VarN});

The Write procedure writes the objects listed to the indicated file. WriteLn
does the same and follows the information with a carriage return. The
optional parameter FileVariable again specifies the file the procedure is to
work with. If no file is specified, the output is sent to the screen.

When Write is called with no parameters, or with only a file variable as a
parameter, nothing happens. However, when WriteLn is called with no
parameters, a new line is started on the screen. When WriteLn is called with
only a file variable as a parameter, a new line is started in that file (that is, a
carriage return is output to that file).

216 Turbo Pascal Tutor for the Macintosh

As with Read and ReadLn, when Write or WriteLn is called without
parameters, the parentheses must be omitted.

Controlling Numeric Formatting: Write Parameters

A write parameter is an argument to the Write and WriteLn procedures that
contains formatting information piggybacked onto the expression to be
output. This formatting information takes the form of integers separated by
colons. For example,

WriteLn(N:8);

outputs the string equivalent of integer variable N at the current cursor
position, with leading spaces added as necessary to pad the output to eight
characters. For example, if N = 1, then seven spaces are added; if N = 1000,
four spaces are added; for N = -1, six spaces are appended. If the width
data provided after the colon is 0, or less than the minimum required to
display the value, then it displays in exactly as many columns as necessary.
For example, Write(N:1), where N=5000, displays 5000 with no appended
spaces. Write parameters make it easy to produce neatly aligned tables.

for N := 0 to 10
WriteLn{N:8,N*25:8)

produces

o 0
1 25
2 50
3 75
4 100

For controlling the presentation of values of type Real, two integers of
formatting information may be specified. The first, as for integers, indicates
the total width of the field; the optional second, the number of places to the
right of the decimal point to be displayed. For example, if real variable Pi =
3.14159, then:

WriteLn(Pi:10:2);

produces

3.14

and

WriteLn(Pi:10:4);

Files 217

results in

3.1416

As with integer expressions, the first value indicates field width. If the
second (decimal point position) value is omitted, then the real is output in
standard floating-point notation. For example,

WriteLn(Pi:10);

produces

3.1e+O

For more information about write parameters, see the description of the
Write procedure in the Input/Output chapter of the Turbo Pascal reference
manual.

File Types

Files, like all Pascal data objects, have types. Like array types, file types
consist of a series of elements. Unlike arrays, however, only one element is
available at a time, and the length of the series isn't part of the type.
Instead, file size is limited only by external factors (such as the capacity of a
disk).

The formal syntax of a file type is similar to that of arrays and sets (see
Figure 17.1). For example, to access a file consisting of a series of integers,
declare it as follows:

var
MyDiskFile : file of Integer;

file type --.~~ type r-.
Figure 17.1: Syntax Diagram of File Type

Files can have as their component type any Pascal type, with the exception of
another file type. In other words, Turbo Pascal permits files of arrays,
arrays of arrays, arrays of files, arrays of records, records of arrays, files of
records, and many, many other permutations-but not files of files. Here
are some sample file-type definitions:

type
CheckFile = file of Check; { File of objects of type Check }
SetFile = file of set of Char; { File of objects of the

anonymous type "set of Char"
ScreenFile = file of array[l .. 25] of string[80];

218 Turbo Pascal Tutor for the Macintosh

{ File in which each record consists of 25 strings
of max length 80 (possibly used to hold copies of
a terminal window) }

Because so-called text files (files consisting of printable ASCII characters
segmented into lines by carriage return characters) are especially common,
Turbo provides a predefined identifier named Text to represent this variety
of file. File type Text is compatible with many Mac applications, including
the Turbo Pascal editor, MacWrite, Microsoft Word, and the Sidekick
Notepad+. (Note that by default Word and MacWrite don't produce text
files; you have to ask for one specifically, using the Text Only option of the
Save as ... dialog box.)

The idea of text files didn't begin with Macintosh; a communications
program lets you exchange text files with practically any computer that has
a phone number. In fact, the text that makes up this book originated on an
IBM Personal Computer, was edited extensively on a Macintosh Plus, and
returned to an IBM Personal Computer for final typesetting.

Reading and Writing Text Files

A text file usu.ally holds readable information; that is, information that
makes sense to a human being once it has gone through a printer or text­
editing program. The characters within a text file are divided into lines,
which are sequences of ASCII characters; the end of each line is marked by
the control-character carriage return (ASCII code 13). Indeed, it's the return
characters that make the lines lines.

Text files imported from non-Macintosh computers tend to throw in a
linefeed character (ASCII code 10) with every carriage return. Turbo
Pascal's editor shows linefeeds as box characters; typically, at the start of
each line in the file except the first.

To delete these linefeeds, select the first box character, then choose
Change ... from the Search menu. This option automatically uses
whatever's highlighted as the suggested Find string, which is especially
handy in this instance because there's no way to generate a linefeed
character from the keyboard. Once the first linefeed (box character) is
located, click the All button and in a second or two your file will be purged
of this anachronistic control character.

A program reads and writes text files using the same four procedures for
screen and keyboard I/O: Read,Write, ReadLn, and WriteLn. Turbo Pascal
also has a number of auxiliary functions to expedite text file processing.

Files 219

Read and ReadLn with Text Files

It is convenient to think of files as having an associated file pointer that
indicates the next object in the file. When a file is being written, that pointer
always points just past the end of the last data to be written to the file.
When the file is being read, it points to the next object to be read (if any).

When Read is called with a text file and a variable as its arguments, it reads
the next object (if any) on the current line of the file into the variable, and
advances the file pointer past that object. However, when the data on that
line is exhausted, Read won't advance the file pointer to the next line, that
is, to the first item after the terminating carriage return character.
Attempting to use Read at the end of a line in a text file has no effect at all;
you must call the procedure ReadLn to advance to the next line (if it exists).

ReadLn moves the file pointer to the next line imrru~diately after it reads the
information it requires from the current line. Any other information on the
line is ignored.

Eol, Eoln, SeekEol, and SeekEoln

The Eot and Eoln (end of file and end of line, respectively) functions are
used to discover whether the program has read up to the end of a file, or up
to the end of a line. Both return boolean values and allow the creation of
while loops that systematically process text files line by line.

Eof(FileVariable);
Eoln(TextFileVariable);
SeekEof(TextFileVariable);
SeekEoln(TextFileVariable);

Eot returns True when the file pointer is at the end of the file. Eoln indicates
whether the file pointer is at the end of a line in a text file and,
consequently, has no meaning for non-text files. When Eot is True for a
given text file, Eoln is also True.

SeekEot and SeekEoln have the same syntax as Eot and Eoln and only have
meaning for text files. They skip over spaces and tabs before they test for
the end of the file or line. These functions are useful when you don't know
the number of objects on a line or in a file. With them, you can avoid
getting the Read procedure stuck at the end of a line or a file, and find out
whether there is another object available or not. You can then call ReadLn to
finish processing the file, if necessary.

220 Turbo Pascal Tutor for the Macintosh

The Macintosh File System

In order to carry out file operations, Macintosh Turbo Pascal programs get
help from a number of built-in ROM routines known collectively as the File
Manager (or simply file system). In Part 5 of this book, we'll learn how to use
the built-in file routines directly; for now, we'll describe basic file-system
conventions.

As citizens of a Mac file-system world, the files you process with Turbo
Pascal programs must abide by Mac file-system rules. Two entities are
involved: Turbo Pascal's file-related commands, and the ways and means
of the file system. To use files, you must know something about each. First,
some terminology.

Volumes

A volume is a named medium for storing files. For example, a floppy disk
represents a single volume (that is, there is a one-to-one correspondence
between volumes and floppy disks). Some hard disks are formatted as
single volumes; others are organized as multiple volumes; see your owner's
manual for information about your particular drive.

The beauty of the volume scheme is that an application program doesn't
have to know anything about the physical characteristics of the storage
device to use the files it contains. Whether a volume is a single- or double­
sided floppy, a 20-megabyte hard disk interfaced through the external
floppy port, a 2-megabyte partition of a hard disk attached to the scuzzy
(SCSI) port, or a RAM disk, it behaves like a volume.

Files

Files are named groupings of bytes, stored in volumes.

The Macintosh file system is generous almost to a fault in file naming.
Where many computers restrict file names to six to eight characters
followed by a period and optional three-character extension, the Mac
permits file names up to thirty-one characters long, including any printable
character you can generate from the keyboard, including spaces but
excepting colons (:). The file system retains the case of the file name, but case
distinctions aren't otherwise significant. For example, file Screen Data will

Files 221

be stored as Screen Data, but attempts to open it under the names SCREEN
DAr A and screen data will succeed. But Screen Data (two spaces between
the n and the D) won't!

Colons and File Names: Path Names

Colons (:) have special significance to the file system. If a file name
provided in a Reset or Rewrite statement contains no colons, then the file is
assumed to be in the default volume, that is, the volume from which the
application was launched. If one or more colons are included, then the file
name specifies the directory path, starting with a volume name, that leads
to the file. (As we will learn shortly, these procedures form a bridge
between the Mac file system and Pascal.)

The Mac uses path names to describe a specific file on a specific volume. A
path name consists of a file name optionally preceded by a volume name
and a colon. For example,

Turbo Work Disk:My File
Startup:MyFile

On all but the oldest Macintoshes, the File Manager supports a hierarchical
file system (HFS). This scheme organizes files in a given volume into an
arrangement resembling the root system of a tree, in which at any level files
can be either normal files or subdirectories (containing other files and
potentially other subdirectories). The Finder represents subdirectories with
the folder metaphor. Figure 17.2 shows a schematic of the hierarchical
scheme.

222 Turbo Pascal Tutor for the Macintosh

o
System Folder

/
rn
~

'" rn
~

o
Turbo, Turbo Folder

System Finder Demos RMaker UnitMover Football

Clock Demo

/

8 ·'" .;.;0 ••
Clock.Pas

"'-
r:dl
EJ

Clock.R

~

o
Dialog Demo

/ " 8 8
Dialog.Pas Dialog.R

Figure 17.2: The Hierarchical File System

8 §J
Kick.Pas Pass.Pas

To locate a file on an HFS volume, you list each of the folders (directories)
that leads to the file, separated by colons, starting with name of the volume
and ending with the name of the file. For example, the specification

Hard Disk:Turbo Pascal:Data Files:MyFile

refers to file MyFile, which is in folder Data Files of folder Turbo Pascal on
volume Hard Disk. To describe a file within a subfolder of the current
folder-without specifying just what the current folder is-specify the
partial path name with a leading colon. For example, if the current folder is
Hard Disk:Turbo Pascal, then the partial path name

:Examples:CheckBook.Pas

refers to file CheckBook.Pas in folder Hard Disk:Turbo Pascal: Examples.

Types and Creators

In addition to their name and contents, Macintosh files have two attributes
that control how they are treated by the file system in general and by the
Finder in particular: a type (not to be confused with a type in the Pascal
sense) and a creator.

Files 223

A file's type is a four-character string describing, in a general way, the type
of data it contains. For example, the files created by MacPaint are type
'PNTG' (painting) and those created by Microsoft Word default to type
'WDBN' (Word binary format). It's the file type that causes only files of type
'TEXT' to show up when you choose Open... from Turbo Pascal's File
menu.

Since the editor can only work with files of type TEXT, it tells the Toolbox's
GetFile routine to filter out files with any other type. Similarly, in MacPaint,
when you choose Open, you only see files that MacPaint can work with.

An application (that is, executable programs), be it Turbo Pascal or the
result of compiling a program to disk with Turbo Pascal, always has the
type APPL (application). It is this signature that tells the Finder that
programs are programs-that it should load and give them control when
they are double-clicked.

You're free to create your own unique types. For example, a data file for an
accounting application could have type ACCT.

Creator

Files also have a four-character signature called a creator. This information
is used by the Finder to determine what icon it should draw to represent
the file, as well as what application to start should that file be opened. For
example, the files created by the Turbo Pascal editor have type TEXT and
creator TP AS. So, Turbo Pascal is started automatically when you double­
click one of its source files from the Finder-even though, internally, the
editor's files have the same structure as a MacWrite file of type TEXT.

Applications can use anything for a creator; often, it's the initials of the
programmer (to avoid potential conflicts, commercial applications should
have their creator strings approved by Apple). We'll learn more about types
and creators in Part 5.

Data Forks and Resource Forks

You may have heard rumors about how Mac files are divided into two
parts, a resource fork and a data fork. In Part 5, we describe this peculiar
dichotomy in more detail. For now, note that the files you create and access
with Turbo Pascal store and read data from the data fork only; their
resource forks are always empty.

224 Turbo Pascal Tutor for the Macintosh

Creating a Text File with Turbo Pascal

Here's a simple program that creates and writes a few lines to a file. It
demonstrates the Big Three of text file processing:

1. How to open a file (prepare it for writing)
2. How to write text to it
3. How to close it (tell the file system you're finished with it)

program CreateTest;
var

TheFile : Texti
Line : string[255]i
N : Integeri

begin

{ Text is a predeclared file type }

Rewrite(TheFile,'MyFile.Text')i
WriteLn(TheFile, 'Hello, World!');
WriteLn(TheFile, 'This is my first file.')i
for N := 1 to 10 do

WriteLn(TheFile, N:2)i
WriteLn(TheFile, '------End of file------')i
Close (TheFile)

end.

Type in and execute CreateTest. When it executes, you won't see anything
on the screen; its WriteLn statements are directed at text file MyFile. Text
(which is known to the program as TheFile). Instead, there will be a brief
flurry of disk activity. When the program finishes, use Turbo Pascal's Open
command to peek inside the file you just created. The editor won't know
the difference between MyFile. Text and files created by hand; they both
have the same 'TEXT' type signature-and, at Finder level, the same icon.
Here's what you'll see in MyFile. Text:

Hello, World!
This is my first file.
1
2
3
4
5
6
7
8
9

10
------End of file------

Files 225

As we've mentioned, one of the better things about text files is that they
make sense to human beings. This file contains exactly what the terminal
window would have contained had this program's WriteLn statements been
sent to the screen rather than a file.

Let's work our way through this program statement by statement.

Rewrite

The first step in file operations is opening the file. In this case, opening also
means creating the file. This is accomplished by the two-parameter Rewrite
procedure, specifying the file variable and the name of the file to create.

Rewrite(TheFile,'MyFile.Text');

Rewrite creates an empty file with the file system name you specify in the
second argument. Had we used a name like 'startup:examples:MyFile.Text',
we could have simultaneously specified the folder in which MyFile.Text
would be created. As it is, without path name information, the file is
created in the current (default) folder.

Note well the distinction between a Pascal file variable (TheFile) and a
Macintosh file system name (MyFile.Text). They aren't the same. The file
system name is only used once; in subsequent operations involving this file,
we refer to it with the Pascal variable (TheFile) that represents it.

Note that some other Pascals, including the IBM version of Turbo Pascal,
perform the Rewrite operation in two steps, first using the Assign procedure
to connect a file system name with a file variable, and then Rewrite. Since
these statements must always be used in pairs, Macintosh Turbo Pascal
simplifies things (slightly) by performing both operations in a single step.

Rewrite creates files. In a moment, we'll learn about the Reset procedure,
which opens existing files. If a file with the name specified in a call to
Rewrite exists already, it is deleted. So, use this command with care, or
you're liable to Rewrite a file containing something you don't want to lose.

After the Rewrite, an empty file named MyFile.Text is created in the default
folder-the volume and folder from which you launched Turbo Pascal (or
to which you have recently saved or opened a file).

226 Turbo Pascal Tutor for the Macintosh

Sending Text to The File

After the Rewrite, any call to Write or WriteLn that specifies file variable
TheFile sends text to file MyFile.Text, exactly as though it were the terminal
window.

WriteLn(TheFile, 'Hello, World!');
WriteLn(TheFile, 'This is my first file.');

Since we used WriteLn and not Write, a carriage return control character is
sent after the last character of· each line. This same carriage return character
is sent to the terminal window by "normal" WriteLns (that is, those that
don't specify a file variable); the terminal emulation routines built into
Turbo Pascal know to interpret this particular character as a signal that the
cursor should be moved to the left edge of the window and down a notch
(start a new line), rather than representing a character for display.

The loop

for N :=1 to 10 do
WriteLn(MyFile, N:2);

writes out ten lines of text, each line containing the ASCII equivalent of the
integers 1 through 10 and ending with a return. Note the use of a Write
parameter (N:2) to cause single-digit values of N to be padded with a space;
this keeps the column of numbers even.

Close

The Close procedure performs the third and final step in file proceSSing,
terminating the relationship between variable MyFile and the disk file
MyFirst.Text.

Close (TheFile)

Closing a file also helps to ensure that information it contains is properly
updated by file system routines. If we tried to perform another WriteLn to
MyFile after closing, an I/O error would result (more on I/O errors in a
bit).

Now exit to the Finder and locate MyFirst.Text. What sort of icon does it
have? Use the Get Info function to learn more about it. Do its length and
creation times seem reasonable? How does the Finder know that
MyFirst.Text is a Turbo document? If you double-click its icon, what
happens?

Files 227

Reading a Text File

Now let's look at a program for getting text back out of MyFirst.Text.

program ReadTest;
var

aFile : Text;
Line : string[255j;
LineCounter : Integer;

begin
Reset(aFile,'MyFile.Text');
LineCounter := 0;
while not Eof(aFile) do
begin

LineCounter := LineCounter + 1;
ReadLn(aFile, Line);
WriteLn('Contents of line', LineCounter:2, , --) " Line);

end;
Close (aFile);
ReadLn

end.

ReadTest uses the Reset procedure, not Rewrite, to open MyFile.Text. Using
Rewrite would be disastrous, because when it discovers that a file with that
name already exists, the file would be erased and a new, empty file created.
Remember: Use Rewrite to create and write to a new, empty text file; use
Reset to read an existing file.

The program then enters a loop. With each pass, ReadLn loads one line of
the file into string variable Line. The line count and contents are then
written to the terminal window.

The loop controlled by while not EoF(aFile) do is an especially convenient
structure for processing text files. This loop statement can be imaginatively
read as "While not at the end of MyFile do ... " It automatically sees to it
that we process exactly as many lines as there are in the file, whether there
are none or thousands. EOF(MyFile) returns True only when Myfile has
been totally exhausted of lines. Therefore not EOF(MyFile) is true as long as
it does contain one or more lines.

As before, Close tells the file system that we won't be working with this file
anymore.

228 Turbo Pascal Tutor for the Macintosh

Random-Access Files

Text files are suitable for applications in which it is natural to process data
one line after another, from the first to the last. For example, if you were
writing a Pascal compiler, text files would be ideal for inputting source
programs and perhaps outputting a listing.

For applications that must read and write data from the same file, however,
the one-way trait of text files renders them less than ideal. For example, to
store checkbook data, you'd have to read in all the existing data at once at
the start of the program, work with it in memory (preferably in a linked
list) as the program runs, and, just before the user quits, write it all back
out. This approach works and, depending on the amount of data to be
stored and the availability of heap space, may even work well.

Text files have additional disadvantages. Numbers that are normally stored
in memory in binary form are represented on disk in decimal form, that is,
as sequences of ASCII digits, plus and minus signs, decimal points, and Es.
Before numbers can be written to or read from a text file, they must be
converted from their internal binary form to ASCII and vice versa. This
translation process takes time. If the resulting file isn't going to be read by a
human being, the time has been wasted.

Because the lines of a text file can be of varying lengths, the only way to
find the next line is to read the previous one to its end. Thus, text files are
inherently sequential. The objects in the file must be read and written in
order: To read line 9741, one must work through the first 9740.

Turbo Pascal lets you create files without this restriction. So-called typed
files consist of a sequence of objects of a fixed length, like check records.
Objects in typed files don't have to be read in sequence, because the
position of any object in the file can be calculated by multiplying the size of
an object by the number of objects that come before it. In other words, if we
want to look at check 472, we know that it begins at byte position 472 * 50
in the file. This knowledge permits us to go directly to that point to get
information, without reading any of the others. Because records within
them can be accessed in any order, typed files are also called random-access
files.

In typed files, numeric data is stored exactly as it appears in memory; no
translation is necessary. This saves processing time both when the file is
written and when it is read. It also (usually) saves space. However, a
human being won't have much luck interpreting the contents of a random
file, should it somehow be printed out. Such is life.

Files 229

Properties of Random-Access Files

Many of the operations that apply to text files also apply to random-access
files. For instance, the procedures Reset, Rewrite, and Close work exactly the
same on random-access files as does the function Eof. Others work
essentially the same, but with restrictions. For example, Read and Write
work on random files, but can't be used without a second parameter as
they can be with text files. For example, Read<filevar), where filevar is a text
file, causes the file pointer to skip to the next object on the line. The same
operation for a random file doesn't make sense, because there are no lines.
Similarly, ReadLn and WriteLn have no meaning for random files.

When a random-access file is opened, the file pointer is positioned at the
beginning of the file, just as it is in a text file. If successive reads or writes
are performed on the file, the file is accessed sequentially (the file pointer
advances to the next record after each operation). Unlike text files,
however, random-access files allow either read or write operations to be
performed at any time. Furthermore, by using the Seek procedure, it is
possible to read or write the components of the file in any order.

The Seek Procedure

The Seek procedure is the key to taking advantage of the random-access
quality of typed files. Seek allows you to position the file pointer at the
beginning of any component of a file, so that the next read or write
operation is performed on that component (or, as they are more commonly
known, record). The syntax of the Seek procedure is as follows:

Seek (FileVariable, RecordNumber);

where FileVariable is a random file and RecordNumber is a long integer
expression. The first record of a file is considered to be record 0, and the last
is the size of the file (in records, minus 1). If we use procedure
MakeCheckFile to create a file of checks, we could get the information on
check CheckNumber by writing

Seek (CheckFile, CheckNumber - 1);
Read (CheckFile, ThisCheck);

(Assuming there's exactly one record for every check number, the variables
are all defined and the file is open.)

230 Turbo Pascal Tutor for the Macintosh

A random-access file can be expanded simply by writing new records at the
end of the file, that is, with the file pointer pointing just past the end of the
last component. To position the file pointer at this location, you can read
through the file until the Eot function returns True. Better yet, you can use
Turbo's predeclared function FileSize along with the Seek procedure to
move the file pointer directly to the end. FileSize returns a long integer
representing the number of components in a file; therefore, to append new
records to the end of the file, you can perform the call

Seek (FileVariable, FileSize(FileVariable));

and then write the new information.

The FilePos Function

The FilePos function, which works only on random-access files, returns the
number of the component at which the file pointer is currently positioned
as a long integer. The first component, or record, of a file is considered to
have the number O. The file must be open at the time of the call.

FilePos(FileVariable);

Creating a Random File

Suppose, just for the sake of argument, that you're writing a program to
maintain your checkbook. To store the data, you could use a random-access
file in which each record contains the data for a check, so that the number
of checks you could record would be limited only by the size of your disk.
To do this, you'd first define the record type for a check, then create a file
with that type as its component type:

program CheckFile;

type
CheckNumType = 1 .. 10000;
MonthType (January, February, March, April, May, June,

July, August, September, October, November,
December);

DayType = 1 .. 31;
YearType = 1980 .. 2000;
PayeeType = string[40];

Check = record
CheckNum : CheckNumType;

Files 231

Arnt
Month
Day
Year
Payee

end;

var
CheckFile
ThisCheck

Real;
MonthType;
DayType;
YearType;
PayeeType;

: file of Check;
: Check;

Given these definitions and declarations, here's a routine to get checkbook
information from the user and write it into a file:

procedure MakeCheckFile;
var .

MonthNumber: 1 .. 12;

begin
Rewrite(CheckFile,'Checkbook.Data');
with ThisCheck do repeat

Write('Enter check number (0 to exit): ');
ReadLn(CheckNum);
if CheckNum = 0 then
begin

Close(CheckFile);
Exit;

end;
Write('Month (1-12): ');
ReadLn(MonthNumber);
Month := MonthType(MonthNumber - 1);
Write('Day (1-31): ');
ReadLn(Day);
Write('Year (1980 - 2000): ');
ReadLn(Year);
Write('Payee (40 characters max): ');
ReadLn(Payee);
Write (CheckFile, ThisCheck);

until False;
end;

MakeCheckFile is built around an endless loop (everything between the
repeat and until False statements), with an Exit statement in the middle to
get out. This prevents us from having to use a more awkward structure
(such as an if statement, plus another test in the until at the bottom of the
loop).

The technique used for reading in the month demonstrates type coercion,
which is an extension to Standard Pascal that circumvents Pascal's rigid
typing rules (avoiding nasty Type Mismatch errors) when inputting
defined scalar types. In the statements

232 Turbo Pascal Tutor for the Macintosh

ReadLn(MonthNumber);
Month := MonthType(MonthNumber - 1);

we read in the month as an Integer subrange and convert it to the
enumerated type Month (January .. December) for storage in the record.
Alternatively, we could have used a long case statement:

case MonthNumber of
1: Month := January;
2: Month := February;

12: Month := December;
end;

But type coercion is simpler and more efficient. Since all scalar variables are
represented the same way internally (as an integer from 0 to n), Turbo
Pascal lets you convert from one scalar type to another by temporarily
suspending type checking. We indicate the type that we want the value to
have by using the name of that type as if it were a function; in this case,
MonthType(MonthNumber -1). This converts the number MonthType-l to the
object of the type MonthType with the same ordinal value, giving us the
result we need.

At run time, there's no conversion involved. Type coercion just reassures
the compiler that we know what we're doing in making an apparently
nonsensical assignment of an integer to a month.

Miscellaneous File Routines

You can delete files from the disk by calling

Erase(filename);

where filename is a string expression representing a file system name,
optionally including a folder path name. This is equivalent to dragging a
file to the trash can icon from the Finder and choosing Empty Trash from
the Special menu.

To rename a file, call

Rename (oldName, newName)i

where oldName and newName are both string expressions.

Files 233

Talking to Your Computer's Peripherals:
Device 1/0

In this section, we'll explore how you can use file operations to
communicate with the keyboard, screen, and printer.

Logical Devices

Turbo Pascal supports logical devices, that is, special file names that are used
to treat the keyboard, screen, and printer as though they were files of type
Text. These files are predeclared and, as befits their special status, don't
need to be opened with Reset, Rewrite, or Closed.

Turbo Pascal recognizes the logical devices Console and Printer. For
example, this program sends text to a printer:

program PrinterOutput;
uses PasPrinter;
begin

WriteLn(Printer,'this is a test');
end.

We'llieam more about the uses statement in Chapter 30; for now, all you
need to know is that a uses clause adds capability to Turbo Pascal that isn't
there otherwise. In the case of program PrinterOutput, it brings the ability to
work with the predefined device file named Printer.

Advanced Keyboard Handling: KeyPressed and
ReadChar

In certain applications, you want a program to continue to run while it is
waiting for user input. For instance, in an arcade-style game, you want the
invaders to continue to advance while the prograln tests to see if a key has
been pressed.

So far, the input methods we've described are of the "blocking" type; the
program is prevented from doing any other tasks while it is waiting for
input. When you execute the statement

Read(C);

234 Turbo Pascal Tutor for the Macintosh

(where C is type Char), execution stops until the user types a character and
a return. The ReadChar function performs the same action without requiring
a return, or putting anything on the screen

C := ReadChari

although ReadChar, too, stops the action until a key is pressed. How can
you avoid this? By not making the call to ReadChar until you know that
there is a character waiting to be read. For this reason, Turbo Pascal
provides the boolean function KeyPressed.

KeyPressed returns True only if a character is ready to be read from the
keyboard. The following routine, CheckCommand, is an example of how to
use it. CheckCommand might be called periodically from a game program to
see if a key has been pressed, and if so, act on it.

procedure CheckCommandi
var

Cmd : Chari
begin

if KeyPressed then
begin

Cmd := ReadChari
case Cmd of

otherwise Write(AG)i
end

end
end;

1/0 Error Handling

read key w/out echo }

{ Handle commands }

{ beep at illegal cmd }

Even perfectly written programs must deal with the unpleasant prospect of
run-time errors due to I/O problems. You can test your code until Zaire
freezes over, but if a user accidentally deletes or moves a file the program
expects to open and use, something's got to give.

What happens when a program tries to Reset a nonexistent file? To find out,
key in and execute this program:

program CantFind;
var

aFile: Texti
begin

Files 235

Reset(aFile,'A Non-Existent File');
Close(aFile);

end.

Running this program produces a run-time error alert. The bomb results
from the inability of Turbo's file-handling library routines to find a file
named A Non-Existent File in the default folder. When you resume your
way back to Turbo Pascal, it declares that an Input/Output Check fail

error has occurred and points to the Reset statement as the culprit. Had
this program been launched from the Finder, you'd have no choice but to
return to the Finder.

Once interrupted by an I/O error, any work in progress by a program can't
be completed. This sort of behavior is okay for short, experimental
programs, but for real software with real users it can cause data stored in
memory (and time and effort) to be lost. This can make users angry.

To provide control over this situation, Turbo Pascal lets you disable these
error messages and handle the error condition yourself. For example, if a
program discovered that it hadn't found a file, it could prompt the user to
insert a disk containing the file or at least give him or her some options
about how to proceed.

To turn off I/O error checking (which is on by default), use the $1 compiler
directive. {$I-}, along with function IOResult, lets you build "bulletproof"
programs, that is, programs that always do the smart thing, even when
given improper user input and uncooperative hardware.

For example, suppose your program asks the user for the name of a file to
read. There's always a chance that the user could mistype the file name, or
that the disk with that file might not be in the drive. To keep the program
from stopping immediately as a result of such an error, you could write

var
inFile: Text;
inFileName: strinq[80];

{$I- }
Write('Enter input file: ');
ReadLn(InFileName);
Reset(InFile,InFileName);
{$H}

Simply turning off the standard response to I/O errors doesn't solve the
problem-in fact, it's made things worse. Now you've got a program that
thinks it's opened a fil~ but hasn't. Somehow the program needs to find out
that something has gone wrong so that it can take appropriate action.

236 Turbo Pascal Tutor for the Macintosh

To detect errors, Turbo Pascal provides the built-in integer function
IOResult. IOResult returns a numeric code that indicates the success or
failure of the last I/O operation. If successful, IOResult returns a value of 0;
otherwise, the code indicates what the problem was. If you were to rewrite
the previous example using IOResult, you might come up with something
like this:

program OpenTest;
var

infilename: string[SO];
InFile: Text;

begin
{$I-}
repeat

Write('Enter input file: 'I;
ReadLn(InFileName);
Reset (InFile,InFileName)

until IOResult = 0;
{$It}

end.

Note that IOResult only returns a nonzero code once for a given error.
Successive calls to IOResult will return 0 until another error occurs. Also, if
an error does occur, your program must call IOResult before attempting
additional I/O. If you continue to do I/O on a file when IOResult has
returned a nonzero result for that file, unpredictable (that is, bad) results
may occur.

If all this error handling seems like a lot of trouble, you're right. It's not
unusual for programs to devote more code to error handling than to the file
operations themselves.

The following program demonstrates I/O error-handling techniques. You
may want to adapt it for use in your own programs.

program MyProgram;
var

IOErr : Boolean;
type

Prompt = string[80];

procedure Error(Msg : Prompt);
{ Write error Msg out on line 24 and wait for a key
var

Ch : Char;
begin

GoToXY(1,24); ClearEol;
Write(AG, Msg, '--Press any key to continue ... ');

repeat until KeyPressed
end;

procedure IOCheck;

Files 237

{ Check for I/O error; print message if needed }
var

IOCode : integer;
beqin

IOCode := IOResult;
IOErr := (IOCode <> 0);
if IOErr then beqin

case IOCode of
-33 Error('Volume directory full');
-34 Error('Volume is full');
-35 Error('Volume doesn"t exist');
-36 Error('Disk I/O Error');
-37 Error('Bad file or volume name');
-38 Error('File not open');
-43 Error('File not found');
-44 Error('Volume is hardware write protected');
otherwise

Error('Unknown I/O error');
end { case }

end {if IOErr}
end;

var
aFile: Text;

beqin
{$I-}

Reset (aFile, 'NonExistent. Text') ; IOCheck;
if IOErr then { ... }

end.

Procedure IOCheck is designed to be called after every I/O operation and
does a number of good things. First, it calls IOResuit and recognizes any
error. Second, it sets the global flag 10Err, so that other parts of the
program can quickly tell whether or not there has been an error and can act
accordingly. Third, it prints out an error message at the bottom of the
terminal window, pausing until the user hits any key. Finally, it uses the
otherwise clause of the case statement to handle any undefined I/O errors.

Review

In this chapter we introduced files, a mechanism through which a Pascal
program can communicate with the outside world. We discussed
procedures, functions, and techniques for handling two basic categories of
files: text files and random access (typed) files. Finally, we discussed I/O
error checking, and how to handle I/O errors within a program.

There are two file exercises in Turbo Tutor: ReadText and WriteText.

238 Turbo Pascal Tutor for the Macintosh

c H A p T E R

18

Units

Pascal was designed as a teaching language, and early versions ran only on
large mainframe computers. While most of Professor Wirth's efforts apply
beautifully to the Macintosh (a machine barely dreamed of in 1970), he left
out some facilities needed in personal-computer software development,
such as decent string and file-handling tools. Standard Pascal also has
characteristics that make it less than ideal for tackling large programming
projects.

This chapter first shows you how to use the $Include compiler directive
when writing large programs. It then introduces and explains units, an
important extension of Turbo Pascal.

Pascal and Big Programs

As originally defined, a Pascal source program consists of a single file: a
continuous stream of text, from the opening program to the closing end.
This scheme works well for short programs but less well for large ones.

It's not unusual for Pascal source programs to be thousands of lines long. A
lO,OOO-line, 400K source file (180 pages printed out) poses a number of
pragmatic problems. For one thing, a 400K disk file is unwieldy. It doesn't
fit on a single-sided disk, and it takes an editor a long time to load and
save--if it even consents to work with a file this large. Within the editor,
Find operations are sluggish, and microscopic movements of the scroll box

Units 239

move you hundreds of lines. A programmer can get lost in a big file
("Where'd that procedure go?").

In large programs, the list of global variables, types, and constants gets so
long you forget what some are for, even with comments. Hundreds of
procedures and functions accumulate. Furthermore, a long program
threatens to exceed one or more of the compiler's internal limits, such as
symbol table size. (A symbol table stores the name and other information
about identifiers encountered during compilation.) 10,000 lines of code
represent a lot of identifiers.

These problems notwithstanding, the worst thing about working with big
source programs is that they take a long time to compile. MPW Pascal takes
every bit of five minutes to compile 10,000 lines. Even Turbo Pascal takes
almost a minute.

No matter how trivial a change you make to a 10,000-line program, even if
it's just adding a pesky semicolon to the 9,741st line, you have to recompile
the whole thing to see the effect of that change. If you didn't add the
semicolon correctly, you won't find out until the compiler has worked its
way to the 9,741st line. There are phases in every program's development
when compiling is almost continuous-and if each takes seven minutes,
that's a lot of waiting.

The $I(nclude) Directive

There's a partial solution to the large-program problem, involving the
$I(nclude) compiler directive (not to be confused with the $1+- directive for
trapping I/O errors). The $I(nclude) directive requires a file name and
instructs the compiler to temporarily stop reading from the current file and
to load and start compiling the named file. When this file is exhausted,
compilation resumes where it left off in the original file.

For example, consider files Constdef.Pas and Includetest.Pas:

{ File Constdef.Pas

const
Pi := 3.14159;
C = 2.99E8;

{ File IncludeTest.Pas

program IncludeTest;
{$I Constdef.Pas}
var

240 Turbo Pascal Tutor for the Macintosh

r: Real;
begin

Write('Input radius: ');
ReadLn(r);
WriteLn('Area of circle = " (Pi * r * r) :0:2)

end.

When Turbo Pascal encounters the $I(nclude) directive in the second line
when compiling Includetest.Pas, it opens and begins to read file
Constdef.Pas. When this file is exhausted, compilation continues with the
third line of Includetest.Pas. As far as the compiler is concerned, it's as
though the lines that make up Constdef.Pas were physically inside
Includetest.Pas. So the definition of constants Pi and C, which are in
Constdef.Pas, are known to that program.

If an included file isn't in the current directory, you must specify its entire
path name. For example, if file Constdef.Pas were in folder Turbo of
volume Startup, the $1 directive would be

{$I startup:turbo:ConstDef.pas}

If a file to be included is in a particular subfolder in the current folder, then
you can specify a partial path name. For example,

{$I :includes:constDef.pas }

refers to a file in subfolder Includes of the current directory, regardless of
the name of the current directory. Note the colon before the partial path
name; this must be present or the file system will think you're referring to a
volume named Includes.

Because long path names can be awkward, Turbo provides a short cut. The
Compile menu has a selection called Options

Units 241

Symbol toble K -Bytes ~
Defoult Directories:

D Ruto Soue TeHt

$U I
~--4 $1

$R

$L

$0

OK) (Concel)

Figure 18.1: The Compile/Options Dialog Box

If you tend to include files from the same folder, you can simplify your
$I(nclude) directives by specifying the path name of that folder in the $1
box. This text is then concatenated with text specified in an $I(nclude)

. directive. For example, if your Include files are usually in folder
Startup:Turbo:lncludes, then put exactly that text in this box. Like the
application names you provide for the Transfer menu, you must choose the
Save Defaults option of the File menu to save this information when you
exit Turbo Pascal (so that you won't have to specify it again when you
restart Turbo Pascal).

The $I(nclude) directive allows a program to be broken into pieces, thereby
simplifying editing and storage. For example, the main file of a lO,OOO-line
application could be 12 lines long:

program BigProg;
{$I Const.Pas}
{$I Types.Pas}
{$I Var.Pas}
{$I InputRoutine.Pas}
{$I SortRoutine.Pas}
{$I PrintRoutine.Pas}
begin

InputData;
SortData;
PrintResults

end.

At compile time, BigProg is effectively reassembled into one big piece. Note
that Turbo Pascal doesn't permit $I(nclude) directives to be nested; that is,
only the main file can contain $1 directives. If file Types.Pas in the previous
example contained any $1 directives, they would be flagged as errors.

242 Turbo Pascal Tutor for the Macintosh

If you've used the IBM version of Turbo Pascal, you're undoubtedly
familiar with the $I(nclude) technique. This is because it's a good technique
to get around the 64K limit on text files that IBM Turbo Pascal's editor
imposes. Furthermore, early versions of IBM Turbo Pascal didn't allow
units.

Units

While the $I{nclude) methodology solves certain aspects of the big source­
file problem, it doesn't help compilation speed. In fact, compilation actually
slows down, as multiple files must be opened and closed. Even if it weren't
for the speed problem, there's something messy about having to recompile
9,999 good lines of Pascal just to add one semicolon. And Turbo Pascal isn't
messy.

:Mae:intosh Turbo Pascal allows you to break large programs down into
pieces called units that are edited and compiled separately. When a 10,000-
line program is written as ten 1000-line units (with a short main program to
hold it all together), you can add a semicolon to the last line of any
individual unit and recompile in five seconds. Better?

Moreover, units offer you another level of detail hiding or masking, another
way to make available to the main program or calling routine only those
elements of a process that they need to know about. Like parameter passing
and local variables, the thoughtful application of units reduces unexpected
and undesirable interactions between different parts of a program.

How Units Work

Units are best explained by example. Consider the following program:

program CalcVolume;

function SphereVol(Radius: Real): Real;
const

Pi = 3.14159;
begin

SphereVol := (4.0 / 3.0) * Pi * Radius * Radius * Radius;
end;

function CylVol(Radius, Length: Real): Real;
const

Pi = 3.14159;
begin

Units 243

CylVol := Pi * Radius * Radius * Length;
end;

var
L, R: Reali
C: Char;

begin
while True do
begin

Write('Sphere or cylinder (S/C/Quit): ');
ReadLn (C);
case C of

, S' , , s': begin
Write('Enter radius: ');
ReadLn (R);
WriteLn('Volume = , ,SphereVol(R) :0:4)

end;
, C' , , c': begin

Write('Enter radius: ');
ReadL.n (R);
Write('Enter length: ');
Read1n(L);
WriteLn('Volume = ' ,CylVol(R,L) :0:4);

end;
, Q' , , q': Exit;

end { case
end { while

end.

For the sake of argument, imagine this program stretched to thousand-line
extremes. What we have here are some utility routines (SphereVol, CylVol)
and a main program that uses them. The main program is really what
Calc Volume is all about. Function Sphere Vol is a black box; its internals, once
known to be working, are of no further interest. The author of Calc Volume
may even have written SphereVol months ago for a different program and
simply borrowed it for this one.

In fairness, we must admit that Standard Pascal handles reusable routines
fairly well. With some cutting and pasting, CylVol and SphereVol are easily
inserted into new programs and, thanks to their use of the local constant Pi
and parameter passing, are free of potential identifier conflicts.

The $I(nclude) directive makes things even better. With $I(nclude), we can
insert CylVol and SphereVol (stored in a file with a clever name like, say,
Geometryaids.lnc) into a new program without the muss and fuss of
physically pasting them in:

program CalcVolumes;
{$I GeometryAids.Inc}
var

L, R: Real;
C: Char;

244

{ Inc = 'include'}

Turbo Pascal Tutor for the Macintosh

begin

end.

Using $I(nclude) directives helps; this version of CalcVolumes visually
indicates the support role of file Geometryaids.Inc. But it's possible to go a
step further. Since the content of the geometry toolkit doesn't change, no
matter how many programs use it, each time the compiler compiles it is
redundant: The exact same code is generated. Redundancy wastes
time--how much time depends on the size of Geometryaids.Inc.

Ideally, we'd compile the file of auxiliary routines once, and then use the
various formulas it contains over and over, without the bother of repeating
their definitions and recompiling every time in each program. That is, we'd
treat SphereVol as if it were a built-in talent of Turbo Pascal.

This is precisely the concept behind units.

If you're impressed at the implications of this idea, you should be. Units are
more than a way to speed up compilations. They let you customize the
language: to add functions and procedures that have essentially the same
status as built-in routines like Insert and Cos; to boldly extend Turbo Pascal
where no compiler has gone before. You can set up a unit for calculating the
volumes of geometric solids, a unit for financial analysis, a unit for sort
routines, or a unit for drawing graphic objects and text on a bit-mapped
CRT (coming soon, called QuickDraw).

Unit Syntax: Interface and Implementation

With the unit approach to program partitioning, the CalcVolume application
becomes two files: a main program source file (Calcvolume.Pas) and a unit
source file (Geometryaids.Pas). This sounds superficially like the separation
provided by the $I(nclude) methodology but has an important difference.
Once debugged, unit Geometryaids.Pas need only be compiled once, no
matter how many programs use it.

A unit source file looks much like a program source file; both contain
constants, types, variables, procedures, and functions. Both can be
compiled by Turbo Pascal, and both end with encl.

A unit consists of two parts: an interface and an i11'!plementation. The interface
is the unit's "public" part. It describes the goodi~s that are available for use
within it. The implementation is the "private" part of the unit and contains

Units 245

the nuts and bolts of each of the procedures and functions declared in the
interface. Unit syntax is shown in the following syntax diagram.

unit implementation part initialization part

unit heading ~ unit identifier ~ unit number ~

unit number l@J .. \ unsigned integer f-­
sign

interface part

l.r"uses clause ~ • ---.j constant declaration part :

--.j type declaration part I

~ variable declaration part I
I

--+I procedure and function heading part ~

implementation part
• ~

H constant declaration part· J
H type declaration part I

I

H variable declaration part I
I

L.I procedure and function declaration part ~

Figure 18.2: Syntax Diagram of a Unit

. .

Different Pascal compilers implement units differently (everyone wants to
try his or her hand at being Niklaus Wirth). Turbo Pascal's unit mechanism
is one of the best you'll come across-uncomplicated and efficient. Here's
unit GeometryAids:

unit GeometryAids(1);
interface

function SphereVol(Radius: Real): Real;
function CylVol(Radius, Length: Real): Real;

implementation

const
Pi = 3.14159;

function Cube (X: Real): Real;

246 Turbo Pascal Tutor for the Macintosh

begin
Cube := X * X * X;

end;

function CircleArea(Radius: Real): Real;
begin

CircleArea := pi * Radius * Radius;
end;

function SphereVol{(Radius: Real): Real};
begin

SphereVol := (4.0 * pi * Cube(Radius)) / 3.0
end;

function CylVol{ (Radius, Length: Real): Real};
begin

CylVol := CircleArea(Radius) * Length
end;

end.

The first non-comment line in a unit must be the unit header:

unit GeometryAids(l);

This line identifies the file to the compiler as a unit, rather than a program,
and gives it a name. The number in parentheses after the unit identifier is
the unit number; it can be any positive integer as long as each unit used by a
given program has a unique value.

Everything between the keywords interface and implementation is the
interface. In this case, the headers of functions SphereVol and CylVol make
up the interface. It determines what is visible to programs that use a given
unit. Note that only the headings of these functions are present; the bodies
are elsewhere. Syntax diagrams of units are shown in Chapter 23 of the
Turbo Pascal reference manual.

From keyword implementation on down is unit GeometryAids's
implementation. Among other things, this part of the unit contains the
bodies of procedures and functions defined in the interface. Note that the
parameter lists of CylVol and SphereVol aren't repeated in the
implementation. The compiler has this information already and having it in
two places would force Turbo to check that they're identical, wasting time.
(This is also how we handled procedures and functions declared as
forward in Chapter 11. Rather than deleting them entirely, we commented
out the parameter lists, to serve asa reminder of what they are.)

Note functions CalcArea and Cube. They appear only in the implementation
and not in the interface. They simplify the calculation performed by
Sphere Vol, but, since they don't appear in the interface, can't be called by

Units 247

programs that use unit GeometryAids. CalcArea, Cube, and the constant pi
aren't visible outside the implementation of GeometryAids. At times, a unit
will declare a single procedure in its interface, yet use dozens of supporting
types, variables, and procedures in its implementation. That's detail hiding,
and the more of it a program has, the better.

Incidentally, file Geometryaids.Pas can have $Hnclude) directives-and, for
that matter, practically any compiler directive.

Take a couple of minutes to type in and compile Geometryaids.Pas to
memory. The compiler knows that it's dealing with a unit and not a
program when it encounters the keyword unit rather than program in the
first line.

Unlike programs, units can't be executed. (What would you run first?
SphereVol? What would happen to the value it returns?) Therefore, Turbo's
Run command does nothing if the editor's topmost window happens to be
a unit. Furthermore, if you compile to disk, the resulting object file won't be
perceived by the Finder as an application (that is, it won't have file type
APPL).

So just what does go to disk when you compile a unit? The icon for a unit is
a suitcase (similar to that used by the Font Mover), to symbolize a packet of
pre-compiled utility routines that can be carried over and used by various
programs.

-0 Geometry Stuff 0=
3 items 15399K ;n disk 3713K avaHable

8 8
Q

Ca leVo lume-.P as Geometry Aids.Pas

[i]l 3SSE'
G.om.try Aids

K5
K;ll I~ Q]

Figure 18.3: A Compiled Unit

248 Turbo Pascal Tutor for the Macintosh

Using a Unit

Now that we know how to build and compile a unit, how about the syntax
for using one in a main program? Consider the new, improved CalcVolume:

program CalcVolumei
{$U startup:pascal:GeometryAids}
uses GeometryAids;
var

L, R: Reali
C: Chari

begin
while True do
begin

Write('Sphere or Cylinder (S/C/Quit): ')i
ReadLn(C);
case C of

's' ,'s': begin
Write('Enter radius: ');
ReadLn (R);
WriteLn('Volume = ' ,SphereVol(R) :0:4)

end;
, C' , , c': begin

Write('Enter radius: ');
ReadLn (R);
Write('Enter length: ');
ReadLn{L);
WriteLn{'Volume = ' ,CylVol(R,L) :0:4);

endi
'Q','q': Exit;

end { case
end { while

end.

The third line, uses GeometryAids, says it all. From this point on down,
CalcVolume has access to the identifiers declared in the interface of unit
GeometryAids. Without this uses statement, you'd get Unknown Identifier
errors wherever Sphere Vol and CylVol appear. The compiler needs to know
that SphereVol represents a function and, moreover, that it returns a value of
type Real and expects to have one real parameter passed by value to it.
Without this information, the compiler can't generate code to access the
function.

Since the compiler can't read your mind, you need to tell it where on disk
the unit resides so that it can check GeometryAids's interface and learn what
sort of objects it defines. This is done with the $U(nit) compiler directive.

Like $1, $U expects a file name, with or without a path name before it. You
provide the name of the unit's object file (GeometryAids), not the source file
(Geometryaids.Pas), in the $U directive. Unlike some Pascal compilers,

Units 249

Turbo Pascal interfaces are stored in a binary form along with the
compilation of the implementation. If a unit has been compiled to memory
and its source window is still open, you don't have to do this; Turbo Pascal
will find what it needs in memory automatically.

Now enter and compile CalcVolume to memory-but don't execute it just
yet.

Linking

In traditional software-development environments, a process known as
linking is a distinct (and usually slow) final step that must occur before a
program can be executed. Linking merges the output of two or more
separate compilations into a single file. Turbo Pascal also performs linking,
but since most of the code is in memory, linking happens almost instantly
when you compile. It's a step that you don't have to think about.

If you choose to compile Calc Volume to disk, Turbo's linking routines will
output an application file that contains the result of both GeometryAids and
Calc Volume's compilation.

Initializing a Unit

Even though units aren't programs and can't be executed directly, it's still
possible to give one a "main program." If a unit's implementation ends
with a begin/end pair rather than just an end, then the compiler expects to
find statements between them. These statements constitute the unit's
initialization code; they are executed automatically when a program that
uses this unit begins to run (before control is given to the application's
main program).

As an example of how initialization code can be useful, unit GeometryAids
might want to initialize a variable equal to (4/3 * Pi). This makes SphereVol
quicker (it saves one multiplication and one division per call). Here's how:

unit GeometryAids(l);
interface

function SphereVol(Radius: Real): Real;
function CylVol(Radius, Length: Real): Real;

implementation

250 Turbo Pascal Tutor for the Macintosh

var
pi,
FourThirdsPi: Real;

function Cube (X: Real): Real;
begin

Cube := X * X * X
end;

function CircleArea(Radius: Real): Real;
begin

CircleArea := pi * Radius * Radius
end;

function SphereVol{ (radius: Real): Real};
begin

SphereVol := FourThirdsPi * Cube(Radius)
end;

function CylVol{ (Radius, Length: Real): Real};
begin

CylVol := CircleArea(Radius) * Length
end;

begin
Pi := 4.0 * ArcTan(l.O); { this equals pi, strangely enough }
FourThirdsPi := (4.0 / 3.0) * Pi

end.

If a unit doesn't require initialization, then its implementation simply
concludes with end, as in the original version of GeometryAids.

Moving Units into Turbo Pascal

When compiling a program that uses a unit, Turbo Pascal looks for it on
disk under the name you specify in a $U directive. This read-from-disk
process takes a bit of time. It also requires that you keep track of the
volume-and-folder whereabouts of each compiled unit you'll be using.

This is a small enough price to pay for the benefits of units, but Turbo goes
a step farther by allowing you to place thoroughly debugged, frequently
needed units inside the Turbo Pascal application itself. Turbo automatically
knows about all the units contained within itself, so $U directives are
unnecessary-although you still need a uses clause.

For example, if you write applications daily that require functions CylVol
and Sphere Vol, it would be worth a few seconds to move the compiled
GeometryAids unit directly into Turbo Pascal. Once inside Turbo Pascal, you

Units 251

can omit the {$U GeometryAidsl directive when compiling programs that
use it; compilation speed will also be enhanced.

Moving a unit into Turbo Pascal is accomplished by a stand-alone
application named UnitMover. It's on your Turbo Pascal Utilities & Sample
Programs Disk. Instructions on its use can be found in Chapter 8 of the

. Turbo Pascal User's Guide and Reference Manual (although anyone who's ever
put Font/DAMover through its paces shouldn't have much trouble
figuring it out).

UnitMover

The UnitMover Application

Ty pistHe lper Geometry Aids

UnitMover Documents (compiled units)

Figure 18.4: UnitMover

Since units can be placed inside Turbo Pascal, you may wonder whether
there are some there already. As shipped from Borland, about 70 percent of
the size of Turbo Pascal is the result of some 15 units stored inside it. These
units-some large, some small-provide run-time support for terminal
window-oriented programs and allow contact with the thousands of
constants, types, variables, procedures, and functions built into the
Macintosh.

We'll learn more about taking advantage of these Macintosh units in Parts 4
and 5 of this book. For now, take a couple of minutes and browse through
Appendix D of the Turbo Pascal manual. It contains a listing of the various
interfaces and describes the constants, data types, variables, procedures,
and functions available in each.

252 Turbo Pascal Tutor for the Macintosh

Review

Large source programs can be broken into separate files by using the
$I(nclude) compiler directive and by using units. Units are a tool for
extending and customizing Turbo Pascal, as well as for partitioning large
programming tasks into manageable, quick-to-compile pieces. Units can be
compiled just like programs, although they cannot be executed.

Units consist of a public part, the interface, and a private part, the
implementation. The implementation defines how the public portion
works. Once perfected, units can be merged into Turbo Pascal itself with
the UnitMover application for fast, easy access.

Units 253

254 Turbo Pascal Tutor for the Macintosh

c H A p T E R

19

A Sample Program

We've spent the last 200 pages discussing the fundamentals of Pascal. In
this final chapter of Part 2, all of the previously discussed concepts have
been put to work in a sample program.

Turbo Typist

Turbo Typist is a typing game. It reads a word or phrase from a text file,
displays the word, and then waits for the user to type it correctly before
retrieving the next word from the file. To make the game more fun, we've
added scoring, and-the most difficult aspect-some animation. The
program has three major components:

• file I/O to get words from a disk file
• animation: driving a "car" across the screen
• real-time keyboard handling to get characters from the keyboard while

simultaneously updating the screen

If your computer is at hand, try compiling and running the program
Typist.Pas. (You'll need to have unit file TypistHelper present in the same
directory.) If you're far from a Macintosh, here's what the main screen
looks like:

A Sample Program 255

T pist

T U R BOT Y PIS T

001062

I I-
I TURBO TRUCK I ttG II 1 _ _____ 11_1

00 00 0

loIord -
29

Mislakes
o

Crashes
2

Figure 19.1: The Turbo Typist Screen

The goal of the player at this moment is to type the word procedure. The
car (currently in the middle of the screen) drives forward until it rear-ends
the truck or until the target word is typed correctly. The car has logged 21
miles this round, and the user has already typed the characters proce. When
the user thinks procedure has been typed correctly, s/he presses Return and
the score is updated accordingly: Either a new word is displayed or the
mistake count is incremented.

To manage these tasks, Typist uses a host of data structures, statement
types, and other features of Turbo Pascal:

Data Structures/Types

Sets (of characters)
Strings

Arrays (of strings)

Records
Booleans (both functions and variables)
Enumerated scalars
Files (for reading text)

Pascal Features

Procedures / functions
case (if then else)

Loops (for, while, repeat)

File I/O
Keyboard and video I/O
Units

This program's source code is on your Tutor disk in folder Turbo Typist.
Typist.Pas is the main program; TypistHelper.Pas is a unit used by the main
program. Rather than reprint its entire source code, let's cover the overall
structure of the program and then focus on some specific areas.

For starters, here's unit TypistHelper's interface:

256 Turbo Pascal Tutor for the Macintosh

interface
uses MemTypes, QuickDraw, OSIntf;

const
BS = #8;

type
MaxString = string[SO];
CharSet = set of Char;
String80 = string[80];

procedure BoldPrint;
procedure NormalPrint;
procedure Pause(var Tenths: Integer);
function UpCase(c:Char) :Char;
procedure AbortCheck(Ch : Char);
function CenterStr(S : String80) : Byte;
function GetWord(var F : text; var Word: MaxString)
function GetString(X, Y: Byte;

: Boolean;
{ starting row, col

{ string to edit var St : MaxString;
MaxLen : Byte;
KeyQuota : Byte;
DelayTime : Integer;
TermSet : CharSet
) : Char;

{ max length of st }
{ used to limit # chars }

{ limits time spent editing }
{ exit if one of these is typed }

{ returns terminating Char }

Typist (and any program you write) is free to use the various data
structures and routines defined in this interface. One of the benefits of units
is that the client program doesn't' have to know a thing about how a
procedure in a unit works. It only needs to know how to call it.

About TypistHelper's Uses Clause

Like programs, units can use other units, and TypistHelper won't compile
without the uses clause in the second line. The three units required by
TypistHelper are built into Turbo Pascal, so no $U directives are necessary.
Unit MemTypes defines some useful data types, including Byte, which is
used by the CenterString and GetString functions. QuickDraw is a large,
important unit we'll learn much more about in Part 5 of this book; it's used
here to support the BoldPrint and NormalPrint functions. OSIntf (operating
system interface) is needed to carry out the Pause function.

NOTE: Remember, the interfaces to all the built-in units are listed in
Appendix D of the Turbo Pascal manual. Over time, this is sure to become
a much used section of your manual.

Many of the routines in TypistHelper are general purpose. For example,
Pause causes the system to delay for the specified number of tenths of a

A Sample Program 257

second. Function Upease turns a character into its uppercase equivalent. If
you'd like to use unit TypistHelper in one of your own programs, it's as
simple as adding a uses clause:

program MyProgram;
{$U TypistHelper}
uses MemTypes, QuickDraw, OSIntf, TypistHelper;
begin

WriteLn(UpCase('$'), UpCase('c'), UpCase('C'));
end.

Because of the way the compiler works, your uses clause must include all
the units used by any units you might use-even if they aren't used by the
program itself. So even though MyProgram doesn't use anything in
MemTypes, QuickDraw, and OSIntf, it has to declare them, because it does
use TypistHelper.

Getting back to Typist.Pas, keep in mind that it has access to everything
declared in the interface of TypistHelper.

Step 1: The Main Program

In trying to understand a Pascal program, the place to start is at the end.
Here's Typist's main program:

begin
Initialize;
repeat

OpenFile;
if GetWord(WordFile, TargetWord) then

PlayOneRound(TargetWord)
else
begin

GotoXY(l, Pred(MaxRows));
WriteLn('That file is empty.');

end;
GotoXY(l, MaxRows);
BoldPrint; Write('Try again? '); NormalPrint;

until UpCase(ReadChar) <> 'Y';
end.

Thanks to clear programming, the high-level flow of this program is easy to
grasp. After some one-time initialization, we enter a repeat/until loop.
Each pass through the loop represents one full game of Turbo Typist.

When you play a game, you call the OpenFile routine, which displays the
startup screen and opens file TYPIST.DATA (where the words to be typed
are listed). The program checks to see that there's at least one line (word) in

258 Turbo Pascal Tutor for the Macintosh

file Typist.Data. If there isn't anything, the program complains. If there is at
least one word in the file, then procedure PlayOneRound is called; this is
where everything happens. The program ends when the user types
something other than Y in response to the 'Try again?' query.

Step 2: File 1/0

The disk file handling in Typist is straightforward. The task is to open a text
file and read a line at a time until the word list (file) has been exhausted.

Procedure InitProgram paints the welcoming screen and opens Typist.Data.
Once this file is successfully opened, control returns to the main program.
The Boolean function Get Word retrieves the next word from the file; it
returns True if a word is successfully retrieved; if the file is exhausted, it
returns False.

Step 3: The Main Control Loop

Procedure PlayOneRound is the heart of Turbo Typist and has a number of
procedures nested within it. Here's its operation, expressed in a sort of
pidgin Pascal known as pseudocode:

1. Get a word from the file and display it.

2. Erase the car, increment its X coordinate, and increment and display
the odometer.

3. If the car collides with the truck, then simulate a collision and back the
car up to the start. Otherwise, display the car and read characters from
the keyboard.

4. If the user presses Command-C, exit the program.
5. If the user presses Return, process the word.

a. If the word typed matches the target word and more words remain
in the file, then get the next word, display it, update the scoring
information, and back up the car.

b. Otherwise, if the word typed does not match the target word,
update and display the score.

6. Repeat steps 2 through 5 until all the words have been retrieved,
-~displayed, and typed.

A Sample Program 259

Animation

Real-time animation refers to the ability to simulate movement on a
computer screen while simultaneously collecting information controlling
the simulation from the user. Turbo Typist demonstrates this capability by
reading and displaying words from a file, updating the score, and so on,
while simultaneously reading characters typed at the keyboard and acting
upon them. Even though the program manages several processes
concurrently, the car moves realistically (well, realistically enough for a car
built out of dashes and quote marks, with lowercase as for wheels).

At several places in the main loop (in PlayOneRound), a GoToXY statement
is used to place an underscore character near the characters the user has
already typed. This draws attention to the user's goal-that of typing more
characters.

The animation itself is minimal-fourteen characters, two rows of seven
columns each, are alternately drawn, erased, then redrawn a little to the left
or right. Running this simple program will help you to understand the
discussion that follows:

program SimpleCartoon;
{ Simple animation--run it a few times and try to understand it.

Then try making the object string longer. Try incrementing the
row as well as the column. Vary the delay interval. Can you
modify this program to simulate a bouncing ball? }

var
column : Integer;
Object: string[lO];
N: Integer;

begin
ClearScreen;

{ loop variable
{ object being animated }

Object := '0'; { start simple--try this string next: 0-0
for column := 1 to 80 do
begin

GoToXY(column, 1); { current column, first row
Write(Object); { display the object
for N := 1 to 10000 do; { kill time for a fraction of a sec.
GoToXY(column, 1); { place cursor back on top of object
Write(' ':Length(Object)); { erase previous object

end;
end.

Procedure GetString (located in unit TypistHelper) is unusual.

Most string-editing utility routines exit when the user types a terminating
character (for example, Return). Typist's GetString function, however, exits
for two other reasons as well:

260 Turbo Pascal Tutor for the Macintosh

1. The user has used up the alloted quota of keystrokes.
2. The allotted time for editing between "cartoon cycles" has expired.

The following pseudocode demonstrates a major dilemma in real-time
programming:

1: procedure GetString;
{ This routine is called to edit a string. The routine

terminates when the user types a carriage return.
begin

2: repeat
3: Read a character;
4: Process the character; { legal char? backspace? etc.
5: until character=carriage return;

end; {Get String}
6: repeat
7: Move the car one "mile" forward;
8: GetString; { the string
9: Process the string; legal word? update score, etc.

10: until no_more_words;

At first glance, the repeat loop beginning on line 6 looks reasonable: The
car will advance one "mile" each time the loop is executed. However,
several problems aren't addressed.

What if the user holds down one key and never presses Return (the beast!).
Line 7 moves the car, and then the editing routine is called. While GetString
is waiting for the player to press Return, the car is ticketed for parking in the
red zone! Instead of driving smoothly across the screen, the car stays in the
same place. And if the user holds down Return, the car zips across the screen
in one meaningless motion.

The solution here is to pass a parameter to GetString, instructing it to return
after a certain number of keystrokes have been typed-even if the user
doesn't press Return. Of course, pressing Return will still cause GetString to
return to the main loop.

*1: procedure GetString(KeyQuota : Integer);
{ This routine is called to edit a string. The routine terminates

when the user types a carriage return or when KeyQuota keystrokes
have been typed. }

begin
2: repeat
3: Read a character;

*3a: Decrement KeyQuota; { subtract one from number remaining
4: Process the character; { legal char? backspace? etc.
5: until (character = carriage return) or

*5a: (KeyQuota <= 0);
end; {Get String}

6: repeat
7: Move the car one "mile" forward;

A Sample Program 261

*8: GetString(5 keystrokes);

9: if user typed carriage return then

{ edit the string }
allow 5 keystrokes }

9a: process the string; {legal word? update score, etc. }
10: until no_more_words;

We have modified five lines (those marked by an asterisk) and completely
overhauled the program's animation. Now GetString returns to the main
loop every five characters or when Return is pressed, whichever comes first.
Of course, we only want to check the string for validity if Return has been
pressed. Either way, we can update our cartoon often enough to please the
eye.

Now we're getting somewhere-except that the car will still go nowhere if
our obstinate operator refuses to press a single key! Think about it. We
display the car, then call GetString. GetString waits for a carriage return or
five characters from the keyboard. If they never come, GetString never
returns to the loop from whence it came.

The solution? Look at lines 6 to 10 of the original repeat loop. What we
want is quite reasonable: We want GetString to always take approximately
the same amount of time, whether Return is pressed, no characters are
typed, or a key is held down the entire time. If "processing the string" also
requires a fixed amount of time each time it is called, then the car will run
smoothly from one side of the screen to the other.

!1: procedure GetString(KeyQuota, TimeQuota : Integer);
{ This routine is called to edit a string. The routine terminates

when the user types a carriage return, when KeyQuota keystrokes
have been typed, or when TimeQuota milliseconds (or some other
unit) have elapsed. }

begin
2: repeat
3: if a character is in the buffer:

!3a: read a character;
!3b: Decrement KeyQuota;{ subtract one from number remaining
!3c: Decrement TimeQuota; { subtract one from number remaining
4: Process the character; { legal char? backspace? etc.
5: until (character = carriage return) or

*5a: (KeyQuota = 0);
!5b: (TimeQuota = 0);

end; { GetString }

6: repeat
7: Move the car one "mile" forward;

!8: GetString(5 keystrokes, 100 milliseconds); {edit the string
9: if user typed carriage return then
9a: process the string; {legal word? update score, etc.

10: until no_mare_words;

262 Turbo Pascal Tutor for the Macintosh

The modified lines are marked with an exclamation point. They do a decent
job of accomplishing our goal. If we add any other routines anywhere in
the main loop, we must carefully test and readjust our keystroke and time
quotas.

Work your way through procedure PlayOneRound line by line, ignoring fine
details like scoring and cursor placement. Once you understand the major
steps in the loop, fine tune your focus a little and make another pass; repeat
this process until you're satisfied with your understanding of the program.

Dare to Experiment

If you followed the preceding discussion, you can understand the
program's source code. Be daring: Make a copy of the program and modify
it. You can certainly find ways to improve it.

If you had difficulty understanding this material, try playing "human
computer" and follow on paper exactly what the program does when it
executes. Then, modify the simple animation example (program
SimpleCartoon). Change it so it lets you type characters while it is moving its
object across the screen. Try to keep the animation constant no matter how
many or how few keys the user types. Keep making the program more and
more sophisticated.

By enhancing this simple example, you will eventually run into and,
hopefully, solve the same problems addressed by Typist.Pas.

Review

Turbo Typist demonstrates many Pascal structures and statements. Our
discussion began with a description of the overall program structure,
including the fact that a unit (TypistHelper) is used to reduce the workload
of the program itself. Next, we did a best-case/worst-case analysis: The
slowest typist refused to touch a single key; the fastest held down one key
continuously. We then focused on solutions to some programming issues
that were raised.

A Sample Program 263

264 Turbo Pascal Tutor for the Macintosh

p A R

ADVANCED TOPICS IN TURBO
PASCAL

T

3

265

266 Turbo Pascal Tutor for the Macintosh

c H A p T E R

20

Stacks, Queues, Deques, and Lists

Chapter 16 introduced the concepts of pointers and the dynamic allocation
of variables, and hinted at their potential. Pointers and heap-resident
variables allow you to create structures out of thin air and link them to
other such variables-creating intricate webs of data. This chapter tells you
how to use linked lists to combine these data structures in a linear or a
circular manner.

Linked Lists

, A linked list can store a variable number of data items without the waste of
fixed-size arrays. To understand linked lists, we first must talk about nodes,
the data structures (usually records) that contain both the raw information
to be stored in a given location in the linked list and the pointers necessary
to link to other nodes in the list. For the sake of simplicity, let's say that the
information to be stored in this sample list are integers-that is, this will be
a linked list of integers. (In practice, it would probably be something more
complex, like a check record.) The simplest node definition you could
construct would be like this one from Chapter 16:

type
NodePtr = ANode;
Node =

record

end;

Data : Integer;
Next : Nodeptr

Stacks, Queues, Deques, and Lists 267

This node declaration again shows the one exception to Pascal's otherwise
unbreakable rule that. identifiers must be defined before they can be used.
Here you can use the data type Node before it has been defined, so that you
can define NodePtr and use it within the definition of Node.

Single versus Double Links

Note that the preceding node definition has only one pointer in it (Next),
which points to the next node in the list:

... -->Node-->Node-->Node--> ...

It is possible to use two pointers instead of one, with the extra pointer
linking back to the previous node in the list:

... <-->Node<-->Node<-->Node<--> ...

The Pascal definition would then change to something like this:

type
NodePtr = ANode;
Node =

record
Data : Integer;
Last,Next : NodePtr

end;

A list built of nodes like this is known as a doubly linked list. A doubly
linked list is usually easier to work with because it allows you to move back
and forth; a singly linked list only allows forward movement.

There is, of course, a price for this capability: Each node takes up 4 more
bytes of memory. The additional size is most significant if the data section
is small relative to the size requirements of the pointers. For example, the
previous node definition would increase in size from 6 bytes to 10.
However, if the data section is fairly large, then the additional pointer
represents a minor size increase and a major increase in power and
flexibility.

Starting a Linked List

Since all nodes in a linked list are created as needed, you have to decide
how to get the whole thing started, that is, how do you create that first

268 Turbo Pascal Tutor for the Macintosh

node? There are a number of approaches, but the easiest is to use a Header
. node. A Header node is created at the start of a program; its pointer(s) is
either set to the special pointer value nil (which means it isn't pointing to
anything) or to itself (if you're using a circular linked list). The data field(s)
often isn't used, at least not in the way it's used in other nodes in the list.

You usually declare the Header node as a pointer variable. At the start of
the program, you create the node and set the fields accordingly:

program LinkedLists;
type

NodePtr = ANode;
Node =

record
Data
Next

end;
var

Header

begin
New(Header);
with HeaderA do
begin

Data := 0;
Next := nil

end;

end.

Integer;
NodePtr

NodePtr;

This code assumes you have a singly linked list (linear or noncircular list).
For circular lists, things change a little.

Circular Linked Lists

A linear list has the Header node pointing to the first node, while the last
node points to nothing (it is assigned the value nil). Such a list looks like
this:

Header-->Node-->Node--> ... -->Node-->Node--> [nil]

This type of list can make search loops messy. For instance, suppose you
have an unsorted list of nodes like the ones already defined, and you want
to see if there's a node with a given value in it. Your first impulse might be
to write a loop like this (assuming the value you're looking for is in Val):

TPtr := HeaderA.Next;
while (TPtr <> nil) and (TptrA.Data <> Val) do

TPtr := TPtrA.Next;

Stacks, Queues, Oeques, and Lists 269

The problem, of course, is that if you hit the end of the list (TPtr = nil),
you'll get a run-time error when the program tries to evaluate the
expression TPtrA.Data <> Val. This problem can sneak up on you again and
again (such as when doing insertion and deletion with a doubly linked list).

One solution is to use a circular linked list. Instead of having the last node
point to nil, you can point it to the Header node instead:

Header-->Node-->Node--> ... -->Node-->Node-->Header

When you create your Header node, you point it to itself:

New (Header) ;
with Header" do
begin

Data := 0;
Next := Header

end;

Thus, your search loop will run without any difficulty:

TPtr := Header".Next;
while (TPtr <> Header) and (TPtr".Data <> Val) do

TPtr := TPtr".Next;

For a doubly linked list, start the Header with both its pointers pointing to
itself (add the statement Last := Header to the previous code). As you add
nodes, Header will point to both the first and last nodes in the list.

Insertion

After setting up the Header, the first function you need to perform is
adding nodes to the list. This is called insertion-you add the node between
two other nodes, or between a node and the end of the list.

Before inserting, you must do two things. First, create the node to be
inserted (using the New command) and set all the data fields to their
appropriate values. We'll call the pointer to this node NPtr. For the sample
node already given, the program might look like this:

New(NPtr);
NPtr".Data := NewValue; { whatever it happens to be }
NPtr".Next := nil;

Note that setting NPtrA.Next equal to nil usually isn't necessary, but it's not
a bad idea to initialize all fields of a node.

270 Turbo Pascal Tutor for the Macintosh

Second, find, in the list, the node after which you wish to insert the new
node. If the new node belongs at the start of the list (or if it's the first node
in the list), then it will be inserted after the Header node. Typically, you
start at the Header and continue until you've found the node you're
looking for. We'll call this node TPtr.

The process of insertion itself is simple. Given NPtr and TPtr (as defined
earlier), and assuming this is a singly linked list, do the following:

1. Set NPtrA.Next equal to TPtrA.Next. This ensures that NPtr and TPtr
are both pointing to the same node.

2. Set TPtrA.Next equal to NPtr. This makes TPtr point to NPtr.

The final result is that TPtr points to NPtr, and NPtr points to the node that
TPtr used to point to. The Pascal code for this is simple:

NPtrA.Next := TPtrA.Nexti
TPtrA.Next := NPtri

For a doubly linked list, you must do a little more work since you have
twice as many pointers to change. Here's the code for a linear list:

NPtrA.Next := TPtrA.Nexti
NPtrA.Last := TPtri
TptrA.Next := NPtri
if NPtrA.Next <> nil then

NPtrA.NextA.Last := NPtri

First, note that both of NPtr's pointers have changed, pointing to the nodes
that precede and follow it. TPtr is then changed to point to NPtr. Finally,
the node following NPtr (which you can reference as NPtrA.NextA) is
changed to point back to NPtr. If the list is circular, you can drop the test for
nil and always make the assignment to NPtrA.NextA.Last.

Deletion

The process of deletion is similar to insertion: First, find the node you want
to delete, then make the preceding node point to the following node. If you
have a singly linked list, then you must keep track of the node preceding
the one to be deleted (otherwise, you'll have no way to get back to it). If
NPtr points to the node to be deleted and TPtr points to the preceding
node, then the statement

Stacks, Queues, Oeques, and Lists 271

removes NPtr from the list.

With a doubly linked list, you only need to know the node to be deleted:

NPtr".Last".Next := NPtr".Next;
if NPtr".Next <> nil

then NPtr".Next".Last := Nptr".Last;

The first statement points the preceding node to the following one; the
second points the following node to the preceding one. As with insertion, if
you're using a circular list, you don't need to check for NPtrA.Next <> nil.

Having changed the pointers, the statement

Dispose(NPtr);

reclaims the memory used by NPtrA.

Stacks

A stack is a storage device for data objects with certain rules about how you
add to or remove from it: You cannot simply insert or delete nodes
anywhere in the list. Instead, all nodes added to the list must be added at
the very front (beginning); likewise, all nodes taken from it must be taken
from the very front. If you think about this for a minute, you'll realize that
any node you remove will always be the one (of all those left in the list)
most recently added. Because of this, a stack is sometimes known as a last
in, first out (or LIFO) list. When you add to a stack, you're usually said to be
"pushing" a node onto it; when you remove from it, you're "popping" a
node.

Stacks can be handy in any situation where you need to remember what
you're doing (and what you've done) before you can perform some other
action (often the same action on a different set of data), then pick up where
you left off. Usually, you can just call procedures and functions (sometimes
recursively), and Pascal takes care of all that for you. However, situations
may arise where you need (or want) to handle that explicitly, either to
avoid recursion or direct control over the stack.

The following code implements a stack as a linear, singly linked list:

type
NodePtr
Node =

record
Data
Next

272

= "Node;

: Integer;
: Nodeptr

Turbo Pascal Tutor for the Macintosh

end;

var
StackPtr : NodePtr;
StackEmpty : Boolean;

procedure CreateStack;
beqin

New(StackPtr);
with StackPtrA do
beqin

Next ;= nil;
Data := 0;

end;
StackEmpty := True;

end; {CreateStack}

Header for stack }
flag for empty stack

procedure Pop (var Val Integer);
var

NPtr : NodePtr;
beqin

if not StackEmpty then
beqin

NPtr := StackPtrA.Next;
StackPtrA.Next := NPtrA.Next;
Val ;= NPtrA.Data
Dispose(NPtr);
StackEmpty .= (StackPtrA.Next = nil);

end;
end; {Pop}

procedure Push(Val : Integer);
var

NPtr : NodePtr;
beqin

StackEmpty ;= False;
New (NPtr) ;
NPtrA.Data := Val;
NPtrA.Next := StackPtrA.Next;
StackPtrA.Next ;= NPtr;

end; {Push}

procedure DeleteStack;
var

Temp : Integer;
beqin

while not StackEmpty do
Pop (Temp);

Dispose(StackPtr);
end; {DeleteStack}

CreateStack must be called before any other stack routine. It creates the
Header node (called StackPtr) and sets the StackEmpty flag to True. Push
adds a value to the stack. Note that it just passes a value; you don't have to
worry about what the node data structure looks like. Likewise, Pop just

Stacks, Queues, Deques, and Lists 273

returns a value, hiding the node removal and deletion from you. Finally,
the routine DeleteStack disposes of all the nodes in the stack, and then gets
rid of StackPtr itself. You then must call CreateStack again before using the
stack.

Queues

As we've just shown, a stack follows the LIFO principle. Sometimes
though, you'll want to treat nodes on a first come, first served basis. In
programming, a queue is a list of nodes treated just this way, technically
called first in, first out (FIFO). You always add a node to the end of the list,
and you always remove a node from the front of the list.

Like stacks, queues are simple to implement. However, since you have to
deal with both ends of the list, you'll probably find it easier to use a
circular, doubly linked list rather than a linear, singly linked one. You
should probably use a queue whenever things keep cropping up faster than
you can handle them, and you want to look at them in the exact order they
appear. Here's an implementation:

type
NodePtr = "Node;
Node =

record

vir

Data : Integer;
Last/Next: NodePtr

end;

Header : NodePtr;
QueueEmpty : Boolean;

procedure CreateQueue;
begin

New (Header) ;
with Header" do
begin

Next := Header;
Last := Header;
Data := 0;

end;
QueueEmpty := True;

end; {CreateQueue}

{ Header for stack
flag for empty stack

procedure GetValue(var Val Integer);
vir

NPtr : NodePtr;
begin

if not QueueEmpty then

274 Turbo Pascal Tutor for the Macintosh

begin
NPtr := HeaderA.Next;
HeaderA.Next := NPtrA.Next;
HeaderA.NextA.Last := Header;
Val := NPtrA.Data;
Dispose(NPtr);
QueueEmpty '= (HeaderA.Next = Header);

end
end;

procedure PutVal(Val : Integer);
var

NPtr : Nodeptr;
begin

QueueEmpty := False;
New (NPtr) ;
with NPtrA do
begin

Data := Val;
Next := Header;
Last := HeaderA.Last;

end;
HeaderA.Next := NPtr;
NPtrA.LastA.Next := NPtr;

end; {PutVal}

procedure DeleteQueue;
var

TVal : Integer;
begin

while not QueueEmpty do
GetVal(TVal);

Dispose(Header);
end; {DeleteQueue}

CreateQueue must be called before any of the other queue procedures.
PutVal creates a new node and inserts it between the Header and the end of
the queue. Get Val gets the value from the node at the start of the queue,
removes that node, and then disposes of it. And, of course, DeleteQueue
cleans up the whole thing.

Deques

In his classic work Fundamental Algorithms, Donald Knuth describes yet
another list type: a deque (pronounced deck) or double-ended queue. While a
queue adds nodes on only one end and removes them only from the other,
a deque lets you add and remove nodes from either end.

Implementing a deque isn't much harder than implementing a queue. The
only real difference is that the GetVal and PutVal routines now have to

Stacks, Queues, Deques, and Lists 275

know whether to use the front (HeaderA.Next> or the rear (HeaderA.Last> of
the list. Also, you'll almost certainly want to use a circular, doubly linked
list for a deque.

Here's an implementation:

const
Front
Rear

type
Nodeptr
Node =

record

= True;
= False;

"Node;

Data Integer;

var

Last,Next: NodePtr
end;

Header
DequeEmpty

: NodePtr;
: Boolean;

{ Header for stack
flag for empty stack

procedure CreateDeque;
begin

New(Header);
with Header" do
begin

Next := Header;
Last := Header;
Data := 0

end;
DequeEmpty := True;

end; {CreateDeque}

procedure InsertNode(var NPtr,TPtr NodePtr);
begin

NPtr".Next := TPtr".Next;
NPtr".Last := TPtr;
TPtr".Next := NPtr;
NPtr".Next".Last := NPtr;

end; { InsertNode }

procedure RemoveNode(var NPtr,TPtr NodePtr);
begin

NPtr := TPtr;
NPtr".Next".Last := NPtr".Last;
NPtr".Last".Next := Nptr".Next;

end; {RemoveNode}

procedure GetValue(var Val Integer; theFront Boolean); var
NPtr : NodePtr;

begin
if not DequeEmpty then
begin

276

if theFront then
RemoveNode(NPtr,Header".Next)

Turbo Pascal Tutor for the Macintosh

else
RemoveNode(NPtr,HeaderA.Last);

Val := NPtrA.Data;
Dispose(NPtr);
DequeEmpty '= (HeaderA.Next = Header);

end;
end; {Pop}

procedure PutVal(Val : Integer; theFront Boolean); var
NPtr : NodePtr;

begin
DequeEmpty := False;
New(NPtr);
NPtrA.Data := Val;
if theFront then

InsertNode(NPtr,Header)
else

InsertNode(NPtr,HeaderA.Last);
end; {Put Val}

procedure DeleteDeque;
var

TVal : Integer;
begin

while not DequeEmpty do
GetVal(TVal,Front);

Dispose(Header);
end; {DeleteDeque}

As you can see, we've gone on to general routines for InsertNode and
RemoveNode. These routines are then called by GetVal and PutVal, with the
boolean parameter theFront indicating whether to access the front or end of
the deque.

Lists

In the linked list data structures we've looked at, we've given GetVal and
PutVal greater access to the list. In every case, however, that access has been
at one end or the other. What if you want to insert or delete nodes in the
middle of the list?

You can do just that, and you can do it easily. With the creation of the
InsertNode and RemoveNode procedures, you can now get to any node by
stepping through the list. Given a circular list, the code to do that is as
follows:

TPtr := HeaderA.Next;
while (TPtr <> Header) and ({ whatever condition }) do

TPtr := TPtrA.Nexti
if TPtr = Header

Stacks, Queues, Oeques, and Lists 277

then {node not found }
else { node found }

The test (TPtr <> Header) keeps you looking until you've gone through the
loop; the test ({ whatever condition}) determines what you're looking for. For
example, if you were looking for a node with a particular value (theVal),
then the while statement might look like this:

while (TPtr <> Header) and (TPtrA.Data <> theVal) do
TPtr := TptrA.Next;

General lists have all kinds of uses. As shown in Chapter 17, they can hold
a list of data structures (such as records) in a more flexible form than an
array (although you can index into an array faster than you can search
through a list). They also don't come up against the 32K size limitation of
arrays. Another good use for linked lists is to create and maintain a sorted
list of items, especially if you don't know ahead of time how many items
you'll need to sort. With a linked list, you just insert the item in its proper
place as you read it in.

Review

In this chapter, we've discussed linked lists in detail, elaborating on how
they can be used to build different data structures (both linear and
circular). Chapter 21 describes how to use linked lists to build nonlinear
structures.

If you're interested in learning more on data structures, here are two books
to guide you:

• Horowitz, E., and Sahni, S. Fundamentals of Data Structures in Pascal.
Rockville: Computer Science Press, Inc., 1984 .

• Knuth, D. E. Fundamental Algorithms. Vol. 1 of The Art of Computer
Programming. 2d ed. Reading: Addison-Wesley, 1973.

278 Turbo Pascal Tutor for the Macintosh

c H A p T E R

21

Trees, Graphs, and Other Nonlinear
Structures

In Chapter 20, you learned more about linked lists and how to use them to
build various data structures, including stacks, queues, and deques. All of
these structures have one thing in common: The nodes in them are strung
together, like beads on a string. Sometimes, though, you need a different
kind of structure, one that isn't so linear. This chapter describes such
structures.

The most common nonlinear structure is the tree, which allows a node to
point to several other nodes. There's also the graph, which allows rings and
other intricate paths to form. Sparse arrays let you implement large,
multidimensional arrays without wasting space. Let's look at each of these
nonlinear structures.

An Introduction to Trees

A tree is like a linked list with branches. In a linked list, each node points
ahead to, at most, one more node (though it may point back to the previous
node as well). In a tree, each node can point ahead (or "down") to more
than one node.

The root of a tree is the first (or topmost) node. (Note that this kind of tree
has the root at the top and the leaves at the bottom-computer scientists
are notoriously poor botanists.) A subtree consists of a non-root node and all

Trees, Graphs, and Other Nonlinear Structures 279

the nodes (if any) below it. A terminal node (or leaf) is a node with no other
nodes below it. Any given node has a parent (the node directly above it),
unless it's the root. A node may have siblings (other nodes pointed to by its
parent) and children (nodes directly below it that it points to). A tree can
now be defined as a root with zero or more subtrees; a forest is a set of zero
or more unconnected trees.

Trees are useful when relating data in a hierarchical fashion, that is, in
order of grade or class. Each leaf in a tree then represents a small
component of the whole.

Another common use for trees is in the area of artificial intelligence (AI),
where a complex goal or task can be broken down into small, performable
sub goals or subtasks. Game-playing programs often use game trees to
"look ahead" for good (or bad) moves. The root represents the current
board position. Possible moves by one side generate new board states or
children to the root. Moves by the other side produce the next generation of
children (grandchildren to the root), and so on.

These applications are beyond the scope of this book, but the following
sections describe some simpler uses of trees.

Binary Trees

The most commonly used tree is known as a binary tree: Each node has no
more than two subtrees attached to it. Usually, these subtrees are labeled as
left and right. You could use the following node definition for a binary tree:

type
NodePtr
Node =

record
Data
Left, Right

end;

= "Node;

: Integer;
: NodePtr

A minimum of pointers is used. Each node points only to its children (the
nodes directly below it), with a value of nil indicating an unused link. A
leaf, then, is a node whose left and right pointers are both nil.

For this example, we'll assume the tree is sorted; that is, values are added
according to certain rules. In this case, we'll assume that lower values are
stored to the left and higher values to the right.

The program Animals.Pas on your Turbo Tutor distribution disk uses a
binary tree to organize data about the animal kingdom. It prompts you to

280 Turbo Pascal Tutor for the Macintosh

think of an animal and tries to "guess" it using its binary tree of animal
facts. If it doesn't recognize your animal, it gives up and lets you "teach" it
a new one.

Searching Binary Trees

To add or remove any value from the tree, we must first see if the value is
in the tree. The following boolean function (based on the algorithm
described in How to Solve It by Computer; see the end of this chapter) looks
for a given value in the tree. If found, the function returns True and passes
back both the node containing the value as well as its parent; otherwise, it
returns False.
function FoundInTree(var TPtr,Parent : Nodeptr; Val: Integer): Boolean;
var

Found : Boolean;
begin

TPtr := Root;
Parent := nil;
Found := False;
while (TPtr <> nil) and not Found do
with TPtr" do
begin

if Data = Val
then Found := True

else
begin

Parent := TPtr;
if Data > Val

then TPtr := Left
else TPtr := Right;

end;
end;

FoundInTree := Found;
end; {FoundInTree}

This function works its way down the tree until it either finds the given
value or runs into a nil pointer. There are two reasons why both the node
itself and its parent are passed back. First, if you want to add a node, then
you'll automatically have the parent node to add it to. Second, if you want
to delete a node, then you also have the parent node to patch things back
up to.

Inserting into Binary Trees

To have a tree to search, you must first build it, add values to it, and place
them in the proper locations. For starters, you need a pointer, Root of type
NodePtr, that is initialized to nil. When you add your first value, that case is
checked for (see the following routine) and Root is given that value. From

Trees, Graphs, and Other Nonlinear Structures 281

then on, each value goes either to the left or right, depending upon whether
it's less than or greater than Root's data.

To add a new value, first check to see if it's already in the tree (using the
function FoundlnTree). If it's present, you needn't do anything; otherwise,
you have the parent node to add it to, and you need only decide whether it
goes to the left or the right. This routine does it all:

procedure AddToTree(Val : Integer);
var

TPtr,Parent, NPtr : NodePtr;
Done : Boolean;

begin
if not FoundInTree(TPtr,Parent,Val) then
begin

if GetNode(NPtr) then
begin

NPtrA.Data := Val;
if Root = nil then

Root := NPtr
else

end;
end;

with Parent A do
if Data> Val then Left := NPtr
else Right := NPtr;

end; {AddToTree}

Note: The boolean function GetNode creates the node, checking for
sufficient memory and initializing the different record fields. If there isn't
enough memory, it returns False, preventing the node from being created
and added.

Traversing Binary Trees

There's only one way to move through a linked list: straight ahead. There
are at least three \vays to traverse a binary tree: preorder, inorder, and
postorder.

Preorder prints out the data of the current node before printing out that of
either subtree. Inorder prints the current node between the left and right
subtrees. Postorder writes out the current node after both subtrees. All are
recursive, described in terms of visiting a root and its subtrees. Visiting a
node means handling it in some way (for example, printing a value or
comparing it to another value), since you will often pass and ignore nodes
on your way to visit other ones.

The following set of routines traverses the binary tree you've created,
writing out the values in the appropriate order. As you can see, it's easiest

282 Turbo Pascal Tutor for the Macintosh

to define the traversal recursively. (The only difference between the three
traversal methods is the point at which the data of the current node is
written out.) Given the previous insertion routine, the procedure InOrder
prints out the values in the tree in numerical order:

procedure WriteData(Data : Integer; var Row,Col : Byte);
begin

GoToXY(Col,Row);
Write(Data:9);
Row := Row + 1;

end; (proc WriteData

procedure PreOrder(Node NodePtr; var Row,Col Byte);
begin

if Node <> nil then
with Node" do
begin

WriteData(Data,Row,Col);
PreOrder(Left,Row,Col);
PreOrder(Right,Row,Col);

end;
end; {PreOrder}

procedure InOrder(Node : NodePtr; var Row,Col Byte);
begin

if Node <> nil then with Node" do
begin

InOrder(Left,Row,Col);
WriteData(Data,Row,Col);
InOrder(Right,Row,Col);

end
end; {InOrder}

procedure PostOrder(Node : NodePtr; var Row,Col Byte);
begin

if Node <> nil then with Node" do
begin

PostOrder(Left,Row,Col);
PostOrder(Right,Row,Col);
WriteData(Data,Row,Col);

end;
end; (PostOrder}

Deleting Nodes and Subtrees

The easiest deletion to do on a binary tree is to remove an entire subtree.
You can disconnect it by setting the appropriate Left or Right pointer on its
parent to nil. However, you must also track down and dispose of all nodes
in the subtree to recover the memory used by them. This procedure does
just that:

procedure PruneTree(var TPtr : NodePtr);
begin

. Trees, Graphs, and Other Nonlinear Structures 283

if TPtr <> nil then with TPtrA do
begin

PruneTree (Left) ;
PruneTree(Right);
if (Left = nil) and (Right = nil) then
begin

Dispose(TPtr);
TPtr := nil;

end;
end;

end; (PruneTree)

If you wanted to remove, say, the entire left subtree of Root, you could
simply call PruneTree(Root".Left), which would dispose of all the nodes and
set Root" . Left equal to nil. And if you wanted to remove the entire tree,
you'd just call PruneTree(Root).

A far trickier matter is to remove a single node, especially if that node has
subtrees below it. Think for a moment: You've removed a single node that
frees up exactly one pointer (either Left or Right) on its parent, but you
might have two subtrees to graft back in somewhere. Where do you put
them? If there's only one subtree, then no problem arises; two subtrees can
be messy.

There is a well-defined, if complex, solution. The basic rule is this: If the
node deleted is to the left of its parent, then its left subtree gets grafted in
its place; likewise, if the node is deleted to the right, its right subtree is
grafted in. The root of the ungrafted subtree is then added to the grafted
subtree, with the root's subtree still hanging below.

Non-Binary Trees

Not all trees are binary: Nowhere is it written that a given node can have
only two children. There are applications with nodes of three or more,
allowing finer distinctions between subtrees. We won't describe these
applications here, but we will show you how you might implement non­
binary trees.

Your first problem is the node data structure. If you allow exactly three (or
four or five) subtrees, you can simply declare that many pointers. But what
if you want a more general tree structure? What if you don't know ahead of
time the maximum number of children a given node will have?

Believe it or not, you can implement a general tree using a binary tree node.
Let's redefine our earlier data structure:

284 Turbo Pascal Tutor for the Macintosh

type
NodePtr
Node =

record
Data
Child, Sibling

end;

= "Node;

: Integer;
: NodePtr;

As you can see, the node is identical in size and content; we've just
renamed Left and Right to be Child and Sibling. For a given node, Child
points to the first (leftmost) child of that node, while Sibling points to the
first sibling to the right.

Since we no longer have a binary tree, our concept of order has
disappeared to a certain extent. A given node can have several subtrees
below it. How then do their relative positions correspond to the values they
contain? A number of approaches can be taken. Each child can have some
sort of cut-off value or range of values. The child itself can hold that value
(or values) so the tree becomes self-regulating.

Manipulation of non-binary trees tends to be specific to a given
implementation, so we won't discuss the topic in any more detail.
However, the books listed at the end of this chapter and of Chapter 20 deal
with non-binary trees in more depth.

Graphs

You may remember that our definition of a tree includes the provision that
all subtrees of a given node are disjoint; that is, the nodes in one subtree are
not found in any other subtree. This guarantees exactly one path from the
root to any given node. Cases can exist where two different nodes contain
the same information, but they are still distinct nodes with different parents
and in different subtrees.

What if we let a given node have parents? This seems like a small change,
but it can have dramatic effects. Imagine multiple paths from one node to
another, with one path better than another. Or imagine a node as a parent
to one of its own ancestors, forming a ring of nodes that can be looped
through indefinitely.

Such a data structure is generally called a graph. You can think of a graph as
a tree with fewer restrictions-or, better yet, think of a tree as a special,
restricted graph. (Often, the distinction between the two is blurred, and
what one person might call a graph is accepted by someone else as a tree.)

Trees, Graphs, and Other Nonlinear Structures 285

In any case, a graph is a set of nodes that point to one another; different
limitations may exist on how the nodes point. If a pointer goes only one
way-like a tree, where the parent points to the child but not vice
versa-then you have a directed graph. However, if a given pointer links two
nodes equally (that is, you can't tell which is pointing to which), then you
have an undirected graph. The link between two nodes in a graph is called an
edge. In some graphs, the edge may have a value (or weight) assigned to it,
in which case you have a weighted graph.

Graphs are used much like trees and are common in artificial intelligence
work, where their greater flexibility is advantageous. Directed, weighted
graphs are particularly useful in goal decomposition (breaking up a large,
difficult goal into many small, easy goals). Researchers in the physical
sciences, such as biology and chemistry, often use graphs to represent
systems or molecules.

Again, it is beyond the scope of this book to treat graphs in any depth. If
you're interested, look at Fundamentals of Data Structures in Pascal (referred
to pt the end of Chapter 20), which devotes an entire chapter to the subject.

Sparse Arrays

From time to time, you may need to work with large arrays; possibly
maltidimensionallarge arrays. If you're not careful, you can quickly exceed
Tu;rbo's 32K structure limit. To illustrate,

var
PicData : array[1 .. s00,1 .. 500) of Integer;

At first glance PicData may not seem like an especially large variable. A
little math, however, shows that it requires 500,000 bytes of RAM (500 * 500
* 2bytes per integer). If you try to compile a program with this declaration,
you'll get a "Structure Too Large" error.

If you've got the heap space for it (that is, if MaxAvail > 500000), a pointer
approach overcomes the problem:

type
yCoordinates = array [1 .. 500) of integer; {a 1000 byte structure}

var
PlcData: array [1 .. 500) of AyCoordinates; {a 2000 byte structure}
Nt X, Y: integer;

begin
for N := 1 to 500 do

New(PicData[N)); { each call allocates 1000 bytes of heap space}
for X := 1 to 500 do { initialize each element }

286 Turbo Pascal Tutor for the Macintosh

end.

for Y := 1 to 500 do
PicData[X]"[Y] := 0;

{ use the array)

Here we've simulated a large two-dimensional array with an array of
pointers, each element pointing to a unique SOO-element integer array on
the heap.

Any single element can be addressed using an X-coordinate value to index
the array of pointers (and thereby select one particular SOO-element array),
and a Y coordinate to index into that array. For example, element (476,2) is
referenced as :=PicData[476]A[2].

Pretty sneaky, although it still takes memory to work. What if you don't
have the memory? Suppose that you need this array, but you don't need it
to hold very many values. (We'll talk later about how many values are "too
many.") Maybe you had a thousand or so non-zero values to place in the
array; the remaining 249,000 elements would all be zero. Such a structure is
called a sparse array, since the number of significant values is small
compared to the total number of storage locations. Is there some way to
store only the non-zero values?

There is indeed a way-by using a linked data structure. Suppose you
defined the following node:

type
NodePtr
Node =

record
Val
X,Y
Next, Last

end;

= "Node;

: Integer;
: Integer;
: Nodeptr;

Now, for each non-zero entry in the array, we use the Node data structure.
The non-zero integer value is held in Val, the coordinates are kept in X and
Y, and Next and Last point to the adjacent nodes along the X-axis. In the
following example, each node has the value (X,Y=Val):

-->(99,110=205)<--->(99,375=-10321)<--->(99,422=32032)<--
The general idea is that nodes with the same X value form a doubly linked
list using the pointers Next and Last. Furthermore, the list is sorted by the Y
coordinate along the X-axis. In other words, given nodes A and B, if
AA.Next = B, then AA.Y <= BA.Y. This makes searches faster, since you may
not need to search all nodes in a given list to find the one you're looking
for.

Trees, Graphs, and Other Nonlinear Structures 287

You could implement this using a singly linked list, but it makes insertions
and deletions more difficult. If you're tight on space, or if you're going to
build the array and not change it, a single link reduces space.

So now you have several doubly linked lists, where each list represents all
values having the same X coordinate. How do you find a given list, and
how do you find a node within that list? One solution is to define a Header
node for each list, and then link all the Header nodes together. To do that,
you'll need a few extra pointers (for the Header nodes only-the Header
nodes don't need the Yand Val values, only the X). Note that everything
must link together. Let's modify the definition of node as follows:

Node =
record

Next, Last : NodePtr;

end;

case Header : Boolean of
False (Val

X,Y
True : (XVal

Up, Down

: Integer;
: ARange);

Integer;
: NodePtr)

We've created a variant record. The field Header decides what type of node
this is. If Header equals True, then the node has the fields XVal (X
coordinate for the axis) and Up and Down (pointers to other Header nodes).
Using Up and Down, you can implement a doubly linked circular list of
Header nodes. Each Header then uses Next and Last to form a doubly
linked circular list of data nodes (Header equals False).

Here is boolean function NodeFound, which takes (X,Y) coordinates and
returns a pointer to the corresponding node (if it exists):

function NodeFound(TX,TY : Integer; var TPtr : NodePtr) :Boolean;
var

Found Boolean;
begin

TPtr := theHeadA.Up;
Found := False;
while (TPtrA.XVal < TX) and (TPtr <> theHead) do TPtr := TPtrA.Up;
if TptrA.XVal = TX then
begin

TPtr := TPtrA.Next;
while (TPtrA.Y < TY) and not TptrA.Header do

TPtr := TPtrA.Next;
Found := (TPtrA.Y = TY);

end;
NodeFound := Found;

end; {NodeFound}

Global variable theHead is of type NodePtr and is the master Header node
for the entire structure. This function first seeks to find a Header node for

288 Turbo Pascal Tutor for the Macintosh

the X coordinate desired. If a Header node is found, theHead searches the
list of data nodes until the Y coordinate desired is found. In either case, the
search ends (fails) if a coordinate greater than the one sought is found, or if
the list circles back to the initial Header.

Even when NodeFound returns False, it produces valuable information. In
such cases, TPtr points to the closest node. For example, suppose you're
looking for (259,321). It doesn't exist, but the nodes (259,17) and (259,421)
do. TPtr returns from NodeFound pointing to (259,421), which means that if
you want to add (259,321), you're at the correct point for insertion. Even if
there are no nodes with X coordinate 259,·TPtr still helps: It points to the
Header node of the list just above 259. So, once again, you are pointing to
the appropriate spot to insert a new Header node.

Mixed Sparse Arrays

There are many variations on sparse arrays, depending on how much space
you have and how fast the program must be. Suppose you need the
program to run faster and have memory to spare. You might keep your
original definition of Node and declare the following array:

var
Header : array[1 .. 500] of NodePtr;

Instead of a linked list of Headers, you have a fixed array of all 500
Headers, one for each possible X coordinate. Initialize all elements in this
array to be nil, then create linked lists as needed. The function NodeFound
then looks like this:

function NodeFound(TX,TY : Integer; var TPtr : NodePtr) : Boolean;
var

Done : Boolean;
begin

TPtr := Header[TX];
NodeFound := False;
if TPtr <> nil then
begin

Done := False;
repeat

if (TPtrA.Y >= TY)
then Done := True
else TPtr := TPtrA.Next

until Done or (TPtr = nil);
if Done

then NodeFound := (TPtrA.Y = TY);
end;

end; {NodeFound}

Trees, Graphs, and Other Nonlinear Structures 289

The inner search loop has been changed. Our linked lists are no longer
circular, since the nodes can't point to the elements in the array Header.
This forces us to make the test TPtr/\. Y >= TY inside the loop, since at the
until statement there's a chance that TPtr = nil (which makes the other
comparison illegal). To use this routine, you would have to do some
benchmarks to see if the increase in speed is worth the additional memory
required.

When to Use Sparse Arrays

The toughest question about sparse arrays is when to use them. How can
you tell if a linked list implementation will be smaller? The easiest way is to
define a normal array and find its size using the SizeO! function. Then
define a node for your linked list structure, and find out its size as well.
Divide the array's size by the node's size. This tells you the point (in terms
of number of nodes) at which your linked list version is eating up more
memory than the normal array.

In much the same manner, you can divide the dynamic memory size (given
at the end of a compilation) by the size of a node and find the maximum
number of nodes allowable.

You should realize that pointers, at 4 bytes each, can eat up space. There's
also between 8 and 20 bytes of overhead for every object you allocate in the
heap, so if your actual data is small compared to the rest of the node, you
may be better off with a regular array. On the other hand, if the data is
rather large, such as a complete record, then the linked list approach looks
better and better: The additional overhead for pointers becomes less
significant, and the wasted space in a regular array becomes very
significant.

Review

As a balance to Chapter 20, we examined nodes linked into nonlinear
structures such as graphs, trees, and arrays. Here are two books (in
addition to those mentioned in Chapter 20) that will provide you with
more detail about trees, graphs, and other linked structures .

• Dromey, R. G. How to Solve it by Computer. Englewood Cliffs: Prentice­
Hall International, 1982.

290 Turbo Pascal Tutor for the Mocintosh

• Knuth, D. E. Searching and Sorting, Vol. 3 of The Art of Computer
Programming. Reading: Addison-Wesley, 1973.

Sorting and Searching 291

c H A p T E R

22

Sorting and Searching

Searching and sorting are tasks common to virtually all applications for
computers, from games to word processing to database management. Yet
poorly written search and sort routines can result in unacceptably slow
programs. So, more research has been done and more papers submitted on
these topics than all others in computer science put together, with the
possible exception of programming languages. As there are many books on
these topics, we'll review only the basic examples of sorting and searching
in this chapter.

Sorting

Sorting can be done on various levels. For instance, you can sort by
grouping similar items together (all two-story homes, for example, could
make up a group). You can also sort and order a group of similar items by
predetermined ascending or descending values (all two:..story houses
valued from $125,000 to $195,000, listed in ascending order). Let's look at a
few sorting methods, using a list of integers as the data to be sorted. They
range from the simple and slow to the sneaky and fast.

292 Turbo Pascal Tutor for the Macintosh

Insertion Sort

In Part 1 of this book, we presented a sample program to sort a list of
integers using insertion sort method:

procedure InsertSort(ListMax : Integer);
var

Indx,Jndx,Val : Integer;
begin

for Indx := 2 to ListMax do
begin

Val := List[Indxj;
Jndx := Indx;
while List [Jndx-lj > Val do
begin

List [Jndxj := List [Jndx-lj i
Jndx := Jndx - 1

end;
List [Jndxj := Val

end
end;

This procedure assumes that List is declared as an array[l .. ListMax] of
integer. An insertion sort takes each number in the list and moves it toward
the top of the list (leftmost element), shuffling the other numbers as it goes,
until all the numbers preceding it are of a lower value. Starting at the top of
the list, the sort works its way down the list, so that the upper portion of
the list is always sorted. Suppose that, partway through the sort, the list
looked like this:

-10 -2 15 19 55 69 0 -20 42 100

The next low-value number we come across is 0, and that number keeps
moving left until it finds a number less than itself (-2). The list would then
look like this:

-10 -2 0 15 19 55 69 -20 42 100

The next number to be moved, -20, illustrates a special case in insertion
sorts. The number -20 is of the lowest value in the list of numbers; you
must know how to stop when you hit the top of the list since you'll never
encounter a lower value in the list itself.

Three possible solutions present themselves. First, if you're working with a
list of N elements, then declare the array to have N + 1 elements (D .. M and
store the lowest possible value in location O. For example, you might do the
following:

const

Sorting and Searching 293

ListMax = 10;
var

List: array[O .. ListMax] of integer;
begin

List[O] := -Maxlnt - 1;

end.

The values you want sorted are stored in locations 1 through ListMax. The
location List[O] acts as a stopper or sentinel; since it's the lowest possible
integer value, nothing can move beyond it.

In some cases, you won't be able to use this extra location. For example,
when sorting part of a list, there may not be a "free" location there. You can
then use the second approach: Before starting the sort, find the lowest value
in the list and move it to List[1] as the sentinel, substituting it for the
present sentinel value. For example, if our original list to be sorted looked
like this,

-10 19 15 -2 69 55 0 -20 42 100

after the search and swap, the list would look like this:

-20 19 15 -2 69 55 0 -10 42 100

As you can see, the values -20 and -10 traded places. Now, all other values
in the list are greater than -20, thus all values will stop moving when they
reach -20 (if not before).

The third solution is to put a goto statement in the inner loop, jumping out
of the loop if Jndx gets down to 1.

Shellsort

The insertion sort, while effective, suffers from the large number of
comparisons and exchanges needed to move a number from its starting
position to its final one. A computer scientist named Donald Shell
suggested that, since most numbers sorted are going to move a fair amount
anyway, it might be more efficient to compare and swap numbers of
greatest distance from each other first, shrinking the distance between
numbers until you return to the ones in closest proximity to each other.
This method is known as shellsort or sorting by diminishing increment.

Two issues immediately arise in considering shellsort. First is the sort
method to use, since shell sort only states to sort those numbers some
distance from each other, not how to sort them.

294 Turbo Pascal Tutor for the Macintosh

The second issue is deciding what incremental value to use. Shellsort is
difficult to analyze; most studies of its effectiveness are based on trial-and­
error testing. The literature suggests at least three approaches. Assuming a
list of N integers, you might use one of the following sets of diminishing
increments:

• Start with Inc = N div 2; divide Inc by 2 each time.
• Start with Inc = (2 P)-1, where P = Trunc(N log 2); decrement P by 1 each

time.

• Set Inc = 1, then continue to set Inc := 3*Inc + 1 until Inc> N; divide Inc
by 3 at the start of each loop.

The following example of Shells art (adapted from Algorithms; see the end of
this chapter) uses the third method:

procedure ShellSort();
{ purpose: sort list using shell algorithm}

label
ExitLoop;

var
Indx,Jndx,Val,Inc integer;

begin
Inc := 1;
repeat

Inc := 3*Inc + 1
until Inc > ListMax;
repeat

Inc := Inc div 3;
for Indx := Inc+1 to ListMax do
begin

Val := List[Indx];
Jndx := Indx;
while List[Jndx-Inc] > Val do
begin

List [Jndx] := List[Jndx-Inc];
Jndx := Jndx - Inc;
if Jndx <= Inc

then goto ExitLoop
end;

ExitLoop:
List [Jndx] := Val

end
until Inc = 1

end; {ShellSort}

At the center of the program is the insertion sort routine (using the goto
solution) with one major change: The number 1 has been replaced by the
variable Inc. Because of the way Inc is initialized, it will 'equal 1 the'last time
through the loop and will do a regular insertion sort. By that time, the list
will be mostly sorted. The remaining few that have to be moved don't have
far to go.

Sorting and Searching 295

Quicksort

Shell sort is a simple, efficient sorting method. However, you may find
yourself in a situation where you need the list sorted as quickly as possible.
In such cases, your best bet is probably Quicksort, an algorithm developed
by C.A.R. Hoare.

The basic idea of Quicksort is as follows: Using the list of integers
List[l .. ListMaxl, perform the following steps:

• Pick some number in List, which we'll call Val.

• Move all the numbers in List so that Val is in its correct location,
List[Indxl. This means that all the numbers in List{1 .. Indxl-ll are less than
Val (although not necessarily sorted), and that all the numbers in
List[Indx+l .. ListMaxl are greater than Val (also not necessarily sorted).

• Now perform the same operation for each sublist, List{1 . .Indx-l1 and
List[Indx+l . .ListMaxl. This continues until each sublist is too small to
sort.

The simplest implementation of quicksort is a recursive one. Adapting
again from Sedgewick, you have the following implementation:

function Partition (Left, Right : integer) : integer; { partition list into two
sublists }
var

Val,Indx,Jndx,Temp : integer;
begin

Val := List[Right];
Indx := Left - 1; Jndx := Right;
repeat

repeat Indx := Indx + 1 until List[Indx] >= Val;
repeat Jndx := Jndx - 1 until List [Jndx] <= Val;
Temp := List[Indx];
List [Indx] := List[Jndx];
List [Jndx] := Temp

until Jndx <= Indx;
List [Jndx] := List[Indx];
List [Indx] := List[Right];
List [Right] := Temp;
Partition := Indx

end; {Partition}

procedure QuickSort (Left,Right : integer);
{ recursive implementation of Quicksort

var
Indx : integer;

begin {main body of proc QuickSort
if Left <= Right then begin

Indx := Partition(Left,Right);
QuickSort(Left,Indx-1);
QuickSort (Indx+1,Right)

296 Turbo Pascal Tutor for the Macintosh

end
end; {QuickSort}

The procedure Partition uses the last value (List[Right) in the current sub list
as Val, the one to be moved to its correct location. It then starts at both ends
of the list and moves toward the center, swapping numbers on the left
greater than Val with those on the right less than Val. Once it hits the center,
it picks the last number greater than Val (List[Indx)) and swaps it with Val
(which is still sitting at List[Right). Val is now in its final location, and Indx
becomes the new dividing point. The procedure QuickSort calls Partition for
the current list, then calls itself for the left and right sublists that Indx
divides.

You may not want to use a recursive approach in some situations. If the list
is large, the stack might overflow. This happens when the stack runs into
the heap-which is bad news for data stored in the upper regions of the
heap. You can avoid recursion by implementing your own stack, either
with an array or with a linked list (as shown in Chapter 20).

Here's a non-recursive version of QuickSort, assuming you have a set of
stack routines (ClearS tack, Push, Pop, StackEmpty):

procedure QuickSort;
(non-recursive implementation of Quicksort

var
Left,Right,Indx : Integer;
Done : Boolean;

begin
Left := 1; Right := ListMax;
ClearStack; Done:= False;
repeat

if Left <= Right then
begin

Indx := Partition(Left,Right);
if (Indx-Left) > (Right-Indx) then
begin

Push(Left); Push(Indx-l);
Left := Indx + 1

end
else
begin

Push(Indx+l); Push(Right);
Right := Indx -1

end;
end
else if not StackEmpty then
begin

Pop(Right); Pop (Left)
end
else Done := True

until Done
end; {QuickSort}

Sorting and Searching 297

This version always pushes the larger sublist on the stack, looping back to
partition the smaller one first. This helps reduce the number of values
pushed onto the stack; the upper limit is about 19 ListMax (lg means log
base 2). If ListMax = 10, then the stack need only hold four sets of values.
Your best bet is probably to use an array-based stack, since the overhead for
a linked list stack isn't worth it.

Searching

As mentioned at the start of this chapter, searching techniques help you
determine the location (if any) of specific data, in order to retrieve, modify,
or verify its existence or place more data nearby (as in sorting). Usually,
you're searching for a key, some part of the information that identifies the
rest of it. In the simplest case, such as a list of integers, the key is the
information itself. In more complex settings, such as a list of records, the
key might be an ID number, a name, or something even more complex. In
every case, you know the key, and you want to find its location. Let's look
at a few methods of searching.

Sequential Search

Given a list of values (such as integers), the most straightforward way to
find a given value (or key) is to start at the top of the list and search it
sequentially until you come to the end. With certain data structures, such
as linear linked lists, this is your only option, since you usually have no
way of jumping into the middle of the list. (Arrays provide more options,
which we'll examine momentarily.) Right now, let's assume we're looking
for a given integer value in the integer array List[1 .. ListMaxl. Our routine
might look like this:

function Found(Val : Integer; var Indx : Integer) : Boolean;
var

Flag : Boolean;
begin

Flag := False;
Indx := 1;
while not Flag and (Indx <= ListMax) do

if List[Indx] = Val then
Flag := True

else
Indx := Indx + 1;

Found := Flag
end; {Found}

298 Turbo Pascal Tutor for the Macintosh

This function returns True if Val is found in List and sets Indx to the
appropriate location; otherwise, it returns False and Indx equals ListMax+ 1.
If List has been sorted, then it can be made a bit more efficient:

function Found(Val : Integer; var Indx : Integer) : Boolean;
var

Done : Boolean;
begin

Found := False;
Done := False;
Indx := 1;
while not Done and (Indx <= ListMax) do

if List [Indx] = Val then
begin

Done := True;
Found := True

end
else

if List [Indx] > Val then
Done := True

else
Indx := Indx t 1

end; {Found}

Now the search function knows to quit as soon as it encounters a number
greater than Val, since the rest of the list will also be greater than Val.
Unless List is short, however, you're better off using a binary search.

Binary Search

Think for a moment about looking for a given value in a sorted list of
numbers. Instead of starting to the left and going through the list, suppose
you start in the middle. If you happen to hit the exact value you want,
you're done. If the value is too large, then you know to search the left half;
otherwise, search the right half. Repeat this process on the appropriate half
until you find the value or run out of lists.

You've just performed a binary search-a zeroing-in process that isn't too
different from the way you look up words in a dictionary. Here's an
implementation:

function BFound(Val : integer; var Indx : integer) : boolean;
var

Left, Right : integer;
begin

Left := 1; Right := ListMax;
repeat

Indx := (LefttRight) shr 1; { = div 2 }
if Value < List[Indx]

Sorting and Searching 299

then Right := Indx - 1
else Left := Indx + 1

until (Value = List[Indx)) or (Left> Right);
BFound := (Left <= Right)

end; {BFound}

The advantage of a binary search is that the most comparisons you'll have
to do is Ig of ListMax. With a sequential search, you'll average ListMax/2
comparisons, and your worst case is ListMax.

If ListMax = Maxlnt (32767), here are the best, worse, and average
performances of sequential and binary searches:

Sequential
Binary

Best
1
1

Worst
32767
16

Average
16383
8

As you can see, there's quite a difference between the two methods.
However, if you will be changing the list a lot, keeping it sorted could be
unacceptably slow, unless you're using a linked list. If you're using a linked
list, however, you can't use the binary search method. Fortunately, there is
yet another technique that combines the two approaches: hashing.

Hashing

You can easily maintain (add to and remove from) a sorted linked list, but
you must search it sequentially. Sorted arrays are easily searched, but you
have to do a lot of work to keep them sorted. Hashing takes the best of both
approaches. For example, suppose you have the following definitions:

const
HMax

type
NodePtr
Node =

record
Next
Data

end;
var

= 63;

= "Node;

NodePtr;
integer

HList : array[O .. HMax) of Nodeptr;
RList is an array of Header nodes, each one possibly pointing to a linked
list. To add a value to the list, you must first use a hashing function to
choose among the header nodes. This function takes the data subfield (on
which we're sorting) and returns some result in the range O .. HMax. It
always returns the same result for the same data value (or you couldn't
find the stored data). Also, it tries to spread the hash values evenly over the

300 Turbo Pascal Tutor for the Macintosh

range O .. HMax, so that most of your values don't end up in only a few
locations.

Once you have the hash value, you can use it as an index into HList. You
now have a linked list to which you can add your value. This list can be
sorted or not, as you prefer. Finding a number involves the same process:
You must use the hash function to find the Header node in HList, then
search the linked list until you find the value or reach the end.

Do you see how this is a compromise between pure arrays and pure linked
lists? If HMax = 0, then you've got a simple linked list; if HMax = the number
of values to be stored (and you drop the hash function), then you've got a
regular array. The value of HMax determines just how much you're leaning
toward one or the other. A large HMax reduces collisions (when two or
more values map to the same index) and speeds up the search, while a
small HMax reduces the amount of memory initially allocated.

External Search

Sometimes the data you're after is in a file. The file may be too large to have
in memory, so you pull in selected records as you need them. Each time
you read a record from the file, it costs you a certain amount of time. Your
goal, then, is to read as few records as possible when searching for the one
desired.

The worst case is to start at the beginning of the file and read each record
until you find the one you want. This method would be necessary if you
could only read files sequentially. Luckily, Turbo Pascal allows random
access of files (via the Seek procedure). So, if a file is sorted, you can use a
variation of the binary search to look for a given record.

However, sorting a file is even messier than sorting an array, and you still
might have to read several records before finding the record (or verifying
that it isn't there). More efficient techniques are needed.

One approach is to maintain a separate list, called an index table, consisting
of keys and record numbers for all the records in the file. Suppose an
accounting application needs to retrieve a particular customer's record
from a sales file, based on the customer's name. You might make the
following definition:

type
CustIndex =

record
Name : NameStr;

Sorting and Searching 301

Index
end;

: integer

You now have a data type for each entry in the index table, associating a
name with a record number in the file. The question is, what data structure
do you use for the table itself? The answer depends on how big the table
will be and if it will tend to change in size a lot. Essentially, you have the
choices we've already presented: array, linked list, or hash table. You can
even add some twists, such as faking a dynamically sized array. And you'll
probably want to write the index table itself out to disk, to avoid having to
recreate it each time by reading through the entire file of customer records.

Given the choice of an index table, you can then use the searching and
sorting options to find the name, get the index, and read in the appropriate
record.

var
ITable
ICount
CFile

array[1 .. TabMax] of CustIndex;
O .. TabMax;
file of CustRec;

function RecFound(FName : NameStr; var Cust CustRec) Boolean;
var

Tndx : Integer;
begin

Tndx := 1; RecFound := False;
while (Tndx <= ICount) do with ITable[Tndx] do

if FName = Name then
begin

RecFound := True;
Seek(CFile,Index);
Read(CFile,Cust);
Tndx := ICount + 1

end
else Tndx := Tndx + 1

end; (RecFound}

This routine does not assume that the index table (ITable) is sorted. It does a
sequential search for the name. If the name is found, the routine reads in
the appropriate record and returns True; otherwise, it returns False.

Review

In this chapter, we uncovered the rudiments of sorting and searching. After
our discussion of the insertion sort method, Shellsort, Quicksort, hashing,
and sequential, binary, and external searching, you may want to investigate

302 Turbo Pascal Tutor for the Macintosh

further. There are many books on the topic, including the following and the
ones mentioned in previous chapters, which provide more detailed
information .

• Sedgewick, R. Algorithms. Reading: Addison-Wesley, 1984 .
• Knuth, D. E. "Searching and Sorting," The Art of Computer Programming,

Vol. 3. Reading: Addison-Wesley, 1983.

Sorting and Searching 303

304 Turbo Pascal Tutor for the Macintosh

c H A p T E R

23

Writing Large Programs

The programs presented thus far in this book haven't stretched the capacity
of either Turbo Pascal or the Macintosh-not by a long shot. Many
programmers will never have occasion to produce programs any larger
than Turbo Typist. If you're in that group, count yourself lucky: You'll
never experience the heartaches that result from stretching a given
computer / compiler combination to the limit.

This chapter is dedicated to those of you that will someday produce a large
Macintosh application-a program with thousands of lines of source code
or huge memory requirements, or both.

As drawn up by Professor Wirth in his cozy study at the University of
Zurich, Pascal has no limitations. It runs on an imaginary computer with
infinite RAM, capable of accommodating an arbitrary number of arbitrarily
large arrays, with an infinite amount of memory left over for huge code
blocks and bottomless stacks for infinitely deep recursion. However, in real
life, Turbo Pascal has boundaries-and, depending in what direction you
stretch things and how far, you will eventually bump into one.

These boundaries result from judgment calls by the author of the compiler.
The author of Turbo Pascal, for example, decreed that sets shall have no
more than 256 elements. It was decided that this number was large enough
for most uses and that larger sets would eat up too much memory and be
too slow to work with.

Writing Large Programs 305

Faking Large Arrays

A restriction we're familiar with by now is the 32K limit of any single data
structure. Turbo Pascal permits no type definitions where a variable of that
type would occupy more than 32K. This problem, which is especially
galling in light of the Macintosh's potential to address 4 million bytes of
RAM, also stems from a design decision. Because of a quirk in the
instruction set of the processor, structures any larger are significantly
slower to access.

Arrays are most likely to come up against this constraint, so let's
investigate a couple of strategies for faking big arrays.

In Chapter 21, we learned a trick for simulating large two-dimensional
arrays. In a nutshell, instead of declaring variable PicData to be

var PicData : array[1 .. 500,1 .. 500] of Integer;
begin

PicData[14,312] := 1234;

we defined it as

var PicData : array[1 .. 500] of Aarray[1 .. 500] of Integer;
begin

PicData[14]"[312] := 1234;

A more general solution is to abandon array notation entirely. Suppose an
application requires a one-dimensional array of 30,000 reals. Since

var
theArray : array [1 .. 30000) of Real;

won't compile (this structure is 120,000 bytes long), let dedicated
procedures and functions simulate the array structure for you, as shown
here:

program FakeBigArray;
type

arrayHelper = array[1 .. 7500) of Real; { a 30,000-byte structure}
var

Part1, Part2, Part3, Part4: "arrayHelper; {16 bytes of global data}

function GetReal(Index: integer): Real;
var

N: integer;
begin

N := Index mod 7500;
case Index of

306 Turbo Pascal Tutor for the Macintosh

00001 .. 07500: GetReal := Part1A[N];
07501 .. 15000: GetReal := Part2A[N];
15001 .. 22500: GetReal := Part3A[N];
22501 .. 30000: GetReal := Part4A[N];

end;
end;

procedure PutReal(Index: integer; R: real);
var

N: Integer;
begin

N := Index mod 7500;
case Index of

00001 .. 07500: Part1A[N] := R;
07501 .. 15000: Part2A[N] := R;
15001 .. 22500: Part3A[N] := R;
22501. .30000: Part4A [N] := R;

end;
end;
var

N: integer;
begin

New(part1); New(part2); New(part3); New(part4); { allocate space}
for N := 1 to 30000 do

PutReal(N,O.O); {initialize}

{ Use GetReal to read the array; write to it with PutReal }

end.

This program uses four arrays on the heap to simulate one large one. The
simulation is based on using GetReal and PutReal instead of array notation
in accessing the simulated array. Wherever you'd normally say

theArray[X] := 3.14159

instead use

PutReal(X, 3.14159).

And instead of

WriteLn(theArray[X]);

use

WriteLn(GetReal[X]);

In Part 5 of this book, we'll learn more elegant and general solutions to
large structures involving the Toolbox calls NewPtr and NewHandle. These
routines can create effective arrays as large as available heap space, from 20
to 2,000,000 bytes. The "handle" approach is particularly interesting,

Writing Large Programs 307

because it allows a heap object to grow (and shrink) as conditions dictate,
much like a file.

32K of Global Variables

The same processor quirk behind the 32K structure maximum also prevents
a program from declaring more than 32K of global variables. Similarly, no
single procedure or function can declare more than 32K of local variables.
For example, this program refuses to compile:

program TooMuchGlobal;
type

array10K = array [1 .. 5000] of integer;
var

A,B,C,D: array10K; {10K each; 40K total
begin
end.

Try it and you'll get the compile-time message Too many global
variables. A more accurate description would be, "More than 32K of
global variables." TooMuchGlobal won't compile even in a 4-megabyte
Macintosh, although this program will:

program CompilesFine;
type

array10K = array [1 .. 5000] of integer;
var

A,B,C,D: Aarray10K;
begin

New(A); New(B); New(C); New(D);
end.

CompilesFine has 16 bytes of global storage. Of course, whether or not it
succeeds in allocating 40,000 bytes of heap storage at run time is another
story.

Stack Data

At run time, Turbo Pascal programs automatically create, use, and finally
destroy the local variables of procedures and functions using a last-in,
first-out methodology known as the stack. Depending on the amount of
memory in your machine and other factors, there can be anywhere from
hundreds of thousands of bytes to only about 8K available for the stack.

308 Turbo Pascal Tutor for the Macintosh

When the stack fills up and attempts to store data outside the area reserved
for it, a Stack Overflow run-time error occurs.

The stack is used for

• the return address of each routine that has called a currently active
proced ure or function

• parameters passed to procedures and functions
• the local variables of all active procedures and functions

Programs are most likely to cause a stack overflow if they perform the
following operations, especially in combination:

• declare large local variables
• pass large variables by value
• use recursive algorithms

Large Local Variables

The following program demonstrates how the stack is used for storing local
variables. Proc1 and Proc2 each declare 30K of local variables, variables that
exist only when their enclosing procedure is active.

program LocalVars;
type

array10K = array [1 .. 5000] of integer;

procedure Proc1;
var

A,B,C: array10K;
begin

WriteLn('60K of local variables on stack');
ReadLn;

end;

procedure Proc2;
var

A,B,C: array10K;
begin

WriteLn('30K of local variables on stack');
ReadLn;
Proel;
WriteLn('30K of local variables on stack');
ReadLn;

end;
begin

WriteLn('No local variables on stack');
ReadLn;
Proc2;

Writing Large Programs 309

WriteLn('No local variables on stack');
ReadLn;

end.

If your machine is tight on memory, you'll get a Stack Overflow when
either Proc1 or Proc2 attempts to allocate space for its arrays.

Passing Large Structures by Value

When passing a structure by value to a procedure, a copy is made of the
structure and placed on the stack. For example,

program StackPassing;
type

array10K = array [1 .. 5000] of integer;
var

X: Array10K;

procedure Proc1(anArray: array10K);
begin
end;

begin
Proc1 (X);

end.

In the process of calling Proc1 from the main program at run time, a copy of
array X is placed on the stack. This consumes 10K of stack space and takes
time. This space remains occupied until Proc1 returns. Had Proc1 declared
its parameter with the var attribute instead,

procedure Proc1(var anArray: array10K);

all that would have gone on the stack would be the address of array X-4
bytes instead of 10,000.

This is not to say that all parameters should be passed by reference; passing
by value allows better separation between caller and client and therefore
fewer chances of unexpected interactions. But when working with arrays
(even large strings), keep in mind the overhead cost of pass-by-value.

Recursion

The third primary cause of stack overflow is recursion. Since a recursive
routine may call itself hundreds or thousands of times, there's an excellent

310 Turbo Pascal Tutor for the Macintosh

chance of stack overflow unless its local variable and parameter storage
requirements are small. For example, this program recurses endlessly,
using up 10K of stack with each call, until the error handler finally takes
over:

program EndlessRecursion;
type

arraylOK = array [1 .. 5000] of integer;
var

RecursionCount: integer;

procedure Procl;
var

A: arraylOK;
begin

RecursionCount := RecursionCount + 1;
WriteLn('Number of KBytes now on stack: ' , RecursionCount * 10);
Procl; { recursive call }

end;

begin
RecursionCount := 0;
Proel;

end.

Again, don't take this to mean that you shouldn't write recursive
algorithms. Such programs are often the most efficient and elegant solution
to a given problem. Just be aware of the program's stack requirements:
How many bytes of local variables and parameters does the routine use?
What's the worst-case depth to which the routine might nest?

The stack starts in high memory and grows down; the heap starts low and
grows up. A stack overflow occurs when the two meet. The heap grows
slowly, about 6K at a time, in accordance with allocation requests via New.
Note, however, that the MaxAvail function expands the heap to its
maximum, resulting in approximately 8K of stack space. If this isn't enough
stack for your application, be careful not to call MaxAvail. We return to the
subject of stack allocation in more detail in Chapter 30, where we describe
techniques to allocate heap and stack space more equitably.

Segmentation: The $S Directive

Turbo Pascal follows standard Macintosh practice by dividing the
programs that it creates into chunks known as segments. (This term is
unrelated to the concept of segments used in 8086 family processors, such
as used in the IBM PC.) Macintosh architecture breaks large programs into

Writing Large Programs 311

segments so that code modules can be independently loaded into memory
and later expunged.

This allows routines that aren't needed in a given situation to stay on disk
until required. For example, a lengthy initialization routine need only be in
memory at the start of a program's execution. Once its task is complete, the
memory it occupies can be given back.

When the compilation of a particular program or unit hits the 32K barrier,
you are forced to segment your code whether you want the benefits of
automatic segment loading or not. To segment a program or unit, turn on
segmentation at the start of the program with {$S+}. Then, before each
procedure and function, use a $S directive to specify the segment that
procedure or function should belong to. For example,

program SegDemo;
{SSt} { Turn segmentation on; it's off by default

procedure ProcO; { By default, code goes to the "blank" segment
begin
end;
{$S segl} { Until next $S directive, put all code generated}
procedure Procl; into a code segment named 'segl'--case is significant}
begin
end;
procedure Proc2; { Also in segment 'segl'
begin
end;
{$S }
procedure Proc3; { Like ProcO, a member of the "blank" segment }
begin
end;
begin { Ditto for the main program }

ReadLn;
Proel;
ReadLn;

end.

Enter and compile program SegDemo to disk. Then exit Turbo and execute
this program (use the Transfer option of the File menu). When this program
first gets- control, only the procedures in the blank segment are initially in
memory. The call to Proc1 automatically brings in segment segl, so listen for
disk activity just after pressing Return to satisfy the ReadLn. For more
information on segmentation, see Chapter 9 of the Turbo Pascal User's Guide
and Reference Manual.

312 Turbo Pascal Tutor for the Macintosh

Compile-Time Memory

It's possible to run out of memory when compiling a program with a large
number of identifiers. Turbo Pascal allocates a certain amount of space for
storing symbol table information. If this space fills up, you've got to go
back and find some space.

There is a good and a bad way to reduce the number of identifiers in a
program. The bad way is to "de-Pascalize" your program, to strip it of
high-level niceties such as enumerated data types and plentiful constants.

The good way is to convert your program into one or more units. Then the
compiler only has to tackle the identifiers in a given unit or main program.
You'll make things even easier on the compiler if you keep the number of
identifiers in each unit's interface to a minimum. This approach produces a
good result all around: no identifier crisis, fast compilations, and detail
hiding.

Now that you know some techniques for overcoming size limitations in
Turbo Pascal, let's move on to the goto statement.

Writing Large Programs 313

314 Turbo Pascal Tutor for the Macintosh

c H A p T E R

24

The Goto Statement

In this chapter, we'll study the black sheep of the Pascal family: the go to
statement. A goto causes an unconditional transfer of control to another
point in the program, a point marked by a special construct called a label.

Syntax of the Goto Statement

A goto statement consists of the reserved word goto, followed by a number
or identifier that has been declared as a label in the declaration part of the
currently executing procedure (or function or main program). You cannot
use goto to jump into or out of a procedure (or function or main program)
but only to another statement within that procedure (or function or main
program). Its syntax diagram is shown in Figure 24.1.

gata statement

Figure 24.1 : Syntax Diagram of Goto Statement

The label marking the destination of a goto statement must be declared in
the declaration part of a program, procedure, or function. Figure 24.2
shows the syntax of a label declaration part in Turbo Pascal.

The Goto Statement 315

label

Figure 24.2: Syntax Diagram of Label Declaration Part

In Standard Pascal, labels cannot be identifiers; they can only be unsigned
integers (for example, '1', 'lOa'). Turbo allows labels to be normal
identifiers, to better describe the place in the program to which they refer.

How to Use the Goto Statement-And Why
Not to

Early programming languages had fewer flow control and decision-making
statements than are available in Pascal. For instance, the original
FORTRAN had no else clause in its version of the if statement. Here are
two versions of a program fragment, one written in Pascal, the other in
FORTRAN.

Pascal

if A < 27 then
A := A + 2

else
A := A + 1;

FORTRAN

IF A .LT. 27 THEN GOTO 1
A = A + 1
GOTO 2

1 A = A + 2
2 CONTINUE

The FORTRAN version is almost laughably complicated. If the value of
variable A is less than 27, execution continues on the line with the number 1
(a label) before it. (.LT. is FORTRAN's way of saying "less than" because
keyboards didn't always have < and> back when FORTRAN was defined.)
Otherwise, the statement A = A + 1 is executed. (FORTRAN uses = for
assignment; Pascal uses :=.) Then the computer executes the statement
GOTO 2, which jumps to the statement with the word CONTINUE in it.
(The CONTINUE statement does nothing; it is merely a place holder for a
label.)

How much clearer the Pascal version is! Instead of thinking in terms of
machine language-like jumps, you can express an algorithm in near­
English. Because of the descriptive power of Pascal's structured statements,
there's little need for gotos and labels.

316 Turbo Pascal Tutor for the Macintosh

However, a goto can be helpful once in a while. One instance is when you
must exit from the middle of a loop, such as a for or a while loop. Consider
this loop:

for I := 1 to 10 do { Get 10 numbers }
begin

Write('Enter a number (< 0 to stop): ');
ReadLn(Number[I]);

if Number < 0 then
goto NoMore;

end;
NoMore:

This loop normally gets 10 numbers from the user, but it terminates at once
if the user enters a negative number.

Even in this case, it would be better programming style to make the loop a
separate procedure, and use Exit to leave the procedure (and therefore the
loop) when you get a negative :lumber.

Here's another example of how confusing gotos can be. Can you predict
what this program writes to the screen?

program Spaghetti;
label

One, Two, Three, Four;
var

A : integer;
begin

A := 0;
One: if A > 3 then goto Three;
Two: A:= A + 5; goto Four;
Three: A:= A + 3; goto Two;
Four: if A mod 3 <> 0 then goto One;

WriteLn (A);
ReadLn;

end.

The answer is 21.

Review

As Niklaus Wirth and Kathleen Jensen say in The Pascal User Manual and
Report: "The presence of gotos in a Pascal program is often an indication

The Goto Statement 317

that the programmer has not yet learned 'to think' in Pascal (as this is a
necessary construct in other programming languages)."

We agree, and we encourage you to build programs without them.

318 Turbo Pascal Tutor for the Macintosh

c H A p T E R

25

Computer Numbering Systems:
Boolean Operations on Integers

In our discussion of operators in Chapter 9, we mention that it is possible to
use the operators normally reserved for boolean values with integers and
long integers. In this chapter, we explore the meaning and application of
such apparently nonsensical expressions as 3 and 25 and 2541 or 12.

Numbers as Bits and Bytes: Representing
Integers in Memory

To understand how boolean operators work on integers, you must first
understand how integers are stored in memory. As you may recall from
earlier discussions, all data is represented internally as Is and Os, that is, as
bits. How does a group of bits "get together" to describe the value of an
integer? The "code" is similar to what we normally use to represent
numbers. We will examine the base 10, or decimal, system we use daily and
see how we can make it work when there are only two possible values for a
digit: 0 and 1.

Place Value

When we count to 10, we begin with single digits, like so:

Computer Numbering Systems: Boolean Operations on Integers 319

0 9 digits left
1 8
2 7
3 6
4 5
5 4 "
6 3 "
7 2 "
8 1
9 no digits left

After counting to 9, we move on to 10 without thinking-a 1 followed by a
o.
What are we really doing here? We're reusing symbols to avoid inventing
new ones. The 1 in the number 10 is the symbol for 1, but because of its
place in the number it represents a value of ten: The 0, a place holder,
represents a value of nothing. Similarly, the 2 in the number 20 represents a
value of twenty and the 3 in 35 represents a value of thirty (with the 5 still
representing a value of five). The idea of having a digit represent a different
value depending on its location in the number is called positional notation,
and it is the central idea behind all modern numbering systems (including
binary and hexadecimal).

The second digit from the right in a decimal number is said to be in the
"tens" place; similarly, the 5 in the number 543 is said to be in the
"hundreds" place. Each place to the left has a value of 10 times its
predecessor, ad infinitum. It's no accident that the multiplying factor
between places is 10 and not 14,4, or 7: It's the number of fingers owned by
ero-Magnon mathematicians.

If the digits 8 and 9 suddenly disappear, we would have no way of
representing them with a single digit. However, we could make the symbol
10 stand for the value eight, 11 for nine, and so on. In this case, we'd be
counting in octal (base 8).

If we continue our exercise by eliminating all the digits down to 7, 6, or 5,
then the single-digit numbers decrease correspondingly-and the
multiplying factor for the numbers in successively higher places decrease
as well. Base 2 uses two digits and a multiplying factor of two between
places. Here's a table that shows what happens:

320 Turbo Pascal Tutor for the Macintosh

Table 25.1: Multiplying Factors for Different Bases

Base

Base 10
Base 8
Base 7
Base 3
Base 2

Available Digits

0,1,2,3,4,5,6,7,8,9
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6
0,1,2
0,1

Place Values

1,10,100,1000, ...
1,8,64,256, .. .
1,7,49,343, .. .
1,3,9,27,81, .. .
1,2,4,8,16,32,64 ...

Value of Symbol'lO'

Ten
Eight
Seven
Three
Two

Using these place values, we can understand how to read a number in any
base. For instance, in the number 1437 (where the subscript indicates that
the number is expressed in base 7), we can look at the places as follows:

143

1 x 72 = 49
4 x 71 = 28
3xil = + 3

72

How about the number 00111001 2? It would read

001 1 100 1

1 x 25 = 32
1 x 24 = 16
1 x 23 = 8
1 x 2° = + 1

57

It is possible to have a numbering system with more than 10 digits.
Hexadecimal (hex for short) has 16 digits-O through 9 plus A through F.
The digit A has the value ten, B is eleven, and so on up to F, which is fifteen.
Here's an e:xample of how to read hex:

$3 F E

3 x 162 = 768
15 x 161 = 240
14 x 16° = + 14

1022

Hexadecimal numbers are usually indicated by a preceding dollar sign or,
in some systems, with a letter H at the end. Turbo Pascal uses the dollar-

Computer Numbering Systems: Boolean Operations on Integers 321

sign convention. So, 100 represents a decimal value, and $100 is a
hexadecimal value equal to 256 decimal.

The values of the places in hex go up by a factor of 16 each time you move
to the left. Thus, it is possible to write large numbers in only a few hex
digits. ($10000 equals 64K; $100000 equals 1 megabyte-l048576 decimal.)
A numbering system with more single digits (that is, with a higher base)
always expresses a number more compactly than one with fewer possible
digits (a lower base).

Exercises

Translate these numbers to base 10. (The answers are in Appendix B.)

1. 12123
2. 84359

3. 1111112

4. 30517
5. $3FF

Reversing Base Values

It is also useful to understand how to reverse the process, to convert
numbers from decimal to an arbitrary base. To do this, consider the values
of the places in the base you are converting to, and find the largest number
that is less than the one you are converting from. Then, divide the number
you are converting by the value of that place, and place the quotient in that
place. Next, take the remainder from the division and repeat the process,
filling in unused places with Os.

To show this technique in action, let's convert the decimal number 37 to
binary. As shown in Table 25.1, the places in binary have the values 1,2,4,
8, 16, 32, 64, and so on, which are the powers of 2 from 0 on up. Since 37 is
less than 64, the left-most digit (also called the most significant digit) of the
binary representation of 37 must be in the 32s place:

32s 16s 8s 4s 2s Is
37/32 = 1, remainder = 5

1 ? ? ? ? ?

322 Turbo Pascal Tutor for the Macintosh

Now, resume with the remainder 5. Since 5 is smaller than 16 or 8, those
places are filled in with Os; however, since 5 is greater than 4, we do another
division operation:

5/4 = I, remainder = 1 1 o o 1 ? ?

Finally, only a 1 remains. We therefore put a 0 in the 2s place, and the 1 fits
into the Is place with a remainder of 0:

1/1 = I, remainder = 0 1 0 0 1 0 1

Thus, the binary representation of 3710 is 1001012,

Before we give you some examples to try, let's run through another
example, converting the number 5008510 to hex.

50085/4096 = 12 = $C, remainder = 933

933/256 = 3, remainder = 165

165/16 = 10 = $A, remainder == 5

4096s

C

C

C

256s

?

3

3

16s

?

?

A

Is

?

?

5

In this example, we converted all quotients produced by division to single
digits of the base we were converting to. Thus, the quotient of 12 decimal
from the first division was converted to the single digit C. Two divisions
later, we converted 10 decimal to the value A. In all cases, you must be able
to convert the result to a single digit, or you've made a mistake.

Exercises

Convert the following numbers to the bases indicated (see Appendix B for
solutions):

1. 667310 to base 5

2. 6553310 to hex

3. 4510 to binary

4. 326210 to base 7

Computer Numbering Systems: Boolean Operations on Integers 323

The Special Relationship between Binary and
Hex

Since 16 is a power of two, you might expect to find a relationship between
binary and hexadecimal. In fact, this turns out to be the case, and the
resulting relationship makes it easy to represent binary numbers using hex.
It is for this reason and no other that hex is used by programmers.

Let's look at the number 151 expressed in both binary and hex. The binary
form of 151 is

10010111

In hex, the same value is

9 7

If you group the digits in the binary number into clusters of four
(sometimes called a nibble) and convert those groups to hex digits, then you
get the equivalent number in hex. Similarly, you can convert hex to binary.
The hex number $AF can be converted to binary by remembering that $A =
10lD = 10102, and $F = 1510 = 11112. Thus,

A F

equals

1010 1111

To mentally convert between binary and hex, memorize the binary
equivalent of each of hex's 16 digits:

Binary Hex Binary Hex

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Hex is easier to use than binary: Even though a value like $C30 isn't as
natural to use as a decimal number, it's a lot easier to deal with than

324 Turbo Pascal Tutor for the Macintosh

110000110000. With a little practice, conversion between hex and binary
becomes second nature.

Representing Numbers in Memory

With what you've learned about the binary system, how do you suppose
integers are represented using the bits and bytes that constitute the
memory circuits of a Macintosh? Integers occupy two bytes of memory.
Two bytes of memory represent a sequence of 16 ones and zeros:

'" '" «II
~

"'0

I : : : : : : : I : : : : : : : I 1 6 Mts = 2 by tes = an integer

t i } 32 bits = 4 bytes = a long integer

«II
~
()

.$:

Figure 25.1: Memory Corresponding to a 16-bit Binary Number

Long integers (and pointers) are represented by four consecutive bytes (32
bits). Unlike some processors (like the 8086 family used on IBM personal
computers), long integers are stored with the most significant 16 bits stored
first, that is, at the lowest address. This makes it much easier to understand
what you're looking at when using a debugging program.

Two's Complement Notation: Representing
Negative Integers

We haven't yet talked about representing negative numbers. In Turbo, an
integer can range from -32768 to 32767. How does Turbo know whether a
number is positive or negative?

Computer Numbering Systems: Boolean Operations on Integers 325

Turbo Pascal, like virtually all CPUs and the languages that run on them,
uses two's complement notation to represent integers. An integer is stored in
16 bits (2 bytes) of memory. If we only wanted to represent positive
numbers with the Integer data type, the largest value we could represent
would be 11111111111111112 (64K-l) and the smallest would be O-a total
of 64K combinations. In order to also represent negative nunlbers with type
Integer, two's complement notation divides the combinations of 16-bit
numbers into two equal groups: 32768 positive numbers (0 to 32767) and
32768 negative ones (-1 to -32768).

To signify whether a number is positive or negative, the left-most bit of the
binary number is used as the sign bit. If the left-most bit is a 0, the number
is positive; if it is a 1, the number is negative.

SDDDDDDDDDDDDDDD

\U I I I I ~II I I I I I I
Sign bit Digits

If the number is positive, the digits are encoded the same as any binary
number. If the number is negative, however, they are encoded so that it's
easy to do arithmetic with them-as the two's complement of the
corresponding positive number.

The two's complement of a binary number is the result of changing allIs to
Os and all Os to Is, plus 1. (For 16-bit numbers, you can also subtract the
number from 65536-the value of the next place after the left-most place of
the number-and get the two's complement and the sign bit.)

Why are negative numbers represented this way, rather than as ordinary
positive numbers with a sign? One reason is to avoid having two
representations for 0 (+0 and -0). Since storage space in a computer is a
valuable commodity, it is wasteful to use two combinations of bits to
represent the same number. It also makes the circuitry of the computer
more complex, as it has to recognize both "kinds" of O. The second reason is
that logic circuits that work with two's complement numbers are easy to
design and build and are included in virtually every microprocessor on the
market today. Turbo Pascal uses these circuits to do integer math as quickly
and efficiently as possible.

The way the "complement plus I" plan works out, 0 is encoded as 0, -1 as
1111111111111111, -2 as 1111111111111110, -3 as 11111111111101, and so
on all the way to -32768, 1000000000000000.

326 Turbo Pascal Tutor for the Macintosh

Boolean Operations on Integers

Now that we understand how integers are represented in memory, we are
ready to learn what it means to use the boolean operators on them.

Given boolean operands, the and operator produces a value of True if and
only if both of its operands are True. Since it doesn't make sense to talk
about an integer as being "true" or "false" (Is 0 true? How about 14? Which
is the truest?), what does it mean to use and on them?

The answer lies in the way integers are stored as bits in memory. Each bit of
each integer can be thought of as a boolean value-where 1 represents True
and 0 False. When we do an and of two integers, we are actually telling the
computer to perform 16 simultaneous ands between the corresponding bits
of the two integers. For example,

5 and 97=
0000000000000101 (= 5 decimal)

and 0000000001100001 (= 97 decimal)

0000000000000001 (= 1, so, 5 and 97 = 1)

The same is true for the or and xor operations. Here are some examples of
how these operations work on integers:

1111111111111111 (= -110)
xor 000000000001101 (= 1410)

1111111111110010 (= -1410)

0000000001100011 (= 9910)
or 0000001111111111 (=102310)

0000001111111111 (=102310)

The not operator also works on integers, changing all Is to Os and all Os to
Is. Thus,

not 1010111001010001 = 0101000110101110

Some operations are especially efficient using boolean opera­
tors-irresistably so. One application of the and operator is to clear (force
to 0) a particular bit position of an integer. This process is called masking.

Fixing Bit 7 of W.S. Files

Masking with the and operator is useful when working with text files
produced by a well-known word processing program (which shall remain
nameless but which runs on the IBM PC and has the initials "W.S."). .

computer Numbering Systems: Boolean Operations on Integers 327

W.S. sometimes sets the high-order bit of the bytes that represent the
characters of your text. Since ASCII is a seven-bit code, W.S. can change the
high-order bit without affecting the meaning of the encoded character.
While this format works well for W.S., it makes its files something of a
mystery to programs that care about the value of the high-order bit, such as
MacWrite. A W.S.-to-MacWrite translation program must "mask off" the
high bit of every byte in a W.S. file to make it palatable to MacWrite.

The and operator is just the ticket:

11000001 ($C1 = ASCII "A" ($41) with high bit set)
and 01111111 ($7F = a mask for clearing bit 7)

01000001 ($41 = normal ASCII "A")

In Turbo Pascal, the conversion looks like this:

N := Orct(C)
N := Nand $7F;
C := Chr(N);

where C is a character and N is an integer.

By performing an and on every byte of the file, you go a long way toward
rendering it readable by MacWrite. Then you have only the problem of
squeezing a 5 1 14-inch floppy into a Macintosh's 3 1/2-inch slot-but that's
another story.

Using And for Fast Modulo Arithmetic

Another application of the and operator is fast modulo arithmetic, when
working with a divisor that is a power of 2 (2, 4, 8, 16, and so on).
Explaining why it works is beyond the scope of this book, but to evaluate
the expression

T := 14371 mod 16

that is, the integer remainder after dividing 14371 by 16, one could
equivalently use

T := 14371 and $F

$F, decimal 15, has an underlying binary value of 0000000000001111. Using
and with this number has the effect of masking off all the bits in the first
operand except the least significant four, which retain whatever value they
had previously. Magically, these four bits represent the remainder. If you

328 Turbo Pascal Tutor for the Macintosh

use the mod operator to perform these actions, you'll get the same answer,
but more slowly, because the compiler generates a 68000 divide instruction,
which executes much more slowly than an and.

This doesn't mean you should go around trying to turn every mod into an
and. If you don't need the speed, mod is preferable because its meaning is
clearer. This is simply another trick to salt away in your programmer's
toolkit.

The Shift Operators: Shl and Shr

Turbo's shl (shift left) and shr (shift right) operators provide you with
direct access to processor instructions that slide all the bits within an
integer or long integer to the left or the right. They have no counterparts in
Standard Pascal.

Given integer variable N equal to $7F, here are the results of applying the
shl and shr operations to N and an integer from 1 to 16:

Nshr 1 = 0000000001111111 N shl 1 = 0000000111111110
Nshr 2 = 0000000000111111 N shl 2 = 0000001111111100
Nshr 3 = 0000000000011111 Nshl 3 = 0000011111111000
Nshr 4 = 0000000000001111 N shl 4 = 0000111111110000
Nshr 5 = 0000000000000111 N shl 5 = 0001111111100000
Nshr 6 = 0000000000000011 Nshl 6 = 0011111111000000
Nshr 7 = 0000000000000001 N shl 7 = 0111111110000000
Nshr 8 = 0000000000000000 N shl 8 = 1111111100000000
Nshr 9 = 0000000000000000 N shl 9 = 1111111000000000
Nshr 10 = 0000000000000000 N shl 10 = 1111110000000000
Nshr 11 = 0000000000000000 Nshl 11 = 1111100000000000
Nshr 12 = 0000000000000000 Nshl 12 = 1111000000000000
Nshr 13 = 0000000000000000 Nshl 13 = 1110000000000000
Nshr 14 = 0000000000000000 Nshl 14 = 1100000000000000
Nshr 15 = 0000000000000000 Nshl 15 = 1000000000000000
Nshr 16 = 0000000000000000 Nshl 16 =0000000000000000

As you can see, the shr operator works by shifting all of the bits of the first
operand to the right by the number of places indicated in the second
operand and then adds Os to the left. Similarly, the shl operator shifts its
operand to the left and adds Os to the right.

What are these operators good for? From our previous discussion of place
value, you may recall that the values of the places in a binary number

Computer Numbering Systems: Boolean Operations on Integers 329

increase by a factor of 2 as you move to the left. Thus, N shl 1 is equivalent
to N * 2, N shl 2 is the same as N * 4, N shl 3 is the same as N * 8, and so on.
Note that this only works when the multiplier is a power of two-and you
must be careful not to change the sign bit. For example,

0100000000000000 = 16,384

Shifting left one position changes the sign bit, producing

1000000000000000 = -32,768

which is definitely not the product of 16384 * 2. As with other operations
involving integers, Turbo will not provide a warning if overflow occurs, so
use these operations with care.

Similarly, N shr 1 is equivalent to N div 2, N shr 2 is the same as N div 4,
and so on, for all positive integers and long integers. Because the
Macintosh's processor takes significantly longer to perform multiplication
and (especially) division than a shift, you can make your programs faster
by using shift operations in well~chosen places.

Review

In this chapter, we looked at positional numbering systems, including
decimal, binary, and hexadecimal. We also learned how integers and long
integers are represented in memory, and how the boolean and shift
operators can be used on them to perform machine-level operations in
programs, enhancing both flexibility and speed.

330 Turbo Pascal Tutor for the Macintosh

p A R

USING THE POWER OF THE
MACINTOSH

T

4

If you've made it this far in Turbo Tutor, give yourself a pat on the back:
You've learned Pascal. Of course, you'll get better with every program you
write, but parts 2 and 3 of this book pretty well exposed Pascal's entire bag
of tricks.

You've also practiced with a particular Macintosh implementation of the
language and know how to load, save, edit, compile, and test programs.
You've come a long way-in fact, were this book about programming a
more conventional personal computer, all that would remain would be
appendices and a stirring rendition of "Pomp and Circumstance."

On the Macintosh, however, you've only just begun. You've learned Pascal
as a general-purpose tool but have yet to use that tool to create software
that behaves in a "Macintosh-like" fashion.

The sample programs discussed thus far have been devoid of Macintosh
flair. You've balanced checkbooks four different ways, none of which had
niceties like pull-down menus and dialog boxes. When you sent characters
to the screen with WriteLn, they always came out in 9-point Monaco. The
mouse collected dust as you executed ReadLns and ReadChars to get
commands and data from the keyboard.

The demo programs were written this way for a good reason: to set aside
Macintosh user-interface considerations while we addressed the primary
task, namely, teaching Pascal. As we shall see, it is considerably easier to

331

collect a command from the user with ReadLn (Command); than with a
dialog box.

The time has come to take what you've learned about Pascal in previous
sections and discover how true Macintosh applications are put together.

Beyond ReadLn and WriteLn

Part 4 of this book describes the design philosophy of the Macintosh and
includes an overview of the machine's hardware and built-in software.
We'll touch on its primary hardware elements, including the mouse,
graphics display, and microprocessor. We'll also introduce the 600-odd
utility routines provided by Apple to help programs be "Macintosh­
like" -the so-called Toolbox.

Part 5 then delves into the nuts and bolts of writing Macintosh programs.
You'll learn how to create programs that use graphics and pull-down
menus and dialog boxes and multiple windows and fancy typefaces and all
the other things that put the Macintosh a step and a half ahead of
conventional personal computers.

332 Turbo Pascal Tutor for the Macintosh

c H A p T E R

26

The Visual User Interface

Why is the Macintosh so revolutionary? After all, despite its
unconventional looks, it's built around standard personal-computer
ingredients like disk drives, microprocessors, and a video display. Why do
well-written Macintosh programs make equally well-written MS-DOS
programs look bland by comparison? Why are Macintosh programs
singularly easy to learn and use? Several reasons:

• a consistent, intuitive, visual user interface
• the mouse-a natural way to interact with objects on the screen

• the Toolbox, some 600 routines built into every Macintosh to implement
the user interface and many auxiliary functions

• a high-resolution, bit-mapped displayable to show and animate
detailed graphic objects

In this and the next two chapters, we'll take a closer look at these elements.

The User Interface: Human Meets Machine

At the core of the Macintosh's design is a simpl:e idea: A computer should be
easy to use. In this context, ease of use refers both to the level of difficulty of
learning a new program, as well as to the effort an experienced user must
expend to do useful work.

Despite ad copy to the contrary, most programs for traditional personal
computers--especially powerful ones-aren't especially easy to use. They

The Visual User Interface 333

require time and effort to learn initially, and frequent sojourns to the
manuals thereafter. This is because, in large measure, they embody an
awkward and inconsistent user interface.

User interface is a term thrown about rather loosely these days. Just what is
a user interface, and what makes one good or bad?

In science, an interface refers to the boundary between two dissimilar
materials; for example, between water and air. What materials could be
more dissimilar than a plastic, glass, metal, and silicon personal computer
and a human being? Their nontrivial physical differences aside, people and
computers have profoundly different methods of thinking.

Internally, the Macintosh is a numerical beast. Its CPU is adept at
manipulating binary numbers at high speed and precious little else. In fact,
"thinking" is too good a word to apply to this number shuffling. Human
beings, in contrast, are intuitive, visual thinkers. They do arithmetic only
when they have to, and then not especially well.

A user interface can be defined as the set of methods by which a human
being communicates with a particular program running on a particular
computer: how he or she provides the program with commands and data,
and how the program informs him or her of results and options. A good
user interface recognizes the visual, common-sense quality of human
thought.

The Macintosh user interface is based on several key concepts:

• simulating the real world
• standardized conventions such as overlapping windows, pull-down

menus, dialog boxes, and text-editing techniques

• using the mouse rather than the keyboard as the primary command
giver

Simulating the Real World

Thanks to its crisp display, on-board graphics software, and mouse, the
Macintosh supports the design of software that simulates events and
objects of the real world. You don't have to read even a short manual to
operate the Calculator desk accessory, because that program successfully
mimics real, three-dimensional calculators.

334 Turbo Pascal Tutor for the Macintosh

o (al(ulator

Figure 26.1 : The Calculator Desk Accessory

Similarly, MacPaint represents drawing tools with symbols (icons) that
imply their functions. Macintosh word-processing programs such as
MacWrite emulate the real world with an electronic sheet-of-'paper
metaphor. Like real paper documents, MacWrite uses black "ink" on white
"paper." Such simulation is a powerful concept in creating easy to use
software, because users intuitively know how to use such software without
having to relearn everything.

Standardization

Still, there is more to the Macintosh user interface than emulating the real
world. Emulating a sheet of paper with a word-processing program is a
good start, but a computer program must move into areas without real­
world analogs. You can't exactly move paragraphs around on a sheet of
paper, and spreadsheet programs can do much more than any calculator
can.

The next best thing is to make sure what's learned in one program transfers
easily to another program.

Here the Macintosh again scores, by stressing consistent behavior.
Macintosh programs all behave like Macintosh programs. That is,
Macintosh applications use dialog boxes and menu bars and windows, and
these devices behave in a consistent way. Pulling down a menu or editing
text in one program is like pulling down a menu or editing text in another

The Visual User Interface 335

program. To amplify the benefit of this approach, let's consider how
software evolved on another popular personal computer.

Before the Macintosh, there were no user-interface guidelines for personal
computers. Over time, a Tower of Babel arose in MS-DOS software land.
Software developers using the PC series-and programmers are notorious
mavericks-came up with different ways to do the same thing. For
example, consider what an owner of four major MS-DOS applications
(Lotus 1-2-3, MS-DOS Turbo Pascal, dBASE II, and WordStar) must do to
print a document from each:

• To print in 1-2-3, type IPR and then specify the range to print, type
Return, and, finally, press G.

• To print a source program from MS-DOS Turbo Pascal, you first leave
the program (Contro/-KDQ) and then execute a DOS command: COpy

MYFIRST. PAS LPT1:.

• With dBASE II, you type SET PRINT ON, then LIST ALL.

• To print a WordStar file, return to No File Menu (type Contro/-KD or
Contro/-KQ), type P, specify the file name, and, finally, answer six Yes/No
questions.

There's little cumulative knowledge gained in using these four programs: A
year of printing 1-2-3 files daily doesn't help you understand the meaning
of WordStar's fourth print-time query, USE FORM FEEDS (Y/N):_.

The designers of these programs weren't sadistic; their programs wouldn't
have made it to the top of the software sales charts if they embodied quirky,
erratic programming. Rather, each individual designer faced the problem of
getting something sent to the printer and solved it in a way that was best
for his or her particular application. This multiplicity of rules, of four ways
to do the same thing, confuses beginners and sends even savvy veterans to
their manuals.

Thanks to user-interface consistency, Macintosh programs with a Print
option-be they word processors, integrated Pascal editor/compilers,
spreadsheets, or database managers-invariably have a Print ... option
under a pull-down menu named File. Choosing this option brings up a
standard dialog box:

336 Turbo Pascal Tutor for the Macintosh

==lm~agi!be==w=r ... lt ... e_r~_-== __ ____ ~ ____ n OK D
Quality: 0 Best @ Faster 0 Draft

page Range: @ RII 0 From: D To: D (Cancel)

Copies: 0
Paper Feed: @ Rutomatlc o Hand Feed

Figure 26.2: Turbo Pascal's Print Dialog Box

It didn't work out this way by accident. When Apple rolled out the
Macintosh in January 1984, they not only gave the programming
community tools for programming (Lisa and Lisa Pascal), they simulta­
neously published a document describing how programs should act. Like
an Emily Post etiquette guide for well-bred Macintosh software, the "User
Interface Guidelines" chapter in Inside Macintosh describes in no uncertain
terms how windows should look and behave; about menus and keyboard
equivalents; radio buttons, regular buttons, check boxes, and dialog boxes;
and text editing and the Undo, Copy, Cut, and Paste features.

In addition, Apple's first generation of Macintosh software-the Finder,
MacWrite, MacPaint, MacDraw, MacTerminal, and MacProject-all did
things the same way. So, although printing a MacPaint file is internally very
different from printing a six-page MacWrite document, externally the user
sees the same Print ... option under the same File menu.

The Mouse

When you engage a non-Macintosh computer enthusiast in a conversation,
the first image that pops into his or her mind is Macintosh, The Computer
That Uses A Mouse. The Macintosh was the first machine to bring the
c1ickable rodent from the ivory towers of corporate think-tanks and
research universities to the masses.

The mouse allows you to use an on-screen cursor as an extension of your
own arm and hand-to interact with software as naturally as you reach for
a stapler. The Macintosh user interface wholeheartedly embraces the
mouse. You can run many applications productively without plugging the
keyboard in, but you can't get to first base without the mouse.

Typewriter keyboards were invented in the late nineteenth century for
creating text. When computers appeared, typewriter-like units were
adapted to communicate with them. Today, the keyboard and computer

The Visual User Interface 337

seem inseparable, yet there is growing evidence that keyboards aren't
especially effective for giving commands to a computer.

That keyboards can be used at all to control complex interactive computer
programs is a tribute to the verbal abilities of human beings. Experienced
users of MS-DOS applications have dozens of strange control phrases
rattling around in their brains. Regular WordStar users may recognize the
following: Control Cue Are; Control Cue Ef En Em 300 Escape.

(Translation: Move to line 300.)

With the mouse as primary command device, the keyboard is reserved for
what it does best: entering text.

Review

There are a number of important concepts at work in the Macintosh that
make the machine easy to use. Macintosh software emulates the real world
and uses standardized user-interface techniques, to reduce the amount of
learning required when moving from application to application. The
Macintosh user interface relies primarily on the mouse to communicate
commands.

In the next chapter, we'll learn more about the hardware necessary to
implement this user interface.

338 Turbo Pascal Tutor -'or the Macintosh

c H A p T E R

27

Macintosh Hardware

Programmers and programming books have a tendency to shortchange
hardware. After all, didn't we say early on that, without software, a
Macintosh just sits there getting warm? That's certainly true, but the
reverse is equally true. Without hardware on which to execute, software is
but a peculiarly tortuous mental exercise.

Much as human beings are constrained by the laws of physics as
manifested on planet Earth, so programs are constrained by the qualities of
the computer on which they execute. It's to our advantage to spend some
time getting acquainted with the capabilities of the 20-pound beige box
known as a Macintosh. Let's address each major element of Macintosh
hardware individually.

The Processor

Following a tradition begun in the Apple II, the Macintosh was designed to
be "chip efficient." At the January 1984 Macintosh introduction, then­
chairman Steven Jobs pointed out that there were fewer integrated circuits
in the entire Macintosh than on the video adapter board of an IBM PC. All
things being equal, a computer with fewer chips costs less to build,
consumes less power, can be made physically smaller, and breaks down
less often than a computer with more chips.

Macintosh Hardware 339

Chip efficiency is accomplished by using complex or custom parts that do
the work of many simpler chips, and by using software to perform
functions that would otherwise be provided by hardware.

The most important and largest chip on the Macintosh logic board is a
Motorola 68000 microprocessor (CPU), a third-generation microprocessor.
The Macintosh would not have been possible without this chip's speed.
Table 27.0 compares the processor to the Apple II's 6502 processor and to
the 8088 chip that drives most IBM PCs and compatibles.

Internal data path
External data path
General registers
Addressable memory

6502 8088 68000

8 bits
8 bits
38-bit
64K

16 bits
8 bits
816-bit
1Mb

32 bits
16 bits
1632-bit
16Mb

Generally speaking, the processor is ten times faster than the 6502 and four
times faster than the 8088 at the operations typically performed by personal
computer CPUs. The processor was something of a daring choice when
Apple selected it for the Macintosh in 1980; in retrospect, the two have been
very good for each other.

Since Turbo Pascal performs the translation from Pascal source into
processor machine language automatically, you don't really need to know
how to read and write processor machine language. It can be handy,
especially in tracking down bugs, to know more about the processor, so
Chapter 41 discusses this in more detail. .

The Display

The Mac's cathode ray tube (CRT) is only the most visible of a number of
components responsible for creating displays. Screen images consist of tens
of thousands of tiny picture elements (pixels), which are either black (lion")
or white ("off'). (Mac II users have color pixels and a larger display, but we
won't go into that here.) The pixels are arranged into a grid measuring 512
pixels horizontally by 342 pixels vertically. Images are created by making
some pixels black and others white.

340 Turbo Pascal Tutor for the Macintosh

512 pixels ~I

342 pixels

Figure 27.1 : The Mac's 512 by 342 Grid

The Macintosh uses "memory mapped" video, a flexible and chip-efficient
means of generating a CRT image: flexible because the display is totally
controlled by software, and chip efficient because it takes advantage of
components such as the processor and memory that are already there.

Memory mapping in the Macintosh centers around 21,888 bytes of memory
called the screen buffer. The screen buffer appears to the CPU as ordinary
RAM; under program control, the CPU can store and retrieve binary
numbers in this range. It is simultaneously available to the Macintosh's
video circuits, the part of the machine that controls whether each of the
175,000 pixels on the CRT are black or white. These circuits (which operate
pretty much independently of the processor) scan the buffer and redraw
("refresh") the screen, according to what they find, 60 times a second.
Without this constant refreshing, the CRT image would fade away in a split
second.

The bottom line is this: When you change bits in the screen buffer, you
change pixels on the screen. Most popular personal computers have
multiple video display modes: typically, a text mode for displaying text and
a bit-mapped graphics mode for games, pie charts, and whenever you want to
create graphic images that cannot be resolved into individual characters.

The Macintosh, in contrast, has one and only one display mode-512 by 342
bit-mapped graphics. Every letter, digit, punctuation symbol, and line is
drawn to the screen pixel by pixel.

Macintosh Hardware 341

Accessing the Screen Buffer Directly

You can think of the CRT as a window on the screen buffer. 0 bits display as
white; 1 bits display as black. For example, writing the integer value 255
(binary equivalent 11111111) into the screen buffer creates an eight-pixel
long horizontal black line; just where the line appears on the screen
depends on the particular memory address written to. Writing the integer
value 3855 (00001111 00001111 binary) produces a short dotted line.

Just for fun, key in and contemplate this program. What do you think it
does?

program ScreenBufferTest;
var

P: "Longlnt;
begin

P := Pointer(501504);
P" := 252645135;
Readln

{ for a 1 Mb machine, change to 1025792
$OFOFOFOF, 00001111 00001111 00001111 00001111

end.

ScreenBufferTest's only variable is P, a pointer to a long integer. This means
that the notation pA refers to a long integer-just where in memory this long
integer resides at any given moment depends on the value assigned to P.
Rather than taking the address of something (which is normally how one
assigns a value to a pointer variable), this program stuffs a number into P
directly. The Pointer type coercion function is necessary to keep the
compiler happy.

501,504 happens to be the address of the first byte of the 512K Mac's screen
buffer; the buffer is clearly near the top of RAM. Address 501,504
represents the top-left corner of the screen; that is, the first 32 pixels on the
top line of the screen are represented in the display buffer by the long
integer that begins at 501,504, the next 32 are stored in the long integer at
address 501,508, and so on. .

342

address
501,504

address
501,508

IT'
••• ••• ••• ::: ••• ••• ••• ••• ••• ••• •••

Figure 27.2: Display Buffer Addressing

Turbo Pascal Tutor for the Macintosh

After the assignment, P points to the first byte in the screen buffer; P"
therefore represents the first four bytes of the buffer. The effect of assigning
an integer constant to P" writes that value into four bytes of display
memory-and unlike most memory writes, is instantly reflected on the
screen.

252645135 has an underlying binary representation of 00001111 00001111
00001111 00001111, so a short, dotted-line pattern appears in the upper
left-hand comer of the display. Turbo Pascal's terminal window routines
don't know that you've tampered with the screen, and so make no attempt
to repair the "damage." If you were to change the assignment to P" := -1,
you'd make the same 32 pixels all black, because the long integer constant
-1 is represented in binary as 11111111 11111111 11111111 11111111. P" = 0
makes them all white.

As we mentioned, the screen measures 512 pixels horizontally by 342 pixels
vertically; 512 pixels at 8 pixels per byte equals 64 bytes per row of pixels.
That means that the second line of the display starts at 501,568, the third at
501,632, and so on. The screen buffer therefore requires 342 lines * 64 bytes
per line or 21,888 bytes.

This next program fills the entire buffer with binary Is, thereby blacking it
out:

program BlackScreen;
var

P: "LongInt;
N: Integer;

begin
P := Pointer(501504); { for a 1-Mb machine, change to 1025792
for N := 1 to 5472 do
begin

P" := -1; 11111111 11111111 11111111 11111111
P := Pointer(Ord4(P) + 4); { advance to next LongInt

end;
Readln

end.

BlackScreen's for loop executes once for every long integer in the screen
buffer (5472 = 21888/4). Running this program clears the screen, except for
a small patch under the cursor (which was actually cleared and then
quickly redrawn).

It's one thing to poke a 32-pixel horizontal line into screen memory; it's
quite another to create intricate blends of text and graphics. If every
Macintosh programmer had to create unique screen-writing routines, we'd
be lucky to have half a dozen Macintosh applications. Fortunately, there are
powerful, efficient routines in ROM for this purpose, known collectively as
QuickDraw. Turbo Pascal's terminal window emulation routines call

Macintosh Hardware 343

QuickDraw routines to draw 9-point Monaco characters. We'lf discuss
QuickDraw thoroughly in Part 5; for now, know that QuickDraw is so
fast-and so complete-that writing to screen memory directly is never
necessary.

The Mouse

From a hardware standpoint, the mouse is two independent subsystems:
one for tracking movement and another for button activity. Every time you
move the mouse, an interrupt is generated. (An interrupt is a hardware
signal that causes the processor to temporarily stop working on the current
program and jump to a program for handling the device that caused the
interrupt.) The software that services this interrupt uses the motion
information generated by the mouse to position the cursor.

Programs collect mouse information by calling Toolbox routines. One
routine returns the location on the screen where the pointer is at a given
instant, another tells· whether or not the mouse button is currently down,
and so on.

For example, this program outputs periods to the terminal window until
the mouse button is pressed (using the ToolIntfunit's Button routine):

program WaitForMouse;
uses MemTypes, QuickDraw, OSIntf, Toollntf;
begin

repeat
write (' .')

until Button; { returns True if button down; otherwise False }
end.

The Keyboard

The Macintosh Plus's standard detachable keyboard resembles that of a
typewriter, with certain additions and omissions. All the ASCII printable
characters are supported: This explains why oddballs like ',,..,, I, and \ are
included, and why some typewriter standbys like ¢. are missing.

Some keys traditionally present on personal computers are conspicuously
absent on the Macintosh Plus, including Control, Escape, Delete, and sundry
function keys. They do exist on the keyboards for the II and SE, and on
extended keyboards. These keys have no meaning in the Macintosh user

344 Turbo Pascal Tutor for the Macintosh

interface. They are useful only when you're using a communications
program to talk with another computer that assumes you have these keys
at your disposal; such programs use various techniques to fake these keys.

Special Keys

The Option key allows you to go beyond the limitations of ASCII and
generate dozens of additional characters. Use the Key Caps desk accessory
to determine the characters that are available in a particular font as well as
what keys to press to produce them.

The Command key () is defined by the user-interface guidelines as a pull­
down menu substitute. Most applications (Turbo Pascal included) define
Command-key equivalents for certain common menu actions, such as
Command-X for the Cut command. Some applications use exotic
combinations of Command, Shift, and Option to increase the number of
keyboard equivalents.

Keyboard Hardware

The cable provides power and a two-way communications link to the logic
board. When a key is pressed, the keyboard's electronics send a unique key
number down the cable, where the processor translates the key value into
ASCII form and places it into a queue. The current application can then
retrieve it with the Toolbox routine GetNextEvent; we'll dissect this in
Chapter 32.

The Control Panel desk accessory can modify the keyboard's auto-repeat
characteristics, including the speed with which keys repeat, as well as the
delay before the appearance of the first repeated character.

Internal Drive

The Macintosh was one of the first personal computers to use Sony's 3
1 /2-inch floppy disk drives. Some high points of an internal drive include:

• This book's terminology notwithstanding, externally, Macintosh disks
aren't a bit floppy. The delicate magnetic media is protected by a rigid
plastic shell. A spring-loaded shutter keeps dust and fingerprints out.

Macintosh Hardware 345

• Because of the protection afforded by the shell, recording densities are
stepped up (BOOK on a surface area about one third of that used by
standard SIf4-inch disks).

• Software-controlled disk ejection keeps the user from removing disks
until the file system (or application) is ready for that to happen. This
improves file integrity.

• A disk insertion sensor allows a program to discover when a disk has
been inserted and to respond appropriately.

• Best of all, the disks fit in a shirt pocket.

Speaker

The Macintosh can create elaborate musical and sound effects. On the Plus
and SE, sound is controlled by half a dozen routines known collectively as
the Sound Driver, which work with a 740-byte range of memory called the
sound buffer. The sound buffer is to the built-in speaker what the screen
buffer is to the display: When you change a value stored in the buffer, you
change the sound generated by the speaker.

In fact, the sound buffer is addressed just above the screen buffer and, like
it, typically isn't accessed directly but instead with the Sound Driver's
routines. You can create tones that operate in the background (that is, while
the program is doing something else, such as manipulating the display)
and control both the volume and tonal characteristics of that sound.

The Macintosh II can emulate most of the preceding and more: It can
produce stereo sound.

Expansion Connectors: Closed versus Open
Architecture

The original Macintosh was designed with an impressive complement of
expansion connectors (sometimes called ports) on the back of the machine.
Apple's aim, not fully realized, was to build a computer so complete that
the user would never need to open the case and make changes. The
Macintosh was therefore designed as a "closed" system-meaning it was
difficult (and therefore expensive) to expand. The market has since spoken
on the issue; it said, rather loudly: We Want To Open The Case And Fiddle

346 Turbo Pascal Tutor for the Macintosh

Around. Apple has since released the Macintosh SE and Macintosh II,
which have slots for expansion boards.

There's a positive side to closed architecture. A Macintosh Plus may be
hard to upgrade, but, as a programmer, you're assured that one is like any
other: the same screen, the same keyboard, the same mouse, the same serial
ports, the same sound capabilities, the same everything. Macintosh
software is therefore more likely to exercise every single muscle in the
machine, from the basic mouse/windows/pull-down menus environment
to exotic features like synthetic speech, than a corresponding IBM PC
program.

On open systems like the IBM PC and Apple II, it is all too easy to write
programs that run on one system perfectly and on another not at all or,
worse, erratically. The "slotted" Macs will undoubtedly usher in an era of
similar trade-offs for Macintosh programmers.

The Ports

The standard Macintosh is well-equipped for various forms of
input/output (I/O). From left to right on the back of the machine are the
mouse port, a connector for an external floppy or hard disk drive, two
high-speed serial ports, and a mini phone jack for sending sound to an
audio amplifier in lieu of the built-in speaker. A Macintosh Plus includes a
Small Computer Standard Interface (SCSI, pronounced "scuzzy") port as
well. SCSI is an increasingly popular standard for fast data transmission
over short distances (under 20 feet), ideal for connecting hard disks and
tape backup units.

Battery-Protected Clock and Option Settings

You may have noticed that you can unplug a Macintosh from the wall and
still have the correct time on the Alarm Clock desk accessory the next time
you use the machine, an hour or a month later. This is possible because a
battery (located just above the power switch on the Plus and on the
motherboard on the II and SE) keeps certain components running even
when the machine is unplugged. Among other benefits, this means that the
Finder and other programs that work with files can assume that the time
stamps applied to files are correct.

Macintosh Hardware 347

In addition to the time and date, all of the settings you can make with the
Control Panel desk accessory, such as the desktop pattern and key-repeat
rate, are retained.

Review

Here's a nuts and bolts summary of the Macintosh's hardware features.

Macintosh Plus

• 12BK ROM, 512K or 1 Mb RAM, 7.B MHz 6BOOO CPU

• BOOK 31/2-inch disk drive
• 9-inch monitor with 512 by 342 bit graphics (no text mode)

• Two 230K baud serial ports

• SCSI port
• Sound synthesizer with built-in speaker
• Detached keyboard (Option key for generating more characters; Command

key for menu substitutes) with software-definable touch and repeat
rates

Macintosh SE

• 256K ROM, 1-Mb RAM, 7.B MHz 6BOOO CPU
• Two BOOK 3 1/2-inch drives or one BOOK 3 1/2-inch drive and a 20-Mb

hard disk

• Same monitor as the Plus
• Same serial ports as the Plus

• SCSI port
• Sound synthesizer with built-in speakers
• Detached keyboard (with Option and Command keys) with software­

definable touch and repeat rates

• One expansion slot

348 Turbo Pascal Tutor for the Macintosh

c H A p T E R

28

ROM Software: The Toolbox

This chapter explains the utility routines available in the Mac's read-only
memory (ROM) and shows you how to use them.

The Hardware/Software Pyramid

It's useful to think of the Macintosh and the software that executes on it as
a multilevel pyramid . At the top of the pyramid are the
applications-programs like MacPaint, Turbo Typist, and Turbo Pascal
itself. From this lofty perch, applications are insulated from hardware
concerns.

When you write a program that uses disk files, for example, you work with
abstract terms like "volumes," "path name," and "files." Low-level routines
flesh out these abstractions into specific hardware activities, such as
moving read/write heads about and accessing specific regions of a
particular floppy disk. Programs that rely on Turbo's terminal window, like
Typist, are even farther removed from reality: They think they're running
on an 80-column by 25-line CRT terminal.

Hardware devices like disk drives and mice can, in fact, be directly
accessed by application programs. Generally speaking, however, you'd
never get much done if it were your job to run the disk drive and handle
keyboard interrupts.

Two layers of ROM code support application programs: A high-level User
Interface Toolbox and a low-level operating system. This distinction of Toolbox

ROM Software: The Toolbox 349

versus operating system isn't hard and fast; generally speaking, the
services performed by the Toolbox are more complex and removed from
hardware than operating system routines.

A third class of ROM routines is QuickDraw, the graphics software you use
to put text and graphics on the screen. QuickDraw is called both by Toolbox
routines and directly by application programs.

At the bottom of the Macintosh pyramid is the hardware itself: the
keyswitches, cables, and integrated circuits you can see and touch. Beneath
the pyramid, gazing in wonder at the screen, is the user, the point of the
whole exercise.

These software layers simplify the task faced by an application. Much as
well-written Pascal programs use the divide-and-conquer approach to turn
lengthy main programs into a series of short procedures, the Macintosh
itself provides a layering of utility programs. Your program is therefore
able to remain blissfully ignorant of the complexities of hardware-and to
call on powerful, debugged software building blocks.

The Routines in ROM

Despite its long list of hardware features, two drab integrated circuits on
the logic board ultimately give the Macintosh most of its character. These
ROM chips hold up to 256K of machine-language code and represent many
years of work by talented programmers.

Permanently encoded in these chips are hundreds of subroutines that can
be called by your programs. As mentioned, they can be organized into
three large groups: QuickDraw, the User Interface Toolbox, and the
operating system. These routines, which we'll refer to collectively as the
Toolbox, are the true masters of Macintosh hardware. You don't check
hardware status ports to see if the mouse button is depressed; instead, you
call a ROM routine that does it for you. You don't set bits in screen memory
to cause lines to be drawn; you call a QuickDraw routine and tell it where
the line should go, and it is drawn for you. You don't tell the disk drive to
seek to track 13 and read sector 8; you call a File Manager routine and tell it
to read x bytes from file y.

The benefits of using the Toolbox are many: Your programs are smaller and
easier to write, because you don't have to duplicate code that already
exists. Your programs are more dependable, because the Toolbox routines
are tested and known to work. Your programs are fast, because Apple's

350 Turbo Pascal Tutor for the Macintosh

programmers made the ROM routines fast. Your programs are
transportable to future generations of Macs that may have more memory,
larger displays, and different keyboards, because the ROMs in those as yet
unbuilt machines will present the same interface to your program.

Pascal and Macintosh: A Perfect Marriage

The ROM has hundreds of utility subroutines. We're using Turbo Pascal,
which creates object programs in RAM. What's the connection between the
code generated by our compilations and the Toolbox? How are they held
together?

Lucky for us, the ROM was created with Pascal in mind. Although written
largely in assembly language, the routines are designed to be called from
Pascal programs; that is, they follow Pascal parameter-passing conventions.

Units and the Toolbox

In Chapter 18, we discussed units as a way to extend and customize Turbo
Pascal. To review, units consist of two parts, an interface and an
implementation. The interface provides the compiler with information
about the public components of a unit, when compiling a program that
uses that unit. After the interface comes the implementation, containing the
nuts and bolts of the various procedures and functions described in the
interface.

Once compiled, units can either be used from disk or, for thoroughly
debugged and often used units, stored inside the Turbo Pascal application
itself. As shipped from Borland, Turbo Pascal has 15 units. Some of these
units provide support for terminal window operations. Most, however, are
for tapping the power of the Toolbox.

Tapping the Toolbox

The Toolbox interface is implemented as 12 units that are treated exactly
like TypistHelper (from Chapter 19) or, for that matter, like the units you
build yourself. Since the Toolbox units are already inside Turbo Pascal, you
can use them without $U directives. The bottom line is this: With the

ROM Software: The Toolbox 351

addition of a single uses clause at the start of a program, you can use Turbo
Pascal as though it had 650 built-in functions and procedures instead of 50.

The interface of each Toolbox unit is listed in Appendix 0 of the Turbo
Pascal reference manual, a section that should soon become dog-eared with
use. Let's quickly list the most important ones.

Unit Memtypes

MemTypes defines about a dozen general-purpose data types, and nothing
else. It's short enough to print in its entirety hel'e:

unit MemTypes(-6);

interface

type
SignedByte = -128 .. 127;
Byte = 0 .. 255;

Ptr = ASignedByte;
Handle = APtr;
ProcPtr = Ptr;
Fixed = Longlnt;

Str255 = string[255];
Stringptr = AStr255;
StringHandle = AStringPtr;

{ a pointer to a pointer! }

Here's a tip you'll want to remember: When writing an application to be
spread over several units, it helps to create a small unit consisting of
nothing but type definitions needed by all modules.

The most important types defined in MemTypes are Ptr and Handle. In an
upcoming chapter on memory management, we explain how these types
are used to manage the storage of blocks of memory from a dozen to
thousands of bytes long.

Unit QuickDraw

QuickDraw uses unit MemTypes and contains a vast assortment of drawing
tools. Anything on a Macintosh application screen, be it text or graphics,
was probably put there by a QuickDraw routine. QuickDraw is often called
by a Toolbox routine rather than by the application directly; for example,
the menu bar is created and manipulated using Menu Manager routines,
which in turn use QuickDraw tools. A couple of chapters down the road,
we'll learn the QuickDraw way of looking at memory as drawing paper.

352 Turbo Pascal Tutor for the Macintosh

Unit OSInt£

The operating system is conceptually the lowest level of Macintosh ROM
software. It performs operations directly related to hardware. Operating
system tasks range from the important, including disk I/O and memory
management, to the obscure: serial drivers and the AppleTalk and Vertical
Retrace managers. It uses MemTypes and QuickDraw.

Unit Toollntf

ToolIntt uses MemTypes, QuickDraw, and aSlntt and provides user-interface
building blocks. The Toolbox unit defines hundreds of data types,
constants, and routines involved in implementing the user interface. It's
represented by the following chapters in Inside Macintosh: "Resource
Manager," "Control Manager," "Event Manager," "Font Manager,"
"TextEdit," "Dialog Manager," "Window Manager," and "Menu Manager."

Unit Packlntf

PackIntt uses MemTypes, QuickDraw, aSIntt, and ToolIntt and controls the
use of packages. Packages are collections of utility routines that because of
either their occasional-use status or large size were denied valuable space
in ROM. Packages span a wide range of applications, from handling disk
initialization to various string utilities. Many of the original packages in the
Macintosh 128 and 512 were put into ROM with the 128K (Macintosh Plus)
release of the ROMs, although the software interface to them is the same.

The Trap Mechanism

Let's quickly describe the process of how program flow passes from your
program into a ROM or RAM routine and back again. This material is
helpful for program writing but not strictly necessary. So, if machine
language isn't your cup of tea, bail out and meet us at the start of the next
chapter.

ROM Software: The Toolbox 353

The Inline Directives

Normally, procedure and function headings are followed by a block of
statements, which the compiler examines to determine the processor
machine code (a sequence of 16-bit numbers) that will represent that
function or procedure. The following figure shows this process.

procedure F 00 ;

var

X,V: Intfo9for;

begin

X := 14;

Y:=X+1;

end;
Compi let ion

Figure 28.1 : Text to Hex

10FC

3021

FC10

9700

OOOE
3134

1401

The optional inline directive after a procedure or function heading
overrides the standard pattern, telling the compiler not to expect a block of
statements but instead to accept a series of integer constants, verbatim, as
the code to represent this procedure or function. Put another way, inline
says "take our word for it" as to what the machine-language expression of
this procedure should be.

Type in and study this program:

program HideCursorTest;

procedure HideCursor; inline $A852;

begin
HideCursor;
WriteLn('Look, rna, no cursor!');
ReadLn;

end.

Ordinarily, when you execute a program in the terminal window, the
cursor (which is what Inside Macintosh calls the mouse pointer) disappears
temporarily; the first movement of the mouse makes it visible again. Just to
get it out of the way, compile and run this program. As advertised, the

354 Turbo Pascal Tutor for the Macintosh

cursor disappears and no amount of mouse movement can bring it back. It
won't reappear until you return to Turbo Pascal.

In order to understand what went on in the first few microseconds of
HideCursorTest's execution when the cursor vanished, think for a moment
about how the compiler processes this program. The compiler's job is to
translate the text of this source program into a sequence of processor
instructions (that is, an object program).

When the compiler sees the in line keyword after HideCursor's header, it
knows it won't find a standard declaration part/statement part for this
procedure. Instead, it expects a list of one or more integer constants,
separated by commas and terminated with a semicolon. In this case, there's
exactly one, $A852 (which could alternatively have been written as its
decimal equivalent, -22446). The compiler knows to associate the machine
code represented numerically as $A852 with the procedure identifier
HideCursor. It doesn't do anything yet; it simply makes note of the
association:

identifier 'HideCursor' = a procedure with no parameters = $A852

The HideCursor routine, which causes the cursor to disappear temporarily,
was built into your computer at the factory. We haven't recreated it with
this short inline declaration, we've simply created a way for our program
to access that ROM code.

On with the compilation. Soon the compiler finds the identifier HideCursor
as the first statement in the main program. We told it that the code for
HideCursor is $A852, so in the corresponding position of the object code, it
places the value $A852. Next, the compiler encounters the more
conventional WriteLn and ReadLn statements. The compiler uses its
knowledge of Pascal and the processor to generate code to perform these
operations, accumulating more 16-bit chunks of object code (each requires
several integers).

After the compilation, the resulting object program looks something like
this:

$A852
$4860
$FFC2
$487A
$0024
$4267
$4EBA
$F9FC
$4EBA
$F9A2

ROM Software: The Toolbox 355

Programs are executed by causing the processor to fetch and execute
instructions from a particular region of memory. In the case of
HideCursorTest, let's say the compiler stored the program at address
100,000.

The first instruction at address 100,000 is $A852. Somehow, this 16-bit
number causes the built-in routine to hide the cursor to be executed. This
happens through a complex sequence of actions known as a trap.

A-Line Traps

Instructions that begin with the hex character I A' (binary 1010) have a
singular effect on the processor. They cause it to automatically execute a
program known as the trap dispatcher. The trap dispatcher (which was
written by Apple and is placed into memory when the system is booted up)
looks at the lower 12 bits of the trap instruction. This particular trap,

$852 = 1000 0101 0010

tells the dispatcher to execute the routine defined in Inside Macintosh as
HideCursor. We don't know exactly where it is in ROM, how long it is, or
how it works. We know only that it makes the cursor disappear.

After the cursor has been banished, the rest of the instructions in the
program are executed, causing a message to be sent to the terminal
window. After you satisfy the ReadLn routine by pressing Return, the
program ends. A program ends by sending the processor off to execute
instructions in some other program, in this case, Turbo Pascal. This quickly
restores the screen (and the cursor), and it's business as usual.

The trap mechanism is the key to hooking into the Toolbox. With this
mechanism, it's almost as though the instruction set of the processor
included a routine named HideCursor.

Units and Inline Directives

Normally, when you use Toolbox routines, you don't define them as inline
but rather use the units that contain them. For example, HideCursorTest
could have been written more conventionally as

program HideCursorTest;
uses MemTypes, QuickDraw;
begin

356 Turbo Pascal Tutor for the Macintosh

HideCursor;
WriteLn('Look, rna, no cursor!');
ReadLn;

end.

Turn to the interface listing of unit QuickDraw in Appendix D of the Turbo
Pascal reference manual. Can you find the declaration of HideCursor? (Look
under the comment "Cursor routines.") What do you suppose the routine
listed right beneath it (ShowCursor) does? Test your theory with a short
program.

Note that virtually all of the Toolbox routines defined in the 12 units use
inline declarations. Incidentally, when inline functions and procedures are
declared in a unit, the inline attribute appears in the interface, and the
procedure doesn't appear in the implementation at all.

Review

In this chapter, we discussed the utility routines in ROM: what they are and
how they are accessed in a program via the unit mechanism. We learned, in
some detail, the sequence of actions that occurs when invoking a routine
defined with an inline directive as a trap instruction.

ROM Software: The Toolbox 357

358 Turbo Pascal Tutor for the Macintosh

p A

PROGRAMMING THE
MACINTOSH

R T

5

Part 5 of this book is a journey to the lush valley of True Macintosh
Programming-a place where programs like Reflex, Turbo Pascal, Excel,
and SideKick grow in profusion; where checkbook-balancing programs are
commanded with points and clicks, not ReadLns. Standing in your way is
the forbidding, snow-covered hulk of Toolbox Mountain.

In the years since its introduction, Macintosh programming has earned a
reputation for being hard to learn. There are reasons for this reputation.

First, without a working knowledge of Pascal, the learning curve is
impossibly steep. Many have tried to learn Pascal and the Toolbox
simultaneously; for most, this approach is destined to fail. You can't
struggle with while loops and enumerated types and expect to pick up on
the Toolbox at the same time. That's why we took 28 chapters to drill Pascal
into your head before starting the climb.

More than a few seasoned Pascal programmers have failed to conquer
Toolbox Mountain. Some freeze in blizzards of documentation overload:
They attempt to read and understand every word of Inside Macintosh before
tackling even a simple program. Others wander in endless loops, able to
mimic sample programs but unable to conceptually complete the circle on
their own.

It isn't so much that any single aspect of the Mac program development
process is difficult. Taken individually, the Memory Manager, QuickDraw,
and the rest are easily learned. The problem is quantitative rather than

359

qualitative: The Toolbox encompasses some 600 procedures and functions
and countless constant, type, and variable declarations. Many of the types
are records with dozens of fields.

So, how do we propose to take you on this precipitous journey?

In a word, carefully. We've provided a good guide, and we've chosen a
logical route. Perhaps most importantly, we're using the best
equipment-Turbo Pascal.

360 Turbo Pascal Tutor for the Macintosh

c H A p T E R

29

Memory Management: Theory

Stack and Heap: The Memory Map

Let's spend some time learning more about how programs execute in
memory. This chapter explains the theory behind managing your
computer's memory, while the next chapter shows you how to practice
good memory management.

When you compile and run a Pascal program, it undergoes a complex
transformation from a static list of ASCII characters (a source program) into
a dynamic software machine (an executing object program). Some of the
questions you may have had about this run-time machine include: Where
in memory do the compiled routines go? Where are my global variables?
Where's the local data? Where's the stack? Where's the heap? Where do
Toolbox routines place their data?

A tool for understanding the run-time model is the memory map, a diagram
that shows where code and various classes of data reside in memory.

Memory Management: Theory 361

HighMemory I_I
Stack

~

~
Low Memory Heap

• I«fijl
ROM

RAM

Figure 29.1: A Simple Memory Map

About the Stack

Because of its importance in the run-time model, let's focus first on the
stack. A stack is a memory-allocation scheme, that is, a technique for
storing information that is used constantly by all Pascal programs, whether
you're aware of it or not.

Stacks store data like programmers store computer magazines near a
favorite reading chair: At the top of the magazine pile are glossy new
Mac Worlds; at the bottom, musty issues of Interface Age circa 1978. Storage
activity ("popping" a magazine off the pile and "pushing" a magazine onto
the pile) occurs at the top of the stack. This causes stacks to be known as
LIFO (last in, first out) data structures.

The stack used by a Turbo Pascal program is managed directly by the CPU.
The processor's stack consists of two components, working in concert: a
range of memory (potentially, any vacant place in RAM) and a register
inside the processor known as the stack pointer. (A register is simply a
storage location for binary numbers located inside the processor.) By
definition, the value in the stack pointer defines the top of the stack; that is,

362 Turbo Pascal Tutor for the Macintosh

it "points" to the top of the stack. "Pushing" a value onto the stack means
writing the yalue to the address the stack pointer points to and then
reducing the stack pointer register. As items are popped off the stack, the
stack pointer register is increased. The stack pointer is like a pointer
variable; dereferencing the stack pointer indicates the data at the top of the
stack.

By convention, the stack starts in high memory and works down. In the
following figure, the stack pointer shows that 1074 is the value at the top of
the stack. If you were to remove 1074-that is, to "pop" it off the stack-the
value at the next higher address (900140) becomes the top of the stack.

1074 on top of stack. Popping tM stack
ntriens 1 074 ~nd inorements the st~ck
pointer, causing 8765 to be at the top

of th. stack.

Stack Pointer 900138 t---t-.....

oont.nts

1682

7600

0301

3557

6253

0361

4199

Inside Processor On RAM)

Figure 29.2: Processor Stack

Every Turbo Pascal program uses the stack to store

• retur~ addresses when calling procedures and functions
• parameters passed to procedures and functions
• the local variables of procedures and functions

• the values returned by functions

address

900142

900140

900138

900136

900134

900132

900130

900128

900126

900124

Although program StackDemo creates no output, we can learn a lot about
stack usage by closely studying its execution.

program StackDemo;
var

X, Y: Integer;

procedure Proc2;
var

A,B,C: Integer;

Memory Management: Theory 363

begin
A := 1234;
X := 5678;

end;

procedure Proc1(param: Integer);
var

I,J: Integer;
begin

I : = param;
Proc2;

end;

begin
Proc1(1234);

end.

It's the compiler's job to generate stack-handling code, so let's think about
compiling this program for a moment. Part of the compilation process
involves replacing variable names (in the source code) with addresses (in
the object code). A variable identifier is translated into the address of a
section of RAM just large enough fo hold it.

StackDemodeclares two global integer variables: X and Y. They are called
global because their declarations appear at the highest level of the program.
This global quality is manifested at run time: Storage for X and Y is
reserved before StackDemo even begins to run; let's say address 900,002 for
X and 900,000 for Y. For the duration of the program, these addresses do
not change. For example, the assignment to X in Proc2 is translated to
machine language that reads something like this:

move 5678 --> address 900,002

The same cannot be said for the variables declared within procedures Proc1
and Proc2. In fact, when StackDemo first begins to execute, A, B, C, I, and J
don't exist; that is, no memory has been reserved to hold them. Although
space doesn't exist for them at first, code to manipulate them does.

This seems impossible-how can code exist to manipulate a variable that
hasn't yet been assigned an address? Thanks to a capability of the processor
known as register relative addressing, local variables are known by their
position relative to the stack pointer register, that is, to the top of the stack.
If you were to peer inside the compiled form of StackDemo at the code
representing the assignment to local variable A in Proc2, you'd see the
machine code equivalent of
move 1234 --> address 2 bytes from top of the stack

Note that this code doesn't say what the top of the stack is. When Proc1 is
called, as you'll see in a minute, the stack pointer register will have a real

364 Turbo Pascal Tutor for the Macintosh

value, (say, 850,000), and at that time 1/2 bytes from the top of the stack"
will refer unambiguously to address 850,002.

900002~
900000 t...2..J

1. Turbo Puc~llo~ds the
cod. of the m~in progr~m ~nd
Proc 1 ~nd Proc2 into
memorll; sp~c. ~l1oc~ted in
Mgh m.morll for)(~nd V. 860000 stack point.r

Stack point.r s.t to 860,000;
all memorll in the r~nge
850,000-860 ,000 design~t.d
for the stack.

Controlgiv.n to main program.

859998
859996
859994
859992
859990
859988
859986
859984

:~;;:~ 860000

2. M~in program prepares to call Procl.

• Int.g,," p~r~m.ter 1234 push.d on the st~ck.
• R.turn addr.ss of main program pushed on the st~ck.
• f'roc.ssor jumps to first instructicn in Proc I.

3. Procl g.ts contrcl. Stack point.r d.cr.as.d bll four bllt.S to
~lIocat. space for I and J.

4. Using stack relative ~ddressing, Procl execut.s the usignment
from param to I.

5. Procl prepar.s to call Proc2:
R.turn addr.ss of Procl push.d on the stack.

859998

Processor jumps to first instruction cf Proc2. Not. th~t spac.
is still ~l1oc~t.d for I ~nd J; this 'Won't b. giv.n up until Procl
t.rminates.

6. Proc2 g.ts control. It alloc~t.s stack spac. (or its thr"local
iilt.ger v~riabl.s and .xecut.s t'Wo usignm.nts.

Proc2 is no'W ccmplet •. Befor. r.turning, it gives up the
spac. allocat.d (or A, B, and C.

7. Controlr.turn.d to Procl. It has
notl'ling left to dc, so it also returns,
simultan.ouslll giving up its local variable
spac., the r.t\lrn ~ddrioSs of the main
prog!'"~m, .. nd the param.ter passed to it.

8. Conkol returns to the m~in progr~m;
stack no'W .mptll.

9. Prcgram returns control to Turbo
Pascal.

Figure 29.3: Executing StackDemo

Memory Management: Theory

stack pointer

stack point.r

stack pointer

365

Size Limits of Stack Variables

StackDemo's procedures declare only a handful of integer variables, but a
procedure or function is free to declare up to 32K of local variables of any
type. Surprisingly, it doesn't take any longer to allocate 256
bytes-string[2551-on the stack than it does to create an integer. Both
involve a reduction in the stack pointer; subtracting 256, or even 32,000,
from the stack pointer is just as quick as subtracting 2.

Summarizing Stack Usage

The stack grows according to which nested levels you are in when you call
a procedure, and the size of those procedure's local variables and
parameters:

• 8 bytes for each level down
• n bytes for each local variable
• 4 bytes for each var (reference) parameter

• n bytes for each non-var (value) parameter

• n bytes for each function return value

You can verify this by adding some WriteLns to StackDemo to print out the
addresses of its variables. The key to this process is the address operator,
the at sign (@; @X equals the address of X). Because of typing constraints,
addresses can't be printed out directly. Fortunately, the Ord function causes
the compiler to loosen up and treat them as though they were long integers.
(Internally, long integers and addresses are identical.)

program StackDemo2;
var

X, Y: Integ~r;

procedure Proc2;
var

A,B,C: Integer;
begin

A := 1234;
X := 5678;
WriteLn('Address of A, B, C = " Ord(@A) :10, Ord(@B) :10, Ord(@C) :10);

end;

procedure Proc1(param: Integer);
var

I,J: Integer;
begin

366 Turbo Pascal Tutor for the Macintosh

I := pararn;
Proc2;
WriteLn('Address of I, J = " Ord(@I) :10, Ord(@J):10);

end;

begin
Procl (1234);
WriteLn('Address of X, Y = " Ord(@X) :10, Ord(@Y) :10); ReadLn;

end.

Let's examine the output of this program to see how reasonable it is, given
our understanding of stack usage.

A I-Mb Mac Plus created the following:

Address of A, B, C =
Address of I, J =
Address of X, Y =

972588
972600
972646

972586
972598
972644

972584

Note that the global variables are stored in a higher address than the first
set of local variables. In fact, those addresses are what determined the
initial top of stack value; it's initially set to just below the last global
variable. Proc1' s variables have higher addresses than Proc2' s , because they
are created earlier (remember, the stack grows down).

The addresses of this program's local variables change according to the
value of the stack pointer when they are called. For example, if you change
the main program to call Proc2 directly instead of Proc1, A, B, and C will
have slightly higher addresses. The addresses of X and Y won't change.

begin
Proc2;
WriteLn('Address of X, Y = " Ord(@X) :10, Ord(@Y) :10); ReadLn;

end.

results in

Address of A, B, C = 972602
Address of X, Y = 972646

972600
972644

972598

Do some experimenting on your own. Declare a large global array variable.
Does the storage allocated for local variables move down a corresponding
amount?

Suppose we were devious and printed out the addresses of Proc1' s local
variables from within the main program. This catches Pascal with its pants
down, because, at this point, I and J don't yet exist. So just what value will
Ord(@J) return when used in the main program? The address it will have
when Proc1 is called? Zero? A random value? Add this line to the start of
the main program and find out:

Memory Management: Theory 367

WriteLn('Address of I, J = " Ord(@I) :10, Ord(@J) :10);

Surprise! Professor Wirth is way ahead of us. Pascal's scope rules prevent
us from even performing the experiment. Since I and J aren't visible to the
main program, you can't use their identifiers here. I and J can only be used
within Proc1-which, not coincidentally, is the only time they've been
assigned an address in memory.

Stack Overflow

The compiler handles the stack for you, creating code that automatically
pushes data on the stack and pops it off as a program executes. This is one
more good reason for using Pascal instead of assembly language.
Assembly-language programmers must manage the stack themselves, and
one little mistake causes a machine to hang.

When using Pascal, problems arise only when a program uses so much
stack that it overwrites part of the heap. This is called stack overflow and
always results in a system error. Programs are most likely to cause a stack
overflow if they perform the following operations, especially in
combination:

• declare large local variables

• pass large variables by value

• use recursive algorithms

Under the Stack: The Heap

Let's review what we learned about the heap back in Chapter 16. The heap
is an initially unused area of memory located beneath the stack. The New
procedure allocates memory from this region, which is then accessed via a
pointer, and Dispose gives it back. This program demonstrates:

program AllocateTest;
type

BigArray = array [1 .. 1000] of integer;
BigArrayPtr = ABigArray;

var
theArray : BigArrayPtr;

begin
New(theArray); {heap now has 2,000 fewer free bytes}
.. { use the array by dereferencing the pointer, e.g., theArrayA[56] := 123 }
Dispose(theArray);

368 Turbo Pascal Tutor for the Macintosh

end.

When AllocateTest calls New, two things happen. First, an unused block of
memory large enough to hold 1000 integers (2000 bytes) is located in the
heap. Nothing is moved or altered, but simply flagged as "in use." How
New can look in the heap and tell what's in use and what's not isn't our
concern. It's possible that there isn't a 2000-byte contiguous chunk
available. In this case, New sets theArray to nil and returns.

If the New procedure does find 2000 free bytes, after flagging the block as in
use, it sets theArray to the address of the first byte of the block and returns
control to the calling routine. Since the allocated block isn't initialized to
any special value, one operation we might perform on the array is to
initialize every element to zero:

for N := 1 to 1000 do
theArrayA[NJ := 0;

Now theArray" is ready to store check numbers, test scores, or whatever.

If the program finishes with theArray" before the program ends, it should
give back the memory it occupies. Otherwise, these 2000 bytes won't be
available for reuse. Do this too many times and you'll run out of heap
space. For this reason, AllocateTest balances the call to New with a call to
Dispose:

Dispose(theArray);

In this particular case, there's really no need for it, since the program ends
immediately thereafter and when a program ends, all heap structures are
released.

A Pascal program's stack grows down toward its heap, which in turn
grows up toward the stack. You run out of room when the two meet. The
heap never expands into the stack-but the stack will overwrite the heap.
When a Mac program first starts to run, the heap is simply an unused area
of RAM of approximately 6K, in as Iowa memory location (that is, as far
from the stack) as possible.

If a program allocates more than 6K of heap space, then the heap
automatically grows to accommodate each request. It can ultimately
expand to a limit that by default is 8K less than the original top of the stack.
This means that if your program's stack requirement is less than 8K (which
isn't hard to achieve unless you have large local variables or pass large
variables by value), the stack won't overflow no matter how large the heap
should grow. In an upcoming section, we'll describe the routines that set

Memory Management: Theory 369

the stack/heap boundary point, so that you can achieve the optimal
balance for your particular application.

Rather than letting it grow in bits and pieces, it's possible to expand the
heap to its full extent all at once. One way to do this is to call Turbo's
MaxAvail function, which expands the heap to its limit and returns the
length of the largest single contiguous block it contains. Typically, MaxAvail
is used just before a call to New to see if there's room for the object you're
about to create.

Sharing the Heap

When you use Pascal on traditional personal computers, the heap is only
for the benefit of your program. If you never make a call to New on such a
machine, heap memory never changes. In the Mac, however, programs
share the heap with Toolbox routines, and the programmers behind these
routines had a passion for heap allocation. Toolbox routines put objects in
the heap like crazy.

Consider fonts, for instance. We take for granted the ability of Turbo
Pascal's editor to display text in various fonts and sizes. This ability is
supported by QuickDraw (which actually draws the text on the screen) and
by the Font Manager, which provides QuickDraw with character data.

370 Turbo Pascal Tutor for the Macintosh

Each font is represented by a data structure thousands of bytes long that
must be entirely in memory before a single character can be drawn in that
font and size. If you had to write the Toolbox code that Turbo calls when
ordered to display a program in 24-point New York, where would you
store this 7K chunk of data-a place where you could easily get rid of it
later on when it wasn't needed any more? In the heap, of course.

Figure 29.4: Check Records and Fonts on Heap

In a Mac program, your heap data objects are liable to have anything for a
neighbor-linked lists of check records intertwined with font data. This
also means that even if MaxAvail says the heap has 300,000 bytes available,
you can't count on that number being right ten minutes later. Even if your
program didn't change the heap during that interval, a Toolbox routine you
used, either directly or indirectly, may have allocated (or deallocated)
space.

Review

Macintosh programs make extensive use of both the stack and heap to store
variables. Because the compiler generates stack-handling code for you, you
can't get into much trouble with it. Stack overflow is unlikely if you pay
attention to the size of parameters you pass to procedures and functions
and the size of local variables.

Memory Management: Theory 371

The heap is another matter. It's a busy area shared by your programs and
by the Toolbox routines. Moreover, the compiler doesn't give you any help
in using it. It's up to you-using pointers along with the routines of the
Memory Manager-to stay on top of the heap.

372 Turbo Pascal Tutor for the Macintosh

c H A p T E R

30

Memory Management: Practice

When writing programs for a heap overachiever like the Macintosh, you
need more powerful tools than New and Dispose. ROM contains dozens of
routines that perform heap-management tasks, known collectively as the
Memory Manager.

Incidentally, Apple's technical writers adopted the "manager" notation to
divide the Toolbox into functional groups for documentation purposes.
Don't be misled into thinking about the Memory Manager as a single
process or program that manages all aspects of the heap in a godlike
fashion. It's simply a collection of constants, types, variables, procedures,
and functions that perform memory-related activities. From a Pascal
standpoint, the Memory Manager is defined in unit aSlntf.

Heap Zones

The Memory Manager can work with multiple heaps (officially called heap
zones). At any given time in a booted-up Macintosh, exactly two are in use:
the system heap and the application heap.

The system heap is in low memory. This area is created when the system
first boots up and is rarely accessed directly by applications. An important
characteristic of the system heap is that it retains its contents between a
transfer from one application to another. It is used, among other things, to
keep track of volumes and files.

Memory Management: Practice 373

Just above the system heap is the application heap. It's intended for the
current application's use and is what we've simply been calling lithe heap."
The application heap is destroyed and a new one created whenever a new
application starts up (that is, every time you enter or exit the Finder). By
default, most Memory Manager calls apply to the application heap-as
does the information in this chapter.

NewPtr= New

When writing True Macintosh Programs, you usually forgo New in favor of
NewPtr, the Toolbox equivalent. NewPtr is both better and worse than New
for creating heap objects: It's more powerful, but it's also more trouble,
mainly because NewPtr involves hand-to-hand combat with the compiler
over typing considerations.

The nice thing about New is that it's a built-in part of the language and, as
such, has certain privileges not accorded ordinary procedures and
functions. Much as WriteLn can accept from zero to dozens of parameters,
New has no problem accommodating variables of differing types:

type
BigArray = array [1 .. 1000) of Integeri
BigArrayPtr = ABigArraYi
Check = record

Arnt : Reali
Month : (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec) i
Day 1..31i
Year : 1980 .. 2000i
Payee: string[40)i

endi
CheckPtr = AChecki

var
A: BigArrayPtri
C: CheckPtri

begin
New(A)i allocate 2000 bytes
New (C) i {allocate 50 bytes

end.

New accepts a pointer to a check record as readily as it does a pointer to an
array of integers. In fact, any pointer type is acceptable. The compiler isn't
as generous with your own routines. For example, if you write a procedure
to accept a parameter of type CheckPtr

procedure NewCheck(theCheck: CheckPtr)i

374 Turbo Pascal Tutor for the Macintosh

the compiler, with your best interests at heart, won't let you send anything
but variables of type CheckPtr to NewCheck. If P isn't a CheckPtr, then
NewCheck(P)
produces a Type Mismatch error. That is, unless you apply a little compiler

voodoo known as type coercion (or, alternatively, typecasting). You can send
other pointer types to NewCheck only if you reassure the compiler that you
know what you're doing by wrapping the parameter with the name of the
correct type. For example, as long as variable P is some pointer type
(bigArrayPtr, "Long/nt, for example), then

NewCheck(CheckPtr(P));

causes the compiler to accept it as a parameter to NewCheck. It looks as
though we're calling a function named CheckPtr here, but we're not.
Surrounding P with CheckPtrO tells the compiler to treat P as though it
really were a value of type CheckPtr, thus satisfying NewCheck's
requirement that it be passed items of this type.

Typing restrictions also apply to Toolbox routines accessed through
Turbo's unit mechanism. Armed with the tool of type coercion, let's take a
look at the formal declaration of the Toolbox's NewPtr routine. You'll find it
in unit as/nt! (described in Appendix D of the Turbo Pascal manual and
Volume II of Inside Macintosh).

function NewPtr(byteCount: Size): Ptr;

The Size data type is defined in unit as/nt! as a synonym for Long/nt, so
you can pass any integer or long integer value to NewPtr. NewPtr returns a
value of type Ptr, which is defined in unit MemTypes as

type
Ptr = ASignedByte;

where SignedByte is itself declared as the integer subrange -128 .. 127 (the
largest subrange that can be stored in 1 byte of memory). Ptr is declared to
point to SignedByte not because individual bytes are such useful objects, but
rather as a sort of heap "standard currency." You'll create pointers to the
types of objects your program needs to use and then use type coercion to
make them compatible with type Ptr-which is the type expected by
Memory Manager routines.

Because of typing constraints, the only sort of objects you can assign to
with NewPtr is a variable of type Ptr. Therefore, allocating heap space with
NewPtr for a check record or a BigArray requires type coercion.

Here's how to use NewPtr to allocate space for an integer array:

program NewPtrTest;

Memory Management: Practice 375

uses
MernTypes, QuickDraw, OSIntf;

type
BigArray = array [1 .. 1000] of Integer;
BigArrayPtr = ABigArray;

var
theArray: BigArrayPtr;

begin
theArray:=BigArrayPtr(NewPtr(2000)); {instead of: New (theArray) }

end.

Note the differences between New and NewPtr. First, NewPtr is a
function-it returns the address of the allocated block, rather than being
called as a procedure. Second, type coercion is required to get the compiler
to agree to the assignment of a Ptr to a BigArrayPtr. Third, NewPtr requires
a numeric parameter describing the number of bytes to allocate. In contrast,
as a built-in routine, New gains this value automatically because of the
compiler's knowledge of the pointer type passed to it.

The SizeD! function is a better way to provide NewPtr with size
information. It returns a number equal to the size in bytes of a variable of a
given type or, alternatively, the type itself. So, this statement is equivalent:

theArray := BigArrayPtr(NewPtr(SizeOf(BigArray)));

You're probably thinking, NewPtr is so messy compared to New:

New(theArray);

And, visually, it is. Surprisingly, though, using NewPtr to allocate theArray
involves no more run-time processing than New. Here's why. First, type
coercion doesn't affect run-time code; it simply causes the compiler to agree
to an otherwise illegal type conflict. Similarly, SizeD! doesn't cause any
run-time processing. By the time this program gets around to running, the
expression SizeD!(BigArray) will have already been turned into the value
2000. From a run-time standpoint, the statement

theArray := BigArrayPtr(NewPtr(SizeOf(BigArray)));

generates exactly the same code as

P := NewPtr(2000); {where P is of type Ptr

Finally, because Turbo Pascal's built-in routines use the Memory Manager
to implement heap management, a call to New ultimately results in a call to
NewPtr anyway. By calling it directly, we skip the middleman.

376 Turbo Pascal Tutor for the Macintosh

This theme repeats again and again in using the Toolbox: statements that
are visually complicated, with long identifiers and a forest of nested
parentheses, but which result in fast, compact run-time code.

If you're still not convinced NewPtr is worth the clutter, here's something it
can do that New can't: Declare an object greater than 32K. NewPtr accepts a
size parameter of up to 2 billion.

program BigBlock;
uses

MemTypes, QuickDraw, OSIntf;
var

P: Ptr;
begin

P := NewPtr(lOOOOO);
end.

This program claims 100,000 contiguous bytes of heap space, the first byte
of which is at the address stored in P. Like New, NewPtr returns nil if it
can't fulfill the allocation request. NewPtr's ability to create big blocks goes
a long way toward alleviating the pain of the 32K structure limitation. You
can't use array notation to access any bytes past the 32K point, but a little
"pointer arithmetic" allows you to treat a large block in any way you like
(we describe this process later).

After using NewPtr to allocate heap space, don't use Dispose to give it back.
Instead, call the complementary Memory Manager routine DisposPtr.

procedure DisposPtr(p: Ptr);

Since it only accepts parameters of type Ptr, a variable of any other type
must be coerced to type Ptr-for example, to dispose of theArray from the
earlier example:

DisposPtr(Ptr(theArray));

The Fragmented Heap

NewPtr (and by extension New, since it ultimately results in a call to
NewPtr) creates fixed (nonrelocatable) blocks on the heap. Unlike stack space,
heap space can be allocated and deallocated in any order. That's
simultaneously its greatest attribute and its worst problem. After a heap­
using program has run for a while, the heap becomes a Swiss cheese of
vacant holes and allocated space.

Memory Management: Practice 377

H:;:;:;:;H;:;:;:;:;:N%x.:,:,:,:,:,:':':':'''§''=-4-i Allocated

Free Space

Figure 30.1 : The Fragmented Heap

This is called fragmentation, and it's the nemesis of heap management. It is
possible to have tens of thousands of bytes of free space, but no single
contiguous block larger than a few hundred bytes. So, even though the
heap theoretically has room, any attempt to allocate even a thousand bytes
fails.

This program demonstrates the tragedy of fragmentation.

program FragmentationDemo;
uses

MemTypes, QuickDraw, OSIntf;
var

ArrayOfPtr: array[1 .. 400] of Ptr;
N: Integer;
Temp: LongInt;

begin
MaxApplZone; { Expand the heap to its maximum (8K below top of stack) }
N := 0;
repeat

N := N + 1;
WriteLn('Now allocating array' ,N);
ArrayOfPtr[N] := NewPtr(10000);

until ArrayOfPtr[N] = nil;
ReadLn;

N := N - 1;
repeat

WriteLn('Now disposing array' ,N);
DisposPtr(ArrayOfPtr[N]);
N := N - 2;

378 Turbo Pascal Tutor for the Macintosh

until N <= 0;
WriteLn(FreeMem,MaxMern(Ternp) :10);
ReadLn;

end.

This program first calls the Memory Manager's MaxApplZone procedure to
expand the heap to its limit (that is, to within 8K of the top of the stack).
Then, depending how much memory your machine contains,
FragmentationDemo creates several-possibly dozens of-nonrelocatable
10,000 byte objects. It keeps track of each with an entry in Array OfP tr . In a
1-Mb machine, FragmentationDemo allocates roughly 75 such blocks (750K).

It stops creating them when NewPtr finally returns nil, indicating that the
heap is too full to accept any more 10K blocks. The text in the terminal
window may get a little distorted at this point, due to a phenomenon
known as purging (described later). Then FragmentationDemo methodically
deallocates every other block. By the time this program works its way to
the final WriteLn statement, the heap is striped like a zebra with alternating
free space and allocated blocks.

.':'.,,' • ~:. "".-.' '~" "l'l Allocated

Figure 30.2: Heap atter Program Has Run

This program forgoes Turbo's built-in heap status routines MemAvail and
MaxAvail in favor of Toolbox functions that do the same thing. The
Memory Manager function FreeMem returns the total amount of free
memory in the heap. MaxMem returns the size of the largest single
contiguous block. (It returns in Temp the size by which the heap can still
grow; since we used MaxApplZone already, Temp returns as zero.)

Memory Management: Practice 379

On a I-Mb machine, FragmentationDemo's final WriteLn produces numbers
somewhere in this vicinity:

360000 18066

This is the tragedy of fragmentation: 360,000 bytes of free memory, yet we
can't create a 20K block.

Compacting the Heap

Apple's programmers created the fragmentation problem with their
abundant use of the heap to store various and sundry Toolbox data objects.
So they devised a scheme that periodically packs all the allocated blocks
snugly at the bottom of the heap, resulting in a consolidation of free space
at the top. This is called compacting the heap.

compacting

Figure 30.3

compacting

s· ••••••• ,~, ~: Allocated

mmHH:i;mmm;mm Free Space

Let's think about the ramifications of compacting the heap. Imagine that a
program has been running for a while and has allocated a number of
blocks. One object in particular is accessed through pointer variable

380 Turbo Pascal Tutor for the Macintosh

theArray (of type BigArrayPtr), which currently holds the value 201,220 (that
is, 201,220 is the address of theArrayA[l]).

L..---..;._
the Array

Figure 30.4: theArray on the Heap

Up to this point, there's been enough room to create every block that the
program (or a Toolbox routine) asked for without any compaction
necessary. But now, a desk accessory requiring 7K is activated. The
Toolbox's OpenDeskAcc function asks for a 7000-byte block on the heap. The
Memory Manager discovers that 7000 contiguous bytes don't exist. So it
compacts the heap, packing the allocated blocks into a solid chunk at the
bottom, and frees up 20,000 bytes at the top.

Memory Management: Practice 381

--.....,; the Array

Figure 30.5: New Address of theArray after Compaction

The desk accessory does its thing and our program gets control back. All is
well-or is it? Before too long, the desk accessory tries to access the array
formerly at address 201,220 (pointer variable theArray still holds this value).
But the array isn't there any more-it's been moved to address 102,188.
Since the program has no way of knowing this, it goes through the motions
of treating the 2000 bytes at address 201,220 as though they still ~epresented
the array. Every read of theArray gets erroneous values; every write
clobbers 2 bytes of some other routine's data.

The same situation exists for other routines that had declared heap objects
before the compaction-all start working with data that isn't right any
more, and things run amuck. Bomb alerts appear. Users tear out their hair.

It seems that heap-management routines shouldn't go around moving
memory blocks, because the pointers used to keep track of them aren't
updated to reflect the movement. But there's an improvement to blocks and
pointers that permits compaction.

382 Turbo Pascal Tutor for the Macintosh

Relocatable Blocks and Handles

The Memory Manager offers two sets of tools for working with heap
memory. The first are the ones we've been working with thus far: pointers
to nonrelocatable blocks in the heap. They're created with NewPtr (or New,
for that matter); accessed by dereferencing pointer variables; and disposed
of with DisposPtr (or Dispose). Using nonrelocatable blocks invites
fragmentation.

The second approach uses pointers to pointers to relocatable blocks. Relocatable
blocks are created with the Memory Manager's NewHandle routine and
disposed of with the complementary DisposHandle. Relocatable blocks
permit heap compaction and therefore eliminate (or at least reduce) the
fragmentation problem.

Relocatable blocks are made possible by an ingenious scheme involving a
middleman called a master pointer. Relocatable blocks are accessed with
pointer variables that point to master pointers, which in turn contain the
addresses of the objects themselves. The pointer to the master pointer is
called a handle.

Figure 30.6: Handle to a Relocatable Block

When, during compaction, a heap-management routine sees fit to move the
object that a master pointer points to, it knows to change the value in the
master pointer so that the master pointer continues to point to the object in

Memory Management: Practice 383

its new location. (There's a backward link between each relocatable block
and its associated master pointer.) Since the master pointer itself didn't
move, the pointer to it (the handle) maintains access to the block.

Before After
Figure 30.7: Handle to a Moved Relocatable Block

Here's the official declaration of NewHandle in unit OSIntf:

function NewHandle(byteCount: Size): Handle;

NewHandle is analogous to NewPtr. You tell it how many bytes long the
relocatable block should be, and it returns a 4-byte object of type Handle,
where Handle is defined in unit MemTypes as

type
Handle = "Ptr;

This means that given

var
H: Handle;

then

• H is a Handle

• H" is a Ptr
• H"" is a SignedByte

384 Turbo Pascal Tutor for the Macintosh

Handle variables require two dereferences and, therefore, two carets
alongside the handle identifier to get to the object indicated by the handle.
For example,

type
CheckPtr = ACheck;
CheckHdl = ACheckPtr;

var
aCheck: CheckHdl;

After allocating the block with NewHandle,

aCheck := CheckHdl(NewHandle(Sizeof(Check));

• aCheck/\ is a CheckPtr

• aCheck/\/\ is a check record

• aCheck/\/\ .amt is a real

• aCheck/\/\.payee is a string
• aCheck/\/\.payee[5] is a character

Just as you can't dereference pointer variables unless they really point to
something, you can't dereference a handle unless you've previously used
NewHandle to allocate a master pointer and relocatable block. (You can try,
but the results are usually catastrophic.) For example, when executing the
statement

aCheckAA.payee := 'Alice Carlson'

the Macintosh uses the address in aCheck to locate the address of the check
record itself, so that it can assign to its payee field. If aCheck doesn't point to
a master pointer or if that master pointer doesn't point to an appropriate
heap block, then executing this statement is liable to assign string data to
any address in memory.

Let's review: When a program wants to allocate some heap memory (and
reduce the likelihood that the heap will become unusably fragmented), it
calls function NewHandle. NewHandle returns the address of a master
pointer. In turn, this master pointer contains the address of the relocatable
block of data of the prescribed length that's been allocated in the heap.
When you're compacting the heap and a block requires moving, the
memory-management routines need only update this master pointer with
the new address of the block. The Pascal routine that allocated the block
still has the address of the master pointer, which itself doesn't move.

This next program show how handles and relocatable blocks result in a
more usable heap.

Memory Management: Practice 385

program NoFragmentationDemo;
uses MemTypes , QuickDraw, OSIntf;
var

ArrayOfHdl: array [1 .. 400] of Handle;
N: Integer;
Temp: Longint;

begin
MaxApplZone; N := 0;
repeat

N := N + 1;
WriteLn(/Now allocating array I IN);
ArrayOfHdl[N] := NewHandle(lOOOO);

until ArrayOfHdl[N] = nil;
ReadLn;
N := N - 1;
repeat

WriteLn(/Now disposing array ',N);
DisposHandle(ArrayOfHdl[N]);
N := N - 2;

until N <= 0;
WriteLn(FreeMem/MaxMem(Temp) :10);
ReadLn;

end.

This program creates relocatable blocks instead of fixed blocks, and
therefore allows heap compaction to work. At the instant of the final
WriteLn, the heap is striped much like before.

The payoff comes when MaxMem invokes heap compaction. The
compaction is so successful that MaxMem and FreeMem return almost the
same value, meaning that you can create a block almost as large as the
heap's free space.

It's Up to You

In practice, Macintosh programs create both types of blocks, and the
Memory Manager takes both in stride. Nonrelocatable blocks are always
placed in as Iowa memory location as possible, moving relocatable blocks
up as necessary, to reduce the potential for permanent fragmentation. This
process works best when the heap is largely empty, so try to allocate
nonrelocatable space early on in a program's execution.

Where you have a choice, use relocatable blocks.

Applications for Relocatable Blocks

A handy characteristic of relocatable blocks is that they can be easily
lengthened and shortened-treated almost like disk files. The keys to this
are the Memory Manager's SetHandleSize and GetHandleSize routines.

386 Turbo Pascal Tutor for the Macintosh

Procedure SetHandleSize allows you to enlarge or reduce a relocatable
block.

procedure SetHandleSize(h: Handle; newSize: Size);

To find out how long a relocatable block is at any given time, call function
GetHandleSize:

function GetHandleSize(h: Handle): Size;

Checkbook Program #49

Using a relocatable block to store check data uses less memory than even a
linked list. We won't show an entire program here-just enough to
demonstrate how a O-byte relocatable block is allocated initially, then
expanded by one check's worth with each call to procedure AddCheck.

type
CheckArray = array [1 .. 640] of check;
CheckArrayPtr = ACheckArray;
CheckArrayHdl = ACheckArrayPtr;

var
checkbook: CheckArrayHdl;

procedure AddCheck(theCheck: Check);
{ add a check record to the end of the block
var

N: LongInt;
checkCount: Integer;

begin
N := GetHandleSize(Handle(checkbook)); { how large is it now?
SetHandleSize(Handle(Checkbook),N + Sizeof(Check)); { now one check bigger
checkCount := sizeNow div Sizeof(Check); {calculate index for new entry
checkbookAA[checkCount] := theCheck; {store check data at end of block

end;

begin
checkbook := CheckArrayHdl(NewHandle(O)); { allocate a O-byte block }

{ accept and store check data }

end.

Since this program uses array notation to access the relocatable block, it is
still subject to the 32K structure limitation. That's why type CheckArray is
defined the way it is-640 check records are as many as can be shoehorned
into 32K.

There are similar calls for retrieving and setting the size of nonrelocatable
blocks-GetPtrSize and SetPtrSize. They're rarely used, however, mainly
because SetPtrSize will usually fail a request to increase the size of a

Memory Management: Practice 387

nonrelocatable block. If there's a nonrelocatable block above a
nonrelocatable block (and there usually is, since the Memory Manager puts
all nonrelocatable blocks together at the bottom of the heap), then any
effort to expand that block will fail.

Error Detection

After performing any Memory Manager function, you can determine the
success or failure of the operation by calling the MemError routine. For
example, when attempting to expand a relocatable block with
SetHandleSize, check the value returned by MemError immediately
thereafter to see if it worked:

SetHandleSize(Handle(CheckArray));
if MemError <> noErr then { noErr is an integer constant }

OutOfMemory; { defined in OSIntf }

Unit aSlntf defines a number of integer constants useful in interpreting the
value returned by MemError. See aSlntf s interface in Appendix D of this
and the Turbo Pascal manual for more information.

Master Pointer Blocks

The Memory Manager allocates 64 master pointers when it first ~ets up the
application heap zone. These master pointers reside in a 512-byte
nonrelocatable block at the very bottom of the heap. Additional
nonrelocatable blocks of 64 master pointers each are created as needed. If
you watch the execution of NoFragmentationDemo carefully, you may notice
a brief pause as the 40th or 50th block is allocated. This delay is caused by
the allocation of a fresh block of master pointers at the bottom of the heap.
It requires several hundred thousand bytes worth of relocatable blocks to
be moved up 512 bytes, creating a slight pause.

Should a program need more than 64 master pointers (and they have a way
of getting used up), it's safest to allocate them early on yourself, to reduce
the risk of fragmentation. The parameterless MoreMasters procedure creates
64 master pointers with each call. To create more than 64 master pointers,
call MoreMasters more than once. Some applications call it a dozen times or
more as part of their initialization code.

388 Turbo Pascal Tutor for the Macintosh

Purging and Heap Compaction

Heap management, Macintosh-style, gets even more interesting. In accom­
modating a request for a block larger than what's currently available, the
allocation routines will do more than simply compact the heap. If, after
moving all the relocatable blocks together, there still isn't enough memory
available, the Memory Manager checks if any blocks are flagged as
purgeable.

A purgeable block is a relocatable block whose user (either you or a
Toolbox routine) has told the Memory Manager, in effect, "If you ever need
to use the memory occupied by this relocatable block for something else,
feel free. Just let me know that you've taken it." This is known as making a
block purgeable and is performed by calling the HPurge routine:

procedure HPurge(h: Handle);

It may be hard to imagine allowing a block to be purged-after all, if you're
going to let it be overwritten, why bother to allocate it in the first place?
You certainly don't want to lose carefully acquired checkbook data this
way. But there are cases where purging is tolerable.

Consider the Toolbox's font-handling routines. A given font must be in
memory before QuickDraw can use it to draw text. But there's an exact
duplicate of that font data out on disk (in the System file, where it came
from in the first place). So, if a program allows a 7K block of font data that
hasn't been used in the last 30 minutes to be purged so that more checks
can be entered, there's no great loss. The font is simply loaded from disk
again the next time it's needed-at which time the memory situation may
have changed.

It's a classic programming trade-off: speed versus memory. We sacrifice the
time spent going to the disk to reread the purged font for the benefit of
using its memory for something more important. For bulky, read-only,
occasional-use data that can be easily recreated or reloaded from disk,
purgeable blocks free up memory for routines that really need it.
Incidentally, font data usually is purgeable; that's why this chapter's heap­
filling demos may result in strange-looking text on your machine.

Blocks aren't purged except as a last resort~ Here are the steps the Memory
Manager follows when trying to allocate an n-byte block:

• Check the current heap zone for an n-byte free space.

• Compact the heap and check again.
• Increase the heap zone (if it isn't already at the limit).

Memory Management: Practice 389

• Purge purgeable blocks.

This program demonstrates purging:

program PurgeDemo;
uses MemTypes , QuickDraw, OSIntf;
var

ArrayOfHdl: array [1 .. 400] of Handle;
N: Integer;
Temp: LongInt;

begin
MaxApplZone;
N := 0;
repeat

N := N + 1;
WriteLn(/Now allocating array I IN);
ArrayOfHdl[N] := NewHandle(10000);

until ArrayOfHd1[N] = nil;
WriteLn(MaxMem(Temp) :10);
ReadLn;
N := N - 1;
repeat

WriteLn(/Now flagging array I I N:O , I as purgeable /);
HPurge(ArrayOfHdl[N]);
N := N - 2;

until N <= 0;
WriteLn(MaxMem(Temp) :10);
ReadLn;

end.

This program stuffs the heap with relocatable blocks until it can't accept
another one. By default, blocks created with NewHandle are not purgeable,
so calling MaxMem the first time displays a value of less than 10K. Then
PurgeDemo proceeds to flag every other block as purgeable. When the heap
compaction/ purging process is triggered again by the MaxMem statement
in the final WriteLn, half the original size of the heap is regained.

How an Application Can Tell if a Block Has Been
Purged

If you've made a block purgeable, you must be able to find out whether it's
been purged since you last used it. You can tell whether the block still exists
by looking at its master pointer (not the handle itself, but the pointer it
points to; this takes one dereferencing caret). The Memory Manger sets the
master pointer of a freshly purged block to nil. For example, if the Font
Manager didn't take care of this already, you could test whether a font has
been purged thusly:

390 Turbo Pascal Tutor for the Macintosh

var
NewYork24Pt Handle; {to 7000 bytes worth of purgeable font data }

if NewYork24Pt A = nil then
begin

ReallocHandle(NewYork24Pt,
LoadFont;
HPurge(NewYork24Pt);

end;

. { use the font }

{ using the same master pointer, }
7000); { create a 7K relocatable block}

{ load it back }
{ and make it purgeable again }

ReallocHandle is designed to be used after you've discovered that a block
has been purged. Alternatively, you could call NewHandle again, but you'd
waste a master pointer.

Locking a Relocatable Block

Occasionally, you'll want to tell the Memory Manager not to relocate a
relocatable block until further notice; that is, to temporarily treat it as
though it had been declared with NewPtr. One instance would be when
using File Manager routines to read a file.

The Toolbox's file routines (which are described in Chapter 39) work by
being told what file to work with and where in memory to write to. This
memory location is communicated with a pointer to the heap block that
should be written to. The problem is that the File Manager itself must
occasionally allocate heap space to accomplish the read, and it's just
possible that this allocation will trigger heap compaction. As a result, the
block no longer resides where you specified, and the File Manager
cheerfully clobbers some other routine's data.

The solution is to temporarily lock the block just before the read, then to
unlock it afterwards. Block locking and unlocking is performed by the
HLock and HUnlock procedures:

procedure HLock(h: Handle);
procedure HUnlock(h: Handle);

A locked relocatable block is the worst sort of heap citizen, so be sure to
unlock it as soon as possible. Relocatable blocks can be anywhere and
locking even a small one that happens to be in the middle of the heap
severely limits the ability of the Memory Manager to collect free space. This

Memory Management: Practice 391

is known as creating an "island" in the heap. A single 50-byte locked block
in the middle of an otherwise empty heap reduces the size of the largest
block that can be allocated by half.

Before
Compaction

After
Compaction

li:!:j:!:!:!:j:!:!:j:!:!:!:!:!:!! Free block
____ Relocatable block

____ Nonrelocatable block

Figure 30.8: An Island in the Heap

Setting the Boundary between Stack and
Heap

By default, the application heap is allowed to grow to within 8K of the
stack~s initial value. In a program that uses recursion or declares large stack
variables, you'll want to adjust this dividing line to give the stack more
elbow room. Use the following calls early on in the program's initialization:

function GetApplLimit : Ptr;
procedure SetApplLimit (zoneLimit: Ptr);

The following statement sets the heap limit to lOOK less than the start of the
stack:

SetApplLimit(Ptr(Ord(GetApplLimit) - 92000)); { Stack is 8K by default}

In a l-Mb machine, the heap still has hundreds of thousands of bytes of
elbowroom.

392 Turbo Pascal Tutor for the Macintosh

Simulating Big Arrays

Both relocatable and nonrelocatable blocks can be used to simulate arrays
larger than 32K. For example, this program simulates a lOO,OOO-element
array of real numbers.

program BigArraySimulation;
uses

MemTypes, QuickDraw, OSIntf;
var

theArray: Handle;

procedure PutReal(index: Longlnt; value: Real);
var

aReal : "Real;
begin

aReal := Pointer(Ord(theArray") + index * 4);
aReal" := value;

end;

function GetReal(index: Longlnt): Real;
var

aReal : "Real;
begin

aReal := Pointer(Ord(theArray") + index * 4);
GetReal := aReal";

end;

var
N: Longlnt;

begin
theArray := NewHandle(400000);
if theArray = nil then Exit;

for N := 0 to 99999 do
PutReal (N, 0.0) ;

= array [0 .. 99999] of real}
{ insufficient memory }

(heat

and serve ...

end.

The PutReal and GetReal routines use pointer arithmetic to calculate where
a given element of this pseudo array resides in memory:

aReal := Pointer(Ord(theArray") + index * 4);

This statement says to take the value currently in theArray's master pointer
(theArrayl\) and add to it the result of multiplying the index parameter by 4.
Values of type Real are 4 bytes long, so the second element in the array
starts 4 bytes beyond the start of the block, the third at position 8, and so
on.

Memory Management: Practice 393

Typing considerations force us to first turn theArray" (a pointer type) into a
number with the Ord function, so that we can perform arithmetic with it.
Finally, the Pointer function coerces the result back into a pointer type so
that it can be assigned to aReal. After this assignment, aReal holds the
address of the proper spot in the block, so we can assign the indicated
value to aReal". At the risk of making this statement even more complex,
we could replace the multiplication with a left shift to speed things up:

aReal := Pointer(Ord(theArrayA) + (index shl 2));

Review

Macintosh programs make extensive use of both stack and heap for data
storage. Stack management is handled by the compiler and occurs
automatically as procedures and functions are called and returned from.
Heap objects can be either nonrelocatable (created by NewPtr and accessed
through simple pointers) or relocatable (created by NewHandle and accessed
through handles and master pointers). Relocatable blocks can be
temporarily locked (prevented from moving). In addition, relocatable
blocks can be flagged as purgeable; that is, the Memory Manager has
permission to take back their memory if it needs to.

There can be several heaps in memory at once, and there are always at least
two: the system heap (which keeps track of such things as volumes and
files), and the application heap, which stores data for the lifetime of the
current application. The application heap disappears when a program
terminates; the system heap doesn't.

394 Turbo Pascal Tutor for the Macintosh

c H A p T E R

31

Resources and Resource Files

One aspect of Macintosh programming has no counterpart in traditional
programming environments: the notion of resources. Originally intended
simply to separate an application's country-specific information from its
code-for example, the text of a pull-down menu from the code that puts
the menu on the screen-resources grew in importance as the Macintosh
Toolbox evolved.

Resources are packets of data residing on disk, which are loaded into
memory as required by an application or Toolbox routine. Just where on
the disk? In what file(s)? The answer indicates the significance of resources
in Macintosh programming: potentially, in every single file on the disk.

The Need for Resources

Like your own programs, Toolbox routines need data on which to operate:
QuickDraw requires font information; the Window Manager needs
window description data; the Menu Manager requires the text for each
pull-down menu. These data objects, of various Pascal types, typically
reside on the heap as relocatable blocks and are accessed through handles.
Consider type MenuHandle, the Menu Manager's primary data type:

MenuHandle = AMenuPtri
MenuPtr = AMenuInfoi
MenuInfo = record

menuID: Integeri
menuWidth: Integer;

Resources and Resource Files 395

menuHeight: Integer;
menuProc: Handle;
enableFlags: Longint;
menuData: Str255;

end;

Without worrying at this point what the fields in a Menulnfo record are for,
note that whenever an application executes, there's exactly one of these
records out in the heap for each menu. To define its complement of pull­
down menus, for example, Turbo Pascal has eight menu handles to eight
relocatable blocks.

Before they can be used by the Menu Manager, Menulnfo records are loaded
from disk (usually from the application file) and placed as relocatable
objects in the heap. Other Toolbox routines follow this "load from disk to
heap" pattern; the Font Manager goes through similar gyrations collecting
font data.

Over time, the Resource Manager evolved into a general-purpose tool for
moving chiefly read-only data from disk to heap-a tool much easier to use
than the traditional Open/Seek/Read/Close way of working with files.

Data and Resource Forks

As mentioned in Chapter 17, every Macintosh file is actually two files going
under the same name: One part is called the data fork; the other, the resource
fork. The Finder represents both forks by a single icon and works hard to
maintain this illusion. When it copies, deletes, or renames a file, it
automatically processes both forks.

One fork is often empty. In most application files (programs), the data fork
is the empty one. Conversely, data files (such as a MacPaint document or
Turbo Pascal text file) generally have empty resource forks. For the
purposes of this chapter, we're going to call every file with a non-empty
resource fork a resource file.

Standard Pascal's file-handling tools all operate implicitly on data forks.
Similarly, by default, the File Manager's routines (which we'll work with in
Chapter 36) also manipulate the data fork.

It isn't necessary to understand the internal structure of a resource file,
because of the wealth of access tools provided by the Resource Manager.
Every resource is known by a unique four-character type and integer ID
code (and optionally, by a name).

396 Turbo Pascal Tutor for the Macintosh

type
ResType: packed array [1 .. 4] of Char;

Resources can be arbitrarily divided into two categories: system resources
and application resources. System resources are those that tend to be used by
all programs and by Toolbox routines. Application resources are those used
exclusively by a particular program.

Examples of resources include

• Fonts-A collection of symbol images and width data needed by
QuickDraw to draw characters in a given typeface and size (ResType =
'FONT').

• Menus-Each pull-down menu of an application is a resource, consist­
ing of its title and each entry (ResType = 'MENU').

• Icons-The 32-by-32 pixel symbols used by the Finder to represent files
and disks (ResType = 'ICON').

• Strings-Sequences of ASCII characters with a length byte at the
beginning (ResType = 'STR ').

The System File

System resources are held in one large resource file named System. A file
with this name must be present whenever a Macintosh boots up. The
System file can be thought of as the Toolbox's toolbox: a repository of
information considered too changeable and/or bulky to be placed in
valuable ROM.

To keep users safe from themselves, the active System file can't be renamed
or deleted. Along with hundreds of other resources, desk accessories and
fonts are stored in the System file. Depending on the number of DAs and
fonts it contains, a System file can range from about SOK in size to 600K and
beyond.

Application Resources

Application resources are held within the resource fork of the application
file itself. These resources are less general than the resources of the system
file, although the methods for accessing them are identical.

Resources and Resource Files 397

To get a resource, you need only specify the type and the ID number. The
Resource Manager does the rest, locating the specified data in an open
resource file, allocating a suitably sized relocatable block on the heap,
reading the resource to the block, and, finally, returning a handle to it.
Typically, you won't even specify the file to read from. The Resource
Manager looks first for a resource in the current application's resource file.
If it can't find it there, it looks in the System file.

Resource Manager Routines

If a program intends to use resources in a resource file other than its own
resource fork or the System file, it calls OpenResFile:

function OpenResFile(fileName: Str255): Integer;

OpenResFile opens the indicated file on the default volume. If the file can't
be opened successfully, OpenResFile returns -1; otherwise, it returns the
file's reference number, the value by which you'll refer to this file in future
calls. For example, the reference number is required to close a resource file:

procedure CloseResFile(refNum: Integer);

To determine how many resources of a particular type exist in all open
resource files, call CountResources:

function CountResources(theType: ResType): Integer;

For example,

WriteLn(CountResources('FONT'))

displays the number of font resources available. Since usually only the
System file contains font data, this returns the same number of fonts you'd
see if you ran the Font/DA Mover application on that system file. (A font is
a given typeface in a given size; 12-point Los Angeles and 24-point Los
Angeles are two fonts.)

To read each resource of a given type, call the GetIndResource function
repeatedly:

function GetIndResource(theType: ResType; index: Integer): Handle;
For example, if we knew as a result of a call to CountResources that there are
14 font resources available, we could load and get a handle to each by
calling GetIndResource repeatedly with an index ranging from 1 to 14:

398 Turbo Pascal Tutor for the Macintosh

for N := 1 to 14 do
fontArray[N] := GetlndResource('FONT' ,N); {fontArray is an array of handles

The most important Resource Manager call is GetResource:

function GetResource (theType: ResType; theID: Integer): Handle;
Called indirectly by many Toolbox routines and directly by your programs,
GetResource returns a handle to the requested resource given the type and
ID number. Note that resources of different types can have the same ID
number.

Releasing Resources

As with any heap-allocated object, when you're through working with a
resource, you must make sure that the space it occupies is released. This is
done by the ReleaseResource call:

procedure ReleaseResource(theResource: Handle);

A Sample Program

This program demonstrates the CountResources and GetResource calls.

program GetFonts;
uses

MemTypes,QuickDraw,OSIntf,Toollntf,PackI~tf;
var

H : Handle;
N : Integer;

begin
WriteLn('This system file has' ,CountResources('FONT'),' font resources.');
for N := 9 to 24 do { check each potential size }
begin

H := GetResource('FONT' ,128 * new York + N);
if H <> nil then

{ font resource IDs are
{ based on a formula using
{ the font number and size

size ',N,'; Size = ');

begin
Write ('New York is available in point
WriteLn(GetHandleSize(H));
ReleaseResource(H);

end;
end;
ReadLn;

end.

Resources and Resource Files

{ deallocate the storage

399

Creating a Resource File: RMaker

We mentioned earlier that the data fork of most applications is empty. In
other words, most applications consist of nothing but resources. The code
itself is divided into one or more resources of type CODE.

If application files are nothing but a collection of resources, how do the
resources associated with a program get there? The program most
responsible for this is called RMaker, which is on your Turbo Pascal
Utilities & Sample Programs Disk. Apple calls RMaker a "resource
compiler." It isn't a compiler in the sense that Turbo Pascal is: It has no
knowledge of the 68000 family and produces no machine code. Instead, it
translates textual descriptions of resources written in "RMaker language"
into binary form and writes them to a newly created resource file.

You can use RMaker to produce any sort of resource as long as you know
the structure of the resource and the RMaker statements necessary to define
it.

Following is an example of an RMaker source program. Fortunately,
RMaker language isn't nearly as tricky as Pascal. RMaker input files consist
of a series of short (three- to six-line) entries, each describing a single
resource. The format varies according to the type of resource being defined.

MyResourceFile.Rsrc

Type STR ;; double semicolons delimit comments
,128 ;; 10 = 128; the comma separates optional name

This string carne from a resource file . . .

Type STR ;; be sure to include a trailing space after "STR "
,129

And so did this one.

The first line of an RMaker file is the name you've chosen for the resulting
resource file. In this case, after RMaker has finished processing
MyResourceFile.R, the string resources generated are placed in a new
resource file called MyResourceFile.Rsrc. (This file will have an empty data
fork.) Note that the extensions .R and .Rsrc to represent RMaker input and
output files, respectively, are standard in Macintosh development. This
particular file describes two resources of type STR by simply listing the ID
number and then the string itself.

400 Turbo Pascal Tutor for the Macintosh

Running RMaker

Use Turbo's editor to enter MyResourceFile.R. Now try to compile it. It
didn't work, did it? Of course not, it isn't a Pascal program. The only
compiler in the world able to make sense of this text is RMaker.

Transfer to the RMaker application (it's an excellent candidate for
membership in the Transfer menu). RMaker has few options; it asks you to
select a file for processing (by default, only text files ending in .R show up
in the Open box) and then quickly creates the resource file

4t File Transfer

Figure 31.1: RMaker Working

For instructions on using RMaker, see Chapter 12 of the Turbo Pascal
manual.

Assuming you didn't make any errors in entering MyResourceFile.R-you
did include a space after '5TR ' and a final carriage return to terminate the
last string, right-RMaker now produces a new resource file named
MyResourceFile.Rsrc.1t contains only two string resources.

Quit RMaker to the Finder. Can you locate this newly created file? It'll have
the generic document icon.

Now, let's write a Turbo Pascal program that uses these string resources:

program ResourceGetter;
uses

Memtypes,QuickDraw,OSIntf,ToolIntf;
var

s: StringHandle;
refNum: Integer;

begin

Resources and Resource Files 401

refNum := OpenResFile('MyResourceFile.Rsrc');
if refNum = -1 then
begin

WriteLn('Couldn"t open the resource file ... ');
Exit;

end;
S := StringHandle(GetResource('STR ' ,128));
WriteLn(SAA); ReleaseResource(Handle(S));
S := StringHandle(GetResource('STR ' ,129));
WriteLn(SAA); ReleaseResource(Handle(S));
S := StringHand1e(GetResource('STR ' ,0));
WriteLn(SAA); Re1easeResource(Hand1e(S));
C1oseResFi1e(refNum);
ReadLn;

end.

Variable S has type StringHandle, which is defined in unit OSIntf as

Stringptr = AStr255;
StringHandle = AStringPtr;

By defining this string variable as a handle, we reduced this program's
global memory requirement to 6 bytes. Had we declared instead

var
s: Str255;
refNum: Integer;

there would be 258 bytes of global data. We also couldn't have used the
resource mechanism, because the Resource Manager only works with data
that can be accessed through handles.

This program's first move is to the resource file containing the strings:

refNum := OpenResFile('MyResourceFile.Rsrc');

It adds MyResourceFile.Rsrc to the resource search chain when hunting for
resources, by implementing its "resource map," which describes the type,
ID number, and location in the file of all resources the file contains. The
chain already contains the System file. If OpenResFile returns -1, then the
file couldn't be opened, because either it isn't in the current directory or its
name was misspelled.

Once the file is open, we can take advantage of the resource mechanism.
We can read string data from the file without concern for the internal
structure of MyResourceFile.Rsrc (in fact, without even caring if it's in
MyResourceFile.Rsrc or the System file).

S := StringHandle(GetResource('STR ' ,128));

402 Turbo Pascal Tutor for the Macintosh

A simple call to GetResource, telling it the type of resource we want and a
unique ID number, is all it takes. Type coercion is necessary because
GetResource returns the type Handle. After this call,

• 5 is a 5tringHandle
• 5/\ is a 5tringPtr
• 5/\/\ is a 5tr255

Each call to GetResource is matched by a ReleaseResource call. Otherwise,
we'd tie up the heap with data we no longer care about.

The third GetResource call (using ID = 0) retrieves a string hidden away in
the System file that describes the version number and release date of the
system file. (By definition, all ID numbers less than 128 refer to system
resources. Values 128 through 32767 are reserved for your own use.) Note
that, except for the ID number, the process is exactly the same.

Review

The Resource Manager is a convenient mechanism by which Pascal
programs and Toolbox routines are able to load data from files into the
heap. The Resource Manager works with resource files, that is, with the
resource fork of files. All resources have a unique four-character type and
integer ID number.

System resources are stored in the System file and are used by both applica­
tions and Toolbox routines. Application resources are used only by
applications and are usually stored in the resource fork of the application
file itself.

The RMaker application produces resource files by compiling textual
descriptions of resources and generating the appropriate resources in a file.

Resources and Resource Files 403

404 Turbo Pascal Tutor for the Macintosh

c H A p T E R

32

QuickDraw: Theory

Most personal computers work almost exclusively in text mode. If they
have a graphics capability at all, it is used mostly for games or for pie
charts and graphs. The Macintosh was the first widely distributed personal
computer without a so-called text mode: Every letter, number, and
punctuation symbol-and drawing-is drawn to the Macintosh screen pixel
by pixel.

'Where other personal computers have text-mode hardware, the Macintosh
has QuickDraw. Don't be misled by QuickDraw's relatively insignificant
status in Inside Macintosh. QuickDraw takes up only 78 pages out of that
book's 1,200, yet is the most significant aspect of the Toolbox. If you
understand it, the rest will come easy. Skimp on understanding
QuickDraw, and you can memorize every word of the Vertical Retrace
Manager and still not get programs to work.

Because of the volume of structures and routines it contains, QuickDraw is
one of the tougher stretches of the Mount Toolbox climb; so stay with the
group (and don't look down).

Some of the things QuickDraw helps you draw, quickly, include

• text in various fonts, sizes, and styles

• straight lines of variable thickness and pattern

• rectangles, rounded-corner rectangles, ovals, and'polygons

QuickDraw allows multiple independent dra~ing regions to exist
simultaneously, each with a unique set of drawing criteria, such as text size
and style. QuickDraw's "picture" facility allows you to accumulate dozens

QuickDrow: Theory 405

of drawing calls into a single entity that can be stored as a resource to disk
or played back with a single call.

In addition, QuickDraw has a well-developed ability to "clip"
drawings-to control what areas on the screen get drawn to and what
don't.

Points, Rectangles, and the Coordinate Plane

QuickDraw operations are based on an imaginary two-dimensional grid (or
plane). Each horizontal and vertical line (not the gaps between the lines) on
the grid is numbered, from -32767 on the top and left corners to 32767 on
the bottom and right corners (see Figure 32.1) .

..... +++++-+-+-I +++++-+~~ +++++-+-+-I 32,767

32,767

Figure 32.1 : The QuickDraw Coordinate Plane

These values weren't chosen for their decimal beauty, but rather for their
binary convenience. They're the largest numbers you can express with a
value of type Integer, integers being an efficient object for the Macintosh's
68000 processor family.

The grid lines of the QuickDraw plane are infinitely thin. At each
intersection of a horizontal and vertical grid line lies a QuickDraw point.
Points are infinitely small; they have a position, but no length or width.

406 Turbo Pascal Tutor for the Macintosh

The only attribute of a point is its location, specified by the horizontal and
vertical grid lines that pass through it. We use the notation (x,y) to describe
points. For example, (20,10) is the point defined by the intersection of
vertical grid line 20 and horizontal grid line 10.

..

(20,10)

Figure 32.2: Point (20,10)

This point is slightly to the right and down from the center (origin) of the
QuickDraw grid, point (0,0). The point (-32767,-32767) is the extreme upper
left; (32767,32767) is the extreme lower right. With 64K lines along both the
horizontal and vertical axes, there are some 4 billion points on the
QuickDraw plane (64K * 64K). That's more than enough to define fancy
displays.

The QuickDraw plane and the Cartesian plane of coordinate geometry that
you probably learned in school are similar, except that

• The QuickDraw plane isn't infinitely large.
• It's impossible to specify a point between grid lines, such as (0.5,15) or

(12.1,67). For speed, QuickDraw works strictly with integers.

• Y-axis values get larger as you move down the QuickDraw plane rather
than up.

Pascal and Points

QuickDraw defines the objects it works on with good, clean Pascal; it is
accessed through unit QuickDraw. Here's how QuickDraw defines a point:

QuickDraw: Theory 407

type
VHSelect = (v,h);
Point = record case Integer of

0: (v,h: Integer);
1: (vh: array [VHSelectj of Integer)

end;

This definition is surprisingly complicated. Unfortunately, the programmer
behind QuickDraw didn't choose the data structures for the benefit of an
introductory tutorial. Let's work through the definition and, in the process,
review what we learned about variant records in Chapter 14.

This definition offers two different· ways to think about a point. Ignoring
enumerated type VHSelect for a moment, case Integer of in the Point
record is a signal to the compiler that two or more variations of the record
are forthcoming, each enclosed in parentheses. Since it's case Integer, there
could be as many as 32,767 variants (lucky for it-and us-there are only
two). This particular variant record is a free union; it doesn't contain a "tag
field" that defines when a particular variant should be used, so both are
equally legal.

The first variant allows us to treat a point as a record consisting of two
integer fields, named v and h. This code fragment defines a QuickDraw
point at (37,19), slightly down and to the right of the origin:

var
aPoint: Point;

beqin
aPoint.v := 19;
aPoint. h : = 37;

end.

Note that assigning information to a variable of type Point doesn't cause the
screen to change. This illustrates an important QuickDraw concept: the
distinction between mathematical entities such as points and rectangles and
the commands that actually draw them on the screen.

The second variant of the record allows us to describe a point as a two­
element array of integers. VHSelect (for "vertical/horizontal select") is an
enumerated type. (Remember type Days from Chapter 9 with elements
Sunday, Monday, and so on?) VHSelect consists of two elements, v and h. For
example, we could declare a variable of type VHSelect and then assign
either v or h to it.

This scrap of code uses the array variant to describe the same point as the
previous example:

var
aPoint: Point;

beqin

408 Turbo Pascal Tutor for the Macintosh

aPoint. vh [v] := 19;
aPoint.vh[h] := 37;

end.

You'll use the first (record) variant more often. Note that no matter which
notation you use, a variable of type Point has the same 4-byte structure: The
first 2 bytes hold the vertical information, the second 2 bytes, the
horizontal.

Rectangles

Rectangles are the next QuickDraw object of interest. A rectangle is defined
by two points: those at the upper left and lower right corners. The edges of
a rectangle (QuickDraw grid lines) are infinitely thin. As with points, we
can describe rectangles in two ways through a variant record type
definition:

type
Rect = record case Integer of

0: (top, left, bottom, right: Integer);
1: (topLeft,botRight: Point);

end;

The first option uses four integers; the second, two points. The following
code fragment uses both ways to specify the same 20-by-IOO rectangle 40
points down and 40 points to the right of the center of the QuickDraw grid
are

var
r1,r2: Rect;
p1,p2: Point;

begin
r1.top := 40; r1.left := 40;
r1.bottom := 140; r1.right := 60;

p1.v := 40; p1.h := 40;
p2.v := 140; p2.h := 60;
r2.topLeft := p1; r2.botRight := p2;

end.

QuickDraw: Theory 409

(60,140)

Figure 32.3: The Rectangle

After executing this code, rectangles r1 and r2 are identical-that is, the
memory allocated for each contains the same pattern of bits. Since rectangle
assignments are so common, there's a QuickDraw call that performs it and
is visually neat:

procedure SetRect(var r: Rect; left, top, right, bottom: Integer);

For example,

SetRect(myRect,40,40,60,140)

sets rectangle myRect to the same coordinates as the previous example.
(Incidentally, SetRect may be visually clean relative to assigning to the fields
directly, but it takes longer-not long, mind you, but longer-to execute
because of the overhead of parameter passing and the trap mechanism.)

Imaginary grids, infinitesimal points, and rectangles with infinitely thin
sides-how does QuickDraw get around to drawing on the screen?

Drawing into Bits

Viewed from one perspective, QuickDraw is an engine for setting and
clearing bits in memory. If those bits happen to be in the screen buffer, then
pixels on the screen change.

410 Turbo Pascal Tutor for the Macintosh

Human beings usually draw on white paper with black ink; QuickDraw
draws in RAM with 1s and Os. 1 bits mean black; 0 bits mean white. Any
memory suffices as long as you define the address of that memory and how
QuickDraw should think of it as being organized.

Bit Images

To an imaginative programmer, computer memory is the ultimate clay: It
lends itself to any number of visual representations. A common model sees
Macintosh RAM as a continuous highway of 16-bit integers (or words, in the
parlance of the processor), starting at address 0 and working up to 512K or
1 Mb or however much memory is installed.

But the highway model doesn't account for the fact that widely "separated"
addresses can be accessed almost simultaneously; that address 500,000 is no
"farther" in terms of accessibility from address 0 than is address 6.

QuickDraw takes advantage of the random-access characteristic of the
68000 family of processors to model memory into rectangular matrices
called bit images. You decide exactly how wide and how deep the matrix is.

Lowest Address
o I o I I 0 I I I o 0 I I o I I I 0 o I I 0 I I I 0 o I I 0 I I
I 0 o I I 0 I o I I I o I I 0 I I 0 o I I 0 0 I I 0 o I o I o I
I 0 I I I 0 I I I o 0 o I o I I I 0 o I I I 0 I I 0 o I I 0 I I
I 0 o I I 0 I I I o 0 o I o I I I 0 I I I 0 I I I 0 I I o 0 I 0
o I o I I 0 I I I o 0 I I o I I I 0 I I I 0 I I I 0 I I o I o 0
I 0 o I I 0 I 0 o 0 o I I 0 I I I 0 I 0 I 0 I I I 0 o I I 0 I I
I 0 I I o 0 I 0 I 0 o I I 0 I I I 0 o I I 0 I 0 I 0 o I I 0 I I
I 0 o I I 0 I I I 0 I I I I o I I 0 o I I 0 I I I 0 I I o 0 I I
I 0 o I I 0 I I I 0 o I I 0 I I I 0 o I I 0 I I I 0 o I I 0 I I
I 0 o I I 0 I I I 0 o I I 0 I I I 0 o I I 0 I I I 0 o I I 0 I I

Highest address
Figure 32.4: A 32-by-l 0 Bit Grid

Inside Macintosh describes a bit image this way:

Take a collection of words in memory and lay them end to end so that
bit 15 of the lowest-numbered word is on the left and bit 0 of the
highest-numbered word is on the far right. Then take this array of bits
and divide it, on word boundaries, into a number of equal-size rows.
Stack these rows vertically so that the first row is on the top and the
last row is on the bottom. The result is a matrix ... with each row
containing the same number of words. The number of bytes in each
row of the bit image is called the row width of that image. A bit image
can be any length that's a multiple of the row width. (Volume I, 143)

QuickDraw: Theory 411

For example, suppose we tell QuickDraw to work with a 50-by-50 bit
image, in an area of RAM far from the screen buffer.

lit-. ------ 50 Mts -----tit-

50

Figure 32.5: 50-by-50 Bit Grid

A 50 by 50 bit 1mag.;
1 4 bits of wast. in each
row of eight byte-s each.

How much memory should we allocate for this bit image?

50 * 50 = 2500 bits = (2500/8) bytes = 312 1/2 bytes

This is close to, but not quite, the right answer. So that the processor can
deal with memory most efficiently, QuickDraw requires bit images to be
aligned on word (16 bit) boundaries. So unless the width of a bit image
happens to be an exact multiple of 16, there's some waste at the end of each
row:

50 bits divided by 16 bits per word equals 4 words equals 8 bytes, with 14
unused bits at the end of every row. So exactly 8 times 50 or 400 bytes are
required for a 50-by-50 bit image. A good place to grab a 400-byte space is
in the heap:

var
bitlmagePtr: Ptr;

begin
bitlmagePtr = NewPtr(400);

It doesn't matter where the bit image is allocated, only that it won't be
bothered until we're through with it. We used heap-strangling NewPtr
rather than NewHandle because that's the way QuickDraw's author decided
it should be.

412 Turbo Pascal Tutor for the Macintosh

O.K., now variable bitImagePtr points to a 400-byte block of memory. We've
determined that's just enough for a 50-by-50 sheet of QuickDraw paper.

Before QuickDraw can start drawing lines or text into this memory range,
we must describe the bit image to QuickDraw. After all, it has no way of
knowing that this particular 400-byte block off in an obscure corner of the
heap is intended for drawing purposes. So we provide QuickDraw with a
data structure known as a BitMap, a Pascal record type that defines a bit
image.

type BitMap = record
baseAddr:Ptr;
rowBytes: Integer;
bounds: Rect;

end;

A variable of type BitMap communicates both the location (baseAddr) and
structure (rowBytes, bounds) of a bit image. BaseAddr points to the first
(lowest) address of the block reserved for drawing. Like any pointer, it
should point to the correct place, or QuickDraw is liable to spray bits
anywhere.

The rowBytes field tells QuickDraw the width (in bytes) of each line in the
bit image. For our 50-pixel-wide drawing paper, rowBytes is 8. We don't
need to tell QuickDraw how many rows the bit image contains, because
that is evident from the third field, the bounds rectangle. As a rectangle, it
contains either four integers (top, left, bottom, right) or two points (topLeft,
botRight), whichever is more convenient. Bounds is the bit map's boundary
rectangle: It encloses and thereby brings a numbering system to the bit
image. Its grid lines fit with conceptual snugness between bits.

For our 50-by-50 drawing space, we'd probably choose to make
bounds.topLeft the point (0,0) and bounds.botRight (50,50)-although we
could describe it as (10,20)(60,70), (-50,0)(0,50), or any 50-by-50 rectangle.
But we better not describe a boundary rectangle larger than the reserved bit
image, or we're liable to clobber some memory.

It's impossible to make QuickDraw set pixels outside of the boundary
rectangle of its current BitMap. For example, attempts to set pixel (57,0) or
(999,1012) or (-2,25) have no effect; no errors are generated and no memory
changed. This is the first of several levels of clipping provided by
QuickDraw.

By default, QuickDraw works with a bit map that describes the address
and organization of the screen buffer, that two-way area in high memory
linked to the display. We'll learn more about this particular bit map, called
screenBits, later.

QuickDraw: Theory 413

Of Points and Pixels

A point is a location on the QuickDraw grid, described by the intersection
of a horizontal and vertical gridline. Points have zero width and length.

Pixels are visual building blocks that make up computer displays. Unlike
points, pixels have a_height and width. For example, on a well-adjusted
Macintosh screen, they are 1/72-inch square. When a bit image doesn't
happen to be in screen memory, you can imagine a pixel (that is, a bit) to be
any size you like.

By superimposing a boundary rectangle over a bit image, the BitMap data
structure allows us to use point notation to describe pixels. By convention,
pixel (x,y) is the pixel just below and to the right of point (x,y).

The point (6 2)

o
0 5

~he pixel (6,2)
15 20 25 30

/
/ •

5

10
Figure 32.6: Points and Pixels

Note that for a 50-by-50 bit image with bounds.topLeft equal to (0,0), the
pixel identified by point (50,50) falls outside the bit image. The lower
rightmost pixel is associated with point (49,49). When working with the
screen, the same sort of thing applies. There are 512 pixels horizontally,
numbered ° through 511, and 342 pixels vertically, numbered ° through
341.

More QuickDraw Data Types

QuickDraw uses patterns, repeating 8-by-8 bit images to fill areas on the
screen or to draw lines, almost as if they were colors. Their Pascal definition
is

type
Pattern = packed array [0 .. 7] of 0 .. 255;

414 Turbo Pascal Tutor for the Macintosh

A cursor (the data structure behind the Macintosh's familiar arrow and I­
beam) is defined as two 16-by-16 bit images (data and mask), with a "hot
spot" that indicates exactly which pixel is being pointed at.

hot spot = (1,1)

Figure 32.7: A Cursor

type
Bits16 = array [0 .. 15] of Integer;
Cursor = record

data: Bits16;
mask: Bits16;
hotSpot: Point;

end;

GrafPorts

QuickDraw is flexible: It accepts bit maps other than screenBits. It draws
lines of varying thicknesses and patterns. It displays text in different fonts,
sizes, and styles.

To provide defaults and yet still allow for customization, QuickDraw
features a record construct known as the GrafPort. Don't take this term too
literally. It sounds as though it's a porthole through which QuickDraw
stretches a digital hand for sketching, and Inside Macintosh promotes this
image with statements like, "All drawing takes place inside the current
Grafport." While this has a certain ring, it is more accurate to say, "All
drawing is done according to the fields of the current GrafPort record."

A GrafPort is simply a Pascal record type with fields that control
QuickDraw's behavior. GrafPorts allow an application with multiple
windows to invoke drawing operations that are appropriate for each
window, simply by telling QuickDraw to use a different GrafPort record. If
there are four windows on the screen, there are usually at least five
variables of type GrafPort in memory (one for each window and one to

QuickDraw: Theory 415

manage the entire screen). The GrafPort record is a bear; even though we've
left out half its fields, what's left is going to take some serious explaining.

type
GrafPort = record

portBits: BitMap;
portRect: Rect;
visRgn, clipRgn: RgnHandle;
pnLoc, pnSize: Point;
pnPat: Pattern;
txFont: Integer;
txFace: Style;
txSize: Integer;

. (plus a host of others ...)

end;

GrafPorts are often accessed through pointers, so an important data type for
their use is

type
Grafptr: AGrafPort;

The first significant structure in a GrafPort is its portBits field. port Bits has
type BitMap. It tells QuickDraw where in memory it should set and clear
bits when carrying out drawing commands when using a given GrafPort.

Given variable myPortPtr of type Grafptr, then

• myPortPtr is a pointer.
• myPortPtrl\ is a GrafPort record.
• myPortPtrl\ .portBits is a BitMap record.
• myPortPtrl\.portBits.baseAddr is a pointer (of type Ptr).
• myPortPtrl\ .portBits.rowBytes is an integer.

• myPortPtrl\ .portBits.bounds is a rectangle record.
• myPortPtrl\ .portBits.bounds.top is an integer.

• myPortPtrl\ .portBits.bounds.topLeft is a point.
• myPortPtrl\.portBits.bounds.topLeft.v is an integer.
• myPortPtrl\.portBits.bounds.topLeft.vh[v] is the same integer.

(Now you know why we asked you to pay attention back in Chapter 14,
when we first discussed records.)

416 Turbo Pascal Tutor for the Macintosh

QuickDraw's Global Variables

Variables declared in the interface of units have the same status as global
variables in your program: All must fit into the same 32K maximum space,
and all are available at every level of a program. Unit QuickDraw defines
nine global variables:

var
thePort:
white:
black:
gray:
ltGray:
dkGray:

GrafPtr;
Pattern;
Pattern;
Pattern;
Pattern;
Pattern;

arrow: Cursor;
screenBits: BitMap;
randSeed: Longlnt;

Whenever QuickDraw gets a drawing command, it dereferences thePort to
find the GrafPort record it should use to carry out that command. Changing
to a different GrafPort simply involves causing thePort to point to a different
one. This can be done by assigning to thePort directly or by using the
GetPort and SavePort calls.

procedure GetPort (var port: GrafPtr);
procedure SetPort (port: GrafPtr);

Note that these routines expect a pointer to a GrafPort (type GrafPtr), not a
GrafPort itself. The following code fragment demonstrates a common ritual
in Macintosh programming: changing from one GrafPort to
another-drawing something-and then changing back to the original port.

var
portlPtr, port2Ptr, port3Ptr: GrafPtr; {three pointers to three GrafPorts }

procedure DrawlnPortl;
var

savePort: GrafPtr;
begin

GetPort(savePort);
SetPort(portlPtr);

{ assign the current value of thePort to savePort }
{ make thePort = portlPtr; i.e., both point to the}
{ same GrafPort }

(draw in GrafPort portlPtr A

SetPort(savePort);
end;

QuickDrow: Theory 417

The Pen

Drawing always takes place using the parameters in the GrafPort record
variable currently pointed to by thePort. Drawing usually occurs at the
location of the QuickDraw pen, which has a variable size tip and "ink
color" (pattern).

Since most drawing is performed by the pen, you'd expect a variety of
Toolbox functions for moving it around and controlling its characteristics.
The pen's current location is defined by a point and is returned by the
GetPen call:

procedure GetPen(var pt: Point);

The Move and MoveTo commands move the pen:

procedure MoveTo(h,v: integer);
procedure Move (dh,dv: integer);

MoveTo (an absolute move) sets the pen at the indicated point. Move adjusts
the pen relative to where it is now.

To set the pen's thickness (size), which by default is one pixel square, use
Pen Size. To set its drawing "mode" (which we're about to describe), use
PenMode. PenPattern sets the pattern it writes with; by default, it's solid
black.

procedure PenSize(width,height: integer);
procedure PenMode(mode: integer);
procedure PenPat(pat: pattern);

Pen Transfer Modes

When drawing a line from Point A to Point B, you can control the low-level
boolean algebra that transfers the pen's pattern to what's in the bit image
already. There are four basic choices: Copy, Or, Xor, and Bic (bit clear).

The default is mode srcCopy, where what used to be in the destination bit
image is simply overlaid with the pen's pattern. The other three options
leave the pixels under the white part of the pattern alone. They differ only
in how they affect pixels under the black part of the pattern:

• Or replaces those pixels with black pixels.

• Xor inverts the pixels under the black part.

• Bic sets them to white.

418 Turbo Pascal Tutor for the Macintosh

Finally, for each mode, there's a variation in which every pixel in the
pattern is inverted before performing the operation.

The eight drawing modes are supported by integer constant definitions in
QuickDraw.

const
patCopy
patOr
patXor
patBic
notpatCopy
notPatOr
notPatXor
notPatBic

8; {the default penMode }
9;
10;
11;
12;
13;
14;
15;

P8tCOpy
srcCopy

petOr
srcOr

patXor
srcXor

patBie
srcBie

'."m ~.
'.m ~.
pattern or sourct destination

• • .. II
pattern or source destination

II • • ..
Modu notPatCoPII, notPatOr, notPatXor, and notPatBic are productd by inverting
the pollUern or source before the drawing operation. For eXmlplt, notPolitCoPII is
shown htrt:

notPatCopy
notSrcCopy

pattern or source dtstination

•• • Figure 32.8: Transfer Modes

QuickDrow: Theory

sourOt tot~l1y rtpl~otS

dtstmation.

Pixtls oovtrtd bll black

sourot pixtls beoolM bl~ok;

pixels oov.red bll whitt

sourOt pixtls Wt unoh~nged.

Pixtls oovertd bll black

sourOt pixels we wwerted;
pixtls cov.rtd bll whitt

sourct pix.'s art unchangtd.

Pi)(els coy.,..d 1>11 black

sourc. pixels become whit.;
pix.ls cov.rtd bll white

source pixtls art unchanged.

419

Clipping and Regions

Earlier, we mentioned that QuickDraw never harms a single byte outside of
its current bit map. Stated more rigorously, QuickDraw never sets or clears
bits outside of thePort" .portBits.bounds. This protective behavior, termed
clipping, keeps memory outside of the designated bit image safe.

Clipping is such a good thing that QuickDraw offers multiple levels of it.
These additional levels of eli pping are for protecting areas within
portBits.bounds and are based on QuickDraw entities known as regions.

Like rectangles and lines, regions are theoretical constructions: They
enclose arbitrary collections of points. Regions divide the plane into two
sets of points: those inside the region and those outside. Regions can have
any shape. They don't have to be contiguous and can even have holes on
the inside.

.,.

In Pascal, .they look like this:

type
RgnHandle = ARgnPtri
RgnPtr = ARegion
Region = record

rgnSize: Integeri
rgnBBox: Recti

Figure 32.9: A Region

{ additional data if nonrectangular
end;

..
r

420 Turbo Pascal Tutor for the Macintosh

This structure of regions points up a weakness of Pascal that is addressed
by the Memory Manager's handle/relocatable block scheme. Pascal types
have a fixed length; integers are 2 bytes, points are 8 bytes, and string[49 Js
are 50 bytes. Regions don't have a particular length; they're never less than
10 bytes and often longer than 100.

Regions get longer as the areas they define get more complex, as more
twists and turns are taken by the defining commands. Storing region data
in a relocatable block makes it possible for regions to expand and contract
as necessary.

From Pascal, you can look at the region's first two fields: rgnSize (its total
length, in bytes, including the size field), and rgnBBox, its bounding
box-the smallest rectangle that contains every point in the region. The
simplest and shortest regions are rectangular and are exactly 10 bytes long
(2 for the size and 8 for the rectangle). Since QuickDraw's region­
manipulation routines all expect handles to regions rather than regions
themselves, it is easy for QuickDraw to expand and shrink the region's
variable size area as necessary. You don't need to know what QuickDraw
puts out past the rgnBBox to use regions.

Regions can be drawn, moved, expanded, and reduced on the screen.
Various mathematic operations can be performed on two regions. For
example, you can tell the program to add Region A to Region B and call the
result Region C.

QuickDraw: Theory 421

Given regi onsA end B:

A Intersect B = A Union B =

A-B= B - A =

Figure 32.10: Region Math

Now, let's move on to some QuickDraw sample programs.

422 Turbo Pascal Tutor for the Macintosh

c H A p T E R

33

QuickDraw: Sample Programs

Despite any misgivings you may have, QuickDraw is the fun part of the
Toolbox. Before you start working with the following example programs,
write the word Experiment! on a piece of paper and stick it right below the
screen.

You should be able to devise modifications to each program and
successfully predict the result of those modifications-or at least
understand the results. It takes all of a second to recompile a short
program. (And if you encounter an occasional system error, take comfort in
the knowledge that there are only two kinds of Macintosh programs: those
that crash in development and those that haven't been written yet.)

Doing without the Terminal Window

We're about to shake an addiction, and the following program is the first
step. It's the model upon which we will base this chapter's experiments.
You'll find it in the QuickDraw Examples folder of the Turbo Tutor disk.

program InitQuickDraw;
{$U-}
uses MemTypes, QuickDraw, OSIntf, Toollntf;
var myPort: GrafPort;
begin

InitGraf(@thePort);
OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);

QuickDraw: Sample Programs 423

repeat
until Button;

end.

The {$U-} directive tells the compiler that this program won't be using the
built-in units PaslnOut and Pas Console (which are automatically used by
default). PaslnOut implements Standard Pascal's I/O routines, including
ReadLn, WriteLn, Reset, and Rewrite. The Pas Console unit is responsible for
routines related to the terminal window, among them GotoXY and
ReadChar.

After a {$U-} directive, as far as the compiler is concerned, these routines
don't exist. If a program wants to send something to the screen, read the
keyboard, or write to a disk, it must now do it the Toolbox's way.

All programs that intend to use QuickDraw must initialize QuickDraw and
create at least one GrafPort record. These functions-which were previously
performed automatically by a routine in Pas Console-are accomplished by
this program's first two lines. Let's take them one at a time.

InitGraf(@thePort);

thePort is a global variable defined by unit QuickDraw (look for it in
Appendix D of the Turbo Pascal manual). Ini tGraf (@thePort) tells
QuickDraw to initialize its global variables (for example, so that the white
pattern is really white and not simply the result of whatever happened to
be there previously). The @thePort parameter tells QuickDraw where in
memory this initialization should take place-namely, at the address
reserved by the compiler for thePort and the rest of QuickDraw's variables.

Making this call doesn't have any effect on the screen; it simply paves the
way for future drawing. Next, we create a GrafPort:

OpenPort(@rnyPort);

As we learned in the last section, QuickDraw draws according to the fields
in a record variable of type GrafPort. It so happens that this program's only
variable, myPort, is a GrafPort. Oddly, Open Port doesn't want to be passed a
GrafPort variable directly, but rather a pointer to a GrafPort. Two objects
meet this description: a variable of type GrafPtr and the result of applying
the address operator to a GrafPort variable. We're telling the OpenPort
routine, "Initialize a GrafPort at this address and make it the current
GrafPort .ff

The OpenPort routine carefully massages the bytes in record variable
myPort into a default GrafPort.

424 Turbo Pascal Tutor for the Macintosh

Initialization complete, our first drawing act is to make the entire screen
solid white:

FillRect(myPort.portBits.Bounds,white);
The FillRect call takes two parameters, a rectangle and a pattern. It so
happens that the rectangle we supply, myPort. portBits. Bounds
, surrounds every pixel in screen memory.

• myPort is a GrafPort.
• myPort.portBits is a BitMap.
• myPort.portBits.baseAddr is a pointer to the start of screen memory.
• myPort.portBits.bounds is the rectangle (0,0)(512,342).

White is one of QuickDraw's globals stored in high memory just under
thePort, a variable of type Pattern. Mter the FillRect call, the screen is totally
filled with white.

If you haven't already, execute this program. You should now be looking at
an all-white screen (with the exception of the cursor, which will still be the
checkered flag left by the compiler).

Note the square corners. The screen buffer is perfectly rectangular. We're
used to nicely rounded comers because most applications lead off with a
call to the Window Manager's Init Windows call, which creates a round­
cornered rectangle (filled with the pattern you've selected with the Control
Panel), with an empty menu bar at the top.

The last line of this program simply creates a delay that lasts until you
press the mouse button. It serves the same function as repeat until
KeyPressed in terminal window programs. (KeyPressed resides in unit
Pas Console; it doesn't exist in the {$U-} world.)

Drawing Lines

The following program draws a thin horizontal line on the screen
connecting points (50,20) and (300,20). Enter and execute program DrawLine
(it adds only two lines to InitQuickDraw):

program DrawLine;
{$U-}
uses MemTypes, QuickDraw, OSIntf, Toollntf;
var

myPort: GrafPort;
begin

InitGraf(@thePort); OpenPort(@myPort);

QuickDraw: Sample Programs 425

FillRect(myPort.portBits.Bounds,white);

MoveTo(50,20);
Line(300,0);

repeat until Button;
end.

{ the "terrible three" }

When a GrafPort is freshly opened, its pen is given location (0,0). To create a
line from point (50,20) to point (350,20), we must first move the pen to the
starting point of that line:

MoveTo(50,20)

This code does just that; it doesn't create any drawing. We've simply picked
up the pen and moved it. The next statement does the drawing:

Line(300,O);

This says to start at the current pen location and draw a line extending 300
pixels to the right and 0 pixels down. Note that this is a relative move--that
is, relative to the current position of the pen. There's also an absolute line­
drawing call. Had we used

LineTo(300,0)

we'd have created a diagonal line between point (50,20) and point (300,0).
After drawing a line, the pen is left at the last point to be drawn. Therefore,
these three calls

MoveTo(50,20);
Line (300, 0);
Line(0,200);

create a right-angle shape, as the second Line call connects points (350,20)
and (350,220).

Experiment by adding Move and Line calls of your own to this program.
Draw the first letter of your name; create a simple geometric shape. What
happens if you enter a horizontal or vertical coordinate value greater than
the dimensions of the screen-as in Lin e To (6 a 0, 942) : Does the line wrap
around on the opposite side of the screen? Do you suppose memory
outside the bit image defined by myPort .portBits is affected? (Answers:
No and no; clipping prevents both.)

As a final enhancement to program DrawLine, change the cursor from
Turbo's checkered flag to the standard arrow by including a call to the
parameterless procedure InitCursor.

426 Turbo Pascal Tutor for the Macintosh

Drawing Lines with the Mouse

Next,let's consider a more sophisticated program that draws lines based on
the position of the mouse.

program Sketch;
{$U-}
uses MernTypes, QuickDraw, OSIntf, Toollntf;
var

rnyPort: GrafPort;
theLoc: Point;

begin
InitGraf(@thePort); OpenPort(@rnyPort);
FillRect(rnyPort.portBits.Bounds,white);
InitCursor;

repeat
GetMouse(theLoc);
LineTo(theLoc.h,theLoc.v);

until Button;
end.

This program uses the Toolbox's GetMouse routine to fetch the current
position of the cursor's hot spot.

procedure GetMouse(var rnouseLoc: Point);
Within a loop, Sketch breaks down the point returned by GetMouse into its
horizontal and vertical components, then passes them to the LineTo
procedure. The result is a continuous line following the cursor, until you
press the mouse button to terminate the program.

Why does the line start at the upper left-hand corner? (Because OpenPort
initializes myPort's penPos field to (0,0).)

As an experiment, insert the following line just above the loop:

PenSize(4,4);

This causes the pen associated with myPort to be four pixels by four pixels,
rather than the default one-pixel size. It's like changing to a thicker brush in
a paint program.

You can also change the "ink" (pattern) with which the pen draws, by
calling PenPat (pen pattern). Use any of the predefined patterns-ltGray,
Gray, dkGray, and black-except white. Finally, experiment with different
drawing modes. We've been using the default, patCopy. Try

PenMode(patOr)

QuickDraw: Sample Programs 427

Automatic Art: The Random Function

Next we're going to turn QuickDraw loose to create semi-artistic patterns
without human intervention. The key to this process is the QuickDraw
function Random. Unlike random-number generators you may have used in
other languages, QuickDraw's Random returns integers between -32768 and
32767, for speed's sake.
function Random: Integer;

Let's temporarily resurrect the terminal window to demonstrate Random.

program RandomTest;
uses MemTypes, QuickDraw;
begin

repeat
WriteLn (Random: 7)

until Keypressed
end.

For our purposes, Random would be more useful if it returned numbers in a
definable range. The following routine fills the bill: It accepts a positive
integer N and returns a value between 0 and N-l, inclusive.

function Rnd(limit: Integer): Integer;
begin

Rnd := Abs(Random mod limit)
end;

Now, back to the {$U-} world and computer art.

program RandomLines;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;

function Rnd(limit: Integer): Integer;
begin

Rnd := Abs(Random mod limit)
end;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white); InitCursor;

repeat
LineTo(Rnd(512) ,Rnd(342));

until Button;
end.

Execute RandomLines and stand back.

428 Turbo Pascal Tutor for the Macintosh

This program produces a wildly growing thin black line. You can vary the
thickness of the line by adding this statement to the loop:
PenSize(Rnd(8)+1, Rnd(8)+1);

With this modification, the screen quickly fills up too quickly with black.
What we need are random changes of the pen's pattern as well. Add this
case statement to the loop:

case Rnd(5) of
0: PenPat(Black);
1: PenPat(dkGray);
2: PenPat (Gray) ;
3: PenPat(ltGray);
4: PenPat(white);

end;

Now you've got a legitimate masterpiece creator.

Drawing Rectangles

Let's move on to a slightly more complex QuickDraw object, the rectangle.
Consider this program:

program Rectangle1;
{$U-}
uses MemTypes, QuickDraw, OSIntf, Toollntf;
var

myPort: GrafPort;
myRect: Rect;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white); InitCursor;

myRect.Top := 50; myRect.Bottom := 300;
myRect.Left := 20; myRect.Right := 400;

repeat
until Button;

end.

Type in and execute this program. What appears on the screen? Not a darn
thing. Even though this program assigns coordinate values to rectangle
myRect,.it doesn't cause the rectangle to be drawn. We've merely defined a
rectangle; we haven't changed any pixels in screen memory. This illustrates
the distinction between QuickDraw geometric entities and the pixels they
enclose.

QuickDraw: Sample Programs 429

Getting this program to draw a rectangle on the screen requires the
following call after defining it.

FrarneRect(rnyRect);

The FrameRect routine causes pixels just inside the defined rectangle to be
filled in using the pen's current size and pattern. Since the pen defaults to a
one-pixel size, you'll see the rectangle framed by a one-pixel thick line. Use
PenSize to increase the size of the pen and verify that the thickness of the
frame applied by FrameRect changes accordingly.

Besides FrameRect, there are a number of other options for drawing myRect
once it's defined.

procedure PaintRect(r: Rect);
procedure EraseRect(r: Rect);
procedure InvertRect(r: Rect);
procedure FillRect(r: Rect; pat: Pattern);

FillRect is the routine we've been using to clear the screen at the start of
each program. If you add

FillRect(rnyRect, gray)

to Rectanglel, you'll cause the rectangle to be filled with the familiar gray
pattern.

The InvertRect call complements all the pixels in a rectangle (black pixels
become white and vice versa). It's handy for nondestructively highlighting
areas of the screen, because a second InvertRect call on the same rectangle
restores an area to the condition it was in previously. For example, Turbo
Pascal uses InvertRect to highlight text, and the Menu Manager uses it to
call attention to a menu's title and the current selection.

Calling InvertRect repeatedly on the same rectangle causes the enclosed
pixels to alternate quickly between black and white. Add this code
fragment to Rectanglel and run it. As you stare at the screen, repeat softly to
yourself, "I must buy all Borland software."

rnyRect.Top := 50; rnyRect.Bottorn := 290;
rnyRect.Left := 130; rnyRect.Right := 370;
repeat

InvertRect(rnyRect);
until Button;

430 Turbo Pascal Tutor for the Macintosh

Drawing Ovals

In addition to straight lines and right angles, QuickDraw can also draw
ovals-one variety of which is a circle. A reasonable person might expect
that QuickDraw would define a circle something like this:

type
Circle = record

center: Point;
radius: Integer;

end;

Not so. Surprisingly, circles are defined as rectangles. To draw a circle,
define a square (that is, a rectangle of equal height and width) that just
encloses the desired circle, and then call one of the oval drawing routines.
These calls parallel those for drawing rectangles. There's FrameOval,
FillOval, InvertOval, PaintOval, and EraseOval.

If you replace the FrameRect call of program Rectanglel with

FrarneOval(rnyRect);

you'll create an oval rather than a rectangle. This is one reason why
QuickDraw makes a distinction between simply defining a rectangle and
actually drawing one. Rectangles can be used to draw, fill, and invert
rectangles and to draw, fill, and invert ovals.

Round-Cornered Rectangles

Round-cornered rectangles (RCRs) are a pleasing variation on the rectangle
theme. The outline of the Calculator desk accessory is a good example of a
QuickDraw RCR.

Figure 33.1: A Round-Cornered Rectangle

Since RCRs are a combination of ovals and rectangles, their drawing
routines require both oval and rectangle parameters:

QuickDraw: Sample Programs 431

procedure FrameRoundRect(r: Rect; ovalWidth, ovalHeight: Integer);

ovalWidth and ovalHeight control the degree of curvature of the corners.
Larger values produce more rounded corners.

The drawing routines for RCRs follow the pattern established by oval and
rectangle drawing:

procedure PaintRoundRect(r: Rect; ovalWidth, ovalHeight: Integer);
procedure EraseRoundRect(r: Rect; ovalWidth, ovalHeight: Integer);
procedure InvertRoundRect(r: Rect; ovalWidth, ovalHeight: Integer);
procedure FillRoundRect(r: Rect; ovalWidth, ovalHeight: Integer);

This program uses RCRs to create something approximating the standard
desktop:

program GreyRCR;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
begin

InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,black); (first erase it to black
FillRoundRect(myPort.portBits.Bounds,20,20,gray);
repeat
until Button;

end.

Drawing Text

In the {$U-} environment, our faithful I/O companions Write and WriteLn
aren't available. This is both good and bad news. It's bad in that without
them we must work harder to send text to the screen. It's good in that we
have much more control over the appearance of text. Another classic
programming trade-off: flexibility (and attendant complexity) versus
simplicity.

Text drawing occurs at the pen location and causes the pen to be moved to
the right an appropriate amount after drawing each character. Text is
always drawn using the current GrafPort's txFont, txFace, and txSize fields,
which can be set by assigning to the GrafPort record directly or with the
following three calls:

procedure TextFont(font: Integer);
procedure TextFace(face: Style);
procedure TextSize(size: Integer);

432 Turbo Pascal Tutor for the Macintosh

Fonts are described to TextFont by integers but, thanks to constant
definitions in unit ToolIntf, it's possible to refer to them by name:

const
systemFont = 0;
applFont = 1;
new York = 2;
geneva = 3;
monaco = 4;
venice = 5;
london = 6;
athens = 7;
sanFran = 8;
toronto = 9;
cairo = 11;
losAngeles = 12;
times = 20;
helvetica = 21;
courier = 22;
symbol = 23;
taliesin = 24;

a.k.a. chicago }
a.k.a. geneva }

The Text-Drawing Routines

QuickDraw has three calls that actually put text on the screen.

procedure DrawChar(c: Char);
procedure DrawString(s: Str255);
procedure DrawText(textBuf: Ptr; firstByte, byteCount: Integer);
DrawChar is passed a single character; that character is drawn at the pen
position and the pen position adjusted an appropriate distance to the right.

DrawString draws each character of its Str255 parameter. For DrawText, you
pass a pointer to character data and include numeric parameters that
describe where to start relative to the pointer and how many characters to
draw.

Neither DrawString nor DrawText performs any sort of formatting. Carriage
returns, line feeds, and tabs are ignored.

Consider program BigTalk:

program BigTalk;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
begin

InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

QuickDrow: Sample Programs 433

MoveTo(20,50);
TextFont(newYork);
TextFace([shadow]);
TextSize(18);
DrawString('This program compliments of ');
TextFace ([]) ;
DrawString('Robin Jones');
repeat
until Button;

end.

This program writes in IS-point, shadowed New York type. The statement

TextFont(newYork);

demonstrates the value of constants. Would the intent of

TextFont(2)

have been as clear? Hardly.

If you've worked with a Macintosh much, you're undoubtedly familiar
with the various text permutations it can produce-for example, bold,
underline, and italic. Since these attributes can be applied singly (bold only)
and in combination (bold plus italic plus shadow), the set data structure is
ideal for representing this quality. The following definitions

type
Style Item = (bold, italic, underline, outline, shadow, condense, extend) ;
Style = set of StyleItem;

procedure TextFace(face: Style);

work together to specify the style of text printed by the current GrafPort.
Program BigTalk's call to TextFace

TextFace([shadow]);
passes the routine a set constant. Until told otherwise, this GrafPort's text­
drawing statements will produce shadowed text. Normal text (text with no
style attributes) is produced by passing the empty set:

TextFace ([]) ;

Fancier Text

Program GrowingTalk outputs each character of a string in an ever­
increasing point size.

program GrowingTalk;
{$U-}

434 Turbo Pascal Tutor for the Macintosh

uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
N: integer;
S: Str255;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

S := 'Turbo Pascal by Borland International';
MoveTo(20,180);
TextFont(newYork);
for N := 1 to Length(S) do
begin

TextSize(N+4);
DrawChar (S [N])

end;
repeat
until Button;

end.

Running this program results in a lot of disk activity. This is because font
data must be fetched from disk periodically by the Resource Manager. You
may notice that some of the characters look better than others.

Explaining this phenomenon requires a digression on the relationship
between QuickDraw and its lackey, the Font Manager. Before drawing a
character in font X and size Y, QuickDraw asks the Font Manager for
character data on that font and size. If the Resource Manager (every
manager's lackey) indicates that font X exists in the System file in size Y,
the Font Manager returns the character data to its boss, which can then
draw good quality characters. If it doesn't exist, then the Font Manager
tries to come up with the next best thing:

• First it looks for font X in size 2 * Y. If found, it scales this font down
and uses that. This scaling looks very good.

• Next, it looks for font X in size Y /2. If found, it scales this font up. This
scaling looks blocky but symmetrical.

• Failing that, if looks for font X in the smallest size> Y. If it finds one, it
scales down. This results in good detail, but with asymmetrical
irregularities.

• If not, it looks for font X in the largest size < Y. If it finds one, it scales
up. Usually, this scaling doesn't look very good.

• If the Font Manager gets to this point, then font X doesn't exist at all in
the System file. In its stead, the application font (Geneva) is used,
scaling as necessary, according to the same decision process.

QuickDraw: Sample Programs 435

• If the application font doesn't exist in any size, the Font Manager
substitutes the system font (Chicago), scaling as necessary, according to
the same decision process.

Converting Numbers to Text

In programming, as in life, we often don't fully appreciate something until
it's gone. Write and WriteLn, Standard Pascal's main weapons against blank
screens, are a case in point. Not only can they output a dozen strings in a
single call, they can also handle numbers-something that DrawString will
have no part of.

Try as you might, you'll never get

DrawString(n * 3.14159)
to compile. Write and Write In are able to output numeric expressions
because they implicitly perform number to string conversions.

Think about it for a minute. Executing the statement

Write(n * 3.14159)
requires. some work at run time. First, the expression (n * 3.14159) must be
evaluated. This produces a single value of type Real. Real numbers are 4-
byte entities in a complex internal format, so before the result can be put on
the screen, these 4 bytes must be translated into a form that human beings
can understand-as a sequence of ASCII characters (mainly digits, with
perhaps a decimal point, E, and plus sign thrown in). Finally, once
converted into an appropriate string of characters, DrawString is called.

Without the assistance of Write and WriteLn, you must explicitly call
number to string conversion routines to send numbers to the screen. Unit
PackInt! contains a routine called NumToString; it handles integers and long
integers:

procedure NumToString(theNum: Longint; var theString: Str255);

To convert rea Is, you'll need to use the Standard Apple Numeric
Environment (SANE) unit. It has dozens of assorted floating-point routines,
including the following conversion types and procedures:

type
DecForm = record

436

Style (floatDecimal, fixedDecimal);
Digits: Integer;

end;

Turbo Pascal Tutor for the Macintosh

procedure Num2Str(format: DecForm; theNum: Extended; theString: Str255);

Type Extended is an extended precision real; values of type real and double
are automatically converted to type extended when passed to this routine.

This program demonstrates how to output numbers without WriteLn's
help.

program FancyNumbers;
($U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf, SANE;

(Calculate and display factorials of 1 - 15 }
var

myPort: GrafPort;
N : Integer;
R : Real;
NS : Str255;
RS : Str255;
format: DecForm;

begin
InitGraf(@thePort);

defined in SANE for controlling
(real-to-string conversions

OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

TextFont(newYork);
TextFace([italic,bold]);
format.style := FixedDecimal;
format.digits := 0;
R := 1.0;
for N := 1 to 15 do
begin

R := R * N;
NumToString(N,NS);
Num2Str(format,R,RS);
MoveTo(20,N * 20);
DrawString(NS + '! '+ RS);

end;
repeat
until Button;

end.

(use default size (12 point) }
don't use floating-point notation}

(no decimal point }

(accumulate factorial
convert integer to string NS

convert real number R to string RS

Manipulating Rectangles

Besides simply assigning to them, there are other operations you can
perform on rectangles that don't cause anything to appear on the screen.
InsetRect shrinks or enlarges a rectangle. OffsetRect moves a rectangle on the
QuickDraw plane.

procedure InsetRect(var r: Rect; dh,dv: Integer);

QuickDraw: Sample Programs 437

procedure OffsetRect(var r: Rect; dh,dv: Integer);

A call to InsetRect pulls in the sides of a rectangle according to parameters
dh and dv. Negative parameters to InsetRect cause the rectangle to grow.

Now let's do some rectangle drawing, using OffsetRect and InsetRect to
manipulate the rectangle between drawing calls.

program ManipulateRects;
{$U-)
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
myRect: Rect;
N: Integer;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

myRect := myPort.portBits.Bounds;
for N := 1 to 50 do
begin

InsetRect(myRect,4,4);
FrameRect(myRect);

end;
while not Button do

end.

This program creates an illusion of motion, by framing a series of
progressively smaller rectangles. Change the InsetRect call to OffsetRect and
you'll see a different effect. This time, the rectangles don't change in size.
Instead, they are moved down and to the right.

When working with complex images, it is often useful to know whether a
point is within a given rectangle. The boolean function PtInRect takes as
parameters a point and a rectangle and returns True if the point is enclosed
by the rectangle. The following program uses sound to return information;
a one-second tone means that PtInRect has returned True. (NOTE: I f
you've turned your sound all the way down with the Control Panel,
SysBeep makes the menu bar blink.)

program NoDrawing;
{$U-)
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myRect: Rect;
myPoint: Point;

begin
SetRect(myRect,20,50,400,300);
myPoint.h := 100; myPoint.v := 100;
if PtlnRect(myPoint,myRect) then

SysBeep(60)i 60 sixtieths of a second = 1 second)

438 Turbo Pascal Tutor for the Macintosh

while not Button do
end.

Regions and Clipping

In addition to working with regularly shaped geometric objects such as
rectangles, QuickDraw also supports arbitrarily shaped objects known as
regions.

Regions are formed by making a sequence of calls to drawing routines,
such as FrameRect and LineTo, that collectively form some shape. The basic
process goes like this:

1. Tell QuickDraw you're forming a new region.
2. Make as many drawing calls as necessary to define the outline of the

region.
3. Tell QuickDraw that you're finished and to give you the region.

Once defined, regions can be filled, framed, and, most importantly, used as
a clipping boundary. This program defines and then frames a circular
region as large as the screen:

program BuildRegioni
{$U-}
uses MemTypes, QuickDraw, OSIntf, Toollntfi
var

myPort: GrafPorti
myRect: Recti
myRgn: RgnHandlei

begin
InitGraf(@thePort)i OpenPort(@myPort)i
FillRect(myPort.portBits.Bounds,white)i InitCursori

myRgn := NewRgni
OpenRgni

SetRect(myRect,85,O,512-85,342)i
FrameOval(myRect)i

CloseRgn(myRgn)i
FrameRgn(myRgn)i { show the region}
repeat
until Buttoni

end.

Usually, regions aren't used to create screen images directly but indirectly,
by defining clipping boundaries-that is, controlling what part of the
current GrafPort's bit image may be written to. Every GrafPort has an
associated clipping region called clipRgn. QuickDraw will never set any bits

QuickDrow: Sample Programs 439

not enclosed by this region. When first initialized (with the Open Port call), a
GrafPort's clipRgn is set to a rectangular region covering the entire
QuickDraw grid, extending from a top left point of (-32768,-32768) to a
bottom right of (32767,32767). This has the effect of causing no clipping at
all. (Every QuickDraw point is in this rectangle.)

Clipping regions are a powerful drawing aid. Suppose you want to create
some random art inside a circular "porthole." Without clipping regions,
this would be next to impossible. With them, it's simple:

1. Define a circular region.

2. Make that region the current GrafPort's clipRgn.
3. Draw the random art.

program ClippedRandomLines;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
myRect: Rect;
myRgn: RgnHandle;

function Rnd(limit: Integer): integer;
begin

Rnd := Abs(Random mod limit)
end;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,black); HideCursor;

myRgn := NewRgn;
OpenRgn;

SetRect(myRect,85,0,512-85,342);
FrameOval(myRect);

CloseRgn(myRgn);
Set Clip (myRgn) ;

repeat
PenSize(Rnd(8), Rnd(8));
case Rnd(5) of

0: PenPat(Black);
1: PenPat(dkGray);
2: PenPat(Gray);
3: PenPat(ltGray);
4: PenPat(white);

end;
LineTo(Rnd(512),Rnd(342));

until Button;
end.

440 Turbo Pascal Tutor for the Macintosh

Even though this program never actually draws the circle-shaped region, a
circle quickly appears. No matter how long this program runs, LineTo will
never alter a single pixel outside myPort.clipRgn.

The more complex the clipping region (the greater its rgnSize field), the
longer it takes QuickDraw to perform clipping calculations. Not
surprisingly, the most efficient clipping regions are simple rectangles.
Change the region in ClippedRandomRects to a rectangular shape and run
the program again. Does it run faster?

ScreenBits and Other BitMaps

The most important field in the GrafPort record is portBits. It defines the
binary drawing paper that QuickDraw will use. PortBits is of type BitMap,
which is defined as

BitMap = record
baseAddr: Ptr;
rowBytes: Integer;
bounds: Rect

end;

When we made the call

Line(O,300)
in the very first program of this section, why were only bits in screen
memory changed and not elsewhere? Because, at the moment of that call,
myPort.portBits was set to indicate the screen buffer. QuickDraw defines a
global variable of type bitMap called screenBits, which defines the screen
buffer of the Macintosh in use. Initializing a GrafPort sets its portBits field
equal to screenBits. This program displays its contents:

program ScreenBitsTest;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf;
var

myPort: GrafPort;

procedure OutNum(h,v: Integer; theNum:LongInt);
var

theString : Str255;
begin

NumToString(theNum,theString);
MoveTo(h,v);
DrawString(theString);

end;

begin

QuickDraw: Sample Programs 441

InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

with screenBits do
begin

OutNum(30,30,ord4(baseAddr));
OutNum(30,60,rowBytes);
OutNum(30,90,bounds.top); OutNum(60,90,bounds.left);
OutNum(90,90,bounds.bottom); OutNum(120,90,bounds.right);

end;
repeat until Button;

end.

Enter and execute this program.

A 1-Mb Macintosh Plus produced this output:

1025792
64
o 342 512

Let's decipher these results. 1025792 is the address of the first byte of screen
memory in a Macintosh Plus. 64 is the rowBytes parameter (64 * 8 = 512, the
number of pixels horizontally on the standard Macintosh Plus display);
since 512 is evenly divisible by 16, there's no waste. Finally, points (0,0) and
(512,342) define the boundary rectangle for screenBits.

Just because OpenPort makes a GrafPort's port Bits field equal to screenBits
doesn't mean you have to leave it this way. You can set a port's portBits to
indicate any bit image and thereby cause drawing in any area of memory.
This allows you to create an image offscreen and later "stamp" this image
onto the screen, that is, to screenBits.

Moving data from an offscreen bit map to screenBits is performed by
QuickDraw's Copy Bits routine.
procedure CopyBits (srcBits, dstBits: BitMap; srcRect, dstRect: Rect;

mode: Integer; maskRgn: RgnHandle);,

CopyBits moves bits between two bit images. All the bits in the image
defined by srcBits and bounded by rectangle srcRect are copied into the
image defined by dstBits and bounded by rectangle dstRect. If dstRect and
srcRect aren't the same size, then CopyBits automatically performs scaling so
that all of dstRect is filled with the pattern in srcRect.

Mode defines the transfer's boolean algebra; generally, you use srcCopy
mode, which causes the destination bits to be totally overlaid with the
source bits. MaskRgn defines a clipping area in the destination bit map you
may choose to use. If you don't require clipping or the current GrafPort's
clipRgn is sufficient, pass nil for this value.

442 Turbo Pascal Tutor for the Macintosh

The following program demonstrates offscreen drawing into an alternate
bit map, then using CopyBits to move the drawing to screen memory.

program OffScreenDrawing;
{$U-}
uses MemTypes, QuickDraw, OSIntf, Toollntf;
var

myPort: GrafPort;
aRect, bRect: Rect;
offscreenBitMap: BitMap;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white); InitCursor;

with offscreenBitMap do
begin

baseAddr := NewPtr(8 * 60); {allocate a bit image on the heap}
rowBytes := 8; { 8 bytes per row; 4 bits of waste per row }
SetRect(bounds,0,0,60,60);

end;
SetPortBits(offscreenBitMap);

SetRect(aRect,5,5,55,55);
FillRect(aRect,gray);

CopyBits(offscreenBitMap,screenBits,aRect,aRect,srcCopy,nil);
repeat until Button;

CopyBits (offscreenBitMap,screenBits,aRect, screenBits.b ounds,srcCopy,nil);
repeat until Button;

end.

Let's work through this program. It draws a pattern in an offscreen 60-
by-60 bit image. The three assignments controlled by the with OffScreenBitMap
statement define this alternate bit image:

with offscreenBitMap do
begin

baseAddr := NewPtr(8 * 60);
rowBytes := 8;
SetRect(bounds,0,0,60,60);

end;

The most important thing is to provide a safe area of memory in which to
draw--we don't want QuickDraw to start decorating bits within our
program or on top of the disk driver. The statement

BaseAddr := NewPtr(8 * 60)

allocates 480 bytes of heap and assigns the address of those 480 bytes to
pointer variable BaseAddr. Why 480 bytes? The image we're going to create
in this offscreen buffer requires that the buffer be organized as 60 by 60

QuickDraw: Sample Programs 443

pixels. Each pixel takes one bit of memory. 60 pixels divided by 8 pixels per
byte equals 7 1/2 bytes, but since QuickDraw requires word boundaries,
we round this value to 8 bytes. So each line of the bit map is 8 bytes long,
and there are 60 such lines; 60 times 8 equals 480.

For QuickDraw to correctly interpret the dimensions of this bit map, we
must tell it how long a row is, by setting rowBytes to 8. Finally, we define
the boundary rectangle:

SetRect(bounds,0,0,60,60);

A BitMap's boundary rectangle performs two functions: It encloses the
active area of the bit image (for example, bits 60-63 on each row aren't part
of the bit map, even though they're present in the bit image). The boundary
rectangle also provides a coordinate system for the bit map. For example,
after SetRect (bounds, 0, 0,60, 60), the pixel in the upper left-hand corner
of the bit map is known as (0,0); the lower right corner is (59,59). Had we
defined the boundary rectangle as

SetRect(bounds,50,50,110,110);

then this first pixel would have gone under the name (50,50); either way,
it's the same bit in the same memory location.

Now that we've defined the bit map, we are ready to begin drawing into it.
First, set MyPort's portBits field to offscreenBitMap:

SetPortBits(OffscreenBitMap);

From this point on, all drawing commands take effect in this offscreen
BitMap rather than in screenBits; nothing will be seen on the screen. This bit
map is significantly smaller than screenBits; any attempt to plot a pixel less
than 0 or greater than 59 will fail.

The FillRect call

FillRect(aRect,gray);

fills a 50-pixel square in the offscreen bit image with gray.

Drawing offscreen isn't good for much unless you ultimately cause what
has been drawn to become visible. So, this program next calls CopyBits, a
routine for moving rectangular chunks of bits from one bit image into
another. This call moves the gray rectangle just drawn into screen memory,
where we can look at it:

CopyBits(offscreenBitMap,screenBits,aRect,aRect,srcCopy,ni!);

The second CopyBits call demonstrates its scaling capability. Instead of aRect
as the destination rectangle, we specify screenBits.bounds-a rectangle as
large as the screen. This copy operation expands the gray pattern into

444 Turbo Pascal Tutor for the Macintosh

something resembling a checkerboard. The horizontal axis is scaled more
than the vertical; that's because there are more pixels along that axis.

We'll return to CopyBits in a later chapter, as an important ingredient in the
animation process.

Drawing Pictures

QuickDraw has the ability to accumulate many drawing operations into a
single data structure, which can then be output with a single call. For
example, a program may define a complex image consisting of dozens of
filled rectangles and ovals, text in various fonts and styles, and even use a
clipping region to control drawing. Rather than repeat each drawing
statement individually whenever the image needs redrawing, the picture
mechanism allows you to define an image once-during a program's
initialization-and then reproduce the image with a single call to the
DrawPicture routine. Resources of type PICT can be accessed by the
Resource Manager as well, for example,

program Pictures;
{$U-}
uses MemTypes, QuickDraw, OSIntf, ToolIntf;
var

myPort: GrafPort;
aRect, bRect: Recti
myPic: PicHandle;
N: Integer;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);
InitCursor;

RectRgn(myPort.clipRgn,screenBits.bounds); { required for correct playback}
SetRect(aRect,5,5,55,55);
myPic := OpenPicture(aRect);

MoveTo (10, 10);
LineTo(40,50);
LineTo(50,40);
LineTo(30,50);
LineTo(10,10);
MoveTo (15, 15) ;
TextFace([italic]);
TextSize(8);
DrawString('Pascal');

ClosePicture;

SetRect(aRect,100,100,200,200);
for N := 1 to 4 do

QuickDrow: Sample Programs 445

begin
DrawPicture(myPic, aRect);
InsetRect(aRect,-(N * 20), -(N * 20));

end;
repeat until Button;

end.

Program DrawPicture doesn't create an especially complex image, but you
get the general idea. Like regions, QuickDraw pictures are stored as
relocatable blocks.

Variable myPic is a PicHandle, a pointer to a pointerto a Picture record. The
Picture collection routines allow you to specify a so-called picture frame, a
rectangle that encloses the picture to be drawn. This rectangle allows you to
scale the picture later on when it is drawn to the screen. For example, if you
choose to use the picture mechanism to draw the contents of a resizeable
window, then this scaling feature causes QuickDraw to always scale the
picture to the exact size of the box.

The statement

RectRgn(myPort.clipRgn,screenBits.bounds);

is required to reduce myPort. clipRgn
from its original whole-plane size to something less. Without this

reduction, DrawPicture doesn't work.

For creating myPic, we choose a 50-by-50 picture frame. OpenPicture is
passed a picture frame and returns a handle to a newly created picture.
From this point until a call to ClosePicture, drawing calls don't appear on
the screen but instead only serve to define myPic. myPic gets longer and
more complex with each call.

Once constructed, this program proceeds to call DrawPicture multiple
times, each time with a different destination rectangle. Note the automatic
scaling.

Stuff a Wild Cursor

QuickDraw defines a number of utility routines. A particularly interesting
one is StuffHex:

procedure Stuff Hex (thingPtr: Ptr; s: Str255);

StuffHex is a quick-and-dirty way of initializing data structures. StuffHex
takes a string of hexadecimal characters and writes its binary equivalent to

446 Turbo Pascal Tutor for the Macintosh

memory, starting at the address passed in thingPtr and working up. For
example, the following statement in~tializes rectangle r to (12,10)(240,256):

StuffHex(r,'OOOAOOOC010000FO')

Remember that a rectangle contains four integers, in this order: top, left,
bottom, right. The 16-character string represents these values in hex,
complete with leading zeros: $OOOA = 10; $OOOe = 12; $0100 = 256; $OOFO =
240.

StuffHex is handy in short, experimental programs (that is, the types of
programs you're likely to be writing at this stage of the game). StuffHex
isn't easy to use unless you're reasonably comfortable with the decimal-to­
hex-and-back-again process. If hexadecimal isn't your thing just yet, try not
to worry about it; StuffHex isn't a make-or-break routine. The next program
demonstrates its use to define a new cursor.

program MysteryCursor;
{$U-}
uses MemTypes,QuickDraw,OSIntf,Toollntf;
var

myPort: GrafPort;
myCursor: Cursor;

begin
InitGraf(@thePort); OpenPort(@myPort);
FillRect(myPort.portBits.Bounds,white);

with myCursor do
begin

hotspot.h := 8; hotspot.v := 8;
StuffHex(@Data, '3FC01830181818181818181818301FEO' +

'18301818181C181C181C181818383FFO');
mask := data; (when mask = data, white pixels of cursor are transparent

end;
SetCursor(myCursor);
repeat
until Button;

end.

Review

QuickDraw is a set of ROM-based routines for drawing text, lines, and
various shapes, including rectangles, round rectangles, ovals, and
polygons. QuickDraw applies an integer numbering scheme to rectangular
matrices of memory called bit images. Bit images are defined by record
types called BitMaps, which define the address and structure of memory to
be used for drawing purposes. QuickDraw operations are controlled by the

QuickDraw: Sample Programs 447

fields of a record type called GrafPort, and there can be many GrafPorts in
memory at once, although only one is the current GrafPort.

Drawing always takes place at the position of the current GrafPort's pen,
whose size, pattern, and transfer characteristics are adjustable. Regions are
variable-length structures accessed through handles that serve to define
clipping boundaries. Pictures are stored collections of drawing commands
that can be sent to the screen with a single call.

Both regions and pictures are defined by opening an initially empty
structure and then accumulating various drawing calls into this structure.
The CopyBits routine allows you to move rectangular groups of bits from
one bit image to another. StuffHex provides a quick means of loading an
arbitrary sequence of bytes to any address in memory.

Compiling a program with the {$U-} compiler directive forces a program to
rely on its own resources and the Toolbox for initializing QuickDraw and
creating output. QuickDraw can create text in different sizes, styles, and
fonts, although it doesn't perform automatic number-to-string conversions.

448 Turbo Pascal Tutor for the Macintosh

c H A p T E R

34

Events

By definition, interactive computer programs must periodically get input
from the user and act upon that input. On conventional personal
computers, "getting input from the user" means reacting to keys pressed
on the keyboard. Software for these machines therefore requires only two
low-level user input routines:

function KeyPressed: Boolean;

to see if a key is ready to be read, and

function ReadChar: Char;

to read a key when one is known to be available.

On the Macintosh, there are other means by which a user can affect a
program, the most important being manipulations of the mouse. The Event
Manager describes constants, data types, and a key function that make it
possible for an application to respond to any user-caused "event" with a
single function call and case statement.

The GetN extEvent Routine

Most Macintosh programs get all their user input from a single routine:

function GetNextEvent(eventMask:lnteger;var theEvent:EventRecord): Boolean;

Macintosh programs call GetNextEvent early and often throughout their
entire lifetime. GetNextEvent returns True if there's an event, that'is, some

Events 449

sort of user activity to report; otherwise it returns False. This single routine
covers all the various forms of information the user can supply, thanks to
the structure of var parameter theEvent, a record of type EventRecord.

type
EventRecord =

record
what Integer;
message : LongInt;
when LongInt;
where Point;
modifiers: Integer;

end;

This 16-byte structure communicates information about both keyboard and
mouse activity, and more esoteric /I events" as well.

The eventMask parameter controls the types of events that are returned by a
call to GetNextEvent. This lets a program give priority to certain events (say,
keyboard events at the expense of mouse events). Passing the integer value
-1 (11111111 11111111 binary) causes all events to be returned. Typically,
information on all events is requested, and a program simply ignores
events that mean nothing to it, much the way terminal window programs
ignore mouse activity.

(Incidentally, if you're following along in Inside Macintosh, Apple's
documentation people divided the Event Manager into two parts: A
Toolbox (high level) Event Manager, described in Volume 1, and an
Operating System (low level) Event Manager in Volume II.)

Using GetNextEvent

After GetNextEvent is called and returns True, a program tests the five fields
of the EventRecord variable to discover

• the type of event (what)
• the time the event occurred (when)
• the position of the cursor at the moment of the event (where)
• the state of the mouse button and the keyboard' s Shift, Option, Caps Lock,

and Command keys at the moment of the event (modifiers)
• event-specific information (message)

The what field is an integer. It returns a value between 0 and 15, and a slew
of descriptive constants are defined in unit OSIntf to represent its possible
values. A list of these constants is effectively a list of the various event
types a Macintosh program potentially has to deal with.

450 Turbo Pascal Tutor for the Macintosh

const
nullEvent 0;
mouseDown = 1;
mouseUp 2;
keyDown 3;
keyUp 4;
autoKey 5;
updateEvt = 6;
diskEvt 7;
activateEvt = 8;
networkEvt = 10;
driverEvt = 11;
applEvt = 12;
app2Evt = 13;
app3Evt = 14;
app4Evt = 15;

This list is probably longer than you expected-but don't let it scare you.
You may never have to worry about half of these event types.
GetNextEvent's role grew as the Toolbox evolved, from simply a place
where a program could learn what the user was doing to a function that
helps manage overlapping windows and pass information from one part of
a program to another.

Buffering

The Event Manager stores events into a queue, so that a program doesn't
have to deal with an event at the instant it occurs. The event is stored in the
queue and handled in the order received, something like phone calls to an
airline during the Christmas season. If the buffer fills up because events
come in faster than the application can process them, then the oldest events
are lost.

This queuing process is called buffering.

Null Events

The null event type (nullEvent) is returned in the event record's what field
whenever GetNextEvent returns False. A null event means that there's
nothing for the program to act on right now. Programs often take this
opportunity to address fine points such as whether the cursor has the right
shape according to its position on the screen. For example, Turbo Pascal

Events 451

changes the cursor from an arrow to an I-beam when it enters a text
window.

Common Keyboard Events

A user can create three event types at the keyboard: keyDown, keyUp, and
autoKey. A key-down event is produced by pressing any key other than the
modifier keys. These are Shift, Caps Lock, Command, and Option; they serve only
to affect the code produced by other keys.

Whenever a program detects an event record's what field equal to keyDown,
it knows that within the event record is a ReadChar yearning to breathe free.
The meat of a key-down event is hidden in the least significant byte of the
message field; it contains the ASCII value of the key pressed.

This value can be plucked from the message by performing modulo 256
division or, more to the point, by masking off the three most significant
bytes with the and operator:

theChar := Chr(message and $OOOOOOFF)i

This statement sets character variable theChar equal to the lower 8 bits of
the message field. The Chr function provides the type coercion necessary to
get the compiler's blessing on assigning a Longlnt to a Char. For example,
after a keyDown, if the message field is $10003141,

$10003141
and $OOOOOOFF

$00000041 = 65 decimal = "A"

As for all events, the time of a key-down event can be gleaned from the
when field (in sixtieth of a second "clock ticks" from when the system most
recently booted up) and the position of the cursor from the where field.

A key-up event is produced by releasing any key other than the modifier
keys. In practice, applications are so rarely interested in keyUps that they
are automatically blocked by the Event Manager. Even if you tell
GetNextEvent to return key-up events with an eventMask parameter of -1, it
still won't. You won't miss them.

An auto-key event is like a key-down event, except that it results not from a
fresh keystroke but from holding a key down and letting it repeat.
Typically, you'll treat auto-key events like key-down events, except where a

452 Turbo Pascal Tutor for the Macintosh

user would be unlikely to deliberately repeat a keystroke, for example, in
handling Command-key menu equivalents.

Mouse Events

There are two event types that the user can create with the mouse:
mouseDown (produced by pressing the button), and mouse Up (produced by
releasing the button). In the eyes of the Event Manager, simply moving the
mouse around doesn't constitute an event. If you want to know what the
mouse is up to at times other than the instant of a mouseDown or mouse Up,
use the Event Manager's GetMouse call, which we used in Chapter 31's
sketching program.

The message field is undefined for mouse-down events; when tells when the
button was pressed, and where indicates the hot spot of the cursor at the
instant the button went down. The modifiers field can be used to discover if
one of the modifier keys (Option, Caps Lock, Shift, Command) was also down at
that moment.

A mouse-down requires more processing than any other event type,
because its meaning varies according to the position of the cursor. Taking
Turbo Pascal itself as an example, here's what it must do to decode a
mouse-down.

If the mouse-down occurs in

Menu bar

Inactive window

Active text window:

Text area
Close box
Size box
Title bar

Scroll bar:

Call a Menu Manager routine to pull down
and make a selection from a menu.

Make it the active window.

Prepare to select text or set insertion point.
Prepare to close window.
Prepare to resize window.
Prepare to drag or grow window.

Scroll box Scroll text the indicated amount.
Arrow Scroll text one line up or down.
Between arrow/scroll box Scroll text one screenful up or down.

Active DA window

Events

Call a Desk Manager routine to give the desk
accessory the information,

453

otherwise (if in no window at all) do nothing.

We'll learn more about the strange science of interpreting mouseDowns in
the next chapter.

A mouse-up event is generated whenever you release the mouse button.
Surprisingly, applications are seldom interested in mouse-ups. A program
typically detects a mouse-down in some area of the screen, and then relies
on a Toolbox routine to monitor its state until a mouse-up occurs. When
there's a mouse-down in the menu bar, for example, an application calls the
MenuSelect routine, which doesn't return until the button has been released.
The mouse-up never makes it to the event queue.

GetN extEvent and the Structure of Macintosh
Programs

After initialization, most Macintosh programs settle into a loop that goes
something like this:

repeat
Get an event;

case event of
typeA: Handle typeA Events;
typeB: Handle typeB Events;
typeC: Handle typeC Events;

end;

until program done

This structure is called a program's main event loop. Macintosh applications
cycle endlessly through their main event loop: Get an event, process it; get
an event, process it; get an event, process it. ...

The EventWorkbench Sample Program

Program EventWorkbench (in the Miscellaneous folder) demonstrates event
processing, in particular, mouse-down, mouse-up, key-down, and auto-key
events. Like last chapter's QuickDraw experiments, it runs in the terminal­
windowless ($U-) environment. To display numbers, it borrows the
standard QuickDraw initialization sequence and the OutNum procedure
from the last chapter.

454 Turbo Pascal Tutor for the Macintosh

The event workbench displays information on the top three "lines" of the
screen about mouse-down, mouse-up, and key-down events, respectively.
For all three, the time of the event is displayed, representing how many
clock ticks have transpired since the system was booted. The position of the
mouse at the time of the event is displayed as the horizontal and vertical
coordinates of the cursor's hot spot at the moment of the event.

For keyboard events, the event workbench displays the ASCII value of the
key pressed, as well as the character equivalent of that key.

Should an event of any other type occur, it is simply noted at the bottom of
the screen.

Type in this program (or load it from folder Miscellaneous on your Tutor
disk).

program EventWorkbench;
{$U-}
uses

MemTypes, QuickDraw, OSIntf, ToolIntf, Packintf;

var
myPort
theEvent
theChar
done

GrafPort;
EventRecord;
Char;
Boolean;

procedure OutNum(h,v: Integer; theNum:LongInt);

var
theString : Str255;

begin
NumToString(theNum,theString);
while Length(theString) < 8 do

Insert (' ',theString, 1) ;
MoveTo (h, v) ;
DrawString(theString);

{ pad the string wi leading spaces }

end;

procedure Initialize;
begin

InitGraf(@thePort);
OpenPort(@myPort);
InitCursor;
FillRect(myPort.portBits.Bounds,white);
TextFont(monaco);
TextMode(SrcCopy);
done := False;
MoveTo(30,30);
DrawString(' Time -X---Location---Y-

end;

procedure MiscEvent(s: Str255);
begin

Events

Code Character');

455

MoveTo(30,300);
DrawString(s);

end;

begin
Initialize;
repeat

if GetNextEvent(everyEvent,theEvent)
with theEvent do

case what of

then { everyEvent = a const = -1
{ this with makes the fields

{ of theEvent known everywhere
mouseDown : begin { in this large case statement

mouseUp

keyDown,

OutNum(30,60,when);
OutNum(130,60,where.h);
OutNum(230,60,where.v)

end;
begin

OutNum(30,90,when);
OutNum(130,90,where.h);
OutNum(230,90,where.v)

end;

autoKey: begin
OutNum(30,120,when);
OutNum(130,120,where.h);
OutNum(230,120,where.v);
if what = autoKey then

SysBeep(1);
theChar := Chr(message and $OOOOOOFF);
OutNum(330,120,Ord(theChar));
MoveTo(430,120); DrawChar(theChar);

if (theChar = 'c') and
((modifiers and $100) <> 0) then
done := True;

if theChar = ,~, then
if PostEvent(app3Evt,0) > ° then

SysBeep(1);
end;

keyUp: MiscEvent('keyUp');
updateEvt: MiscEvent('updateEvt');
diskEvt: MiscEvent('diskEvt');
activateEvt:MiscEvent('activateEvt');
networkEvt: MiscEvent('networkEvt');
driverEvt MiscEvent('driverEvt ');
app1Evt: MiscEvent('app1Evt');
app2Evt: MiscEvent('app2Evt');
app3Evt: MiscEvent('app3Evt');
app4Evt: MiscEvent('app4Evt');

end; { case }
until done;

end.

456 Turbo Pascal Tutor for the Macintosh

Running EventWorkbench

Now run the program. Let's experiment first with key-down events. Type a
capital A. Even though this involves pressing two keys (Shift and A), only a
single key-down event is generated. The shift keys are modifiers; pressing
either or both doesn't generate a key-down event, but instead serves to
modify the event should another key be pressed.

Suppose the following values appear:

1163764 258 218 65 A

Let's interpret this output.

1163764 ticks equals 1163764/3600 minutes equals 323 minutes since the
system booted. (In processing keyDowns, we're usually not interested in the
position of the cursor-but the information is here, just in case.) At the
instant A was pressed, the cursor's hot spot was (258,218). Finally, 65 is the
ASCII code for A.

Press Tab. Tab doesn't have a printable equivalent, so the DrawChar routine
outputs nothing, given a parameter of Chr(9). Now experiment: What's the
ASCII code produced by the Return key? The Enter key? A Macintosh
Plus's arrow keys?

When you're done, press Command-c to leave the program.

Testing the Modifiers Field

The test involving the modifiers field in the key-down block checks for a
particular key-down event: a lowercase c pressed along with Command. This
is determined by checking a particular bit in the modifiers field.

if (theChar = , c') and ((mo,difiers and $100) <> 0) then
done := True;

Here we've used the and operator two ways: to test two boolean operands
and to perform a logical and on two integers. This statement reads, "If the
character typed is a lowercase c and if Command was down when this key
was typed, then set the done flag." Thus, this program reprises an old
standby of Standard Pascal: Contro/-c to terminate a program.

The modifiers field contains six flags:

Events 457

15

Option key ---....
Caps Lock key -----'

8

Shift key (either) ------'
Command key --------'
Mouse button

o

Activate Event (1 = activate; O=deactivate) -----.....

x = Not Used

Figure 34.1: Modifiers Word

Since the Command-key status is stored in bit 8 of this word, anding the
modifiers value with $100 (00000001 00000000) produces a nonzero value if
and only if the Command-key bit was set-regardless of the values of the
other bits in this word. The following constant definitions in the ToolIntf
unit simplify this test:

const
activeFlag
btnState
crndKey
shift Key
alphaLock
optionKey

= 1;
= 128;
= 256;
= 512;
= 1024;
= 2048;

{$0001}
{$0080}
{$0100}
{$0200}
{$0400}
{$0800}

Generate an auto-key event by holding a key down. Since this program
processes auto-key events with the same code block as key-down events,
the only difference is the call to SysBeep.

Studying Mouse Events

Move the cursor to a pleasing place on the screen, and click the mouse
button (press and release). This generates a mouse-down event and,
immediately thereafter, a mouse-up. Suppose the following values appear:

1164202 101 214 1164206 101 214

These six numbers succinctly define the click. The button went down at
1164202 ticks and back up at 1164206 ticks, a fifteenth of a second later. The
cursor was in the same position at both times: point (101,214).

458 Turbo Pascal Tutor for the Macintosh

Disk Insertion Events

Press Command-Shift-1 to eject the disk in the internal drive. Now, reinsert
this disk. (Hard disk users: Insert any formatted disk.) A second or so after
the insertion, a diskInsertEvt occurs. Applications normally don't have to
worry about disk insertions.

Application-Defined Events

Since the execution of a Macintosh program never strays far from its main
event loop, it can be convenient to use GetNextEvent as a means of
communication between the various parts of a program. The
EventWorkbench demonstrates this technique. Whenever you type a tilde
(-), the key-down handler "posts" an application-3 event:

if theChar = ,_, then
if Post Event (app3Evt , O) > 0 then

SysBeep(l);

This statement places app3Evt into the event queue, right along with the
keyDowns and mouseDowns that you create with your fingers. The main
event loop, in turn, fetches this event as it would any event and then acts
on it however it sees fit. Post Event is an integer function; if it returns a non­
zero value, then the posting failed for some reason (and the Event Workbench
beeps).

function PostEvent (eventCode: Integer; eventMsg: LongInt): OSErr;

The eventMsg parameter (0, in our example) shows up in the message field
of the newly created event record.

Extra Credit

Why does OutNum pad numbers with leading spaces? Take out the code
that does this and see what happens. What function is served by the
TextMode(srcCopy) call in procedure Initialize? Delete it and see. (Hint: The
default text-drawing mode is srcDr, which doesn't erase pixels in the bit
image that are already black.)

While we're on the subject of text, why does this program use the Monaco
font? Change the font to something other than Monaco. What goes wrong,

Events 459

and why? (Hint: In every font except Monaco, spaces are half as wide as
numbers.)

Review

The Event Manager gives Macintosh applications a consistent way of
dealing with all forms of user input. The primary types of "events" that a
user creates are mouse-down, mouse-up, and key-down.

The GetNextEvent call fetches events from a queue. It returns in its
EventRecord parameter detailed information about the event, including the
type of event, when it occurred, where the cursor was on the screen when it
occurred, and other supplemental information.

Macintosh programs typically are structured around a single main event
loop, that repeatedly calls GetNextEvent and then processes each event type
appropriately.

460 Turbo Pascal Tutor for the Macintosh

c H A p T E R

35

Windows

Overlapping, resizable, movable windows-a fundamental precept of the
Macintosh user interface-are made possible by a series of procedures and
functions known collectively as the Window Manager. Once woven into the
fabric of an application just so and called at the right time in the right way,
these routines create the illusion of a desktop containing multiple
1/ documents" and tools.

Apple's User Interface Guidelines don't permit much flexibility in window
behavior, and neither does the Window Manager. It allows an application
to achieve the behavior described in the guidelines-nothing more and
nothing less. In this sense, the Window Manager is very different from
more general-purpose tools such as the Memory Manager and QuickDraw.
The Window Manager is for programming artisans, not artists; save your
creativity for the content of your windows.

What's a Window?

Figure 35.1 is a typical Macintosh window (in this case, one of Turbo
Pascal's).

Windows 461

Close Box

~I FileDemo.Pas
program FileDemo;

{$U-}
{$R-}
{$R Fi leDemo.Rsrc}

Vertical scro11 ba" 11
uses

MemTypes,QuickDraw,OSlntf,Toollntf,Packlntf;

const
appleMenu = 1;
f i I eMenu = 2;
editMenu = 3; ~

~ [l!!m!!!!l!!!l!!!!!l!!ml!!!!m!!ll!ll!!l!!!l!!!m!!!!!!!!!!!!!!!!!!!1!1!!!1!!!!lm!!!!1!!!1!m!!!m!!!!!!!m!!!!1!!!!1!!!1 0 I f2l

Horizont1l scroll bar \
Size Box

Figure 35.1 : A Typical Window

This is what the Window Manager calls a document window. Document
windows have a title bar, containing a centered string (the window's name)
displayed in 12-point Chicago. Document windows can also have a close
box, a size box, and horizontal and vertical scroll bars (which aren't really
handled by the Window Manager but by one of its assistants, the Control
Manager).

There are five other standard window types, as shown in Figure 35.2. Type
rDocProc is often used for desk accessories and types dBoxProc and
plainDBox for dialogs and alerts. You can even create your own types,
provided you're willing to devote your life to contemplative study of Inside
Macintosh.

462 Turbo Pascal Tutor for the Macintosh

~D~Title~ §D~Title~ D Title

documentProc noGrowDocProc rDocProc

dBoxProc plainDBox altDBoxProc

Figure 35.2: Standard Window Types

Regardless of type, once drawn, windows are treated pretty much the same
by the Window Manager. (Incidentally, windows created by desk
accessories are called system windows; those created by applications are
application windows.) While many windows can be on the screen at once,
only one is the active window. All the rest are inactive. The active window is
visually and logically on top of the others, and it is the window to which all
user actions apply, including keystrokes and menu selections.

The active window is visually distinct from inactive windows. For example,
the Window Manager indicates that a standard document window is active
by adding horizontal lines to its title bar.

The content of a window also may change when it becomes inactive. For
example, for text-editing windows, any highlighting disappears, as does
the insertion point. At least that's what the guidelines recommend; it's up
to each application to implement this behavior. (Quiz: What does Turbo
Pascal do?)

Windows 463

progralll F i I eDelllo;

($U-)
($R-)
($R F i leDemo. Rsrc)

uses

FileDemo.Pos

MelllTypes,QulckDraUl,OSlntf, Toollntf,Packlntf;

'_1:4tl.=t

'~pp I ",11",1",' ~ ~ 1. I

til ",11",1,'1 ~::..

""jl fJl",I"l ~" 00
~.~~~

FileDemo.Pas
program F i I eDemo; Q

($U-)
($R-)
($R F II eDelllo. Rsrc)

uses
MelllTypes,Qu I ckDralll,OS I nt f, Too II ntf ,Packlnt f;

const
appleMenu • 1;
fi leMenu = 2; ro edl tNenu = 3;

K;JI IQ

When 8 window becomes
in8ctive, this

ch8nges to ...

this.

Figure 35,3: Inactive versus Active Windows

Only an active window can have a close box or grow box. Clicking once in
any exposed part of an inactive window brings it to the top of the stack and
makes it the active window. The former active window becomes the second
in the stack. This click serves the activation function and no other.

What the Window Manager Does for You

The Window Manager offers a workable, if somewhat convoluted, solution
to the enormous technical problems presented by overlapping windows. By
automatically making appropriate QuickDraw calls to manipulate clipping
regions, the Window Manager allows an application to draw into a
window without concern for its size, location on the screen, or position
relative to other windows. If the part of the window that's being drawn to
is visible, then the drawing shows; if it isn't, clipping protects the other
windows.

464 Turbo Pascal Tutor for the Macintosh

Windows Equal GrafPorts

Stated bluntly, a window is a GrafPort. Each window has a unique bit image,
port rectangle, pen pattern and location, and all the other fields of the
GrafPort record.

A window record is a GrafPort, but not vice versa; window records contain
additional information. Let's take a look at the Pascal expression of a
window record:

type
WindowRecord = record

port: GrafPort; i.e., portBits, portRect, visRgn, etc. }
windowKind: Integer;
visible: Boolean;
hilited: Boolean;
goAwayFlag: Boolean;
spareFlag: Boolean;
strucRgn: RgnHandle;
contRgn: RgnHandle;
updateRgn: RgnHandle;
windowDefProc:Handle;
dataHandle: Handle;
titleHandle: StringHandle;
titleWidth: Integer;
controlList: ControlHandle;
nextWindow: WindowPeek;
windowPic: PicHandle;
ref Con: LongInt;

end;

Since the very first thing in a WindowRecord is a GrafPort, given variable W
of type WindowRecord, you have access to an entire GrafPort of fields:

• W.port.penPattern is a Pattern.
• W.port.portBits.bounds is a Rectangle.

• W.port.visRgn is a RgnHandle, and so on.

The Fields beyond the GrafPort

WindowKind is an integer defining the "class" of a window and, for
windows created by an application to 8 defaults. You can check this field to
learn whether a given window belongs to a desk accessory (windowKind <
0), or if it was put on the screen by the Dialog Manager as a dialog box or
alert (windowKind = 2). Values greater than 8 can be used for an
application's own purposes in discriminating windows.

Windows 465

The visible flag tells if it's currently invisible or visible. (Windows can be
logically on the screen but invisible; note that this condition is distinct from
a window simply covered by other windows.) The hilited flag tells whether
a window is currently highlighted, that is, active. The goAwayFlag indicates
whether or not a window has a close box.

Structure and Content Regions

The strucRgn, contRgn, and upDateRgn fields are handles to regions that are
automatically manipulated by the Window Manager in drawing window
frames and contents.

Every window has a content region and a structure region. The content region
is the area of the window into which an application draws. The structure
region is a combination of the content region plus the window frame itself.

~DETitle~

structure region = content region + window frame

Figure 35.4: Content and Structure Regions

The window's title is accessed through a StringHandle (defined in unit
MemTypes as a pointer to a pointer to a Str255). A window may have one or
more controls associated with it: Controls are mouse-driven user interface
niceties such as radio buttons and scroll bars. If so, controlList is the anchor
of a linked list of the controls attached to this window.

The last field of a window record, refCon, is for applications to use any way
they see fit. It's often used to point to additional data belonging to a
window. For example, a word-processing program may use the refCon of a
text-editing window as a handle to a block of ASCII characters.

466 Turbo Pascal Tutor for the Macintosh

Pointers, GrafPorts, WindowRecords, and Type
Coercion

Like GrafPorts, window records are usually allocated on the heap as
nonrelocatable blocks and accessed through pointers. Also like GrafPorts,
pointers are used to access window records far more often than variables of
type WindowRecord.

Note well the following Window Manager type definition:

type
Windowptr = GrafPtr;

This says that a WindowPtr is the same thing as a GrafPtr, namely, a pointer
to a GrafPort-not a pointer to a WindowRecord. This allows you to send
window records off to QuickDraw routines that expect GrafPtr parameters
(such as InitPort and GetPort). This chicanery works because a GrafPort
happens to be the very first field in a window record.

As a result, dereferencing a variable of type WindowPtr doesn't result in a
WindowRecord but rather a GrafPort. If W is a variable of type WindowPtr,
then W".penLoc is a Point and W".goAwayFlag doesn't exist, because
GrafPorts don't have a goAwayFlag field.

This is fine if you only care about the GrafPort component of a window
record, and, 51 percent of the time, this is the case. To get Turbo Pascal to
process the additional fields in a window record, you must use a different
pointer type declared by the Window Manager:

type
WindowPeek = AWindowRecord;

In other words, given a single WindowRecord in the heap, you can access its
GrafPort fields with a variable of type WindowPtr or all its fields, including
the GrafPort, with a variable of type WindowPeek. In either case, the value of
the pointer is the same: the address of the first byte of the WindowRecord.

To illustrate, consider the following segment of code.

var
W: WindowPtr:
W2: WindowPeek;

begin
W := NewWindow (a,b,c,d,e,f,g,h,i) {allocate a window record}
W2 := WindowPeek(W); { type coercion: W2,W --> window rec }
InitPort(W); { this works, because Windowptr }

{ and GrafPtr are one and the same }
InitPort(W2); illegal--can't send apples to oranges}

Windows 467

WA.penPattern := gray;
W2 A.port.penPattern := gray; { this assigns to the same field,

i.e., the same address in memory}
W2A.visible := True;
WA.visible := True; { illegal; no such field in a GrafPort }
WindowPeek(W)A.visible := True; { legal, thanks to type coercion}

end;

Drawing a Window

Windows are drawn in a two-step process. First, the Window Manager
draws an empty window frame. Second, the application is signaled to draw
its contents. This signaling is provided by GetNextEvent, which, in addition
to looking for mouse and keyboard activity, checks to see if there are
windows that require redrawing (for example, because an overlaying
window has been moved). If it finds such a window, GetNextEvent returns
an "update event" with the message field a pointer to the window in
question. Upon fetching and decoding an update event, the application
then draws that window's contents.

468

The Front Window

Update events are generated when windows are manipulated
such that previously Mdden areas become visible.

For example I dragging this windo\\/' down and to
the right reveals part of the window underneath it.

Turbo Pascal Tutor for the Macintosh

Windows

The Behind Window I
I

sO The Front Window

Th~ 'Window Manager takes care of redrawing th~ window
fram., including th. titl., if any.

Th. 'Window M.lnager then gener.ltes an updat. event so
the application can draw the newly uncovered window's
cont.nts.

Her~ th. application has responded to the update event
by redrawing The Behind Window's contents.

The 'Window Manager manipulates this window's Gr afPort 's
visRgn clipping region so that the drawing doesn't spill
into areas of the screen that ar~ covered by other windows.

Note that this process generated no activate events (The
Front 'Window is still the active window).

Figure 35.5: Update Events

469

Key Window Manager Routines

The parameterless In it Windows routine initializes the Window Manager; as
a bonus, it allocates a GrafPort in the heap (called the "Window Manager
port") and uses this port to draw the desktop and menu bar. Call
Init Windows after InitGraf and InitFonts and before making any other
Window Manager call. A pointer to the Window Manager port can be had
by calling procedure GetWMgrPort:

procedure GetWMgrPort (var wPort: GrafPtr);

There are two calls for creating a window: NewWindow, a function
requiring umpteen parameters to define the new window (type, size, and
so on), and GetNewWindow, which gets most of the defining parameters
from a 'WIND' template in a resource file. Both calls draw the window on
the screen and return a pointer to the newly allocated window record. We'll
show how to use GetNew Window in an upcoming demo program.

To erase a window from the desktop and its various data structures from
memory, call Dispose Window, passing it a pointer to the underlying
WindowRecord.

The Window Manager maintains a linked list of all the windows on the
desktop. It is the position of each WindowRecord in this list that controls the
"plane" in which the window is drawn (that is, who covers who). A pointer
to the topmost window is available at any given time with the Front Window
function:

function FrontWindow: Windowptr;

The list is maintained using the next Window field of each window record.
The bottom window has a next Window value of nil. If there are no windows
on the screen at all, Front Window returns nil. The following procedure
demonstrates how to traverse this list. It beeps as it encounters negative
windowKind fields (that is, desk accessory windows).

procedure BeepForDAs;
var

myPtr: WindowPeek;
begin

myPtr := WindowPeek(FrontWindow);
while myPtr <> nil do
begin

if myPtrA.windowKind < 0 then
SysBeep (10) ;

myptr := myPtrA.nextWindow;
end;

end;

470 Turbo Pascal Tutor for the Macintosh

This is the same sort of linked list traversing we did back in Chapter 16. If
you need to, review the relevant sections.

The Select Window routine takes a WindowPtr parameter and makes the
window record it points to the active window. If it was the active window
already, then nothing happens and no harm is done.

procedure SelectWindow(theWindow: WindowPtr);

A program calls Select Window when there's been a mouse-down event in
any inactive window. Select Window automatically generates appropriate
update events so that the application is able to redraw the windows in their
new order.

For an application with multiple windows, the key to handling mouse­
downs is the Window Manager's FindWindow function.

function FindWindow(thePt: Point; var whichWindow: WindowPtr): Integer;

You pass this routine one fact (a point), and get back two: An integer code
that can be tested to learn more about the mouseDown and, returned in
which Window, a WindowPtr indicating the window (active or inactive) in
which the mouseDown occurred. If the mouseDown wasn't in a window, then
which Window returns nil.

The following constants are defined in unit ToolIntf for your convenience in
testing the value returned by FindWindow, much the way one tests the what
field of an event record:

const
inDesk = 0;
inMenuBar = 1;
inSysWindow = 2;
inContent = 3;
inDrag = 4;
inGrow = 5;
inGoAway = 6;

{ i.e., you missed everything}
somewhere in the white at the top of the screen }

{ i.e., anywhere in a desk accessory window}
in the content region of an application window }

{ in the title bar of an application window }
{ in the grow box of an application window }

{ in the goAwaybox of an application window }

The Toolbox has routines to call in response to various codes returned by
Find Window. For example, handling everything involved in dragging a
window to a new location requires a single call to the Drag Window
function.

Using the Window Manager

FindWindow, Select Window, and the rest don't make all that much sense
taken out of context. The best way to learn is to watch them in action and

Windows 471

then implement a similar pattern in your own programs. Remember, when
it comes to window management, strive for craftsmanship, not artistry.

The following demonstration program is possibly the most difficult
presented so far in this book. It's also the first one that behaves like a real
Macintosh program. Take your time. Be consoled by the knowledge that
when you can say, "I understand how this program works," the worst of
the Toolbox climb will be behind you.

proqram WindowDemo;
{$U-}
uses

MemTypes, QuickDraw, OSIntf, ToolIntf;

var
done: Boolean;
theEvent: EventRecord;
dragRect: Rect;

procedure DoUpdate;
var

theWindow: Windowptr;
myRect: Rect;
n: Integer;

begin
theWindow := WindowPtr(theEvent,message);
SetPort(theWindow);
BeginUpdate(theWindow);

if WindowPeek(theWindow)A,refCon = 0 then
begin

myRect := theWindowA,portRect;
for N := 1 to 12 do
begin

InsetRect(myRect,8,8);
FrameRect(myRect);

end;
end
else
begin

MoveTo(10,100);
DrawString(StringHandle(windowPeek(theWindow)A,refCon)AA);

end;

EndUpdate(theWindow);
end;

procedure doMouseDown;
var

theWindow: WindowPtr;
code: Integer;

begin
code := FindWindow(theEvent,where,theWindow);
case code of

inMenuBar: SysBeep(1);

472 Turbo Pascal Tutor for the Macintosh

inContent: if theWindow = FrontWindow then SysBeep(10)
else SelectWindow(theWindow);

inDrag: DragWindow(theWindow,theEvent.where,DragRect);
inGoAway: if TrackGoAway(theWindow,theEvent.where) then done .- True;

end;
end;

procedure Initialize;
var

r: Rect;
aWindow: WindowPtr;

begin
MoreMasters;
InitGraf(@thePort);
InitFonts;
InitWindows;
InitCursor;
done := False;

SetRect(r,SO,SO,300,2S0);
aWindow:=NewWindow(nil,r,'Window l' ,True,documentProc,Pointer(-l),True,O);
aWindowA.txFace := [bold]; aWindowA.txFont := SystemFont;
windowPeek(aWindow)A.refCon := Longint(NewString('Contents of window 1'));

OffsetRect(r,30,30);
aWindow:=NewWindow(nil,r,'Window 2' ,True,documentProc,Pointer(-l),True,O);
aWindowA.txFace := [italic]; aWindowA.txFont := SystemFont;
windowPeek(aWindow)A.refCon := Longint(NewString('Contents of window 2'));

OffsetRect(r,30,30);
aWindow:=NewWindow(nil,r,'Window 3' ,True,documentProc,Pointer(-l),True,O);

dragRect '= screenbits.bounds; InsetRect(dragRect,2S,2S);
end;

begin
Initialize;
repeat

if GetNextEvent(everyEvent,theEvent) then
case theEvent.what of

mouseDown:
keyDown:
updateEvt:
activateEvt:

end;
until done;

end.

DoMouseDown;
SysBeep (10) ;
DoUpdate;

Unless you need the typing practice, don't enter this program by hand. It's
on your Turbo Tutor disk in folder Miscellaneous. Now compile and run
this program.

WindowDemo doesn't really do anything, but it has the Macintosh feel.
Move windows around. Click on an inactive window to make it the active
window. Note that when you drag a window from in front of another, the

Windows 473

formerly hidden contents appear. Click in various areas on the screen, such
as the menu bar, inside the current window, and in the desktop. What
happens? To exit, click the active window's close box.

About WindowDemo.Pas

The main program has a structure reminiscent of EventDemo's. After
performing some one-time initialization, it enters a "main event loop" that
repeatedly calls GetNextEvent and acts on the value returned in
theEvent.what.

Initializing

Procedure Initialize first calls the Memory Manager's MoreMasters
procedure. This gives the program 64 additional master pointers to work
with, down at the bottom of the heap where they belong. With as many as
11 master pointers required per· window, the default block of 64 can get
used up in a hurry.

Next we initialize QuickDraw, the Font Manager, and the Window
Manager, in that order. At no time do we explicitly initialize a GrafPort.
There's no OpenPort call, nor does this program declare any GrafPort
variables. A GrafPort (the Window Manager port) is created on the heap
automatically by Init Windows, which is then used to draw the familiar gray
desktop and an empty menu bar.

Creating a Window

Next, the program creates three windows, with three calls to NewWindow.

procedure NewWindow(wStorage: ptr; boundsRect: Rect; title: Str255;
visible: Boolean; procID: Integer; behind: Windowptr;
goAwayFlag: Boolean; ref Con: LongInt);

As windows are complex objects with many options, New Window takes
many parameters. This routine both allocates and initializes a window
record, and draws its on-screen manifestation, a window. Let's examine the
first call to this function in detail:

aWindow:=NewWindow(nil,r,'Windowl' ,True,documentProc,Pointer(-l),True,O);

Each parameter helps to define the window to be created. The wStorage
argument is a pointer to the storage that's been allocated for the about-to­
be-created window record. In this case, we haven't allocated any storage;
instead, we want the New Window routine to do the allocation for us. This

474 Turbo Pascal Tutor for the Macintosh

desire is communicated to NewWindow by passing nil as the wStorage
argument.

The boundsRect parameter defines the size and location of the content
region of the new window. This rectangle is specified in "global
coordinates," that is, point (0,0) represents the pixel in the extreme upper­
left-hand corner of the screen. Keep in mind that the frame of a document
window extends 20 pixels above the top of the content region; therefore, a
top-left point of (0,0) creates a' window with a title bar hidden under the
menu bar.

The string you provide as the title parameter shows up in the title bar when
the window is drawn (assuming it's a window type with a title bar, like a
document window). It'll also be stored in handle form in the
WindowRecord's titleHandle field.

visible controls whether or not the window will initially be visible.
Sometimes it is useful to bring a window onto the screen "invisibly," adjust
it in some way, and then make it visible. In this case, we want to see the
new window immediately.

procID defines the type of window you want. Unit ToolIntf defines integer
constants representing the six standard window types, documentProc being
the identifier representing document windows.

behind controls the plane in which the window will appear when drawn.
Use nil to place a new window underneath all existing windows, and
Pointer(-1) to draw it on top.

If your application dictates that the new window should have a close box,
then pass True for the goAwayFlag parameter.

Finally, the ref Con parameter sets the window's initial value for the all­
purpose "reference constant." We're going to use this field in just a minute,
but for now, we'll just let it be zero.

The Window Appears

The call to NewWindow does a number of things: First, space for a new
WindowRecord is allocated in the heap; its fields initialized to default values
(except for those explicitly provided, such as goAwayFlag); and the address
of this block is assigned to a Window. Finally, a document window entitled
"Window I" appears on the screen.

Since a window record contains an embedded GrafPort, you may wonder if
this GrafPort is initialized as well. It is; NewWindow makes a call to OpenPort

Windows 475

(although when New Window returns the current port is the Window
Manager port).

This new GrafPort has a local coordinate system such that the first pixel
enclosed by its portRect-the first pixel in its content region-is addressed
as (0,0). This is the same pixel that we called (50,50) in our earlier
QuickDraw experiments. In effect, the GrafPort represented by Window" is
a miniature screen onto itself, in which we can make QuickDraw
calls-drawing lines, round-corner rectangles, text.

WindowDemo assigns the address of the new window record to pointer
variable aWindow. This means that by dereferencing aWindow, we gain
access to the window record-as shown in the next two statements:

aWindowA.txFace := [bold]; aWindowA.txFont := SystemFont;

To reiterate the typing problems of window records: Since a Window is a
WindowPtr (a pointer to a GrafPort), getting to the fields beyond the GrafPort
requires type coercion. It is type coercion that makes the next statement so
strange:

windowPeek(aWindow)A.refCon := LongInt(NewString('Contents of
window I'»;

Were it not for type coercion, this statement would be

aWindowA.refCon := NewString('Contents of window I');

The intent here is to use the refCon field to associate a string (the window's
"contents") with this window. It uses NewString, a utility routine that
allocates a relocatable block of string data and returns a typed handle to it:

function NewString(theString: Str255) : StringHandle;

NewString is one of two dozen routines lumped under the title "Toolbox
Utilities" and documented in Chapter 16 (Volume I) of Inside Macintosh.
Toolbox Utilities "perform generally useful operations such as fixed-point
arithmetic, string manipulation, and logical operations on bits," says the
reference work.

Once string data has been "handle-ized" by NewString, you can refer it by
double-dereferencing the handle. To illustrate,

var
sHandle: StringHandle;

begin
sHandle:= NewString('1 know not what course others may take,')
WriteLn(sHandle AA + ' but, as for me, 1"m going to Quebec.');

end.

476 Turbo Pascal Tutor for the Macintosh

Back to WindowDemo. What we're doing in the assignment to re/Con is
tying the "contents" of the window to its record. A real application would
probably declare a handle to a record type able to store various facts about
the window's contents.

a 'W';ndo'W' record

data assoc;ated
\\r;th the 'W';ndo'W'

Figure 35.6: Storing Window Data

To get at the window record's re/Con field, a Window must first be coerced
into a pointer of type WindowPeek. The expression

WindowPeek(aWindow)

has the same underlying value as a Window. We've simply coerced the
compiler into treating it as though it were type WindowPeek. Therefore,

• windowPeek(aWindow) is a pointer to a WindowRecord.
• windowPeek(aWindow)/\ is a WindowRecord.

• windowPeek(aWindow)/\.refCon is a Longlnt.

Finally, the StringHandle returned by NewString must be coerced to a long
integer before the compiler will permit its assignment to a window record's
refCon field.

Let's recap. At this point, we've created a new window record and drawn
an empty document window titled "Window I" on the screen. We've set its
GrafPort to draw in the System font and size (12-point Chicago-by default,
Gra/Ports within window records created by NewWindow use Geneva).
Finally, we attached a string to its refCon field.

Windows 477

Once More, with Feeling

Next, we go through the same process to create two more windows, each
offset slightly down and to the right of the previous one.

In calling NewWindow to create Window #2, we're again assigning to
a Window-which happens to be our program's only record of the address
of Window #1. Similarly, creating #3 overwrites the address of #2's
window record. To make matters worse, since a Window is local to
procedure Initialize, we'll lose track of #3 the moment this routine finishes.

With the addresses of their window records lost, how will we be able to
work with our windows? For now, we won't. But the Window Manager
can find all three, thanks to the linked list it maintains. In another part of
the program, one of its routines will give us the address of a window
record on a silver platter when we need it.

Window #3 doesn't get a content string. It contains rectangles (or will,
shortly).

The last operation performed by procedure Initialize is to set global variable
dragRect to enclose an area somewhat smaller than the screen:

dragRect := screenbits.bounds; InsetRect(dragRect,25,25);

We'll use this rectangle later to limit how far a window can be dragged.

Update Event Processing

At the instant procedure Initialize ends, the screen looks like this:

Figure 35.7: The Three Windows

478 Turbo Pascal Tutor for the Macintosh

We haven't yet drawn any window contents. Simply assigning a handle to
a Str255 to the refCon field isn't enough: The Window Manager can't guess
that you intend this data to be drawn inside the window. How are their
contents finally drawn? Through the good auspices of GetNextEvent and the
main event loop.

Creating a window automatically generates an update event for that
window. So, after procedure Initialize finishes, three updateEvts lie waiting
in the event queue, waiting to be fetched by GetNextEvent, right along with
mouseDowns and autoKeys.

Procedure DoUpdate

The main event loop responds to update events by calling this program's
DoUpdate routine. Do Update' s job is to draw the contents of the window
represented by a given update event.

Even when only a part of a window needs updating, DoUpdate (and most
Macintosh applications) draws the whole thing. The Window Manager's
manipulation of each window's visRgn keeps areas that don't need to be
redrawn from being repeated. (The program goes through the motions of
redrawing everything, but clipping protects bits in screen memory that
don't require updating.)

DoUpdate first decodes the information in global variable theEvent (of type
EventRecord) to discover which window needs updating. It so happens that
for update events theEvent.message is nothing less than this pointer
masquerading as a long integer.

For convenience in working with it, DoUpdate assigns this value to a local
variable of type WindowPtr. The assignment requires our old friend, type
coercion:

theWindow := WindowPtr(theEvent.message)i

Now theWindow points to the window that needs updating. The actual
updating proceeds according to this pseudocode:

Make theWindowA the current GrafPort;
if theWindowA.refCon = 0 then

this must be Window #3, so draw the nested rectangles
else

draw the string pointed to by the ref Con field at (10,100).

Here's where the Window Manager pays off. We don't care where on the
screen this window is or whether other windows are wholly or partially
blocking it. Thanks to the Window Manager's manipulation of this

Windows 479

GrafPort's visRgn field, we can make QuickDraw calls indefinitely without
fear of drawing outside of the window. If we need the assistance of a
clipping region to draw in this port, we are free to use clipRgn.

The Window Manager expects to be told when you start updating a
window and when you've finished. This is accomplished by bracketing the
routines that draw in the window with calls to the procedures BeginUpdate
and EndUpdate.

For Window #3, drawing is a matter of 12 calls to FrameRect, each smaller
than the one before (a la the QuickDraw demonstration program
ManipulateRects). This GrafPort's port rectangle is always (0,0),(250,200), no
matter where its window is on the screen.

For Windows 1 and 2, drawing entails sending the string pointed to by
refCon off to QuickDraw's DrawString routine. This would be duck soup
were it not for type coercion. We could say

DrawString(theWindowA.refCon AA);

but since theWindow isn't type WindowPeek and since ref Con isn't a
StringHandle, we must muck things up with type names and parentheses:

DrawString(StringHandle(windowPeek(theWindow)A.refCon)AA);

(If you ever find yourself getting irritated with Pascal's strong typing,
repeat ten times "Type coercion is for my own good.")

We created three windows, so when program flow returns from DoUpdate
to the main loop, there are two more update events waiting in the queue.
GetNextEvent returns update events according to their position on the
screen (front windows first), not the order in which they were generated. So
Window #3 is updated first, and Window #1 (the first to be drawn) is
updated last.

All this main event loop activity happens without the user lifting a finger.
After all three windows have been updated, the program continues calling
GetNextEvent, hundreds of times a second, while waiting for you to do
something.

Besides update events, this program responds to mouseDowns and
(halfheartedly) to keyDowns. This program's mouse-down processing is a
model for all Macintosh programs:

procedure doMouseDown;
var

theWindow: WindowPtr;
code: Integer;

begin
code := FindWindow(theEvent.where,theWindow);

480 Turbo Pascal Tutor for the Macintosh

case code of
inMenuBar:
inContent:

inDrag:
inGoAway:

end;
end;

SysBeep(l) ;
if theWindow = FrontWindow then SysBeep(lO)
else SelectWindow(theWindow);
DragWindow(theWindow,theEvent.where,DragRect);
if TrackGoAway(theWindow,theEvent.where) then done := True;

Let's review what an EventRecord variable contains after a mouse-down
event: The tick count, in the when field; the state of various shift keys in the
modifiers field; nothing in the message field; and, most importantly, in the
where field, the location of the cursor's hot spot when the button went
down.

The key to mouse-down processing is the Window Manager's FindWindow
routine:

code := FindWindow(theEvent.where,theWindow);

FindWindow returns a numeric value and sets theWindow equal to a pointer
to the window in which the mouse-down occurred, if any. Using a case
statement, this program tests the return code against predefined integer
constants that cover every possibility:

case code of
inMenuBar:
inContent:

inDrag:
inGoAway:

end;

SysBeep(l);
if theWindow = FrontWindow then SysBeep(lO)
else SelectWindow(theWindow);
DragWindow(theWindow,theEvent.where,DragRect) ;
if TrackGoAway(theWindow,theEvent.where) then

done := True; { i.e., in close box}

For mouse-down in the (empty) menu bar, we beep. (When we start adding
menus to our programs, at this point, we'll call a Menu Manager routine
that does all the processing necessary to pull down the appropriate menu,
highlight selections, and so on.)

The next possibility is more interesting. If Find Window returns a value equal
to inContent, then we know that the content region of one of our three
windows was clicked (the content region being everything except the
frame). For lack of anything better to do, a mouse-down in the active
window results in a one-sixth second beep. Windows that contain controls
(for example, scroll bars, radio buttons) require more work to handle a
mouse-down in the active window's content.

As required by the User Interface Guidelines, a mouse-down in an inactive
window makes that window active. DoMouseDown can tell if the window

Windows 481

receiving the mouse-down is the active window by comparing the Window
to the WindowPtr returned by the Front Window routine:

inContent: if theWindow = FrontWindow then SysBeep(lO)
else SelectWindow(theWindow);

Making an inactive window the active window is accomplished by calling
Select Window. It takes care of drawing the appropriate window frames and
generates the necessary update events so that the main event loop again
calls DoUpdate to redraw the contents.

The remaining two possibilities, inDrag and inGoAway, are also handled by
calls to the appropriate Menu Manager routine.

procedure DragWindow(theWindow; startPt: Point; boundsRect: Rect);

Drag Window doesn't return until the mouse button is finally released, and
no mouse Up event ever makes it to the event queue. It pulls the familiar
gray outline around the screen until the button is released, at which time
the window is moved to its new location (and appropriate update events
generated should part of an underlying window become exposed). The
boundsRect parameter limits how far the window can be moved, largely to
keep the user from moving it off the screen altogether. If the button is
released with the cursor's hot spot outside this rectangle, then the window
stays where it was initially.

If the window you've dragged isn't the active window already, then it
becomes the active window thereafter (as though you had called
Select Window yourself). This effect can be overridden by holding Command
down as you click in the drag area; this is yet another user-interface
standard built into the Window Manager.

TrackGoAway

Call TrackGoAway if FindWindow indicates that the mouse-down occurred
in the active window's close box. (Since inactive windows never have close
boxes, it's guaranteed to be the active window.)

function TrackGoAway(theWindow: WindowPtr; thePt: Point): Boolean;

It's TrackGoAway that draws the "bubble bursting" asterisk in the close box
and erases it if the cursor moves out of the box. Like Drag Window,
TrackGoAway doesn't return until the mouse button has been released. If it
returns True, then the user was still in the close box as he or she released
the button; if not, then he or she moved the cursor out of the box before
releasing.

482 Turbo Pascal Tutor for the Macintosh

The program's response to a click in the close box may be to close that
window or, as in the case of WindowDemo, to end the program altogether.
Setting global boolean variable done to True ends the program in
microseconds, as control returns to the main event loop and falls through
the until-done test.

Activate Events

Window Demo chooses not to respond to activate events, the event type
that results when a window makes the transition from active to inactive
and vice versa (its windows don't have contents worth deactivating).

Just for fun, insert a SysBeep(1) where the main event loop's case statement
decodes activate events. This creates a beep whenever an activate or
deactivate event occurs. Since they always occur in pairs in this program,
you'll hear two beeps whenever you click an inactive window-one beep
as the current active window becomes inactive, a second as the window
you clicked in becomes active. Since activate events have a higher priority
than update events, you'll hear two quick beeps before any content
drawing is performed.

So that you'll be able to tell when update events occur, place a signaling
beep at the start of DoUpdate. Make it longer so you can tell the two types
apart, say, SysBeep(30).

Update events often accompany activate events and vice versa, but not
necessarily. For example, if two windows don't overlap, then making one of
them active generates two activate events-but no update events, because
no contents need redrawing. On the other hand, if you drag the active
window in such a way as to uncover part of one or more windows, you'll
produce an update without an activate. Experiment until you're
comfortable with the distinction between update and activate events.

Experiment

You're using the fastest Pascal compiler in captivity. Take advantage of its
one-second turnaround to tweak the parameters to New Window. Change
the name of Window 3 to "Graphics Window." Make Window 2 a 100-
pixel-square window in the lower left-hand part of the screen. What
happens if the window is too small to contain its title? Pass a boundsRect
parameter such that the window is partially under the menu bar. Pass nil as
the behind parameter to make a window go underneath existing windows.

Windows 483

Change procID to created a different window type. Create a window
without a close box.

With astute cutting and pasting, you could make this program open dozens
of windows. Maybe you could call New Window repetitively inside a for
loop. Is there a limit on how many windows can be on the desktop at once?
(No.)

Review

This program is the most complex we've worked with yet in this book, so
it's understandable if you don't immediately understand parts of it. By the
time you've written your hundredth Macintosh program, it will make
perfect sense.

The Window Manager provides data types and routines for implementing
windows according to the User Interface Guidelines. Windows are
represented internally by a record type that begins with an embedded
GrafPort. Consequently, pointers to windows (of type WindowPtr) may be
passed to QuickDraw routines that expect pointers to GrafPorts. Accessing
the additional fields of a GrafPort requires coercion to a pointer of type
WindowPeek.

The New Window and GetNew Window routines allocate window records and
draw the new window on the screen; the latter gets most of the window's
definition information from a resource file. When an application has
finished with a window, it calls Dispose Window.

Window frames are drawn automatically by the Window Manager.
Window contents are drawn by the application in response to update
events. The FindWindow routine is called after mouse-down events to learn
in what window or region of the screen the mouse-down occurred. The
Select Window routine is called when a mouse-down occurs in an inactive
window. The Drag Window routine handles moving a window from one
point to another. The TrackGoAway function tests the user's actions after a
mouse-down in a close box.

484 Turbo Pascal Tutor for the Macintosh

c H A p T E R

36

Controls

The Macintosh notion of controls is another component of the user interface.
Controls are graphic objects that can be manipulated with the mouse (with
graphic feedback) to cause an immediate action or to affect a future action.

The Control Manager is a repository of types and routines for handling
controls. There are routines to create and dispose of controls, to draw
controls, to call when the user clicks in a control, and to read and write a
control's value. Although Inside Macintosh explains at length how to create
custom controls, most programs-certainly those that you'll be writing at
first-can make do with the four standard ones: buttons, radio buttons, check
boxes, and scroll bars.

Controls 485

D Bold
D Italic
D Underline

Check Boxes

up arrow

page up region

thumb (scroll box)

page down region

down arrow

Scroll Bar
--------------------------~------.--------------------

@ Normal
o Condensed
o EHpanded

(OK n
(cancel)

Radi 0 But tons Simple Buttons

Figure 36.1 : The Four Types of Controls

Buttons are small, round-cornered rectangles with text centered inside.
Unlike other control types, buttons don't retain a value, but instead
immediately result in some action.

Radio buttons are for presenting options that fit into a "one of several"
category. Pressing one button "pushes out" the others, so that exactly one is .
on at all times.

Check boxes are like boolean variables on the screen: They're either on
(checked) or off (unchecked). Conceptually, check boxes are for options that
can be applied singly or in combination. For example, a word-processing
program could offer the user seven check boxes to control the text style.
Internally, individual radio buttons and check boxes have a value of either
Oor 1.

ScrolI bars are the only predefined member of a class of control calIed dials.
Dials permit the user to select from a continuous range of values, like the
volume knob on a radio. Scroll bars are used in document windows when
the document is larger than the window.

It's worth noting that even though scroll bars appear to have the same
status as the frame of a document window, all controls, including scroll
bars, are in fact part of a window's content region. As such, they must be
drawn by the application.

486 Turbo Pascal Tutor for the Macintosh

Controls: Active and Inactive

Controls are always associated with a window. Since the User Interface
Guidelines state that user actions apply only to the active window, there
would be confusion if an inactive (but visible) window contained normal­
looking controls.

To avoid this situation, controls,like the windows that contain them, can be
made inactive. An inactive control is distinctively "dimmed" to indicate
that clicking in it will have no effect.

Part Codes

To support complex controls like scroll bars containing multiple
components, the Control Manager relies on the notion of part codes. Various
routines that process controls accept and return part-code data. Simple
controls like buttons, radio buttons, and check boxes have a single part
code; scroll bars have five.

The Control Record

A control is represented in memory by a variable of type ControlRecord:

type
ControlPtr = AControlRecord;
ControlHdl = AControlPtr;
ControlRecord = packed record

nextControl:

Controls

contrlOwner:
contrlRect:
contrlVis:
contrlHilite:
contrlValue:
contrlMin:
contrlMax:
contrlDefproc:
contrlData:
contrlAction:
contrlRfCon:
contrlTitle:

end;

ControlHandle;
WindowPtr;
Rect;
Byte;
Byte;
Integer;
Integer;
Integer
Handle;
Handle;
ProcPtr;
LongInt;
Str255;

487

Let's work through these fields. NextControl is a link to the next control in
the linked list (the first is stored in the window record of the window
containing these controls). If a control happens to be the last in the list, then
nextControl equals nil.

The "owning" window of a control is pointed to by its contrlOwner field.
ContrlRect is this control's boundary rectangle. It encloses the control,
including any associated text. This rectangle controls whether or not a
mouseDown is considered to affect a control. Therefore, clicking on the text
of a radio button or check box has the same effect as clicking inside the
circle or square itself.

ContrlVis determines whether or not the control will be visible. A value of
255 makes it visible; 0 is invisible.

ContrlHilite determines whether or not a control is currently active. A value
of 255 means it's active; a value of 0 indicates inactive. An inactive control
is dimmed and can't be manipulated with the mouse.

ContrlValue is the value currently stored by the control. For radio buttons
and check boxes, this field is either 1 (filled in) or 0 (empty). For plain
buttons, this field is always 0, because buttons don't store information. For
dials (scroll bars), this field can be any value between contrlMin and
contrlMax.

You never have to worry with the contrlDefProc, contrlData, and contrlAction
fields when using the standard control types-so we won't go into them.

ContrlRfCon, like the refCon of a window record, is for anything you want to
use it for. Finally, contrlTitle is the text to be associated with the control
(inside a simple button, or alongside a radio button or check box).

Key Control Manager Routines

As with windows, you have two options in creating controls: Create a
control on the spot with NewControl, passing numerous parameters
defining the fields in the ControlRecord; or fetch a control template from a
resource file with GetNewControl. In practice, controls are usually stored in
and read from resource files, and this is the method we use in this section's
demonstration program:

function GetNewControl(controlID:lnteger;theWindow:WindowPtr) :ControlHandle;

To erase a control from its window and free up the memory it occupies, call
DisposeControl:

488 Turbo Pascal Tutor for the Macintosh

procedure DisposeControl(theControl: ControlHandle);

Since the Window Manager's Dispose Window call automatically disposes of
all the controls associated with a particular window, you may never need
to dispose of a control individually.

To draw all the controls in a window's control list, call DrawControls:

procedure DrawControls (theWindow: WindowPtr);

Calling this procedure draws all of the visible controls (either active or
inactive, depending on their contrlHilite field) associated with the Window.
As always, the drawing won't have any effect if that part of the window is
covered by other windows. Typically, you'll call DrawControls in response
to an update event.

To change the status of a control from active to inactive or vice versa, and
to redraw the control to indicate the transition, call

procedure HiliteControl(theControl: ControlHandle; hiliteState: Integer);

Passing hiliteState = 0 makes the control active. A value between 1 and 253
means that particular part code should be highlighted (this applies to scroll
bars only). A value of 255 makes the control inactive.

When a mouse-down occurs in the content of an active window containing
controls, a program checks to see if the mouse-down occurred in one of
them. The FindControl function makes this determination:

function FindControl(thePoint: Point; theWindow: WindowPtr;
var whichControl: ControIHandle): Integer;

If you notice a parallel between this call and FindWindow, you're starting to
think the way the architects of the Toolbox intended. FindControl is passed
both the point at which the mouseDown occurred and a pointer to the
window in which it occurred. If the mouseDown didn't hit an active
control, then FindControl sets whichControl to nil and returns the value O.

If the mouseDown happens in an active control, this function returns the
part code of the control. The following integer constants are defined in unit
ToolIntf for ease in testing the value returned by FindControl:

const
inButton = 10;
inCheckBox = 11;
inUpButton = 20;
inDownButton = 21;
inPageUp = 22;
inPageDown = 23;
inThumb = 129;

Controls

{ simple button }
a radio button or check box }

{ scroll bar's Up arrow}
{ scroll bar's Down arrow}

scroll bar's "page up" area}
scroll bar's "page down" area}

{ scroll box }

489

Note that inCheckBox (part code 11) applies equally to radio buttons. From
the user's point of view, check boxes and radio buttons are very different;
from a programming standpoint, they're identical.

There's one complicating factor to decoding mouseDown in controls, having
to do with global and local coordinates. The Window Manager's
FindWindow call (which must be able to return information about any
window on the screen) works with global coordinates; that is, (0,0) is at the
upper left-hand corner of the screen. By contrast, FindControl already
knows the window in which the mouseButton occurs and, since controls live
in the GrafPort of that window, expects points to be expressed in that
GrafPort's local coordinate system. So, (0,0) is the upper left-hand corner of
the window's content region.

As a practical matter, all this means is that you must make QuickDraw's
GlobalToLocal call on the point of the mouseDown before calling FindControl.
We'll show how in just a minute.

If FindControl determines that a mouseDown did in fact occur in an active
control, the next step is to call TrackControl:

function TrackControl(theControl:ControlHandle;startPt:Point;
actionProc:ProcPtr:Integer;

This routine doesn't return until the user releases the button, at which time
you study the value returned to figure out what to do next. If it returns as 0,
then the user moved out of the control before releasing the button, in which
case you do nothing. If it returns with the same part code that FindControl
returned originally, then the user really intends to manipulate that control
and you need to take action. For example, a radio button needs its value set
to 1; a check box must be set to the opposite of its current value.

Reading and Writing a Control's Value

Call SetCtlValue to set a control's value and GetCtlValue to read it.
GetCtlValue redraws the control to indicate its new value.

procedure SetCtlValue(theControl: ControlHandle; theValue: Integer);
function GetCtlValue(theControl: ControlHandle): Integer;

ControlDemo.Pas

The following program, which is in folder Control Demo, builds on the
foundation established by WindowDemo.Pas. One major difference is that

490 Turbo Pascal Tutor for the Macintosh

ControlDemo.Pas gets its window and control resources from a resource
file. Therefore, instead of using New Window and NewControl (and passing
819 parameters to each), it uses GetNewWindow and GetNewControl (and
passes only a couple of parameters).

This means that before you'll be able to execute this program, a resource
file containing these resources must be available. To create the file, use
RMaker on ControIDemo.R; it creates ControlDemo.Rsrc which has the
necessary resources.

ControlDemo.R

This file contains "RMaker language" descriptions for three windows and
five controls. Let's look at the definitions for one of each.

* resource file for Control demo program
* defines five controls and three windows

ControlDemo.Rsrc ff the output filename

Type CNTL
,128 ff the resource ID

Soft ff the button's text
144 15 160 75 ff boundary rectangle (local coordinates)
Visible ff initially visible
2 ff i.e. , radio button
1 ff ref Con field initialized to 1
011 ff minimum, maximum, startup value

Type WIND
,128 ff the resource ID

Window 1 ff the window's title
50 50 250 300 ff boundary of window's content region (global)
Visible GoAway ff initially visible, has a close box
0 ff i.e. , standard document window
0 ff ref Con field initialized to 0

The first non-comment in an RMaker source file is the name to be given to
the resultant resource file. This must match the name specified in the $R
(use Resource file) compiler directive at the start of ControIDemo.Pas. This
directive at the start of ControlDemo.Pas

{$R ControlDemo.Rsrc}

causes the resource file to be opened just before giving control to
ControlDemo, so that its resources are available without the program having
to make an explicit OpenResFile calL

Controls 491

Defining CNTL Resources

Control templates are defined by listing the following on consecutive lines:

• the resource ID
• the text of the control
• the boundary rectangle of the control (in local coordinates, top-Ieft­

bottom-right)
• the initial visibility status of the control
• the control type (unfortunately, constants aren't available here; 2 means

a radio button)
• the control's reference constant
• the control's minimum, maximum, and startup values

For check boxes and radio buttons, use minimum = 0 and maximum = 1.
This particular radio button is initially on.

Defining WIND Resources

Window definitions contain the window's resource ID, title, and placement
rectangle (in global coordinates, top-Ieft-bottom-right). Next comes its
initial visibility status and whether or not it contains a close box. Following
is the window's type (0 = standard document window) and, finally, its
default reference constant value.

For more information about RMaker syntax, see Chapter 12 of the Turbo
Pascal reference manual.

Running ControlDemo

Now compile and run ControIDemo.Pas. Play around with it for a while.
The radio-button cluster controls the volume of the tone produced by the
two simple buttons at the top. One thing to look for is this program's
response to activate events. WindowDemo.Pas didn't worry about activate
events because its windows had no controls to activate and deactivate.
ControlDemo.Pas must ensure that any time the "control window" isn't the
active window, its controls are dimmed. Similarly, when it becomes active,
its controls must be undimmed.

492 Turbo Pascal Tutor for the Macintosh

To see this effect in action, drag the control window off the right so that no
part of it overlaps the other windows (partially offscreen, if necessary).
Click on one of the inactive windows. The screen now looks like this:

@ ~()tt 0 M(~diUTn

Figure 36.2: Inactive Controls

The controls are now inactive, to visually indicate that clicking inside them
at this time would have no effect. Now click once anywhere in the control
window. The program responds to the activate event by redrawing the
controls in an undimmed state. No update events were generated, because
no window contents were changed by this action.

Initializing ControlDemo

The Sound Manager

This program manipulates the volume of SysBeeps by calling the· Sound
Manager's SetSoundVol and GetSoundVol routines.

procedure GetSoundVol(level: Integer);

procedure SetSoundVol(level: Integer);

Level ranges from 0 (total silence) to 7 (case shaking). Since sound volume is
a parameter users like to think they control with the Control Panel, this
program saves this default setting at the start of the program and restores it
at the very end.

Much of the burden of initialization has been shifted to RMaker and the
resource mechanism. The line

Controls 493

aWindow:=GetNewWindow(128,nil,Pointer(-1));

causes a window template with resource ID 128 to be loaded from
ControlDemo.Rsrc (a window record created in memory) and a document
window to be drawn on the screen. The nil and Pointer(-l} parameters
perform the same function as in the New Window call (nil = allocate storage
for us; Pointer(-l) = open as topmost window).

In general, use resources where you can. Not only does this relieve your
program's run-time workload, it allows the object form of a program to be
adjusted by various resource-editing tools such as ResEdit. With a resource
editor, we could adjust the positions of the controls and the default
placement and size of all three windows without recompiling the
application.

Loading Control Resources

Five controls (two buttons and three radio buttons) are attached to the third
window with this loop:

for n := 128 to 132 do
aControl := GetNewControl(n,aWindow);

Each call to GetNewControl reads the indicated control template from
ControIDemo.Rsrc, allocates a ControlRecord and draws an active control
with the appropriate default value at the appropriate place in the control
window.

As we saw in WindowDemo when creating windows, each call to
GetNewControl overwrites the address that was in aControl
previously-effectively erasing a link to the control record. Much as the
Window Manager tracks windows with a linked list, the controls associated
with a given window are also in a list (incidentally, in the reverse order of
creation-the "Long Beep" button is the first entry in the list).

The anchor of this list is the controlList field of the window record pointed
to by a Window. We'll lose this anchor when procedure Initialize ends and its
local variables (a Window, among them) disappear. But, as in WindowDemo,
we'll get this pointer back when we need it.

Two observations about the window records now in memory: The first two
have empty control lists (controlList = nil) and nonzero re/Con fields
(because of the assignment from NewString). The situation is reversed for
the control window. It has a non-nil controlList and a zero refCon. These
facts will corne in handy later figuring out which window is which.

494 Turbo Pascal Tutor for the Macintosh

Update Events and Controls

Controls must be drawn in response to an update event just like everything
else in a window's content region. The following statement determines
whether the window involved in this particular event is the Control
Window (in which case it draws the controls) or one of the other two (in
which case it draws the string pointed to by ref Con). It makes this
determination by checking for a zero refCon field.

if windowPeek(theWindow)A.refCon = 0 then
DrawControls(theWindow)

else
{draw string}

Processing Activate Events

Clicking in an inactive window generates two activate events: A deactivate
event for the window that used to be the active window, and an activate
event for the new active window. Both are handled by this program's
DoActivate procedure.

procedure DoActivate;
var

theWindow: WindowPtr;
theControl: ControlHandle;

begin
theWindow := WindowPtr(theEvent.message);
SetPort(theWindow);

theControl := windowPeek(theWindow)A.controlList;
while theControl <> nil do
begin

if Odd(theEvent.modifiers) then
HiliteControl(theControl,0)

else
HiliteControl(theControl,255);

theControl := theControlAA.nextControl;
end;

end;

Whether an activateEvt represents a deactivate or an activate event is stored
away in bit 0 of the EventRecord's modifiers field. A 1 in this position
indicates an activate event; 0 means a deactivate event. This routine works
its way through the linked list of controls associated with this window (for
Windows 1 and 2, it's a very short list).

Each control along the way is made either active (0 parameter for
HiliteControi) or inactive (255). The binary numbering system is such that
odd integers have a 1 in the least significant bit, so the expression

Controls 495

Odd(modifiers) is true only for activate events. You could alternatively make
this determination with an and operation:

if (modifiers and 1) <> 0 then ...

Mouse-Downs

Because of the testing that must be performed after a mouse-down in the
control window, this program's mouse-down processing is more involved
than WindowDemo's. The nested TestControls procedure is called after the
program has figured out that the mouse-down occurred in an active control
window. Here's the code that makes that determination:

inContent: if theWindow <> FrontWindow then
SelectWindow(theWindow)

else
if windowPeek(theWindow)A.refCon <> 0 then

SysBeep (10)
else

TestControls;

Windows 1 and 2 have non-zero ref Con fields, and the program's only
response to a click in their content is to beep the speaker.

procedure TestControlsi
var

theControl: ControlHandle;
tempControl: ControlHandlei

begin
SetPort(theWindow);
GlobalToLocal(theEvent.where)i
if FindControl(theEvent.where,theWindow,theControl) > 0 then

case TrackControl(theControl,theEvent.where,nil) of
inButton: SysBeep(theControlAA.contrlRfCon);
inCheckBox: begin

SetCtlValue(theControl,1)i
case theControlAA.contrlRfCon of

1: SetSoundVol(1);
2: SetSoundVol(4);
3: SetSoundVol(7)i

end;
tempControl := windowPeek(theWindow)A.controlListi
while tempControl <> nil do
begin

if (tempControlAA.contrlRfCon <= 3) and
(tempControl <> theControl) then
SetCtlValue(tempControl,O)i

tempControl := tempControlAA.nextControl;
endi { while

end; { inCheckBox
endi { case TrackControl

end; procedure TestControls

496 Turbo Pascal Tutor for the Macintosh

First TestControls translates the position of the mouse-down from global
(screen) coordinates into local (window) coordinates. So, after making
theWindow" the current GrafPort, it calls GlobalToLocal to translate
theEvent.where to the control window's local coordinate system.

The FindControl routine determines if any controls happened to be at this
point. If so, it returns a positive value and theControl is set to point to the
control that was clicked on. By examining the control record's reference
constant (theControl"".contrIRfCon), we can determine which control was
pressed. (In ControIDemo.R, each control had a unique reference constant.)

Now that we know one of the five controls was hit, we call TrackControl.
This routine provides visual feedback to the user by highlighting the
control (and turning off the highlighting, if the user drags the mouse out of
the control's active area). TrackControl returns when the mouse button is
finally released.

At this point, the program has three possibilities to consider.

1. The button was released out of the control's active area, in which case
it does nothing (the user changed his or her mind).

2. It was released in the active area of one of this window's two simple
buttons.

3. It was released in one of this window's three radio buttons.

Assuming the second case (inButton), the program simply calls SysBeep,
passing it a ticks parameter equal to the button's contrlRfCon field, which
we set in the resource file to 10 for the "short" button and 60 for the "long"
one.

Handling the Radio Buttons

Radio buttons connote a "one and only one" option-only one can be
toggled on at anyone time. Surprisingly, this characteristic isn't supported
by the Control Manager; it's up to ControlDemo to make sure that when one
of its radio buttons is clicked, that button gets turned on and the others
turned off. If the mouse-down occurred in one of the radio buttons, we first
tum on that button (whether it is already on or not):

SetCtlValue(theControl,l);

Next, based on its contrlRfCon field (1,2, or 3), we use SetSoundVol to set the
volume. The next click of the "short" or "long" button will now output a
tone of the appropriate volume. Finally, we tum off the other two radio
buttons-without regard for their current state. This is accomplished by

Controls 497

traversing the linked list of controls associated with this window. We set to
zero all controls that aren't simple buttons (we can tell the difference
because they've got larger reference constants) and aren't theControl, which
is the one that's supposed to be set (and already is).

Other than the new DoActivate routine and more complicated mouse-down
processing, ControlDemo isn't that different from WindowDemo.

Review

Controls are graphic objects that can be manipulated with the mouse to
cause an immediate action or control a future action. There are four
predefined control types: simple buttons, radio buttons, check boxes, and
scroll bars. Controls are always associated with a window and appear in
the content region of that window. Control locations are specified in the
local coordinate system of their owning window.

Control information is heap based and usually loaded from a resource file.
Windows containing controls must draw their controls in response to
update events, and controls in an inactive window must be inactivated
(dimmed). After mouse-down events in an active window containing
controls, a program checks to see which control (if any) the mouse-down
occurred in. If a control was pressed, then the program tracks the mouse
and sets the value of the control (and possibly related controls)
appropriately.

498 Turbo Pascal Tutor for the Macintosh

c H A p T E R

37

Menus and Desk Accessories

Last chapter's control demonstration program came close to being a true (if
skimpy) Macintosh application. In this chapter, we add a handful of
statements and take it to full-fledged Macintosh status.

Menu Data Structures

Menus are accessed almost exclusively through handles. You will probably
never have occasion to dereference a menu handle to look at any of the
fields in a menu record, but, for the record, here they are:

type
MenuHandle = AMenuPtr;
MenuPtr = AMenuInfo;
MenuInfo = record

menuID: Integer;
menuWidth: Integer;
menuHeight: Integer;
menuProc: Integer;
enableFlags: Integer;
menuData: Str255;
{plus additional data}

end;

Menus are almost always fetched from resource files. The term "menu"
refers to a single pull-down menu, not the full collection of menus an
application puts in its menu bar. In an RMaker source file, menus are
described by listing a resource ID, a title (the text that goes on the menu

Menus and Desk Accessories 499

bar), and, beneath it, the text of each option of that menu. Here's an
example:

type MENU
,3 (4)

Edit
Undo/Z
(­
Cut/X
Copy/C
Paste/V

;; 1D = 3; attribute = 4 = pre-loaded
;; title of menu
II first option = Undo; command-key equivalent
;; a dimmed line separating Undo and Cut

All resources have an associated flag byte. The placement of these so-called
resource attributes within the flag byte is shown in the following figure.

7

1 = use sy stem heap
1 = purgeable-----....
1 = locked -----------'
1 = protected _______ ----1

1 = preloaded ---------....1
X = reserved

Figure 37.1: The Attribute Byte

For example, if the flag byte is 36 (hexadecimal 24, binary 0010 0100), then
the associated resource is both purgeable and preloaded-that is, loaded
into memory when the resource file is first opened.

When resources are defined in an RMaker source file, a value for the
attribute byte can be specified along with the resource definition data; if no
value is specified, then it is assumed to be zero. The flag byte is specified on
the same line as the resource ID and enclosed in parentheses. For example,
the MENU resource resulting from this RMaker definition

type MENU
,3 (4)
Edit

Undo/Z
(­
Cut/X
Copy/C
Paste/V

500

;;4 = 0000 0100 = preload

Turbo Pascal Tutor for the Macintosh

will be loaded into the application heap, unlocked and unpurgeable. It will
be read into the heap when its resource file is first opened. To work
correctly, menu resources must always be preloaded and unpurgeable.

Special Characters in the Menu Item String

The string defining a menu item can contain certain characters for creating
special effects. For example, a slash followed by a capital letter (Copy IC)
causes that item to be given a Command-key equivalent:

I I •

Run 3CR

To Memory 3CM
To Disk 3CK
Check Synt8H 3CY

Figure 37.2: Command-Key Equivalents

Starting an entry with a left parenthesis produces a menu item that is
initially disabled (dimmmed; unselectable). The string (- from the previous
example produces a line separating options. This technique is useful to
separate logically distinct choices in the same menu.

An RMaker syntax convention is that a backslash (\) followed by two
hexadecimal digits indicates the character with that ASCII value. This is the
sort of exotic detail we minimized in this book, but it so happens that this
technique is required to produce the Apple symbol used to represent the
desk accessory menu. The Apple character appears only in the Chicago
font, so you typically indicate this character in an RMaker source file by its
code value, which happens to be 14 hex. Wherever you see "\ 14," think
Apple symbol.

Menu Manager Routines

Before using any Menu Manager routine, call InitMenus:

procedure InitMenusi

An application begins the process of setting up its menu bar by calling
GetMenu as necessary, to fetch each menu template from a resource file.

function GetMenu(resourceID: Integer): MenuHandlei

Menus and Desk Accessories 501

The address of each menu record returned by Getmenu is assigned to a
variable of type MenuHandle. A program usually has as many global
variables of type MenuHandle as it has menus.

Unlike GetNewControl and GetNew Window, GetMenu doesn't put the menu
on the screen, only into memory. Once an application has fetched all its
menus, they're inserted into the menu bar with InsertMenu and drawn by
the DrawMenuBar procedure.

procedure InsertMenu (theMenu: MenuHandle; beforeID: Integer);
procedure DrawMenuBar;

There's a minor complication to this process. Part of a well-bred
application's job is to support desk accessories (DAs). Your users expect the
first menu to be named 1/\14" and, in it, they expect to find the unique
assortment of DAs installed in their System file. This makes the Apple
menu unlike the others, in that its contents can't be fully defined in the
RMaker file. The Toolbox handles this situation with the AddResMenu call,
which in one fell swoop adds the names of all desk accessories to a variable
of type MenuHandle.

procedure AddResMenu (theMenu: MenuHandle; theType: ResType);

The ResType of desk accessories isn't anything reasonable like 'DACC' or
'OSKA' but 'DRVR' (for driver).

Interpreting MouseDowns in the Menu Bar

Having drawn some menu titles, an application needs to respond to them.
If you recall, there's a predefined constant named inMenuBar used to
decode the return value of the FindWindow call. The lion's share of the
response is calling the Menu Manager's MenuSelect routine once you know
that a mouseDown has occurred in the menu bar:

function MenuSelect(startPt: Point): LongInt;

This routine handles everything until the mouse button goes up-pulling
down the appropriate menu, highlighting selections as you drag down,
pulling down another menu should you drag into another menu's area, the
works. The long integer it returns contains the number of the menu selected
(1 = leftmost menu) in its most significant word and the number of the
option selected (1 = topmost item) in its least significant word. Typically, an
application branches to a procedure based on the menu selected and then
handles each selection appropriately.

502 Turbo Pascal Tutor for the Macintosh

Fine Points

That's about it for the Menu Manager. Of course, there are all sorts of
options: Individual menu items and entire menus can (and should) be
dimmed (that is, made unselectable) whenever choosing them would be
inappropriate. For example, Turbo Pascal dims several menu items when
there's no text window open and therefore nothing for the commands to act
on.

It's possible to add entire menus to the menu bar after it has already been
displayed and to add items to individual menus. You can alter the content
of existing menus. You can cause items to be marked with a check mark or
other character, displayed in a particular text style (such as boldface), or
have an associated icon. You can even set how many times a selection
flashes when chosen.

To perform these feats, read Inside Macintosh's Menu Manager chapter.

Supporting Desk Accessories

An application that has an Apple menu containing DA names had better be
ready to perform should a user choose a DA. Supporting DAs isn't
especially difficult, just strange. Some things the DA does for itself; others
you have to do for it.

If the user chooses a DA from the Apple menu, the application's response is
to call OpenDeskAcc:

function OpenDeskAcc(theAcc: Str255): Integer;

Parameter theAcc-the name of the DA-is obtained by the Menu
Manager's GetItem routine:

procedure Getltem(theMenu:MenuHandle;theltem:lnteger; var itemString:Str255);

GetItem returns in item String the text of a menu's theItemth selection.
Remember that an application doesn't have this infomlation until run time;
AddResMenu fetches the names and puts them in the Apple menu without
telling us what they were.

DAs-their code, resources, and other data-all go in the application heap,
so after opening one you have less memory in the heap than previously.
DAs generally open windows that go into the Window Manager's linked
list right along with yours. Guess whose job it is to see to it that this
window is handled correctly?

Menus and Desk Accessories 503

Mouse-Downs and DA Windows

If FindWindow returns the value equal to the predefined constant
inSysWindow, then you know that the click happened inside a DA. Without
determining which one, simply call

procedure SystemClick(theEvent: EventRecordi theWindow: WindowPtr)i

The Toolbox passes the event information to the appropriate DA.

DAMenus

Many DAs perform standard editing operations (Undo, Cut, Copy, Paste,
and Clear). The User Interface Guidelines require that, if an application
supports DAs, it have an Edit menu. Moreover, that menu's first six lines
should contain Undo, a blank line, Cut, Copy, Paste, and Clear, in that
order.

That's why applications for which "cutting" and "copying" don't make
sense have an Edit menu with these options. (Admittedly, it's not one of the
most intuitive aspects of the user interface.) It's your job to make sure that a
DA that uses Cut, Copy, et al., gets wind of these selections when they're
made. This operation is performed by the Desk Manager's System Edit
routine:

function SystemEdit(editCmd: Integer): Boolean;

Call SystemEdit when the user chooses one of the Edit menu's first five
commands. If you've arranged this menu in the standard way and
determined that a selection from the Edit menu has occurred, the
expression

SystemEdit(menuItem-l);

is required, where menuItem is the low-order word returned by MenuSelect.
SystemEdit returns False if the active window isn't a DA-meaning that if
your application works with this menu, it should do so now. If it returns
True, then that selection did in fact apply to a DA and you don't have to
worry about it.

DAs require even more favors from their hosts. Some DAs need processor
attention every so often if their window is active or not. For example, the
Alarm Clock DA continues to count off the seconds as you edit text within
Turbo Pascal.

504 Turbo Pascal Tutor for the Macintosh

An application sees to it that DAs needing attention get it by periodically
calling the SystemTask routine, preferably from within the main event loop:

procedure SystemTask;

If no DAs have been opened or if they don't require periodic updates, then
SystemTask quickly returns.

Summarizing DA Support Requirements

To support DAs, an application must

• have an Apple menu
• load this menu with the names of all DAs in the System file
• launch the DA when one is chosen
• pass control of mouse-down events when one occurs in aDA's window
• make selections of the five standard Edit menu items available to DAs
• call SystemTask in the main event loop

MenuDemo.Pas

The next evolution of our demonstration program is called MenuDemo.Pas;
it, too, can be found on your Turbo Tutor disk. A true Macintosh
application, MenuDemo supports DAs and has overlapping windows,
controls, and pull-down menus.

Play around with this program for a while. Open a DA, perhaps the Alarm
Clock. Note how the formerly topmost window becomes inactive. Now
click in one of the application's windows. The clock is deactivated but
keeps right on ticking, thanks to the attention it gets from System Task. Open
half a dozen desk accessories; notice the juggling performed by the
Window Manager (called by our program). Our program doesn't have to
get any more complicated to deal with sixteen windows rather than four.

Only a handful of changes were necessary to tum ControlDemo.Pas into
MenuDemo.Pas. Each change is flagged by the notation 1/(* addition *)."
Let's work through them.

New Data Structures

This program's four menu records are tracked by a new global variable:

Menus and Desk Accessories 505

theMenus: array [1 .. 4] of MenuHandle;

Each element of this array represents a menu. The first element will
represent the Apple menu, the second the File menu, and so on.

Procedure Initialize

In addition to what it did before, Initialize now sets up four menus. We
inserted a call to InitMenus after calls to initialize QuickDraw and the Font
and Window managers.

The menus are loaded from the resource file in this for loop:

for n := 1 to 4 do
theMenus[n] := GetMenu(n);

At this point, the raw menu information structure has been allocated in
memory, but not in a form that can be put in the menu bar. Moreover, the
Apple menu is initially devoid of the names of the DAs in the current
System file. The next statement takes care of that problem:

AddResMenu(theMenus[l],'DRVR');

Designed for just this purpose, procedure AddResMenu adds the name of
every resource of type 'DRVR' to the menuRecord associated with
theMenus[1]. Next, all four menus are placed in the menu bar with
InsertMenu:

InsertMenu(theMenus[n],O);

The zero parameter in this call means to add this menu to the end of the
current menu bar, that is, to the right of the rightmost menu. Note that
"adding to the menu bar" doesn't put anything on the screen. That's
accomplished by the final statement of procedure Initialize:

DrawMenuBar;

At this point, we've draw four menu titles in the menu bar. A program with
menus had better be prepared should the user choose one of these menus.
Let's follow through the processing this program performs in dealing with
a mouse-down on top of the Beep menu. We'll start at the main event
loop-assume that the update events drawing the contents of the three
windows have already been completed.

repeat
SystemTask;
if GetNextEvent(everyEvent,theEvent) then

case theEvent.what of
mouseDown: DoMouseDown;
keyDown: DoKeyDown;

506 Turbo Pascal Tutor for the Macintosh

autoKey: SysBeep(l);
updateEvt: DoUpdate;
activateEvt: DoActivate;

end;
until done;

The call to SystemTask returns almost instantly because, at this moment,
there aren't any DAs open that need processing. Next we call GetNextEvent,
and it returns theEvent.what value representing a mouse-down. So we call
the routine that decodes mouse-down events:

procedure DoMouseDown;

case code of
inMenuBar: DoCommand(MenuSelect(theEvent.where));

end;

Before we simply beeped at menu bar mouse-downs; now we've got four
menus to handle. Virtually all of the work involved in decoding a mouse­
down in the menu bar is handled by the call to the Toolbox's MenuSelect
function, which we call in passing on our way to this program's
DoCommand procedure.

Calling MenuSelect this way has the effect of passing a long integer
parameter to DoCommand; this long integer represents the number of the
menu chosen (if any) and the individual item of that menu chosen (if any).
Here's DoCommand:

procedure DoCommand(menuResult:Longlnt);
begin

theMenu := HiWord(menuResult);
theltem := LoWord(menuResult);
case theMenu of

1: DoAppleMenu;
2: done := True;
3: if SystemEdit(theltem-1) then;
4: if theltem = 1 then SysBeep(60) else SysBeep(10);

end;
HiliteMenu(O);

end;

DoCommand's first move is to decode this long integer with Turbo's built-in
long integer separators, HiWord and Lo Word. HiWord returns the most
significant word of a long integer; Lo Word the least significant word.

Most of this program's menu processing occurs within a single case
statement based on the menu chosen. For example, for a choice within

Menus and Desk Accessories 507

menu #2 (the File menu), we set done to True; since Quit is the only option
of this menu, we don't bother to check theItem. For the Beep menu (#4), we
call SysBeep with an appropriate ticks parameter.

While the operation required by a menu selection is being performed, the
name of the menu is highlighted in the menu bar (MenuSelect leaves it this
way). DoCommand's final act is to turn off this highlighting:

HiliteMenu(O) ;

DAs and Menus

The other two choices (Apple menu and Edit menu) relate to DAs. As we
mentioned, DAs frequently perform editing operations. We must therefore
pass control to the SystemEdit routine when such a menu selection occurs.
SystemEdit returns True if the menu selection was in fact intended for a DA
and False if it wasn't. Since our program doesn't do cutting and pasting, we
don't care what it returns. Calling it in a dummy if statement saves us the
aggravation of declaring a local boolean variable to hold this value.

A selection from the Apple menu means that the user has picked a DA. It's
our job to start that DA running. This is accomplished by the two-statement
DoAppleMenu procedure:

procedure DoAppleMenu;
var

name: Str255:
begin

Getltem(theMenus[lj,theltem,name);
if OpenDeskAcc(name) > a then;

end:

Since the OpenDeskAcc routine requires the name of the DA to be opened,
we first fetch that string with a call to the Menu Manager's GetItem
procedure. We pass it a handle to the Apple menu and the number of the
item that was chosen on it.

With or without an open DA, program flow continues back at the main
event loop.

508 Turbo Pascal Tutor for the Macintosh

Key-Down Processing for Command-Key Equivalents

Unlike its predecessor, this program responds intelligently to key-down
events. This is not because we're going to do word processing in one of its
windows, but to permit menu selection with Command-key equivalents.

Key-down events (but not auto-key events) are sent off to be processed by
this program's DoKeyDown procedure:

procedure DoKeydown;
var

c: Char;
begin

c := Chr(theEvent.message and charCodeMask);
if (theEvent.modifiers and cmdKey) <> 0 then

DoCommand(MenuKey(c))
else

SysBeep(l);
end;

This program only cares about key-downs if an examination of the
EventRecord's modifier field reveals that the Command key was down
when this key-down was generated. If it wasn't, then the program simply
beeps.

If Command was down, regardless of what character was typed, we call the
Menu Manager's MenuKey function. MenuKey does for Command-key
equivalents what MenuSelect does for mouse-downs in the menu bar. If the
character passed to MenuKey happens to be defined by any item in any
menu, then it highlights the indicated menu and returns a long integer
value equal to what MenuSelect would have returned for a selection of that
item. Consequently, we're able to call the same DoCommand routine that's
called after mouse-downs in the menu bar. If the character typed doesn't
happen to be a Command-key equivalent, then MenuKey returns zero in its
most significant word, a value ignored by DoCommand.

Extra Credit

Give this program an option to beep once for every open DA window. This
requires adding the BeepForDAs routine we presented in Chapter 35. Call
this routine after a selection of a new, third item in the Beep menu (Beep for
DAs); you'll have to add this item to the Beep menu in MenuDemo.R and
recompile the resource file.

Menus and Desk Accessories 509

Review

MenuDemo.Pas is a true Macintosh program: It supports DAs, pull-down
menus, and controls; and it has multiple overlapping windows. Much of its
length is devoted to decoding mouse-downs and other standard functions.
MenuDemo.Pas can serve as a template for your own applications.

Like controls, menus are usually read from resource files and accessed
through handles. RMaker allows you to define as many menus as you need.
Menus are loaded from resource files and placed in the menu bar at
program initialization time. An application responds to a mouse-down in
the menu bar by calling the MenuSelect routine, which returns the menu
number and item chosen. For keyboard equivalents, call MenuKey.

To support DAs, an application must have an Apple menu containing the
names of the DAs in the current System file. When a selection is made from
this menu, launch the DA with OpenDeskAcc. Call SystemEdit when the user
chooses a standard Edit menu item. To give open DAs processing time, call
SystemTask in the main event loop.

510 Turbo Pascal Tutor for the Macintosh

c H A p T E R

38

Dialogs

As ControlDemo shows, it's awkward to decode mouse-downs when the
active window contains controls. If an application requires a dozen or more
such windows, it can become hellishly awkward. To simplify the process of
working with controls, the architects of the Toolbox created the notion of a
dialog box-basically, a window containing controls. A dialog box
communicates with background text and the placement and value of its
controls; the user talks back with the mouse and keyboard. Thus, a "dialog"
takes place.

In addition to background text and controls, dialog boxes can contain
pictures (in the QuickDraw sense), icons, and "editText" items in which the
user can enter and edit text.

Strictly speaking, the Dialog Manager and the dialog boxes it creates aren't
really necessary, since the same thing can be done with appropriate calls to
other routines, as in ControIDemo.Pas. The Dialog Manager simply makes
it easier.

Classes of Dialogs

There are three basic kinds of dialog boxes. Modal dialog boxes are the most
common. They're called modal because, when one appears, the mode of the
program changes. When a modal dialog box is on the screen, you can't do
some things that the user interface normally permits, like pull down menus
and activate other windows. In other words, you're in a mode.

Dialogs 511

Modal dialogs aren't processed in the main event loop; that's one reason,
they're easier to work with than standard windows containing controls.
Instead, dialogs are brought onto the screen as a result of a menu selection
or some other action, and program flow doesn't return to the main event
loop until the dialog has gone away. For example, choosing Print ... from
Turbo Pascal's File menu invokes the following modal dialog box:

ImogeWriter

Quality:
Page Range:

Copies:

Paper Feed:

@Best

@RII

o
@ Rutomatic

y2.3

o Fester 0 Oren

o From: D To: D
o Hand Feed

Figure 38.1: A Modal Dialog Box

I OK ~

(Cancel)

A modeless dialog, on the other hand, is a lot like the control window of
ControIDemo.Pas. Modeless dialogs behave like just another window on
the desktop. Whether active or inactive, you continue to have access to
other windows and to the menu bar. Some word processors use modeless
dialogs to implement Find and Replace functions (Turbo Pascal uses modal
boxes).

§D Find

Find What: ,-I *_*_* ___________ ---'

D Whole Word D Match Upper/Lowercase

n Find NeHt » (cancel]

Figure 38.2: A Modeless Dialog Box

An alert is a simple form of modal dialog used for warnings and reporting
errors. It contains at most two controls, typically, "OK" and "Cancel." The
user doesn't "dialog" with an alert box; he or she simply reads and then
dismisses it.

512 Turbo Pascal Tutor for the Macintosh

Reuert to the last uersion
saued?

n ~ iiiiiiiiiiiiiiiOiiiiiiKiiiiiiiiir;;;;;;SlB (Can eel J

Figure 38.3: An Alert

Dialog Data Structures

The primary data structure of the Dialog Manager is the Dialog record.

type DialogRecord = record
window: WindowRecord;
items: handle;
textH: TEHandle;
editField: Integer;
editOpen: Integer;
aDefItem: Integer;

end

The items field points to the dialog's item list-the series of controls, icons,
background text-that are the contents of this dialog. The majority of the
fields in this record have to do with editText items, a topic we'll discuss
shortly. The first field in a DialogRecord is a WindowRecord. The Dialog
Manager is therefore able to get away with the following definition:

type DialogPtr = Windowptr;

Since a WindowPtr is the same thing as a GrafPtr, a DialogPtr is a GrafPtr too.
Consequently, you can pass variables of type DialogPtr to QuickDraw
routines that expect GrafPtr parameters (for example, GetPort). And, as a
DialogPtr points to a window, you can make Window Manager calls with
them. To get at the fields past the embedded WindowRecord, you require a
pointer of type DialogPeek:

type DialogPeek = ADialogRecord;

In practice, you'll almost never need variables of type DialogPeek. There are
routines built into the Dialog Manager you'll use in lieu of accessing the
fields of a dialog record directly.

Dialogs 513

Dialogs and Resources

The Dialog Manager leans heavily on the resource mechanism to provide it
with data structures; it's difficult to create a dialog data structure from
scratch. Basically, each dialog is represented on disk as a resource of resType
DLOG-a template describing the dialog's size, window type, and
title-and a resource of type DITL (Dialog ITem List), which lists the
content of the dialog (controls, background text, and so on). There's one
entry in the item list for each item in the dialog. For example, a radio button
counts as one entry, as does a string of background text.

Dialogs and RMaker

The following RMaker fragment defines a fairly complex (lO-item) modal
dialog box, consisting of DLOG resource 256 and DITL resource 256.

type OLOG
,256 (36)

sample dialog
30 100 230 412
Visible NoGoAway
1
o
256

Type OITL
,256 (36)

10

BtnItem Enabled
180 240 200 300
Cancel

BtnItem Enabled
70 70 90 l30
Long

BtnItem Enabled
70 170 90 230
Short

RadioItem Enabled
120 15 140 75
Soft

RadioItem Enabled
120 90 140 160
Medium

514

" 36 = 32 (purgeable) + 4 (preloaded)
" title (won't show in this type of window)
" bounding box

" dBoxProc type window--standard modal dialog wind
" ref Con
" resource IO of its associated item list

" OLOG #256's item list
" this number must match last number of OLOG def
" number of items following

;; item #1; a simple button

" item #2; ditto

" item #3; ditto

" item #4; a radio button

" item #5; ditto

Turbo Pascal Tutor for the Macintosh

Radioltem Enabled II item #6; ditto
120 195 140 250
Loud

Checkltem Enabled II item #7, a check box
145 15 165 200
Double duration

EditTextltem Enabled II item #8, an EditText item
180 180 200 210
60

StatText Disabled II item #9, background (static) text
180 15 200 170
Duration of long beep

StatText Disabled II item #10, ditto
10 100 30 350
Beep Dialog Box

The description of a DLOG template is similar to that of a window, except
that it contains a "hook" to an item list. The particular dialog box described
here will be stored as DLOG resource 256 and its item list as DITL resource
256 (they don't have to be the same, but usually are). At run time, you
specify the resource ID of the DLOG template; its associated item list is
fetched automatically.

Describing Items in the Item List

The description of controls in an item list is considerably terser than that
ordinarily required for controls. It takes eight lines to describe a radio
button as a CNTL resource,

type CNTL
,128

Soft
144 15 160 75
Visible
2
1
011

;; i.e., radio button
;; rfCon field
;; minimum, maximum, startup value

and only three in an item list,

RadioButton
144 15 160 75
Soft

Unfortunately, you can't set the startup value or reference constant of a
control in an item list-but there are ways around this limitation.

Dialogs 515

RMaker knows how to make several types of dialog items: Static
(background) text, editable text, simple buttons, radio buttons, check boxes,
icons, and, for more elaborate graphics, QuickDraw pictures. The general
syntax for defining an item is

ItemType
boundingBox (top-left-bottom-right)
associatedText (or resourceID)

RMaker doesn't have an incredibly sophisticated parser; only the first letter
of an item type is significant. Consequently,

RadioButtons
RaptureOfTheDeep

both define a radio button item.

Each entry in a dialog's item list can be either enabled or disabled; by default,
all items are enabled. An item is disabled by adding any word that starts
with no" after the item name. The user can't interact with a dialog's
disabled items. Clicking in them has no effect. Typically, only StatText items
are disabled.

For more information on RMaker's item list syntax, see Chapter 12 of the
Turbo Pascal reference manual.

EditText Items

EditText items are miniature word-processing windows embedded within
dialog boxes.

Find What: I this is an t!fiU'Afi! item

OK o Words Only o Case Sensitiue (Cancel)

Figure 38.4: An Ed itT ext Item

The Dialog Manager implements these items by making appropriate calls
to TextEdit (a manager that Inside Macintosh doesn't call a manager, for
some reason). TextEdit provides sufficient editing muscle to build an entire
editor around. (In fact, creating editors is the traditional subject matter of
Macintosh programming tutorials.)

516 Turbo Pascal Tutor for the Macintosh

In practice, most programs let the Dialog Manager make the Text Exit calls
to manipulate the values of these items. The Dialog Manager has routines
to read and write the string contents of editText items.

Dialog Manager Routines

A program" that intends to use dialogs sees to it that appropriate resources
of type DLOG are available at run time. Then, as circumstances warrant,
the program loads them into memory and draws them on the screen with
GetNewDialog:

function GetNewDialog(dialogID: Integer; dStorage: Ptr; behind: WindowPtr)
: DialogPtr;

This call is reminiscent of GetNew Window-especially as DialogPtr equals
WindowPtr. As with GetNew Window, pass nil as the dStorage parameter and
GetNewDialog creates storage on the heap for the dialog record. Pass
Pointer(-1) as the behind parameter to open the dialog on top of existing
windows.

When you're through with a dialog, call DisposDialog to erase it from the
screen and free up the memory it occupies:

procedure DisposDialog(theDialog: DialogPtr);

ProcPtrs: Customizing ModalDialog

After GetNewDialog has read a dialog template and its item list into
memory and drawn it on the screen, a program enters a loop in which it
repeatedly calls the lynchpin of dialog processing, ModalDialog, and acts on
the integer value it returns.

procedure ModalDialog(filterProc: ProcPtr; var iternHit: Integer);

With practically no controlling parameters, ModalDialog isn't the ultimate in
flexibility. So, like many Toolbox routines, ModalDialog allows you to
customize its operation with a routine of your own. You inform
ModalDialog of this by passing a non-nil filterProc parameter that points to
the routine, which then gets control every time an event is generated when
the dialog is on the screen. It's up to the filter routine to decide what to do
about it.

Dialogs 517

Unit MemTypes defines a ProcPtr as the same thing as a Ptr. In practice, you
create one by applying the @ operator to the name of a procedure:

ModalDialog(@MyCustomRoutine,itemHit);

If you're happy with the default operation of ModalDialog-as we are in this
chapter's demo program-then pass nil as the filterProc parameter. If you
need more control, pass the address of a suitable filter procedure (and read
the Dialog Manager chapter of Inside Macintosh).

Processing ItemHit

ModalDialog doesn't return until the user has clicked in the rectangle of an
enabled item. During this interval, the user won't be able to work with
other windows or menus; a click outside the dialog produces a warning
beep. ModalDialog does, however, see to the needs of DAs that may be
open, by calling SystemTask periodically.

When it finally returns, ModalDialog will have set its itemHit parameter to
the item number of the radio button or editText item or whatever was
clicked on. The first item listed in the RMaker source file is item number 1.

What happens next depends on what sort of item itemHit is. If it represents
a simple button named OK or Cancel, you'll probably dispose the dialog
and proceed accordingly. If it was an editText item, you'll want to read the
string contents of that field. If itemHit is a radio button, you'll want to set its
value to 1 (and turn off the other radio buttons in that group).
Unfortunately, the Dialog Manager doesn't automatically set control values
for us.

Getting Information on the Items in the Item List

To set the value of a control, you need to call SetCtlValue. Since SetCtlValue
expects a handle to the control record (which GetNewDialog put out in the
heap, somewhere), you'll have to get a handle to the control that needs
setting. This is a task for the Dialog Manager's GetDItem routine:

procedure GetDItem(theDialog: DialogPtr; iternNo: Integer;
var itemType: Integer;
var item: Handle;
var box: Rect);

518 Turbo Pascal Tutor for the Macintosh

GetDItem takes in two bits of information and returns three. Given the
indicated dialog and item number, it returns the information about that
particular item: its type (such as radioButton or staticText, encoded as an
integer); a handle to its underlying data structure (for controls, this is a
ControlHandle); and, finally, its bounding box.

For example, if ModalDialog returns an itemHit value of 3 and the program
knows that the third item in the list is a radio button, it could make the
following calls to get the handle to the button's control record and then set
its value to 1:

GetDltem(theDialog,3,temp,Handle(myControlHandle),r);
SetCtlVal(myControlHandle,l);

temp is an integer variable (we already know that item three is a radio
button, so we don't care what it returns) and r is a rectangle. After setting
this button to 1 (and other radio buttons in its cluster to 0), we call
ModalDialog again to handle the next thing the user does. (He or she may
click another radio button in the same group.)

A Dialog Manager convention is that pressing Return is a substitute for
clicking the first item in the item list. Therefore, many dialog boxes make a
simple button entitled "OK" the first item in the item list. If ModalDialog
returns itemHit equal to 1, then you don't know-and don't care-if the
user pressed Return or clicked the OK button.

Changing this standard behavior is a classic application for a filter
procedure.

Getting Information About EditText Items

The key to working with editText items is to use the GetIText and SetIText
procedures:

procedure GetIText(item: Handle; var text: Str255);
procedure SetIText(item: Handle; text: Str255);

An editText item begins life with the string content assigned by its
definition in an RMaker file. After the user has played with it (as
determined by a suitable itemHit value returned by ModaIDialog), use
GetIText to see what the value is now. To change the text (perhaps to
suggest a different response), use SetIText. Both routines expect a handle to
the structure used to store this text; you get this from GetDItem.

Dialogs 519

Program DialogDemo.Pas

Your Turbo Tutor disk contains a text file named DialogDemo.Pas, with a
matching RMaker source file, DialogDemo.R. If the resource file isn't
already created (DialogDemo.Rsrc), then you need to bring RMaker's
talents to bear on DialogDemo.R. Bring each file up in a separate text
window and then compile and run the program.

The Beep menu from MenuDemo.Pas is gone. This function is supplanted
by an elaborate dialog box, invoked by choosing Beep ... from the File
menu. The ellipsis after "Beep" isn't accidental: The User Interface
Guidelines require that menu selections that invoke dialog boxes include
ellipses to indicate that there's more to come.

DialogDemo.R defines two dialogs, each with a matching item list. The first
is described earlier in this chapter. The second is simpler and contains
mostly static text; it comes up in response to the About DialogDemo ...
selection of the menu. Let's zero in on this dialog's item list:

type DITL
,257 (36)

4

BtnItem Enabled
170 240 190 300
OK

StatText Disabled
65 55 85 300
Dialog Demo of Turbo Tutor

StatText Disabled
100 55 120 300

" four items

(e) 1987 Borland International

Stat Text Disabled
175 10 195 200
Memory: "0 "1

Its fourth item is peculiar-a static text item containing the string Memory:
"0 "1. If you've run the program, you know that these digits and carets
don't appear in the About DialogDemo ... box. "0 and "1 stand in for text
provided at run time-RMaker language string variables, if you will.
Before this box is put on the screen, a Dialog Manager routine called
ParamText provides the string data to be plugged into these stand-ins:

procedure ParamText(sl,s2,s3,s4: Str255);

520 Turbo Pascal Tutor for the Macintosh

sl replaces "0, s2 replaces "1, and so on. If a dialog box doesn't require four
stand-ins, then simply pass the null string (") for the extras.

DialogDemo uses this feature to display the size of largest contiguous block
in the heap (returned by the Memory Manager's MaxMem call), as well as
the total number of bytes in the heap (returned by FreeMem). If your heap is
relatively unfragmented, these values will be close.

Experiment with this simple heap diagnostic by repeatedly opening desk
accessories and choosing About DialogDemo. How much memory does
each DA steal from the heap? When the DA terminates, is all the memory
given back? It's not unknown for DAs to leave permanent islands in the
heap even after they've said good night. (When creating your own DAs,
remember that a good DA behaves like a visitor to a national park, leaving
nothing but footprints.)

Working with the Beep Dialog

The Dialog Manager simplifies things, but not as much as you may hope.
This program's DoBeepDialog routine, called in response to choosing the
first item under the File menu, demonstrates the nontrivial process of
interacting with the user as he or she manipulates the controls of a dialog.

procedure DoBeepDialog;
const

cancelBtn = 1;
longBtn = 2;
shortBtn = 3;
softBtn = 4;
mediumBtn = 5;
loudBtn = 6;
doubleCkBox = 7;
durationText = 8;

var
saveSoundVol: Integer;
theDialog : DialogPtr;
itemHit: Integer;
theType: Integer;
r: Rect;
radButton: array [softBtn .. loudBtnJ of ControlHandle;
checkBox: ControlHandle;
done: Boolean;
n: Integer;

h: Handle;
s: Str255;
duration: LongInt;

Dialogs 521

begin
GetSoundVol(saveSoundVol);
SetSoundVol(1);
duration : = 60;

theDialog := GetNewDialog(256, nil, Pointer(-1));
for n := softBtn to loudBtn do

GetDltem(theDialog,n,theType,Handle(radButton[n]),r);
SetCtlValue (radButton[softBtn],1);

GetDltem(theDialog,doub1eCkBox,theType,Handle(checkBox),r);
GetDltem(theDialog,durationText,theType,h,r);

done := False;
repeat

ModalDialog(nil,itemHit);
case itemHit of

cancelBtn
longBtn
shortBtn
softBtn

mediumBtn

loudBtn

doubleCkBox

durationText

end;

done := True;
SysBeep(duration + duration * GetCtlValue(checkBox));
SysBeep(10 + 10 * GetCtlValue(checkBox));
begin

SetSoundVol(1);
for n := softBtn to loudBtn do

SetCtlValue(radButton[n],Ord(n = itemHit));
end;
begin

SetSoundVol(4);
for n := softBtn to loudBtn do

SetCtlValue(radButton[n],Ord(n = itemHit));
end;
begin

SetSoundVol(7);
for n := softBtn to loudBtn do

SetCtlValue(radButton[n],Ord(n = itemHit));
end;
begin

n := GetCtlValue(checkBox);
n := n xor 1;
SetCtlValue(checkBox,n);

end;
begin

GetIText(h,s);
StringToNum(s,duration);

end;

until done;
DisposDialog(theDialog);
SetSoundVol(saveSoundVol);

end;

Copious Constants

It's good practice to create an integer constant corresponding to the item
number of each selectable item in a dialog's item list. This takes extra work

522 Turbo Pascal Tutor for the Macintosh

on the front end, but the readability it brings to a routine compensates in
reduced debugging time.

The beauty of modal dialog processing is that it's far from the confusion of
the main event loop. The call to GetNewDialog at the start reads the dialog
(and its item list) from disk and puts it on the screen. GetNewDialog also
takes care of deactivating the window it covers. The beep dialog stays on
the screen until it is disposed at the end of the procedure.

The most complex processing of DoBeepDialog involves radio buttons. For
efficiency in turning on the selected button of a group (and turning off the
unselected ones), this program calls GetDltem to fetch the control handle for
each of the three radio buttons. These handles are stored in array radButton
for later retrieval.

We use the handle to the Soft button immediately to turn it on with
SetCtlValue. (By default, radio buttons and check boxes read from an item
list initially have a value of 0.) The poor user should never be subjected to a
group of radio buttons without any being pushed in.

This setting up is performed every time procedure DoBeepDialog is entered.
So, no matter where you leave the volume set, it'll be back at Soft the next
time you bring up this box. This isn't desirable in all cases. If you want the
value to hang around between invocations, you'll need global variables to
track the state of the dialog's controls between invocations.

Next, DOBeepDialog enters a sort of mini event loop, in which ModalDialog
assumes the task of reading the keyboard and watching for mouseDowns.
ModalDialog doesn't return until the user performs a mouseDown in one of
the enabled items, then it assigns the number of this item to local variable
itemHit. Actually, since this routine has an editText item, keyDown events
result in an itemHit for the editText item.

Most of DoBeepDialog's work is performed by a case statement that tests
itemHit against constants that relate to each item.

For the cancel button, we set done to True and thereby terminate the loop.

For the long button, we perform a beep of either duration ticks or, if the
"double duration" checkbox is on, 2 x duration ticks. duration's length
depends on the value in the editText item; it is 60 by default.

For the three radio buttons, processing is tricky. First, the volume is set to a
suitable level. Next, we execute a loop that executes the following
statement for each radio button:

SetCtlValue(radButton[n],Ord(n = itemHit));

Dialogs 523

As the second parameter to SetCtlValue, this statement passes the ordinal
value of the boolean expression n = itemHit. The ordinal value of True is 1;
False = O. The effect is to send a 1 to the button that needs turning on and 0
to those that need turning off.

Code of this sort almost constitutes showing off. This idea could been more
clearly expressed as

if n = itemHit then
SetCtlValue(radButton[n],1)

else
SetCtlValue(radButton[n],O)

We reduced four clear lines of code into one dense line. You decide if it's
worth trading clarity for efficiency.

Processing Check Boxes

Check-box processing can be summarized this way: If a check box is
currently checked, then uncheck it; if it's currently unchecked, then check
it. In other words, if its underlying control value is 1, then make it 0, and
vice versa. The task of complementing integers like this belongs to the xor
operator.

Using not would work if SetCtlValue expected a boolean parameter, but it
doesn't: It expects an integer. Using not on an integer flips the value of all
16 bits; not 0 = 11111111 11111111 = -1 is an undefined value for a
check box.

The next three statements fetch the current value of checkBox"" .contrlValue,
complement its least significant bit, and use this value as the parameter to
SetCtlValue.

n := GetCtlValue(checkBox);
n := n xor 1;
SetCtlValue(checkBox,n);

We don't have to concern ourselves with other controls--each check box is
an independent entity. We could squeeze these three lines into one and do
away with variable n like this:

SetCtlValue(GetCtlValue(checkBox) xor 1));

524 Turbo Pascal Tutor for the Macintosh

Handling the EditText Field

If the user has clicked in an EditText item (keyDowns result in an itemHit for
this field as well), then call GetIText for the current state of that item's text.
The string value it returns is turned into a number by StringToNum, the
complementary procedure of our old friend NumToString:

procedure StringToNum(theString: Str255; var theNum: Longlnt);

No error checking whatsoever is performed by StringToNum. If the string
you pass to this routine doesn't represent a reasonable long integer,
StringToNum won't complain and theNum is liable to be set any (potentially
huge) value. For example,

StringToNum('Borland', n);

sets n to 3,532,244 without the hint of an error. To be safe, a program must
take a hard look at the text in theString before putting any trust in the value
returned by StringToNum. (Each character should be in the set
['0' .. '9',' +',' -'].) Otherwise, you're liable to have 16-hour long beeps.

The dialog processing loop ends when the user clicks the Cancel button,
causing boolean variable done to be set to true. Note that this done is local to
DoBeepDialog and, therefore, unrelated to the global variable done that
controls termination of the program as a whole. There's a pleasing
symmetry in using the same variable name to control this minor event loop
as in the main event loop.

It may help to understand the flow of control in DoBeepDialog to insert a
diagnostic SysBeep(1) just after the call to ModalDialog. This generates a
beep each time ModalDialog returns.

The DoAppleMenu procedure is responsible for opening DAs and putting
up the About DialogDemo message. In performing the latter, it first
converts the values returned by MaxMem and FreeMem to strings and then
calls ParamText:

ParamText(sl,s2," ,");

At the instant of this call, the About DialogDemo ... box isn't even on the
screen yet. GetNewDialog automatically substitutes the strings provided in
the most recent invocation of ParamText into any text items containing the
magic placeholders "0, "1, "2, and "3. With that accomplished, the actual
dialog processing is easy. With only one enabled item (the Cancel button),
we know that, as soon as ModalDialog returns, we're finished.

Dialogs 525

Experiment

If you think the appearance of the Beep dialog can be improved, be our
guest. There are two basic approaches to editing a dialog box. First, there's
the "Edit the Rmaker Source" method. Go into DialogDemo.R and tweak
the boundary rectangles for each item in its item list to your heart's content.
Then recompile, test, and repeat. Second, there's the "Edit the Resource
File" method, using a tool such as ResEdit, REd it, or Servant to directly
manipulate the DLOG and DITL resources in DialogDemo.Rsrc.

The advantage of the first approach is that, should you later decide to add
some stuff to DialogDemo.R, your changes won't be lost as soon as you
recompile. On the other hand, direct resource-file editing is your only
alternative when working with resource files for which you don't have an
RMaker source file. Res Edit can work with Turbo Pascal's "Find What" box
as easily as those in DialogDemo.Rsrc.

MemoryDemo.Pas

Turn DialogDemo.Pas into a heap demonstrator by making calls to
NewHandle and NewPtr to periodically allocate blocks of, say, 500 bytes.
Perhaps you can call NewHandle(500) in response to a click on the Long
button-in lieu of making a tone-and NewPtr(500) for a Short button click.
If you want to get fancy, you can even change the names of the buttons.

Now click these buttons a few times and see if the memory status
information returned in the About ... dialog is reasonable.

Review

The Dialog Manager provides routines and data types that simplify the
process of using windows and controls to communicate with the user.
Dialog boxes are windows containing text, controls, and other objects.
There are three basic classes of dialogs: modal dialogs (the type we
discussed in this chapter), modeless dialogs (which behave more like
application-created windows), and alerts, a simple form of modal dialog
used to communicate error information and warnings.

Dialogs are almost always created by fetching a resource of type DLOG
from a resource file. Associated with this resource is the ID of a resource of

526 Turbo Pascal Tutor for the Macintosh

type DITL (dialog item list), which contains a description of each "item"
(control, background text, and so on) associated with a dialog. RMaker
allows you to create lists containing eight distinct types of dialog items.
Items can either be enabled (selectable by the user) or disabled.

Dialog resources are fetched from disk and put on the screen by the
GetNewDialog routine. Most interaction between the user and the dialog is
handled by the ModalDialog routine, which doesn't return until the user has
clicked an enabled item. At this point, the program performs actions
appropriate to the item that was manipulated: toggling check-box items,
setting and clearing various members of a radio-button cluster, and reading
the content of EditText items.

Dialogs 527

528 Turbo Pascal Tutor for the Macintosh

c H A p T E R

39

Reading and Writing Files

Macintosh programs process files with the Toolbox's File Manager and the
supplemental Standard File Package. Together, they constitute powerful,
easy to use tools for reading and writing files.

The File Manager takes a somewhat different approach to file processing
than Turbo Pascal's Reset/Rewrite/Read/Write methods, covered in Chapter
17. These built-in routines are able to process two basic file types: text files
(lines of ASCII characters) and random-access (typed) files, which consist of
a series of values of the same type. However, there are times when neither
approach is suitable.

Often, the structure of a file is immaterial. For example, if an application
must duplicate a file, it doesn't care if the file is text, check records, or mean
temperature data from Barrow, Alaska: It simply has to recreate n bytes of
data. At other times, files require a structure too complex for either of the
built-in approaches. A data file may need a fixed length "header" record at
the start and, following that, a sequence of records of a different type.

The File Manager takes a simple, cohesive view of all files: It treats them as
numbered collections of bytes and makes no effort to associate Pascal
concepts such as types or text: to these bytes. This approach is both flexible
and efficient.

Reading and Writing Files 529

byte 0

Figure 39.1: Numbered Bytes of Files

Terminology: Volumes and Files

To restate some definitions from Chapter 17, a volume is a named medium
for storing files. There's a one-to-one correspondence between volumes and
floppy disks. Most hard disks are formatted as single volumes; some
contain multiple volumes.

On all but the oldest Macs, the File Manager supports a "hierarchical" file
system (HFS). This scheme organizes a given volume into an arrangement
resembling the root system of a tree, in which files at any level can be either
normal files or subdirectories (containing more files and more
subdirectories). The Finder indicates subdirectories with its folder
metaphor.

Files are named sequences of bytes stored in volumes. Macintosh files
consist of two forks, data and resource. Resource forks are usually accessed
through the routines of the Resource Manager; the data fork is the province
of the File Manager. For this chapter's purposes, a "file" means "the data
fork of a file."

File names can be up to 31 characters long and can contain any printable
character except the colon (:).

Path Names

The File Manager uses path names to describe a specific file on a specific
volume. A path name consists of a file name optionally preceded by a
volume name and a colon, for example, Turbo Work Disk:Turbo (file Turbo
on volume Turbo Work Disk).

530 Turbo Pascal Tutor for the Macintosh

Types and Creators

In addition to their name and contents, Macintosh files have two attributes
that determine certain aspects of their treatment by the file system and
Finder: a type (not to be confused with a type in the Pascal or Resource
Manager senses) and a creator.

A file's type is a four-character string describing, tersely, the sort of data it
contains. For example, the files created by MacPaint are type PNTG
(painting) and those created by Turbo Pascal's editor are type TEXT.

By convention, programs have type APPL (application). That's how the
Finder knows that programs are programs, so that it can load them into
memory and give them control when they are double-clicked.

The Finder relies on the four-character creator string to determine the icon
with which to represent the file, as well as what application should be
started up when the file is opened. For example, files created by the Turbo
Pascal editor have creator TP AS; that's why they have the checkered icon
and why Turbo Pascal is started when you double-click one from the
Finder.

The $T (type) compiler directive controls the type and creator of Turbo
programs compiled to disk. By default, the type is APPL and the creator is
???? For example, {$T APPLJOHN} sets a program's type to APPL and its
creator to JOHN.

The File Manager's View of Files

Since a file is a string of bytes, each byte in a file is known uniquely by its
distance from the start of the file. By convention, the first byte is byte #0;
the second is byte #1; and the last byte in a file of length n is byte #n -1.

For every open file, the File Manager associates a position indicator called
the mark to determine where the next read or write will take place.

When a file is first opened, its mark is set to byte o. There's a routine to
adjust the mark to any position in the file and a complementary routine to
retrieve its position. The mark moves n bytes toward the end of the file
after reading or writing n bytes.

The File Manager also keeps track of each file's length. The end of a file is
known numerically as a long integer with a value one greater than the last

Reading and Writing Files 531

byte in the file. That is, a file of length n's last byte is #n -1, and its "end of
file" (EOF) is at position n, as shown in Figure 39.2.

logica 1 end of fHe

po~ :~~I r-'-I ~--",--I:~ o.IIIf I
byte 0 mark byte n-1

logica 1 end of fHe

po:o :--L--I..---'---I_I,,--x """,-I x-,--I x-'--rll-,--I --1...1 :~ o.IIIf I
byte 0 mark byte n-1

after reading three by tes (marked by X)

Figure 39.2: Reading Files

This is the so-called "logical" EOF. There's also a physical EOF, which
programs usually don't care about. The physical end of file is usually a
little farther out from the logical EOF because, for efficiency, files are
allocated in discrete chunks called allocation blocks-and rarely is a file
exactly as long as its last allocation block.

It's an error to try to read bytes or set the mark past a file's logical EOF (you
can't read what doesn't exist). Writing is different: Writing to a file past the
current EOF extends the EOF.

Working with Files: The Routines

Inside Macintosh divides the File Manager into high-level routines and low­
level, "parameter-block" routines. We'll describe only the former. Powerful
and complete, they're all most programs will ever need.

Before you can read or write a file, it must first be opened with FSOpen:

function FSOpen(fileName:Str255;vRefNum:lnteger; var refNum:lnteger): OSErr;

FSOpen prepares a file for reading or writing and sets its mark to position 0,
the first byte in the file.

532 Turbo Pascal Tutor for the Macintosh

Type OSErr and I/O Error Handling

Each File Manager call is structured as a function returning error
information (type OSErr is simply a synonym for Integer). Unit OSIntf
defines a flock of constants so that your programs can take appropriate
action if things don't go well. Here's a partial list of the error codes
associated with FSOpen:

const
noErr
fnfErr
ioErr
nsvErr
tmfoErr

= 0;
= -43;
= -36;
= -35;
= -42;

{ file opened without incident }
{ no such file in this volume }

{ I/O error }
{ no such volume }

{ too many files open already }

As with Standard Pascal file processing, file input/output (I/O) is easy if
you make simple-minded assumptions about errors (such as, there will
never be any) and not so easy if you think out and prepare for worst-case
scenarios. The former approach is suitable for demonstration programs, but
real users won't be satisfied with a program that locks up when they try to
save a data file they've been working on for hours to a write-protected
floppy disk.

Back to FSOpen

FSOpen takes in two facts, a file name and a volume reference number
(more about volume reference numbers in a minute). It also returns two
facts: an error code (the function's return value) and the file's all-important
reference number. Once a file has been successfully opened, you'll use this
value rather than the file's name when reading and writing it.

To read a file once it's been FSOpen-ed, call FSRead:

function FSRead(refNum: Integer; var count: Longlnt; buffptr: Ptr): OSErr;

FSRead pulls count bytes from file refNum, starting at the position of its
mark, and places these bytes in memory starting at address buffPtr and
working up. After the read, the mark will have been moved count bytes
deeper into the file.

If you've got the heap space, FSRead can read a file as large as a double­
sided disk in a single call. For the fastest possible response, read files in
chunks as large as memory permits. (liAs large as memory permits" can be
determined by calling the Memory Manager's MaxMem function.)

Reading and Writing Files 533

Surprisingly, count is a var parameter. Not only does it tell FSRead how
many bytes to read, but, in case of an error of some sort, it returns equal to
the number of bytes actually read. If all goes well, count returns with the
same value it had initially.

Setting the Mark

To control the position of the read, set the file's mark beforehand with
SetFPos:

function SetFPos(refNum: Integer; posMode: Integer; posOff: LongInt): OSErr;

You'll always pass a value between 0 and 3 for posMode, using one of the
following predefined constants:

const
fsAtMark = 0;
fsFromStart = 1;
fsFromLEOF = 2;
fsFromMark = 3;

Typically, you'll use fsFromStart as the posMode parameter. For example,

errCode := SetFPos(refNo,fsFromStart,512);
count := 64;
errCode := FSRead(refNo,count,@myArray);

These statements set the mark of the file opened as reference number refNo
to byte #512, and then read bytes 512 through 575 into memory starting at
the address of variable myArray. After this operation, the file's mark will be
at byte 576.

When you're through with a file, call FSClose:

function FSClose(refNum: Integer): OSErr;

FSClose terminates the relationship between a file and its reference number.
Before you can work again with this file, you'll have to reopen it and get
another reference number (probably not the same value) before working
with it again.

534 Turbo Pascal Tutor for the Macintosh

Getting Volume Reference Numbers

The FSOpen call requires two facts to uniquely identify a file: a file name
and a volume reference number. On HFS volumes (which constitute 99.9
percent of the volumes your programs are likely to encounter), the volume
reference number is really a "working directory" reference number,
identifying both a volume and a particular directory (folder) on that
volume.

If you use 0 as the working directory reference number in a call to FSOpen,
the File Manager knows to look for the file in the directory from which the
application was launched. This is the so-called default directory. To get the
working directory reference number for the default directory, call GetVol:

function GetVol (volName: StringPtri var vRefNum: Integer): OSErri

Get Vol returns the default directory's reference number in its vRefNum
parameter, and the volume's name is written to the address indicated by
the volName parameter. If you're not interested in the name (and usually
you won't be), pass nil for the volName parameter. GetVol doesn't return a
path name for this directory, even if the default directory is many levels
down in the file system; it gives you the name of the volume only. This
call's lack of symmetry results from the way Apple implemented
compatibility between the old "flat" file system and HFS.

It's hard (and almost never necessary) for a program to know the names of
all the files and subdirectories it finds at run time. It's easy, however, to
access the directory that it was launched from; simply pass 0 wherever a
File Manager routine expects a volume reference number (for example,
FSOpen). This allows your programs to locate key data files without asking
the user where he or she's put them.

In addition, the SFGetFile and SFPutFile calls let the user specify exactly
where in his or her unique file system a file is stored or should be created.
We'll describe them in just a bit.

Reading Files: Putting It All Together

For the sake of argument, suppose we wanted to read the data on the nth
check in a file of check records, located in the application's default
directory. Procedure ReadCheck reads the information on the check
designated by its checkNo parameter into var parameter theCheck.

Reading and Writing Files 535

procedure ReadCheck(checkNo; var theCheck: CheckRecord);
var

refNum, errCode: Integer;
byteCount: LongInt;

begin
errCode
errCode
byteCount
errCode
errCode

:= FSOpen('Check.Data' ,O,refNum); { open the file}
:= SetFPos (refNum, fsFromStart, (checkNo-l)*Sizeof(CheckRecord));

end;

:= SizeOf(CheckRecord);
:= FSRead(refNum,byteCount,@theCheck);
:= FSClose(refNum);

{ do the read }

ReadCheck fails if there isn't a file named Check.Data in the default
directory, or if it doesn't contain at least checkNo checks. Actually, there's
one other place where this file could be and still be found. The File
Manager searches the directory containing the current System file when a
file specified in an FSOpen call can't be found in the default directory. Many
applications (especially DAs, since they don't have a default directory) use
this technique to access data files. If FSOpen doesn't return an error, your
application doesn't know-or care-if the file is in the default or the
System directory.

The read itself is performed by this statement:

errCode := FSRead(refNum,byteCount,@theCheck);

This says to read byteCount bytes from the file opened as file refNum and to
place them at the address in memory occupied by var parameter theCheck.
The actual parameter passed at run time to ReadCheck may be on the stack,
in global memory, or in the heap; it doesn't matter. FSRead will write to any
address you specify, so if you accidentally read too much or to the wrong
spot, it's possible to overwrite code or system data structures and cause a
crash.

Writing a File

Writing to a file is similar to reading. Again, you're limited only by
memory and disk space. Here's FSWrite:

function FSWrite(refNum: Integer; var count: LongInt; buffptr: Ptr): OSErr;

Writes occur at the mark of an open file and advance the mark an amount
equal to the number of bytes written. If the file doesn't exist already, you'll
need to Create it beforehand:

function Create (fileName:Str255;vRefNum: Integer; creator, fType:O SType): OSErr;

536 Turbo Pascal Tutor for the Macintosh

Because caching may be in use on the device that physically implements a
given volume, it's good practice to call the File Manager's Flush Vol routine
immediately after closing a file that you've written to. Then you can be sure
that the directory information on that file is properly updated.

function FlushVol(volName: StringPtr; vRefNum: Integer): OSErr;

There's no need to call FlushVol if you've only been reading from a file.

An Example of Writing to a File

A block of check records in the heap practically begs to be written to disk.
Procedure WriteCheckData creates and opens file Check.Data in the working
directory, and it then fills the file with the contents of the relocatable block
indicated by its handle parameter.

procedure WriteCheckData(h: Handle);
var

refNum,errCode: Integer;
byteCount: LongInt;

begin
errCode := Create ('Check.Data' ,O,'CHEK' ,'CBAP'); { "checkbook appl."
errCode := FSOpen('Check.Data' ,O,refNum); { open it up
byteCount := GetHandleSize(h); { we'll write this many bytes
HLock (h);
errCode := FSWrite(refNum,byteCount,hA

); { send it out
HUnlock (h) ;
errCode := FSClose(refNum);
errCode := FlushVol(nil,O); {flush the volume as a safety measure

end;

We lock the relocatable block indicated by h before the write. If we didn't,
the call to FS Write could trigger heap movement before the write occurs
and cause our check data to no longer be where we said it was.

A single call to FS Write can write one or a thousand check records to disk,
disk and heap space permitting.

Miscellaneous File Manager Routines

Functions FSDelete and Rename delete files from the file system and change
their names, respectively.

function FSDelete(fileName: Str255; vRefNum: Integer): OSErr;
function Rename(oldName: Str255; vRefNum: Integer,newName: Str255): OSErr;

An open file can't be deleted. Either an open or closed file may be renamed.

Reading and Writing Files 537

Fetching Finder Information

The File Manager maintains certain facts about each file on a volume for the
Finder's benefit. This information is held in a record of type FInfo (Finder
info).

type FInfo = record
fdType OSType; {the type }
fdCreator OSType; {the creator }
fdFlags Integer; { miscellaneous flags }
fdLocation: Point; {position of file's icon in its window
fdFldr : Integer; {the folder containing this icon }

end;

The File Manager has routines to both read and write this packet of
information on a particular file, which may be open or closed.

function GetFInfo(fileName: Str255; vRefNum: Integer;
var theInfo: FInfo) :OSErri

function SetFInfo(fileName: Str255; vRefNum: Integer; theInfo: FInfo) :OSErr;

To determine the length of an open file (of its data fork), use GetEOF:

function GetEOF(refNum: Integer; var fileLength: LongInt): OSErr;

To read the current position of an open file's mark, use GetFPos:

function GetFPos(refNum: Integer; var filePos: LongInt): OSErr;

The Standard File Package

Applications get a big boost in file processing from two sophisticated
procedures known as SFPutFile and SFGetFile. These routines are described
in Volume I of Inside Macintosh under the heading "Standard File
Package"-far from the rest of the information about files. From a unit
standpoint, they're declared in unit PackIntf.

This segregation from the File Manager results from their implementation
as a "package." The Standard File Package isn't in ROM, but instead is read
from the System file into RAM when you call one of its routines. All this
happens transparently to your program (assuming there's 10K or so of
heap space available).

538 Turbo Pascal Tutor for the Macintosh

SFPutFile

procedure SFPutFile(where: Point; prompt,origName: Str255; dlgHook:
Procptr; var reply: SFReply);

Call SFPutFile ("Standard File PutFile") when your program needs to save a
data file with the name, volume, and directory selected by the user.
SFPutFile puts up the familiar dialog that Turbo Pascal (and practically
every other Macintosh application) uses when saving files to disk. It takes
care of moving between volumes, of ejecting disks, and accepting new
ones. If the user inserts a blank disk, SFPutFile checks that it is properly
formatted and named. If the user specifies a directory and volume that
already contains a file with this name, SFPutFile asks if you want to replace
it:

15 Figures I
D ·~2 1I!) to lIH im<a~)(~ ~ ~hd

D ') t 2 b~J ~12 Jahu~l~
D (HIOOO S tt~d: ~I: [[.it\ct 1
D <a (urs(U" !I~ , CJ!!j I eSI FIHures I [:1 <a round (ort\~r r~t: ... ~l
D <1 1mai(t~l Wtndl)W Q' [) ~2 ta~J 1 (I bit irn<a9(~ ~ ~hd

D ~) 11 by :\12 Jahu~l~
Saue document as: O! ~ (I:~iect) l) (i~IOOO Stlu:1c M.!I I MyFile I (Car Ihill(~ 1

Replace eHlsting • MyFlla"

(Yes) I N~ ,
Saue]

Cancel]

Figure 39.3: PutFile in Action

If the user accidentally inserts a write-protected disk, SFPutFile says so. All
this in a one-line procedure call-talk about powerful, high-level routines.

SFPutFile doesn't actually create files or write data. It simply returns the
name the user wants the file to have and where (volume and directory) he
or she wants it stored. It's up to you to create the file and write to it based
on what's returned in the reply parameter.

The SFReply record type returned by both SFPutFile and SFGetFile is the key
to decoding the user's response:

type SFReply = record
good:
copy:
fType:

Boolean;
Boolean;
OSType;

Reading and Writing Files 539

vRefNum: Integer;
version: Integer;
fName: String[63];

end;

Let's consider a sample call to SFPutFile:

SFPutFile(p,'Save check data as' ,'Check.Data' ,nil,theReply);
Point parameter p specifies the position of the top-left corner of the
standard PutFile dialog box. This location information, along with the
prompt and origName strings, gives us the opportunity to customize the
PutFile dialog just a bit. The box resulting from this call looks like this:

161 Programs

D .~ 2 tl ~J 1 () tl i 1 } Hl<l ~J (~ c::> hd

D ~) 12 tl~J '~42 JliH(~l~
() D {)HO{)O S tnek [j.~t;1

D <l (ursor (nrill(~)
D <l round (OnH~r r.~e '"
f) <l 1 ~Hl}(t~1 uJintiouJ

Saue check data as (Saue)
(Cancel)

Figure 39.4: Customizing PutFile

The user is free to change the file name to something other than your
suggestion (origName). The nil dlgHook parameter tells SFPutFile to behave
in its default way, that is, we won't customize its operation. As we saw
with ModalDialog, there's a ProcPtr parameter that offers flexibility in
exchange for some Inside Macintosh migraines.

When SFPutfile returns, we must study the fields in theReply to find out
where the user wants the file to go, and what he or she has decided to call
it. The good field tells whether or not the user clicked the dialog's Cancel
button. If good returns False, then Cancel was clicked, so we can't trust the
data in reply's other fields. If it's True, the name selected is stored in fName,
and the desired working directory reference number for the directory for
the file chosen returns in vRefNum.

The copy, {Type, and version fields of theReply can be ignored.

540 Turbo Pascal Tutor for the Macintosh

SFGetFile

SFGetFile is complementary to SFPutFile. Call it to let the user choose a
particular existing file in a particular directory of a particular volume for
opening.

procedure SFGetFile (where: Point; prornpt:Str255; fileFilter: ProcPtr;
nurnTypes: Integer; typeList: SFTypeList, dlgHook:
ProcPtr; var reply: SFReply);

where SFTypeList is defined as

type
SFTypeList = array [0 .. 3] of OSType; { OSType = packed array [1 .. 4] of char}

SFGetFile uses its typeList parameter to filter out inappropriate file types.
For example, wh¢n Turbo Pascal calls it in response to your choosing Open
from its File menu, SFGetFile shows only files of type TEXT. Similarly, the
Transfer option of the File menu shows only files of type APPL. You
request this filtering process by preparing a variable of type SFTypeList
containing up to four types and by passing numTypes equal to the number
of types used. Passing -1 for numTypes causes all types to appear,
regardless of the content of typeList.

For more sophisticated filtering, Inside Macintosh describes how to create a
filter routine and pass its address as the fileFilter parameter. This allows
your application ultimate flexibility; for example, it can display only files
that end in .R or cause files that have already been opened to be omitted.

As with SFPutFile, the user's response to SFGetFile can be learned by
examining the reply record. If reply.good is True, then the user wants to open
the file indicated by replay.fName in directory reply.vRefNum. This chapter's
demonstration program, FileDemo.Pas, includes a call to SFGetFile.

Macintosh File 110: The Short Form

Here's what an application must do to open and read a file specified by the
user:

1. Call SFGetFile to get the working directory reference number and
name of the file.

2. Call FSOpen, passing the directory reference number and file name
returned by SFGetFile.

Reading and Writing Files 541

3. Call SetFPos to set the file's mark.

4. Call FSRead to read n bytes from the file into a buffer in memory.
(Steps 3 and 4 can be repeated as necessary.)

5. Call FSClose to terminate I/O to this file.

Here's how to create and write a file specified by the user:

1. Call SFPutFile to get the working directory reference number of the
volume/ directory combination where the user wants to put the file
and the name he or she wants the file to have.

2. Call Create, passing the working directory reference number and file
name returned by SFPutFile.

3. Call FSOpen to open the file and get a reference number for it.
4. Call SetFPos to set the file's mark.
5. Call FSWrite to write to the file from a buffer in memory. (Steps 4 and 5

can be repeated as necessary.)

6. Call FSClose to terminate I/O to this file.
7. Call Flush Vol to ensure that buffers are flushed and the volume

properly updated.

FileDemo.Pas

FileDemo.Pas demonstrates key File Manager routines. It can also be
useful. Compile and run this program now.

When you choose Open from its File menu, after letting you select from the
GetFile dialog box, it displays the file's length, type, and creator, as well as
its first 50 bytes.

To illustrate, choose file FileDemo.R. The program responds by displaying
the following information:

542 Turbo Pascal Tutor for the Macintosh

File Fileoemo.R has Type: TEHT and Creator: WHS

Length of data fork: 882

42 32 114 101 115 111 117 114 99 101
32 102 105 108 101 32 102 111 tt4 32
70 IDS 108 101 68 101 109 Itt 32 112
114 ttl 103 tt4 97 109 13 42 32 100
101 102 IDS 110 101 115 32 ttl 110 101

~QO
Figure 39.5: FlleDemo.R's Output

According to this figure, FileDemo.R has type TEXT and a creator of TP AS
(Turbo Pascal). It's 882 bytes long. Are the values that supposedly represent
its first 50 bytes reasonable? Theoretically, TEXT files contain nothing but
printable ASCII characters, with an occasional Carriage Return (code 13)
thrown in. Using the ASCII chart in Appendix E, take a few minutes to
translate these values into text form. Do they match what Turbo's editor
says FileDemo.R contains?

It isn't very smart about short data forks; it goes through the
motions of reading and displaying the first 50 bytes even if the file isn't 50
bytes long. In this case, the Ucontent" part of this display isn't meaningful,
and you may have noticed a beep as FSRead indicated a failure to perform
the requested operation.

Use FileDemo to probe your file system. What type and creator does Turbo
Pascal itself have? The Finder? The System file? Are these files mainly
resource fork or data fork files?

Inside FileDemo.Pas

From a window-handling standpoint, FileDemo is simpler than previous
example programs: With the exception of its two dialog boxes, there aren't
any windows to be concerned with. No windows means we can dispense
with processing activate and update events from the main loop.

Reading and Writing Files 543

The meat of this program is procedure DoOpen, called as a result of
choosing the File menu's first option.

procedure DoOpen;
var

reply
typeList
findrInfo

SFReply;
SFTypeList;
FInfo;

refNum Integer;
buffer,aByte: Ptr;
row,colurnn Integer;
fileLength, readCount: LongInt;

theDialog
p
s

beqin

DialogPtr;
Point;
Str255;

p.h := 100; p.v := 60;
SFGetFile(p," ,nil,-l,typeList,nil,reply);

if not reply.good then Exit;

if GetFInfo(reply.fname,reply.vRefNum,findrInfo) <> 0 then SysBeep(l);
if FSOpen(reply.fname,reply.vRefNum,refNum) <> 0 then SysBeep(l);
if GetEOF(refNum,fileLength) <> 0 then SysBeep(l);
NumToString(fileLength,s);

ParamText(reply.fname,findrInfo.fdType,findrInfo.fdCreator,s);
theDialog := GetNewDialog(256,nil,Pointer(-1));
SetPort(theDialog);

readCount := 50;
buffer := NewPtr(readCount);
if FSRead(refNum,readCount,buffer) <> 0 then SysBeep(l);
if FSClose(refNum) <> 0 then SysBeep(l);

aByte := buffer;
for row := 1 to 5 do

for column := 1 to 10 do
beqin

NumToString(aByteA,s);
MoveTo(38 * column, 100 + row*20);
DrawString (s) ;
aByte := Pointer(Ord(aByte)+l);

end;

ModalDialog(nil,row);
DisposDialog(theDialog);

end;

544 Turbo Pascal Tutor for the Macintosh

DoOpen's Local Variables

Reply and typeList are needed by SFGetFile; a record of type FInfo is
required by GetFlnfo. Integer variable refNum is used in the FSOpen call.
The two pointers (buffer, abyte) are for reading and displaying the first 50
bytes of the chosen file.

DoOpen has some long integer variables for matters relating to file length.
(These must be long integers because you can read more than 32K in a
single call.) Finally, there's a DialogPtr for accessing the box that displays all
this information.

Calling SFGetFile

An amazing amount of work is done by DoOpen's second line~

SFGetFile(p," ,nil,-l,typeList,nil,reply);

Since SFGetFile ignores its prompt parameter anyway, we simply pass the
null string. Passing -1 as the numTypes parameter causes all types to be
shown, regardless of the contents of typeList (which we didn't bother to
initialize).

To cause this program to open only files of types TEXT and PNTG
(MacPaint files), appropriate assignments to typeList before the call to
SFGetFile are required:

typeList[O] := 'TEXT';
typeList[l] := 'PNTG';
SFGetFile(p," ,nil,2,typeList,nil,reply);

When SFGetFile returns, the information supplied by the user comes back
in record variable reply. If its good field isn't True, then the user clicked the
Cancel button, so the contents of reply's other fields are meaningless. Our
response to this condition is simply to leave DoOpen.

If reply.good is True, the program proceeds to probe for information about
the file chosen by the user, which is represented by. the reply record's fname
and vRefNum fields. First, it calls GetFlnfo to collect the file's type and
creator. Files don't have to be opened before you can fetch their Finder
information.

if GetFlnfo (reply. fname, reply.vRefNum, findrlnfo) <> 0 then SysBeep(l);

FileDemo's "error handling" isn't the greatest. It tells you that something is
amiss (with a beep), but doesn't tell you what went wrong nor does it do

Reading and Writing Files 545

anything about it. After the call to GetFlnfo, we let the information cool its
heels in findrlnfo until we're ready for it.

Opening the File

Next, we open the file by passing FSOpen the same file name and working
directory reference number used in the GetFlnfo call. If the file can be
opened, refNum is set to the all-important reference number, which we'll
use in subsequent calls to refer to this file.

if FSOpen(reply.fname,reply.vRefNum,refNum) <> 0 then SysBeep(l);

This operation is almost guaranteed to work, because SFGetFile can't return
file names and working directory reference numbers that don't exist.

The call to GetEOF places the length of the chosen file in long integer
variable fileLength, which is then converted to string form.

Next comes a call to ParamText, setting the 1\0 through 1\3 placeholders of
the next dialog box to be fetched by GetNewDialog to the file's name, type,
creator, and length, respectively. This information makes its appearance on
the screen with the call to GetNewDialog:

theDialog := GetNewDialog(256,nil,Pointer(-1));

Reading File RefNum

At this point, the dialog is displayed (including the type and length
information, but not the content bytes). We set the current GrafPort to the
new dialog box, because we're about to do some DrawString-ing into the
lower part of the box. Since DialogPtrs are really GrafPtrs, they can be
passed without coercion hassles to QuickDraw routines that expect
pointers to GrafPorts.

Reading the file represented by integer variable refNum is accomplished by
the following statements:

readCount := 50;
buffer := NewPtr(readCount);
if FSRead(refNum,readCount,buffer) <> 0 then SysBeep(l);
The first line allocates a 50-byte space in the heap for the data about to be
read; the second performs the read itself. If this particular file has less than
50 bytes in its data fork, the program will beep at this point.

546 Turbo Pascal Tutor for the Macintosh

Sending Content Bytes to the Screen

Having read 50 bytes into the buffer, we output them to the screen. Since
they're displayed as 5 rows of 10 bytes each, a pair of nested for loops are a
natural structure for this process.

You may recall that a Ptr is defined in unit MemTypes as a ASignedByte
(where SignedByte = -128 .. 127). Therefore, dereferencing a variable of type
Ptr results in an integer between -128 and 127, representing the 256
possible combinations of eight bits. After converting this value to string
form and DrawString-ing it to an appropriate spot in the window, we
increment pointer variable aByte to point to the buffer's next byte:

aByte ;= Pointer(Ord(aByte)+l);

As we've come to expect when working directly with the contents of
pointers, this statement is more fat (type coercion) than meat (incrementing
aByte by 1).

After all 50 bytes are on the screen, we call ModalDialog to take care of event
processing until the user clicks the dialog's one and only enabled item, the
OK button. When it returns, we dispose the dialog-erasing it from the
screen and its various data structures from memory. We're now done, at
least until the next Open command.

Find the Bug

We've deliberately left a bug in FileDemo to give you some practice in
finding and fixing problems.

This program's About ... dialog uses a call to FreeMem to list the amount of
free memory available in the heap. Open several files and check the
memory situation after each. You should observe that the value displayed
gets smaller each time. Evidently, some process in this program is claiming
heap space and not giving it back.

Failure to deallocate heap space is a quiet sort of problem and therefore
especially devilish. Most of the time, it won't cause errors, because usually
there's sufficient heap to keep a few bytes from being missed. Eventually,
somebody, somewhere-perhaps running under Switcher or with a big
disk cache or with some RAM-hog DAs open-will have this program blow
up on them because of this problem.

Reading and Writing Files 547

Who's the culprit? The size reduction after each call to DoOpen is about 60
bytes. A heap block takes between 8 and 20 more bytes than what you ask
for to maintain certain structures needed by the Memory Manager. So,
we're looking for something that allocates slightly less than 60 bytes.

Where in this program did we allocate 40 to 50 bytes of heap? Right, in
DoOpen, for the file buffer. Where in DoOpen do we deallocate this
memory? Nowhere.

To fix the program, add this line to the end of DoOpen:

DisposPtr(buffer);

Now does the About ... dialog return essentially the same value each time?

Review

The File Manager considers the data forks of files as simply a numbered
sequence of bytes. Every open file has a known length and an associated
position indicator, or mark, that indicates where the next read or write will
take place.

The File Manager's routines are structured as functions returning integer
error codes. A result code of zero means no error. To prepare a file for
reading and/or writing, call FSOpen. Use SetFPos to set an open file's mark,
and FSRead and FSWrite to read and write an open file. Call Create to create
a new, empty file. When finished with a file, call FSClose and, if you've
written anything to the file since opening it, call Flush Vol at this time.

The File Manager also has auxiliary routines to rename and delete files, and
to fetch their Finder information records.

An application can access files stored in the directory from which it was
launched by passing 0 as the volume reference number parameter to
FSOpen. Files in arbitrary directories can be created and read using the
Standard File Package's SFGetFile and SFPutFile routines. They make it easy
for programs to retrieve and store files anywhere in the user's file system.
Neither reads nor writes any data, but instead they simply return the
working directory reference number and name of the file to be opened or
created.

548 Turbo Pascal Tutor for the Macintosh

c H A p T E R

40

MacTypist: A Macintosh Program

Remember the Turbo Typist program in Chapter 19? That program
originated in the 25-line, SO-column world of CP 1M and MS-DOS
computers and was adapted to the Macintosh, essentially verbatim, for this
book. Its animated cars-constructed of dashes and letters-served ably in
demonstrating Turbo Pascal, but the Macintosh deserves better.

MacTypist is an advanced version of Turbo Typist. If you haven't run this
program already, do so now. You'll find it in the MacTypist folder of your
Turbo Tutor disk; simply compile and run the file MacTypist.Pas.

Surprisingly, MacTypist.Pas is about the same size as Typist. Pas. Both
contain roughly 600 lines of source code. MacTypist is able to do more
because it calls upon the talents of the Toolbox. Discounting vanilla
procedures like GataXY and WriteLn, Typist.Pas has to do everything itself.

Using MacTypist

MacTypist uses the Macintosh user interface. This Jllakes it simple to figure
out, especially for experienced Macintosh users. All the action takes place
in a standard drag-able document window. Pull-down menus provide
instant access to all commands. Your familiar complement of DAs are at
hand. You can use the Calculator in the middle of a game to determine your
words per minute average (keep track of when you start and stop) or other
vital statistics.

Mac Typist: A Macintosh Program 549

There's a Quit option in the File menu, and, thanks to user interface
consistency, you don't need to be told what it does. (The PC Typist's Quit
command was Control-C.) Clicking the main window's close box is the same
as Quit (and you probably didn't need to be told that, either).

How is this game different from the previous version? Let me count the
ways. Most obviously, it simply looks better: The cars look like cars, the
truck looks like a truck, and the street scene is straight out of a Saturday
morning cartoon. Furthermore, the animation is more effective: Antennas
wave and cars crumple, visibly and audibly.

• File Edit Options

Figure 40.1: MacTypist's Main Screen

It's possible to change the speed before, during, or after a game, from a
Volkswagen barely dented when it crashes to a sports car totaled when it
hits the truck. The Case Sensitive option controls whether or not the
program considers uppercase and lowercase distinctions when checking
your words. If checked (the default), "New" doesn't match "new."

MacTypist's odometer not only looks great, it's also accurate to one tenth of
a second. (NOTE: So far, the in-house record for this game-in the Fast
option-is 00:54.6 seconds.)

Fine Points

Note how the File menu's first item changes from Start Game to Stop Game
and back again, depending on whether a game is in progress.

Study the game's response to update and activate events. Open a DA and
drag its window around. Whenever a system window is active, the game

550 Turbo Pascal Tutor for the Macintosh

pauses. When the main window becomes active again, the game continues.
When you drag or close a system window such that a part of the main
window is uncovered, note how quickly its contents are redrawn; that's
update event processing at work.

With the main window active, pull down the Edit menu. Note that each of
its options are disabled. MacTypist's main window has nothing to cut,
copy, or paste, so the program disables this menu's entries. Now activate a
DA. When a system window is active, the situation is reversed-only the
options of the Edit menu are selectable.

Try a little cutting and pasting. Open the Alarm Clock, if you have it, and
copy the time and date to the clipboard. (You don't have to select anything,
just click Copy.) Now, open the Scrapbook (or some other DA that supports
pasting text), and paste this text in. This DA cutting and pasting is why
nearly all Macintosh applications have an Edit menu, even if the concept of
editing doesn't apply to them.

MacTypist's Tricks: The Background File

MacTypist's street scene and automobiles aren't created on the fly with
clever LineTos and FrameRects. Instead, they are furnished fully formed by
the MacPaint file Background.Data. MacTypist won't run if it can't find this
file at run time.

Looking at file Background.Data is a little like reading a magician's
instruction book. Once you know how a trick works, it's not nearly as
impressive. Figure 40.2 shows the contents of this file. MacTypist could be
improved by storing this graphic data inside the application
itself-perhaps in its otherwise empty data fork. We'll leave that advance to
you.

Mac Typist: A Macintosh Program 551

MacTyptst
co 1987 Bor1 .. nd Int n .. t;on .. 1

Figure 40.2: MacTypist's Background.Data File

Background.Data contains the main window's street scene, the contents of
the About MacTypist ... dialog, and five views of each of the three cars. Two
views show unwrecked cars, differing only in antenna position and wheel
highlighting, and three show progressively more severe stages of crashing.

552 Turbo Pascal Tutor for the Macintosh

Animation

MacTypist's main trick is moving a car while simultaneously processing
keystrokes and mouse-downs. The standard Macintosh main event loop
structure lends itself beautifully to this task.

At timed intervals (the faster the car, the shorter the interval), a car image is
copied from an offscreen bit image (containing what used to be on disk in
Background.Data) to the screen, with QuickDraw's CopyBits routine. Each
application of Copy Bits moves a car slightly to the right (two pixels, to be
exact) of its previous position.

Effective Motion ..

Figure 40.3: The Animation Process

As shown in Figure 40.3, each car picture has at least two columns of white
pixels to the left of its leftmost black pixel. This trailing white space is
central to MacTypist's animation technique: It erases the trailing edge of the
previously plotted car.

A collision occurs when the rectangle enclosing the car has moved all the
way to the truck's bumper. At this point, the program displays in quick
succession the remaining three views of the car-all at the same place. The
images themselves take care of apparent movement.

Data Structures

MacTypist.Pas's most important variable is main Window.

var

Mac Typist: A Macintosh Program 553

mainWindow: WindowPtr;

main Window, a WindowPtr, holds the address of the main window (the
window entitled "MacTypist") throughout the duration of the program.
(Well, it will once initialized.) Our previous demos chose not to store
window pointers as global variables, but to get them as needed from such
sources as FindWindow and GetNextEvent.

In this case, the main window is the only window (not counting those
associated with DAs) that MacTypist will ever put on the screen. So,
making mainWindow a global variable, at 4 bytes, isn't wasteful of memory,
and it offers certain conveniences. For example, an important fact can be
had at will by comparing main Window to the value returned by the
Window Manager's FrontWindow function. If they're the same, we know
that the main window is active; if they're not, we know a system window is
active.

myBitMap: BitMap;

After initialization, myBitMap's three fields (baseAddr, rowBytes, and bounds)
define a large bit image in the heap containing the cars and background
scene initially in file Background.Data. MyBitMap appears in CopyBits calls,
sprinkled throughout the program, to move visual elements of the game to
the main window. A big part of the initialization process involves getting
these images from disk into the memory range defined by myBitMap.

menuApple, menuFile, menuEdit, menuOptions: MenuHandle;
This program declares MenuHandles to each of its four menus. Unlike
previous demo programs, the menu handles aren't stored in an array but as
separate global variables-just for variety.

caseSens: Boolean;
speed: Speeds;
targetWord, userWord: Str255;
wordCount, mistakeCount, crashCount: Integer;
secCount: string[6];

The next cluster of data structures controls scoring and game variations. If
caseSens is True, then the program requires exact case matches. Variable
speed, of enumerated type Speeds, controls both which car is displayed and
how fast (often) it moves. It can take on only the enumerated values slow,
medium, and fast. Note that applying the Ord function to speed results in an
integer between 0 and 2, where 0 equals slow.

String variables target Word and user Word represent the current target word
(displayed in what used to be the Burp Cola billboard) and what he or she
has typed so far, respectively. Whenever the user presses Return, the

554 Turbo Pascal Tutor for the Macintosh

program compares targetWord to userWord; if they're the same, it beeps the
speaker and moves on to the next word. We're a little frivolous with
memory here: These two Str255 variables, at 256 bytes apiece, require more
storage than all the rest of the global variables put together.

WJrdCount, mistakeCount, crash Count, and secCount are responsible for the
running score displayed in the lower right part of the main window.
SecCount, the data structure behind the odometer, is defined as a character
array for efficiency (that is, speed) in incrementing the odometer. The
obvious way of doing it proved too slow, as we shall see.

var lastOdorneterlncrernent, lastBlink, lastMove: Longlnti
MacTypist declares three long integers to store time-related information.
LastMove, for example, contains in tick form (sixtieths of a second since the
system booted) the time the car was last moved. With each pass through
the main event loop, this value is tested against the current time (as
returned by TickCount) if a game is in progress. If a sufficient amount of
time has gone by, the car is moved.

MacTypist's Rectangles

var caret,backGround,aboutFig,theCar,billboard,dragRect: Recti
carPix: array [0 .. 4, slow .. fast] of Recti

Next are a series of rectangles. The caret rectangle encloses a I-pixel wide
by 15-pixellong area in the main window, which represents the blinking
insertion point. (User manuals call the insertion point the insertion point;
Inside Macintosh calls it a caret.)

theCar is of particular interest. During a game, this rectangle outlines the
current position of the car. It's offset to the right periodically by a call to
OffsetRect; when its right edge encounters the truck's bumper, the crash
sequence is invoked. As always, changing the integers that define a
rectangle doesn't have any effect on the screen. Moving the car on the
screen takes a call to CopyBits.

The 15 car images in Background.Data are arranged as 5 rows of 3 cars
each, making them suitable for a two-dimensional array. Once initialized,
the carPix array of rectangles enclose each car's image in the offscreen bit
image. For example, carPix[4, slow] represents the most severely crashed
Volkswagen.

var done, garnelnProgress, flipFlop: Booleani

Mac Typist: A Macintosh Program 555

The done flag performs its conventional function, and boolean variable
gameInProgress determines whether or not a game is currently in progress.
If gameInProgress is False, then the MyTasks routine called in the main event
loop doesn't worry about moving the car, updating the odometer, and so
on. FlipFlop has to do with animation. If flipFlop equals True, then
Ord<flipFlop) equals 1; if flipFlop equals False, then Ord<flipFlop) equals o.
var soundBufferPtr: FFSynthPtri

SoundBufferPtr is a pointer to a buffer that the Sound Driver interprets as
sound data. Once allocated and initialized, it contains crash-radiator­
steam-spewing collision sounds.

The Main Program

After some one-time initialization, program flow falls into the main event
loop where it cycles repeatedly, fetching and handling mouseDowns,
keyDowns, activate, and update events until the user chooses Quit.

begin Initializei
repeat

SysternTaski
MyTasksi
if GetNextEvent(everyEvent,theEvent) then

case theEvent.what of
rnouseDown: DoMouseDowni
keyDown: DoKeyDowni
autoKey: DoKeyDowni
updateEvt: DoUpdatei
activateEvt: DoActivatei

endi
until donei

end.

Initializing MacTypist

Before we're ready to process that first event, global variables must be
initialized, resources read, menu bars prepared, and windows drawn. Fully
a fourth of MacTypist's code is devoted to this process. Procedure Initialize
is almost a program onto itself, with several nested procedures {which may
have nested routines of their own (which may have nested routines of their
own». IOErrTest, for example, is nested within LoadPackedData, which is
itself nested within LoadMyBitMap.

556 Turbo Pascal Tutor for the Macintosh

Stripped of its code, the elegantly nested structure of Initialize is shown
here.

procedure Initialize;
procedure InitManagers;
begin
end;
procedure InitMenus;
begin
end;
procedure InitSound;
begin
end;
procedure LoadMyBitMap;

procedure LoadPackedData;
procedure IOErrTest(errCode: Integer);
begin
end;

begin
end;

begin
end;
procedure MiscInits;
begin
end;

begin {initialize}
InitManagers;
InitMenus;
InitSound;
LoadMyBitMap;
MiscInits;

end;

Initializing the Managers

The Toolbox can't work until it's been properly initialized. InitManagers
touches all the bases in the right order:

MaxApplZone;
MoreMasters;
InitGraf(@thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

{ Expand heap to maximum
{ 64 more master pointers }

{ Initialize QuickDraw }
{ "Font Manager }
{ " Window Manager }
{ "Menu Manager }
{ TextEdit }
{ " Dialog Manager }

Mac Typist: A Macintosh Program 557

Initializing the Sound Buffer

For added realism, MacTypist calls on the talents of the Toolbox's Sound
Driver. This routine allocates a 6K buffer in the heap and then loads it with
values that will be interpreted as the sound of a car crash.

procedure InitSound;
var

n : Integer;
begin

soundBufferPtr := FFSynthPtr(NewPtr(soundBufferSize));
soundBufferPtr A .mode := ffMode;
soundBufferPtrA .count := FixRatio(l,l);
for n := 0 to soundBufferSize - 7 do

soundBufferPtrA .waveBytes[N] := Random shr 8;
end;

{ allocate buffer }
{ set FF mode }
{ always = 1.0 }
{ load wi random }
{ 8-bit value }

Without wading too deeply into the deep waters of the Sound Driver,
here's what's going on in InitSound. This program uses the so-called free­
form synthesizer mode. In free-form mode, the Sound Driver creates tones
by pumping bytes from a buffer (typically in the heap) to circuitry
controlling the speaker. The speaker in turn generates a tiny piece of a
sound corresponding to each byte's value. Collectively, the effect is music
or explosion sounds or speech, depending on the values in the buffer.

Producing music requires that these bytes be carefully arranged into
regular patterns. Purely random values in the buffer, on the other hand,
produce "white noise" like static on the radio (or, with a little imagination,
a crash).

Once activated with the StartSound procedure, the buffer-to-speaker pump
works at the rate of 22,257 bytes per second. That means that, without
repetition, one second requires a 22K buffer. This program's 6K buffer is
enough for a fourth of a second of sound.

InitSound uses QuickDraw's Random function to load each byte of the sound
buffer with a random number:

for n := 0 to soundBufferSize - 7 do
soundBufferPtr A .waveBytes[N] := Random shr 8;

The Sound Driver defines a FFSynthPtr as a pointer to a FFSynthRec, which
is itself defined this way:

type FFSynthRec = record

558

mode: Integer;
count: Fixed;
waveBytes: packed array [0 .. 30000] of Byte;

end;

Turbo Pascal Tutor for the Macintosh

You'll rarely declare a variable of type FFSynthRec, because each value of
this type consumes more than 30,000 bytes of storage. Instead, you'll
allocate a suitably sized block on the heap and access it through a pointer.

The Random shr 8 business is necessary to bring the 16-bit value returned
by Random in line with the 8-bit value expected in each element of
waveBytes. Shifting a random 16-bit value to the right eight times results in
a random number with eight Os in its most significant byte. Wed get the
same effect with Random mod 256 but not as quickly.

If this description left your ears ringing, don't worry about it. This
program's sound is secondary to its visuals. For more information, see the
Sound Driver chapter in Volume II of Inside Macintosh.

Decoding Background.Data

Much as TEXT files are an inter-application standard for textual material,
files of type PNTG (painting) are a standard for storing bit images. PNTG
files are created by a number of applications, including Bill Atkinsonis
original classic, MacPaint, and its successors.

To understand how MacTypist decodes file Background.Data, you need to
understand the structure of a file of type PNTG.

MacPaint documents contain bit images-rows and columns of bits-of a
fixed size: 576 bits wide and 720 bits long. When working with a 72-bit­
per-inch output device (like the Macintosh screen), this corresponds to 8
inches horizontally and 10 inches vertically-a nice fit for 8 1/2-by-11-inch
paper.

A bit image with these dimensions requires

• 572/8 = 72 bytes per line
• 72 bytes per line x 720 lines = 51840 bytes of storage

Few MacPaint documents are this big, thanks to compression, a clever
squeezing out of redundancy MacPaint performs before writing its
documents to disk. MacPaint undoes the compression before displaying
documents onscreen. The compression works on a line-by-line basis,
turning sequences of identical bytes into codes that occupy less space. For
example, 72 bytes worth of zeros (white space) is translated into 2 bytes
worth of encoded data that say, in effect, "Put 72 bytes of zeros here."

The Toolbox's PackBits and UnpackBits routines perform the compressing
and uncompressing, respectively.

Mac Typist: A Macintosh Program 559

procedure PackBits(var srcPtr,dstPtr; srcBytes: Integer);
procedure UnpackBits(var srcPtr,dstPtr; dstBytes: Integer);

They're described in the Toolbox Utilities chapter of Inside Macintosh,
Volume I (the same place as NewString). Depending on the size and
complexity of the image, PackBits can tum a 51840-byte bit image into as
little as 4K or 5K. Since Background.Data is relatively complex, it
compresses to about 27K.

A PNTG file results from applying PackBits 720 times to each line of a 576-
by-720 bit image. This information is stored in the file's data fork, and the
resource fork is empty. In addition, there's a 512-byte header before the
compressed data containing, among other things, the various patterns
MacPaint displays below its document window. Usually, this is simply
ignored.

Unpacking a MacPaint file involves reading the compressed data into
memory and then calling UnpackBits 720 times on this data (starting 512
bytes into the data to allow for the header) to reconstitute it into a 576-
by-720-pixel, 51840-byte bit image.

Loading the Offscreen Bit Image

Loading and unpacking file Background.Data into an offscreen bit map
defined by myBitMap is performed by procedure LoadMyBitMap and its
nested assistants.

procedure LoadMyBitMap;
var

packedData: Ptr;

procedure LoadPackedData;

procedure IOErrTest(errCode: Integer);
var

theStr: Str255;
begin

if errCode <> noErr then
begin

NurnToString(errCode,theStr);
PararnText(theStr," ," ,");
if StopAlert(512,nil) > 0 then;
ExitToShell;

end;
end;

var

560

refNurn: Integer;
len: LongInt;

Turbo Pascal Tutor for the Macintosh

begin
IOErrTest(FSOpen(PixFile,O,refNum));
IOErrTest(GetEOF(refNum,len));
packedData := NewPtr(len);
IOErrTest(FSRead(refNum,len,PackedData));
IOErrTest(FSClose(refNum));

end;

var
n: integer;
srcPtr,
dstptr: Ptr;
r,r2: Rect;

begin { LoadMyBitMap }
myBitMap.baseAddr := NewPtr(51840); (the size of a 576 by 720 bit image
myBitMap.rowBytes := 72;
SetRect(myBitMap.bounds, 0,0,576,720):

LoadPackedData;

srcPtr := Pointer(Ord(packedData) + 512); { skip over header}
dstPtr := myBitMap.baseAddr;
for n := ° to 719 do

UnpackBits(srcPtr, dstPtr, 72):
DisposPtr(PackedData);

SetRect(backGround,28,4,520,300);
SetRect(aboutFig,28,554,326,718);

SetRect(r,28,309,133,355); (the first VW -- carPix[O,slow]
for n := ° to 4 do
begin

r2 := r;
for speed := slow to fast do
begin

carPix[n,speed] := r2;
offsetRect(r2,108,0):

end:
offsetRect(r,0,49);

end;
end;

The process can be summarized as follows:

• Initialize bitMap variable myBitMap to reflect the size and structure of an
unpacked MacPaint document.

• Use error-trapped File Manager calls to open file Background.Data and
load it into a nonrelocatable heap block.

• Unpack the image into myBitMap and dispose the buffer used to read
the packed data.

Mac Typist: A Macintosh Program 561

Initializing MyBitMap

Initializing myBitMap requires an assignment to each of its three fields. To
baseAddr, we assign the address of a S1840-byte, nonrelocatable block-the
bit image itself. (If the target machine is low on memory, we'll die horribly
at this point. A more cautious program would detect this by testing
baseAddr against nil after the NewPtr call.)

Next, we define the structure of the bit image. Each row is 72 bytes long,
and we apply a coordinate system such that (0,0) represents the top-left
pixel.

Loading Background.Data

Procedure LoadPackedData is diligent about I/O errors. Each File Manager
routine's return value is sent off for testing to procedure IOErrTest. Given a
zero parameter (noErr), IOErrTest simply returns; for all other errors (say,
File not found), it displays an error alert on the screen. Once the alert is
dismissed, the program terminates. To see this in action, change the value
of string constant pixFile to some file name that doesn't exist and run
MacTypist again.

e Con't open file "Bockground.Doto"

Error number: -43 ((Terminate))

Figure 40.4: The "Can't find Background.Data" Alert

An Aside on Alerts

Alerts are modal dialogs that contain only simple buttons (usually, no more
than two) and don't require ongoing interaction on the part of the program.
The Dialog Manager has four calls to display alerts, differing only in the

562 Turbo Pascal Tutor for the Macintosh

icon that appears. A single call to each performs the equivalent of
GetNewDialog, ModalDialog, and DisposDialog.

function NoteAlert(alertID: Integer; filterProc: ProcPtr) : Integer; { Funny man}
function CautionAlert(alertID: Integer; filterProc: ProcPtr) : Integer; { ! }
function StopAlert(alertID:Integer;filterProc:ProcPtr) : Integer; { The stop sign}
function Alert (alertID: Integer; filterProc: ProcPtr): Integer; {no icon at all}

Like dialogs, alerts have an associated item list and are defined in RMaker
files. We'll describe the format of an ALRT template later in this chapter.

The stop alert displayed by IOErrTest includes the error code, so dedicated
students of the game can interpret the code, resolve the problem, and live
happily ever after. Without its background data, there isn't much
MacTypist can do. So, after the user dismisses the alert, MacTypist simply
aborts, using the Toolbox's ExitToShell routine.

ExitToShell returns either to the Finder or to Turbo Pascal, depending on
where the program was launched from. (If you performed the renaming
experiment we suggested earlier, you may have noticed that a beep
accompanied this alert, even though there's not a SysBeep in sight. That's
because of this alert's staging word, which we'll get into later.)

Back to LoadPackedData. We assume that Background.Data is going to be in
the default directory, that is, either the directory MacTypist was launched
from or the directory containing the System file. So, 0 is passed as FSOpen's
vRefNum parameter. After opening the file, we fetch its length with GetEOF,
create a nonrelocatable block of that length, read the entire file into this
block, and, finally, close the file.

Unpacking the File

Assuming all went well on the I/O front, a duplicate of Background.Data is
now in memory: a packed 576-by-720-pixel bit image with a 512-byte
header.

The next step is to uncompress the bit image. Starting at the address held in
packedData are 720 variable-length data packets, one for each line in the
original bit image. Unpacking it involves calling UnpackBits 720 times, each
time passing pointers to the appropriate points in both the packed and
unpacked buffers. UnpackBits takes care of advancing these pointers a
suitable amount after each call. Sounds tricky, but in practice it's a two-line
for loop:

for n := 0 to 719 do

Mac Typist: A Macintosh Program 563

UnpackBits(srcPtr, dstPtr, 72);

Why did we use local variables srcPtr and dstPtr here as stand-ins for
packedData and myBitMap.baseAddr? Since UnpackBits adjusts its var
parameters with each call, neither pointer would have its initial value after
the unpacking process. As a result, myBitMap.baseAddr would no longer
point to the start of the bit image, and any CopyBits call that used myBitMap
would fail. Furthermore, since we no longer have a pointer to the first byte
of the nonrelocatable block holding the compressed data, there would be
no way to deallocate it.

packedData" myBl tMcp.bcseAddr"

7201inu

Figure 40.5: The Unpacking Process

Defining the Image Rectangles

At this point we're through with the packed data buffer, so we deallocate it.
Some poor DA may need this memory.

After unpacking, the various images used by this program are down in the
heap (spe.cifically, at the address held in myBitMap.baseAddr). Each has a
one-pixel-thick border that isn't part of the figure but that serves to guide
human beings editing these images with a Paint program.

564 Turbo Pascal Tutor for the Macintosh

The next few statements initialize various global variables of type Rect that
designate regions in this bit image. These coordinate values are hard-coded
into the program, so if you edit Background.Data and accidentally move
any of the images (perhaps with MacPaint's Show Page feature), the
program won't work correctly any more. For example, the street scene is
bounded by the rectangle (28,4) (520,300).

Rather than providing explicit coordinates for each of the 15 cars, we take
advantage of the fact that each car's rectangle is offset a fixed amount down
and to the right of its neighbor.

SetRect(r,28,309,133,355)i
for n := ° to 4 do
begin

r2 := ri
for speed := slow to fast do
begin

carPix [n, speed) := r2i
offsetRect(r2,108,O)i

endi
offsetRect(r,O,49)i

endi

{ for each row }

for each type of car }

The Rest of Initialization

MiscInits takes care of the rest, clearing various flag variables, initializing
the drag rectangle, and miscellaneous other duties. The following
statements

• set speed and caseSens to their default values,
• use the Menu Manager's CheckItem procedure to place a check mark

next to the corresponding items of the Options menu:

Checkltem(MenuOptions,l,True)i speed := SlOWi
Checkltem(MenuOptions,5,True)i caseSens := Truei

MiscInits also initializes the billboard, caret, and theCar rectangles. Unlike
those initialized in InitMyBitMap, these rectangles are considered to enclose
pixels in the main window (not that SetRect cares about this distinction).
The statement

theCar := carPix[O,slowji

sets theCar equal to one of the car images (in particular, to the first
Volkswagen, although any car would do-we're just getting the size).

Mac Typist: A Macintosh Program 565

When a game 'begins, this rectangle's coordinates are adjusted to move the
car to the starting line.

The call to GetNewWindow puts the main window on the screen
(empty-we'lldraw its contents in response to the resulting update event).
We set its GrafPort to use the Chicago font and change the cursor to an
arrow. Until this point, the cursor is either a checkered flag or a watch,
depending on whether the program was launched from Turbo Pascal or the
Finder.

Window Processing: Activate Events

Since MacTypist has exactly one window, update and activate event
processing is simplified. The Window Manager handles these event types
for system (DA) windows automatically. So, we know that whenever
GetNextEvent returns an activate or update event, it applies to the main
window.

An activate event is generated at the very start of the program as a result of
creating the main window in MiscInits. Thereafter, such events occur only
as a result of DA activity. When a DA window becomes active, we receive a
deactivate event for the main window. Similarly, closing that DA window
generates an activate event for the main window.

Given an activate event, MacTypist

• enables the File and Options menus
• disables the Edit menu
• sets the current GrafPort to the main window's GrafPort

Similarly, a deactivate event means that a system window has become the
active window. DAs have no use for this program's File and Options
menus, but they may need the Edit menu. So, in response to a deactivate
event, the program

• disables the File and Options menus
• enables the Edit menu
• clears the caret (according to the User Interface Guidelines, inactive

windows don't have blinking insertion points)

procedure DoActivate;
begin

if Odd(theEvent.modifiers) then
begin

Enableltem(menuFile,O);

566 Turbo Pascal Tutor for the Macintosh

EnableItem(menuOptions,O);
DisableItem(menuEdit,O);
DrawMenuBar;
SetPort(mainWindow);

end
else
begin

DisableItem(menuFile,O);
DisableItem(menuOptions,O);
EnableItem(menuEdit,O);
DrawMenuBari
FillRect(caret,white);

end;
end;

{ turn off caret }

The Menu Manager's DisableItem and EnableItem calls cause the indicated
items of the chosen menu to become dimmed (unselectable) and vice versa,
respectively.

procedure DisableItem(theMenu: MenuHandle; item: Integer);
procedure EnableItem(theMenu: MenuHandle; item: Integer);

Passing 0 as the item parameter disables or enables every item of the
indicated menu. DrawMenuBar must be called to show the newly disabled
menu in dimmed form.

Update Events

Update events are generated when a window is manipulated in such a way
that all or part of an application's window needs redrawing. An update
event is automatically generated by the initial drawing of MacTypist's main
window. (It has lower priority than the activate event created by the call to
GetNew Window, so the activate event happens first.)

procedure DoUpdate;
var

savePort: GrafPtr;
begin

GetPort(savePort);
SetPort(mainWindow);
BeginUpdate(mainWindow);
CopyBits(myBitMap,mainWindowA.portBits,background,

mainWindowA.portRect,srcCopy,nil);
if gameInProgress then
begin

UpdateTime;
DisplayTargetWord;
DisplayUserWord;
CopyBits(myBitMap,mainWindowA.portBits,

carPix[Ord(flipFlop),speed],theCar,srcCopy,nil)

Mac Typist: A Macintosh Program 567

end;
EndUpdate(mainWindow);
SetPort(savePort);

end;

Like the update processing we performed in previous programs, DoUpdate
goes through the motions of redrawing the entire main window. How
much actually gets through the Window Manager's manipulation of the
main window's visRgn clipping region isn't our concern.

Just what are those contents? Far and away the most important is the street
scene itself, hiding in the offscreen bit image and outlined by global
variable background. Bringing these bits to the screen takes the all-purpose
bit-moving tool, CopyBits. Let's review what we learned about this routine
back in Chapter 32.

procedure CopyBits (srcBits, dstBits: BitMap; srcRect, dstRect: Rect;
mode: Integer; maskRgn: RgnHandle);

Copy Bits moves the bits in the bit image defined by srcBits and bounded by
rectangle srcRect into the bit image defined by dstBits and bounded by
rectangle dstRect. If dstRect and srcRect aren't the same size, then CopyBits
performs scaling so that all of dstRect is filled with the pattern in srcRect.

Mode defines the transfer's boolean algebra; generally, you use srcCopy
mode, which causes the destination bits to be totally overlaid with the
source bits. MaskRgn defines a clipping area in the destination bit map you
may choose to use: If the current GrafPort's clipRgn is sufficient, pass nil for
this value.

CopyBits(myBitMap,mainWindowA.portBits,background,
mainWindowA.portRect,srcCopy,nil);

This call says to move the bits of myBitMap enclosed by rectangle
backGround to the bits of the main window (mainWindow".portBits) enclosed
by its port rectangle (mainWindow".portRect). Since these rectangles are the
same size by design, no scaling is required and the operation goes quickly.
(Few applications handle update events as quickly as MacTypist.)

If a game is in progress, there's more to the main window than simply the
street scene. There's also a time (on the odometer), a target word on the
billboard rather than a cola advertisement, a score, as much of the user's
word as he or she's typed so far, and a car. The following statements add
these elements to the main window:

UpdateTime;
DisplayTargetWord;
DisplayUserWord;
CopyBits(myBitMap,mainWindowA.portBits,

568 Turbo Pascal Tutor for the Macintosh

carPix[Ord(flipFlop),speed],theCar,srcCopy,nil)

DisplayTarget WJrd also refreshes the scoreboard. If an update event occurs
when a game is in progress and the billboard part of the window needs
redrawing, it'll first be drawn with the advertisement and then quickly
replaced with the target word. If you look closely, you can see this
happening. During a game, drag the main window almost completely off
the screen, and then pull it back; you'll see the ad appear and then be
replaced by the target word.

The car is drawn by a CopyBits call very much like the one used to draw the
background.

CopyBits(myBitMap,mainWindowA.portBits,
carPix[Ord(flipFlop),speed],theCar,srcCopy,nil);

This moves the bits of myBitMap surrounded by rectangle
carPix[ord(flipFlop),speed] to those pixels of the main window surrounded by
theCar. The expression Ord(flipFlop) selects either view #0 or view #1 of the
car indicated by global variable speed. These first two views are identical
except for subtle movements of the antenna. By changing flipFlop
periodically, we alternate between these images and ptoduce a more
interesting animation.

A Few Passes through the Main Event Loop

Putting the main window on the screen results in both an activate and an
update event, so DoActivate and DoUpdate are each called once, in that
order, at the start of the program. DoActivate adjusts the menus
appropriately and makes main Window the current GrafPort; DoUpdate draws
the background scene (without a car, since a game isn't in progress yet).

Thereafter, things are quiet in the main event loop until the user does
something. (MyTasks does nothing because gamelnProgress is False.) Let's
follow through the chain of events resulting from choosing Start Game
from the File menu.

First, there's a mouseDown in the menu bar:

inMenuBar: DoCommand(MenuSelect(theEvent.where));

DoCommand in tum calls DoFileMenu:

procedure DoFileMenu;
begin

Mac Typist: A Macintosh Program 569

case the Item of
1: begin (Start/Stop Game)

gameInProgress := not gameInProgress;
if gameInProgress then
begin

SetItem(MenuFi1e,1,'Stop Game');
secCount := '000000';
wordCount := 1;
mistakeCount := 0;
crashCount := 0;
lastBlink := TickCount;
lastMove := lastBlink;
lastTimeIncrement := lastBlinki
GetIndString(targetWord, 256, 1)i
DisplayTargetWordi
MoveCarToStarti

end
else

SetItem(MenuFile,1,'Start Game')
end;

2: Done := Truei (Quit)
endi

end;

Assuming a choice of Start Game, gamelnProgress is set to the opposite of
what it is now; in this case, to True. The program then changes the File
menu's first item to read Stop Game rather than Start Game. Key game
variables are initialized. The three time variables are set to the current tick
count.

Getting the Word to Spell

MacTypist stores its word list as a resource of type STR# (string list) rather
than in a discrete data file. The Toolbox utility routine GetIndString fetches
the index-th string from a STR # resource:

procedure GetIndString(var theString: Str255; strListID, index: Integer)i

Is this one-line call easier than the Reset/ReadLn/Close rigamarole Typist.Pas
went through to access its word list? Yes, by a long shot. Next, we display
the word on the billboard (erasing the ad) with a call to DisplayTarget Word.

The car is moved to the starting line by a call to MoveCarToStart.

procedure MoveCarToStarti
begin

FillRect(theCar,white)i (erase at current position)
OffsetRect(theCar,-theCar.left + 8,-theCar.top + 181)i

570 Turbo Pascal Tutor for the Macintosh

CopyBits(myBitMap,mainWindowA.portBits,
carPix[Ord(flipFlop),speed],theCar,srcCopy,nil);

end;

The first statement erases the car at its current position, just in case it's still
on the screen from a previous game. How do we know that this FillRect will
draw into the main window's GrafPort? Because we set the current GrafPort
to the main window in DoActivate. If it weren't set up that way, the user
couldn't have chosen Start Game from the File menu in the first place; it
would have been disabled.

Since we just started the game, theCar is still equal to carPix[O,slowl-the
position of the first Volkswagen in the offscreen bit map. Applying these
coordinates to the smaller main window has no effect, due to clipping. This
line moves the car to the starting line:

OffsetRect(theCar,-theCar.left + 8,-theCar.top + 181);

This is easier to understand when broken down into two steps:

OffsetRect(theCar,-theCar.left, -theCar.top);
OffsetRect(theCar,8,181);

The first OffsetRect shifts the coordinates of the rectangle so that it retains
the same length and width and takes on a top-left point of (0,0), rather than
whatever it had before. The second application of OffsetRect moves the
top-left comer to (8,181), a suitable starting point on the main window's
highway.

Incidentally, most coordinate constants used in this game were determined
by trial and error. Much is possible when you can go from editing to testing
in three seconds flat. On a slower development system, this technique
would require hours of monk-like dedication.

Procedure MyTasks

When DoFileMenu finally returns control to the main event loop, things are
more exciting, even if the user doesn't generate any key-downs or mouse­
downs. With gamelnProgress set to True, MyTasks takes care of three things
that must be performed at regular intervals during a game:

• blinking the insertion pOint
• moving the car
• incrementing the odometer

Mac Typist: A Macintosh Program 571

procedure MyTasks;
procedure BlinkCaret;
begin
end;
procedure MoveCar;
begin
end;
procedure IncrernentOdorneter;
begin
end;

begin
if garnelnProgress and (FrontWindow = rnainWindow) then
begin

if (TickCount-lastBlink) >= GetCaretTirne then BlinkCaret;
if (TickCount-lastMove) >= (3-0rd(speed)) then MoveCar;
if (TickCount-lastOdorneterlncrernent) >= 6 then IncrernentOdorneter;

end;
end;

MyTasks returns without doing anything unless there's a game in progress
and the main window is active. If both conditions are met, it tests to see
which (if any) of its three tasks needs to be performed.

The insertion point (caret) is blinked every GetCaretTime ticks. GetCaretTime
is an obscure Event Manager routine: It returns the number of ticks the user
has decided should pass before a blink of the insertion point (any insertion
point, in any text-editing situation).

function GetCaretTirne : Longlnt;

The user sets the blinking rate with the Control Panel. A medium blinking
rate corresponds to 32 ticks, so about half a second expires before the time
is right for this program's first call to BlinkCaret, a pleasingly simple
routine:

procedure BlinkCaret;
begin

lastBlink := TickCount;
InvertRect(caret);

end;

After first recording the time of the blink so that we do it at the right time
next time, a call to QuickDraw's InvertReet routine is all it takes. If the
pixels enclosed by the earet rectangle were white, now they'll be black, and
vice versa. This call takes place in the main window's GrafPort, which is still
the current GrafPort as a result of DoAetivate.

572 Turbo Pascal Tutor for the Macintosh

Moving the Car

Procedure MoveCar is the heart of MacTypist. It's called every three ticks
for the slow car, every two ticks for the middle car, and every tick for the
fast car.

procedure MoveCar;

procedure Crash];
var

temp: LongInt;
n : Integer;

begin
StartSound(Ptr(soundBufferPtr),

(soundBufferSize div 3) * (Ord(speed) +1), nil);
CopyBits(myBitMap,mainWindowA.portBits,

carPix[2,speed],theCar,srcCopy,nil);
De1ay(4 * (3-0rd(speed)),temp);
for n := 1 to 3 do
begin

CopyBits(myBitMap,mainWindowA.portBits,
carPix[3,speed],theCar,srcCopy,nil);

Delay(10,temp);
CopyBits(myBitMap,mainWindowA.portBits,

carPix[4,speed],theCar,srcCopy,nil);
Delay(10,temp);

end;
crashCount := crashCount + 1;
UpdateScoreboard;
StopSound;
MoveCarToStart;

end;

begin
lastMove := TickCount;
flipFlop := Not flipFlop;
OffsetRect(theCar,2,0);
if theCar.right >= 400 then

Crash
else

end;

CopyBits(myBitMap,mainWindowA.portBits,
carPix[Ord(flipFlop),speed],theCar,srcCopy,nil)

Like BlinkCaret, MoveCar first records the time of this event. By reversing
the state of boolean variable flipFlop each time through, we alternate
between views 0 and 1 of the chosen car. As described earlier, the car's
enclosing rectangle is moved with a call to OffSetRect. After the move, we
check' to see if the rectangle has moved into the back of the truck (if

theCar. right >= 400).

Mac Typist: A Macintosh Program 573

If it hasn't, we perform the same CopyBits call as in MoveCarToStart, which
draws either view 0 or view 1 of car speed in its new position. Thanks to the
two columns of white pixels at the left of each car's image, the rear end of
the existing car image is erased. (Test this: Use MacPaint or another graphic
editor to fill in the gap to the left of the first two views of the Volkswagen
with black, and run the program again. Now the car leaves a trail of black
as it moves.)

Crashes

The Crash procedure carefully displays views 2 through 4 of the chosen car.
It contains no OffsetRect calls; the motion is built into the figures
themselves. The Sound Manager's StartSound routine starts the white noise
we stored away in the heap playing. /

procedure Start Sound (synthRec: Ptr; numBytes: LongInt; completionRtn: ProcPtr);

StartSound produces the sound described by the synthesizer buffer pointed
to by synthRec, at the volume set by the user with the Control Panel desk
accessory. NumBytes indicates the length of the buffer, and completionRtn
points to a routine to be executed when the sound finishes. If completionRtn
is nil, the sound is produced in the background.

Once started, this sound plays in the background while other statements
are being executed. How long the sound lasts is a function of the car in use;
it plays a third as long for the first car as it does for the third.

N ext we print view #2 of the car, pause a bit (longer for the first car than for
the third), then enter a loop that alternates between views #3 and #4.
Finally, we increment the crash count and update the scoreboard with this
new value, call the StopSound routine, and move the car back to the starting
line so that the user can try again. With all its Delay calls, Crash takes a
second or so to execute, so it's possible to store up a number of keystrokes
in the Event Manager's queue at this time. Savvy MacTypist players take
advantage of this characteristic to fix their words when the clock isn't
running.

IncrementOdometer

Once every six ticks (every tenth of a second), MyTasks bumps the value of
the odometer.

574 Turbo Pascal Tutor for the Macintosh

procedure IncrementOdometer;
var

n: integer;
begin

lastOdometerlncrement := TickCount;
TextMode(notSrcCopy);
MoveTo(335,267);
for n := 6 downto 1 do
begin

secCount[n] := Succ(secCount[n]);
if secCount[n] <= '9' then
begin

DrawChar(secCount[n]);
TextMode(srcCopy);
Exit;

end;
secCount[N] := '0';
DrawChar('O');
Move (-21, 0);
TextMode(srcCopy);

end;
end;

This routine is more exotic than you might expect. In early versions of this
program, odometer updating was accomplished by incrementing a long
integer variable, converting it to string form with NumToString, and then
drawing that string.

This technique proved slow, largely because NumToString and DrawString
took too long. The quicker way not only does away entirely with
NumToString but also (90 percent of the time) requires only a single
character to be drawn.

This is a very satisfying characteristic of programming: Routines can
always be improved, often dramatically so. The IncrementOdometer routine
you see here is fifty times faster than the first code designed for this
function. The routine gains its speed by more closely modeling a real
odometer. Nine increments out of ten, only the least significant digit needs
changing. Of those one in ten that require two or more digit changes, nine
in ten require exactly two, and so on.

Using a loop that works from the least significant digit in, digit n is
incremented. If the increment results in the character 9 or something less,
we print the character and Exit. The calls to TextMode take care of the
white-on-black touch of the odometer's least significant digit. We have to
set the text mode to notSrcCopy for this digit and change it before returning,
lest all text put out by this program be printed like this. We also must
change it before displaying the rest of the odometer's digits.

Mac Typist: A Macintosh Program 575

Key-Down Processing

For MacTypist, key-down events potentially represent both Command-key
menu equivalents and frantic character keystrokes pressed in an effort to
break the virtually unbeatable 00:54.6 world record. Key-down processing
is handled by procedure DoKeyDown and its nested helpers, Backspace,
AddChar, and Test Word.

procedure DoKeyDown;
procedure Backspace;
beqin
end:
procedure AddChar(theChar: Char);
begin
end;
procedure TestWord;
begin
end;

var
c: Char;

begin
c := Chr(theEvent.rnessage and $OOOOOOFF);
if (theEvent.rnodifiers and crndKey) <> 0 then

OoCornrnand(MenuKey(c))
else

if garnelnProgress and (FrontWindow = rnainWindow) then
begin

ObscureCursor;
case c of

#8 : if Length(userWord) > 0 then Backspace;
#13 : TestWord;
, , .. #$08 : if Length(userWord) < Length(targetWord) then AddChar(c);

otherwise SysBeep(1);
end;

end;
end;

If DoKeyDownl finds that Command was down, it lets MenuKey and
DoCommand worry about a particular key-down event. Otherwise, it's
probably a keystroke involved in the game itself.

Before a keystroke can mean anything, a game must be in progress and
MacTypist's main window must be the active window. If it isn't, the
program beeps. If it is, what happens next depends on the ASCII value of
the keystroke:

case c of
#8
#13
, ' .. #$08

576

if Length(userWord) > 0 then Backspace;
TestWord;
if Length(userWord) < Length(targetWord) then AddChar(c):

Turbo Pascal Tutor for the Macintosh

otherwise SysBeep(1);

Backspace has the ASCII value 8. In response to it, we call the Backspace
routine, which deletes the last character of the user's word (if it isn't empty
already) from the screen and from global variable user Word. It erases the
character from the screen by temporarily making the caret rectangle enclose
the word to be deleted, then calling FillRect (caret, white).

The program can display any printable character that can be generated at
the keyboard, from a space (ASCII code $20) to an umlauted, lowercase y
(ASCII code $D8). If the user's word currently has fewer letters than the
target word, call AddChar. This puts the character on the screen and
concatenates it to userWord. It also offsets the caret rectangle to the right an
appropriate amount.

For a Return, call the Test Word routine to see if the user's word equals the
target word. This procedure is more involved, because if the user's word is
correct, it must get the next word or end the game.

procedure TestWord;
var

uw, tw: Str255;
begin

uw := userWord; tw := targetWord;
if not caseSens then
begin

UprString(uw,True); an uppercase conversion utility
UprString(tw,True);

and;
if uw=tw then { got it right }
begin

SysBeep(1);
while length(UserWord) > 0 do Backspace;
MoveCarToStart;
wordCount := wordCount + 1;
GetlndString(targetWord, 256, wordCount);
if targetWord = " than
begin { last word; game over }

SysBeep(60);
gamelnProgress := False;
Setltem(MenuFile,1,'Start Game');
InvalRect(billboard); { redraw billboard}

and
else

DisplayTargetWord;
and
else { got it wrong }
begin

mistakeCount := mistakeCount + 1;
UpdateScoreboard;

and;
and;

Mac Typist: A Macintosh Program 577

If the game is currently in non-case-sensitive mode, then both the user's
word and the target word are converted to uppercase by the UprString
routine. This straightforward string conversion utility is described in the
Operating System Utilities chapter of Inside Macintosh, Volume II:

procedure UprString(var theString: Str255; retainDiacriticals: Boolean);

Pass True for the retainDiacriticals parameter if you want the returned string
to retain diacritical marks, such as umlauts and circumflexes. If the word
isn't right, we simply increment the mistake counter and update the
scoreboard. If it is, we beep the speaker, erase the user's word by calling
Backspace as many times as the word has letters, move the car back to the
starting line, and read the next word from the string list.

If this happens to be the last word in the list (we can tell by comparing the
string returned by GetIndString to the empty string), then the game is over.
Otherwise, we display the new word and the game continues.

Test V\brd' s call to the Window Manager's InvalRect routine demonstrates a
fine point of window management. When a game isn't in progress, the
billboard contains a Burp Cola advertisement. Once a game is over, given a
chance, a call to DoUpdate will take care of this problem automatically. But
an update event that results in redrawing the billboard region of the main
window isn't necessarily forthcoming, so the game's last word may stay up
there instead.

The InvalRect routine is a way of telling the Window Manager that you
want part of a window updated:

procedure InvalRect(badRect: Rect);

This forces an update event to be generated for whichever window is
associated with the current GrafPort, just as though we had uncovered a
badRect-sized area of the window. Because of clipping, only the pixels
enclosed by the rectangle parameter are actually changed.

If you're unclear on this action, comment out the InvalRect call, recompile,
and playa game. After the last word, note that the billboard doesn't
automatically change into the ad. Manually force an update event by
opening the Alarm Clock DA and moving it in front of the upper part of
the billboard. Now drag it away; the part of the billboard that was covered
is updated with the ad; the part that wasn't continues to hold the last target
word. This is shown in the following figure.

578 Turbo Pascal Tutor for the Macintosh

Figure 40.6: Forcing an Update Event

We could force the entire window to be redrawn after a game, by passing
an appropriately large rectangle to InvalRect:

InvalRect(mainWindowA.portRect);

But this would have the effect of erasing the score and odometer reading,
which the user may want to admire (or bemoan) after a game.

MacTypist.R

MacTypist's accompanying RMaker file contains some things we haven't
seen in previous .R files. These include alert templates, string lists, icons,
and Finder resources.

Defining ALRT Templates

ALRT templates consist of a resource 10, a position rectangle, an associated
item list 10 (of type 01TL, exactly like a dialog's), and a hexadecimal
"stages word." This last comprises 16 bits packed with no fewer than 12
pieces of information that determine, among other things, whether one or
more beeps should accompany (or even replace) the box displayed. For

Mac Typist: A Macintosh Program 579

more information on alert staging, see Inside Macintosh's Dialog Manager
chapter.

MacTypist displays this definition of the alert (and its associated item list)
when it can't find Background.Data.

type ALRT
,512 (32)

60 81 180 431
512
5555

type DITL
,512 (32)

3
BtnItem Enabled
90 267 110 337
Terminate

StatText Disabled
10 60 70 350
Can't open file "Background. Data"

Stat Text Disabled
90 10 110 260
Error number: AO

Defining String Lists

MacTypist's target words are stored in its resource fork as a STR# (string
list) resource. The format of a string list consists of an 10 number, then a
count of how many strings are in the list, and the strings themselves, one
per line, as shown here:

type STR# II "string list"; Le., the words to be spelled
,256 (4)

48 I I how many
absolute
and
array

xor

580 Turbo Pascal Tutor for the Macintosh

Icon Resources

MacTypist.R defines two icons in an ICN# (icon list) resource. An icon is a
32-by-32 bit image. Each icon consists of 32 consecutive long integers
expressed in hex. Hmmm. Let's unscramble the first icon's data and see if
we can make sense of these values.

type ICN# = GNRL
,128

.H
0001 8000
0002 4000
0004 2000
0008 1000
0010 0800
0020 0400
0040 0200
0080 0100
0100 0080
0200 0040
0400 0020
0866 6610
1066 6608
2019 9804
4019 9802
8066 6601
8066 6601
4019 9802
2019 9804
1066 6608
0866 6610
0400 0020
0200 0040
0100 0080
0080 0100
0040 0200
0020 0400
0010 0800
0008 1000
0004 2000
0002 4000
0001 8000

--) ••••••••••••••• XX (•. = 0; X = 1)
--) x .. x
--) x X •••••••••••••
--) x x
--) x X •••••••••••
--) •••••••••• X •••••••••• X ••••••••••
--) x x
--) •••••••• X •••••••••••••• X ••••••••
--) ••••••• X •••••••••••••••• x
--) •••••• X •••••••••••••••••• X ••••••
--) x x
--) •••• X •••• XX •• XX •• XX •• XX •••• X ••••
--) ... x XX •• XX •• XX •• xx x ...
--) .. x XX •• XX •• XX •••••••• x ..
--) .X ••••••••• XX •• XX •• XX ••••••••• x.
--) X XX .. XX •• XX .. XX X
--) X •••••••• XX •• XX •• XX •• XX •••••••• X
--) .X ••••••••• XX •• XX •• XX ••••••••• X.
--) •• X •••••••• XX •• XX •• XX •••••••• X ••
--) ••• X ••••• XX •• XX •• XX •• XX ••••• X •••
--) •••• X •••• XX •• XX •• XX •• XX •••• X ••••
--) ••••• X •••••••••••••••••••• X •••••
--) •••••• X •••••••••••••••••• X ••••••
--) ••••••• X •••••••••••••••• X •••••••
--) •••••••• X •••••••••••••• X ••••••••
--) ••••••••• X •••••••••••• X •••••••••
--) •••••••••• X •••••••••• x
--) ••••••••••• X •••••••• X •••••••••••
--) •••••••••••• X •••••• X ••••••••••••
--) ••••••••••••• X •••• X •••••••••••••
--) •••••••••••••• X •• X ••••••••••••••
--) ••••••••••••••• XX •••••••••••••••

Unlike PNTG files, icon data isn't packed but presented instead as a
straightforward 32-by-32 bit Image. If you compile MacTypist to disk and
then exit to the Finder, you'll find this very symbol used to represent the
application, as shown in the next figure.

Mac Typist: A Macintosh Program 581

Finder Resources

Certain resources must be present in an application's resource fork to
ensure that the application receives proper treatment by the Finder.

Every application must have a version data resource. This consists of a
resource whose type equals the application's creator signature, which in
MacTypist's case is MCTY. By convention, the ID of this resource is always
0; the type of data it contains can be anything, but is usually a string
containing version information. Here's MacTypist's version data resource
definition:

type MCTY = STR
,0 (32)

MacTypist Version 1.0 June 1,1987 Copyright Borland International, Inc.

If you want the Finder to represent your program with something other
than the generic application icon, the application's resource fork must
contain an icon list resource. That's the purpose of ICN# resource number
128 discussed earlier. It's a two-icon list rather than one, because the Finder
requires both an icon and a mask to draw it properly against different
backgrounds. Typically, the mask is like the icon, except filled in solid.
MacTypist's mask (the second icon in the list) looks like this:

•• •••••••• • • •••••••• • • •• •• •• • • •• •• •• • • •• •• •• •• • • •• •• •• •• • • •• •• •• • • •• •• •• • • •••••••• • • •••••••• ••
Icon

•• • ••• •••••• •••••••• •••••••••• •••••••••••• •••••••••••••• •••••••••••••••• •••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••••••••••• •••••••••••• •••••••••• •••••••• •••••• •••• ••
Mask

Figure 40.7: The Mask and Icon

582 Turbo Pascal Tutor for the Macintosh

File Reference and Bundle Resources

Finally, applications that expect the Finder to represent them (and,
optionally, the files they may create) with a unique icon must have one or
more FREF (file reference) resources and a single BNDL (bundle) resource.
An FREF resource makes the connection between a file and the icon it
should use. MacTypist declares a single FREF resource:

type FREF
,128

APPL 0

This defines a file reference resource of ID 128, associating the application
itself (APPL) with icon list 0.0 is a so-called local ID. The BNDL resource
provides a mapping between local and actual IDs for each finder resource;
in the case of this icon list, between 0 and 128.

The bundle resource ties together an application's various Finder resources
and links their local and actual IDs. MacTypist's BNDL definition looks like
this:

type BNDL
,128

MCTY 0
ICN#
o 128
FREF
o 128

This BNDL resource says that MacTypist has three Finder resources: A
version resource (type MCTY, ID number 0), an ICN# resource (local ID 0,
actual ID 128), and an FREF resource (local ID 0, actual ID 128). The
local/actual ID code allows the Finder to arbitrate conflicts between
applications that may declare the same actual IDs for a given resource type.

Finder resources must coordinate with a couple of related compiler
directives in the application's source file. At the top of MacTypist.Pas, the
following directives work to control what goes into the file produced when
compiling this program to disk:

{$B+}
{$R MacTypist.Rsrc}
{$T APPLMCTY}

The $B+ directive causes the resulting file to have a set "bundle bit." All
files maintained by the File Manager have a bundle bit, but only files with
BNDL references should have this bit set. When copying a file to a volume

Mac Typist: A Macintosh Program 583

for the first time, the Finder knows that a turned-on bundle bit means there
are goodies intended for it in this file's resource fork. These resources
(which are indicated by the BNDL reference) are then copied into the
volume's Desktop file.

The $R filename directive tells Turbo that the file produced as a result of this
compilation should include all of the resources in the indicated file. Upon
completing a compilation, Turbo makes appropriate Resource Manager
calls to copy this file's resources to the newly created application file's
resource fork. If you're testing a program within Turbo Pascal, Turbo
simply opens this file with the Resource Manager's OpenResFile call just
before giving control to your program.

The $T directive sets the resulting file's type and creator. Application files
must have a type of APPL, and the creator signature must match what
appears in the corresponding resource file's version and bundle resources.

Review

This chapter discussed the Macintosh application MacTypist, a typing tutor
program with outstanding graphics. MacTypist follows the User Interface
Guidelines and so is easy for an experienced Macintosh user to understand,
even without a manual.

You learned how to use the Sound Driver's free-form synthesizer mode to
create a white-noise sound effect, and how to interpret compressed images
in files of type PNTG (MacPaint documents). You used CopyBits to move
images from an offscreen bit image to a window. Alerts, a convenient way
to display simple dialog-box style information, were discussed, as was a
way to error trap File Manager calls.

You saw how activate events can be used as a signal to enable and disable
menu items, so that inappropriate menu selections are unavailable when
certain windows are active.

Also, you learned that inserting a MyTasks call inside the main event loop
gives time-oriented procedures processing time, regardless of whether or
not any events need processing. An update processing routine can pick and
choose what elements need to be redrawn in a window depending on the
state of a program.

STR# (string list) resources and the GetIndString call for reading them were
discussed. You also saw how to create ALRT and leN # templates. Finder
resources are version resources, file references, and bundles that make sure

584 Turbo Pascal Tutor for the Macintosh

the Finder knows how to represent this application properly, as well as the
relationship between these resources and the compiler directives $B, $R,
and $T.

Debugging 585

c H A p T E R

41

Debugging

Programs never work right the first time. What keeps them from
performing as intended are bugs-flaws in logic (almost always, flaws in
your logic) that cause the computer to do something you didn't intend.
Some bugs are obvious; some are exquisitely subtle. A large part of
programming is making your program work right by searching out,
understanding, and fixing these errors.

Think First, Then Type

It's been said that if civil engineers built buildings like programmers build
programs, the first good wind that came along would destroy civilization.
Programmers, by and large, don't plan as well as they should. Given the
infinitely flexible nature of programming, it's tempting to leap into a
problem at some place other than its origin and worry about troublesome
issues further down the road.

The best way to fix a bug is to avoid it in the first place. Don't rush into the
coding phase of the software development process. Turn off the computer;
go sit under a tree. Evaluate alternatives, in your head and on paper. Don't
necessarily go with the first method that occurs to you. It's easier to tear up
a few sheets of paper and start over than to continually patch and modify a
poorly designed program.

586 Turbo Pascal Tutor for the Macintosh

Errors: Compile Time versus Run Time

Even with careful designing, mistakes are inevitable. Errors can be
classified according to when they occur: Compile time or run time.
Compile-time errors are errors of syntax caught by the compiler. Such
errors include misspelled keywords, unbalanced parentheses, and
unmatched parameters.

Compile-time errors usually aren't hard to find, since Turbo points out the
line with the problem and takes an educated guess as to what's wrong
(although unbalanced comment delimiters and begin/end pairs can really
throw it off the track).

Run-Time Errors

Run-time errors result when a syntactically correct program does
something ''bad'' when executing. Some can be sensed by mechanisms built
into the Toolbox and the processor itself. Others can't be and usually result
in a locked-up (hung) machine.

The Toolbox and the processor work together to trap run-time errors; that
is, to first recognize that an error condition exists and then report that
condition on the screen. The reporting is handled by the System Error
Handler, the ROM routine behind the bomb alert .

• y, Sorry, II system error occurred.

(Restart) (Resume) ID = 99

Figure 41.1 : The Bomb Alert

Whenever this box appears, your application has done something so vile
that, in the opinion of the Toolbox, there's no point in going on. If the
program was launched from Turbo Pascal, the Resume button will be
enabled, and clicking it returns control to Turbo. Depending on the type of
error, Turbo Pascal then attempts to point out the statement that caused the
problem.

Debugging 587

As an example of a trapped error, consider division by zero. You may
remember from a math class that the result of this operation is infinity, a
value the processor has difficulty representing in its finite silicon registers.
Rather than ignore this condition and let your program go its merry way,
the architects of the Toolbox decreed that divide-by-zero errors be trapped.
The processor is able to recognize when integer division by zero is
attempted and immediately calls the System Error Handler. The following
program demonstrates such an error.

program DivideByZero;
{$U-}
var ifj: Integer;
begin

j := 0;
i : = 3 div j;

end.

Running this program results in system error 10 4 and the bomb alert
(assuming you don't have MacsBug installed; more about that later). When
you resume your way back to Turbo Pascal, it points out the offending
statement.

Range Testing

Compiling a program with the range-testing switch turned on ($R+)
expands run-time error trapping to cover additional error types. These
include accessing non-existent array elements and inappropriate
assignments to scalar and subrange variables (such as c := 3, where c is type
0 .. 2). Program RangeErrorTrapping demonstrates:

program RangeErrorTrapping;
{$R+}
var

a: array [1 .. 11] of Integer;
b: Integer;

begin
b := 12;
a[b] := 345;

end.

When this program gets ready to assign to the bth element "of array a at run
time, testing mechanisms put in place by the compiler pop the big question:
"Is the index we're about to use in the range 1 through II?"

If the answer is no, the assignment is not performed and a trap to the error
handler occurs, resulting in error 10 5. Had range-testing not been in effect,

588 Turbo Pascal Tutor for the Macintosh

the program would simply have written to the memory address just after
a[ll], clobbering whatever had been there previously.

Nothing comes for free: These range-testing mechanisms take up space and
execution time, so programs compiled with range-testing turned on are
slightly larger and slower than they would be otherwise. (Test the size
effect for yourself: Compile MacTypist.Pas both ways, checking the
resulting object-code size with the Compile menu's GetInfo option each
time.) Typically, once a program is known to be free of range errors, you'll
tum off range checking before producing a final version.

Table 41.1 lists the errors that can result in calls to the System Error
Handler.

Error ID Meaning

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17-24
25
26
27
28
84

Bus error (very rare)
Address error (reference to word or long word at odd address)
Illegal instruction (undefined processor opcode)
Divide-by-zero exception
CHK exception (range-testing failed)
TRAPV exception (trap-on-overflow instruction failed)
Privilege violation (shouldn't occur)
Trace exception (for debuggers)
A-Trap dispatcher failure
F-Trap exception
Miscellaneous exception (all other processor exceptions)
Bad trap number
Spurious interrupt (no interrupt handler for an interrupt)
110 System Error
Segment Loader error
SANE error
Can't load package
Can't allocate heap block (out of memory)
Segment Loader error: couldn't find CODE resource #0
File map destroyed
Stack overflow
Menu purged (don't make menu resources purgeable!)

Luckily, most of the errors in this table are rare. In addition to type 4 and 5
errors, buggy programs often result in error ID 2 (address error), 25 (out of
heap space), and 28 (stack overflow).

Address errors are especially common, because they often result from
pointer problems, a common failing of Macintosh applications. By design, a
68000-family processor doesn't permit an integer or long integer to be
accessed at an odd address. For example, if you say in machine language,

Debugging 589

"Read the long word at address 4913," system error 10 2 results. A pointer
that's never been initialized may contain any value, so there's an even
chance that dereferencing an uninitialized pointer will produce an address
error. For example,

program BadPointerI;
var

p : "Integer;
i : Integer;

begin
p := Pointer(1497);
i := p";

end.

results in a system error the instant the processor tries to read the word
stored at address 1497 (any odd number has the same effect). The program
would be equally wrong with an arbitrary even address, but the processor
won't catch the mistake.

Running Out of Heap

Insufficient heap space can put certain Toolbox routines in an untenable
bind. No matter how much memory you ask for in a NewPtr or NewHandle
call, a system error is never generated. Instead, the system expects you to
check error codes (or a nil return value) and take appropriate action on
your own.

Toolbox routines that need heap space don't have that option. When you
call MenuSelect after a mouse-down in the menu bar, for example, the Menu
Manager allocates memory in the heap before drawing the designated
menu. This memory is for storing those bits on the screen that are about to
be covered up, so they can be restored later. A big menu may require 5K or
more for this purpose and, if it's not available, pow-system error ID 25.
Program NoHeap demonstrates this effect.

program NoHeap;
{$U-}
uses

MemTypes, QuickDraw, OSIntf, ToolIntf;
var

theOnlyMenu
theEvent
temp
h

begin
MaxApplZone;

590

: MenuHandle;
EventRecord;
LongInt;
Handle;

Turbo Pascal Tutor for the Macintosh

(*

InitGraf(@thePort)i
InitFontsi
InitWindowsi
InitMenusi

theOnlyMenu := NewMenu(1,'Choose Me')i
AppendMenu(theOnlyMenu,'A Menu Item')i
InsertMenu(theOnlyMenu, 0);
DrawMenuBari

h := NewHandle(MaxMem(temp))i { however much heap there was, it's gone now}
*)

repeat until GetNextEvent(mDownMask,theEvent)i
temp := MenuSelect(theEvent.Where)

end.

Compile and run this program. Choose from its only menu. The program
ends when you release the button, allowing MenuSelect to return.

NoHeap works fine until you uncomment the NewHandle call, which
allocates every single byte in the heap. MenuSelect needs a few hundred
bytes to store the part of the screen overwritten when the menu is pulled
down. It can't get it, and, since there's no error-returning provision in
MenuSelect, it does the next best thing and generates system error 25.

Stack Overflow

It's also possible to run out of stack space. After an application calls
MaxApplZone to fully expand its heap, it has approximately 8K of stack
headroom available to it. Using more stack than this (by using large local
variables, passing large variables by value, and deep nesting-especially
recursive nesting) results in system error 28.

program StackOverfloWi
{$U-}
uses

MemTypes,QuickDraw,OSIntfi
type

BigArray = array [1 .. 15000] of Integeri
var

a: B~gArraYi

procedure CallMe(theArray: BigArraY)i
begin
endi

begin
MaxApplZonei
CallMe (a) i

end.

Debugging 591

In invoking procedure CallMe, a copy of 30000-byte array a is pushed on the
stack. Since the stack has only 8K of headroom after a call to MaxApplZone,
this program promptly dies with a type 28 system error.

Common Problems

Two problems account for most run-time bugs: bad pointers and pointers
that are bad. You typically use pointer p or handle h and assume you know
what it points to (that is, what pA represents) but, sometimes, you're
wrong. Perhaps you've previously deallocated the block in another part of
the program and it's since been overwritten. Perhaps it was never allocated
in the first place. Maybe heap compaction moved the block out from
underneath your pointer (more about this later).

In any case, working with a bad pointer sooner or later produces bad
results. Assigning from a de referenced dangling pointer reads random
garbage; writing to a dereferenced dangling pointer overwrites memory
that may not appreciate being clobbered. As stated earlier, bad pointers
often result in address errors.

A related problem concerns disposing invalid pointers and handles; that is,
passing unreasonable parameters to DisposPtr and DisposeHandle (or
indirectly through DisposeWindow, DisposeDialog, and so on):

program BadPointerII;
var

p : "Integer;
i : Integer;

begin
p := Pointer(1497);
Dispose(p)

end.

A call to Turbo's Dispose procedure results in a call to the Memory
Manager's DiposePtr routine. DiposePtr's parameter is supposed to be the
address of a nonrelocatable block in the application heap, that is, a value
returned earlier by NewPtr when the block was first allocated. In this case,
we're passing the address of something that isn't a valid block in the heap;
when the deallocation routines start to work with it, they'll usually get so
confused that an address error is created (or the system crashes altogether).

592 Turbo Pascal Tutor for the Macintosh

The Toolbox and Error Checking

Much as we might like them to, the Toolbox's routines don't perform any
error checking. To illustrate, the DisposeWindow call

procedure DisposeWindow(theWindow: WindowPtr);

expects its parameter to be the address of a valid window record in the
heap. If you pass Dispose Window any old 4-byte value, it goes through the
same motions: It treats what's at that address as though it really were a
WindowRecord and deallocates various and sundry relocatable blocks,
handles to which are supposed to be at certain fixed offsets from this
address. The result of these assumptions about the contents of an
undefined area of memory is almost always disastrous.

Handle Pitfalls: What Your Mother Didn't
Tell You

The Mac's reputation as a difficult machine to program is due in no small
part to its fancy memory-management schemes. Apparently innocent-and
perfectly legal-Pascal constructs involving handles to relocatable blocks
generate code that can fail, should heap movement occur at the wrong
time.

For example, consider the following program:

program HandleProblemI;
uses

MemTypes,QuickDraw,OSIntf;

type
Check = record

payee: string[40];
date: string[8];
amount: Integer;

end;
CheckPtr = ACheck;
CheckHdl = ACheckPtr;

var
theCheck: CheckHdl;
p : Ptr;

begin
theCheck := CheckHdl(NewHandle(Sizeof(Check)));
with theCheckAA do

Debugging 593

begin
payee := 'Gerald Govans';
date := '10/25/51';
amount := 1234;

end;
Writeln(theCheckAA.amount);
Readln;

end.

This program prints 1234 to the screen-no great mystery there. Now,
insert the following statement just before the assignment to amount and run
the program again:

p := NewPtr(10000);

What's printed? It probably wasn't 1234 and therein lies a tale.

You've probably come to think of the with statement as a way to write
compact source code. It's that and more. Turbo Pascal's compiler keys on
the with statement to generate faster, smaller object code, when the record
variable is referenced by array or pointer notation.

Had this program's assignments been performed without the benefit of a
with statement, like this,

theCheckAA.payee := 'Gerald Govans';
theCheckAA.date := '10/25/51';
theCheckAA.amount := 1234;

the resulting code would have been both longer and slower. At run time,
the processor would have to perform three handle-dereferencing double
reads, redundantly fetching the starting address of the check record for
each field. Using the with form, this only has to be done once, at the start of
the block. The resulting time and code savings can be significant, especially
if many fields are referenced inside the with block. If array indexing is
involved (as in with checkBook AA [i]), the potential savings are even
greater.

So, what's the problem? Calculating the address of the check record only
once-at the start of the with block-assumes that this address won't
change for the duration of the block. Which is exactly what can happen if
the block contains a statement able to trigger heap movement. The call to
NewPtr we inserted created such an inopportune heap movement.
Nonrelocatable blocks are always created low in the heap, moving
relocatable blocks (check records, for instance) up and out of the way. In the
process of executing the NewPtr call, theCheck"" (two of its three fields
already assigned to) was moved out from under the address calculated at
the start of the with block.

594 Turbo Pascal Tutor for the Macintosh

The assignment to the amount field writes to the address that the amount
field of the check record was at before the move. It possibly clobbered
something just moved there and, in any case, did not update
theCheck"".amount. So the WriteLn prints out whatever 16-bit value was in
the relocatable block when it was initially allocated by NewHandle in the
first place.

Before Compaction After Compaction

'Witb theCheckAA

Assignment to the amount field after heap movement has occurred
misses the check record.

Figure 41.2: With and Relocatable Blocks

To prevent this problem, lock the relocatable object before the with
statement and unlock it afterwards:

HLock(Handle(theCheck));
with theCheck AA do
begin

payee := 'Gerald Govans';
date := '10/25/51';
p := NewPtr(10000);
amount := 1234;

end;
HUnlock(Handle(theCheck));

Now the program works fine, heap compaction or no heap compaction,
because the check record's address can't change during the with block.

Debugging 595

If constant locking and unlocking of a particular data structure causes your
program to fill up with HLocks and HUnlocks, then change that object to a
nonrelocatable block and access it with simple pointers instead-especially
if the structure won't have to be enlarged as the program runs.

Handle Problems II

An even more devious way in which handles can dangle concerns passing
the objects they point to as var parameters. Program HandleProblemII
demonstrates:

program HandleProblemII;
uses

MemTypes, QuickDraw, OSIntf;

procedure PrintValue(var i: SignedByte);
var

p: Ptr;
begin

p := NewPtr(30000);
FillChar(pA,30000,0); {write 30,000 zeros starting at the address in p }
WriteLn(i);
ReadLn;

end;

var
h: Handle;

begin
h := NewHandle(l);
hAA := 34;
PrintValue (hAA);

end.

You'd expect this program to print 34; instead it prints O. Simply deleting
the var from Print Value's parameter list makes it work correctly. Why?

You've learned that when a var parameter is passed at run time to a
procedure, it's the address of the object, not the object itself, that's passed
on the stack. In calling PrintValue in this program, what goes on the stack is
the 4-byte address of the byte represented by h"". The problem is that this
address is outdated by the time PrintValue gets around to executing its
WriteLn, the call to NewPtr having moved h"" who knows where. There's a
good chance it may not be overwritten at its former address, so the problem
may not surface for a long time. That's why we used the FillChar routine to
fill the newly allocated block with zeros; otherwise, the 34 may still have
been there.

596 Turbo Pascal Tutor for the Macintosh

Code Segments and Dangling Pointers

We touched on the process of segmenting large programs in Chapter 23. To
recap, no single chunk of code in a Macintosh application can exceed 32K.
If a program must be larger, you have to use the $S compiler directive to
break it into two or more code segments (which are stored in the
application's resource fork as resources of type CODE). For example, the
Turbo Tutor application is broken into 20 segments, one for each
demonstration procedure and one for everything else.

Beyond adding a few $S directives into your program, there isn't much you
have to do. A set of routines known as the Segment Loader takes care of
automatically reading in segments from disk (into a newly allocated
nonrelocatable block) whenever a procedure or function contained in one is
called.

How does all this relate to dangling pointers? Well, suppose program
HeapProblemII was large enough to require segmenting and that procedure
PrintValue ended up in a different segment from the main program. If the
segment containing PrintValue isn't in memory at the instant of the call, the
Segment Loader will recognize that fact, allocate some heap space, and
read in the segment from the application's resource fork. The act of
allocation, with its ever-present potential for heap movement, means that
Print Value may not work even without a call to NewPtr or other Memory
Manager routine. Simply the act of calling PrintVal is enough to create
movement.

Avoiding Heap Problem II

Locking the object before making the call and unlocking it afterwards is a
sure cure for Heap Problem II:

HLock(h);
PrintValue(hAA

);

HUnlock(h);

Another fix is to use a temporary variable in place of the dereferenced
handle:

temp := hAA;
PrintValue(temp);

This effect can occur on parameters that are passed by value (that is,
without the var keyword) as well. For efficiency in passing non-var

Debugging 597

parameters, Turbo passes the address of the object rather than the object
itself for all data objects larger than 4 bytes. It's up to the called routine to
make a copy of the object given this pointer. A routine that you write and
compile with Turbo Pascal will always make this copy; some smart-aleck
Toolbox routines do not.

For efficiency, certain Toolbox routines passed large parameters by value
don't make a copy of the object. Instead, they are simply careful not to
modify the original, thus preserving the spirit-if not the letter-of Pascal's
law that a copy be made of non-var parameters. QuickDraw's DrawString
routine is one such renegade:

procedure DrawString(s: Str255);

Even though s is declared as a value parameter, it's the address of the
parameter that goes on the stack when calling DrawString. DrawString has
the potential to create heap movement (a font may need loading, for one
thing) so, by the time it gets around to looking at this address for the
characters it should output, the address may not be right anymore.

We performed such a shaky pass to DrawString back in Chapter 35.
Remember this classic line from procedure DoUpdate in WindowDemo.Pas?

DrawString(StringHandle(WindowPeek(theWindow)A.refCon)AA);

Since this object (a Str255) is larger than 4 bytes, Turbo puts its
address-not its content-on the stack in calling DrawString. If the string is
moved before DrawString gets around to looking at its address, then
anything is liable to be drawn to the screen. To be safe, we must lock this
handle for the duration of the call.

HLock(Handle(WindowPeek(theWindow)A.refCon));
DrawString(StringHandle(WindowPeek(theWindow)A,refCon)AA);
HUnlock(Handle(WindowPeek(theWindow)A,refCon));

MORAL: When sending a relocatable object larger than 4 bytes to a
Toolbox routine or to one of your own routines in a different code segment,
lock it down.

Strategies in Debugging

Those of you with experience in other programming environments may
have noticed that Macintosh programs are prone to sudden, lethal bugs
(although a debugged Macintosh program is as dependable as any). A

598 Turbo Pascal Tutor for the Macintosh

working Macintosh application is a little like a high-speed bottle-capping
machine, whirling around its main event loop with mechanical precision
many times a second. Occasionally, without warning, the machine stops.
Somewhere, a spring worked loose, fell into a pulley, threw a belt,
overloaded a motor, tripped a circuit breaker-all in less time than it takes
to blink. In the aftermath of the crash, there are no easy clues as to what
happened; the loose spring responsible for the crash has rolled out of sight.

Your job in debugging is to recreate the events that created the crash, to
find the spring and figure out why it worked loose.

When a program fails with a vague system error, it's tempting to construct
elaborate theories blaming everything from faulty hardware to a DA that
was closed four hours ago. Usually, though, system errors result from a
single bad move on your part.

Most repeatable bugs can be rooted out by a systematic determination of
just how much your program is doing right. A strategically placed
DrawString (displaying the value of some key variable) or a SysBeep can tell
you that a program is getting to a certain point. With Turbo's fast
compilation, it usually doesn't take long to zero in on the troublemaking
procedure.

Intermittent failures are harder to figure out. One technique that often turns
intermittent problems into repeatable problems is running the program
under Switcher, with as little memory allocated as possible. With a smaller
heap, compaction happens more often and dangling pointer problems are
more likely to show themselves.

In general, don't try to outmuscle a recalcitrant bug. Instead, outsmart it.
Come to the computer fresh, armed with an experiment, a new approach to
the problem. When you can't remember what it was you were trying to test
in the first place, you've been at the keyboard too long. Come back after
lunch and try again.

MacsBug

Tracking down and exterminating tough bugs often requires a debugging
program. MacsBug, documented in the Turbo Pascal manual, is the de facto
standard Macintosh debugger. It's powerful and dependable (if less than a
joy to use), and you'll find a copy of it in the Miscellaneous folder of your
Turbo Pascal Utilities & Sample Programs Disk. (An even better debugger,
TMON, is available from ICOM Simulations of Wheeling, Illinois.) How far
you'll progress in MacsBug depends on how much you know (or are

Debugging 599

willing to learn) about assembly language; the "Suggested References" at
the end of this book lists sources of information on the subject.

MacsBug is unusual as programs go in that it's not startable from the
Finder, but instead is built into the system at startup time, where it stays
until you reboot. If there's a file named MacsBug (nothing more, nothing
less) in the System folder when you first tum your computer on, then this
file is loaded into memory and given control early on in the booting
process. MacsBug tucks itself into an out-of-the-way corner of high
memory and waits quietly for a condition that requires its attention. It may
never be used, in which case its only effect is to reduce the amount of
memory available by about 40K.

The Programmer's Switch

If you don't have a programmer's switch, get one. The programmer's
switch is a plastic widget that looks like one of the better prizes from a box
of Cracker Jacks. When your Macintosh was brand new, it lay nestled next
to the Guided Tour cassette---a classic "part left over."

Once installed on the left-hand side of the computer, the switch's twin
prongs reach through ventilation slots to rest against two switches on the
main logic board. The frontmost lever is called Reset: It generates, without
fail, the same sequence of events as a power down/power up cycle (or
clicking Restart from the System Error alert). The Reset switch doesn't
assist in the debugging process, but it saves the Macintosh the shock of
being turned off and on again when recovering from severe crashes.

The second (rearmost) switch generates a non-maskable interrupt on the
processor, forcing it to execute the code at interrupt vector 31. With
MacsBug installed, this code is MacsBug. MacsBug quickly saves all of
screen memory but the menu bar and replaces it with a terminal-style
scrolling text display.

MacsBug provides a no-nonsense, low-level view of the processor and
memory. It has commands to display and alter memory locations,
disassemble machine instructions, and incrementally execute a program by
"single stepping" and setting breakpoints. You can set breakpoints anywhere
in your program, or you can tell MacsBug to stop execution whenever a
particular Toolbox (A-Trap) call appears. For example, you can have
MacsBug get control with every call to NewPtr.

600 Turbo Pascal Tutor for the Macintosh

Getting Into MacsBug

There are three ways to enter MacsBug:

• Press the interrupt switch.
• Call MacsBug from a program.
• Create a system error.

When MacsBug is installed, the system's run-time response to errors
changes. Certain problems (address and divide-by-zero errors, to name
two) that used to result in the System Error alert now drop you directly
into MacsBug. To invoke MacsBug from within a program, add this one­
line procedure to it:

procedure MacsBug; inline $A9FF;

Calling this procedure results in the processor executing opcode $A9FF,
thereby invoking MacsBug-with the processor poised to execute the very
next instruction of your program. This program demonstrates. Enter and
run it.

program MacsBugTest;

var
a,b: Integer;

procedure MacsBug; inline $A9FF;

begin
a := $1234;
MacsBug;
b := a

end.

The ability to activate MacsBug from within a program is a tremendous
help in figuring out when, where, and why your program is going bad.
Like any tool, it takes practice. When MacsBug gets control, it saves the
contents of screen memory and quickly substitutes its own display. The
result of running MacsBug is shown below-a program that would
normally execute in a few millionths of a second frozen in time. We've
caught it between its assignment to a and the assignment to b, the state of
the processor and memory exposed for our study.

USERBREAK
023308: N: MOVE.W $FEC8(A5),$FEC6(A5)
PC = 00023308 SR = 00002000 TM = 00028B5B
00 = 00000000 01 = 000231FO 02 = FFFFOOOI 03 = 00000000
04 = 00000000 05 = 00000000 06 = 00000000 07 = 00000000
AO = 00023206 Al = 000E0860 A2 = 00009F82 A3 = 000E08CO

Debugging 601

A4 = 00023B8E A5 = 000ED89E A6 = 000ED758 A7 = 000ED758

(Incidentally, MacsBug will let you peek at the screen as it existed just
before it took control. Simply press '(the backward apostrophe) on the top­
left side of the keyboard. You can't do anything at this point except look;
MacsBug is still in control. Press another key to return to the MacsBug
screen.)

The 32-bit hexadecimal values printed here represent the contents of
various processor registers. The processor has eight data registers (00-07)
and eight address registers (AO-A7). Let's try to make some sense of these
numbers (which came from a 1-Mb Macintosh Plus; your mileage may be
different).

The most important is the value in the program counter register (PC),
$23308. This is the address of the processor instruction that was about to be
executed when we so rudely interrupted this program. $23308 is about
145,000 decimal-so we're talking about a point relatively low in the
application heap.

Register A7 is the stack pointer. Its value ($E0758, around 970,000) puts it
relatively high in RAM.

Register A5 is crucial to Macintosh applications, because it indicates the
start of global variable storage. Global variables are referenced relative to
the number in this register, in this case $E089E-slightly above the stack.

The Ocean of Hex

It isn't easy navigating around this homogeneous sea of hundreds of
thousands of hexadecimal numbers but, with time, you'll learn to recognize
some landmarks. About 30 of these bytes are especially interesting, as they
constitute the object form of the program we just wrote, compiled, and
started to execute. MacsBug's DM (Display Memory) command displays
the contents of a range of addresses. Enter

DM PC-10 30

MacsBug returns the following:

0232E6 0000 0000 4E56 0000 3B7C 1234 FEC8 A9FF NV .. ; .4
0232F6 3B6D FEC8 FEC6 4E5E 4E75 4EBA F156 4EBA ;M N NVN •. VN.
023206 FBFA 4EBA FF86 4EBA FFDC A9F4 8000 0012 ... N ... N D

602 Turbo Pascal Tutor for the Macintosh

This display consists of an address, eight 16-bit values displayed in hex,
and, at the end of the line, a halfhearted effort at displ~ying the
corresponding ASCII character. Halfhearted because lowercase letters are
displayed as uppercase, and all the non-ASCII values (those with codes less
than 32 or greater than 127) display as dots.

The argument we supplied to the DM command (PC-10 30) describes the
addresses we want to look at. PC stands for program counter; PC-10 means
the address $10 less than the program counter's current value. We're
backing up a bit because we want to see both a little behind and a little
ahead of the current instruction. The 30 means we want to look at $30 (48)
addresses.

These bytes probably don't mean much, since you're not a microprocessor,
but, if you look closely, you may see a couple of familiar faces. At the end
of the first line, notice $1234 and $A9FF.

MacsBug has a "disassembly" feature that makes it considerably easier to
interpret byte values that happen to be 68000-family programs.
Disassembly is invoked with the IL (instruction list) command. Let's
disassemble these bytes instead of simply displaying them.

IL PC-IO 30
0232E6
0232EA: N:
0232EE: N:
0232F4: N:
0232F6: N:
0232FC: N:
0232FE: N:

ORI.B
LINK
MOVE.W
TOOLBOX
MOVE.W
UNLK
RTS

*$OO,DO
A6,*$OOOO
*$1234,$FEC8(A5)
$A9FF
$FEC8(A5),$FEC6(A5)
A6

; DEBUGGER

Here MacsBug demonstrates its knowledge of the 68000 instruction set, by
turning raw bytes into a textual (assembly-language) form easier for a
human being to understand. Our three-line Pascal source program
compiles to a compact six-line assembly language code. Let's quickly work
through these six lines.

The LINK and UNLK statements bracket all Turbo Pascal-produced
procedures, functions, and main programs. Their function is to allocate
space on the stack for local variables, and they're called even if a routine
has no local variables. Even without being 68000 assembly-language
experts, the next three statements aren't too hard to understand. This
statement

0232EE: N: MOVE.W *$1234,$FEC8(A5)

says to move the word value $1234 to the address offset $FEC8 bytes from
the address stored in register AS. Without getting into the mechanics of

Debugging 603

register-relative addressing, we're referring here to the storage location for
global variable a.

The next line is responsible for getting us into MacsBug in the first place.
All 68000-family instructions that start with the hexadecimal digit A are
Toolbox calls. $A9FF in particular is a call to wake up MacsBug.

0232F4: N:

The last line,

0232F6: N:

TOOLBOX $A9FF ; DEBUGGER

MOVE.W $FEC8(AS) , $FEC6(AS)

implements the assignment from global variable a to global variable b. This
particular statement is the one currently pointed to by the program counter.
The instructions up to this point have already been executed; for example,
$1234 already resides in the address $FEC8 bytes offset from the contents of
AS.

At this point, we could execute a single statement with the T(race)
command and the remainder of the instructions in the program with the
G(o) command, optionally setting a breakpoint or two. To return
immediately to Turbo Pascal, enter ES (Exit to Shell).

How to Write Macintosh Software, by Scott Knaster, has an excellent
discussion of debugging techniques. See the "Suggested References" at the
end of this book.

Review

The process of writing a program includes fixing the errors that crop up
when executing it. This fixing process is called debugging. Many errors can
be avoided by carefully thinking through a problem before writing code to
solve it.

Errors can be divided into those caught by the compiler (syntax errors) and
those that occur when the program executes (run-time errors). The
Macintosh has various built-in mechanisms able to recognize invalid
conditions. These mechanisms halt program execution and call the System
Error Handler, which displays an error message (the bomb alert) with a
diagnostic error ID. Clicking Resume from this dialog box returns you to
Turbo Pascal.

604 Turbo Pascal Tutor for the Macintosh

A common system error is the address error, which results from an attempt
to make the microprocessor read a word or long word at an odd address.
Address errors often result from dangling or uninitialized pointers.

Pointers can go dangling from a number of causes, including premature
deallocation and certain Pascal constructions involving dereferenced
handles. If the object of a with statement is a relocatable block and if the
with block contains a statement with the indirect or direct potential for
heap movement, the relocatable block referred to must be locked for the
duration of the with statement. Similarly, when passing a relocatable object
by reference (as a var parameter), the object must be locked if the called
routine could create heap movement or if it's in another code segment. The
same restriction applies when passing objects larger than 4 bytes as value
(non-var parameters).

Most repeatable bugs can be tracked down by inserting diagnostic
messages at appropriate points and recompiling, zeroing in on the problem
statement(s). Intermittent bugs are harder to find and often require the
assistance of MacsBug, a memory-resident debugging tool able to control
and display memory and the microprocessor.

Debugging 605

606 Turbo Pascal Tutor for the Macintosh

Appendixes

607

608 Turbo Pascal Tutor for the Macintosh

A p p E .N D x

A

Summary of Key Toolbox Routines

This appendix is a reference to the key Toolbox routines. They are divided
into these headings:

• Memory Manager
• Resource Manager
• QuickDraw
• Font Manager
• Event Manager
• Window Manager
• Control Manager
• Desk Manager
• File Manager
• Standard File
• Miscellaneous

Memory Manager

type
SignedByte = - 128 .. 127i
Byte = O . . 255i
Ptr = ASignedBytei
Handle = APtri
ProcPtr = Ptri
Fixed = LongInti

Summary of Key Toolbox Routines 609

Str255
StringPtr
StringHandle
Size

= strinq[255];
= "Str255;
= "StringPtr;
= Longlnti

function NewPtr(byteCount: Size): ptr;

NewPtr allocates a nonrelocatable block of byteCount bytes and returns the
address of this block. If byteCount bytes can't be allocated, NewPtr returns
nil.

function NewHandle(byteCount: Size); Handle;

NewHandle allocates a relocatable block of byteCount bytes and returns the
address of a master pointer to this block. If byteCount bytes can't be
allocated, NewHandle returns nil.

procedure DisposPtr(p: Ptr);

DisposPtr deallocates the nonrelocatable block pointed to by p.

procedure DisposHandle(h: Handle);

DisposHandle deallocates the relocatable block indicated by h.

procedure SetHandleSize(h: Handle; newSize: Size);

SetHandleSize makes the relocatable block indicated by h newSize bytes long.

function GetHandleSize(h: Handle): Size;

GetHandleSize returns the length of the relocatable block indicated by h.

procedure HPurge(h: Handle);
procedure HNoPurge(h: Handle);

HPurge and HNoPurge flag the relocatable block indicated by h as purgeable
or not purgeable, respectively. By default, relocatable blocks allocated by
NewHandle are unlocked and unpurgeable.

procedure HLock(h: Handle);
procedure HUnlock(h: Handle);

HLock and HUnlock flag the relocatable block indicated by h as not movable
or movable, respectively. By default, relocatable blocks allocated by
NewHandle are unlocked and unpurgeable.

610 Turbo Pascal Tutor for the Macintosh

procedure SetApplLimit(p: Ptr);
function GetApplLimit : Ptr;

SetApplLimit sets the application heap limit, the point beyond which the
application heap zone can't be expanded; GetApplLimit returns its current
value.

procedure MaxApplZone;

MaxApplZone expands the application heap zone to the application heap
limit.

procedure MoreMasters;

MoreMasters allocates a nonrelocatable block of 64 master pointers. To
avoid fragmentation in a program that will require more than the default
block of 64 master pointers, call MoreMasters as necessary early on.

function FreeMem : LongInt;

FreeMem returns the total amount of free space in the current heap zone, in
bytes. Due to heap fragmentation, it usually isn't possible to allocate this
large a block..

function MaxMem(var grow: Size) : Size;

MaxMem compacts the current heap zone and purges all purgeable blocks
from the zone. It returns the size of the largest contiguous free block in the
zone after the compaction. Parameter grow is set to the maximum number
of bytes by which the zone can grow.

Resource Manager

type
ResType: packed array [1 .. 4] of Char;

function OpenResFile(fileName: Str255): Integer;

OpenResFile opens the resource fork of the file indicated by fileName and
makes it the current resource file. It returns a reference number with which
to refer to the file in subsequent Resource Manager calls.

procedure CloseResFile(refNum: Integer);

Summary of Key Toolbox Routines 611

CloseResFile closes open resource file refNum.

function CountResources(theType: ResType): Integer;

CountResources returns the total number of resources of type theType in all
open resource files.

function GetIndResource(theType: ResType; index: Integer): Handle;

GetIndResource returns a handle to the index-th resource of type theType.

function GetResource(theType; ResType; theID: Integer): Handle;

GetResource returns a han<:lle to the resource having the given type and ID
number, reading the resource data into memory if it's not already.

procedure ReleaseResource(theResource: Handle);

ReleaseResource releases the memory occupied by theResource"".

QuickDraw

type
QDByte = SignedByte; {QD equivalents of basic types }
QDPtr = Ptr;
QDHandle = Handle;

Pattern = packed array [0 .. 7] of 0 .. 255;
Bits16 = array [0 .. 15) of Integer;
VHSelect = (v, h);
StyleItem = (bold, italic, underline, outline, shadow, condense, extend);
Style = set of StyleItem;

Point = record
case Integer of

0:

1 :

(v: Integer;
h: Integer);

(vh: array [VHSelect] of Integer);
end;

Rect = record

612

case Integer of
0:

Turbo Pascal Tutor for the Macintosh

1:

end;

(top: Integer;
left: Integer;
bottom: Integer;
right: Integer);

(topLeft: Point;
botRight: Point);

BitMap = record
baseAddr: Ptr;
rowBytes: Integer;
bounds: Rect;

end;

Cursor = record
data: Bits16;
mask: Bits16;
hotSpot: Point;

end;

RgnHandle = ARgnPtr;
RgnPtr = ARegion;
Region = record

rgnSize: Integer; { 10 for rectangular regions
rgnBBox: Rect; {plus more data if not rectangular

end;

PicHandle = APicPtr;
PicPtr = APicture;
Picture = record

picSize: Integer;
picFrarne: Rect; { plus codes for picture content }

end;

Grafptr = AGrafPort;
GrafPort = record

device: Integer;
portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattern;
fillPat: Pattern;
pnLoc: Point;
pnSize: Point;
pnMode: Integer;
pnPat: Pattern;
pnVis: Integer;
txFont: Integer;

Summary of Key Toolbox Routines 613

var

txFace: Style;
txMode: Integer;
txSize: Integer;
spExtra: Fixed;
fgColor: LongInt;
bkColor: LongInt;
colrBit: Integer;
patStretch: Integer;
picSave: Handle;
rgnSave: Handle;
polySave: Handle;
grafProcs: QDProcsPtr;

end;

thePort: GrafPtr;
white: Pattern;
black: Pattern;
gray: Pattern;
ltGray: Pattern;
dkGray: Pattern;
arrow: Cursor;
screenBits: BitMap;
randSeed: LongInt;

procedure InitGraf(p: QDPtr);

Call InitGraf early in an application to initialize QuickDraw. Parameter p
tells QuickDraw where to store its global variables, and should always be
set to @thePort, where Turbo Pascal has allocated space for them.

procedure OpenPort(gp: GrafPtr);

OpenPort initializes the fields of GrafPort gp", including allocating space for
its visRgn and clipRgn fields, and makes gp" the current port.

procedure GetPort(var gp: GrafPtr);

GetPort assigns to gp the current value of global variable thePort, thus
retrieving a pointer to the current GrafPort record.

procedure SetPort(gp: GrafPtr);

SetPort sets global variable thePort to gp, thus changing the current GrafPort
to gp".

procedure InitCursor;

614 Turbo Pascal Tutor for the Macintosh

InitCursor changes the cursor to the standard arrow shape.

procedure SetCursor(crsr: Cursor);

SetCursor changes the cursor to the 16 x 16 bit image passed in crsr.

procedure HideCursor;
procedure ShowCursor;
procedure ObscureCursor;

HideCursor removes the cursor from the screen; ShowCursor brings it back.
ObscureCursor hides the cursor until the mouse is moved.

procedure GetPen(var pt: Point);

GetPen returns the current pen location.

procedure PenSize(width, height: Integer);

PenSize sets the dimensions of the current GrafPort's pen, where width and
height <= 7. Subsequent calls to Line, LineTo, and the procedures that draw
framed shapes will use this new pen size.

procedure PenMode(mode: Integer);

PenMode sets the transfer mode through which the GrafPort's pnPat is
transferred onto the bit image when drawing lines or framed shapes.

procedure PenPat(pat: Pattern);

PenPat sets the pattern used by the pen in the current GrafPort.

procedure MoveTo(h,v: Integer);

MoveTo moves the pen (without drawing anything) to location (h,v) in the
local coordinates of the current GrafPort.

procedure Move (dh,dv: Integer);

Move moves the pen (without drawing anything) a distance of dh
horizontally and dv vertically from its current location.

procedure LineTo(h,v: Integer);

LineTo draws a line from the current pen location to the location specified
by hand v. The pen location is (h,v) after the line is drawn.

Summary of Key Toolbox Routines 615

procedure Line (dh,dv: Integer);

Line draws a line to the location a distance of dh horizontally and dv
vertically from the current pen location. After the line is drawn, the pen
location becomes the coordinates of the end of the line.

procedure TextFont(font:Integer);
procedure TextFace(face:Style);
procedure TextMode(mode: Integer);
procedure TextSize(size: Integer);

TextFont sets the current GrafPort to use font number font in future text
drawing calls. TextFace sets the current GrafPort's character style. TextMode
sets the current GrafPort's transfer mode for text drawing (the default mode
is srcOR). TextSize sets the current GrafPort's text size to size points (the
default is 12).

procedure DrawChar(c: Char);

DrawChar draws the given character (in the current GrafPort's text size,
font, and style) at the pen location, advancing the pen a suitable amount to
the right.

procedure DrawString(s: Str255);

DrawString performs calls to DrawChar for each character in the supplied
string. No formatting (Le., interpreting carriage returns, tabs, etc.) is
performed.

function CharWidth(ch: Char) : Integer;

Char Width returns the value that will be added to the pen horizontal
coordinate were the specified character to be drawn with the current
GrafPort's font, size, and style.

function StringWidth(s: Str255) : Integer;

String Width returns the width of the given text string, which it calculates by
adding the widths of all the characters in the string.

procedure SetRect(var r: Rect; left,top,right,bottoffi; Integer);

SetRect assigns coordinate values to a rectangle.

procedure OffsetRect(var r: Rect; dh,dv: Integer);

616 Turbo Pascal Tutor for the Macintosh

OffsetRect "moves" the rectangle r by adding dh to each horizontal
coordinate and dv to each vertical coordinate. If dh and dv are positive, the
movement is to the right and down; if either is negative, the change is in
the opposite direction. This does not affect the screen unless you
subsequently call a routine (e.g., FrameRect) to draw the rectangle.

procedure InsetRect(var r: Rect; dh,dv: Integer);

InsetRect shrinks or expands its rectangle parameter. The left and right sides
are moved in by the amount specified by dh; the top and bottom are moved
toward the center by the amount specified by dv. If dh or dv is negative, the
corresponding pair of sides is moved outwards instead of inwards.

function PtInRect(pt: Point; r: Rect) : Boolean;

PtInRect returns True if the pixel below and to the right of the given
coordinate point is enclosed in the specified rectangle, and False otherwise.

procedure FrameRect(r: Rect);

FrameRect draws a hollow outline just inside the specified rectangle using
the current GrafPort's pen characteristics. If a region is being formed, the
outside outline of the new rectangle is added to the region's boundary.

procedure PaintRect(r: Rect);

PaintRect fills the specified rectangle with the current GrafPort's pen pattern
and mode. The pen location is not changed.

procedure EraseRect(r: Rect);

EraseRect paints the specified rectangle with the current GrafPort's bkPat
(background pattern) field, in patCopy mode. The pen location is not
changed.

procedure InvertRect(r: Rect);

InvertRect inverts the pixels enclosed by the specified rectangle: white
pixels become black and vice versa. The pen location is not changed.

procedure FillRect(r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy
mode). The pen location is not changed.

Summary of Key Toolbox Routines 617

procedure FrameOval(r: Rect);
procedure PaintOval(r: Rect);
procedure EraseOval(r: Rect);
procedure InvertOval(r: Rect);
procedure FillOval(r: Rect; pat: Pattern);

The oval drawing routines are analogous to the rectangle drawing routines
described above.

procedure FrameRoundRect(r: Rect; ovalWidth,ovalHeight: Integer);

FrameRoundRect draws a hollow outline just inside the specified rounded­
corner rectangle, using the current GrafPort's pen characteristics. The
ovalWidth and ovalHeight parameters specify the diameters of curvature of
the comers. The outline is as wide as the pen width and as tall as the pen
height. The pen location is unchanged after this procedure.

If a region is being formed, the outside outline of the new rounded-corner
rectangle is mathematically added to the region's boundary.

procedure PaintRoundRect(r: Rect; ovalWidth,ovalHeight: Integer);
procedure EraseRoundRect(r: Rect; ovalWidth,ovalHeight: Integer);
procedure InvertRoundRect(r: Rect; ovalWidth,ovalHeight: Integer);
procedure FillRoundRect(r: Rect; ovalWidth,ovalHeight: Integer; pat:Pattern);

The round rectangle routines work like their rectangle counterparts.

function NewRgn : RgnHandle;

NewRgn allocates space in the heap for a new region, initializes it to the
empty region, and returns a handle to it.

procedure DisposeRgn(rgn: RgnHandle);

DisposeRgn deallocates space for the region indicated by handle rgn.

procedure OpenRgn;

OpenRgn tells QuickDraw to begin interpreting subsequent line and
framed-shaped drawing calls as region definition information. While a
region is open, all calls to Line, LineTo, and the procedures that draw
framed shapes (except arcs) affect the outline of the region. OpenRgn calls
HidePen, so no drawing occurs on the screen while defining the region.

procedure CloseRgn(dstRgn: RgnHandle);

618 Turbo Pascal Tutor for the Macintosh

CloseRgn stops the collection of lines and framed shapes, organizes them
into a region definition, and saves the resulting region into ds tRgn 1\ 1\.

CloseRgn calls ShowPen, balancing the HidePen call made by OpenRgn.

procedure FrameRgn(rgn: RgnHandle)i

FrameRgn draws a hollow outline just inside the specified region, using the
current GrafPort's pen pattern, mode, and size. The pen location is not
changed by this procedure. If a region is open and being formed, the
outside outline of the region being framed is mathematically added to the
new region' ~ boundary.

procedure PaintRgn(rgn: RgnHandle)i
procedure EraseRgn(rgn: RgnHandle)i
procedure InvertRgn(rgn: RgnHandle)i
procedure FillRgn(rgn: RgnHandlei pat: Pattern)i

The region drawing routines function analogously to their rectangle
counterparts.

procedure CopyBits(srcBits,dstBits: BitMapi srcRect,dstRect: Recti
mode: Integeri maskRgn: RgnHandle)i

CopyBits moves bit images between two bitMaps. The transfer can be
performed in any of the eight source transfer modes, and is clipped to the
maskRgn and the boundary rectangle of the destination bitMap; if the
destination bitMap is the current GrafPort's portBits (that is, if dstBits =
thePortl\.portBits), the copying operation is clipped to the intersection of the
GrafPort's clipRgn and visRgn. Pass nil for the maskRgn parameter if no
additional clipping is required. If the rectangles are different sizes, the
source bit image is expanded or shrunk as necessary to fit the destination
rectangle.

function OpenPicture(picFrame: Rect) : PicHandlei

OpenPicture returns a handle to a new picture which has the given rectangle
as its picture frame, and tells QuickDraw to start saving all calls to drawing
routines into this picture handle.

procedure ClosePicturei

ClosePicture causes QuickDraw to stop accumulating drawing calls. You
should perform one and only one ClosePicture for every OpenPicture.
ClosePicture calls ShowPen, balancing the HidePen call made by OpenPicture.

Summary of Key Toolbox Routines 619

procedure DrawPicture(myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the picture indicated by myPicture in dstRect, expanding
or shrinking it as necessary.

procedure SetPt(var pt: Point; h,v: Integer);

SetPt assigns integer coordinates to a variable of type Point.

procedure GlobalToLocal(var pt: Point);
procedure LocalToGlobal(var pt: Point);

GlobalToLocal takes a point expressed in global coordinates (Le., with the
top left corner of the bitMap-usually the screen-as coordinate (0,0» and
converts it into the local coordinates of the current GrafPort; in practice,
usually a window. LocalToGlobal converts a point from the current
GrafPort's local coordinate system into a global coordinate system.

function Random : Integer;

Random returns a random 16-bit value.

procedure StuffHex(p: QDPtr; s: Str255);

StuffHex pokes byte values (expressed as a string of hexadecimal digits)
starting at the address in p and working up.

Font Manager

const
systernFont = 0;
applFont = 1;
new York = 2;
geneva = 3;
monaco = 4;
venice = 5;
london = 6;
athens = 7;
sanFran = 8;
toronto = 9;
cairo = 11;
losAngeles = 12;
times = 20;
helvetica = 21;

620

a.k.a. chicago }
a.k.a. geneva }

Turbo Pascal Tutor for the Macintosh

courier = 22;
symbol = 23;
taliesin = 24;

procedure InitFonts;

InitFonts initializes the Font Manager. Call this procedure before any
Toolbox routine that will call the Font Manager.

Event Manager

const
nu11Event 0;
mouseDown = 1;
mouseUp 2;
keyDown 3;
keyUp 4;
autoKey 5;
updateEvt = 6;
diskEvt 7;
activateEvt = 8;
networkEvt = 10;
driverEvt = 11;
applEvt = 12;
app2Evt = 13;
app3Evt = 14;
app4Evt = 15;

type
EventRecord = record

what
message
when

Integer;
LongInt;
LongInt;

where Point;
modifiers: Integer;

end;

function GetNextEvent(eventMask: Integer; var theEvent: EventRecord): Boolean;

GetNextEvent assigns to theEvent the next available event of the specified
type(s), as indicated by the eventMask parameter. If no event of the
designated type(s) is available, GetNextEvent returns False, and
theEvent.what is set to 0, the null event. Otherwise, GetNextEvent returns
True, and theEvent.what equals the type of event being reported.

procedure GetMouse(var mouseLoc: Point);

Summary of Key Toolbox Routines 621

GetMouse returns the current mouse location in its mouseLoc parameter. The
location is given in the local coordinate system of the current GrafPort.

function Button : Boolean;

Button returns True if the mouse button is currently down, and False
otherwise.

function TickCount : LongInt;

TickCount returns the current number of ticks (sixtieths of a second) since
the system was booted.

function GetCaretTime : LongInt;

GetCaretTime returns the time (in ticks) between blinks of the caret in a text
editing situation, as set by the user with the Control Panel DA.

function PostEvent(eventCode: Integer; eventMsg: LongInt): OSErr;

PostEvent inserts an event of type eventCode into the event queue read by
GetNextEvent. The eventMsg parameter becomes the corresponding event
record's message field.

Window Manager

type
WindowRecord = record

port: GrafPort;
windowKind: Integer;
visible: Boolean;
hilited: Boolean;
goAwayFlag:, Boolean;
spareFlag: Boolean;
strucRgn: RgnHandle;
contRgn: RgnHandle;
updateRgn: RgnHandle;
windowDefProc:Handle;
dataHandle: Handle;
titleHandle: StringHandle;
titleWidth: Integer;
controlList: ControlHandle;
nextWindow: WindowPeek;

622 Turbo Pascal Tutor for the Macintosh

windowPic:
ref Con:

end;

WindowPtr = GrafPtr;
WindowPeek = AWindowRecordi

procedure InitWindows;

PicHandle;
LongInt;

lnit Windows initializes the Window Manager, allocates a Gra/Port in the
heap (the "Window Manager port") and uses this port to draw the desktop
and menu bar. Call lnit Windows after InitGraf and InitFonts, and before
making any other Window Manager call.

procedure GetWMgrPort(var wPort: GrafPtr)i

GetWMgrPort returns in wPort a pointer to the Window Manager port.

procedure NewWindow(wStorage: Ptr; boundsRect: Rect; title: Str255;
visible: Boolean; procID: Integer; behind: WindowPtr;
goAwayFlag: Boolean; ref Con: LongInt);

NewWindow defines and draws a window on the screen. The wStorage field
is a pointer to the storage that's been allocated for the about-to-be created
window record. Passing nil as the wStorage argument causes New Window to
allocate the storage itself. The boundsRect parameter defines the content
region of the new window, and is specified in global coordinates. The title
parameter shows up in the title bar when the window is drawn (assuming
it's a window type with a title bar, such as a document window). The visible
parameter controls whether or not the window will initially be visible.
ProcID defines the type of window, according to the following constants:

const
docurnentProc = 0;
dBoxProc = 1;
plainDBox = 2;
altDBoxProc = 3;
noGrowDocProc = 4;
zoornDocProc = 8;
zoornNoGrow = 12;
rDocProc = 16;

The behind parameter controls the plane in which the window will appear
when drawn. Use nil to place a new window underneath all existing
windows, and Pointer(-1) to draw it on top. If the new window should have
a close box, then pass True for the goAwayFlag parameter. The ref Con

Summary of Key Toolbox Routines 623

parameter sets the window's initial value for the all-purpose "reference
constant."

function GetNewWindow(ResID: Integer; wStorage: Ptr;
behind: WindowPtr): WindowPtr;

GetNew Window creates and draws a window defined by a window template
(a resource of type WIND), where ResID is the resource 10 of that template.
The wStorage and behind parameters have the same meaning as in
New Window.

procedure DisposeWindow(theWindow: WindowPtr);

Dispose Window removes a window from the screen and releases the
memory occupied by its window record. Call it when you're done with a
window if you caused its window record to be allocated on the heap when
the window was created (by passing nil as the wStorage parameter to
NewWindow or GetNewWindow).

function FrontWindow: WindowPtr;

Front Window returns a pointer to the frontmost (active) window on the
screen.

procedure SelectWindow(theWindow: WindowPtr);

Select Window should be called after a mouse-down event in an inactive
window; it takes a WindowPtr parameter and makes the window record it
points to the active window. Select Window generates appropriate update
events so that the application can redraw its windows in their new order.

function FindWindow(thePt: Point; var whichWindow: WindowPtr): Integer;

FindWindow is important in decoding mouse-down events. You pass
FindWindow one fact (a point), and get back two: A numeric code that can
be tested to learn more about the mouse-down (the function's return
value); and, returned in which Window, a WindowPtr indicating the window
(active or inactive) in which the mouse-down occurred. If the mouse-down
wasn't in a window, then which Window returns nil.

const
inDesk = 0;
inMenuBar = 1;
inSysWindow = 2;
inContent = 3;

624

{ missed everything }
{ somewhere in the white at the top of the screen
{ anywhere in a desk accessory window }
{ in the content region of an application window }

Turbo Pascal Tutor for the Macintosh

inDrag = 4;
inGrow = 5;
inGoAway = 6;

in the title bar of an application window }
in the grow box of an application window }
in the goAway box of an application window }

function TrackGoAway(theWindow: Windowptr; thePt: Point): Boolean;

Call TrackGoAway if FindWindow indicates that the mouse-down occurred
in the active window's close box. If it returns True, then the user released
the button with the cursor inside the goA way box; otherwise, the button was
released outside of the box.

procedure DragWindow(theWindow: WindowPtr; startPt: Point; boundsRect: Rect);

When there's a mouse-down event in the drag region of theWindow, call
Drag Window with startPt equal to the point where the mouse button was
pressed. DragWindow pulls around an outline of theWindow, following the
mouse until the button is released. When the button is released the window
is redrawn at this new location. If the Window is not the active window and
the Command key wasn't down during the move, it becomes the active
window. If the mouse button is released when the mouse position is
outside the limits of boundsRect, Drag Window simply returns without
moving the Window or making it active.

procedure InvalRect(badRect: Rect)i

InvalRect adds the given rectangle to the update region of the window
whose GrafPort is the current port. This causes an update event to be
generated by the next call to GetNextEvent (assuming no higher priority
events are in the queue). Upon processing that update event, the visRgn
will include this rectangle.

procedure BeginUpdate(theWindow: WindowPtr)i
procedure EndUpdate(theWindow: WindowPtr);

When redrawing the contents of the Window in response to an update event,
bracket the drawing calls with the BeginUpdate and EndUpdate procedures.

Control Manager

type
ControlPtr = AControlRecordi
ControlHdl = AControlPtr;
ControlRecord = packed record

Summary of Key Toolbox Routines 625

nextControl: ControlHandle;
contrlOwner: Windowptr;
contrlRect: Rect;
contrlVis: Byte;
contrlHilite: Byte;
contrlValue: Integer;
contrlMin: Integer;
contrlMax: Integer
contrlDefProc: Handle;
contrlData: Handle;
contrlAction: ProcPtr;
contrlRfCon: LongInt;
contrlTitle: Str255;

end;

function GetNewControl(controlID:Integer;theWindow:WindowPtr): ControlHandle;

GetNewControl allocates storage for a control, reads its template from a
resource file, inserts it into the control list of theWindow, and returns a
handle to the control.

procedure DisposeControl(the Control: ControlHandle);

DisposeControl erases a control from its window and frees up the memory it
occupies.

procedure DrawControls(theWindow: WindowPtr);

DrawControls draws each control in a window's control list. Calling this
procedure draws all of the visible controls (either active or inactive,
depending on their contrlHilite field) associated with theWindow.

procedure HiliteControl(theControl: ControlHandle; hiliteState: Integer);

HiliteControl changes the status of a control from active to inactive or vice
versa, and redraws the control to indicate the transition. The hiliteState
parameter should be set as follows: 0 = no highlighting (control active); 1 -
253 represents a part code to be highlighted; 255 = highlight (control
inactive).

function FindControl(thePoint: Point; theWindow: WindowPtr;
var whichControl: ControlHandle): Integer;

When a mouse-down occurs in the active window, if that window has
controls, an program checks to see if the mouse-down occurred in any of
them. The FindControl function makes this determination, returning in

626 Turbo Pascal Tutor for the Macintosh

whichControl a handle to the control, if any; the function return value is the
control's part code.

const
inButton = 10;
inCheckBox = 11;
inUpButton = 20;
inDownButton = 21;
inPageUp = 22;
inPageDown = 23;
inThumb = 129;

simple button }
a radio button or check box
scroll bar's up arrow}
scroll bar's down arrow}
scroll bar's "page up" area
~croll bar's "page down" area
scroll box }

function TrackControl(theControl: ControlHandle; startPt: Point;
actionProc: ProcPtr: Integer);

Call TrackControl after a mouse-down in a control. It doesn't return until the
user releases the button, at which time you study the function return value
to figure out what to do next. If it returns as zero, then the user moved out
of the control before releasing the button, in which case you do nothing. If
TrackControl returns the same part code that FindControl returned originally,
then the user really intends to manipulate that control and you should take
appropriate action.

procedure SetCtlValue(theControl: ControlHandle; theValue: Integer);
function GetCtlValue(theControl: ControlHandle): Integer;

Call SetCtlValue to set a control's value, and GetCtlValue to read it.
SetCtlValue redraws the control to indicate its new value.

Menu Manager

procedure InitMenus;

InitMenus initializes the Menu Manager; call InitMenus once before any
other Menu Manager routine.

function GetMenu(resourceID: Integer) : MenuHandle;

GetMenu returns a menu handle for the menu having the given resource ID.
It calls the Resource Manager to read the menu from a resource file into a
menu record in memory.

procedure InsertMenu(theMenu: MenuHandle; beforeID: Integer);

Summary of Key Toolbox Routines 627

procedure DrawMenuBar;

Once an application has fetched its menus, they're inserted into the menu
bar with InsertMenu; it inserts theMenu into the menu list before menu
beforeID. If beforeID is 0, the new menu is added at the end. The
application's menus must be drawn on the screen by the DrawMenuBar
procedure.

procedure AddResMenu(theMenu: MenuHandle; theType: ResType);

The AddResMenu call adds the names of all resources of the indicated type
to a MenuHandle; use type DRVR to fetch desk accessory names.

function MenuSelect(startPt: Point): LongInt;

Call MenuSelect after a mouse-down in the menu bar. The long integer it
returns contains the number of the menu selected (1 = leftmost menu; 0 =
no selection) in its most significant word and the number of the item
selected (1 = topmost item) in its least significant word.

function MenuKey(c: Char) : LongInt;

Call MenuKey to respond to keyboard events representing Command-key
equivalents. After a key-down event with Command held down, pass
MenuKey the character typed. MenuKey highlights the appropriate menu
title, if any, and returns a long integer representing selection information in
the same format returned by MenuSelect.

procedure HiliteMenu(menuID: Integer);

Call HiliteMenu with a parameter of 0 to unhighlight a menu highlighted by
either MenuSelect or MenuKey.

procedure SetItem(theMenu: MenuHandle; item: Integer; itemString: Str255);
procedure GetItem(theMenu: MenuHandle; item: Integer; var itemString: Str255);

SetItem changes the text of the given menu item to itemString. GetItem
returns the text of the given menu item in itemString.

procedure DisableItem(theMenu: MenuHandle; item: Integer);
procedure EnableItem(theMenu: MenuHandle; item: Integer);

Given a menu item number in the item parameter, DisableItem disables that
menu item; given 0 in the item parameter, it disables the entire menu.
Similarly, EnableItem enables the item and an item parameter of 0 enables
the entire menu.

628 Turbo Pascal Tutor for the Macintosh

Desk Manager

function OpenDeskAcc(theAcc: Str255): Integer;

If the user chooses a desk accessory from the Apple menu, call
Open DeskAcc. Parameter theAcc-the name of the DA-is obtained with the
Menu Manager's GetItem routine.

procedure SystemClick(theEvent: EventRecord; theWindow: WindowPtr);

Call System Click whenever FindWindow reports that a mouse-down
occurred in a system window.

function SystemEdit(editCmd: Integer): Boolean;

Call SystemEdit when the user chooses one of the Edit menu's first five
items. If you've arranged this menu in the standard way (Undo, separating
line, Cut, Copy, Paste), this requires the expression:

if SystemEdit(menuItem-l)

procedure SystemTask;

SystemTask provides open DAs with periodic processing time. Call it once
each time through your program's main event loop.

Dialog Manager

type
DialogRecord = record

window: WindowRecord;
items: handle;
textH: TEHandle;
editField: Integer;
editOpen: Integer;
aDefItem;

end

DialogPtr = WindowPtr;
DialogPeek = ADialogRecord;

function GetNewDialog(dialogID: Integer; dStorage: Ptr; behind: WindowPtr)
: DialogPtr;

Summary of Key Toolbox Routines 629

GetNewDialog fetches a DLOG template and its associated item list (DITL)
resource. As with GetNew Window, pass nil as the d5torage parameter and
GetNewDialog will create storage on the heap for the dialog record for you.
Pass Pointer(-1) to open the dialog's window on top of existing windows.

procedure DisposDialog(theDialog: DialogPtr);

When you're through with a dialog, call DisposDialog to erase it from the
screen and free up the memory occupied by its various data structures.

procedure ModalDialog(filterProc: Procptr; var itemHit: Integer);

With a modal dialog box as the active window, call ModalDialog repeatedly
to handle events in the dialog's window; after handling an event involving
an enabled dialog item, it returns with the item number in itemHit.

procedure GetDItem(theDialog: DialogPtr; itemNo: Integer;
var itemType: Integer; var item: Handle; var box: Rect);

GetDItem takes in two facts and returns three. Given the indicated dialog
and item number, it returns information about that particular item: Its type
(e.g., radioButton, staticText), bounding box, and a handle to its underlying
data structure.

procedure GetIText(item: Handle; var text: Str255);
procedure SetIText(item: Handle; text: Str255);

After the user has worked with an editText item (as determined by itemHit
of ModalDialog, use GetIText to see what string value it has now. To change
the text (perhaps to suggest a different response), use 5etIText. Both
routines expect a handle to the structure used to store this text; you'll get
this from GetDItem.

procedure ParamText(sl,s2,s3,s4: Str255);

ParamText provides the string data to be plugged into the 1\0 through 1\3
placeholders in DITL items. 51 replaces 1\0, s2 replaces 1\1, and so on. If a
dialog box doesn't require four placeholders, then simply pass the null
string (") for the extras.

function NoteAlert(alertID: Integer; filterProc: ProcPtr): Integer;
function CautionAlert(alertID: Integer; filterProc: ProcPtr): Integer;
function StopAlert(alertID: Integer; filterProc: ProcPtr): Integer;
function Alert (alertID: Integer; filterProc: ProcPtr): Integer;

630 Turbo Pascal Tutor for the Macintosh

The four alert functions invoke the alert defined by the alert template with
ID alertID. They function identically except for the icon displayed by the
alert's window. Taking Alert as the example, Alert calls the current sound
procedure, if any, passing it the sound number specified in the alert
template for this stage of the alert. If no alert box is to be drawn at this
stage, Alert returns a function result of -1; otherwise, it creates and displays
the alert window, and returns the value of the button clicked to dismiss the
alert.

File Manager

type
OSType = packed array [1 .. 4] of Char;
OSErr = Integer;
FInfo = record

fdType: OSType;
fdCreator: OSType;
fdFlags: Integer;
fdLocation: Point;
fdFldr: Integer;

end; { FInfo }

record of finder info }
file's type}
file's creator}
flags ex. hasbundle,invisible,locked,etc.
file's location in folder}
folder containing file }

function FSOpen(fileName: Str255; vRefNum: Integer; var refNum: Integer): OSErr;

FSOpen prepares file fileName in volume/directory vRefNum for reading or
writing, and sets its mark to position O.

function FSRead(refNum: Integer; var count: LongInt; buffPtr: Ptr): OSErr;

FSRead reads count bytes from file refNum, starting at the position of its
mark, and places these bytes in memory starting at address buffPtr and
working up.

function SetFPos(refNum: Integer; posMode: Integer; posOff: LongInt): OSErr;

SetFPos sets open file refNum's mark. PosMode controls how the posOffset
parameter is interpreted; it must contain one of the following values:

const
fsAtMark = 0; {at current mark -- ignore posOff }
fsFromStart = 1; {set mark relative to beginning of file
fsFromLEOF = 2; {set mark relative to logical end-of-file
fsFromMark = 3; {set mark relative to current mark }

Summary of Key Toolbox Routines 631

function FSClose(refNurn: Integer): OSErri

FSClose terminates the relationship between a file and its reference number.

function FSWrite(refNurn: Integeri var count: LongInti buffPtr: Ptr) :OSErri

FSWrite writes count bytes from the memory buffer pointed to by buffPtr to
file refNum. Writes occur at the mark of an open file and advance it an
amount equal to the number of bytes written. If the file doesn't exist
already, you'll need to Create it beforehand.

function Create (fileNarne:Str255ivRefNurn: Integericreator, fType:O SType): OSErri

Create sets up a new file named fileName on the volume/directory
combination specified by vRefNum. The creator and {Type parameters set the
corresponding Finder attributes for the new file. The new file must be
opened before I/O to it can commence.

function FlushVol(volNarne: StringPtri vRefNurn: Integer): OSErri

Flush Vol writes out the contents of the associated volume buffer and
descriptive information about the volume (if they've changed since the last
FlushVol call).

function FSDelete(fileNarne: Str255i vRefNurn: Integer): OSErri
function Renarne(oldNarne: Str255i vRefNurn: Integeri newNarne: Str255): OSErri

FSDelete removes file fileName from volume vRefNum. Rename changes the
name of file oldName on volume/directory vRefNum to newName.

function GetFInfo(fileNarne:Str255ivRefNurn:Integeri var theInfo: FInfo) :OSErri
function SetFInfo(fileNarne:Str255i vRefNurn:Integeri theInfo: FInfo) :OSErri

GetFlnfo and SetFlnfo read and write Finder information about a file.

function GetEOF(refNurn: Integeri var fileLength: LongInt): OSErri

GetEOF returns the length of a file.

function GetFPos(refNurn: Integeri var filePos: LongInt): OSErri

GetFPos returns the current position of a file's mark.

632 Turbo Pascal Tutor for the Macintosh

Standard File

type
SFReply = record

good: Boolean;
copy: Boolean;
fType: OSType;
vRefNum: Integer;
version: Integer;
fName: string[63);

end;

SFTypeList = array [0 .. 3) of OSTypei

procedure SFPutFile(where: Point; prompt, origName :Str255;
dlgHook: ProcPtr; var reply: SFReply);

Call SFPutFile to save a data file with the name and directory selected by
the user. Where indicates the upper left corner of the PutFile dialog. Prompt
and origName are a prompt string and the default file name, respectively.
Pass nil for dlgHook to use default processing of this box. The user's
response is stored in record variable reply, of type SFReply. No files are
created or written as a result of SFPutFile; instead, you act on what returns
in the reply record. If reply.good is True, then the user wants to create the file
indicated by reply.fName in volume/directory reply.vRefNum.

procedure SFGetFile(where: Point; prompt:Str255; fileFilter: ProcPtr;
numTypes: Integer; typeList: SFTypeList;
dlgHook: ProcPtri var reply: SFReplY)i

Call SFGetFile to let the user choose an existing file in a particular directory
of a particular volume. Where indicates the upper left corner of the GetFile
dialog; prompt is ignored. Pass nil for the fileFilter and dlgHook parameters
to obtain default processing of this routine.

The numTypes and typeList parameters enable SFGetFile to include only
certain file types. You invoke filtering by preparing a variable of type
SFTypeList with as many as four types, and setting numTypes equal to the
number of elements in typeList used. Passing -1 for numTypes causes all
types to appear. The file is not actually read by this selection process; that's
up to your program. If reply.good is True, then the user wants to open the
file indicated by reply.fName in volume/ directory reply.vRefNum.

Summary of Key Toolbox Routines 633

Miscellaneous Routines

procedure GetSoundVol(var level: Integer);
procedure SetSoundVol(level: Integer);

These routines set or retrieve the current volume level, an integer between
o and 7, inclusive.

procedure UprString(var theString: Str255; diacSens: BOOLEAN);

UprString converts every lowercase letter in its string parameter to its
uppercase equivalent. Pass False as the diaeSens parameter to strip
diacritical marks from the string.

procedure Delay (nurnTicks: LongInt; var finalTicks: LongInt);

Delay inserts a pause of numTieks sixtieths of a second, and returns in
finalTieks the total number of ticks from system startup to the end of the
delay.

procedure SysBeep(duration: Integer);

SysBeep causes the speaker to beep for the number of ticks (sixtieths of a
second) specified by the duration parameter. The volume of the beep
depends on the current speaker volume setting, which the user can adjust
with the Control Panel desk accessory. If the speaker volume is 0, SysBeep
instead blinks the menu bar.

function GetString(stringID: Integer) : StringHandle;

GetString returns a handle to the string having the given resource 10,
reading it from the resource file if necessary. If the resource can't be read,
GetString returns nil.

procedure GetIndString(var theString:Str255;strListID:Integer;Index:Integer);

GetIndString returns in theString the indexth entry in string list resource
strListID. If the resource can't be read or the index is out of range, the null
string is returned.

procedure PackBits(var srcPtr,DstPtr: Ptr; srcBytes: Integer);

PaekBits compresses sreBytes bytes of data starting at srePtr and stores the
result at dstPtr. The value of sreBytes should be less than 128. After the

634 Turbo Pascal Tutor for the Macintosh

compression, srcPtr is incremented by srcBytes and dstPtr is incremented by
the number of bytes that the data was compressed to.

procedure UnpackBits(var srcPtr, dstPtr: Ptr; dstBytes: Integer);

With srcPtr a pointer to data compressed by PackBits, UnpackBits expands
the data and stores the result to the address in dstPtr. DstBytes is the value
that was passed to PackBits in its srcBytes parameter when the data was
initially packed. After the data is expanded, srcPtr is incremented by the
number of bytes that were expanded and dstPtr is incremented by dstBytes.

procedure NumToString(theNum: LongInt; var theString: Str255);

NumToString converts theNum into string form and returns the result in
theString.

procedure StringToNum(theString: Str255; var theNum: LongInt);

StringToNum converts a numeric value in string form into its long integer
equivalent.

function NewString(theString: Str255) : StringHandle;

NewString allocates the specified string as a relocatable object on the heap
and returns a handle to it.

Summary of Key Toolbox Routines 635

636 Turbo Pascal Tutor for the Macintosh

A p p E N D x

B

Answers to Exercises

Chapter 3

1) Identifiers:

1. user-defined constant (YourName)
2. user-defined variables (A,B,C)
3. predeclared identifiers (integer, ReadLn, WriteLn)

4) Change assignment statement to

a) C := 2 * (A-B);
b) C := A - 2 * B;
c) C := 5 * A - 3 * B;
d) C :=A *B;
e) C := A mod B;

5) A and B are of the type Integer and cannot have values of the type Real;
trying to enter one causes a run-time error.

6) A and B are now of the type Real and can therefore have real values.

Chapter 6

1) 15

Answers to Exercises 637

2) 15 (again)

3) 24

4) 15

5) 24

6) 4.8

Chapter 9

First Set

1) No (too big)

2) No (contains comma)

3) Yes (hexadecimal $b = 11 decimal)

4) Yes (predefined in Turbo)

5) Yes (smallest possible number)

6) No ("H" is not a legal hex digit)

7) No (the decimal point makes it a real number)

8) Yes

Second Set

1) 2.0E4 (or 2E4, 20E3, ...)

2) -2.5E-5 (or -O.25E-4, -O.025E-3, .. .)

3) 4.277El (or 0.4277E2, etc.)

4) -5.300005E5 (and others)

Third Set

1) .00000000015

2) -5545454000000.0

638 Turbo Pascal Tutor for the Macintosh

3) 2.0

Chapter 10

1) One way to set Yesterday to the previous day of the week reliably would
be

if DayOfWeek = Monday then
Yesterday:= Sunday

else
Yesterday := Pred (DayOfWeek);

Chapter 25

First Set

1) 50

2) 6188

3) 63

4) 1065

Second Set

1) 2031385

2) $FFD

3) 1011012

4) 12357

Answers to Exercises 639

640 Turbo Pascal Tutor for the Macintosh

A p p E N D x

c
Help!

Do I need Turbo Pascal to be able to run programs I developed with it?

No, you can create a stand-alone (double-c1ickable) application by selecting
the Compile To Disk command from the Compile menu.

What are the code and data limits for a Turbo Pascal program?

The Macintosh limits the code size of a program to 32K bytes. You can
overcome this limitation by segmenting your program. This means you can
have several32K segments, with the total size of your program limited only
by disk space. For more information on segmenting, see "Large Programs
and Segmentation" (Chapter 9) and "Units and Large Programs" (Chapter
8) in the Turbo Pascal manual.

The Macintosh limits a program to 32K bytes of global data. To overcome
this limitation, you can use pointers, as in the following example:

program SaveSpace;
type

BigArray = array[1 .. 10000] of Integer;
{ If we declared a variable of this type, it would }
{ occupy 20K bytes--more than half of our global data space!

var
SpaceSaver : ABigArray;
i : integer;

begin
New(SpaceSaver); {allocate space for array off of the heap
for i := 1 to 10000 do

SpaceSaverA[i] := i; { index element by derefencing pointer
end.

Help! 641

Are variables initialized automatically in Turbo Pascal?

Turbo Pascal doesn't initialize user-defined variables at run time. You must
do so before it can be used.

What is the maximum length of a string?

Turbo Pascal allows 255 characters in a string.

I have a for loop that writes to the string position using index(str1[iJ).
When I write out the string, however, it has the old length.

When updating the value of an index of a string, update the length byte.
We recommend using the Insert procedure to change the value of a
particular character in a string, since all the string-manipulation routines in
Turbo Pascal automatically change the length of the string.

When I use FillChar on a string, it gets messed up.

Remember that the zero-most byte of a string is used to hold the current
length of the string. Immediately after using FillChar, set the length byte of
your string to the appropriate value.

How do you raise a number to a power?

Include the following function in your program:

function Raise (x, y : Real) : Real;
begin

Raise := exp(y * In(x));
end; { Raise }

How do I get a real number printed in non-exponential notation?

You must use real formatting:

WriteLn(R : 14 : 3)

This means write the value of R, use a field width of 14 characters, and
place 3 of them to the right of the decimal point.

How do I take the log base 10 of a number?

Include the following function in your program:

function Log(r : Real) : Reali
begin

642 Turbo Pascal Tutor for the Macintosh

Log := 1n(r) /1n(10);
end;

I tried to call one of the Macintosh Toolbox routines that takes a
parameter of type PTR and got a compiler error 44 (Type Mismatch) when I
passed it a StringPtr. How can I get this to compile?

Because of Pascal's strong typing rules, you can't directly assign a value of
type PTR, for example, to some other pointer type. Instead, you have to
coerce the pointer from one type to another with variable type casts. See
IIVariable-Type-Casts" at the end of Chapter 19 in the Turbo Reference
manual for an example.

I am writing a program that uses a Mac-style interface. When the program
starts up, a window flashes up on the screen and then disappears. How do I
get rid of this window?

What you are seeing is Turbo's PasConsole window, which makes it easy to
set up textbook programs. To eliminate PasConsole, set the {$U-} directive
after your program statement.

WARNING: PasConsole initializes various Toolbox managers for you, so if
you set {$U-} you must explicitly initialize these managers. Please refer to
IIInitialization" in Chapter 9 of the Turbo Pascal manual.

I'm trying to write a program using QuickDraw, but nothing seems to get
initialized as Inside Macintosh indicates should happen. What is going
wrong?

If your program does not have the {$U-} directive, the PasConsole unit is
automatically used in your program. Pas Console defines and initializes its
own set of QuickDraw global variables to support the console window.

If your program uses both Pas Console and QuickDraw, the QuickDraw unit's
own set of global variables needs to be initialized by making the call
Ini tGraf (@thePort). Before doing this, however, you must save the
pointer to the PasConsole window or its value will be wiped out in the
InitGraf call, as illustrated below. Include the following procedure and call
it once at the very beginning of your program.

procedure SetUpQuickDraw;
var

TurboPort : GrafPtr;
begin

GetPort(TurboPort) { Save the PasConso1e window pointer}
InitGraf(@thePort)
SetPort(TurboPort) {Restore the PasConso1e window pointer}

Help! 643

end;

Each time I run QuickDraw's random number generator, it generates the
same sequence of numbers even though I change the value of RandSeed (the
seed value used by the generator). What am I doing wrong?

RandSeed is a QuickDraw global variable, so you need to initialize this
variable with the SetUpQuickDraw procedure listed in the previous answer.
Below is a sample program that uses the system clock to ensure that the
program generates a different sequence of numbers each time:

program RandomTest;
uses MemTypes, QuickDraw, OSIntf, Toollntf;

var
i : integer;

begin
SetUpQuickDraw; { Use the procedure listed above
RandSeed := TickCount; { Set the seed to the time
for i := 1 to 20 do

WriteLn(abs(Random) mod i);
ReadLn;

end.

How do I output text from my program to the printer?

You must include the PasPrinter unit and Write to the printer logical device:

program PrintTest;
uses PasPrinter;

begin
WriteLn(Printer, 'Send this to the printer');
Close (Printer) ;

end.

NOTE: On LaserWriter printers, you must close the printer logical device to
get output.

How do I do a screen dump to the printer? I want to print out QuickDraw
graphics as well as Turbo's Turtlegraphics.

The following program demonstrates the Macintosh calls to print the top
folder on the screen and/ or the whole screen:

program ScreenDump;
uses MemTypes, QuickDraw, OSIntf, Toollntf, MacPrint;

procedure HardCopy(TopWindowOnly : Boolean);
begin

PrDrvOpen;

644 Turbo Pascal Tutor for the Macintosh

if TopWindowOnly then
PrtCall(iPrEvtCtl, LprEvtTop, 0, LScreenBits)

else
PrtCall(iPrEvtCtl, LprEvtAll, 0, LScreenBits);

PrDrvrClose;
end; { HardCopy }

begin
HardCopy (true) ;

end.
{ Print Turbo's PasConsole window}

The Turbo Pascal manual indicates you can shift text left and right using
the Command-O and Command- keys. I was unable to shift text in my program
using these keys. Also, these commands aren't highlighted on the Edit
menu.

The text you highlight to be shifted must be made up of complete lines of
text. To mark a complete line, move the mouse to the leftmost column on
the screen and select the text by dragging straight down the left side. You
should see the lines highlighted all the way across the screen. You can then
shift the entire (rectangular) block.

Is there any way to stop a Turbo program short of hitting the Reset button
and restarting the machine, which is very time consuming?

The following procedure sets up your system, so you can break out of a
Turbo Pascal program without rebooting. The Miscellaneous folder on the
Samples & Utilities disk contains a file called MacsBug. If you put this file
in your System folder and restart your system, the MacsBug debugger will
automatically be loaded into men' ory.

Now, whenever you need to break out of a Turbo program, press the
Interrupt switch (the switch behind the Reset switch on the left side of your
Macintosh, assuming you have installed the switches). This puts you in the
MacsBug debugger, and you'll see a) prompt. At this prompt, type E Sand
you'll be returned to the Turbo Environment.

When I run my Turbo program, it bombs and brings up a Macintosh bomb
box with Error 2. After hittin[the Resume Error, it goes into Turbo Pascal
and brings up an error message Target address found in unit, placing
the cursor at the end of my source file.

A System Error 2 is an addressing error, because a Macintosh Toolbox
routine is being passed an invalid pointer or handle. Since the error is
happening in one of these pre-compiled units, Turbo cannot move to the
source line of the error. Make sure that your program checks all· error codes

He/p! 645

returned from Toolbox routines and that no errors have occurred before
proceeding. In addition, read Chapter 14, "Debugging your Turbo Pascal
Program," in the Turbo Pascal manual.

646 Turbo Pascal Tutor for the Macintosh

A p p E N D x

D

Error Codes

System Errors (Bomb Alert IDs)

Error ID Meaninq

1 Bus error (very rare)
2 Address error (reference to word or long word at odd address)
3 Illegal instruction (undefined 68000 opcode)
4 Divide by zero exception
5 CRK exception (range testing failed)
6 TRAPV exception (trap-on-overflow instruction failed)
7 Privilege violation (shouldn't occur)
8 Trace exception (for debuggers)
9 A-Trap dispatcher failure
10 F-Trap exception
11 Misc. Exception (all other 68000 exceptions)
12 Bad trap number
13 Spurious interrupt (no interrupt handler for an interrupt)
14 I/O System Error
15 Segment Loader error
16 SANE error
17-24 Can't load package
25 Can't allocate heap block (out of memory)
26 Segment Loader error: couldn't find CODE resource #0
27 File map destroyed
28 Stack overflow
84 Menu purged (don't make menu resources purgeable!)

Error Codes 647

I/O Errors (File System/Memory
Manager/Resource Manager)

const
NoErr 0;
DirFulErr = -33;
DskFulErr = -34;
NSVErr = -35;
IOErr = -36;
BdNamErr = -37;
FNOpnErr = -38;
EOFErr = -39;
PosErr = -40;
MFulErr = -41;
TMFOErr = -42;
FNFErr = -43;
WPrErr = -44;
FLckdErr = -45;
VLckdErr = -46;
FBsyErr = -47;
DupFNErr = -48;
OpWrErr = -49;
ParamErr = -50;
RFNumErr = -51;
GFPErr = -52;
VolOffLinErr = -53;
PermErr = -54;
VolOnLinErr = -55;
NSDrvErr = -56;
NoMacDskErr = -57;
ExtFSErr = -58;
FSRnErr = -59;
BadMDBErr = -60;
WrPermErr = -61;

lastDskErr = -64;
noDriveErr = -64;
offLinErr = -65;
noNybErr = -66;
noAdrMkErr = -67;
dataVerErr = -68;
badCkSmErr = -69;
badBtSlpErr = -70;
noDtaMkErr = -7l;
badDCkSum = -72;
badDBtSlp = -73;
wrUnderRun = -74;
cantStepErr = -75;
tkOBadErr = -76;
initIWMErr = -77;
twoSideErr = -78;
spdAdjErr = -79;
seekErr = -80;
sectNFErr = -81;

648

All is well }
Directory full
Disk full }
No such volume
I/O error }
Bad name }
File not open
End of file }
Tried to position to before start of file (R/W)
Memory full (open) or file won't fit (load) }
Too many files open }
File not found }
Diskette is write protected
File is locked }
Volume is locked }
File is busy (delete) }
Duplicate filename (rename) }
File already open with with write permission
Error in user parameter list }
Refnum error }
Get file position error }
Volume not on line error (was ejected) }
Permissions error (on file open) }
Drive volume already on-line at MountVol }
No such drive (tried to mount a bad drive num)
Not a mac diskette (sig bytes are wrong) }
Volume in question belongs to an external fs }
File system rename error }
Bad master directory block }
Write permissions error }

Last in a range of disk errors
Drive not installed }
R/W requested for an off-line drive }
Couldn't find 5 nybbles in 200 tries
Couldn't find valid addr mark}
Read verify compare failed }
Addr mark checksum didn't check}
Bad addr mark bit slip nibbles }
Couldn't find a data mark header
Bad data mark checksum }
Bad data mark bit slip nibbles }
Write underrun occurred }
Step handshake failed }
Track 0 detect doesn't change }
Unable to initialize IWM }
Tried to read 2nd side on a i-sided drive
Unable to correctly adjust disk speed }
Track number wrong on address mark }
Sector number never found on a track }

Turbo Pascal Tutor for the Macintosh

firstDskErr

DirNFErr
TMWDOErr
BadMovErr
WrgVolTypErr
FSDSIntErr

MemFullErr
NilHandleErr
MemWZErr
MemPurErr
MemLockedErr

ResNotFound
ResFNotFound
AddResFailed
RmvResFailed
ResAttrErr
MapReadErr

Error Codes

= -84;

= -120;
= -121;
= -122;
= -123;
= -127;

= -108;
= -109;
= -111;
= -112;
= -117;

= -192;
= -193;
= -194;
= -196;
= -198;
= -199;

{ First in a range of disk errors

Directory not found }
No free WDeB available }
Move into offspring error }
Wrong volume type - operation not supported for MFS }
Internal file system error }

Not enough room in heap zone }
Master Pointer was nil in HandleZone or other
WhichZone failed (applied to free block) }
Trying to purge a locked or non-purgeable block
Block is locked }

Resource not found }
Resource file not found
AddResource failed }
RmveResource failed }
Attribute does not permit operation
Map does not permit operation }

649

650 Turbo Pascal Tutor for the Macintosh

A p p E N D x

E

The Macintosh Character Set

This table shows the decimal numbers and screen representations of the
Macintosh character set. Control (nonprinting) characters appear in
boldface, along with their traditional abbreviations.

Some fonts may produce characters different than those shown here, which
are for a typical laser printer font like Times or Helvetica. The Symbol,
Dingbats, and Cairo fonts, for example, have different characters at every
decimal location. A few high-ASCII decimal locations-such as numbers
252 to 255-can't be typed from the standard Macintosh keyboard.

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
0 00 18 12 36 24 $ 54 36 6
1 01 19 13 37 25 % 55 37 7
2 02 20 14 38 26 & 56 38 8
3 03 ETX 21 15 39 27 57 39 9
4 04 22 16 40 28 58 3A
5 05 23 17 41 29 59 3B
6 06 24 18 42 2A * 60 3C <
7 07 25 19 43 2B + 61 3D
8 08 BS 26 1A 44 2C 62 3E >
9 09 TAB 27 1B FSC 45 2D 63 3F ?
10 OA 28 1C FS 46 2E 64 40 @

11 OB 29 1D GS 47 2F / 65 41 A
12 OC 30 1E RS 48 30 0 66 42 B
13 OD CR 31 1F US 49 31 1 67 43 C
14 OE 32 20 space 50 32 2 68 44 D
15 OF 33 21 ! 51 33 3 69 45 E
16 10 34 22 " 52 34 4 70 46 F
17 11 35 23 # 53 35 5 71 47 G

The Macintosh Character Set 651

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

72 48 H 118 76 v l64 A4 § 210 02
73 49 I 119 77 w l65 AS • 211 03
74 4A J 120 78 x 166 A6 'II 212 04
75 4B K 121 79 Y 167 A7 B 213 05
76 4C L 122 7A z 168 A8 ® 214 D6 +

77 40 M 123 7B { 169 A9 © 215 07 ¢

78 4E N 124 7C I 170 AA TM 216 08 Y.
79 4F 0 125 7D } 171 AB 217 D9 Y
80 50 P 126 7E 172 AC 218 OA /
81 51 Q 127 7F OEL 173 AD ¢. 219 OB c
82 52 R 128 80 A 174 AE lE 220 IX:
83 53 5 129 81 A 175 AF 0 221 DO
84 54 T 130 82 <; 176 BO 222 OE fi
85 55 U 131 83 E 177 Bl ± 223 OF fl
86 56 V 132 84 N 178 B2 ::; 224 EO +
87 57 W 133 85 6 179 B3 ~ 225 El
88 58 X 134 86 U 180 B4 ¥ 226 E2 I

89 59 Y 135 87 a 181 B5 J.l 227 E3 "
90 SA Z 136 88 a 182 B6 a 228 E4 %0
91 5B [137 89 a 183 B7 L 229 E5 A
92 5C \ 138 8A a 184 B8 n 230 E6 E
93 50] 139 8B a 185 B9 1t 231 E7 A
94 5E 1\ 140 8C a 186 BA f 232 E8 E
95 SF - 141 80 c; 187 BB 233 E9 E
96 60 ,

142 8E e 188 BC g 234 EA f
97 61 a 143 8F e 189 BO n 235 EB
98 62 b 144 90 e 190 BE re 236 EC i
99 63 c 145 91 e 191 BF l1J 237 ED t
100 64 d 146 92 192 CO l 238 BE 6
101 65 e 147 93 193 Cl 239 EF 6
102 66 f 148 94 194 C2 ..., 240 FO • 103 67 g 149 95 1 195 C3 ..J 241 Fl 6
104 68 h 150 96 fi 196 C4 f 242 F2 U
105 69 151 97 6 197 C5 243 F3 0-
106 6A j 152 98. b 198 C6 Il 244 F4 U
107 6B k 153 99 () 199 C7 « 245 F5
108 6C 1 154 9A 0 200 C8 » 246 F6
109 60 m 155 9B 0 201 C9 247 F7
110 6E n 156 9C 11 202 CA 248 F8
111 6F 0 157 90 U 203 CB A 249 F9
112 70 P 158 9E 11 204 cc A 250 FA
113 71 q 159 9F ii 205 CD 0 251 FB
114 72 r 160 AO t 206 CE CE 252 FC
115 73 s 161 Al 0 207 CF re 253 FO ~

116 74 t 162 A2 ¢ 208 DO 254 FE
117 75 u 163 A3 £ 209 01 255 FF

652 Turbo Pascal Tutor for the Macintosh

Suggested References

Books

Inside Macintosh, 4 vols. (Reading, Mass.: Addison-Wesley Publishing Co.,
Inc., Apple Press, 1985), volumes I and II in particular.

Stephen Chernicoff, Macintosh Revealed, 2 vols. (Hasbrouck Heights, N.J.:
Hayden Book Company, Apple Press, 1985).

R. G. Dromey, How to Solve it by Computer (Englewood Cliffs, N.J.: Prentice­
Hall International, 1982).

E. Horowitz and S. Sahni, Fundamentals of Data Structures in Pascal
(Rockville: Computer Science Press, Inc., 1984).

Scott Knaster, How to Write Macintosh Software (Hasbrouck Heights, N.J.:
Hayden Book Company, Apple Press, 1986).

D. E. Knuth, Fundamental Algorithms, Vol. 1 of The Art of Computer
Programming, 2d ed. (Reading, Mass.: Addison-Wesley, 1973).

D. E. Knuth, Searching and Sorting, Vol. 3 of The Art of Computer
Programming (Reading, Mass.: Addison-Wesley, 1973).

R. Sedgewick, Algorithms (Reading: Addison-Wesley, 1984).

Dan Weston, The Complete Book of Macintosh Assembly Language
Programming, 2 vols. (Glenview, Ill.: Scott, Foresman and Company, 1986).

Suggested References 653

Magazines

MacTutor Magazine, P.O. Box 400, Placentia, CA 92670

Information Services

SIGBOR, Borland's Special-Interest Group service on CompuServe. Type GO

BOR.

Macintosh/ Apple Users' Group (MAUG) on CompuServe. Type GO

APPDEV.

Other

Apple Programmer's and Developer's Association (APDA), 290 SW 43rd
St., Renton, WA 98055, (206) 251-6548.

654 Turbo Pascal Tutor for the Macintosh

Glossary

ASCII character set The American Standard Code for Information
Interchange's standard set of numbers to represent the characters and
control signals used by computers.

actual parameter A variable, expression, or constant that is substituted for
a formal parameter in a procedure or function call.

address A specific location in memory.

allocate To reserve memory space for a particular purpose, usually from
the heap.

array A sequential group of identical data elements that are arranged in a
single data structure and are accessible by an index.

argument An alternative name for a parameter (see actual parameter).

assignment operator The symbol :=, which assigns a value to a variable or
function of the same type.

assignment statement A statement that assigns a specific value to an
identifier.

assembler A program that converts assembly-language programs into
machine language.

assembly language The first language level above machine language.
Assembly language is specific to the microprocessor it is running on. The
major difference between assembly language and machine language is that
assembly language provides mnemonics that make it more readable.

Glossary 655

binary A method of representing numbers using base 2 notation, where 0
and 1 are the only digits.

binary-coded decimal (BCD) A method of floating-point arithmetic that
prevents the normal round-off error inherent in computer-based arithmetic.

bit A binary digit with a value of either 0 or 1. The smallest unit of data in
a computer.

block The associated declaration and statement parts of a program or
subprogram.

boolean A data type that can have a value of True or False.

buffer An area of memory allocated as temporary storage.

byte A sequence of 8 bits.

cache A buffer storage that is constantly updated with recently accessed
main-storage items.

case label A constant, or list of constants, that label a component statement
in a case statement.

case selector An expression whose result is used to select which
component statement of a case statement will be executed.

central processing unit (CPU) The "brain" of a computer system, which
interprets and executes instructions and controls the other components of
the system.

char A Pascal type that represents a single character.

code segment A portion of a compiled program up to 32,767 bytes in
length.

comment A explanatory statement in the source code enclosed by the
symbols (* *) or { }.

compiler A program that translates a program written in a high-level
language into machine language.

compiler directive An instruction to the compiler that is embedded within
the program; for example, {$R+} turns on range-checking.

compound statement A series of statements surrounded by a matching set
of the'reserved words begin and end.

concatenate The joining of two or more strings.

constant A fixed value in a program.

656 Turbo Pascal Tutor for the Macintosh

control structure A statement that manages the flow of execution of a
program.

data structures Areas of related items in memory, represented as arrays,
records, or linked lists.

debugger A special program that provides capabilities to start and stop
execution of a program at will, as well as analyze values that the program
is manipulating. See MacsBug.

decimal A method of representing numbers using base 10 notation, where
legal digits range from 0 to 9.

declare The act of explicitly defining the name and type of an identifier in
a program.

dereferencing The act of accessing a value pointed to by a pointer variable
(rather than the pointer variable itselO.

definition part The part of a program where constants, labels, and
structured types are defined.

delimiter A boundary marker that can be a word, a character, or a symbol.

dynamic allocation The allocation and de-allocation of memory from the
heap at run time.

dynamic variable A variable on the heap.

enumerated type A user-defined type that consists of a list of identifiers in
which the order and identifier names are determined by the programmer.

expression Part of a statement that represents a value or can be used to
calculate a value.

extension Any addition to the standard definition of a language.

external A file of one or more subprograms that have been written in
assembly language and assembled to native executable code.

field list The field name and type definition of a record.

field width The number of place holders in an output statement.

file A collection of data that can be stored on and retrieved from a disk.

file pointer A pointer that tracks where the next object will be retrieved
from within a file.

file variable An identifier in a program that represents a file.

fixed-point notation The representation of real numbers without decimal
points.

Glossary 657

flag A variable, usually of type Integer or Boolean, that changes value to
indicate that an event has taken place.

floating-point notation The representation of real numbers using decimal
points.

formal parameter An identifier in a procedure or function declaration
heading that represents the arguments that will be passed to the
subprogram when it is called.

forward declaration The declaration of a procedure or function and its
parameters in advance of the actual definition of the subroutine.

function A subroutine that computes and returns a value.

global variable A variable declared in the main program block that can be
accessed from anywhere within the program.

heap An area of memory reserved for the dynamic allocation of variables.

hexadecimal A method of representing numbers using base 16 notation,
where legal digits range from 0 to 9 and A to F.

identifier A user-defined name for a specific item.

increment To increase the value of a variable.

index A position within a list of elements.

initialize The process of giving a known initial value to a variable or data
structure.

input The information a program receives from some external device, such
as a keyboard.

integer A numeric variable that is a whole number in the range -32768 to
32767.

interactive A program that communicates with a user through some I/O
device.

interrupt The temporary halting of a program in order to process an event
of higher priority.

110 Short for Input/Output. The process of receiving or sending data.

110 error An error that occurs while trying to input or output data.

interpreter A program that sequentially interprets each statement in a
program into machine code and then immediately executes it.

islands Nonrelocatable blocks that interfere with heap compaction.

658 Turbo Pascal Tutor for the Macintosh

iteration The process of repetition or looping.

label An identifier that marks a place in the program text for a go to
statement.

linked list A dynamic data structure that is made up of elements, each of
which point to the next element in the list through a pointer variable.

local identifier An identifier declared within a procedure or a function.

local variable A variable declared within a procedure or a function.

long word A location in memory occupying 4 adjacent bytes; the storage
required for a variable of type LongInt.

machine language A language consisting of strings of Os and 1s that the
computer interprets as instructions.

main program The main statement part of a program from which all its
subprograms are executed.

module A self-contained routine or group of routines.

nesting The placement of one unit within another.

nil pointer A pointer having the special value nil; a nil pointer doesn't
point to anything.

node An individual element of a tree or list.

object code The output of a compiler.

operand An argument that is combined with one or more operands and
operators to form an expression.

operating system A program that manages all operations and resources of
the computer.

operator A symbol, such as +, that is used to form expressions.

operator hierarchy The rules that determine the order in which operators
in an expression are evaluated.

ordinal type An ordered range of values.

overflow The condition that results when an operation produces a value
that is more positive or negative than the computer can represent, given the
allocated space for the value or expression.

parameter A variable or value that is passed to a procedure or function.

parameter list The list of value and variable parameters declared in the
heading of a procedure or function declaration.

Glossary 659

pointer A variable that points to a specific memory location.

pop The removal of the topmost element from a stack.

predefined identifier A constant, type, file, logical device, procedure, or
function that is available to the programmer without having to be defined
or declared.

procedure A subprogram that can be called from various parts of a larger
program.

procedure call The invocation of a procedure.

push The addition of an element to the top of a stack.

queue A data structure in which the first element placed in the data
structure is the first element to be removed.

random access Directly accessing an element of a data structure without
sequentially searching the entire structure for the element.

random access memory (RAM) Memory devices that can be read from and
written to.

range-checking A Turbo Pascal feature that checks a value to make sure it
is within the legal range defined.

read-only memory (ROM) The memory device from which data can be
read but not written.

real number A number represented by decimal point and/or scientific
notation.

record A structured data type referenced by one identifier that consists of
several different fields.

recursion A programming technique in which a subprogram calls itself.

relational operator The operators, =, <>, <, >, <=, >=, and in, all of which
are used to form boolean expressions.

reserved word An identifier reserved by the compiler.

SANE Standard Apple Numeric Environment; ROM-based numeric
routines accessed through unit SANE.

scalar type A Pascal data type consisting of ordered components.

scope The visibility of an identifier within a program.

sequential access The ordered access of each element of a data structure,
starting at the first element of the structure.

660 Turbo Pascal Tutor for the Macintosh

set An unordered group of elements, all of the same scalar type.

set operator The symbols, +, -, *, =, <=, >=, <>, and in, all of which return
set-type results when used with set-type operands.

simple type A predefined or user-defined scalar type.

source code The input to a compiler.

stack A data structure in which the last element stored is the first to be
removed.

stack overflow An error condition that occurs when the amount of space
allocated to the computer's stack is used up.

stack segment The segment in memory allocated as the program's stack.

statement The simplest unit in a program; statements are separated by
semicolons.

string A sequence of characters that can be treated as a single unit.

structured type One of the predefined types (array, set, record, file, or
string) that are composed of structured data elements.

subprogram A procedure or function within a program; a subroutine.

subrange A continuous range of any scalar type.

subscript An identifier used to access a particular element of an array.

syntax error An error caused by violating the rules of a programming
language.

terminal An I/O device for communication between a user and a
computer.

tree A dynamic data structure in which a node (branch of a tree) may point
to one or more other nodes.

type definition The specification of a type based upon other types that are
already defined.

value parameter A procedure or function parameter that is passed by
value; that is, the value of the parameter is passed and cannot be changed.

vanilla Programmese for standard or basic.

variable declaration A declaration that consists of the variable and its
associated type.

Glossary 661

variable parameter A procedure or function parameter that is passed by
reference; that is, the address of the parameter is passed so that the value of
the parameter can be accessed and modified.

variant record A record in which some fields share the same area in
memory.

word A location in memory occupying 2 adjacent bytes; the storage
required for a variable of type Integer.

662 Turbo Pascal Tutor for the Macintosh

Index

Index 663

$I(nclude) compiler directive 32,
236,240

$5 directive 311
$T (type) compiler directive 531
$U(nit) compiler directive 249

<=197
<> 196
=196
>= 197

A
A-Line Traps 356
accessing the screen buffer 342
Ada 25
addresses 17
alerts 562
algorithms 58
allocation blocks 532
and operator 119,327

modulo arithmetic 328
Animals.Pas 9, 280
animation

real-time 260
anonyr.noustypesl12
APL25
Apple menu 41
application heap

limits 392
application resources 397
arithmetic overflow 93
array assignments 159
arrays 155

initializing 161
packed 164
simulating big 393

arrays in memory 163
array size limitation 157
range-checking 160
ASCII character set 19
assembler 24
assembly language 24
assignments 167
assignment statement 85
assignment statements 71
assign procedure 226

664

automatic Save 127

B
backing up 29
backslash

and hexadecimals 501
bad pointers 592
base type 156
BA5IC26
batch jobs 165
binary and hex

relationship between 324
binary system 16
binary tree 280
binary trees

inserting into 281
traversing 282

inorder 282
postorder 282
preorder 282

bit images 411
bitMap boundary rectangle 444
Boolean expressions 60, 65, 98,118
boolean operations on integers 319
breakpoints 600
buffering 451
bugs 27
buttons 486
byte 16

C
case 115, 170, 176
case differences 61
case statement 85, 127
Central Processing Unit 13
Char 60, 65, 99
characters 19
check boxes 486
children 280
Chr function 172
circular linked list 269
Clipboard 39
clipping and regions 420, 439
close procedure 227
COBOL 25
colons 222

Turbo Pascal Tutor for the Macintosh

colons in file names 51
Command-[44
Command-l44
Command-key equivalents 40
Command-. 52
Command-R 49
Command-S 52
Command-Y 48
Command-Q 53
commenting out code 86
comments 72, 86
compile-time memory 313
Compile menu 46
compiler 27
compiler directive

$1- 236
compiler directives 109
compiling 48
compound statement 85,116
compression 559
Comptype60
concat

restriction 169
concat function and the + operator

168
conditional statements 115

If Statement 115
Console logical device 234
constant definitions 65
constant list 130
constants 65
control characters 19
Control Demo 9
Control~anager625

Control ~anager routines 488
DisposeControl488
DrawControls 489
GetNewControl488
NewControl488

Control record 487
Controls 485, 487, 489, 491,493, 495,

498
activate events 495
active and inactive 487
buttons 486
check boxes 486
ControlDemo.Pas 490

Index

ControlDemo.Rsrc 491
defining CNTL resources 492
defining WIND resources 492
GetCtlValue 490
mouseDown processing 489
part codes 487
radio buttons 486, 497
scroll bars 486
SetCtlValue 490
sound manager 493

control structures 115
converting between Longlnt and

Integer 95
copy function 169
counter 123
Crash procedure 574
creator

~acintosh file 223
C typing 174
current length 101
Cut and Copy 39

o
data

resource forks and 396
data fork 396
data forks 224
data types 57
deallocation of dynamic variables 212
debugging 27,586,587,589,591,593

595,597,598,599,601,603,605
Macsbug599

decimal system 16
declaration part 81
default font 36
defined scalar types 103
delete procedure 170
deleting text 38
delimiters 86
deque275
desk accessories 499

command-key equivalents 509
key-down events 509
menus 504, 508
mouse-downs 504
supporting 503
support requirements 505

665

SystemTask routine 505
Desk Manager 629
dialog

beep 521
dialog classes

alert 512
modal 511
modeless 512

DialogDemo.Pas 9
Dialog Manager routines 517

Disposdialog 517
GetNewDialog 517
ModalDialog 517

dialogs 511
check-box processing 524
constants 522
customizing ModalDialog 517
data structures 513
DialogDemo.Pas 520
DialogDemo.R 520
EditText Field 525
EditText items 516
ellipses 520
item list 515
item syntax 516
MemoryDemo.Pas 526
ProcPtrs 517
resources and 514
return convention 519
RMaker and 514

discriminated union 189
Display Memory command 602
Dispose procedure 212
distribution disk

files 8
queue 274
double type 60
dummy parameter

see formal parameter 144
dynamic allocation 199

New procedure 202
dynamically allocated 142

E
editing text 37
Edit menu 38, 43
editor window 36

666

empty set 194
end

reserved word 48
endless loops 125
E notation 59
enumerated scalar types 104
Eof function 220
Eoln function 220
equality and inequality operators 196
Erase 233
error codes 647
errors

compile-time 587
compile time 587
run-time 587

Event Manager 621
events 449

application-defined 459
auto-key 452
disk insertion 459
key-down 452
key-up 452
mouse-down 453
mouse-up 454
null 451

EventWorkbench.Pas 9, 455
exit procedure 152
expansion connectors 346
exponential notation 96
expressions 68
extended type 60

F
factorials 148
fields 180
file-system conventions 221
FileDemo.Pas 10
File Manager 221, 529, 631
File Manager routines 532
File menu 41
file names 51, 222
FilePos function 231
files 215, 530

creators 531
distribution disk 8
End of files (EOF) 532
File Demo. Pas 542

Turbo Pascal Tutor for the Macintosh

input/output steps 541 GetNode function 282
path names 530 GetString function 260
pointer 220 global variables
reading 535 32k of 308
reading and writing 529 goto statement 85, 115, 315
reference number 533 how to use 316
standard 633 syntax 315
types 531 GrafPort 415,465
writing 536 graphs 285

file types 218, 529 directed 286
component 218 undirected 286
text 219 weighted 286

FillChar 162
H Finder information 538

firmware 17 Handle 383
fixing bit 7 327 Handle pitfalls 593
flags 60 hashing 300
floating-point numbers 59 header node 268
Flush Vol 537 heap 211, 368
font "island" 392

definition 398 compacting 380
Font Manager 620 fonts and 370
Font menu 46 fragmented
Fonts and the heap 370 see fragmentation 378
forest 279 MaxA vail 370
formal parameter 144 New Procedure 368
Format menu 45 purging 389
formatting declarations 82 HPurge routine 389
formatting statements 84 Heap space 590
for statement 85, 123 heap zones 373
FORTRAN 25 application heap 373
forward declarations 150 system heap 373
fragmentation hierarchical file system (HFS) 222,

heap 378 530
free union 189 high-level languages 25
FSClose534 highlighting lines 37
FSDelete 537 HLock procedure 391
FSOpen532 HUnlock procedure 391
FSRead533

I FSWrite536
functions 106, 146,167 I-beam cursor 37

Ord 107 I/O Result function 237
Pred 107 identifiers 61
Succ 107 Standard Pascal 61

G
Turbo Pascal 61
underscores 61

GetNextEvent routine 449 ID numbers 403

Index 667

if statement 71, 85
Include (.Inc) files 8
index table 301
index type 156
indirect recursion 149
inequality and equality operators 196
Inline Directives 354

units and 356
in operator 196
input/ output error handling 235
input devices 15
insertion point 37
insertion sort method 293
insert procedure 171
integer operators 92
integers 59, 65, 92

boolean operations on 319
integrated circuits 16
internal drive 345
interpreter 26
Interrupt switch 126,600
iteration 120
iterative 115

K
keyboard 344
KeyPressed function 235
key Toolbox routines 609

L

Control Manager 625
Desk Manager 629
Event Manager 621
File Manager 631
Font Manager 620
Memory Manager 609
Menu Manager 627
Miscellaneous Routines 634
QuickDraw 612
Resource Manager 611
Standard File 633
Window Manager 622

large arrays
faking 306

large programs 305
length function 167
Lessons folder 9, 32

668

library routines 54
linefeed character 219
lines 219
linked list 208

circular 269
linked lists 267

linear versus circular 269
single versus double 268

linking 250
LISP 25
list

traversing 211
local variables 141

large 309
lifetime of 141

logical devices 234
logic board 14
Long Integers 59, 65, 95

M
machine language 17,24
Macintosh

display 340
processor 339
user interface 333

MacPaint 559
MacsBug599

disassembly feature 603
MacTypist 9, 549, 551, 553, 555, 557,

559,561,563,565,567,569,571,
573,575,577,579,581,583
$R filename directive 584
activate events 566
ALRT Templates 579
Animation 553
Background.Data 551
Bundle resources 583
compression 559
Crash procedure 574
data structures 553
File reference resources 583
Finder resources 582
Icon resources, 581
initializing 556
key-down eve~ts 576
MacPaint 559 .

Turbo Pascal Tutor for the Macintosh

MacTypist.R 579 Modifiers field
main event loop 569 testing 457
main program 556 modulo arithmetic 328
moving the car 573 Monaco 36
rectangles 555 MoreMasters procedure 388
StartSound routine 574 mouse 337, 344
string lists 580 drawing lines with 427
unpacking the File 563 mouse-downs 496
update events 567 multidimensional arrays 158

mantissa 97 multiple pointers 213
Manual.Pas 9

N mark 531
mass storage 15 nested comments 86
master pointer 383 New procedure 202
master pointer blocks 388 NewPtr374
MaxA vail function 211 nibble 324
maximum length 101 nil 204
memory 13 nodes 267
Memory Manager 373, 609 deleting 283

allocation 389 deletion 271
Memory Manager routines header 269

FreeMem379 insertion 270
GetHandleSize 386 non-binary trees 284
MemError 388 not operator 118
NewHandle 383 null statement 85
SetHandleSize 386 null string 100, 169

Memory map 361
0 memory mapped video 341

memory usage 113 operating system 349
Memtypes 352 operating systems 17
menu bar 36 operations

mouseDowns in 502 set 196
Menu Demo 10 operators 67, 167
MenuDemo.Pas 505 and 68
Menu Manager 627 div67
Menu Manager routines 501 equality 196

AddResMenu 502 in 68,196
DrawMenuBar 502 inequality 196
GetMenu501 mod 67
InitMenus 501 not 68
InsertMenu 502 or 68
MenuHandle 502 sh168

menus 499 shr68
metastatement Option key 19

see compiler directives. 109 or 119
Miscellaneous folder 9 ordinal values 106
miscellaneous routines 634 OSlntf533

Index 669

OSIntf353
output devices 15
overstrike mode 37

p
PackIntf 353,538
parameter passing 143
parameters 142
parent 280
passing large structures 310
passing strings 176
Paste 39
path names 222, 241
pen 418
pen transfer modes 418

bic 418
copy 418
or 418
Xor418

Pixels 414
number on screen 414

place value 319
pointers 200

assigning to 203
bad 592
dangling 213
dereferencing 201
dynamic allocation 199
multiple 213

pointer types 201
ports 346
Pos function 169
precedence 69,184
predefined 59
predefined data types 91
printer 234
procedures 133, 167
procedure statement 85
processor registers 602

address registers 602
data regIsters 602
program counter 602

program heading 80
programmer's switch 126, 600
program structure 79

declaration part 74
heading 73

670

statement part 74

Q
queue 274
QuickDraw 350, 352, 405, 407, 409,

411,413,415,417,419,421,612
clipping 420
clipping and regions 420
converting numbers to text 436
coordinate plane 406
drawing text 432
free union 408
global variables 417

thePort parameter 424
GrafPort 415
lines 425
origin 407
ovals 431
PasConsole unit 424
PasInOut unit 424
picture mechanism 445
points 407
random function 428
rectangles 429, 437
round-cornered rectangles 431
sample programs 423
screenBits 441

QuickDraw examples folder 10
quicksort method 296

R
radio buttons 486
RAM 13
random-access files 229

creating 231
properties of 230

range-checking 109
range errors 108
range of values 103
range testing 588
ReadChar function 235
ReadLn 48, 85
ReadLn procedure 216
Readme file 8
Read procedure 216
Real operators 96
reals 59, 65, 96

Turbo Pascal Tutor for the Macintosh

records 179
rectangles 409
recursion 310

scope 151
recursive procedures 148
register 362
relational operators 68, 118
relocatable blocks 383, 386
Rename 233,537
repeat ... until statement 121
repeat statement 85
representing numbers in memory 325
reserved words 64
reset procedure 226
reset switch 126, 600
resource forks 224, 396
Resource Manager 611
Resource Manager routines 398

CloseResFile 398
CountResources 398
GetIndResource 398
GetResource 399
OpenResFile 398
ReleaseResource 399

Resources
origin 395

Return as default 519
reversing base values 322
rewrite procedure 226
RMaker400
ROM 14

Routines in 350
root 279

S
Save As dialog box 51
saving to disk 51
scope 136, 151
screen buffer 341
scroll bars 486
scrolling 39
search 298

binary 299
extemal301
sequential 298

Search menu 44
SeekEof function 220

Index

SeekEoln function 220
seek procedure 230
segment loader 597
segments 311
sequence

typed files 229
set constructor 194
set difference operator (-) 197
set disjunction 198
SetFPos534
set inclusion operators 197
set intersection operator (*) 197
set limitations 305
sets 193

base type 193
set type

defining 195
set union operator (+) 197
SFGetFile 535, 541
SFPutFile 535, 539
shellsort method 294
shift operators 329
shl329
shr329
siblings 280
sign bit 326
simple types 91
Simulating big arrays 393
size box 40
SizeOf 162
software 17
sorting 292
sparse arrays 286

mixed 289
when to use 290

speaker 346
special characters 501

(501
(- 501
/C501
\ followed by 2 hexadecimal
units 501

special key' 602
stack 272, 362
overflow 368, 591

671

pointer 362
register relative addressing 364
StackDemo 364
variables

size limits of 366
stack overflow run-time error 309
standard file 633

package 529
standard functions 106
StartSound routine 574
startup

routine 14
software 12

statement
part 83
types 84

statements 71
string parameters

IBM vs. Macintosh 177
strings 99, 165

as arrays 173
comparisons 175
constants 65, 100
variables 100

structured types 91
StuffHex 446
subprograms 132
subranges 111
subtree 279
symbol table 240
syntax 156
syntax diagram 62
System error handler 589
System file 397

T
tag field 188
terminal node (or leaf) 280
Test option 32
text files 53
Toolbox

units and 351
user interface 349

Toolbox and error checking 593
Toolbox functions

OpenDeskAcc 381
ToolIntf 353

672

trap dispatcher 356
Trap Mechanism 353

A-Line Traps 356
trees 279
truth table 119
Turbo Pasca128, 351
Turbo Pascal Icon 35
Turbo Tutor 8
Turbo Typist 255
Tutor.Pas8
Tutor.R8
Tutor.Rsrc 8
two's complement notation 325
typecasting 375
types 58, 91, 166

coercion 232, 375
definition 104
Macintosh file 223

Typist 9
Typist.Data 9
Typist.Pas 9

U
undefined values 110
Undo 38
unit

icon 248
implementation 245
initialization code 250
interface 245
number 247
syntax 247

UnitMover
application 252

units 351
Byte 257
definition of 243
inline directives and 356
Memtypes 352
OSIntf257
QuickDraw 257

user-defined 60
user interface

standardization 335
uses clause 234, 257
uses statement 249
using Turbo Tutor 32

Turbo Pascal Tutor for the Macintosh

v
value parameter 598
value parameters 144
variable declaration 66
Variables 66
variant part

syntax 188
variant records. See also case

statement. 186
var vs. value parameters 176
volumes 221, 530

reference number 535

W
while statement 85, 121
window

terminal 50
WindowDemo.Pas 9, 474
Window Manager 463, 622

mouse-downs and 471
Window Manager routines 470

DisposeWindow 470
OragWindow 471
FrontWindow 470
GetNewWindow 470
lnitWindows 469

Index

NewWindow 470
SelectWindow 471

Windows 461, 463, 465, 467, 469, 471,
473,475,477,479,481,483
active 463
application 463
content region 466
document 462
drawing 468
goAwayFlag 466
hilited flag 466
inactive 463
structure region 466
system 463
typing 476
visible flag 466
window list 470

Wirth, Niklaus 26
with statement 85, 183
pointer restrictions 186
WriteLn 48, 85
WriteLn procedure 216
Write procedure 216

X
xor 119

673

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, caJl (BOO) 255-8008; CA (BOO) 742-1133;
CANADA (BOO) 237-1136.

1,~r;IEI; ""A'AIA"
~.] • • AIAIII

The easy-to-use relational database that thinks like a spreadsheet.
Reflex for the Mac lets you crunch numbers by entering formulas and link

databases by drawing on-Bcreen lines.

5 Iree ready-to-use templates are included on the examples disk:

• A sample 1040 tax application with Sched­
ull3 A, Schedule B, and Schedule D, each
contained in a separate report document.

• A portfolio analysis application with linked
databases of stock purchases, sales, and
dividend payments.

• A checkbook application.

• A client billing application set up for a law
office, but easily customized by any
professional who bills time.

• A parts explosion application that breaks
down an object into its component parts
for cost analysis.

Reflex lor the Mac accomplishes all 01 these tasks without programming-using
spreadsheet-like lormulas. Some other Reflex lor the Mac leatures are:

• Visual database design.
• "What you see is what you get" report and form layout

with pictures.
• Automatic restructuring 'of database files when data

types are changed, or fields are added and deleted.
• Display formats which include General, Decimal,

Scientific, Dollars, Percent.

• FII, Edit formet Descrlbel!BlllllllWlndow

• Data types which include variable length text, number,
integer, automatically incremented sequence number,
date, time, and logical.

• Up to 255 fields per record.
• Up to 16 files simultaneously open.

.• Up to 16 Mac fonts and styles are selectable for
individual fields and labels .

• file Edit forme. D .. en'e D8'ebe.1 ' •• rcb Mise Window

~
." m ...

~ ~
components "Perts
compon.ntO'

per'

After opening the "Overview" window, you
draw link lines between databases directly
onto your Macintosh screen.

The link lines you draw establish both
visual and electronic relationships between
your databases.

You can have multiple windows open
simultaneously to view aU members of a
linked set-which are interactive and truly
relational.

Critic's Choice
" ... a powerful relational database ... uses a visual approach to information management." InloWorld

" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine

" ... bridges the gap between the pretty programs and the power programs."Stewart Alsop, PC Letter

Suggested Retail Price: $99.95*
(not copy protected)

Minimum ,,,'.m cDnllflUratlDn: Macirtosh 512K or Macintosh Plus with one disk drive. Second extemaJ drive recommended.
Reflex is a registered trademark of Borland! Analytica, Inc. Macintosh is a trademark of MCintosh Laboratory, Inc. and is used with express permission of its owner.
Copyright 1987 Borland International

"Introductory price expires July 1. 1987

BOR0149A

~11'£II'fll® DIE IEIITII'
IJ~ In.IIJ : IIUI,. Re/ease2.0

Macintosh"

The most complete and comprehensive collection 01
desk accessories available lor your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook": The Outliner
and MacPlan": The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ PhoneLog
~ Analog clock
~ Alarm system
~ Calculator
~ Report generator
~ Telecommunications (new version now

supports XModem file transfer protocol)

II 13.67'JiS Salts ~
D 15.94'6 SaltsB

II 29.61'JiS TolalRtvfnUK

m ""
II 0S1 £XpfflS."

o O.319ii1 Labor

II] 4.669ii1 NMW\ails

1;3 6.2191 Ov.I'tI ... d

[:]1'.1B'JISTot .. IE><pensts

El ""
II 18.451& "ttProfil

$'1"3·.3·1:······$·,·4·.64:
. $1 99",65:···· sfi,'9'.6'2:
S266·.2·0:····$29.Ui2:
. ~4?~Y~~:::: .~~f9:~····
~?~9)t: :.\~9~~:·~~~:::

MacPlan does both spreadsheets and business
graphs. Paste them into your Out/ook files and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland
International, Inc. Macintosh is a trademark of MCintosh Laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 1987 Borland International BOR 00690

"",
'ABal.~j'"T1II"

The ultimate Pascal development environment

Borland's new Turbo Pascal lor the Mac is so incredibly last that it can
compile 1,420 lines 01 source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and "Units"
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units,"
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces"which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisae that they should be living together
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27 -second Guide to Turbo Pascal for the Mac
• Compilation speed of more than 12,000 lines

per minute
• "Unit" structure lets you create programs in

modular form
• Multiple editing windows-up to 8 at once

Workshop Pascal (with minimal changes)
• Compatibility with Hierarchical File System of

your Mac
• Ability to define default volume and folder names

used in compiler directives
• Compilation options include compiling to disk or

memory, or compile and run
• Search and change features in the editor speed up

and simplify alteration of routines
• No need to switch between programs to compile

or run a program
• Ability to use all available Macintosh memory

without limit
• Streamlined development and debugging • "Units" included to call all the routines provided by
• Compatibility with Macintosh Programmer's Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)
'Introductory price expires Juty 1. 1987

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

Turbo Pascal and SideKick are registered trademarks of Borland International. Inc. and Reflex is a
registered trademark of Borlandl Analytica: Inc. Macintosh is a trademark of MCintosh Laboratories. Inc. licensed
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer. Inc. Inside
Macintosh is a copyright of Apple Computer. Inc.
Copyright 1987 Borland International BOR 0167A

Borland
Software
OBD.Bll fODAY

---"'--"'11 1

'

4585 Scotts Valley Drive Scotts Valley, California 95066 i

I In r i I To Orde~ ,~"", California, i
By Credit call I i

I Card, ' ... ,' (800) I'

I Call 742-1133 i

I (800) i

255 8008 In Canada call i

- (800) 237-1136 i

__ ... ____ 1

1
BOR 0234

1

1

1

1

1

Borland's new Turbo Pascal Tutor is everything you need to start
programming In Turbo Pascal on the Macintoshr It takes you
Irom the bare basics to advanced programming in a simple,
easy-to-understand lashion.

No gimmicks. It's all here. The man­
ual, the Tutor application, and 30 sam­
ple programs provide a step-by-step
tutorial in three phases: programming in
Pascal, programming on the Macintosh,
and programming in Turbo Pascal on
the Macintosh. Here's how the manual
is set up:

Turbo Pascal lor the Absolute
Novice

This delivers the basics- a concise
history of Pascal, key terminology, your
first program.

A Programmer's Guide to Turbo
Pascal

These chapters cover Pascal specif­
ics-program structure, procedures
and functions, arrays, strings, and so
on. We've also included Turbo Typist,
a textbook sample program.

Advanced Programming
This takes you a step higher into

stacks, queues, binary trees, linked
structures, writing large programs, and
more.

Using the Power of the
Macintosh

These chapters discuss the revolu­
tionary hardware and software features
of this machine. They introduce the
600-plus utility routines in the Apple
Toolbox.

Programming the Macintosh
in Turbo Pascal

This section shows you how to
create true Macintosh programs that
use graphics, pull-down menus, dialog
boxes, and so on. Finally, Mac Typist, a
complete stand-alone application fea­
turing animated graphics, builds on
Turbo Typist and demonstrates what
you can do with all the knowledge
you've just acquired.

The disk contains the source code
for all the sample programs, including
Turbo Typist, MacTypist, and Turbo
Tutor. The Tutor's split screen lets you
run a procedure and view its source
code simultaneously. After running it,
you can take a test on the procedure.
If you're stuck for an answer, a Hint
option steers you in the right direction.

Macintosh topics included are
@' memory !11anagement @' menus
@' resources and resource files @' desk accessory support
@' QuickDraw @' dialogs
@' events @' File Manager
@' windows @' debugging
@' controls

........ 1ya\InI ~ .. ~ AIr(Macinlosh with alleasl 512K 01 RAM. Requires Turbo Pascal.
b1IoPosairodb1lolior .. regisIoredDlllnwlstlllol1nl _Irt. Ohrbmlrodproll.l;t DlllnwlscrregisloredDlllnwls
tl toir ,,,,,,,*,,_~ 198711011n1_ 1IOR0373

