

TURBO C®
Reference Guide

This manual was produced in its entirety with
Sprint: The Professional Word Processor,®

available from Borland.

Borland International, Inc.
4585 Scotts Volley Drive

Scotts Volley, California 95066

Copyright ©1987
All Rights Reserved. First Printing, 1987

Printed in U.S.A.

10 9 8

Table of Contents

Introduction 1

Volume II: The Reference Guide 0 1
Typographic Conventions 0 3
Borland's No-Nonsense License Statement 00000000000000000000000000 3
Acknowledgments 000 4
How to Contact Borland 0 4

Chapter 1. Using Turbo C Library Routines 7

In This Chapter 00 7
The Library Routine Lookup Section 0 8
Why You Should License the Turbo C Run-Time Library Source Code 0 0 8
The Turbo C Include Files 000000000000000000000000000000000.000000 10
Library Routines by Category 000000000000000000000000000000000000 12
The main Function 0 17

The Arguments to main 000000000000000000000000000000000.000000 17
An Example Program Using argc, argv and env 00000000000000.000000 18

When You Compile Using -p (Pascal Calling Conventions) 000000000 19
The Value main Returns 0 20

Global Variables 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 21
daylight, timezone 00 • 0 0 0 0 0 0 21
errno, _dosermo, sys_errlist, sys_nerr 0 • 0 0 0 0 0 0 21
_fmode 00 0 0 24
_psp, environ 0 • 0 0 0 0 0 0 25
_stklen 00.000 0 0 0 26
_version, _osmajor, _osminor 0 26
_8087 000.00 0 0 0 0 27

Chapter 2. The Turbo C Library 29

using library routine entries 0 0 0 0 00 0000 0 0 0 0 0 0 29
abort 00 0 0 0 0 0 0 30
abs 00 0 0 0 0 0 000 30
absread 00 0 0 0 0 32
abswrite 0 33
access 00 0 0 000 33
acos 00 0 0 0 0 000 34

allocmem .. 35
asctime .. 36
asin ... 36
assert ... 37
atan ... 38
atan2 .. 38
atexit .. 39
atof ... 40
atoi ... 41
atol ... 41
bdos .. 42
bdosptr .. 43
bioscom ... 44
biosdisk ... 46
biosequip .. 49
bioskey .. 50
biosmemory ... 52
bios print .. 52
bios time ... 53
brk ... 54
bsearch .. 55
cabs ... 58
calloc ... 58
ceil ... 58
cgets .. 59
chdir .. 59
_chmod ... 60
chmod .. 60
_clear87 ... 62
clearerr .. 62
_close ... 63
close .. 63
_control87 ... 64
corel eft .. 65
cos .. 65
cosh .. 65
country .. 66
cprintf ... 67
cputs .. 68
_creat ... 68
creat .. 68
creatnew .. 70
creattemp .. 71

cscanf ... 71
ctime .. 71
ctrlbrk ... 74
difftime ... 75
disable .. 75
dosexterr .. 76
dostounix ' .. ' .. 77
dup ... 78
dup2 .. 79
ecvt ... 79
enable ... 80
eof .. 80
exec .. 81
_exit .. 84
exit ... 85
exp ... 85
fabs ... 87
farcalloc ... 88
farcoreleft ... 88
farfree ... 88
farmalloc .. 89
farrealloc .. 91
fclose ... 92
fcloseall ... 93
fcvt ... 93
fdopen .. 93
feof ... 94
ferror ... 94
fflush ... 95
fgetc .. 95
fgetchar ... 96
fgets .. 96
filelength .. 96
file no ... 97
find first ... 97
findnext ... 99
floor ... 100
flushall ... 100
fmod ... 101
fnmerge .. 101
fnsplit .. 104
fopen .. 105
FP_OFF .. 107

iii

FP _SEG .. 108
_fpreset .. 108
fprintf .. 109
fputc ... 109
fputchar ... 110
fputs ... 110
fread ... 110
free .. 111
freemem .. 111
freopen ... 112
frexp, ; .. 112
fscanf .. 112
fseek ... 113
fstat .. 114
ftell .. 115
fwrite .. 115
gcvt .. 115
geninterrupt .. 116
getc .. 116
getcbrk ... 118
getch ... 118
getchar .. ~ 119
getche .. 119
getcurdir ... 119
getcwd ; ~ ... 120
getdate ... 121
getdfree .. 123
getdisk ... 123
getdta .. 124
getenv ... 125
getfat .. 126
getfatd .: ... 127
getftime .. 127
getpass ... 128
getpsp .. 129
gets ; 129
gettime ... 131
getvect ... 132
getverify 133
getw ... 133
gmtime ... 134
gSignal ... 134
harderr ... 134

iv

hard resume ... 137
hardretn .. 137
hyperb ... 137
hypot .. 138
inport .. 139
inportb ... 140
int86 ... 140
int86x .. 142
intdos ... 142
intdosx ... 144
intr .. 144
ioctl .. 145
is... 147
isatty ... 149
itoa .. 149
kbhit ... 150
keep ... 150
labs .. 151
ldexp .. 151
lfind ... 151
localtime ... 152
lock .. 152
log ... 153
log10 ... 153
longjmp .. 153
lsearch ... 155
lseek ... 155
ltoa .. 157
malloc .. 157
_matherr ... 159
matherr .. 161
mem .. 164
MK_FP ... 165
mkdir .. 166
mktemp .. 166
modf ... 167
movedata ... 167
movmem ... 168
_open .. 169
open ... 169
outport ... 172
outportb .. 172
parsfnm .. 172

v

peek .. .
peekb
perror
poke .. .
pokeb
poly .. .
pow
pow10
... printf
putc
putch
putchar .. .
putenv .. .
puts , .. .
putw .. .
qsort .. .
rand .. .
randbrd
randbwr
_read
read .. .
realloc
remove
rename .. .
rewind .. .
rmdir
sbrk
... scanf .. .
searchpath
segread .. .
setblock
setbuf
setcbrk .. .
setdate .. .
setdisk .. .
setdta
setftime .. .
setjmp
setmem .. .
setmode
settime
setvbuf
setvect

vi

173
174
174
175
176
176
177
177
177
191
192
192
192
193
194
194
195
196
197
198
198
199
199
200
200
201
201
201
213
215
215
216
218
218
219
219
219
220
220
220
221
221
222

setverify .. 222
sin ... 222
sinh ... 223
sleep ... 223
sopen .. 224
spawn ... 224
sprintf .. 229
sqrt .. 229
srand .. 230
sscanf .. 230
ssignal ... 230
stat .. 232
_status87 ... 233
stime ... 234
stpcpy .. 234
str... . .. 235
strerror ... 244
swab ... 245
system ... 246
tan ... 246
tanh ... 247
tell ... 247
time ... 247
toascii .. 248
_tolower .. 249
tolower ... 249
_toupper ... 250
toupper .. 250
trig .. 250
tzset ... 251
ultoa ... 252
ungetc ... 252
ungetch .. 252
unixtodos ... 253
unlink .. 253
unlock ... 254
va_... 254
va_arg ... 257
va_end ... 257
va_start .. 258
vfprintf 258
vfscanf ... 258
vprintf ... 259

vii

vscanf .. 259
vsprintf .. 259
vsscanf ... 260
_write .. 260
write ... 260

Appendix A. The Turbo C Interactive Editor 263

Introduction .. 263
Quick In, Quick Out .. 263
The Edit Window Status Line 264

Editor Commands ... 265
Basic Cursor Movement Commands 267
Quick Cursor Movement Commands 267
Insert and Delete Commands 268
Block Commands .. 269
Miscellaneous Editing Commands 271

The Turbo C Editor V s. WordStar 274

Appendix B. Compiler Error Messages 277

Fatal Errors ... 278
Errors .. 279
Warnings ... 292

Appendix C. Command-Line Options 297

Turning Options On and Off 299
Syntax .. 299
Compiler Options .. 300

Memory Model .. 301
#defines .. 301
Code Generation Options 301
Optimization Options ... 303
Source Options .. 305
Errors Options ... 305
Segment-Naming Control 307
Compilation Control Options 308

Linker Options .. 308
Environment Options .. 308

Appendix D. Turbo C Utilities

CPP: The Turbo C Preprocessor Utility

viii

311

311

CPP as a Macro Preprocessor 312
An Example ... 313

The Stand-Alone MAKE Utility 314
A Quick Example ... 314

Creating a Makefile .. 316
Using a Makefile .. 317
Stepping Through " ., 317

Creating Makefiles .. 319
Components of a Makefile 319

Explicit Rules .. 320
Special Considerations 321
Examples ... 321

Implicit Rules .. 322
Special Considerations 324
Examples ... 325

Command Lists ... " .. 325
Prefix .. 325
Command body ... 326
Examples , " 327

Macros .. 327
Defining Macros .. 328
Using Macros ... 329
Special Considerations 329
Predefined Macros ... 330
Various File Name Macros , .. , 330

Directives .. 332
File-Inclusion Directive 332
Conditional Directives 333
Expressions Allowed in Conditional Directives 334
Error Directive .. 336
Undef Directive ... 336

Using MAKE. .. 336
Command Line Syntax .. 336
A Note About Stopping MAKE 337
The BUlL TINS.MAK File , 338
How MAKE Searches for Makefiles 338
The TOUCH UtiFty .. 338
MAKE ComJ:l}and Line Options 339

MAKE Error Messages .. 339
Fatals ... , 340
Errors '" " 340

Turbo Link ... 343
Invoking TLINK .. 343

ix

Using Response Files .. 345
Using TLINK with Turbo C Modules 346

Initialization Modules 346
Libraries .. 347

Using TLINK with TCC 347
TLINK Options .. 348

The / x, / m, / s Options 348
The /1 Option .. , 350
The / i Option .. 350
The / n Option .. 350
The / c Option .. 350
The / d Option .. 351
Restrictions .. 351

Error Messages ... 352
Warnings .. 352
Non-Fatal Errors .. 353
Fatal Errors ... 354

Appendix E. Language Syntax Summary 357

Lexical Grammar .. 357
Tokens ... 357
Keywords .. 358
Identifiers ... 358
Constants ... 358
String Literals ... 360
Operators ... 361
Punctuators ... 361

Phrase Structure Grammar 361
Expressions ... 361
Declarations ... 364
Statements .. 368
External Definitions .. 369

Preprocessing Directives .. 369

Appendix F. Customizing Turbo C 373

Running TCINST .. 374
The Turbo C Directory Option 375
The Editor Commands Option 375
The Default Edit Modes Option 377
The Screen Mode Option 378
The Color Customization Option 379

x

The Resize Windows Option 380
Quitting the Program .. 380

Appendix G. MicroCa1c

About MicroCalc
How to Compile and Run MicroCa1c

With TC.EXE
With TCC.EXE .. .

How to use MicroCa1c
The MicroCa1c Parser

Index

xi

383

383
384
384
384
385
389

391

N T R o o u c T o N

This is the second volume of documentation in the Turbo C package. This
volume, the Turbo C Reference Guide, contains definitions of all the Turbo C
library routines, common variables, and common defined types, along with
example program code to illustrate how to use many of these routines,
variables, and types.

If you are new to C programming, you should first read the other book in
your Turbo C package-the Turbo C User's Guide. In that book you'll find
instructions on how to install Turbo C on your system, an overview of
Turbo C's window and menu system, and tutorial-style chapters designed
to get you started programming in Turbo C. The user's guide also
summarizes Turbo C's implementation of the C language and discusses
some advanced programming techniques. For those of you who are Turbo
Pascal and Turbo Prolog programmers, the user's guide provides
information to help you integrate your understanding of those languages
with your new knowledge of C.

You should refer to the Introduction in the user's guide for information on
the Turbo C implementation, a summary of the contents of Volume I, and a
short bibliography.

Volume II: The Reference Guide

The Turbo C Reference Guide is written for experienced C programmers; it
provides implementation-specific details about the language and the run­
time environment. In addition, it provides definitions for each of the Turbo
C functions, listed in alphabetical order.

These are the chapters and appendixes in the programmer's reference
guide:

Chapter 1: Using Turbo C Library Routines summarizes Turbo C's
input/ output (I/O) support, and lists and describes the #include (.h) files.

Chapter 2: The Turbo C Library is an alphabetical reference of all Turbo C
library functions. Each definition gives syntax, include files, related
functions, an operative description, return values, and portability
information for the function.

Appendix A: The Turbo C Interactive Editor gives a more thorough
explanation of the editor commands-for those who need more
information than that given in Chapter 2 of the Turbo C User's Guide.

Appendix B: Compiler Error Messages lists and explains each of the error
messages and summarizes the possible or probable causes of the problem
that generated the message.

Appendix C: Options describes each of the Turbo C user-selectable
compiler options.

Appendix D: Turbo C Utilities discusses the MAKE utility, CPP, and the
Turbo Link Utility. The section on CPP summarizes how the Turbo C
preprocessor functions. The section on the stand-alone MAKE utility
documents when, where, and how to use MAKE for rebuilding program
files. The section on TLINK, the stand-alone Turbo Link Utility,
summarizes how to use the command-line version of Turbo C's built-in
linker.

Appendix E: Language Syntax Summary uses modified Backus-Naur
Forms to detail the syntax of all Turbo C constructs.

Appendix F: Customizing Turbo C guides you through the installation
program (TCINST), which lets you customize your keyboard, modify
default values, change your screen colors, resize your Turbo C windows,
and more.

Appendix G: MicroCalc introduces the spreadsheet program included
with your Turbo C package and gives directions for compiling and running
the program.

2 Turbo C Reference Guide

Typographic Conventions

All typefaces used in this manual were produced by Borland's Sprint: The
Professional Word Processor, on an Apple LaserWriter Plus. Their special
uses are as follows:

Monospaced type

[]

<>

Boldface

Italics

Bold monospaced

Keycaps

This typeface represents text as it appears on the
screen or in your program and anything you must
type (such as command-line options).

Square brackets in text or DOS command lines
enclose optional input or data that depends on
your system, whicli should not be typed verbatim.

Angle brackets in the function reference section
enclose the names of include files.

Turbo C function names (such as printf) are shown
in boldface when mentioned within text (but not in
program examples).

Italics indicate variable names (identifiers) within
sections of text and to emphasize certain words
(especially new terms).

This typeface represents Turbo C keywords (such
as char, switch, near, and cdecl.

This special typeface indicates a key on your
keyboard. It is often used when describing a
particular key you should type, e.g., "press Esc to
cancel a menu."

Borland's No-Nonsense License Statement

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo C for the sole purpose of
backing up your software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at

3

the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

Acknowledgments

In this manual, we refer to several products:

• Turbo Pascal, Turbo Prolog and Sprint: The Professional Word
Processor are registered trademarks of Borland International Inc.

• WordStar is a trademark of MicroPro Inc.

• IBM PC, XT, and AT are trademarks of International Business Machines
Inc.

• MS-DOS is a registered trademark of Microsoft Corporation.

• UNIX is a registered trademark of American Telephone and Telegraph

How to Contact Borland

If, after reading these manuals and using Turbo C, you would like to
contact Borland with comments, questions, or suggestions, we suggest the
following procedures:

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and select
"Enter Language Products Forum" from the Borland main menu. Leave
your questions or comments there for the support staff to process.

If you prefer, write a letter detailing your comments and send it to

Technical Support Department
Borland International

4585 Scotts Valley Drive
Scotts Valley, CA

95066, USA

As a last resort, if, for some reason, you cannot write to us, you can
telephone our Technical Support department. If you're calling with a
problem, please have the following information handy before you call:

• product name and version number

4 Turbo C Reference Guide

• computer make and model number
• operating system and version number

5

6 Turbo C Reference Guide

c H A p T E R

1

Using Turbo C Library Routines

Turbo C comes equipped with over 300 library routines-functions and
macros that you call from within your C programs to perform a wide
variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion,
mathematical calculations, and much more.

Turbo C's routines are contained in the library files (Cx.LIB and
MATHx.LIB). Because Turbo C supports six distinct memory models, each
model has its own library file and math file, containing versions of the
routines written for that particular model.

Turbo C supports the draft ANSI C standard which, among other things,
al!().ws function prototypes to be given for the routines in your C programs.
All of Turbo C's library routines are declared with prototypes in one or
more header file (these are the .H or "include" files that you copied from
the distribution disks into your INCLUDE directory).

In This Chapter ...

This first part of the Turbo C Reference Guide provides an overview of the
Turbo C library routines and include files.

Using Turbo C Library Routines 7

In this chapter, we:

• list and describe the include files

• summarize the different categories of tasks performed by the library
routines

• describe (in look-up fashion) common global variables implemented in
many of the library routines

The Library Routine Lookup Section

The second part of this reference guide is an alphabetical lookup; it
contains descriptions for each of the Turbo C routines. Many of the routines
are grouped by "family" (such as memory-allocation routines, formatted­
output routines, etc.) because they perform similar or related tasks.

However, since you might not intuitively know which family of related
routines a particular one belongs to, we have included an individual entry
in the lookup for each and every routine. For instance, if you want to look
up information about the free routine, you would first look under free;
there you would find a listing for free that:

• summarizes what free does

• gives the Usage (syntax) for calling free

• tells you which header file contains the prototype for free

• refers you to malloc (the "family" listing) for a detailed description of
how free is implemented and how it relates to the other memory­
allocation routines

The last part of this reference guide contains several appendices designed
to give you detailed reference and usage information about some of Turbo
C's special features; the editor, error messages, and the stand-alone utilities.

Why You Should License the Turbo C Run­
Time Library Source Code

The Turbo C Run-Time Library contains over 300 functions, covering a
broad range of areas: low-level control of your IBM PC, interfacing with
DOS, input/output, process management, string and memory
manipulations, math, sorting and searching, and so on.

8 Turbo C Reference Guide

Using Turbo C, you may find that the particular function you want to write
is similar to, but not the same as, a function in the library. With access to
the Run-Time Library source code, you can tailor that function to your own
needs.

Sometimes, when you have trouble debugging code, you may wish that
you knew more about the internals of a library function. This is a time
when having the source code to the Run-Time Library would be of great
help.

When you can't figure out what a library function is really supposed to do,
it is very useful to be able to take a quick look at that function's source
code.

You may dislike the underscore convention on C symbols, and wish you
had a version of the libraries without leading underscores. Again, access to
the source code to the Run-Time Library will let you eliminate leading
underscores.

You can also learn a lot from studying tight, professionally written library
source code.

For all these reasons, and more, you will want to have access to the Turbo C
Run-Time Library source code. Because Borland deeply believes in the
concepts of "open architecture," the Turbo C Run-Time Library source code
is available for licensing. All you have to do is fill out the order form
distributed with this documentation, include your payment, and we'll ship
you the Turbo C Run-Time Library source code.

Using Turbo C Library Routines 9

The Turbo C Include Files

ALLOC.H

ASSERT.H

BIOS.H

CONIO.H

CTYPE.H

DIR.H

DOS.H

ERRNO.H

FCNTL.H

FLOAT.H

IO.H

LIMITS.H

MATH.H

MEM.H

PROCESS.H

10

Declares memory management functions (allocation,
deallocation, etc.).

Defines the assert debugging macro.

Declares various functions used in calling IBM-PC ROM
BIOS routines.

Declares various functions used in calling the DOS console
I/O routines.

Contains information used by the character classification
and character conversion macros (such as is alpha and
toascii).

Contains structures, macros and functions for working
with directories and path names.

Defines various constants and gives declarations needed
for MS-DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.

Defines symbolic constants used in connection with the
library routine open.

Contains parameters for floating-point routines.

Contains structures and declarations for low-level
Input/Output routines.

Contains environmental parameters, information about
compile-time limitations, and ranges of integral quantities.

Declares prototypes for the math functions; also defines the
macro HUGE_VAL, and declares the exception structure
used by the matherr and _matherr routines.

Declares the memory-manipulation functions. (Many of
these are also defined in STRING.H.)

Contains structures and declarations for spawn... and
exec ... functions.

Turbo C Reference Guide

SETJMP.H

SHARE.H

SIGNAL.H

STDARG.H

STDDEF.H

STDIO.H

STDLIB.H

STRING.H

SYS\STAT.H

TIME.H

VALUES.H

Defines a type jmp_buf used by the longjmp and setjmp
functions and declares the routines longjmp and setjmp.

Defines parameters used in functions which make use of
file-sharing.

Defines the constants SIG_IGN and SIG_DFL, and declares
the ssignal and gsignal functions.

Defines macros used for reading the argument list in
functions declared to accept a variable number of
arguments (such as vprintf, vscanf, etc.).

Defines several common data types and macros.

Defines types and macros needed for the Standard I/O
Package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O
predefined streams stdin, stdout, and stderr, and declares
stream-level I/O routines.

Declares several commonly used routines; conversion
routines, search/sort routines, and other miscellany.

Declares several string-manipulation and memory­
manipulation routines.

Defines symbolic constants used for opening and creating
files.

Defines a structure filled in by the time-conversion routines
asctime, localtime and gmtime, and a type used by the
routines ctime, difftime, gmtime, localtime, and stime;
also provides prototypes for these routines.

Defines important constants, including machine depen­
dencies; provided for UNIX System V compatibility.

Using Turbo C Library Routines 11

Library Routines by Category

The Turbo C library routines perform a variety of tasks. In this section, we
list the routines, and the include files in which they are declared, under
several general categories of task performed.

Classification Routines

These routines classify ASCII characters as letters, control characters,
punctuation, uppercase, etc.

isalnum
isalpha
is ascii
iscntrl

(ctype.h)
(ctype. h)
(ctype.h)
(ctype.h)

Conversion Routines

isdigit
isgraph
islower
isprint

(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)

ispunct
isspace
isupper
isxdigit

(ctype. h)
(ctype.h)
(ctype. h)
(ctype.h)

These routines convert characters and strings: from alpha to different
numeric representations (floating-point, integers, longs), and vice versa;
and from uppercase to lowercase (and vice versa).

atof (stdlib.h) strtod (stdlib.h)
atoi (stdlib.h) strtol (stdlib.h)
atol (stdlib.h) toascii (ctype.h)
ecvt (stdlib.h) tolower (ctype.h)
fcvt (stdlib.h) to lower (ctype.h)
gcvt (stdlib.h) _toupper (ctype.h)
itoa (stdlib.h) toupper (ctype.h)
ltoa (stdlib.h) ultoa (stdlib.h)

Directory Control Routines

These routines manipulate directories and path names.

chdir (dir.h) getdisk (dir.h)
findfirst (dir.h) mkdir (dir.h)
findnext (dir.h) mktemp (dir.h)
fnmerge (dir.h) rmdir (dir.h)
fnsplit (dir.h) searchpath (dir. h)
getcurdir (dir.h) setdisk (dir.h)
getcwd (dir.h)

12 Turbo C Reference Guide

Diagnostic Routines

These routines provide built-in troubleshooting capability.

assert (assert.h)
matherr (math.h)
perror (errno.h)

Input/Output Routines

These routines provide stream-level and DOS-level I/O capability.

access (io.h) fputc (stdio.h) puts (stdio.h)
cgets (conio.h) fputchar (stdio.h) putw (stdio.h)

chmod (io.h) fputs (stdio.h) read (io.h)
chmod (io.h) fread (stdio.h) read (io.h)
clearerr (stdio. h) freopen (stdio.h) remove (stdio. h)
close (io.h) fscanf (stdio.h) rename (stdio.h)
close (io.h) fseek (stdio.h) rewind (stdio.h)

cprintf (conio.h) fstat (sys\stat.h) scanf (stdio.h)
cputs (conio. h) ftell (stdio.h) setbuf (stdio.h)
creat (io.h) fwrite (stdio.h) setftime (io.h)
creat (io.h) getc (stdio.h) setmode (io.h)

creatnew (io.h) getch (conio.h) setvbuf (stdio .h)
creattemp (io.h) get char (stdio.h) sopen (io.h)
cscanf (conio.h) getche (conio.h) sprintf (stdio.h)
dup (io.h) getftime (io.h) sscanf (stdio.h)
dup2 (io.h) getpass (conio.h) ssiqnal (signal.h)
eof (io.h) gets (stdio. h) stat (sys\stat.h)
fclose (stdio.h) getw (stdio.h) strerror (stdio .h)
fcloseall (stdio.h) gsignal (signal.h) tell (io.h)
fdopen (stdio.h) ioctl (io.h) ungetc (stdio.h)
feof (stdio.h) isatty (io.h) ungetc (stdio.h)
ferror (stdio. h) kbhit (conio.h) ungetch (conio.h)
fflush (stdio.h) lock (io.h) unlock (io.h)
fgetc (stdio. h) lseek (io.h) vfprintf (stdio .h)
fgetchar (stdio. h) _open (io.h) vfscanf (stdio.h)
fgets (stdio.h) open (io.h) vprintf (stdio.h)
file length (io.h) perror (stdio.h) vscanf (stdio.h)
fileno (stdio.h) printf (stdio.h) vsprintf (stdio.h)
flushall (stdio.h) putc (stdio.h) vsscanf (io.h)
fopen (stdio.h) putch (conio.h) write (io.h)
fprintf (stdio. h) put char (stdio.h) write (io.h)

Using Turbo C Library Routines 13

Interface Routines (DOS, 8086, BIOS)

These routines provide DOS, BIOS and machine-specific capabilities.

absread (dos.h) qeninterrupt (dos.h) keep (dos.h)
abswrite (dos.h) qetcbrk (dos.h) MK FP (dos.h)
bdos (dos.h) qetdfree (dos.h) outport (dos.h)
bdosptr (dos.h) qetdta (dos.h) outportb (dos.h)
bios com (bios.h) qetfat (dos.h) parsfnm (dos.h)
biosdisk (bios .h) qetfatd (dos.h) peek (dos.h)
biosequip (bios .h) qetpsp (dos.h) peekb (dos.h)
bioskey (bios. h) qetvect (dos.h) poke (dos.h)
biosmemory (bios. h) qetverify (dos.h) pokeb (dos.h)
biosprint (bios.h) harderr (dos.h) randbrd (dos.h)
biostime (bios.h) hardresume (dos.h) randbwr (dos.h)
country (dos.h) hardretn (dos.h) seqread (dos.h)
ctrlbrk (dos.h) inport (dos.h) setcbrk (dos.h)
disable (dos.h) inportb (dos.h) setdta (dos.h)
dosexterr (dos.h) int86 (dos.h) setvect (dos.h)
enable (dos.h) int86x (dos.h) setverify (dos.h)
FP OFF (dos.h) intdos (dos.h) sleep (dos.h)
FP-SEG (dos.h) intdosx (dos.h) unlink (dos.h)
freemem (dos.h) intr (dos.h)

Manipulation Routines (String, Memory)

These routines handle strings and blocks of memory; copying, comparing,
converting, and searching.

memccpy (mem.h) and (string. h) strcat (string .h) strncpy (string.h)
memchr (mem.h) and (string.h) strchr (string.h) strnicmp (string .h)
memcmp (mem.h) and (string .h) strcmp (string.h) strnset (string. h)
memcpy (mem.h) and (string .h) strcpy (string.h) strpbrk (string .h)
memicmp (mem. h) and (string .h) strcspn (string.h) strrchr (string.h)
memmove (mem.h) and (string.h) strdup (string .h) strrev (string.h)
memset (mem.h) and (string.h) strerror (string .h) strset (string.h)
movebytes (mem. h) stricmp (string .h) strspn (string .h)
movedata (mem.h) and (string .h) strlen (string .h) strstr (string .h)
movmem (mem. h) and (string .h) strlwr (string.h) strtok (string.h)
setmem (mem.h) strncat (string.h) strupr (string .h)
stpcpy (string.h) strncmp (string .h)

14 Turbo C Reference Guide

Math Routines

These routines perform mathematical calculations and conversions.

abs (stdlib.h) exp (math.h) matherr (math.h)
acos (math.h) fabs (math.h) modf (math.h)
asin (math.h) fcvt (stdlib.h) poly (math.h)
atan (math.h) floor (math.h) pow (math.h)
atan2 (math.h) fmod (math.h) powlO (math.h)
atof (stdlib.h) _fpreset87 (float.h) rand (stdlib.h)
atof (math.h) frexp (math.h) sin (math.h)
atoi (stdlib.h) gcvt (stdlib.h) sinh (math.h)
atol (stdlib.h) hypot (math.h) sqrt (math.h)
cabs (math.h) itoa (stdlib.h) srand (stdlib. h)
ceil (math.h) labs (stdlib.h) status87 (float.h)
clear87 (float .h) ldexp (math.h) strtod (stdlib.h)

-control87 (float .h) log (math.h) strtol (stdlib.h)
cos (math.h) loglO (math.h) tan (math.h)
cosh (math.h) ltoa (stdlib.h) tanh (math.h)
ecvt (stdlib.h) matherr (math.h) ultoa (stdlib.h)

Memory Allocation Routines

These routines provide dynamic memory allocation in the small-data and
large-data models.

all 0 cmem (dos.h) farmalloc (alloe.h)
brk (alloe.h) farrealloc (alloe.h)
calloc (alloe.h) free (alloe.h)
coreleft (alloe.h) and (stdlib.h) malloc (alloe. h)
farcalloc (alloe.h) realloc (alloe.h)
farcoreleft (alloe.h) sbrk (alloe. h)
farfree (alloe.h) setblock (dos.h)

Miscellaneous Routines

These routines provide non-local goto capabilities.

setjrnp
longjmp

(setjmp.h)
(setjmp.h)

Using Turbo C Library Routines

and (stdlib. h)
and (stdlib.h)
and (stdlib.h)

15

Process Control Routines

These routines invoke and terminate new processes from within another.

abort (process. h) exit (process.h)
execl (process.h) spawnl (proces s . h)
execle (process.h) spawnle (process .h)
execlp (process.h) spawnlp (process. h)
execlpe (process.h) spawnlpe (process.h)
execv (process.h) spawnv (process. h)
execve (process.h) spawnve (process. h)
execvp (process. h) spawnvp (proces s . h)
execvpe (process.h) spawnvpe (process.h)
exit (process.h) system (process.h)

Standard Routines

These are standard routines.

abort
abs
atexit
atof
atoi
atol
bsearch
calloc
ecvt
exit

exit

(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)

fcvt
free
gcvt
getenv
itoa
labs
lfind
lsearch
ltoa
malloc

Time and Date Routines

(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)

putenv
qsort
rand
realloc
srand
strtod
strtol
swab
system
ultoa

(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)

These are time-conversion and time-manipulation routines.

asctime
ctime
difftime
dostounix
getdate
gettime
gmtime

(time.h)
(time.h)
(time.h)
(dos.h)
(dos.h)
(dos.h)
(time.h)

localtime
setdate
settime
stime
time
tzset
unixtodos

Variable Argument List Routines

(time.h)
(dos.h)
(dos.h)
(time.h)
(time.h)
(time.h)
(dos.h)

These routines are for use when accessing variable argument lists (such as
with vprintf, etc). .

va arg
va-end
va-start

16

(stdarg .h)
(stdarg .h)
(stdarg .h)

Turbo C Reference Guide

The main Function

Every C program must have a main function; where you place it is a matter
of preference. Some programmers place main at the beginning of the file,
others at the very end. But regardless of its location, the following points
about main always apply.

The Arguments to main

Three parameters (arguments) are passed to main by the Turbo C start-up
routine: argc, argv and env.

Il!I argc, an integer, is the number of command-line arguments passed to
main.

IJ argv is an array of strings

under 3.x versions of DOS, argv[O] is defined as the full path name of
the program being run

under versions of DOS before 3.0, argv[O] points to the null string
("11).

argv[l] contains the first string typed on the DOS command line after
the program name

argv[2] contains the second string typed after the program name

a rgv [a rgc] contains NULL

Il env is also an array of strings. Each element of env[] holds a string of the
form ENVVAR=val ue

ENWAR is the name of an environment variable, such as PATH, or 87.

val ue is the value to which an ENVVAR is set, such as
c: \DOSiC\TURBOC (for PATH), or YES (for 87)

The Turbo C start-up routine always passes these three arguments to main:
You have the option of whether or not to declare them in your program. If

Using Turbo C Library Routines 17

you declare some (or all) of these arguments to main, they are made
available as local variables to your main routine.

Note, however, that if you do declare any of these parameters, you must
declare them exactly in the order given: argc, argv, env.

For example, the following are all valid declarations of main's arguments:

main()
main (int argc) /* legal but very unlikely */
main(int argc, char * argv[])
main(int argc, char * argv[], char * env[])

Note: The declaration main (int argc) is legal, but it's very unlikely that
you would use argc in your program without also using the elements of
argv.

Another Note: The argument env is also available via the global variable
environ. Refer to the environ lookup entry (in this chapter) and the putenv
and getenv lookup entries (in Chapter 2) for more information.

An Example Program Using argc, argv and env

Here is an example program, named ARGS.EXE, that demonstrates a
simple way of implementing these arguments passed to main.

/* Program name ARGS.EXE */

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[), char *env[))
(

int i;

printf("The value of argc is %d \n\n",argc);
printf("These are the %d command-line arguments passed to main:\n\n",argc);

for (i = 0; i <= argc; itt)
printf(" argv[%d): %s\n", i, argv[i));

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i) != NULL; itt)
printf(" env[%d): %s\n", i, env[i));

18 Turbo C Reference Guide

Suppose you run ARGS.EXE at the DOS prompt with the following
command line:

> args first_argument "argument with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
the with double quotes, as shown by "argument with blanks" and" last
but one" in this example command line.

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

The value of argc is 7

These are the 7 command-line arguments passed to main:

argv[O]: C:\TURBOC\TESTARGS.EXE
argv[l]: first argument
argv[2]: argument with blanks
argv[3]: 3
argv[4]: 4
argv[5]: last but one
argv[6]: stop!
argv[7]: (null)

The environment string(s) on this system are:

env[O]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINT;C:\DOS;C:\TURBOC

Note: The maximum combined length of the command-line arguments
passed to main (including the space between adjacent arguments) is 128
characters: this is a DOS limit.

When You Compile Using-p (Pascal Calling
Conventions)

If you compile your program using Pascal calling conventions (which are
described in detail in Chapter 9), you must remember to explicitly declare
main as being a C type.

You do this with the cdecl keyword, like this:

cdecl main(int argc, char * argv[], char * envp[])

Using Turbo C Library Routines 19

The Value main Returns

In all but two instances, the value returned by main is the status code of the
program: an into If, however, your program uses the routine exit (or _exit)
to terminate, the value returned by main is the argument passed to the call
to exit (or to _exit).

For example, if your program contains the call

exit (1)

the status is 1.

If you are using the Integrated Environment version of Turbo C (TC.EXE)
to run your program, you can display the return value from main by
pressing Alt-V when the "Press any key" message appears (after you
run the program).

20 Turbo C Reference Guide

Global Variables

daylight, timezone

Names

Usage

Declared in

Description

daylight, timezone

extern int daylight;
extern long timezone;

time.h

These variables are used by the time-and-date functions.

daylight: This variable = 1 for Daylight Savings Time, 0
for Standard Time.

timezone: This variable is a calculated value; it is
assigned a long value that is the difference, in seconds,
between the current local time and Greenwich Mean
Time.

errno, _doserrno, sys_errlist, sys_nerr

Names

Usage

Declared in

errno, _doserrno, sys_errlist, sys_nerr

extern int errno;
extern int _doserrno;
extern char * sys_errlist[];
extern int sys_nerr;

errno.h
dos.h

(errno, _doserrno, sys_errlist, sys_nerr)
Ldoserrno)

Using Turbo C Library Routines 21

Description

22

Three of these variables (errno, sys_errlist, and sys_nerr)
are used by the perror function to print error messages
when certain library routines fail to accomplish their
appointed tasks. _doserrno is a variable that maps many
MS-DOS error codes to errno; however, perror does not
use _doserrno directly.

_doserrno: When an MS-DOS system call results in an
error, _doserrno is set to the actual MS-DOS error code.
errno is a parallel error variable inherited from UNIX.

errno: Whenever an error in a system call occurs, errno is
set to indicate the type of error. Sometimes errno and
_doserrno are equivalent. Other times, errno does not
contain the actual DOS error code (which is contained in
_doserrno). Still other errors might occur which set only
errno, not _doserrno.

sys_errlist: To provide more control over message
formatting, the array of message strings is provided in
sys_errlist. errno can be used as an index into the array to
find the string corresponding to the error number. The
string does not include any newline character.

sys_nerr: This variable is defined as the number of error
message strings in sys _errlist.

The following table gives mnemonics for the values
stored in sys_errlist and their meanings.

mnemonic

E2BIG
EACCES
EBADF
ECONTR
ECURDIR
EDOM
EINVACC
EINVAL
EINVDAT
EINVDRV
EINVENV
EINVFMT
EINVFNC

Meaning

Arg list too long
Permission denied
Bad file number
Memory blocks destroyed
Attempt to remove CurDir
Domain error
Invalid access code
Invalid argument
Invalid data
Invalid drive specified
Invalid environment
Invalid format
Invalid function number

Turbo C Reference Guide

EINVMEM
EMFILE
ENMFILE
ENODEV
ENOENT
ENOEXEC
ENOFILE
ENOMEM
ENOPATH
ENOTSAM
ERANGE
EXDEV
EZERO

Invalid memory block address
Too many open files
N a more files
N a such device
No such file or directory,
Exec format error
N a such file or directory
Not enough core
Path not found
Not same device
Result out of range
Cross-device link
Error 0

The following list gives mnemonics for the actual DOS
error codes to which _doserrno can be set. (This value of
_doserrno mayor may not be mapped-through
errno-to an equivalent error message string in
sys_errlist.

mnemonic MS-DOS error code

EINVAL Bad function
E2BIG Bad environ
EACCES Access denied
EACCES Bad access
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EMFILE Too many open
ENOENT File not found
ENOENT Path not found
ENOENT N a more files
ENOEXEC Bad format
ENOMEM Mcb destroyed
ENOMEM Out of memory
ENOMEM Bad block
EXDEV Bad drive
EXDEV Not same device

Using Turbo C Library Routines 23

Jmode

Name

Usage

Declared in

Description

24

Refer to the Microsoft MS-DOS Programmer's Reference
Manual for more information about MS-DOS error
returns.

Jmode - default file-translation mode

extern int Jmode;

fcntl.h

This variable determines in which mode (text or binary)
files will be opened and translated. The value of Jmode
is a_TEXT by default, which specifies that files will be
read in text mode. If Jmode is set to a_BINARY, the files
are opened and read in binary mode. (a_TEXT and
a_BINARY are defined in fcntl.h.)

In text mode, on input, carriage-return/line-feed
(CR/LF) combinations are translated to a single line­
feed character (LF). On output, the reverse is true: LF
characters are translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by Jmode by
specifying a t (for text mode) or b (for binary mode) in
the argument type in the library routines fop en, fdopen,
and freopen. Also, in the routine open, the argument
access can include either a_BINARY or a_TEXT, which
will explicitly define the file being opened (given by the
open pathname argument) to be in either binary or text
mode.

Turbo C Reference Guide

· -PSp, envtron

Names

Usage

Declared in

Description

-psp, environ

extern unsigned int -psp;
extern char * environ[];

dos.h (-psp)
dos.h (environ)

-psp: This variable contains the segment address of the
program segment prefix (PSP) for the current program.
The PSP is an MS-DOS process descriptor; it contains
initial DOS information about the program.

Refer to the Microsoft MS-DOS Programmer's Reference
Manual for more information on the PSP.

environ: This is an array of strings; it is used to access
and alter a process environment. Each string is of the
form

envvar = varvalue

where envvar is the name of an environment variable
(such as PATH), and varvalue is the string value to which
envvar is set (such as c: \BIN; C : \008). The string
varvalue may be empty.

When a program begins execution, the MS-DOS
environment settings are passed directly to the program.
Note that envp, the third argument to main, is equal to
the initial setting of environ.

The environ array can be accessed by getenv; however,
the putenv function is the only routine that should be
used to add, change or delete the environ array entries.
(This is because modification can resize and relocate the
process environment array, but environ is automatically
adjusted so that it always points to the array.)

Using Turbo C Library Routines 25

stklen

Name

Usage

Description

_stklen - stack length variable

int _stklen;

In large data models (compact, large, and huge), _stklen
is the exact stack size in bytes.

In small data models (tiny, small, and medium), the
startup code uses _stklen to compute the minimum size
of the DATA segment. The DATA segment includes
initialized global data, uninitialized data, and the stack.

min DATA segment size =

size of DATA segment
+ size of -BSS segment
+ stklen-
+ MINSTACK(128 words)

If the memory available is less than this, the startup
aborts the program. The maximum DATA segment size
is, of course, 64K.

. . .
_verStOn, _osmaJor, _osmtnOr

Names

Usage

Declared in

26

_version, _osmajor, _osminor

extern unsigned int _version;
extern unsigned char _osmajor;
extern unsigned char _osminor;

dos.h

Turbo C Reference Guide

Description

8087

Name

Usage

Description

_version contains the MS-DOS version number, with the
major version number in the low byte and the minor
version number in the high byte. (For MS-DOS version
x.y, the x is the major version number, and y is the
minor.)

The major and minor version numbers are also available
individually through _osmajor and _osminor, where
_osmajor is the major version number and _osminor is the
minor version number.

These variables can be useful when you want to write
modules that will run on MS-DOS versions 2.x and 3.x.
Some library routines behave differently depending on
the MS-DOS version number, while others only work
under MS-DOS 3.x. (For example, refer to _open,
creatnew, and ioctl in the lookup section of this
reference guide.)

_8087 - coprocessor chip flag

extern int _8087;

The _8087 variable is set to 1 if the start-up code auto­
detection logic detects a floating-point coprocessor (an
8087, 80287, or 80387), or if the 87 environment variable
is set to Y (SET 87 = Y). The _8087 variable is set to 0
otherwise.
(Refer to Chapter 9 in the Turbo C User's Guide for
more information about the 87 environment variable.)

You must have floating-point code in your program for
the _8087 variable to be set to 1.

Using Turbo C Library Routines 27

28 Turbo C Reference Guide

c H A p T E R

2

The Turbo C Library

This sample library look-up entry explains how to use this section of the
Turbo C Reference Guide.

using library routine entries

Name

Usage

Related

routine - summary of what the library routine does

#include <header.h> Only listed if it must be included
routine(modifier parameter[, ... J); Declaration syntax

functions usage routine2(modifier parameter[, ... J);

Prototype in header.h File containing prototype for routine

Description This describes what routine does, the parameters it
takes, and any details you need to use routine and the
related routines listed.

Return value The value that routine returns (if any), is given here. If
the global variable errno is set, that's also listed here.

Portability Specifies systems routine is available on.

See also Lists other routines you may wish to read about.

The Turbo C Library 29

abort

Name

Usage

Prototype in

Description

Return value

Portability

See also

abs

abort - abnormally terminates a process

void abort(void);

stdlib.h
process.h

This function writes a termination message on stderr and
aborts the program via a call to _exit, with an exit code

This function does not return a value.

Available on UNIX systems.

assert, _exit, exec ... , exit, spawn ...

Name abs - absolute value

Usage int abs(int i);

Related
functions usage double cabs(struct complex znum);

double fabs(double x);
long labs (long n);

Prototype in stdlib.h (abs, labs)
math.h (cabs, fabs)

Description abs returns the absolute value of the integer argument i.

30

If abs is called when stdlib.h has been included, abs will
be treated as a macro that expands to in-line code.

If you don't include stdlib.h (or if you do include it and
#undef abs) you will get the abs function rather than a
macro.

Turbo C Reference Guide

Return value

cabs is a macro that calculates the absolute value of
znum, a complex number. znum is a structure with type
complex; the structure is defined in math.h as:

struct complex (
double x, y;

);

Calling cabs is equivalent to calling sqrt with the real
and imaginary components of znum, as shown here:

sqrt(znum.x*znum.x + znum.y*znum.y)

If you don't include math.h (or if you do include it and
#unde f cabs) you will get the cabs function rather than a
macro.

fabs calculates the absolute value of x, a doubl.e.

labs calculates the absolute value of n, a l.ong integer.

abs returns an integer in the range of 0 to 32767, with
the exception that an argument of -32768 is returned as
-32768.

cabs returns the absolute value of znum, a doubl.e. On
overflow, cabs returns HUGE_VAL and sets errno to

ERANGE Result out of range

Error handling for cabs can be modified through the
function matherr.

fabs returns the absolute value of x. labs returns the
absolute value of n. There are no error returns.

Portability Available on UNIX systems.

See also matherr

The Turbo C Library 31

absread

Name absread - reads data

Usage int absread(int drive, int nsects, int sectno, void *buffer);

Related
functions usage int abswrite(int drive, int nsects, int sectno, void *buffer);

Prototype in dos.h

Description These functions read and write specific disk sectors.

Return value

Portability

32

They ignore the logical structure of a disk and pay no
attention to files, FATs, or directories.

absread reads specific disk sectors via DOS interrupt
Ox25; abswrite writes specific disk sectors via DOS
interrupt Ox26.

drive = drive number to read (0 = A, 1 = B, etc.)
nsects = number of sectors to read
sectno = beginning logical sector number
buffer = memory address where the data is to be

read or written

The number of sectors to read is limited to the amount
of memory in the segment above buffer. Thus, 64K bytes
is the largest amount of memory that can be read in a
single call to absread or abswrite.

If successful, both routines return O.

On error, the routines return -1 and set errno to the
value of the AX register returned by the system call. See
the MS-DOS documentation for the interpretation of
errno.

Unique to MS-DOS.

Turbo C Reference Guide

abswrite

Name

Usage

Prototype in

Description

access

Name

Usage

Prototype in

Description

The Turbo C Library

abswrite - writes data

int abswrite(int drive, int nsects, int sectno, void *buffer);

dos.h

see absread

access - determines accessibility of a file

int access(char *filename, int amode);

io.h

access checks a named file to determine if it exists and
whether it can be read, written to, or executed. filename
points to a string naming the file.

The bit pattern contained in amode is constructed as
follows:

06 Check for read and write permission
04 Check for read permission
02 Check for write permission
01 Execute (ignored)
00 Check for existence of file

Note: Under MS-DOS, all existing files have read access
(amode = 04), so 00 and 04 give the same result. In the
same vein, amode values of 06 and 02 are equivalent
because under MS-DOS, write access implies read
access.

If filename refers to a directory, access simply determines
whether the directory exists or not.

33

Return value If the requested access is allowed, 0 is returned;
otherwise, a value of -1 is returned and errno is set to
one of the following:

ENOENT
EACCES

Path or file name not found
Permission denied

Portability

See also

Example

#include <stdia.h>
#include <ia.h>

Available on UNIX systems.

chmod

/* returns 1 if filename exists, else 0 */

int file exists (char *filename)
{ -

return (access (filename, 0) == 0);

main ()
{

printf("Daes NOTEXIST.FIL exist: %s\n",
file_exists ("NOTEXIST.FIL") ? "YES" "NO");

Program output

Does NOTEXIST.FIL exist: NO

acos

Name

Usage

Prototype in

Description

34

acos - trigonometric function

double acos(double x);

math.h

see trig

Turbo C Reference Guide

allocmem

Name allocmem - allocates DOS memory segment

Usage int allocmem(unsigned size, unsigned *seg);

Related
functions usage int freemem(unsigned seg);

int setblock(int seg, int newsize);

Prototype in dos.h

Description allocmem uses the MS-DOS system call Ox48 to allocate
a block of free memory and returns the segment address
of the allocated block.

Return value

The Turbo C Library

size is the desired size in paragraphs. seg is a pointer to a
word which will be assigned the segment address of the
newly allocated block. No assignment is made to the
word pointed to by seg if not enough room is available.

All allocated blocks are paragraph aligned.

freemem frees a memory block allocated by a previous
call to allocmem. seg is the segment address of that
block.

setblock modifies the size of a memory segment. seg is
the segment address returned by a previous call to
allocmem. newsize is the new, requested size in
paragraphs.

allocmem returns -1 on success. In the event of error, a
number (the size of the largest available block) is
returned.

freemem returns 0 on success. In the event of error, -1 is
returned and errno is set to

ENOMEM Insufficient memory

setblock returns -1 on success. In the event of error, the
size of the largest possible block is returned.

35

Portability

See also

asctime

Name

Usage

Prototype in

Description

• aSln

Name

Usage

Prototype in

Description

36

An error return from any allocmem or setblock will set
_doserrno and will set the global variable errno to

ENOMEM Not enough core

Unique to MS-DOS.

malloc

asctime - converts date and time to ASCII

#include <time.h>
char *asctime(struct tm *tm);

time.h

see ctime

asin - trigonometric function

double asin(double x);

math.h

see trig

Turbo C Reference Guide

assert

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

assert - tests a condition and possibly aborts

#include <asssert.h>
void assert(int test);

assert.h

assert is a macro that expands to an if statement which,
if the test fails, will print a message and abort the
program. The message is:

Assertion failed: file filename, line linenum

The filename and linenum listed are the source file name
and line number where the assert macro appears. A call
to abort is used to abort the program.

If you place the #define NDEBUG directive in the source
code before the #include assert. h directive, the effect
is to "comment out" the assert statement.

None

This macro is available on some UNIX systems
including Systems III and V.

abort

/* add an item to a list. verify the item is not NULL. */

*include <assert.h>
*include <stdio.h>

struct ITEM {
int key;
int value;

};

The Turbo C Library 37

voidadditem(struct ITEM *itemptr)
{

assert(itemptr != NULL);
1* ... add the item ... *1

main()
{

additem(NULL);

Program output

Assertion failed: file C:\TURBOC\ASSERT.C, line 13

atan

Name

Usage

Prototype in

Description

atan2

Name

Usage

Prototype in

Description

38

atan - trigonometric arctangent function

double atan(double x);

math.h

see trig

at an - trigonometric function

double atan2(double y, double x);

math.h

see trig

Turbo C Reference Guide

atexit

Name

Usage

Prototype in

Description

Return value

See also

Example

#include <stdlib.h>
#include <stdio.h>
void exit fnl ()
{ -

atexit - registers termination function

#include <stdlib.h>
int atexit(atexit_t June)

stdlib.h

atexit registers the function pointed to by June as an
"exit function". Upon normal termination of the
program, exit calls *June (without arguments) just before
returning to the operating system. The called function is
of type atexit_t, which is defined in a typedef in stdlib.h.

Each call to atexit registers another exit function; up to
32 functions can be registered, and they are executed on
a last in, first out basis.

atexit returns 0 on success and non-zero on failure (no
space left to register the function).

exec ... , exit, spawn ...

printf("Exit Function 1 called\n");

void exit fn2 ()
{ -

printf("Exit Function 2 called\n");

main ()
{

atexit(exit_fnl); /* post exit fnl */
atexit(exit fn2); /* post exit-fn2 */
printf("Main quitting ... \n")j -

The Turbo C Library 39

Program output

Main quitting ...
Exit Function 2 called
Exit Function 1 called

atof

Name

Usage

Related
functions usage

Prototype in

Description

40

atof - converts a string to a floating point number

double atof(char *nptr);

int atoi(char *nptr);
long atoHchar *nptr);

math.h (atof)
stdlib.h (atof, atoi, atol)

atof converts a string pointed to by nptr to double; this
function recognizes

• an optional string of tabs and spaces
• an optional sign
• then a string of digits and an optional decimal point
• then an optional e or E followed by an optional

signed integer

atoi converts a string pointed to by nptr to int; atol
converts the string to long. atoi and atol recognize

• an optional string of tabs and spaces
• an optional sign
• then a string of digits

In all three of these functions, the first unrecognized
character ends the conversion.

There are no provisions for overflow in any of these
functions.

Turbo C Reference Guide

Return value

Portability

See also

atoi

Name

Usage

Prototype in

Description

atol

These functions return the converted value of the input
string. If the string cannot be converted to a number of
the corresponding type (double for atof, int for atoi,
long for atol), the return value is O.

Available on UNIX sy?tems.

scanf

atoi - converts a string to an integer

int atoi(char *nptr);

stdlib.h

see atof

Name atol- converts a string to a long

Usage long atol(char *nptr);

Prototype in stdlib.h

Description see atof

The Turbo C Library 41

bdos

Name bdos - MS-DOS system call

Usage int bdos(int dosfun, unsigned dosdx, unsigned dosal);

Related
functions usage int bdosptr(int dosfun, void *argument, unsigned dosal);

Prototype in dos.h

Description These calls provides direct access to many of the MS­
DOS system calls. Refer to the MS-DOS Programmer's
Reference Manual for details of each system call.

42

Those system calls which require an integer argument
use bdos, while those which require a pointer argument
use bdosptr.

For the small data models (tiny, small and medium),
bdos and bdosptr are similar. In the large data models
(compact, large and huge), it is important to use bdosptr
for system calls that require a pointer as the call
argument.

dosfun is defined in the MS-DOS Programmer's Reference
Manual.

In the small data models, the argument parameter to
bdosptr specifies DX; in the large data models, it gives
the DS:DX values to be used by the system call.

dosdx is the value of register DX for the bdos call.

dosal is the value of register AL.

For an example that demonstrates the use of bdosptr,
refer to harderr.

Turbo C Reference Guide

Return value

Portability

Example

#include <stdio.h>
#include <dos.h>

The return value of bdos is the value of AX set by the
system call.

The return value of bdosptr is the value of AX on
success, or -1 on failure. On failure errno and _doserrno
are set.

Unique to MS-DOS.

1* get current drive as 'A', 'B', ... *1

char current drive(void)
{ -

char curdrive;

curdrive = bdos(OxI9,0,0); 1* get current disk as 0, 1, ... *1
return ('A' + curdrive);

main()
{

printf("The current drive is %c:\n", current_drive());

Program output

The current drive is C:

bdosptr

Name bdosptr - MS-DOS system call

Usage int bdosptr(int dosfun, void *argument, unsigned dosal);

Prototype in dos.h

Description see bdos

The Turbo C Library 43

bioscom

Name

Usage

Prototype in

Description

44

bioscom - communications I/O

int bioscom{int cmd, char byte, int port);

bios.h

bioscom performs various RS232 communications over
the I/O port given in port.

A port value of 0 corresponds to COMI, 1 corresponds to
COM2, and so forth.

The value of cmd can be one of the following:

o Sets the communications parameters to the value
in byte

1 Sends the character in byte out over the com­
munications line

2 Receives a character from the communications line

3 Returns the current status of the communications
port

byte is a combination of the following bits:

Ox02 7 data bits
Ox03 8 data bits
OxOO 1 stop bit
Ox04 2 stop bits
OxOO No parity
Ox08 Odd parity
OxI8 Even parity

Turbo C Reference Guide

Return value

The Turbo C Library

OxOO 110 baud
Ox20 150 baud
Ox40 300 baud
Ox60 600 baud
Ox80 1200 baud
OxAO 2400 baud
oxeo 4800 baud
OxEO 9600 baud

For example, giving a value for byte of OxEB
(OxEO I Ox08 I OxOO I Ox03) sets the communications
port to 9600 baud, odd parity, 1 stop bit, and 8 data bits.

For all values of cmd, the return value is a 16-bit integer
where the upper 8 bits are status bits, and the lower 8
bits vary depending on the value of cmd. The upper bits
of the return value are defined as follows:

bit 15 Time out
bit 14 Transmit shift register empty
bit 13 Transmit holding register empty
bit 12 Break detect
bit 11 Framing error
bit 10 Parity error
bi t 9 Overrun error
bit 8 Data ready

With a cmd value of 1, and if bit 15 is set, the byte value
could not be transmitted. Otherwise, the remaining
upper and lower bits are appropriately set.

With a cmd value of 2, the byte read is in the lower bits
of the return value if there was no error.

H an error occurred, at least one of the upper bits are set.
H no upper bits are set, the byte was received without
error.

45

Portability

biosdisk

Name

Usage

Prototype in

Description

46

With a cmd value of 0 or 3, the return value has the
upper bits set as defined, and the lower bits are defined
as follows:

bit 7 Received line signal detect
bit 6 Ring indicator
bit 5 Data set ready
bit 4 Clear to send
bit 3 Delta receive line signal detector
bit 2 Trailing edge ring detector
bit 1 Delta data set ready
bit 0 Delta clear to send

This function works only with IBM PCs or compatibles.

biosdisk - hard disk/floppy I/O

int biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void *buffer);

bios.h

This function uses interrupt Ox13 to issue disk
operations directly to the BIOS.

drive is a number that specifies which disk drive is to be
used: 0 for the first floppy disk drive, 1 for the second
floppy disk drive, 2 for the third, etc. For hard disk
drives, a drive value of Ox80 specifies the first drive, Ox81
specifies the second, Ox82 the third, etc.

For hard disks, the physical drive is specified, not the
disk partition. The application program must interpret
the partition table information itself if it needs to do so.

cmd indicates the operation to perform. Depending on
the value of cmd, the other parameters mayor may not
be needed. The following are the possible values for
cmd for any IBM PC, XT, or AT.

Turbo C Reference Guide

o Resets diskette system. This forces the drive
controller to do a hard reset. All other
parameters are ignored.

1 Returns the status of the last disk operation. All
other parameters are ignored.

2 Reads one or more disk sectors into memory.
The starting sector to read is given by head, track,
and sector. The number of sectors is given by
nsects. The data is read, 512 bytes per sector, into
buffer.

3 Writes one or more disk sectors from memory.
The starting sector to write is given by head,
track, and sector. The number of sectors is given
by nsects. The data is written, 512 bytes per
sector, from buffer.

4 Verifies one or more sectors. The starting sector
is given by head, track, and sector. The number of
sectors is given by nsects.

5 Formats a track. The track is specified by head
and track. buffer points to a table of sector
headers to be written on the named track. See
the Technical Reference Manual for the IBM PC for
a description of this table and the format
operation.

The following cmd values are allowed only for an
XTorAT:

6 Formats a track and sets bad sector flags
7 Formats the drive beginning at a specific track
8 Returns the current drive parameters

The drive information is returned in buffer
in the first four bytes.

The Turbo C Library 47

Return value

Portability

48

9 Initializes drive-pair characteristics
10 Does a long read, which reads 512 plus 4 extra

bytes per sector
11 Does a long write, which writes 512 plus 4 extra

bytes per sector
12 Does a disk seek
13 Alternates disk reset
14 Reads sector buffer
15 Writes sector buffer
16 Tests whether the named drive is ready
17 Recalibrates the drive
18 Controller RAM diagnostic
19 Drive diagnostic
20 Controller internal diagnostic

These operations return a status byte composed of the
following bits:

OxOO Operation successful
OxOl Bad command
Ox02 Address mark not found
Ox04 Record not found
Ox05 Reset failed
Ox07 Drive parameter activity failed
Ox09 Attempt to DMA across 64K boundary
OxOB Bad track flag detected
Oxl0 Bad ECC on disk read
Oxl1 Ecc corrected data error
Ox20 Controller has failed
Ox40 Seek operation failed
Ox80 Attachment failed to respond
OxBB Undefined error occurred
OxFF Sense operation failed

Note that Oxll is not an error because the data is correct.
The value is returned anyway to give the application an
opportunity to decide for itself.

This function works with IBM PCs and compatibles,
only.

Turbo C Reference Guide

biosequip

Name

Usage

Prototype in

Description

Return value

The Turbo C Library

biosequip - checks equipment

int biosequip(void);

bios.h

This function returns an integer describing the equip­
ment connected to the system. BIOS interrupt Ox11 is
used for this.

The return value is interpreted as a collection of bit­
sized fields. The values for the IBM PC are:

bit 15
bit 14
bit 13
bit 12

bit 11
bit 10
bit 9

bit 8

Numbers of printers
Numbers of printers
Serial printer attached
Game I/O attached

Number of RS232 ports
Number of RS232 ports
Number of RS232 ports

NOTOMA

bit 8 = 0 machine has OMA
bit 8 = 1 machine does not have OMA; for

example, PC Jr.

bit 7 Number of diskettes
bit 6 Number of diskettes

00 = 1 drive
01 = 2 drives
10 = 3 drives
11 = 4 drives, only if bit 0 is 1

bit 5 Initial
bit 4 Video mode

00 = Unused
01 = 40x25 BW with color card
10 = 80x25 BW with color card

49

Portability

bioskey

Name

Usage

Prototype in

Description

50

11 = 80x25 BW with mono card

bit 3 Motherboard
bit 2 Ram size

00 = 16K
01 = 32K
10 = 48K
11 = 64K

bit 1 Floating-point coprocessor
bit 0 Boot from diskette

This function works with IBM PCs and compatibles,
only.

bioskey - keyboard interface

int bioskey(int cmd);

bios.h

This function performs various keyboard operations
using BIOS interrupt Ox14. The parameter cmd deter­
mines the exact operation.

o Returns the next key struck at the keyboard. If the
lower 8 bits are non-zero, that is the ASCII character
struck. If the lower 8 bits are zero, the upper 8 bits are
the extended keyboard codes defined in the Technical
Reference Manual for the IBM PC.

1 This tests whether a keystroke is available to be read.
A return value of zero means no key is available.
Otherwise, the value of the next keystroke is
returned. The keystroke itself is kept to be returned
by the next call to bioskey that has a cmd value of
zero.

Turbo C Reference Guide

2 Requests the current shift key status. The value is
composed from ~Ring the following values together:

Ox80 Insert toggled
Ox40 Caps toggled
Ox20 Num Lock toggled
OxlO Scroll Lock toggled
Ox08 Alt down
Ox04 Ctrl down
Ox02 Left Shift down
OxOl Right Shift down

Portability This function works with IBM pes and compatibles,
only.

Example

#include <stdio.h>
#include <bios.h>
#include <ctype.h>

#define RIGHT OxOOOl
#define LEFT Ox0002
#define CTRL OxQ004
#define ALT Ox0008

main ()
{

int keYi int modifiersi
/* function 1 returns 0 until a key is struck. Wait

for an input by repeatedly checking for a key.
*/
while (bioskey (1) == 0) i

/* now use function 0 to get return value of the key. */
key = bioskey(O)i
printf("Key Pressed was: ")i

/* use function 2 to determine if shift keys were used */
modifiers = bioskey(2)i
if (modifiers) {

}

printf (" [") i
if (modifiers & RIGHT) printf("RIGHT ")i
if (modifiers & LEFT) printf("LEFT ")i
if (modifiers & CTRL) printf ("CTRL ") i
if (modifiers & ALT) printf("ALT ")i
printf("] ")i

if (isalnum(key & OxFF))
printf("'%c'\n",key);

else
printf("%#02x\n",key);

The Turbo C Library 51

Program output

Key Pressed was: [LEFT 1 'T'

biosmemory

Name

Usage

Prototype in

Description

Return value

Portability

biosprint

Name

Usage

Prototype in

Description

52

biosmemory - returns memory size

int biosmemory(void);

bios.h

This function returns the memory size using BIOS
interrupt Ox12.

The return value is the size of memory in lK blocks.

This function works with IBM pes and compatibles,
only.

biosprint - printer I/O

int biosprint(int cmd, int byte, int port);

bios.h

This function performs various printer functions on the
printer identified by the parameter port.

A port value of 0 corresponds to LPT1, port value of 1
corresponds to LPT2, etc.

The value of cmd can be one of the following:

o Print the character in byte
1 Initialize the printer port
2 Read the printer status

The value of byte can be 0 to 255.

Turbo C Reference Guide

Return value

Portability

biostime

Name

Usage

Prototype in

Description

The value returned from any of these operations is the
current printer status composed by ORing these bit
values together:

OxOl Device time out
Ox08 I/O error
Oxl0 Selected
Ox20 Out of paper
Ox40 Acknowledge
Ox80 Not busy

With cmd equal to 0, a return value with device time out
set indicates an output error.

This function works with IBM PCs and compatibles,
only.

biostime - returns time of day

long biostime(int cmd, long newtime);

bios.h

This function either reads or sets the BIOS timer. This is
a timer counting ticks since midnight at a rate of roughly
18.2 ticks per second.

If cmd = 0, biostime returns the current value of the
timer.

If cmd = 1, the timer is set to the long value in newtime.

Return value When biostime reads the BIOS timer, (cmd = 0), it
returns the timer's current value.

Portability This function works with IBM PCs and compatibles,
only.

The Turbo C Library 53

brk

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

54

brk - changes data-segment space allocation

int brk(void *endds);

char *sbrk(int incr);

alloc.h

brk is used to dynamically change the amount of space
allocated to the calling program's data segment. The
change is made by resetting the program's break value,
which is the address of the first location beyond the end
of the data segment. The amount of allocated space
increases as the break value increases.

brk sets the break value to endds and changes the
allocated space accordingly.

sbrk adds incr bytes to the break value and changes the
allocated space accordingly. incr can be negative, in
which case the amount of allocated space is decreased.

Both functions will fail without making any change in
the allocated space if such a change would result in
more space being allocated than is allowable.

Upon successful completion, brk returns a value of 0,
and sbrk returns the old break value.

On failure, both functions return a value of -1, and errno
is set to

ENOMEM Not enough core

brk is available on UNIX systems.

corel eft

Turbo C Reference Guide

bsearch

Name bsearch - binary search

Usage void *bsearch(void *key, void *base,
int *nelem, int width, int (*fcmp)());

Related
functions usage void *lfind(void *key, void *base, int *nelem,

int width, int (*fcmp)());
void *lsearch(void *key, void *base,

int *nelem, int width, int (*fcmp)());

Prototype in stdlib.h

Description bsearch is a binary search algorithm designed to search
an arbitrary table of information. The entries in the table
must be sorted into ascending order before bsearch is
called.

Hind and lsearch also search a table for information.
However, because these are linear searches, the table
entries do not need to be sorted before a call to Hind or
lsearch. If the item that key points to is not in the table,
lsearch appends that item to the table, but Hind does
not.

r::I base points to the base (Oth element) of the search
table.

III nelem points to an integer containing the number of
entries in the table.

II width contains the number of bytes in each entry.

II key points to the item to be searched for (the "search
key").

The argument fcmp points to a user-written comparison
routine. That routine compares two items and returns a
value based on the comparison.

To search the table, these three search functions make
repeated calls to the routine whose address is passed in
fcmp.

The Turbo C Library 55

Return value

Portability

See also

Example

#include <stdio.h>
#include <stdlib.h>

#define NELEMS(arr)

On each call to the comparison routine, the search
functions pass two arguments: key, a pointer to the item
being searched for; and elem, a pointer to the element of
base being compared.

temp is free to interpret the search key and the table
entries any way it likes.

Each function returns the address of the first entry in the
table that matches the search key. If no match is found,
bsearch and Hind return O.

In bsearch

If the search key is

Greater than *elem
Identical to *elem
Less than *elem

In lsearch and Hind

If the search key is

Not identical to *elem
Identical to *elem

Available on UNIX systems.

qsort

(sizeof(arr) / sizeof(arr[O]))

temp returns

An integer < 0
o

An integer> 0

temp returns

An integer!= 0
o

int nurnarray[] = { 123, 145, 512, 627, 800,993 };
int nurneric(int *p1, int *p2)
(

return(*p1 - *p2);

56 Turbo C Reference Guide

/* return 1 if key is in the table, 0 if not */
int lookup(int key)
{

int *itemptr;

/* bsearch() returns a pointer to the item that is found */
itemptr = (int *) bsearch(&key, numarray, NELEMS(numarray),

sizeof(int), numeric);
return (itemptr != NULL);

main ()
{

printf("Is 512 in table? ");
printf("%s\n", lookup(512) ? "YES" "NO");

Program output

Is 512 in table? YES

Another Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h> /* for strcmp declaration */

char *colors [10] = { "red", "blue", "green" };
int ncolors = 3;
/* return 1 if already in the table, 0 if not and was added */
/* assumes there is room for new additions */

int addelem(char *color)
{

int oldn = ncolors;

lsearch(color, colors, &ncolors, sizeof(colors[O]), strcmp);
return (ncolors == oldn);

main()
{

if (addelem("purple"))
printf("purple already in colors table\n");

else
printf("purple added to colors table, now %d colors\n",

ncolors);

Program output

purple added to colors table, now 4 colors

The Turbo C Library 57

cabs

Name

Usage

Prototype in

Description

calloc

Name

Usage

Prototype in

Description

ceil

Name

Usage

Prototype in

Description

58

cabs - absolute value of complex number

#include <math.h>
double cabs(struct complex znum);

math.h

see abs

calloc - allocates main memory

void *calloc(unsigned nelem, unsigned elsize);

stdlib.h and alloc.h

see malloc

ceil- rounds up

double ceil{double x);

math.h

see floor

Turbo C Reference Guide

cgets

Name

Usage

Prototype in

Description

chdir

Name

Usage

Prototype in

Description

Return value

cgets - reads string from console

char *cgets(char *string);

conio.h

see gets

chdir - changes working directory

int chdir(char *path);

dir.h

chdir causes the directory specified by path to become
the current working directory. path must specify an
existing directory.

A drive can also be specified in the path argument, such
as:

chdir("a:\\turboc") or chdir("a:!turboc")

Upon successful completion, chdir returns a value of o.
Otherwise, a value of -1 is returned and errno is set to

ENOENT Path or file name not found

Portability chdir is available on UNIX systems.

See also mkdir

The Turbo C Library 59

Name

Usage

Prototype in

Description

chmod

Name

Usage

Related

_chmod - changes access mode of file

#inc1ude <dos.h>
int _chmod(char *filename, int June [, int attrib]);

io.h

see chmod

chmod - changes access mode of file

#inc1ude <sys \stat.h>
int chmod(char *filename, int perm iss);

functions usage int _chmod(char *filename, int June [, int attrib]);

Prototype in io.h

Description chmod sets the file-access permlsslons of the file
filename according to the mask given by perm iss. filename
points to a string naming the file.

60

perm iss can contain one or both of the symbolic constants
S_IWRITE and S_IREAD (defined in sys \stat.h).

Value of perm iss

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

Permission to write
Permission to read
Permission to read and write

The _chmod function may either fetch or set the MS­
DOS file attributes. If June is 0, the function returns the
current MS-DOS attributes for the file. If June is 1, the
attribute is set to attrib.

Turbo C Reference Guide

attrib can be one of the following symbolic constants
(defined in dos.h).

FA_RDONLY Read only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Return value Upon successfully changing the file-access mode, chmod
returns o. Otherwise, chmod returns a value of -l.

Upon successful completion, _chmod returns the file
attribute word; otherwise, it returns a value of -1.

In the event of an error, errno is set to one of the
following:

ENOENT
EACCES

Path or file name not found
Permission denied

Portability chmod is available on UNIX systems.
_chmod is unique to MS-DOS.

See also access, open, unlink

Example

#include <stdio.h>
#include <sys\stat.h>
#include <io.h>

void make read only(char *filename)
(--

int stat;

stat = chmod(filename, S_IREAO);
if (stat)

printf("couldn't make %s read-only\n", filename);
else

main ()
(

printf("made %s read-only\n", filename);

make read only("NOTEXIST.FIL");
make=read=only("MYFILE.FIL") ;

Program output

couldn't make NOTEXIST.FIL read-only
made MYFILE.FIL read-only

The Turbo C Library 61

_clearS7

Name

Usage

Prototype in

Description

Return value

See also

clearerr

Name

Usage

Prototype in

Description

62

_dear87 - clears floating-point status word

unsigned int _clear87 (void);

float.h

_dear87 clears the floating-point status word, which is a
combination of the 8087/80287 status word and other
conditions detected by the 8087/80287 exception
handler.

The bits in the value returned indicate the old floating­
point status. See float.h for a complete definition of the
bits returned by _dear87.

_fpreset, _status87

dearerr - resets error indication

#include <stdio.h>
void clearerr(FILE *stream);

stdio.h

see ferror

Turbo C Reference Guide

_close

Name

Usage

Prototype in

Description

close

_close - closes a file handle

int _closeCint handle);

io.h

see close

Name close - closes a file handle

Usage int close(int handle);

Related
functions usage int _closeCint handle);

Prototype in io.h

Description close and _close both close the file handle indicated by
handle. handle is a file handle obtained from a _creat,
creat, creatnew, creattemp, dup, dup2, _open, or open
call.

Return value

The Turbo C Library

Note: These functions do not write a Ctrl-Z character at
the end of the file. If you want to terminate the file with
a Ctrl-Z, you must explicitly output one.

Upon successful completion, close and _close return O.
Otherwise, a value of -1 is returned.

Both fail if handle is not a valid, open file handle, and set
errno to

EBADF Bad file number

63

Portability

See also

close is available on UNIX systems.
_close is unique to MS-DOS.

creat, dup, fclose, fcntl, open

_controlS7

Name

Usage

Prototype in

Description

Return value

64

_control87 - manipulates floating-point control word

unsigned int _controI87(unsigned int newvals,
unsigned int mask);

float.h

This function is used to retrieve or change the floating­
point control word.

The floating-point control word is an unsigned int
that, bit by bit, specifies certain modes in the floating­
point package; namely, the precision, infinity and
rounding modes. Changing these modes allows you to
mask or unmask floating-point exceptions.

_control87 matches the bits in mask to the bits in newvals;
If a mask bit = I, the corresponding bit in newvals
contains the new value for the same bit in the floating­
point control word, and _control87 sets that bit in the
control word to the new value.

Here's a simple illustration of how this works:

Original control word: 0100 0011 0110 0011

mask 1000 0001 0100 1111
newvals 1110 1001 0000 0101

Changing bits 1--- ---1 -0-- 0101

If mask = 0, _control87 returns the floating-point control
word without altering it.

The bits in the value returned reflect the new floating­
point control word. For a complete definition of the bits
returned by _control87, see float.h.

Turbo C Reference Guide

See also

coreleft

Name

Usage

Prototype in

Description

cos

Name

Usage

Prototype in

Description

cosh

_clear87, _fpreset, _status87

coreleft - returns a measure of unused memory

In the tiny, small, and medium models:
unsigned coreleft(void);

In the compact, large, and huge models:
unsigned long coreleft(void);

alloc.h

see malloc

cos - trigonometric function

double cos(double x);

math.h

see trig

N arne cosh - hyperbolic functions

Usage double cosh(double x);

Prototype in math.h

Description see hyperb

The Turbo C Library 65

country

Name

Usage

Prototype in

Description

66

country - returns country-dependent information

#include <dos.h>
struct country *country(int countrycode, struct

country *countryp);

dos.h

country specifies how certain country-dependent data,
such as dates, times, and currency, will be formatted.
The values set by this function depend on the version of
DOS being used.

If countryp has a value of -I, the current country is set to
the value of countrycode, which must be non-zero.
Otherwise, the country structure pointed to by countryp
is filled with the country-dependent information of

• the current country (if countrycode is set to 0), or

• the country given by countrycode.

The structure country is defined as follows:

struct country {

};

int co date;
char co curr[5];
char co-thsep[2];
char co-desep[2];
char co-dtsep[2];
char co-tmsep[2];
char co-currstyle;
char co=digits;

int (far *co case) () ;
char co dasep;
char co=fill[lO];

/* Date format */
/* Currency symbol */

/* Thousand separator */
/* Decimal separator */

/* Date separator */
/* Time separator */
/* Currency style */

/* Number of significant */
/* digits in currency */
/* Case map function */

/* Data separator */
/* Filler */

Turbo C Reference Guide

Return value

Portability

cprintf

The date format in co_date is

o for the USA style of month, day, year
1 for the European style of day, month, year
2 for the Japanese style of year, month, day

Currency display style is given by co_currstyle as
follows:

o Currency symbol precedes value with no spaces
between the symbol and the number.

1 Currency symbol follows value with no spaces
between the number and the symbol.

2 Currency symbol precedes value with a space after
the symbol.

3 Currency symbol follows the number with a space
before the symbol.

country returns the pointer argument countryp.

Unique to MS-DOS.

Name cprintf - sends formatted output to the console

Usage int cprintf(char *formatL argument, ...]);

Prototype in conio.h

Description see printf

The Turbo C Library 67

cputs

Name

Usage

Prototype in

Description

Name

Usage

Prototype in

Description

creat

Name

Usage

Related

cputs - writes a string to the console

void cputs(char *string);

conio.h

see puts

_creat - creates a new file or rewrites an existing one

#include <dos.h>
int _creat(char *filename, int attrib);

io.h

see creat

creat - creates a new file or rewrites an existing one

#include <sys \stat.h>
int creat(char *filename, int permiss);

functions usage int _creat(char *filename, int attrib);
int creatnew(char *filename, int attrib);
int creattemp(char *filename, int attrib);

Prototype in io.h

68 Turbo C Reference Guide

Description

The Turbo C Library

creat creates a new file or prepares to rewrite an existing
file named by the string pointed to by filename. permiss
only applies to newly created files.

If the file exists and the write attribute is set, creat
truncates the file to a length of zero bytes, leaving the
file attributes unchanged. If the "existing file has the
read-only attribute set, the creat call fails, and the file
remains unchanged.

The creat call examines only one bit of the access-mode
word permiss; this is the UNIX owner-write permission
bit.

If the owner-write permission bit is 1, the file is writable.
If the bit is 0, the file is marked as read-only. All other
MS-DOS attributes are set to o.
perm iss can be one of the following (defined in
sys \stat.h):

Value of perm iss

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

Permission to write
Permission to read
Permission to read and write

Note: In DOS, write permission implies read permission.

A file created with _creat is always created in the
translation mode specified by the global variable Jmode
(O_TEXT or O_BINARY).

To create a file iI) a particular mode, you can either
assign to Jmode, or call open with the O_CREAT and
O_TRUNC option ORed with the translation mode
desired. For example, the call

open("xmp",O_CREATlo_TRUNClo_BINARy,S_IREAD)

will create a binary-mode, read-only file named XMP,
truncating its length to 0 bytes if it already existed.

_creat accepts attrib, an MS-DOS attribute word. Any
attribute bits may be set in this call. The file is always
opened in binary mode. Upon successful file creation,
the file pointer is set to the beginning of the file. The file
is opened for both reading and writing.

69

Return value

Portability

See also

creatnew

Name

Usage

Prototype in

Description

70

creatnew is identical to _create, with the exception that,
if the file exists, the creatnew call returns an error and
leaves the file untouched.

creattemp is similar to _creat except that the filename is a
path name ending with a backslash (\). A unique file
name is selected in the directory given by filename. The
newly created file name is stored in the filename string
supplied. filename should be long enough to hold the
resulting file name. The file is not automatically deleted
when the program terminates.

The attrib argument to _creat, creatnew, and creattemp
can be one of the following constants (defined in dos.h):

FA_RDONLY Read only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, the new file handle, a non­
negative integer, is returned; otherwise, a -1 is returned.

In the event of error, errno is set to one of the following:

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

creat is available on UNIX systems. _creat is unique to
MS-DOS. creatnew and creattemp are unique to MS­
DOS 3.0 and will not work on earlier DOS versions.

bsearch, close, dup, Jmode (variable), open, read, write

creatnew - creates a new file

#include <dos.h>
int creatnew(char *filename, int attrib);

io.h

see creat

Turbo C Reference Guide

creattemp

Name

Usage

Prototype in

Description

cscanf

Name

Usage

Prototype in

Description

ctime

Name

Usage

Related
functions usage

The Turbo C Library

creattemp - creates a new file or rewrites an existing one

#include <dos.h>
int creattemp(char *filename, int attrib);

io.h

see creat

cscanf - performs formatted input from console

int cscanf(char *format[, argument, ...]);

conio.h

see scanf

ctime - converts date and time to a string

char *ctime(long *ciock);

char *asctime(struct tm *tm);
double difftime(time_t time2, time_t timel);

struct tm *gmtime(long *ciock);
struct tm *localtime(long *ciock);

void tzset(void);

71

Prototype in

Description

72

time.h

dime converts a time pointed to by clock (such as
returned by the function time) into a 26-character string
in the following form:

Man Nov 21 11:31:54 1983\n\O

All the fields have constant width.

asdime converts a time stored as a structure to a 26-
character string of the same form as the dime string.

difftime calculates the elapsed time, in seconds, from
timel to time2.

localtime and gmtime return pointers to structures
containing the broken-down time. localtime corrects for
the time zone And possible daylight savings time;
gmtime converts directly to GMT.

The global long variable timezone contains the difference
in seconds between GMT and local standard time (in
EST, timezone is 5*60*60). The global variable daylight is
non-zero if and only if the standard U.S.A. Daylight
Savings Time conversion should be applied.

The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

tzset is provided for UNIX compatibility and does
nothing in this implementation.

The structure declaration from the time.h include file is:

struct tm (
int tm_sec;
int tm min;
int tm-hour;
int tm=mday;
int tm_mon;
int tm year;
int tm-wday;
int tm-yday;
int tm=isdst;

};

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday equals 0),

Turbo C Reference Guide

year - 1900, day of year (0-365), and a flag that is non­
zero if daylight savings time is in effect.

Return value ctime and asctime return a pointer to the character
string containing the date and time. This string is a static
which is overwritten with each call.

difftime returns the result of its calculation as a double.

localtime and gmtime return the broken down time
structure. This structure is a static which is overwritten
with each call.

Portability

See also

Example

#inc1ude <stdio.h>
#inc1ude <time.h>

main()
{

struct tm *tm nOWi
long secs now;
char *str=nowi

time(&secs nOW)i

All functions are available on UNIX systems.

getdate, time

/* in seconds */
str_now = ctime(&secS_now)i /* make it a string */

printf("The number of seconds since Jan 1, 1970 is %ld\n", secs now)i
printf("In other words, the current time is %s\n", str_now)i -

tm now = loca1time(&secs now)i /* make it a structure */
prlntf("From the structure: day %d %02d-%02d-%02d %02d:%02d:%02d\n",

tm now->tm yday, tm now->tm mon, tm now->tm mday, tm now->tm year,
tm=now->tm=hour, tm=now->tm=min, tm=now->tm=sec)i - -

str now = asctime(tm now)i /* from structure to string */
printf("Once more, the current time is %s\n", str_now)i

Program output

The number of seconds since Jan 1, 1970 is 315594553
In other words, the current time is Tue Jan 01 12:09:13 1980

From the structure: day 0 00-01-80 12:09:13
Once more, the current time is Tue Jan 01 12:09:13 1980

The Turbo C Library 73

ctrlbrk

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

#include <stdio.h>
#include <dos.h>

#define ABORT 0

int c break (void)
{ -

ctrlbrk - sets control-break handler

void ctrlbrk(int (*fptr)(void»;

dos.h

ctrlbrk sets a new control-break handler function
pointed to by fptr. The interrupt vector Ox23 is modified
to call the named function.

The named function is not called directly. ctrlbrk
establishes a DOS interrupt handler that calls the named
function.

The handler function may perform any number of
operations and system calls. The handler does not have
to return; it may use longjmp to return to an arbitrary
point in the program.

ctrlbrk returns nothing. The handler function returns 0
to abort the current program; any other value will cause
the program to resume execution.

Unique to MS-DOS.

longjmp, setjmp

printf("Control-Break hit. Program aborting ... \n");
return (ABORT) ;

74 Turbo C Reference Guide

main()
{

ctrlbrk(c break);
for (;;) T /* infinite loop */

printf("Looping ... \n");

Program output

Looping
Looping .. .
Looping .. .
"c
Control-Break hit. Program aborting ...

difftime

Name

Usage

Prototype in

Description

disable

Name

Usage

Related

difftime - computes difference between two times

#include <time.h>
double difftime(time_t time2, time_t time1);

time.h

see ctime

disable - disables interrupts

#include <dos.h>
void disable(void);

functions usage void enable(void);
void geninterrupt(int intr _num);

Prototype in dos.h

The Turbo C Library 75

Description

Return value

Portability

See also

dosexterr

Name

Usage

Prototype in

Description

76

These macros are designed to provide a programmer
with flexible hardware interrupt control.

The disable macro disables interrupts. Only the NMI
interrupt will still be allowed from any external device.

The enable macro enables interrupts. This allows any
device interrupts to occur.

The geninterrupt macro triggers a software trap for the
interrupt given by intr _num.

disable and enable return nothing. For geninterrupt the
return value depends on the interrupt that was called.

These macros are unique to the 8086 architecture.

getvect

dosexterr - gets extended error

#include <dos.h>
int dosexterr(struct DOSERR *eblkp);

dos.h

This function fills in the DOSERR structure pointed to
by eblkp with extended error information after an MS­
DOS call has failed. The structure is defined as follows:

struct DOSERR (
int exterror;
char class;
char action;
char locus;

};

1* Extended error *1
1* Error class *1

1* Action *1
1* Error locus *1

The values in this structure are obtained via DOS call
Ox59. An exterror value of 0 indicates the prior MS-DOS
call did not result in an error.

Turbo C Reference Guide

Return value

Portability

dostounix

Name

Usage

Related

dosexterr returns the value exterror.

Unique to MS-DOS 3.x; cannot be used on earlier
releases of MS-DOS.

dostounix - converts date and time to UNIX time format

#include <dos.h>
long dostounix(struct date *dateptr, struct time *timeptr);

functions usage void unixtodos(long utime, struct date *dateptr,
struct time *timeptr);

Prototype in dos.h

Description dostounix converts a date and time as returned from
getdate and gettime into UNIX-format time. dateptr
points to a date structure, and timeptr points to a time
structure containing valid DOS date and time
information.

Return value

unixtodos converts the UNIX-format time given in utime
to DOS format and fills in the date and time structures
pointed to by dateptr and timeptr.

dostounix UNIX version of current time: number of
seconds since 00:00:00 on January I, 1970 (GMT).

unixtodos returns nothing.

Portability Both functions are unique to MS-DOS.

See also dime, getdate, gettime

The Turbo C Library 77

dup

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

78

dup - duplicates a file handle

int dup(int handle);

int dup2(int oldhandle, int newhandle);

io.h

dup and dup2 each return a new file handle that has the
following in common with the original file handle:

• same open file or device
• same file pointer (that is, changing the file pointer

of one changes the other)

• same access mode (read, write, read/write)

dup2 returns the next file handle available; dup2 returns
a new handle with the value of newhandle. If the file
associated with newhandle is open when dup2 is called, it
is closed.

handle and oldhandle are file handles obtained from a
creat, open, dup, dup2, or fcnt! call.

Upon successful completion, dup returns the new file
handle, a non-negative integer; otherwise, dup returns
-1.

dup2 returns 0 on successful completion, -1 otherwise.

In the event of error, errno is set to one of the following:

EMFILE Too many open files
EBADF Bad file number

dup is available on all UNIX systems.
dup2 is available on some UNIX systems, but not
System III.

close, creat, open, read, write

Turbo C Reference Guide

dup2

Name

Usage

Prototype in

Description

ecvt

Name

Usage

Related
functions usage

Prototype in

Description

The Turbo C Library

dup2 - duplicates a file handle

int dup2(int oldhandle, int newhandle);

io.h

see dup

ecvt - converts a floating-point number to a string

char *ecvt(double value, int ndigit, int *decpt, int *sign);

char *fcvt(double value, int ndigit, int *decpt, int *sign);
char *gcvt(double value, int ndigit, char *buj);

stdlib.h

ecvt converts value to a null-terminated stringof ndigit
digits and returns a pointer to the string. The position of
the decimal point relative to the beginning of the string
is stored indirectly through decpt (a negative value for
decpt means to the left of the returned digits). If the sign
of the result is negative, the word pointed to by sign is
non-zero; otherwise, it is o. The low-order digit is
rounded.

fcvt is identical to ecvt, except that the correct digit has
been rounded for Fortran F-format output of the number
of digits specified by ndigit.

gcvt converts value to a null-terminated ASCII string in
but and returns a pointer to buf. It attempts to produce
ndigit significant digits in Fortran F-format if possible;

79

Return value

Portability

See also

enable

Name

Usage

Prototype in

Description

eof

Name

Usage

Prototype in

Description

Return value

See also

80

otherwise, E-format (ready for printing) is returned.
Trailing zeros may be suppressed.

The return values of ecvt and fevt point to static data
whose content is overwritten by each call to ecvt or fcvt.

gcvt returns the string pointed to by but.

Available on UNIX.

printf

enable - enables interrupts

#include <dos.h>
void enable(void);

dos.h

see disable

eof - detects end-of-file

int eof(int *handle);

io.h

eof determines whether the file associated with handle
has reached end-of-file.

If the current position is end-of-file, eof returns the
value 1; otherwise, it returns O. A return value of -1 indi­
cates an error; and errno is set to

EBADF Bad file number

ferror, perror

Turbo C Reference Guide

exec ...

Name

Usage

Prototype in

Description

The Turbo C Library

exec ... - functions that load and run other programs

int execl(char *pathname, char *argO, argl, ... , argn,
NULL);

int execle(char *pathname, char *argO, argl, ... , argn,
NULL, char *envp[]);

int execlp(char *pathname, char *argO, argl, ... , argn,
NULL);

int execlpe(char *pathname, char *argO, argl, . '" argn,
NULL, char *envp[]);

int execv(char *pathname, char *argv[]);
int execve(char *pathname, char *argv[], char *envp[]);

int execvp(char *pathname, char *argv[]);
int execvpe(char *pathname, char *argv[], char *envp[]);

process.h

The functions in the exec... family load and run
(execute) other programs, known as child processes.
When an exec... call is successful, the child process
overlays the parent process. There must be sufficient
memory available for loading and executing the child
process.

pathname is the file name of the called child process. The
exec ... functions search for pathname using the standard
MS-DOS search algorithm:

c no extension or no period-search for exact file
name; if not successful, add .exe and search again

II extension given-search only for exact file name

m period given-search only for file name with no
extension

The suffixes I, v, p, and e added to the exec... "family
name" specify that the named function will operate with
certain capabilities.

81

82

p specifies that the function will search for the child in
those directories specified by the DOS PATH environ­
ment variable. Without the p suffix, the function only
searches the root and current working directory.

I specifies that the argument pointers (argO,
argl, ... , argn) are passed as separate arguments.
Typically, the 1 suffix is used when you know in
advance the number of arguments to be passed.

v specifies that the argument pointers (argv[O]
... , arg[nJ) are passed as an array of pointers.
Typically, the v suffix is used when a variable number
of arguments is to be passed.

e specifies that the argument envp may be passed to the
child process, allowing you to alter the environment
for the child process. Without the e suffix, child
processes inherit the environment of the parent
process.

Each function in the exec ... family must have one of the
two argument-specifying suffixes (either 1 or v). The path
search and environment inheritance suffixes (p and e) are
optional.

For example,

• execl is an exec ... function that takes separate
arguments, searches only the root or current
directory for the child, and passes on the parent's
environment to the child .

• execvpe is an exec ... function that takes an array of
argument pointers, incorporates PATH in its search
for the child process, and accepts the envp argument
for altering the child's environment.

The exec ... functions must pass at least one argument to
the child process (argO or argv[O]): This argument is, by
convention, a copy of pathname. (Using a different value
for this zeroth argument won't produce an error.)

Under MS-DOS 3.x, pathname is available for the child
process; under earlier versions, the child process cannot
use the passed value of the zeroth argument (argO or
argv[O]).

Turbo C Reference Guide

Return value

See also

Example

#include <stdio.h>
#include <process.h>

main ()
{

int stat;

When the I suffix is used, argO usually points to
pathname, and argl, ... , argn point to character strings
that form the new list of arguments. A mandatory NULL
following argn marks the end of the list.

When the e suffix is used, you pass a list of new
environment settings through the argument envp. This
environment argument is an array of char*. Each
element points to a null-terminated character string of
the form

envvar = value

where envvar is the name of an environment variable,
and value is the string value to which envvar is set. The
last element in envp[] is NULL. When envp[O] is NULL,
the child inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of
argv[O] + argv[l] + ... + argn[nJ), including space
characters that separate the arguments, must be less
than 128 bytes. Null terminators are not counted.

When an exec... function call is made, any open files
remain open in the child process.

If successful, the exec... functions return no value. On
error, the exec ... functions return -1, and errno is set to
one of the following:

E2BIG
EACCES
EMFILE
ENOENT
ENOEXEC
ENOMEM

Arg list too long
Permission denied
Too many open files
Path or file name not found
Exec format error
N at enough core

abort, atexit, exit, searchpath, spawn, system

printf ("About to exec child with argl arg2 ... \n");
stat = execl("CHILD.EXE", "CHILD.EXE", "argl", "arg2", NULL);

The Turbo C Library 83

/* execl will return only if it cannot run CHILD */
printf("execl error = %d\n", stat);
exit(l);

/* CHILD.C */
*include <stdio.h>

rnain(int argc, char *argv[])
{

int i;

printf("Child running ... \n");
/* print out its arguments */
for (i=O; i<argc; itt)

printf("argv[%d]: %s\n", i, argv[i]);

Program output

About to exec child with argl arg2 ...
Child running ...
argv[O]: CHILD.EXE
argv[l]: argl
argv[2]: arg2

_exit

Name

Usage

Prototype in

Description

84

_exit - terminates program

void _exit(int status);

process.h

see exit

Turbo C Reference Guide

exit

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

exp

exit - terminates program

void exit(int status);

void _exit(int status);

process.h

exit terminates the calling process. Before exiting, all
files are closed, buffered output (waiting to be output) is
written, and any registered "exit functions" (posted with
atexit) are called.

_exit terminates without closing any files, flushing any
output, or calling any exit functions.

In either case, status is provided for the calling process
as the exit status of the process. Typically a value of 0 is
used to indicate a normal exit, and a non-zero value
indicates some error.

These functions never return a value.

exit and _exit are available on UNIX systems.

abort, atexit, exec ... , spawn ...

Name exp - exponential function; returns eX

Usage double exp(double x);

Related
functions usage double frexp(double value, int *eptr);

double ldexp(double value, int exp);

The Turbo C Library 85

Prototype in

Description

Return value

86

double log(double x);
double loglO(double x);

double pow(double x, double y);
double powlO(int p);

double sqrt(double x);

math.h

exp calculates the exponential function eX

frexp calculates the mantissa x (a double <1) and n (an
integer) such that value = x . 2n. frexp stores n in the
integer that eptr points to.

ldexp calculates the double value· 2exp

log calculates the natural logarithm of x

loglO calculates the base 10 logarithm of x

pow calculates xY

powlO computes lOP

sqrt calculates +-Yx

All these functions, on success, return the value they
calculated.

exp returns eX

frexp returns x « 1) where value = x· 2n

ldexp returns x where x = value· 2exp

log returns In(x)

loglO returns loglO(X)

pow returns p where p = xY

powlO returns x where x = lOP

sqrt returns q where q = +-Yx

Sometimes the arguments passed to these functions
produce results that overflow or are incalculable. When
the correct value would overflow, exp and pow return
the value HUGE_VAL. Results of excessively large
magnitude can cause errno to be set to

Turbo C Reference Guide

Portability

See also

fabs

ERANGE Result out of range

The following errors cause errno to be set to

EDOM Domain error

o The argument x passed to log or log10 is
less than or equal to O .

• The argument x passed to pow is less than
or equal to 0 and y is not a whole number.

o The arguments x and y passed to pow are
both O .

• The argument x passed to sqrt is less
than O.

When these errors occur

o log, log10, and pow return the value
negative HUGE_ VAL.

o sqrt returns O.

Error handling for these routines can be modified
through the function rnatherr.

Available on UNIX systems.

hyperb, trig, rnatherr

N arne fabs - absolute value

Usage double fabs(double x);

Prototype in math.h

Description see abs

The Turbo C Library 87

farcalloc

Name

Usage

Prototype in

Description

farcalloc - allocates memory from the far heap

void far * farcalloc(unsigned long nunits,
unsigned long unitsz);

alloc.h

see farmalloc

farcoreleft

Name

Usage

Prototype in

Description

farfree

Name

Usage

Prototype in

Description

88

farcoreleft - returns measure of unused memory in
far heap

long farcoreleft(void);

alloc.h

see farmalloc

farfree - frees a block from far heap

void farfree(void far * block);

alloc.h

see farmalloc

Turbo C Reference Guide

farmalloc

N arne farmalloc - allocates from far heap

Usage void far *farmalloc(unsigned long size);

Related
functions usage void far *farcalloc(unsigned long nunits,

Prototype in

Description

The Turbo C Library

unsigned long unitsz);

long farcoreleft(void);
void farfree(void far *block);

void far *farrealloc(void far *block,
unsigned long newsize);

alloc.h

farmalloc allocates a block of memory size bytes long
from the far heap.

farcalloc allocates memory from the far heap for an
array containing nunits elements, each unitsz bytes long.

farcoreleft returns a measure of the amount of unused
memory in the far heap beyond the highest allocated
block.

farfree releases a block of previously allocated far
memory.

farrealloc adjusts the size of the allocated block to
newsize, copying the contents to a new location if
necessary.

For allocating from the far heap, note that:

El all of available RAM can be allocated
[] blocks larger than 64K can be allocated
[] far pointers are used to access the allocated blocks

In the compact, large, and huge memory models, these
functions are similar, though not identical, to the normal
memory allocation functions. These functions take

89

unsigned long parameters, while the normal ones
(malIoe, etc.) take unsigned. (Refer to malIoe.)

The tiny model cannot make use of these functions
because it cannot have any segment fixups, which are
often produced by far pointers.

In the small and medium memory models, blocks
allocated by farmalloe may not be freed via normal free,
and blocks allocated via malloe cannot be freed via
farfree. In these models the two heaps are completely
distinct.

Return value farmalloe and farealloe return a pointer to the newly
allocated block, or NULL if not enough space exists for
the new block.

farrealloe returns the address of the reallocated block.
This may be different than the address of the original
block. If the block cannot be reallocated, farrealloe
returns NULL.

fareoreleft returns the total amount of space left
between the highest allocated block and the end of
memory.

Portability

See also

Unique to MS-DOS.

malloe

Example

/*

*/

Far Memory Management

farcoreleft - gets the amount of core memory left
farmalloc - allocates space on the far heap
farrealloc - adjusts allocated block in far heap
farfree - frees far heap

*include <stdio.h>
*include <alloc.h>

main ()
{

90

char far * block;
long size = 65000;

/* Find out what's out there *s/

printf("%lu bytes free\n", farcoreleft());

Turbo C Reference Guide

}

/* Get a piece of it */

block = farmalloc(size);
if (block == NULL) (

printf("failed to allocate\n");
exit (1) ;

printf("%lu bytes allocated, ",size);
printf("%lu bytes free\n", farcoreleft());

/* Shrink the block */
size /= 2;
block = farrealloc(block, size);
printf("block now reallocated to %lu bytes, ",size);
printf("%lu bytes free\n", farcoreleft());

/* Let it go entirely */
printf("Free the block\n");
farfree(block);
printf("block now freed, H);
printf("%lu bytes free\n", farcoreleft());

/* End of main */

Program output

359616 bytes free
65000 bytes allocated, 294608 bytes free
block now reallocated to 32500 bytes, 262100 bytes free
Free the block
Block now freed, 359616 bytes free

farrealloc

Name farrealloc - adjusts allocated block in far heap

Usage void far * farrealloc{void far * block,
unsigned long newsize);

Prototype in alloc.h

Description see farmalloc

The Turbo C Library 91

fclose

Name

Usage

Related

fclose - closes a stream

#include <stdio.h>
int fclose(FILE *stream);

functions usage int fcloseall(void);
int fflush(FILE * stream);
int flushall(void);

Prototype in stdio.h

Description fclose closes the named stream; generally, all buffers
associated with stream are flushed before closing.
System-allocated buffers are freed upon closing. Buffers
assigned with setbuf or setvbuf are not automatically
freed.

Return value

Portability

See also

92

fcloseall closes all open streams except stdin and stdout.

fflush causes the contents of the buffer associated with
an open output stream to be written to stream, and clears
the buffer contents if stream is an open input stream.
stream remains open.

flush all clears all buffers associated with open input
streams, and writes all buffers associated with open
output streams to their respective files. Any read
operation following flushall reads new data into the
buffers from the input files.

fclose and fflush return 0 on success; fcloseall returns
the total number of streams it closed. fclose, fcloseall,
and fflush return EOF if any errors were detected.

flushall returns an integer, which is the number of open
input and output streams.

These functions are available on UNIX systems.

close, fopen, setbuf

Turbo C Reference Guide

fcloseall

Name

Usage

Prototype in

Description

fcvt

Name

Usage

Prototype in

Description

fdopen

fcloseall - closes open streams

int fcloseall(void);

stdio.h

see fclose

fcvt - converts a floating-point number to a string

char *fcvt(double value, int ndigit, int *decpt, int *sign);

stdlib.h

see ecvt

Name fdopen - associates a stream with a file handle

Usage #include <stdio.h>
FILE *fdopen(int handle, char *type);

Prototype in stdio.h

Description see fop en

The Turbo C Library 93

feof

Name

Usage

Prototype in

Description

ferror

Name

Usage

Related

feof - detects end-of-file on stream

#include <stdio.h>
int feof(FILE * stream);

stdio.h

see ferror

ferror - detects errors on stream

#include <stdio.h>
int ferror(FILE * stream);

functions usage void clearerr(FILE * stream);
int feof(FILE * stream);

Prototype in stdio.h

Description ferror is a macro that tests the given stream for a read or
write error. If the stream's error indicator has been set, it
remains set until dearerr or rewind is called, or until the
stream is closed.

Return value

94

dearerr sets the stream's error and end-of-file indicators
to o.
feof is a macro that tests the given stream for an end-of­
file indicator. Once the indicator is set, read operations
on the file return the indicator until rewind is called or
the file is closed.

ferror returns non-zero if an error was detected on the
named stream.

Turbo C Reference Guide

Portability

See also

fflush

Name

Usage

Prototype in

Description

fgetc

dearerr resets the error and end-of-file indicators on the
named stream; it returns nothing.

feof returns non-zero if an end-of-file indicator was
detected on the last input operation on the named
stream.

The end-of-file indicator is reset with each input
operation.

These functions are available on UNIX systems.

eof, fopen, getc, gets, open, putc, puts

fflush - flushes a stream

#include <stdio.h>
int fflush(FILE *stream);

stdio.h

see fdose

Name fgetc - gets character from stream

Usage #include <stdio.h>
int fgetc(FILE *stream);

Prototype in stdio.h

Description see getc

The Turbo C Library 95

fgetchar

Name

Usage

Prototype in

Description

fgets

Name

Usage

Prototype in

Description

filelength

Name

Usage

Prototype in

Description

96

fgetchar - gets character from stream

int fgetchar(void);

stdio.h

see getc

fgets - gets a string from a stream

#include <stdio.h>
char *fgets(char *string, int n, FILE *stream);

stdio.h

see gets

filelength - gets file size in bytes

long filelength(int handle);

io.h

filelength returns the length (in bytes) of the file
associated with handle.

Turbo C Reference Guide

Return value

fileno

Name

Usage

Prototype in

Description

Return value

Portability

findfirst

Name

Usage

Related

On success, file length returns a long value, the file
length in bytes. On error, the return value is -IL and
errno is set to

EBADF Bad file number

fileno - gets file handle

#include <stdio.h>
int fileno(FILE * stream);

stdio.h

fileno is a macro that returns the file handle for the
given stream. If stream has more than one handle, fileno
returns the handle assigned to the stream when it was
first opened.

fileno returns the integer file handle associated with the
stream.

Available on UNIX systems.

findfirst - searches disk directory

#include <dir.h>
#include <dos.h>
int findfirst(char *pathname, struct ffblk *ffblk, int attrib);

functions usage int findnext(struct ffblk *ffblk);

Prototype in dir.h

Description findfirst begins a search of a disk directory by using the
MS-DOS system call Ox4E.

The Turbo C Library 97

Return value

98

pathname is a string with an optional drive specifier, path
and file name of the file to be found. The file name
portion may contain wildcard match characters (such as
? or *). If a matching file is found, the ffblk structure is
filled with the file-directory information.

attrib is an MS-DOS file-attribute byte used in selecting
eligible files for the search. attrib can be one of the
following constants defined in dos.h.

FA_RDONLY Read only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

For more detailed information about these attributes,
refer to the MS-DOS Programmer's Reference Manual.

findnext is used to fetch subsequent files which match
the pathname given in findfirst. ffblk is the same block
filled in by the findfirst call. This block contains
necessary information for continuing the search. One file
name for each call to findnext will be returned until no
more files are found in the directory matching the
pathname.

The format of the structure ffblk is as follows:

struct ffblk {

}i

char ff reserved[2l]i
char ff-attribi
int ff ftimei
int fCfdatei
long fI fsizei
char ff=name[13]i

/* Reserved by DOS */
/* Attribute found */

/* File time */
/* File date */
/* File size */

/* Found file name */

Note that findfirst and find next set the MS-DOS disk­
transfer address (DT A) to the address of the ffblk.

If you need this DTA value, you should save it and
restore it (using getdta and setdta) after each call to
findfirst or findnext.

findfirst and findnext return 0 on successfully finding a
file matching the search pathname. When no more files

Turbo C Reference Guide

can be found or if there is some error in the file name, -1
is returned, and the global variable errno is set to one of
the following:

ENOENT
ENMFILE

Path or file name not found
No more files

Portability Unique to MS-DOS.

Example

#include <stdio.h>
#include <dir.h>

main ()
{

struct ffblk ffblk;
int done;

printf("Directory listing of *.*\n");
done = findfirst("*.*",&ffblk,O);
while (! done) {

printf(" %s\n", ffblk.ff name);
done = findnext(&ffblk); -

Program output

Directory listing of *.*
FINDFRST.C
FINDFRST.OBJ
FINDFRST.MAP
FINDFRST.EXE

findnext

Name findnext - fetches files which match findfirst

Usage #include <dir.h>
int findnext(struct ffblk *ffblk);

Prototype in dir.h

Description see findfirst

The Turbo C Library 99

floor

N arne floor - rounds down

Usage double floor(double x);

Related
functions usage double ceil(double x);

Prototype in math.h

Description floor finds the largest integer not greater than x.
ceil finds the smallest integer not less than x.

Return value floor and ceil each return the integer found (as a
double).

Portability These functions are available on UNIX systems.

See also abs

flushall

Name

Usage

Prototype in

Description

100

flushall- clears all buffers

int flushall(void);

stdio.h

see fclose

Turbo C Reference Guide

fmod

Name

Usage

Related
functions usage

Prototype in

Description

Return value

fnmerge

Name

Usage

Related

fmod - calculates x modulo y, the remainder of x/yo

double fmod(double x, double y);

double modf(double value, double * iptr);

math.h

fmod calculates x modulo y (the remainder 1 where
x = iy + 1 for some integer i and 0 5:.1 < y).

modf breaks the double value into two parts: the integer
and the fraction. It stores the integer in iptr and returns
the fraction.

fmod returns the remainder 1 where x = iy + 1 (as
described).

modf returns the fractional part of value.

fnmerge - makes new file name

#include <dir.h>
void fnmerge(char *path, char * drive, char * dir,

char * name, char * ext);

functions usage int fnsplit(char *path, char *drive, char *dir,
char *name, char *ext);

Prototype in dir.h

Description fnmerge makes a file name from its components. The
new file's full path name is

X:\DIR\SUBDIR\NAME.EXT

The Turbo C Library 101

102

where

x is given by drive
\OIR \SUBOIR \ is given by dir
NAME. EXT is given by name and ext

fnsplit takes a file's full path name (path) as a string in
the form

X:\OIR\SUBOIR\NAME.EXT

and splits path into its four components. It then stores
those components in the strings pointed to by drive, dir,
name and ext. (Each component is required but can be a
NULL, which means the corresponding component will
be parsed but not stored.)

The maximum sizes for these strings are given by the
constants MAXDRIVE, MAXDIR, MAXP ATH,
MAXNAME and MAXEXT, (defined in dir.h) and each
size includes space for the null-terminator.

Constant (Max.) String

MAXPATH (80) path
MAXDRIVE (3) drive; includes colon (:)
MAXDIR (66) dir; includes leading and

MAXFILE
MAX EXT

trailing backslashes (\)
(9) name
(5) ext; includes leading dot (.)

fnsplit assumes that there is enough space to store each
non-NULL component. fnmerge assumes that there is
enough space for the constructed path name. The
maximum constructed length is MAXP ATH.

When fnsplit splits path, it treats the punctuation as
follows:

.. drive keeps the colon attached (C:, A:, etc.)
II dir keeps the leading and trailing backslashes

(\ turboc \include \, \source \, etc.)
• ext keeps the dot preceding the extension (.c, .exe,

etc.)

These two functions are invertible; if you split a given
path with fnsplit, then merge the resultant components
with fnmerge, you end up with path.

Turbo C Reference Guide

Return value fnsplit returns an integer (composed of five flags,
defined in dir.h) indicating which of the full path name
components were present in path; these flags and the
components they represent are:

EXTENSION
FILENAME
DIRECTORY

DRIVE
WILDCARDS

an extension
a filename
a directory (and possibly sub­
directories)
a drive specification (see dir.h)
wildcards (* or ? cards)

Portability

See also

Available on MS-DOS systems only.

Example

#include <stdio.h>
#include <dir.h>

char drive[MAXDRIVE];
char dir[MAXDIR];
char file[MAXFILE];
char ext[MAXEXT];

main ()
{

char s[MAXPATH], t[MAXPATH];
int flag;

for (;;) {
printf("> ");
if (!gets(s)) break;

1* print input prompt *1
1* while there is more input *1

flag = fnsplit(s,drive,dir,file,ext);

1* print the components *1
printf(" drive: %s, dir: %s, file: %s, ext: %s, ",

drive, dir, file, ext);
printf("flags: ");
if (flag & DRIVE)

printf(":");
if (flag & DIRECTORY)

printf ("d");
if (flag & FILENAME)

printf("f");
if (flag & EXTENSION)

printf ("e") ;
printf("\n");

The Turbo C Library 103

/* glue the parts back together and compare to original */
fnmerge(t,drive,dir,file,ext);
if (strcmp(t,s) != 0) /* shouldn't happen! */

printf(" --) strings are different!");

Program output

> C:\TURBOC\FN.C
drive: C:, dir: \TURBOC\, file: FN, ext: .C, flags: :dfe

> FILE.C
drive: , dir: , file: FILE, ext: .C, flags: fe

> \TURBOC\SUBDIR\NOEXT.
drive: , dir: \TURBOC\SUBDIR\, file: NOEXT, ext: ., flags: dfe

> C:MYFILE
drive: C:, dir: , file: MYFILE, ext: , flags: :f

> "Z

fnsplit

Name

Usage

Prototype in

Description

104

fnsplit - splits a full path name into its components

#include <dir.h>
int fnsplit(char *path, char *drive, char *dir,

char *name, char *ext);

dir.h

see fnmerge

Turbo C Reference Guide

fopen

Name

Usage

Related

fop en - opens a stream

#include <stdio.h>
FILE *fopen(char *filename, char *type);

functions usage FILE *fdopen(int handle, char *type);
FILE *freopen(char *filename, char *type, FILE *stream);

Prototype in stdio.h

Description fop en opens the file named by filename and associates a
stream with it. fopen returns a pointer to be used to
identify the stream in subsequent operations.

fdopen associates a stream with a file handle obtained
from creat, dup, dup2, or open. The type of stream must
match the mode of the open handle.

freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of
whether the open succeeds. freopen is useful for
changing the file attached to stdin, stdout, or stderr.

The type string used in each of these calls is one of the
following values:

r Open for reading only.

w Create for writing.

a Append; open for writing at end of file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

The Turbo C Library 105

Return value

Portability

See also

Example

#include <stdio.h>
#include <fcntl.h>

main()
(

To specify that a given file is being opened or created in
text mode, you can append a t to the value of type (rt,
w+t, etc.); similarly, to specify binary mode, you can
append a b to the type value (wb, a+b, etc.)

If a t or b is not given in type, the mode is governed by
the global variable Jmode. If Jmode is set to O_BINARY,
files will be opened in binary mode. If Jmode is set to
O_TEXT, they will be opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output
may be done on the resulting stream. However, output
may not be directly followed by input without an
intervening fseek or rewind, and input may not be
directly followed by output without an intervening
fseek, rewind, or an input which encounters end-of-file.

On successful completion, each function returns the
newly open stream. freopen returns the argument stream.
In the event of error, each function returns NULL.

These functions are available on UNIX systems. fopen is
defined by Kernighan and Ritchie.

creat, dup, fclose, ferror, Jmode (variable), fread,
fseek, getc, gets, open, putc, puts, rewind, setbuf,
setmode

/* needed to define the mode used in open */

int handle, status;
FILE *stream;
/* open a file */
handle = open ("MYFILE. TXT", 0 CREAT);
/* now turn it into a stream */
stream = fdopen(handle, "W");
if (stream == NULL)

printf("fdopen failed\n");
else (

106

fprintf(stream, "Hello, world\n");
fclose(stream);

Turbo C Reference Guide

Name

Usage

Related

FP _OFF - gets a far address offset

#include <dos.h>
unsigned FP _OFF(void far * farptr);

functions usage unsigned FP _SEG(void far *farptr);
void far * MK_FP(unsigned seg, unsigned off>;

Prototype in dos.h

Description The FP _OFF macro can be used to get the offset of the
far pointer farptr.

Return value

See also

Example

#include <stdio.h>
#include <dos.h>

main ()
{

char far *ptr;
unsigned seg, off;

FP _SEG is a macro used to get the segment value of the
far pointer farptr.

MK_FP is a macro that makes a far pointer from its
component segment (seg) and offset (ott> parts.

FP _OFF returns an unsigned integer value representing
an offset value.

FP _SEG returns an unsigned integer representing a
segment value.

MK_FP returns a far pointer.

movedata, segread

ptr = MK FP(OxBOOO,O);
seg = FP-SEG(ptr);
off = FP-OFF(ptr);
printf(IIfar ptr %Fp, segment %04x, offset %04x\n",

ptr,seg,off);

The Turbo C Library 107

Program output

far ptr BOOO:OOOO, segment bOOO, offset 0000

Name

Usage

Prototype in

Description

_fpreset

Name

Usage

Prototype in

Description

108

FP _SEG - gets far address segment

#inc1ude <dos.h>
unsigned FP _SEG(void far *farptr);

dos.h

see FP_OFF

_fpreset - reinitializes floating-point math package

void _ fpresetO;

float.h

_fpreset reinitializes the floating-point math package.
This function is usually used in conjunction with signal,
system, or the exec ... or spawn ... functions.

Note: Under MS-DOS versions prior to 2.x and 3.x, if an
8087/80287 coprocessor is used in a program, a child
process (executed by system or by an exec ... or spawn ...
function) might alter the parent process's floating-point
state.

If you use an 8087/80287, take the following
precautions:

Turbo C Reference Guide

Return value

See also

fprintf

Name

Usage

Prototype in

Description

fputc

• Do not call system or an exec ... , or spawn ... function
while a floating-point expression is being evaluated.

• Call _fpreset to reset the floating-point state after
using system, exec ... , or spawn ... if there is any
chance that the child process performed a floating­
point operation with the 8087/80287.

There is no return value.

exec ... , longjmp, signal, spawn ... , system

fprintf - sends formatted output to a stream

#include <stdio.h>
int fprintf(FILE *stream, char *formatL argument, ...]);

stdio.h

see printf

Name fputc - puts a character on a stream

Usage #include <stdio.h>
int fputc(int ch, FILE *stream);

Prototype in stdio.h

Description see putc

The Turbo C Library 109

fputchar

Name

Usage

Prototype in

Description

fputs

Name

Usage

Prototype in

Description

fread

Name

Usage

Related

fputchar - puts a character on stdout

int fputchar(char ch);

stdio.h

see putc

fputs - puts a string on a stream

#inlcude <stdio.h>
int fputs(char *string, FILE *stream);

stdio.h

see puts

fread - reads data from a stream

#include <stdio.h>
int fread(void *ptr, int size, int nitems, FILE *stream);

functions usage int fwrite(void *ptr, int size, int nitems, FILE *stream);

Prototype in stdio.h

Description fread reads nitems of data, each of length size bytes, from
the named input stream into a block pointed to by ptr.

110 Turbo C Reference Guide

Return value

Portability

See also

free

Name

Usage

Prototype in

Description

freemem

fwrite appends nitems of data, each of length size bytes,
to the named output stream. The data appended begins
at ptr.

For both functions, the total number of bytes read is
(nitems * size).

ptr in the declarations is a pointer to any object. size is
the size of the object ptr points to. The expression
sizeof *ptr will produce the proper value.

On successful completion, each function returns the
number of items (not bytes) actually read or written.
fread returns a short count (possibly 0) on end-of-file or
error. fwrite returns a short count on error.

These functions are available on all UNIX systems.

fopen, getc, gets, printf, putc, puts, read, scanf, write

free - frees allocated block

void free(void *ptr);

stdlib.h and alloc.h

see malloc

Name freemem - frees a previously allocated DOS
memory block

Usage in t freemem (unsigned seg);

Prototype in dos.h

Description see allocmem

The Turbo C Library 111

freopen

Name

Usage

Prototype in

Description

frexp

Name

Usage

Prototype in

Description

fscanf

Name

Usage

Prototype in

Description

112

freopen - replaces a stream

#include <stdio.h>
FILE *freopen(char *filename, char *type, FILE *stream);

stdio.h

see fopen

frexp - splits a double number into mantissa
and exponent

double frexp(double value, int *eptr);

math.h

see exp

fscanf - performs formatted input from a stream

#include <stdio.h>
int fscanf(FILE *stream, char *format[, argument, ...]);

stdio.h

see scanf

Turbo C Reference Guide

fseek

Name

Usage

Related

fseek - repositions a file pointer on a stream

#include <stdio.h>
int fseek(FILE * stream, long offset, int fr0mwhere);

functions usage long ftell(FILE *stream);
int rewind(FILE *stream);

Prototype in stdio.h

Description fseek sets the file pointer associated with stream to a
new position that is offset bytes beyond the file location
given by from where.

fromwhere must be one of the values 0, 1 or 2, which
represent three symbolic constants (defined in stdio.h)
as follows:

from where

SEEK_SET (0)
SEEK_CUR (1)
SEEK_END (2)

File Location

file beginning
current file pointer position
end-of-file

fseek discards any character pushed back using ungetc.

£tell returns the current file pointer located in stream.
The offset is measured in bytes from the beginning of
the file.

rewind(stream) is equivalent to fseek(stream, OL,
SEEK_SET), except that rewind clears the end-of-file and
error indicators, while fseek only clears the end-of-file
indicator.

After fseek or rewind, the next operation on an update
file may be either input or output.

Return value fseek and rewind return 0 if the pointer successfully
moved and a non-zero value on failure.

The Turbo C Library 113

£tell returns the current file-pointer position on success
or -IL on error.

Portability

See also

These functions are available on all UNIX systems.

fopen, £tell, getc, lseek, setbuf, ungetc

Example

#include <stdio.h>

1* returns the number of bytes in file stream *1

long filesize(FILE *stream)
{

long curpos,length;

curpos = ftell(stream);
fseek(stream, OL, SEEK END);
length = ftell(stream);
fseek(stream, curpos, SEEK SET);
return(length); -

main ()
{

FILE *stream;

stream = fopen("MYFILE.TXT", "r");
printf("filesize of MYFILE.TXT is %ld bytes\n", filesize(stream));

Program output

filesize of MYFILE.TXT is 15 bytes

fstat

Name

Usage

Prototype in

Description

114

fstat - gets open file information

#include <sys \stat.h>
int fstat(char *handle, struct stat *buff>

sys\stat.h

See stat

Turbo C Reference Guide

ftell

Name

Usage

Prototype in

Description

fwrite

Name

Usage

Prototype in

Description

gcvt

Name

Usage

£tell - returns the current file pointer

#include <stdio.h>
long ftell(FILE *stream);

stdio.h

see fseek

fwrite - writes to a stream

#include <stdio.h>
int fwrite(void *ptr, int size, int nitems, FILE *stream);

stdio.h

see fread

gcvt - converts floating-point number to string

#include <dos.h>
char *gcvt(double value, int ndigit, char *but>;

Prototype in stdlib.h

Description see ecvt

The Turbo C Library 115

geninterrupt

Name

Usage

Prototype in

Description

getc

Name

Usage

Related

geninterrupt - generates software interrupt

#inc1ude <dos.h>
void geninterrupt(int intr _num);

dos.h

see disable

getc - gets character from stream

#inc1ude <stdio.h>
int getc(FILE *stream);

functions usage int fgetc(FILE *stream);
int fgetchar(void);

Prototype in

Description

116

int getch(void);
int getchar(void);

int getche(void);
int getw(FILE *stream);

int ungetc(char c, FILE *stream);
int ungetch(int c);

stdio.h
conio.h (getch, getche, ungetch)

getc is a macro that returns the next character on the
named input stream.

getchar is a macro defined to be getc(stdin).

ungetc pushes the character c back onto the named
input stream. This character will be returned on the next

Turbo C Reference Guide

Return value

call to getc or fread for that stream. One character may
be pushed back in all situations. A second call to ungetc
without a call to getc will force the previous character to
be forgotten. fseek erases all memory of a pushed-back
character.

fgetc behaves exactly like getc, except that it is a true
function while getc is a macro.

fgetchar is a function that is the same as fgetc(stdin).

getch is a function that reads a single character directly
from the console, without echoing.

getche is a function that reads and echoes a single
character from the console.

ungetch pushes the character c back to the console,
causing c to be the next character read. The ungetch
function fails if it is called more than once before the
next read.

getw returns the next integer in the named input stream.
getw assumes no special alignment in the file.

On success, getc, getchar, fgetc, and fgetchar return the
character read, after converting it to an int without sign
extension. On end-of-file or error, they return EOF.

getch and getche return the character read. There is no
error return for these two functions.

getw returns the next integer on the input stream. On
end-of-file or error, getw returns EOF. Because EOF is a
legitimate value for getw to return, feof or ferror should
be used to detect end-of-file or error.

ungetc always returns the character pushed back.

ungetch returns the character c if it is successful. A
return value of EOF indicates an error.

Portability getch, getche, and ungetche are MS-DOS specific. fgetc,
fgetchar, getc, getchar, getw, and ungetc are available
on UNIX systems. getc and getchar are defined in
Kernighan and Ritchie.

See also ferror, fopen, fread, fseek, gets, putc, read, scanf

The Turbo C Library 117

getcbrk

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

getch

Name

Usage

Prototype in

Description

118

getcbrk - gets control-break setting

int getcbrk(void);

int setcbrk(int value);

dos.h

getcbrk uses the MS-DOS system call Ox33 to return the
current setting of control-break checking.

setcbrk uses the MS-DOS system call Ox33 to set
control-break checking on or off.

value = 0 Turns checking off (check only during
I/O to console, printer, or
communications devices)

value = 1 Turns checking on (check at every system
call)

getcbrk returns 0 if control-break checking is off and
returns 1 if checking is on.

setcbrk returns value.

Unique to MS-DOS.

getch - gets character from console, no echoing

int getch(void);

conio.h

see getc

Turbo C Reference Guide

getchar

Name

Usage

Prototype in

Description

getche

Name

Usage

Prototype in

Description

getcurdir

Name

Usage

Prototype in

Description

The Turbo C Library

getchar - gets character from stream

#include <stdio.h>
int getchar(void);

stdio.h

see getc

getche - gets character from the console, with echoing

int getche(void);

conio.h

see getc

getcurdir - gets current directory for specified drive

int getcurdir(int drive, char *direc);

dir.h

getcurdir gets the name of the current working directory
for the named drive.

drive contains a drive number (0 = default, 1 = A, etc.).

direc points to an area of memory of length MAXDIR
where the directory name will be placed. The null-

119

Return value

Portability

See also

Example

#include <dir .h>
*include <stdio.h>,

terminated name does not contain the drive specification
and does not begin with a backslash.

getcurdir returns 0 on success or -1 in the event of error.

Unique to MS-DOS.

free, getcwd

char *current directory(char *path)
{ -

strcpy(path, "X:\\")i
path[O] = 'A' + getdisk()i
getcurdir(O, path+3)i
return (path) i

rnain ()
{

char curdir[MAXPATH]i

current directory(curdir)i
printf ("The current directory is %s\n", curdir) i

Program output

The current directory is C:\TURBOC

getcwd

Name

Usage

Prototype in

Description

getcwd - gets current working directory

char *getcwd(char *but, int n);

120

dir.h

getcwd gets the full path name of the cwd (current
working directory, including the drive), up to n bytes
long, and stores it in but. If the full path name length

Turbo C Reference Guide

Return value

Portability

See also

getdate

Name

Usage

Related

(including the null-terminator) is longer than n, an error
occurs.

If but is NULL, a buffer n bytes long will be allocated for
you with malloc. You can later free the allocated buffer
by passing the getcwd return value to the function free.

getcwd returns but; on error, it returns NULL.

In the event of an error return, the global variable errno
is set to one of the following:

ENODEV
ENOMEM
ERANGE

N a such device
N at enough core
Result out of range

Unique to MS-DOS.

free, getcurdir, malloc

getdate - gets MS-DOS date

#include <dos.h>
void getdate(struct date *dateblk);

functions usage void gettime(struct time *timep);
void setdate(struct date *dateblk);
void settime(struct time *timep);

Prototype in dos.h

Description getdate fills in the date structure (pointed to by dateblk)
with the system's current date.

The Turbo C Library

gettime fills in the time structure pointed to by timep
with the system's current time.

setdate sets the system date (month, day, and year) to
that in the date structure pointed to by dateblk.

settime sets the system time to the values in the time
structure pointed to by timep.

121

The date structure is defined as follows:

struct date {
int da year;
char da day;
char da=mon;

};

/* Current year */
/* Day of the month */
/* Month (1 = Jan) */

The time structure is defined as follows:

struct time {

};

unsigned char ti min;
unsigned char ti-hour;
unsigned char ti-hund;
unsigned char ti=sec;

/* Minutes */
/* Hours */

/* Hundredths of seconds */
/* Seconds */

Return value

Portability

See also

These functions do not return any value.

Unique to MS-DOS.

Example

#include <stdio.h>
#include <dos.h>

main ()
{

struct date today;
struct time now;

getdate(&today);

dime

printf("Today's date is %d/%d/%d\n", today.da_mon, today.da_day,
today.da_year);

gettime (&now) ;
printf("The time is %02d:%02d:%02d.%02d\n", now.ti hour,

now.ti_min, now.ti_sec, now.ti_hund); -

Program output

Today's date is 1/1/1980
The time is 17:08:22.42

122 Turbo C Reference Guide

getdfree

Name

Usage

Prototype in

Description

Return value

Portability

See also

getdisk

getdfree - gets disk free space

#inc1ude <dos.h>
void getdfree(int drive, struct dfree *dfreep);

dos.h

getdfree accepts a drive specifier in drive (0 = default,
1 = A, etc.) and fills in the dfree structure pointed to by
dfreep with disk characteristics.

The dfree structure is defined as follows:

struct dfree {
unsigned df avail;
unsigned df-total;
unsigned df-bsec;
unsigned df=sclus;

);

/* Available clusters */
/* Total clusters */

/* Bytes per sector */
/* Sectors per cluster */

getdfree returns no value. In the event of an error,
df_sclus in the dfree structure is set to-l.

Unique to MS-DOS.

getfat

Name getdisk - gets current drive

Usage int getdisk(void);

Related
functions usage int setdisk(int drive);

Prototype in dir.h

The Turbo C Library 123

Description

Return value

Portability

See also

getdta

Name

Usage

Related
functions usage

Prototype in

Description

124

getdisk gets the current drive and returns an integer: 0 =
A:, 1 = B:, 2 = C:; etc. (Equivalent to DOS function Ox19.)
For an example that demonstrates how to use getdisk,
refer to getcurdir.

setdisk sets the current drive to the one associated with
drive: 0 = A:, 1 = B:, 2 = C:; etc. (Equivalent to DOS
function OxOE.)

getdisk returns the current drive.

setdisk returns the total number of drives available.

Unique to MS-DOS.

getcurdir, setdisk

getdta - gets disk transfer address

char far *getdta(void);

void setdta(char far *dta);

dos.h

getdta returns the current setting of the disk transfer
address (DTA).

In the small and medium memory models, it is assumed
that the segment is the current data segment. If C is used
exclusively, this will be the case, but assembly routines
may set the disk transfer address to any hardware
address.

In the compact, large, or huge memory models, the
address returned by getdta is the correct hardware
address and may be located outside the program.

setdta changes the current setting of DTA to the value
pointed to by dta.

Turbo C Reference Guide

Return value

Portability

getenv

getdta returns a pointer to the current disk transfer
address.

setdta returns nothing.

Unique to MS-DOS.

Name getenv - gets string from environment

Usage char *getenv(char *envvar);

Related
functions usage int putenv(char *envvar);

Prototype in stdlib.h

Description The MS-DOS environment consists of a series of entries
that are of the form

Return value

envvar = varvalue

getenv searches the environment for the entry
corresponding to envvar, then returns a pointer to
varvalue.

putenv accepts the string envvar and adds it to the
current environment.

putenv can also be used to modify or delete an existing
envvar. Delete an existing entry by making varvalue
empty; for example, "MYV AR=".

On success, getenv returns a pointer to the value
associated with envvar. The pointer is overwritten on
subsequent calls. If the specified envvar is not defined in
the environment, getenv returns O.

On success, putenv returns 0; on failure, -1.

Portability Available on UNIX systems.

See also environ (variable), getdfree

The Turbo C Library 125

Example

#include <stdio.h>
#include <stdlib.h>

main ()
(

char *path, *dummy;

path = getenv("PATH");
dummy = getenv("DUMMY");

printf("PATH = %s\n", path);
printf("old value of DUMMY: %s\n",

(dummy == NULL) ? "*none*" : dummy);
putenv("DUMMY=TURBOC");
dummy = getenv("DUMMY");
printf("new value of DUMMY: %s\n", dummy);

Program output

PATH = C:\BIN;C:\BIN\DOS;C:\
old value of DUMMY: *none*
new value of DUMMY: TURBOC

getfat

Name

Usage

getfat - gets file-allocation table information

#include <dos.h>
void getfat(int drive, struct fatinfo *fatblkp);

Related
functions usage void getfatd(struct fatinfo *fatblkp);

Prototype in dos.h

Description getfat returns information from the file-allocation table
for the drive specified by drive (0 = default, 1 = A:, 2 = B:,
etc.). fatblkp points to the fatinfo structure to be filled in.

126

getfatd performs the same function as getfat except that
the default drive (0) is always used.

Turbo C Reference Guide

Return value

Portability

See also

getfatd

Name

Usage

Prototype in

Description

getftime

Name

Usage

Related

The fatinfo structure filled in by getfat and getfatd is
defined as follows:

struct fatinfo {
char fi SC1USi
char fCfatidi
int fi nC1USi
int f(byseci

}i

None

Unique to MS-DOS.

getdfree

/* Sectors per cluster */
/* The FAT id byte */

/* Number of clusters */
/* Bytes per sector */

getfatd - gets file-allocation table information

#inc1ude <dos.h>
void getfatd(struct fatinfo *fatblkp);

dos.h

see getfat

getftime - gets file date and time

#inc1ude <dos.h>
int getftime(int handle, struct ftime *ftimep);

functions usage int setftime(int handle, struct ftime *ftimep);

Prototype in dos.h

Description getftime retrieves the file time and date for the disk file
associated with the open handle. The ftime structure

The Turbo C Library 127

Return value

Portability

See also

getpass

Name

Usage

Prototype in

Description

128

pointed to by ftimep is filled in with the file's time and
date.

setftime sets the file date and time of the disk file
associated with the open handle to the date and time in
the ftime structure pointed to by ftimep.

The ftime structure is defined as follows:

struct ftime {

};

unsigned ft tsec: 5;
unsigned ft-min: 6;
unsigned ft-hour: 5;
unsigned ft-day: 5;
unsigned ft-month: 4;
unsigned ft=year: 7;

Both functions return 0 on success.

1* Two seconds *1
1* Minutes *1

1* Hours *1
1* Days *1

/* Months */
1* Year - 1980*/

In the event of an error return, -1 is returned and the
global variable errno is set to one of the following:

EINVFNC Invalid function number
EBADF Bad file number

Unique to MS-DOS.

fread

getpass - reads a password

char *getpass(char *prompt);

conio.h

getpass reads a password from the system console after
prompting with the null-terminated string prompt and
disabling the echo. A pointer is returned to a null­
terminated string of up to eight characters at most (not
counting the null-terminator).

Turbo C Reference Guide

Return value

Portability

getpsp

Name

Usage

Prototype in

Description

Return value

Portability

See also

gets

The return value is a pointer to a static string which is
overwritten with each call.

Available on UNIX systems.

getpsp - gets the program segment prefix

unsigned getpsp(void);

dos.h

getpsp gets the segment address of the program
segment prefix (the PSP) using DOS call Ox62.

This call only exists in DOS 3.x. For versions of MS-DOS
2.x and 3.x, the global variable -psp set by the start-up
code may be used instead.

getpsp returns the segment value of the PSP.

Unique to MS-DOS 3.0; not available under earlier
versions of MS-DOS.

-psp (variable)

Name gets - gets a string from a stream

Usage char *gets(char *string);

Related
functions usage char *cgets(char *string);

char *fgets(char *string, int n, FILE *stream);

Prototype in stdio.h (fgets, gets)
conio.h (cgets)

The Turbo C Library 129

Description

Return value

Portability

See also

Example

#include <stdio.h>
#include <conio.h>

main ()
{

gets reads a string into string from the standard input
stream stdin. The string is terminated by a newline char­
acter, which is replaced in string by a null character (\0).

cgets reads a string of characters from the console,
storing the string (and the string length) in the location
pointed to by string.

cgets reads characters until it encounters a CR/LF
combination or until the maximum allowable number of
characters have been read. If cgets reads a CR/LF
combination, it replaces the combination with a \0
(null-terminator) before storing it.

Before cgets is called, string[O] should be set to the
maximum length of the string to be read. On return,
string[1] is set to the number of characters actually read.
The characters read start at string[2] and end with a
null-terminator. Thus, string must be at least string[O] + 2
bytes long.

fgets reads characters from stream into the string string:
The function stops reading when it either reads n - 1
characters or reads a newline character (whichever
comes first). fgets retains the newline character. The last
character read into string is followed by a null character.

gets and fgets, on success, return the string argument
string; each returns NULL on end-of-file or error.

cgets returns &string[2], a pointer to the string of
characters that were read. There is no error return.

Available on UNIX systems. fgets is also defined in
Kernighan and Ritchie.

ferror, fopen, fread, getc, puts, scanf

char buffer[82];
char *p;

130 Turbo C Reference Guide

buffer[O] = 80; /* there's space for 80 characters */
p = cgets(buffer);
printf("\ncgets got %d chars: \"%s\"\n", buffer[I],p);
printf("the returned pointer is %p, buffer[2] is at %p\n",

p, &buffer[2]);

buffer[O] = 5; /* leave space for 5 chars only */
p = cgets(buffer);
printf("\ncgets got %d chars: \"%s\"\n", buffer[I],p);
printf("the returned pointer is %p, buffer[2] is at %p\n",

p, &buffer[2]);

Program output

abcdfghijklm
cgets got 12 chars: "abcdfghijklm"
the returned pointer is FEF6, buffer[2] is at FEF6
abed
cgets got 4 chars: "abed"
the returned pointer is FEF6, buffer[2] is at FEF6

gettime

Name gettime - gets system time

Usage #include <dos.h>
void gettime(struct time *timep);

Prototype in dos.h

Description see getdate

The Turbo C Library 131

getvect

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

132

getvect - gets interrupt vector entry

void interrupt(*getvect(int intr _num» ();

void setvect(int intr _num, void interrupt (*isr) (»;
dos.h

MS-DOS includes a set of "hard-wired" interrupt
vectors, numbered 0 to 255. The 4-byte value in each
vector is actually an address, which is the location of an
interrupt function.

getvect reads the value of the vector named by intr _num
and interprets that value read as a (far) pointer to some
interrupt function.

setvect sets the value of the vector named by intr _num to
a new value, vector, which is a far pointer containing the
address of a new interrupt function. The address of a C
routine may only be passed to vector if that routine is
declared to be an interrupt routine.

Note: If you use the prototypes declared in dos.h, you
can simply pass the address of an interrupt function to
setvect in any memory model.

getvect returns the current 4-byte value stored in the
interrupt vector named by intr _num. setvect returns
nothing.

Unique to MS-DOS.

disable

Turbo C Reference Guide

getverify

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

getw

getverify - gets verify state

int getverify(void);

void setverify(int value);

dos.h

getverify gets the current state of the verify flag.

setverify sets the current state of the verify flag to value.

A value of 0 = verify flag off.
A value of 1 = verify flag on.

The verify flag controls output to the disk. When verify
is off, writes are not verified; when verify is on, all disk
writes are verified to insure proper writing of the data.

getverify returns the current state of the verify flag,
either 0 or 1.

A return of 0 = verify flag off.
A return of 1 = verify flag on.

setverify returns nothing.

Unique to MS-DOS.

Name getw - gets integer from stream

Usage #include <stdio.h>
int getw(FILE * stream);

Prototype in stdio.h

Description see getc

The Turbo C Library 133

gmtime

Name

Usage

Prototype in

Description

gsignal

Name

Usage

Prototype in

Description

harderr

gmtime - converts date and time to Greenwich
Mean Time

#include <time.h>
struct tm * gmtime(long * clock);

time.h

see ctime

gsignal - software signals

int gsignal(int sig);

signal.h

see ssignal

Name harderr - establishes a hardware error handler

Usage void harderr(int (*fptr)O);

Related
functions usage void hardresume(int rescode);

void hardretn(int errcode);

Prototype in dos.h

134 Turbo C Reference Guide

Description

The Turbo C Library

harderr establishes a hard ware error handler for the
current program. This handler is invoked whenever an
interrupt Ox24 occurs. (See the MS-DOS Programmer's
Reference Manual for a discussion of the interrupt.)

The function pointed to by fptr will be called when such
an interrupt occurs. The handler function will be called
with the following arguments:

handler(int errval, int ax, int bp, int si);

errval is the error code set in the 01 register by MS-DOS.
ax, bp, and si are the values MS-DOS sets for the AX, BP,
and SI registers, respectively.

CI ax indicates whether a disk error or other device
error was encountered. If ax is non-negative, a disk
error was encountered; otherwise, the error was a
device error. For a disk error, ax ANDed with OxOOFF
will give the failing drive number (1 = A, 2 = B, etc.).

IJ bp and si together point to the device driver header of
the failing driver.

The named function is not called directly. harderr
establishes a DOS interrupt handler that calls the
function.

peek and peekb can be used to retrieve device
information from this driver header. bp is the segment
address, and si is the offset.

The handler may issue bdos calls 1 through OxC, but any
other bdos call will corrupt MS-DOS. In particular, any
of the C standard I/O or UNIX-emulation I/O calls may
not be used.

The driver header may not be altered via poke or
pokeb.

The error handler may return or call hardresume to
return to MS-DOS. The return value of the handler or
res code (result code) of hardresume contains an abort (2),
retry (1), or ignore (0) indicator. The abort is
accomplished by invoking DOS interrupt Ox23, the
control-break interrupt.

The error handler may return directly to the application
program by calling hardretn.

135

Return value The handler must return 0 for ignore, 1 for retry, and 2
for abort.

Portability

See also

Example

#include <stdio.h>
#include <dos.h>

Unique to MS-DOS.

peek, poke, setjmp

#define DISPLAY STRING Ox09
#define IGNORE 0
#define RETRY 1
#define ABORT 2

int handler(int errval, int ax, int bp, int si)
{

char msg[25]; int drive;

if (ax < 0) (/* device error */

}

/* can only use dos functions 0 - OxOC */
bdosptr(DISPLAY STRING, "device error$", 0);
hardretn(-l); 7* return to calling program */

drive = (ax & OxOOFF);
sprintf(msg, "disk error on drive %C$", 'A' + drive);
bdosptr(DISPLAY STRING, msg, 0);
return(ABORT); - /* abort calling program */

main()
{

harderr(handler);

printf("Make sure there is no disk in drive A:\n");
printf("Press a key when ready ... \n");
getch () ;

printf("Attempting to access A:\n");
fopen("A:ANY.FIL","r"); .

Program output

Make sure there is no disk in drive A:
Press a key when ready ...
Attempting to access A:
disk error on drive A

136 Turbo C Reference Guide

hardresume

Name

Usage

Prototype in

Description

hardretn

Name

Usage

Prototype in

Description

hyperb

Name

Related

hardresume - hard ware error handler function

void hardresume(int rescode);

dos.h

see harderr

hardretn - hard ware error handler function

void hardretn(int errcode);

dos.h

see harderr

hyperb - hyperbolic functions

functions usage double sinh(double x);
double cosh(double x);
double tanh(double x);

Prototype in math.h

Description These functions compute the designated hyperbolic
functions for real arguments.

Return value These functions return their computed results.

The Turbo C Library 137

Portability

See also

hypot

Name

Usage

Prototype in

Description

Return value

Portability

See also

138

When the correct value would overflow, sinh and cosh
return the value HUGE_VAL of appropriate sign.

Error handling for these routines can be modified
through the function matherr.

Available on UNIX systems.

exp

hypot - calculates hypotenuse of right triangle

double hypot(double x, double y);

math.h

hypot calculates the value z where

,22=X2 +y2

(This is equivalent to the length of the hypotenuse of a
right triangle, if the lengths of the two sides are x and y.)

On success, hypot returns z, a double. On error (such as
an overflow), hypot sets errno to

ERANGE Result out of range

and returns the value HUGE_VAL.

Error handling for hypot can be modified through the
function matherr.

Available on UNIX systems.

trig

Turbo C Reference Guide

inport

Name

Usage

Related

inport - inputs from hardware port

#include <dos.h>
int inport(int port);

functions usage int inportb(int port);
void outport(int port, int word);
void outportb(int port, char byte);

Prototype in dos.h

Description inport reads a word from the input port specified by
port.

Return value

inportb is a macro that reads a byte from the input port
specified by port.

outport writes the word given by word to the output
port specified by port.

outportb is a macro that writes the byte given by byte to
the output port specified by port.

H inportb or outportb is called when dos.h has been
included, they will be treated as macros that expand to
in-line code.

H you don't include dos.h, or if you do include dos.h
and #undef the macros inportb and outportb, you will
get the inportb and outportb functions.

inport and inportb return the value read.

outport and outportb return nothing.

Portability Unique to the 8086 family.

The Turbo C Library 139

inportb

Name

Usage

Prototype in

Description

int86

Name

Usage

Related

inportb - inputs from hardware port

int inportb(int port);

dos.h

see inport

int86 - general 8086 software interrupt interface

#include <dos.h>
int int86(int intr _num, union REGS *inregs,

union REGS *outregs);

functions usage int int86x(int intr _num, union REGS *inregs,
union REGS *outregs, struct SREGS *segregs);

Prototype in dos.h

Description Both of these functions execute an 8086 software
interrupt specified by the argument intr _num.

140

Before executing the software interrupt, both functions
copy register values from inregs into the registers.

In addition, int86x copies the segregs---7x.ds and
segregs---7x.es values into the corresponding registers
before executing the software interrupt. This feature
allows programs that use far pointers, or that use a large
data memory model, to specify which segment is to be
used during the software interrupt.

After the software interrupt returns, both functions copy
the current register values to outregs, copy the status of
the system carry flag to the x.cflag field in outregs, and

Turbo C Reference Guide

Return value

Portability

See also

Example

#include <dos.h>

#define VIDEO OxlO

copy the value of the 8086 flags register to the x.flags
field in outregs. In addition, int86x restores DS, and sets
the segregs~es and segregs~ds fields to the values of the
corresponding segment registers.

If the carry flag is set, it indicates that an error occurred.

int86x allows you to invoke an 8086 software interrupt
that takes a value of DS different from the default data
segment, and/ or that takes an argument in ES.

Note that in regs can point to the same structure that
outregs points to.

int86 and int86x return the value of AX after completion
of the software interrupt. If the carry flag is set
(outregs~x.cflag != 0), indicating an error, these functions
set _doserrno to the error code.

Unique to MS-DOS. int86 and int86x will work on 8086
family processors.

see intdos

/* positions cursor at line y, column x */

void gotoxy(int x, int y)
{

union REGS regs;

regs.h.ah = 2; /* set cursor position */
regs.h.dh = y;
regs.h.dl = x;
regs.h.bh = 0; /* video page 0 */
int86 (VIDEO, ®s, ®s);

The Turbo C Library 141

int86x

Name

Usage

Prototype in

Description

intdos

Name

Usage

Related

int86x - general 8086 software interrupt interface

#include <dos.h>
int int86x(int intr _num, union REGS *inregs,

union REGS *outregs, struct SREGS *segregs);

dos.h

see int86

intdos - general MS-DOS interrupt interface

#include <dos.h>
int intdos(union REGS * inregs, union REGS * outregs);

functions usage int intdosx(union REGS *inregs, union REGS *outregs,
struct SREGS *segregs);

Prototype in dos.h

Description Both of these functions execute DOS interrupt Ox21 to
invoke a specified DOS function. The value of
inregs-7h.al specifies the DOS function to be invoked.

142

In addition, intdosx copies the segregs-7x .ds and
segregs-7x.es values into the corresponding registers
before invoking the DOS function. This feature allows
programs that use far pointers, or that use a large data
memory model, to specify which segment is to be used
during the function execution.

Turbo C Reference Guide

Return value

Portability

See also

Example

#include <stdio.h>
#include <dos.h>

After the interrupt Ox21 returns, both functions copy the
current register values to outregs, copy the status of the
system carry flag to the x.cflag field in outregs, and copy
the value of the 8086 flags register to the x.flags field in
outregs. In addition, intdosx restores DS, and sets the
segregs~es and segregs~ds fields to the values of the
corresponding segment registers.

If the carry flag is set, it indicates that an error occurred.

intdosx allows you to invoke a DOS function that takes
a value of DS different from the default data segment,
and/or that takes an argument in ES.

Note that in regs can point to the same structure that
outregs points to.

intdos and intdosx return the value of AX after
completion of the DOS function call. If the carry flag is
set (outregs~x.cflag != 0), indicating an error, these
functions set _doserrno to the error code.

Unique to MS-DOS.

segread

/* deletes filename; returns 0 on success, non-zero error code on
failure * /

int delete file(char near *filename)
{ -

union REGS regs; struct SREGS sregs;
int ret;

regs.h.ah = Ox41; /* delete file */
regs.x.dx = (unsigned) filename;
sregs.ds = OS;
ret = intdo8x(®s, ®s, &sregs);
/* if carry flag is set, there was an error */
return(regs.x.cflag? ret: 0);

main ()
{

int err;

The Turbo C Library 143

err = delete file("NOTEXIST.$$$");
printf("Able-to delete NOTEXIST.$$$: %s\n",

(!err)? "YES": "NO");

Program output

Able to delete NOTEXIST.$$$: NO

intdosx

Name

Usage

Prototype in

Description

intr

Name

Usage

Prototype in

Description

144

intdosx - general MS-DOS interrupt interface

#include <dos.h>
int intdosx(union REGS *inregs, union REGS *outregs,

struct SREGS *segregs);

dos.h

see intdos

intr - alternate 8086 software interrupt interface

#include <dos.h>
void intr(int intr _num, struct REGPACK * preg);

dos.h

The intr function is an alternate interface for executing
software interrupts. It generates an 8086 software
interrupt specified by the argument intr _num.

intr copies register values from the REGP ACK structure
preg into the registers before executing the software
interrupt. After the software interrupt completes, intr
copies the current register values into preg. The flags are
preserved.

Turbo C Reference Guide

Return value

Portability

See also

ioctl

Name

Usage

Prototype in

Description

The arguments passed to intr are as follows:

intr _num the interrupt number to be executed

preg the address of a structure containing
(a) the input registers before the call
(b) the value of the registers after the

interrupt call.

The REGP ACK structure preg (described in dos.h) has
the following format:

struet REGPACK
{
unsigned r ax, r_bx, rex, r dx;
unsigned r=bp, r_si, r=di, r=ds, r_es, r_flags;
};

No value is returned. The REGPACK structure preg
contains the value of the registers after the interrupt call.

Unique to MS-DOS; will work on 8086-family
processors.

int86, intdos

ioctl- controls I/O device

int ioctl(int handle, int cmd[, int * argdx, int argcx]);

io.h

This is a direct interface to the MS-DOS call Ox44
OOCTL).

The exact function depends on the value of cmd as
follows:

a Get device information
1 Set device information (in argdx)
2 Read argcx bytes into the address pointed to by

argdx

The Turbo C Library 145

Return value

Portability

146

3 Write argcx bytes from the address pointed to by
argdx -

4 Same as 2, except handle is treated as a drive
number (0 = default, 1 = A, etc.)

5 Same as 3, except handle is a drive number (0 =
default, 1 = A, etc.)

6 Get input status
7 Get output status
8 Test removability; DOS 3.x only
11 Set sharing conflict retry count; DOS 3.x only

ioctl can be used to get information about device
channels. Regular files can also be used, but only cmd
values 0, 6, and 7 are defined for them. All other calls
return an EINV AL error for files.

See the documentation for system call Ox44 in the MS­
DOS Programmer's Reference Manual for detailed
information on argument or return values.

The arguments argdx and argcx are optional.

ioctl provides a direct interface to DOS 2.0 device
drivers for special functions. As a result, the exact
behavior of this function will vary across different
vendors' hardware and in different devices. Also,
several vendors do not follow the interfaces described
here. Refer to the vendor BIOS documentation for exact
use of ioel!'

For cmd 0 or I, the return value is the device information
(DX of the IOCTL call).

For cmd values of 2 through 5, the return value is the
number of bytes actually transferred.

For cmd values of 6 or 7, the return value is the device
status.

In any event, if an error is detected, a value of -1 is
returned, and errno is set to one of the following:

EINV AL Invalid argument
EBADF Bad file number
EINVDAT Invalid data

ioctl is available on UNIX systems, but not with these
parameters or functionality. UNIX version 7 and System

Turbo C Reference Guide

III differ from each other in their use of ioctl. ioctl calls
are not portable to UNIX and are rarely portable across
MS-DOS machines.

Example

#include <stdio.h>
#include <io.h>
#include <dir.h>

main()
{

int stat;

DOS 3.0 extends ioell with cmd values of 8 and 11.

1* use function 8 to determine if the default drive is removable *1
stat = ioctl(O, 8, 0, 0);

printf("Drive %c %s changeable\n", getdisk() + 'A',
(stat == 0) ? "is" : "is not");

Program output

Drive C is not changeable

•
IS ...

Name

Usage

The Turbo C Library

is ... - character classification macros

#include <ctype.h>
int isalpha(int ch);

int isalnum(int ch);
int isascii(int ch);

int iscntrl(int ch);
int isdigit(int ch);

int isgraph(int ch);
int islower(int ch);

int isprint(int ch);
int ispunct(int ch);

147

Prototype in

Description

Return value

Portability

148

int isspace(int ch);
int isupper(int ch);
int isxdigit(int ch);

io.h

These are macros that classify ASCII-coded integer
values by table lookup. Each is a predicate returning
non-zero for true and 0 for false.

is ascii is defined on all integer values; the rest of the
macros are defined only when is ascii is true, or when ch
is EOF.

isalpha Non-zero if ch is a letter.
(' A' -'Z', 'a' -'z')

isalnum Non-zero if ch is a letter or a digit.
(' A' -' Z', 'a' -' z', '0'-'9')

isascii Non-zero if ch is in the range 0-127.
(OxOO - Ox7F)

iscntrl N on-zero if ch is a delete character or
ordinary control character.
(Ox7F, or OxOO - Ox1F)

is digit Non-zero if ch is a digit.
('0' - '9')

isgraph Non-zero if ch is a printing character, like
isprint, except that a space character is
excluded.
(Ox21 - Ox7E)

islower Non-zero if ch is a lowercase letter.
('a' -'z')

isprint Non-zero if ch is a printing character.
(Ox20 - Ox7E)

ispunct Non-zero if ch is a punctuation character.
(iscntrl or isspace)

isspace Non-zero if ch is a space, tab, carriage return,
newline, vertical tab, or form-feed.
(Ox09 - OxOD, Ox20)

isupper Non-zero if ch is an uppercase letter.
(' A' -'Z')

isxdigit Non-zero if ch is a hexadecimal digit.
('0'-'9', 'A'-'F', 'a'-'f')

All these macros are available on UNIX machines.
is alpha, isdigit, islower, isspace, and isupper are
defined in Kernighan and Ritchie.

Turbo C Reference Guide

isatty

Name

Usage

Prototype in

Description

Return value

itoa

Name

Usage

Related
functions usage

Prototype in

Description

The Turbo C Library

isatty - checks for device type

int isatty(int handle);

io.h

isatty is a function that determines whether handle
represents anyone of the following character devices:

13 a terminal
1:1 a console
1:1 a printer
1:1 a serial port

If the device is a character device, isatty returns a non­
zero integer. If it is not such a device, isatty returns 0.

itoa - converts an integer to a string

char *itoa(int value, char *string, int radix);

char *1toaOong value, char *string, int radix);
char *ultoa(unsigned long value, char *string, int radix);

stdlib.h

These functions convert value to a null-terminated string
and store the result in string. With ito a, value is an
integer; with ltoa it is a long; with ultoa it is an unsigned
long.

radix specifies the base to be used in converting value; it
must be between 2 and 36 (inclusive). With itoa and
ltoa, if value is negative, and radix is 10, the first

149

Return value

kbhit

Name

Usage

Prototype in

Description

Return value

See also

keep

Name

Usage

Prototype in

Description

150

character of string is the minus sign (-). This does not
occur with ultoa. Also, ultoa performs no overflow
checking.

Note: The space allocated for string must be large
enough to hold the returned string including the
terminating null character (\0). itoa can return up to 17
bytes; ltoa and ultoa, up to 33 bytes.

All these functions return a pointer to string. There is no
error return.

kbhit - checks for recent keystrokes

int kbhit(void);

conio.h

kbhit checks to see if a keystroke is currently available.
Any available keystrokes can be retrieved with getch or
getche.

If a keystroke is available, kbhit returns a non-zero
integer. If not, it returns o.
getc

keep - exits and remains resident

void keep(int status, int size);

dos.h

keep returns to MS-DOS with the exit status in status.
The current program remains resident, however. The
program is set to size paragraphs in length, and the
remainder of the memory of the program is freed.

Turbo C Reference Guide

Return value

Portability

labs

Name

Usage

Prototype in

Description

ldexp

Name

Usage

Prototype in

Description

lfind

keep can be used when installing a TSR program. keep
uses DOS function Ox31.

None

Unique to MS-DOS.

labs - gives long absolute value

long labs (long n);

stdlib.h

see abs

ldexp - calculates value x 2exp

double ldexp(double value, int exp);

math.h

see exp

N arne Hind - performs a linear search

Usage void *lfind(void *key, void *base, int *nelem,
int width, int (*fcmp)());

Prototype in stdlib.h

Description see bsearch

The Turbo C Library 151

localtime

Name

Usage

Prototype in

Description

lock

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

152

localtime - converts date and time to a structure

#include <time.h>
struct tm *localtime(long *ciock);

time.h

see ctime

lock - sets file sharing locks

int lock(int handle, long offset, long length);

int unlock(int handle, long offset, long length);

io.h

lock and unlock provide an interface to the MS-DOS 3.x
file-sharing mechanism.

lock can be placed' on arbitrary, non-overlapping
regions of any file. A program attempting to read or
write into a locked region will retry the operation three
times. If all three retries fail, the call fails with an error.

unlock removes lock; to avoid error, lock must be
removed before a file is closed. A program must release
alllock(s) before completing.

Both functions return 0 on success, -1 on error.

Unique to MS-DOS 3.x. Older versions of MS-DOS do
not support these calls.

open

Turbo C Reference Guide

log

Name

Usage

Prototype in

Description

loglO

Name

Usage

Prototype in

Description

longjmp

Name

Usage

Related

log -logarithm function In(x)

double log(double x);

math.h

see exp

log10 - logarithm function log lO(X)

double log10(double x);

math.h

see exp

longjmp - performs nonlocal goto

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

functions usage int setjmp(jmp_buf env);

Prototype in setjmp.h

Description setjmp captures the complete task state in env and
returns o.

The Turbo C Library 153

Return value

Portability

See also

Example

#include <stdio.h>
#include <setjmp.h>

int value;
jmp_buf jumper;

main()
(

A later call to longjmp with that env restores the
captured task state and returns in such a way that it
appears that setjmp returned with the value val.

setjmp must first be called before longjmp. The routine
that called setjmp and set up env must still be active and
cannot have returned before the longjmp is called. If
this happens, the results are unpredictable.

A task state is:

• all segment registers (CS, DS, ES, 55)
• register variables (51, DI)
• stack pointer (SP)
• frame pointer (FP)

• flags

A task state is complete enough that setjmp and
longjmp can be used to implement co-routines.

These routines are useful for dealing with errors and
exceptions encountered in a low-level subroutine of a
program.

setjmp returns 0 when it is initially called.

longjmp cannot return the value 0; if passed 0 in val,
longjmp will return 1.

Available on UNIX systems.

ctrlbrk, ssignal

value = setjmp(jumper);
if (value != 0) (

}

printf("Longjmp with value %d\n", value);
exit(value);

printf("About to call subroutine
subroutine();

\n") ;

154 Turbo C Reference Guide

subroutine ()
{

longjrnp(jurnper,l);

Program output

About to call subroutine
Longjrnp with value 1

lsearch

Name

Usage

Prototype in

Description

lseek

Name

Usage

Related

lsearch - searches and updates a table

void *lsearch(void *key, void *base, int *nelem,
int width, int (*fcmp)());

stdlib.h

see bsearch

lseek - moves read/write file pointer

#include <io.h>
long lseek(int handle, long offset, int fr0mwhere);

functions usage long tell(int handle);

Prototype in io.h

Description lseek sets the file pointer associated with handle to a new
position that is offset bytes beyond the file location given
by fromwhere. fromwhere must be one of the values 0, 1 or
2, which represent three symbolic constants (defined in
stdio.h) as follows:

The Turbo C Library 155

Return value

Portability

See also

156

fromwhere

SEEK_SET (0)
SEEK_CUR (1)
SEEK_END (2)

File Location

file beginning
current file pointer position
end-of-file

tell gets the current position of the file pointer
associated with handle and expresses it as the number of
bytes from the beginning of the file.

lseek returns the offset of the pointer's new position,
measured in bytes from the file beginning. lseek returns
-lL on error, and errno is set to one of the following:

EBADF Bad file number
EINV AL Invalid argument

On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

tell returns the current file pointer position. A return of
-1 (long) indicates an error, and errno is set to:

EBADF Bad file number

These functions are available on all UNIX systems.

fopen, fseek, ftell, getc, setbuf, ungetc

Turbo C Reference Guide

ltoa

Name

Usage

Prototype in

Description

malloc

ltoa - converts a long to a string

char *ltoa(long value, char *string, int radix);

stdlib.h

see itoa

Name malloc - allocates main memory

Usage void *malloc(unsigned size);

Related
functions usage void *calloc(unsigned nelem, unsigned elsize);

Prototype in

Description

The Turbo C Library

In the tiny, small, and medium models
unsigned coreleft(void);

In the compact, large, and huge models
unsigned long coreleft(void);

void free(void *ptr);

void *realloc(void *ptr, unsigned newsize);

stdlib.h and alloc.h

These functions provide access to the C memory heap.
The heap is available for dynamic allocation of creating
variable-sized blocks of memory. Many data structures
such as trees and lists naturally employ heap memory
allocation.

All the space between the end of the data segment and
the top of the program stack is available for use in the
small data models, except for a 256-byte margin

157

Return value

Portability

See also

158

immediately before the top of the stack. This margin is
intended to allow the application some room to grow
the stack plus a small amount needed by MS-DOS.

In the large data models, all the space beyond the
program stack to the end of physical memory is
available for the heap.

malloc returns a pointer to a memory block of length
size. If not enough memory is available to allocate the
block, malloc returns NULL. The contents of the block
are left unchanged.

calloc allocates a block like malloc, except the block is of
size nelem times elsize. The block is cleared to O.

corel eft returns a measure of the unused memory. It
gives different values of measurement, depending on
whether the memory model is small data group or large
data group.

free deallocates a previously allocated block. ptr must
contain the address of the first byte of the block.

realloc adjusts the size of the allocated block to newsize,
copying the contents to a new location if necessary.

malloc and calloc return a pointer to the newly allocated
block, or NULL if not enough space exists for the new
block.

realloc returns the address of the reallocated block. This
may be different than the address of the original block.
If the block cannot be reallocated, realloc returns NULL.

In the large data models, coreleft returns the amount of
unused memory between the heap and the stack.

In the small data memory models, coreleft returns the
amount of unused memory between the stack and the
data segment, minus 256 bytes.

calloc, free, malloc, and realloc are available on UNIX
systems. calloc is defined in Kernighan and Ritchie.

allocmem, farmalloc, setbuf

Turbo C Reference Guide

Example

#include <stdio.h>
#include <stdlib.h>

typedef struct
1* ... *1

} OBJECT;

OBJECT *NewObject()
{

return ((OBJECT *) malloc(sizeof(OBJECT)));

void FreeObject(OBJECT *obj)
{

free(obj);

main ()
{

OBJECT * ob j ;

obj = NewObject();
if (obj == NULL) {

printf("failed to create a new object\n");
exit (1) ;

}

1* ... *1
free(obj);

_matherr

Name

Usage

Related

_math err - floating-point error handling routine

#inc1ude <math.h>
double _matherrCmexcep why, char *fun, double *arglp,

double *arg2p, double retval);

functions usage #inc1ude <math.h>
matherrO;

Prototype in math.h

The Turbo C Library 159

Description

Return value

See also

160

_matherr serves as a focal point for error handling in all
math library functions; it calls math err and processes the
return value from math err. _matherr should never be
called directly by user programs.

Whenever an error occurs in one of the math library
routines _math err is called with several arguments.

_matherr does four things;

• It uses its arguments to fill out an exception
structure.

• It calls matherr with e, a pointer to the exception
structure, to see if matherr can resolve the error.

• It examines the return value from matherr as follows:

If matherr returned 0, (indicating that matherr was
not able to resolve the error) _matherr sets errno
(see following) and prints an error message.

If matherr returns non-zero, (indicating that
matherr was able to resolve the error) _math err is
silent; it does not set errno or print any messages.

• It returns e--)retval to the original caller. Note that
math err might modify e--)retval to specify the value it
wants propagated back to the original caller.

When _matherr sets errno (based on a 0 return from
matherr), it maps the kind of error that occurred (from
the type field in the exception structure) onto an errno
value of either EDaM or ERANGE.

_matherr returns the value, e--)retval. This value is
i~itially the value of the input parameter retval passed to
_math err, and might be modified by matherr.

For math function results with a magnitude greater than
MAXDOUBLE, retval defaults to the macro HUGE_VAL
of appropriate sign before being passed to _matherr. For
math function results with a magnitude less than
MINDOUBLE, retval is set to 0, then passed to _matherr.
In both of these extremes, if matherr does not modify
e--)retval, _math err sets errno to

ERANGE Result out of range

matherr

Turbo C Reference Guide

matherr

Name

Usage

Prototype in

Description

The Turbo C Library

matherr - user-modifiable math error handler

#include <math.h>
int matherr(struct exception *e);

math.h

The default version of Turbo C's math err routine simply
returns 0; it serves as a hook that you can replace when
writing your own math error-handling routine-see the
following example of a user-defined matherr
implementation.

You can modify matherr to be a custom error-handling
routine (such as one that catches and resolves certain
types of errors); the modified matherr should return 0 if
it failed to resolve the error, or non-zero if the error was
resolved. When matherr returns non-zero, no error
message is printed, and errno is not changed.

This is the exception structure (defined in math.h):

struct exception {
int type;
char *name;
double argl, arg2, retval;

);

The members of the exception structure are shown in
the following table.

161

Member What It Is (or Represents)

type the type of mathematical error that
occurred; an enum type defined in the
typedef _mexcep (see definition after this list)

name a pointer to a null-terminated string
holding the name of the math library
function that resulted in an error

argl,
arg2

the arguments (passed to the function name
points to) that caused the error; if
only one argument was passed to the
function, it is stored in argl

retval the default return value for matherr; you
can modify this value

The typedef _mexcep, also defined in math.h, enumerates the following
symbolic constants representing possible mathematical errors:

Symbolic
Constant Mathematical Error

DOMAIN argument was not in domain of function
(such as 10g(-l»

SING arguments would result in a singularity
(such as pow(O, -2»

OVERFLOW argument would produce a function result
greater than MAXDOUBLE (such as exp(1000»

UNDERFLOW argument would produce a function result
less than MINDOUBLE (such as exp(-1000»

TLOSS arguments would produce function result
with total loss of significant digits
(such as sin(10 e 70»

The symbolic constants MAXDOUBLE and MINDOUBLE are defined in
values.h.

162 Turbo C Reference Guide

Note that _matherr is not meant to be modified. The
matherr function is more widely found in C run-time
libraries and thus is recommended for portable
programming.

The UNIX-style matherr default behavior (printing a
message and terminating) is not ANSI compatible. If
you desire a UNIX-style version of math err, use
matherr.c provided on the Turbo C distribution
diskettes.

Return value The default return value for matherr is simply O.
matherr can also modify e~retval, which propagates
through _matherr back to the original caller.

When matherr returns 0, (indicating that it was not able
to resolve the error) _matherr sets errno and prints an
error message. (See _math err for details.)

When matherr returns non-zero (indicating that it was
able to resolve the error) errno is not set and no messages
are printed.

Example

/*

*/

This is a user-defined matherr function that catches negative
arguments passed to sqrt and converts them to non-negative
values before sqrt processes them.

#include<math.h>
#include<string.h>

int matherr(struct exception *a);
{

if (a -> type == DOMAIN) {

}

if(strcmp(a -> name, "sqrt") == 0) {
a -> retval = sqrt (-(a -> argl));
return (1);

return (O)i

The Turbo C Library 163

mem ...

Name

Related

mem ... - manipulates memory arrays

functions usage void *memccpy(void *destin, void *source,
unsigned char ch, unsigned n);

Prototype in

Description

void *memchr(void *s, char ch, unsigned n);
void *memcmp(void *s1, void *s2, unsigned n);

int memicmp(void *s1, void *s2, unsigned n);
void *memmove(void *destin, void *source, unsigned n);

void *memcpy(void *destin, void *source, unsigned n);
void *memset(void *s, char ch, unsigned n);

string.h
mem.h

These functions, all members of the mem ... family,
manipulate memory arrays. In all of these functions,
arrays are n bytes in length.

memcpy copies a block of n bytes from source to
destin. If the source and destination blocks
overlap, the copy direction is chosen so
tha t overlapping bytes are copied
correctly.

memmove identical to memcpy.

memset sets all of the bytes of s to the byte ch. The
size of the s array is given by n.

memcmp compares two strings, s1 and s2, for a
length of exactly n bytes. This function
compares bytes as unsigned charS, so

memcmp ("\xFF", "\x7F", 1)

returns a value> O.

memicmp compares the first n bytes of s1 and s2,
ignoring character case (upper or lower).

164 Turbo C Reference Guide

Return value

Portability

See also

Name

Usage

memccpy copies bytes from source to destin. The
copying stops as soon as either of the
following occurs:

• The character ch is first copied into
destin .

• n bytes have been copied in.

memchr searches the first n bytes of array s for
character ch.

memmove and memcpy return destin.

memset returns the value of s.

memcmp and memicmp return a value

< 0 if s1 is less than s2
= 0 if s1 is the same as s2
> 0 if s1 is greater than s2

memccpy returns a pointer to the byte in destin
immediately following ch, if ch was copied; otherwise,
memccpy returns NULL.

memchr returns a pointer to the first occurrence of ch in
s; it returns NULL if ch does not occur in the s array.

Available on UNIX System V systems.

str ...

MK_FP - makes a far pointer

#include <dos.h>
void far * MK_FP(unsigned seg, unsigned off>;

Prototype in dos.h

Description see FP _OFF

The Turbo C Library 165

mkdir

Name

Usage

Related
functions usage

Prototype in

Description

Return value

See also

mktemp

Name

Usage

Prototype in

166

mkdir - creates a directory

int mkdir(char *pathname);

int rmdir(char *pathname);

dir.h

mkdir takes the given pathname and creates a new
directory with that name.

rmdir deletes the directory given by pathname. The
directory named by pathname

• must be empty
• must not be the current working directory
• must not be the root directory

mkdir returns the value 0 if the new directory was
created.

rmdir returns 0 if the directory is successfully deleted.

With either function, a return value of -1 indicates an
error, and errno is set to one of the following values:

EACCES
ENOENT

chdir

Permission denied
Path or file name not found

mktemp - makes a unique file name

char *mktemp(char *template);

dir.h

Turbo C Reference Guide

Description

Return value

Portability

modf

Name

Usage

Prototype in

Description

movedata

mktemp replaces template by a unique file name and
returns the address of template.

The template should be a null-terminated string with six
trailing X's. These X's are replaced with a unique
collection of letters plus a dot, so that there are two
letters, a dot, and three suffix letters in the new file
name.

Starting with AA.AAA, the new file name is assigned by
looking up the names on the disk and avoiding pre­
existing names of the same format.

If template is well-formed, mktemp returns the address
of the template string. Otherwise, it does not create or
open the file.

Available on UNIX systems.

modf - splits into mantissa and exponent

double modf(double value, double *iptr);

math.h

see fmod

Name movedata - copies bytes

Usage void movedata(int segsrc, int offsrc, int segdest,
int offdest, unsigned numbytes);

Prototype in mem.h
string.h

Description movedata copies numbytes bytes from the source address
(segsrc:offsrc) to the destination address (segdest:offdest).

The Turbo C Library 167

Return value

See also

Example

#include <mem.h>

movedata is useful for moving far data in tiny, small,
and medium model programs, where data segment
addresses are not known implicitly. memcpy can be
used in compact, large, and huge model programs, since
segment addresses are known implicitly.

There is no return value.

FP _OFF, memcpy, segread

#define MONO BASE OxBOOO

1* saves the contents of the monochrome screen in buffer */

void save mono screen(char near *buffer)
{ --

movedata(MONO_BASE, 0, _OS, (unsigned)buffer, 80*25*2);

main ()
{

char buf[80*25*2];

movmem

Name movmem - moves a block of bytes

Usage void movmem{void *source, void *destin, unsigned len);

Related
functions usage void setmem{void *addr, int len, char value);

Prototype in mem.h

Description movmem copies a block of len bytes from source to
destin. If the source and destination strings overlap, the
copy direction is chosen so that the data is always
copied correctly.

168 Turbo C Reference Guide

Return value

Portability

See also

Name

Usage

Prototype in

Description

open

Name

Usage

Related

setmem sets the first bytes of the block pointed to by
addr to the byte value.

movmem and setmem return nothing.

Unique to the 8086 family.

mem ... , str ...

_open - opens a file for reading or writing

#include <fcntl.h>
int _open (char *pathname, int access);

io.h

see open

open - opens a file for reading or writing

#include <fcntl.h>
#include<sys \stat.h>
int open(char *pathname, int access Lint perm iss]);

functions usage int _open(char *pathname, int access);
int sopen(char *pathname, int access, int shflag,

int permiss);

Prototype in io.h

Description open opens the file specified by pathname, then prepares
it for reading and/ or writing as determined by the value
of access.

The Turbo C Library

For open, access is constructed by bitwise ORing flags
from the following two lists. Only one flag from the first

169

170

list may be used; the remaining flags may be used in any
logical combination.

List 1: Read/Write flags

° _RDONL Y Open for reading only.
O_WRONLY Open for writing only. ° _RDWR Open for reading and writing.

List 2: Other access flags

O_NDELAY Not used; for UNIX compatibility. ° _APPEND If set, the file pointer will be set to the
end of the file prior to each write.

0_ CREAT If the file exists, this flag has no effect.
If the file does not exist, the file is
created, and the bits of perm iss are
used to set the file attribute bits, as in
chmod.

O_TRUNC If the file exists, its length is truncated
to O. The file attributes remain
unchanged.

O_EXCL Used only with O_CREAT. If the file
already exists, an error is returned. ° _BINARY This flag can be given to explicitly
open the file in binary mode.

0_ TEXT This flag can be given to explicitly
open the file in text mode.

These 0_ ... symbolic constants are defined in fcntl.h.

If neither O_BINARY nor O_TEXT is given, the file is
opened in the translation mode set by the global variable
Jrnode.

If the O_CREAT flag is used in constructing access, you
need to supply the permiss argument to open, from the
following symbolic constants defined in sys \stat.h.

Value of perm iss

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

Permission to write
Permission to read
Permission to read and write

Turbo C Reference Guide

Return value

For _open, the value of access in MS-DOS 2.x is limited
to O_RDONLY, O_WRONLY, and O_RDWR. For MS­
DOS 3.x, the following additional values can also be
used:

o _NOINHERIT Included if the file is not to be
passed to child programs.

o _DENYALL Allows only the current handle to
have access to the file.

O_DENYWRITE Allows only reads from any other
open to the file.

o _DENYREAD Allows only writes from any other
open to the file.

O_DENYNONE Allows other shared opens to the
file.

Only one of the O_DENYxxx values may be included in
a single _open under DOS 3.x. These file-sharing
attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously open files is a
system configuration parameter.

sopen is a macro defined as

open (pathname, (access I shflag) , permiss)

where pathname, access, and perm iss are the same as for
open, and shflag is a flag specifying the type of file­
sharing allowed on the file pathname. Symbolic constants
for shflag are defined in share.h.

On successful completion, these routines return a non­
negative integer (the fi~e handle), and the file pointer
(that marks the current position in the file) is set to the
beginning of the file. On error, they return -1 and errno
is set to one of the following:

ENOENT
EMFILE
EACCES
EINVACC

Path or file name not found
Too many open files
Permission denied
Invalid access code

Portability open and sopen are available on UNIX systems. On
UNIX version 7, the O_type mnemonics are not defined.

The Turbo C Library 171

See also

outport

Name

Usage

Prototype in

Description

outportb

Name

Usage

Prototype in

Description

parsfnm

Name

Usage

Prototype in

172

UNIX System III uses all of the a_type mnemonics
except a_BINARY.

_open is unique to MS-DOS.

chmod, close, creat, dup, ferror, Jmode (variable),
fopen, lock, lseek, read, searchpath, setmode, write

outport - output to a hardware port

void outport(int port, int word);

dos.h

see inport

outportb - output to a hardware port

#include <dos.h>
void outportb(int port, char byte);

dos.h

see inport

parsfnm - parses file name

#include <dos.h>
char *parsfnm(char *cmdline, struct fcb *fcbptr, int option);

dos.h

Turbo C Reference Guide

Description

Return value

Portability

peek

parsfnm parses a string, normally a command line,
pointed to by *cmdline for a file name. The file name is
placed in an FCB as a drive, file name, and extension.
The FCB is pointed to by fcbptr.

The option parameter is the value documented for AL in
the DOS parse system call. See the MS-DOS
Programmer's Reference Manual under system call Ox29
for a description of the parsing operations performed on
the file name.

On successfully completing the parse of a file name,
parsfnm returns a pointer to the next byte after the end
of the file name. If there is any error in parsing the file
name, parsfnm returns O.

Unique to MS-DOS.

Name peek - examines memory location

Usage int peek(int segment, unsigned offset);

Related
functions usage char peekb(int segment, unsigned offset);

Prototype in dos.h

Description peek and peekb examine the memory location
addressed by segment:offset.

If these routines are called when dos.h has been
included, they will be treated as macros that expand to
in-line code. If you don't include dos.h (or if you do
include it and #undef the routines) you will get the
functions rather than the macros.

Return value peek and peekb return the value stored at the memory
location segment:offset. peek returns a word, and peekb
returns a byte.

Portability Unique to the 8086 family.

See also hard err, poke

The Turbo C Library 173

peekb

Name

Usage

Prototype in

Description

perror

Name

Usage

Prototype in

Description

Return value

174

peekb - examines memory location

#include <dos.h>
char peekb(int segment, unsigned offset);

dos.h

see peek

perror - system error messages

void perror(char *string);

stdio.h

perror prints an error message to stderr, describing the
most recent error encountered in a system call from the
current program.

First the argument string is printed, then a colon, then
the message corresponding to the current value of errno,
and finally a newline. The convention is to pass the
name of the program as the argument string.

To provide more control over message formatting, the
array of message strings is provided in sys_errlist. errno
can be used as an index into the array to find the string
corresponding to the error number. The string does not
include any newline character.

sys_nerr contains the number of entries in the array.

Refer to errno, sys_errlist, and sys_nerr in the "Variables"
section of this chapter for more information.

None

Turbo C Reference Guide

Portability

See also

poke

Name

Usage

Related

Available on UNIX systems.

eof

poke - stores value at a given memory location

void poke(int segment, int offset, int value);

functions usage void pokeb(int segment, int offset, char value);

Prototype in dos.h

Description poke stores the integer value at the memory location
segment:offset.

If these routines are called when dos.h has been
included, they will be treated as macros that expand to
in-line code. If you don't include dos.h (or if you do
include it and #unde f the routines) you will get the
functions rather than the macros.

pokeb is the same as poke, except that a byte value is
deposited instead of an integer.

Return value None

Portability Unique to the 8086 family.

See also peek

The Turbo C Library 175

pokeb

Name

Usage

Prototype in

Description

poly

Name

Usage

Prototype in

Description

Return value

Portability

176

pokeb - value at memory location

#include <dos.h>
void pokeb(int segment, int offset, char value);

dos.h

see poke

poly - generates a polynomial from arguments

double poly(double x, int n, double e[]);

math.h

poly generates a polynomial in x, of degree n, with
coefficients c[O], c[1], ... , c[n]. For example, if n = 4, the
generated polynomial is

c[4]x4 + c[3]x3 + c[2]x2 + c[l]x + c[a]

poly returns the value of the polynomial as evaluated
for the given x.

Available on UNIX systems.

Turbo C Reference Guide

pow

Name

Usage

Prototype in

Description

powlO

Name

Usage

Prototype in

Description

... printf

Name

Usage

Related
functions usage

The Turbo C Library

pow - power function, xY

double pow(double x, double y);

math.h

see exp

powlO - power function, lOP

double powlO(int p);

math.h

see exp

... printf - functions that send formatted output

int printf(char *format, ...);

int cprintf(char *format[, argument, ... J);
int fprintf(FILE *stream, char *format[, argument, ... J);

int sprintf(char *string, char *format[, argument, ... J);
int vfprintf(FILE *stream, char *format, va_list param);

177

Prototype in

Description

178

int vprintf(char *format, va_list param);
int vsprintf(char *string, char *format, va_list param);

stdio.h

The ... printf family of functions all "print" formatted
output; they all:

• accept a format string that determines how the output
will be formatted (this is given as format in the Usage)

iii apply the format string to a variable number of
values to produce formatted output (the values are
given as either "argument, ... " or va_list param in the
Usage)

The output location is implicit in three of the ... printf
functions.

printf places its output on stdout; so does vprintf.

cprintf sends its output directly to the console.

The other four ... printf functions also accept another
argument (the first in the list of parameters). This
additional argument designates where the output goes.

fprintf and vfprintf place output in a named stream.

sprintf and vsprintf place output in a string in
memory.

Four of the ... printf functions accept the arguments to
be formatted from the function call (printf, cprintf,
fprintf, and sprintf).

The other three (vprintf, vfprintf, and vsprintf) accept
the arguments to be formatted from a variable argument
list. The v ... printf functions are known as alternate entry
points for the ... printf functions.

See the definition of va_ ... for more information.

Here is a summary of each of the ... printf functions.

printf places its output on stdout.

cprintf

fprintf

sends its output directly to the console: it
does not translate line-feed characters into
CR/LF combinations.

places its output on the named stream.

Turbo C Reference Guide

The Turbo C Library

sprintf

vprintf

vfprintf

vsprintf

places its output as a null-terminated string
starting at string. With sprintf, it is the
user's responsibility to ensure there is
enough space in string to hold the string.

behaves exactly like printf, except that it
accepts arguments from the va_arg array
va_list paramo

behaves exactly like fprintf, except that it
accepts arguments from the va_arg array
va_list paramo

behaves exactly like sprintf, except that it
accepts arguments from the va_arg array
va_list paramo

For an example of how to use vprintf, refer to va

The Format String

The format string, present in each of the ... printf
function calls, controls how each function will convert,
format, and print its arguments. There must be enough
arguments for the format; if not, the results are
unpredictable and likely disastrous. Excess arguments
(more than required by the format) are merely ignored.

The format string is a character string that contains two
types of objects-plain characters and conversion
specifications:

The plain characters are simply copied verbatim to
the output stream.

The conversion specifications fetch arguments from
the argument list and apply formatting to them.

Fonnat Specifications

... printf format specifications have the following form:

% [flags] [width] [.prec] [FINlhll] type

179

Each conversion specification begins with the percent
character (%). After the % come the following, in this
order:

• an optional sequence of flag characters
• an optional width specifier
• an optional precision specifier
• an optional input size modifier
• the conversion type character

Optional Format String Components

[flags]
[width]
[.prec]

[F I Nih 11]
[type]

These are the general aspects of output formatting controlled by the
optional characters, specifiers, and modifiers in the format string:

Character or
Specifier

flags

width

precision

size

What It Controls or Specifies

output justification, numeric signs,
decimal points, trailing zeroes, octal
and hex prefixes

minimum number of characters to print,
padding with blanks or zeroes

maximum number of characters to print;
for integers, minimum number of digits
to print

override default size of argument
(N near pointer, F = far pointer
h short int, 1 = long)

... printf Conversion Type Characters

The following table lists the ... printf conversion type characters, the type of
input argument accepted by each, and in what format the output will
appear.

The information in this table of type characters is based on the assumption
that no flag characters, width specifiers, precision specifiers, or input-size

180 Turbo C Reference Guide

modifiers were included in the format specification. To see how the
addition of the optional characters and specifiers affects the ... printf
output, refer to the tables following this one.

Type
Character Input Argument Format of Output

Numerics

d
i
o
u

x

x

f

e

q

integer
integer
integer
integer

integer

integer

floating point

floating point

floating point

The Turbo C Library

signed decimal int
signed decimal int
unsigned octal int
unsigned decimal int

unsigned hexadecimal int
(with a, b, c, d, e, f)
unsigned hexadecimal int
(with A, B, C, D, E, F)

signed value of the form
[-]dddd.dddd

signed value of the form
[-]d.dddd e [+/-]ddd

signed value in either
e or f form, based on
given value and
precision. Trailing
zeroes and the decimal
point are printed only
if necessary.

181

Type
Character

E

G

c

s

%

n

p

182

Input Argument Format of Output

Numerics (continued)

floating point

floating point

same as e, but with E for
exponent

same as q, but with E for
exponent if e format used

Characters

character

string pointer

none

single character

prints characters until a
null-terminator is hit or
precision is reached

the % character is
printed

Pointers

pointer to int

pointer

stores (in the location
pointed to by the input
argument) a count of the
characters written so far

prints the input argument
as a pointer

far pointers are
printed as XXXX:YYYY.
near pointers are printed
as YYYY (offset only)

Turbo C Reference Guide

Conventions

Certain conventions accompany some of these specifications, as
summarized in the following table.

Characters

e or E

f

9 or G

Conventions

The argument is converted to match the
style [-] d.ddd ... e[+/-]ddd where:

• one digit precedes the decimal point
• the number of digits after the decimal

point is equal to the precision
• the exponent always contains three

digits

The argument is converted to decimal
notation in the style [-] ddd.ddd ...
where the number of digits after the
decimal point is equal to the precision
(if a non-zero precision was given) .

The argument is printed in style e, E
or f, with the precision specifying
the number of significant digits.
Trailing zeroes are removed from the
result, and a decimal point appears
only if necessary.

The argument is printed in style e
or f (with some restraints) if 9 is
the conversion character, and in
style E if the character is G. Style
e is used only if the exponent that
results from the conversion is either
(a) greater than the precision or
(b) less than -4.

x or X For x conversions, the letters a, b, c,
d, e, and f will appear in the output;
for X conversions, the letters A, B, C,
D, E, and F will appear.

The Turbo C Library 183

Flag Characters

The flag characters are minus (-), plus (+), sharp (#) and blank (): They
can appear in any order and combination.

Flag What It Specifies

Left-justifies the result, pads on the right
with blanks. If not given, right-justifies
result, pads on left with zeroes or blanks.

+ Signed conversion results always begin with
a plus (+) or minus (-) sign.

blank If value is non-negative, the output begins
with a blank instead of a plus; negative
values still begin with minus.

Specifies that arg is to be converted using
an "alternate form." See the following table.

Note: Plus takes precedence over blank if both given.

184 Turbo C Reference Guide

Alternate Forms

If the # flag is used with a conversion character, it has the following effect
on the argument (arg) being converted:

Conversion
Character

c,s,d,i,u

o
x or X

e, E or f

9 or G

The Turbo C Library

How # Affects arg

No effect

o will be prepended to a non-zero argo
Ox (or OX) will be prepended to argo

The result will always contain a decimal
point even if no digits follow the point.
Normally, decimal point appears in these
results only if a digit follows it.

Same as e and E, with the addition that
trailing zeroes will not be removed.

185

Width Specifiers

The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways; directly, through a decimal digit
string, or indirectly, through an asterisk (*). If you use an asterisk for the
width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

In no case does a non-existent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result.

Width
Specifier

n

On

*

186

How Output Width Is Affected

At least n characters are printed. If
the output value has less than n
characters, the output is padded with
blanks (right-padded if "_" flag given,
left-padded otherwise) .

At least n characters are printed. If
the output value has less than n
characters, it is filled on the left
with zeroes.

The argument list supplies the width
specifier, which must precede the
actual argument being formatted.

Turbo C Reference Guide

Precision Specifiers

Precision specification always begins with a dot (.), to separate it from any
preceding width specifier. Then, like width, precision is specified either
directly, through a decimal digit string, or indirectly, through an asterisk
(*). If you use an asterisk for the precision specifier, the next argument in
the call (treated as an int) specifies the precision.

If you use asterisks for the width or the precision, or for both, the width
argument must immediately follow the specifiers, followed by the precision
argument, then the argument for the data to be converted.

Precision
Specifier

(none
given)

.0

How Output Precision Is Affected

Precision set to default
(default 1 for d, i, 0, u, x, X types;
default 6 for e, E, f types;
default all significant digits for g,

G types;
default print to first null character

for s types;
no effect on c types.)

for d, i, 0, u, x types, precision set
to default
for e, E, f types, no decimal point is
printed

.n n characters or n decimal places are
printed. If the output value has more
than n characters, the output might be
truncated or rounded. (Whether or not
this happens depends on the type
character.)

* The argument list supplies the precision
specifier, which must precede the
actual argument being formatted.

The Turbo C Library 187

Conversion
Character

How Precision Specification (.n)
Affects Conversion

d
i
o
u
x
X

e
E
f

q
G

c

s

.n specifies that at least n digits
will be printed. If the input argument
has less than n digits, the output
value is left-padded with zeroes.
If the input argument has more than n
digits, the output value is not
truncated .

. n specifies that n characters will be
be printed after the decimal point, and
the last digit printed is rounded.

.n specifies that at most n significant
digits will be printed.

.n has no effect on the output.

.n specifies that no more than n
characters will be printed.

Input Size Modifier

The input-size modifier character (F, N, h or 1) gives the size of the
subsequent input argument:

F = far pointer
N = near pointer
h = short int
1 = long

The input-size modifiers (F, N, h, and 1) affect how the ... printf functions
interpret the data-type of the corresponding input argument argo F and N
apply only to input args that are pointers (%p, %s, and %n). hand 1 apply
to input args that are numeric (integers and floating-point).

Both F and N reinterpret the input argo Normally, the arg for a %p, %s, or
%n conversion is a pointer of the default size for the memory model. F says
"interpret arg as a far pointer". N says "interpret arg as a near pointer".

Both hand 1 override the default size of the numeric data input args: 1
applies to integer (d, i, 0, u, x, X) and floating-point (e, E, f, g, and G) types,

188 Turbo C Reference Guide

while h applies to integer types only. Neither h nor I affect character (e, s)
or pointer (p, n) types.

Input-Size
Modifier

F

N

h

1

Return value

Portability

See also

Example

#define I 555
#define R 5.5

main()
(

int i,j,k,l;
char buf[7);

How arg Is Interpreted

arg is read as a far pointer

arg is read as a near pointer

N cannot be used with any conversion
in huge model.

arg is interpreted as a short int
for d, i, 0, u, x, or X.

arg is interpreted as a long int
for d, i, 0, u, x, or X;
arg is interpreted as a double
for e, E, f, q, or G.

Each function returns the number of bytes output.
sprintf does not include the null byte in the count. In the
event of error, these functions return EOF.

The functions printf, eprintf, fprintf, and sprintf are
available on UNIX systems and are defined in
Kernighan and Ritchie.

vprintf, vfprintf, and vsprintf are available on UNIX
System V but are not defined in Kernighan and Ritchie.

eevt, fread, pute, puts, seanf, va ...

char *prefix = &buf;
char tp[20);

The Turbo C Library 189

printf("prefix 6d 60 8x
strcpy(prefix,"%");
for (i=0;i<2;i++) {

for (j=0;j<2;j++)
for (k=0;k<2;k++)
for (1=0;1<2;1++) {

}

if (i==O) strcat(prefix,"-");
if (j==O) strcat(prefix,"+");
if (k==O) strcat(prefix,"I");
if (1==0) strcat(prefix,"O");
printf("%5s I",prefix);
strcpy(tp,prefix);
strcat(tp,"6d I");
printf (tp, I) ;
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"60 I");
printf (tp, I);
strcpy(tp, "");
strcpy(tp,prefix);
strcat(tp,"8x I");
printf(tp,I);
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"10.2e I");
printf (tp, R) ;
strcpy(tp,prefix);
strcat(tp,"10.2f I");
printf (tp, R) ;
printf(" \n");
strcpy(prefix,"%");

Program output

prefix 6d 60 8x 10.2e
%-+10 1+555 101053 IOx22b 1+5.50e+000

%-+1 1+555 101053 IOx22b 1+5.50e+000
%-+0 1+555 11053 122b 1+5.50e+000

%-+ 1+555 11053 122b 1+5.50e+000
%-10 1555 101053 Ox22b 15.50e+000

%-1 1555 101053 Ox22b 15.50e+000
%-0 1555 11053 22b 15.50e+000

%- 1555 11053 22b 15.50e+000
%+10 1+00555 1001053 OxOO022b 1+5.50e+000

%+1 I +555 I 01053 Ox22b 1+5.50e+000
%+0 1+00555 1001053 0000022b 1+5.50e+000

%+ I +555 I 1053 22b 1+5.50e+000
%#0 1000555 1001053 OxOO022b 105.50e+000

%1 I 555 I 01053 Ox22b I 5.50e+000
%0 1000555 1001053 0000022b 105.50e+000
% I 555 I 1053 22b I 5.50e+000

190

10.2e 10.2f\n");

10.2f
1+5.50
1+5.50
1+5.50
1+5.50
15.50
15.50
15.50
15.50
1+000005.50
I +5.50
1+000005.50
I +5.50
10000005.50
I 5.50
10000005.50
I 5.50

Turbo C Reference Guide

pute

Name

Usage

Related

pute - outputs a character to a stream

#include <stdio.h>
int putc(int ch, FILE *stream);

functions usage int fputc(int ch, FILE *stream);
int fputchar(char ch);
int putch(int ch);

int putchar(int ch);
int putw(int w, FILE *stream);

Prototype in stdio.h

Description pute is a macro that outputs the character ch to the
named output stream.

Return value

The Turbo C Library

putehar(ch) is a macro defined to be pute(ch, stdout).

fpute is like pute but it is a true function that outputs ch
to the named stream.

fputehar outputs ch to stdout. fputehar(char ch) is the
same as fpute(char ch, stdout).

puteh outputs the character ch to the console.

putw outputs the integer w to the output stream. putw
neither expects nor causes special alignment in the file.

On success pute, fpute, fputehar, and putchar return the
character ch, while putw returns the integer w, and
putch returns nothing.

On error, all the functions except putch return EOF.
puteh returns nothing.

Since EOF is a legitimate integer, ferror should be used
to detect errors with putw.

191

Portability

See also

putch

Name

Usage

Prototype in

Description

putchar

Name

Usage

Prototype in

Description

putenv

Name

Usage

Prototype in

Description

192

All these functions are available on UNIX systems. putc
and putchar and are defined in Kernighan and Ritchie.

ferror, fopen, fread, getc, printf, puts, setbuf

putch - puts character on console

int putch(int ch);

conio.h

see putc

putchar - puts character on a stream

#include <stdio.h>
int putchar(int ch);

stdio.h

see putc

putenv - adds string to current environment

int putenv(char *envvar);

stdlib.h

see getenv

Turbo C Reference Guide

puts

Name puts - puts a string on a stream

Usage int puts(char *string);

Related
functions usage void cputs(char *string);

int fputs(char *string, FILE *stream);

Prototype in stdio.h (fputs and puts)
conio.h (cputs)

Description puts copies the null-terminated string string to the
standard output stream stdout and appends a newline
character.

cputs writes the null-terminated string string to the
console; it does not append a newline character.

fputs copies the null-terminated string string to the
named output stream; it does not append a newline
character.

Return value On successful completion, puts and fputs return the last
character written. Otherwise, a value of EOF is returned.
cputs returns no value.

Portability These functions are available on UNIX systems.
Kernighan and Ritchie also define fputs.

See also ferror, fop en, fread, gets, open, printf, putc

The Turbo C Library 193

putw

Name

Usage

Prototype in

Description

qsort

Name

Usage

Prototype in

Description

194

putw - puts character or word on a stream

#include <stdio.h>
int putw(int w, FILE *stream);

stdio.h

see putc

qsort - sorts using the quick sort routine

void qsort(void *base, int nelem, int width, int (*fcmp)O);

stdlib.h

qsort is an implementation of the "median of three"
variant of the quicksort algorithm. qsort sorts the entries
in a table into order by repeatedly calling the user­
defined comparison function pointed to by femp.

• base points to the base (Oth element) of the table to be
sorted.

• nelem is the number of entries in the table.
• width is the size of each entry in the table, in bytes.

*fcmp, the comparison function, accepts two arguments,
eleml and elem2, each a pointer to an entry in the table.
The comparison function compares each of the pointed­
to items (*eleml and *elem2), and returns an integer
based on the result of the comparison.

Turbo C Reference Guide

Return value

Portability

See also

rand

If the items [em!!. returns

*eleml < *elem2 an integer < 0
*eleml = = *elem2 0
*eleml > *elem2 an integer> 0

In the comparison, the less than symbol «) means that
the left element should appear before the right element
in the final, sorted sequence. Similarly, the greater than
(» symbol means that the left element should appear
after the right element in the final, sorted sequence.

qsort does not return a value.

Available on UNIX systems.

bsearch, lsearch

Name rand - random number generator

Usage int rand(void);

Related
functions usage void srand (unsigned seed);

Prototype in stdlib.h

Description rand uses a multiplicative congruential random-number
generator with period 232 to return successive pseudo­
random numbers in the range from 0 to 215 -1.

The generator is reinitialized by calling srand with an
argument value of 1. It can be set to a new starting point
by calling srand with a given seed number.

Portability Available on UNIX systems.

Example

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

The Turbo C Library 195

main() /* Prints 5 random numbers from 0 to 32767 */
{

int i; long now;

srand(time(&now) % 37); /* start at a random place */
for (i=O; i<5; itt)

printf("%d\n", rand());

Program output

9680
7414
22510
13860
6005

randbrd

Name

Usage

Related

randbrd - random block read

#include <dos.h>
int randbrd(struct fcb *fcbptr, int recent);

functions usage int randbwr(struct fcb *fcbptr, int recent);

Prototype in dos.h

Description randbrd reads recent number of records using the open
FCB pointed to by fcbptr. The records are read into
memory at the current disk transfer address. They are
read from the disk record indicated in the random record
field of the FCB. This is accomplished by calling DOS
system call Ox27.

196

randbwr performs essentially the same function as
randbrd, except that data is written to disk instead of
read from disk. This is accomplished using DOS system
call DOS Ox28. If recent is 0, the file is truncated to the
length indicated by the random record field.

The actual number of records read or written can be
determined by examining the random record field of the

Turbo C Reference Guide

Return value

Portability

randbwr

FeB. The random record field will be advanced by the
number of records actually read or written.

The following values are returned, depending upon the
result of the randbrd or randbwr operation:

o All records are read or written.

1 End-of-file is reached and the last record read is
complete.

2 Reading records would have wrapped around
address OxFFFF (as many records as possible are
read).

3 End -of-file is reached with the last record
incomplete.

randbwr returns 1 if there is not enough disk space to
write the records (no records are written).

Unique to MS-DOS.

Name randbwr - random block write

Usage #include <dos.h>
int randbwr(struct feb *fcbptr, int recent);

Prototype in dos.h

Description see randbrd

The Turbo C Library 197

Name

Usage

Prototype in

Description

read

_read - reads from file

int _read(int handle, void *buf, int nbyte);

io.h

see read

Name read - reads from file

Usage int read(int handle, void *buf, int nbyte);

Related
functions usage int _read(int handle, void *buf, int nbyte);

Prototype in io.h

Description read and _read attempt to read nbyte bytes from the file
associated with handle into the buffer pointed to by buf.
_read is a direct call to the MS-DOS read system call.

Return value

198

For a file opened in text mode, read removes carriage
returns and reports end-of-file when a Cfrl-Z character is
read. No such removal or reporting is performed by
_read.

handle is a file handle obtained from a creat, open, dup,
dup2, or fcntI call.

On disk files, these functions begin reading at the
current file pointer. When the reading is complete, they
increment the file pointer by the number of bytes read.
On devices, the bytes are read directly from the device.

Upon successful completion, a positive integer is
returned indicating the number of bytes placed in the

Turbo C Reference Guide

Portability

See also

realloc

Name

Usage

Prototype in

Description

remove

buffer; if the file was opened in text mode, read does not
count carriage returns or Ctrl-Z characters in the number
of bytes read.

On end-of-file, both functions return zero. On error,
both functions return -1 and errno is set to one of the
following:

EACCES
EBADF

Permission denied
Bad file number

read is available on UNIX systems.
_read is unique to MS-DOS.

creat, dup, fread, getc, open

realloc - reallocates memory

void *realloc(void *ptr, unsigned newsize);

stdlib.h and alloc.h

see malloc

N arne remove - removes a file

Usage int remove(char *filename);

Prototype in stdio.h

Description see unlink

The Turbo C Library 199

rename

Name

Usage

Prototype in

Description

Return value

Portability

rewind

Name

Usage

Prototype in

Description

200

rename - renames a file

int rename(char *oldname, char *newname);

stdio.h

rename changes the name of a file from oldname to
newname. If a drive specifier is given in newname, the
specifier must be the same as that given in oldname.

Directories in a path need not be the same, so rename
can be used to move a file from one directory to another.
Wildcards are not allowed.

On successfully renaming the file, rename returns O. In
the event of error, -1 is returned, and errno is set to one
of the following:

ENOENT Path or file name not found
EACCES Permission denied
ENOTSAM Not same device

Unique to MS-DOS.

rewind - repositions a stream

#include <stdio.h>
int rewind(FILE *stream);

stdio.h

see fseek

Turbo C Reference Guide

rmdir

Name

Usage

Prototype in

Description

sbrk

Name

Usage

Prototype in

Description

... scanf

Name

Usage

Related
functions usage

The Turbo C Library

rmdir - removes directory

int rmdir(char *pathname);

dir.h

see mkdir

sbrk - changes data segment space allocation

char *sbrk(int incr);

alloc.h

see brk

... scanf - performs formatted input

int scanf(char *formatL argument .. .]);

int cscanf(char *format[, argument, ...]);
int fscanf(FILE *stream, char *formatL argument, ...]);

int sscanf(char *string, char *formatL argument, ...]);
int vfscanf(FILE *stream, char *format, va_list argp);

int vscanf(char *format, va_list argp);
int vsscanf(char *string, char *format, va_list argp);

201

Include files

Description

202

#inc1ude <stdio.h>

The ... scanf family of functions all scan input fields, one
character at a time, and convert them according to a
,given format; these functions all:

• accept a format string that determines how the input
fields are to be interpreted (this is given as format in
the Usage)

• apply the format string to a variable number of input
fields in order to format the input

• store the formatted input in the addresses given as
arguments after the format string (these addresses
are given as either "argument, ... " or va_list param in
the Usage)

When a ... scanf function encounters its first format
specification in the format string, it scans and converts
the first input field according to that specification, then
stores the result in the location given by the first address
argument; it then scans, converts and stores the second
input field, then the third, etc.

The input source is implicit in three of the ... scanf
functions.

scanf accepts its input from stdin; so does vscanf.

cscanf accepts its input directly from the console.

The other four ... scanf functions also take an other
argument (the first in the list of parameters). This
additional argument designates the input source.

fscanf and vfscanf accept their input from a stream
(pointed to by stream).

sscanf and vsscanf accept their input from a string in
memory (pointed to by string).

Four of the ... scanf functions take the set of address
arguments directly from the function call (scanf, cscanf,
fscanf, sscanf).

The other three (vscanf, vfscanf, vsscanf) take their
address arguments from a variable argument list . The
v ... scanf functions are known as alternate entry points for
the ... scanf functions.

Turbo C Reference Guide

The Turbo C Library

See the definition of va_ ... for more information about
variable argument lists.

Here is a summary of each of the ... scanf functions.

scanf reads data from stdin and stores it in the
locations given by the address arguments
&argl, ... , &argn.

cscanf reads data directly from the console and
stores it in the locations given by the
address arguments &argl, ... , &argn.

fscanf reads data from the named input stream
into the locations given by the address
arguments &argl, ... , &argn.

sscanf reads data (stored in character string
string) into the locations given by the
address arguments &argl, ... , &ar gn.
sscanf does not change the source string
string.

vscanf behaves exactly like scanf except that it
accepts address arguments from the
va_arg array va_list paramo

vfscanf behaves exactly like fscanf except that it
accepts address arguments from the
va_arg array va_list paramo

vsscanf behaves exactly like sscanf except that it
accepts address arguments from the
va_arg array va_list paramo

The Format String

The format string, present in each of the ... scanf
function calls, controls how each function will scan,
convert and store its input fields. There must be enough
address arguments for the given format specifications; if
not, the results are unpredictable, and likely disastrous.
Excess address arguments (more than required by the
format) are merely ignored.

The format string is a character string that contains three
types of objects: whitespace characters, non-whitespace
characters, and format specifications.

203

• The whitespace characters are blank (), tab (\t) or
newline (\n). If a ... scanf function encounters a
whitespace character in the format string, it will read,
but not store, all consecutive whitespace characters
up to the next non-whitespace character in the input.

• The non-whitespace characters are all other ASCII
characters except the percent sign (%). If a ... scanf
function encounters a non-whitespace character in
the format string, it will read, but not store, a
matching non-whitespace character.

• The format specifications direct the ... scanf functions
to read and convert characters from the input field
into specific types of values, then store them in the
locations given by the address arguments.

Trailing white space is left unread (including a newline),
unless explicitly matched in the format string.

Format Specifications

... scanf format specifications have the following form:

% [*] [width] [F 1 N] [h 11] type character

Each format specification begins with the percent
character (%). After the % come the following, in this
order:

• an optional assignment-suppression character [*]
• an optional width-specifier [width]
• an optional pointer size-specifier [F I N]
• an optional argument-type modifier [h 11]
• the type character

Optional Format String Components

These are the general aspects of input formatting controlled by the optional
characters and specifiers in the ... scanf format string:

204 Turbo C Reference Guide

Character or
Specifier

*

width

size

argument
type

What It Controls or Specifies

suppresses assignment of the next
input field

maximum number of characters to read;
fewer characters might be read if the
... scanf function encounters a white­
space or non-convertible character

overrides default size of address
argument
(N = near pointer, F = far pointer)

overrides default type of address
argument
(h pointer to short int,
1 = pointer to long int)

... scanf Type Characters

The following table lists the ... scanf type characters, the type of input
expected by each, and in what format the input will be stored.

The information in this table is based on the assumption that no optional
characters, specifiers or modifiers (*, width, or size) were included in the
format specification. To see how the addition of the optional elements
affects the ... scanf input, refer to the tables following this one.

The Turbo C Library 205

Type
Character Input Type of Argument

206

Numerics

d Decimal integer
D Decimal integer

o Octal integer
o Octal integer

i Decimal, octal
or hexadecimal

integer

Pointer to
Pointer to

Pointer to
Pointer to

Pointer to

int (int *arg)
long (long *arg)

int (int *arg)
long (long *arg)

int (int *arg)

I Decimal, octal Pointer to long (long *arg)
or hexadecimal

u

u

x

x

integer

Unsigned
decimal integer

Unsigned
decimal integer

Hexadecimal
integer

Hexadecimal
integer

Pointer to unsigned int
(unsigned int *arg)

Pointer to unsigned long
(unsigned long *arg)

Pointer to int (int *arg)

Pointer to long
(long *arg)

Turbo C Reference Guide

Type
Character

e

E

f

g

G

s

c

%

n

p

Input Type of Argument

Numerics (continued)

Floating Pointer to float (float *arg)

Floating Pointer to double (double *arg)

Floating Pointer to float (float *arg)

Floating Pointer to float (float *arg)

Floating Pointer to double (double *arg)

Characters

Character
string

Character

% character

(none)

Hexadecimal
number in the

form YYYY:ZZZZ
or ZZZZ

Pointer to array of
characters (char arg [])

Pointer to character
(char *arg) If a field width

W is given along with the c
type character (such as
%5c) : Pointer to array of
W characters (char arg[W])

No conversion is done; the
% character is stored.

Pointers

Pointer to int (int *arg)
The number of characters read
successfully, up to the %n,
is stored in this pointer.

Pointer to an object
(far * or near *)
%p conversions default to the
pointer size native to the
memory model

The Turbo C Library 207

Input Fields

Anyone of the following is an input field:

• all characters up to (but not including) the next whitespace character

• all, characters up to the first one that cannot be converted under the
current format specification (such as an 8 or 9 under octal format)

• up to n characters, where n is the specified field width

Conventions

Certain conventions accompany some of these format specifications, as
summarized here.

% c conversion

This specification reads the next character, including a whitespace
character. To skip one whitespace character and read the next non­
whitespace character, use % Is.

% W c conversion (W = width specification)

The address argument is a pointer to an array of characters; the array
consists of W elements (char arg[W]).

% s conversion

The address argument is a pointer to an array of characters (char arg[]).

The array size, must be at least (n+ 1) bytes, where n=length of string s (in
characters). A space or newline terminates the input field. A null­
terminator is automatically appended to the string and stored as the last
element in the array.

% [search_set] conversion

The set of characters surrounded by square brackets can be substituted
for the s type character. The address argument is a pointer to an array of
characters (char arg[]).

These square brackets surround a set of characters that define a search set
of possible characters making up the string (the input field).

If the first character in the brackets is a caret (1\), the search set is
inverted to include all ASCII characters except those between the square
brackets. (Normally, a caret will be included in the inverted search set
unless explicitly listed somewhere after the first caret.)

208 Turbo C Reference Guide

The input field is a string not delimited by whitespace. The ... scanf
function reads the corresponding input field up to the first character it
reaches that does not appear in the search set (or in the inverted search
set). Two examples of this type of conversion are

% [abed] which will search for any of the characters a, b, c, and d in
the input field

% ["abed] which will search for any characters except a, b, c, and d in
the input field.

You can also use a "range facility" shortcut to define a range of characters
(numerics or letters) in the search set. For example, to catch all decimal
digits, you could define the search set by using

%[0123456789]

or you could use the shortcut to define the same search set by using

% [0-9]

To catch alphanumerics, you could use the following shortcuts:

% [A - Z] catches all uppercase letters
% [O-9A-Za-z] catches all decimal digits and all letters (uppercase and

lowercase)
% [A-FT-Z] catches all uppercase letters from A through F and

from T through Z

The rules covering these search set ranges are straightforward.

13 The character prior to the dash (-) must be lexically less than the one
after it.

Il The dash must not be the first nor the last character in the set. (If it is
first or last, it is considered to just be the dash character, not a range
definer.)

Il The characters on either side of the dash must be the ends of the range,
and not part of some other range.

Here are some examples where the dash just means the dash character, not
a range between two ends:

% [-+ * /] the four arithmetic operations
% [z-a] the characters 'z', '-', and 'a'
% [+ 0 - 9 - A - F] the characters '+' and '-', and the ranges 0

through 9 and A through Z
% [+0-9A-F-] also the characters '+' and '-', and the ranges 0

through 9 and A through Z

The Turbo C Library 209

%[A-O-9+A-F] all characters except '+' and '-', and those in the
ranges 0 through 9 and A through Z

% e, % E. % f, % g and % G (floating-point) conversions

Floating-point numbers in the input field must conform to the following
generic format:

[+/-] ddddddddd [.] dddd [E I e] [+/-] ddd

where [item] indicates that item is optional and ddd represents decimal,
octal or hexadecimal digits.

%d, %i, %0, %x, %D, %1, %0, %X, %c, %n conversions

A pointer to unsigned character, unsigned integer, or unsigned long can
be used in any conversion where a pointer to a character, integer, or long
is allowed.

Assignment-Suppression Character

The assignment-suppression character is an asterisk (*); it is not to be
confused with the C indirection (pointer) operator (also an asterisk).

If this character (*) follows the % in a format specification, the next input
field will be scanned but will not be assigned to the next address argument.
The suppressed input data is assumed to be of the type specified by the
type character that follows the * character.

The success of literal matches and suppressed assignments is not directly
determinable.

Width Specifiers

The width specifier (n), a decimal integer, controls the maximum number of
characters that will be read from the current input field.

If the input field contains less than n characters, the ... scanf function reads
all the characters in the field, then proceeds with the next field and format
specification.

If a whitespace or non-convertible character occurs before width characters
are read, the characters up to that character are read, converted and stored,
then the function attends to the next format specification.

210 Turbo C Reference Guide

A non-convertible character is one that cannot be converted according to
the given format (such as an 8 or 9 when the format is octal, or a J or K
when the format is hexadecimal or decimal).

Width
Specifier

n

How Width of Stored Input Is Affected

up to n characters will be read,
converted, and stored in the current
address argument.

Input-Size and Argument-Type Modifiers

The input-size modifiers (N and F) and argument-type modifiers (h and 1)
affect how the ... scanf functions interpret the corresponding address
argument argo

F and N override the default or declared size of argo

hand 1 indicate which type (version) of the following input data is to be
used (h = short, 1 = long). The input data will be converted to the specified
version, and the arg for that input data should point to an object of the
corresponding size (short object for %h, long or double object for %1).

The Turbo C Library 211

Modifier

F

N

How Conversion Is Affected

overrides default or declared size;
arg interpreted as far pointer

overrides default or declared size;
arg interpreted as near pointer
Cannot be used with any conversion
in huge model.

h for d, i, 0, U, x types: convert input
to short int, store in short object
for D, I, 0, U, X types: has no effect
for e, f, c, s, n, p types: has no effect

1 for d, i, 0, u, x types: convert input to
long int, store in long object
for e, f types: convert input to double,
store in double object
for D, I, 0, U, X types: has no effect
for c, s, n, p types: has no effect

When ... scanf Functions Stop Scanning

The ... scanf functions may stop scanning a particular field before reaching
the normal field-end character (whitespace), or may terminate entirely, for
a variety of reasons.

The ... scanf function will stop scanning and storing the current field and
proceed to the next input field if any of the following occurs:

.. An assignment-suppression character (*) appears after the percent
character in the format specification; the current input field is scanned
but not stored.

• width characters have been read (width = width specification, a positive
decimal integer in the format specification).

• The next character read cannot be converted under the current format
(for example, an A when the format is decimal).

• The next character in the input field does not appear in the search set (or
does appear in an inverted search set).

When the ... scanf function stops scanning the current input field for one of
these reasons, the next character is assumed to be unread and to be the first

212 Turbo C Reference Guide

character of the following input field, or the first character in a subsequent
read operation on the input.

The ... scanf function will terminate under the following circumstances:

a The next character in the input field conflicts with a corresponding non­
whitespace character in the format string.

Ii:I The next character in the input field is EOF.

iii The format string has been exhausted.

If a character sequence that is not part of a format specification occurs in
the format string, it must match the current sequence of characters in the
input field; the ... scanf function will scan, but not store, the matched
characters. When a conflicting character occurs, it remains in the input field
as if it were never read.

Return value

Portability

See also

All the ... scanf functions return the number of input
fields successfully scanned, converted and stored; the
return value does not include scanned fields that were
not stored.

If one of these functions attempts to read at end-of-file
(or end-of-string for sscanf and vsscanf), the return
value is EOF.

If no fields were stored, the return value is o.
The functions scanf, fscan£, sscanf, and cscanf are
available on UNIX systems and are defined in
Kernighan and Ritchie.

vscanf, vfscanf, and vsscanf are available on UNIX
System V but are not defined in Kernighan and Ritchie.

atof, getc, printf

searchpath

Name searchpath - searches the DOS path

Usage char *searchpath(char *filename);

Prototype in dir.h

The Turbo C Library 213

Description

Return value

Portability

See also

Example

#include <stdio.h>
#include <dir.h>

main ()
{

char *p;

searchpath attempts to locate a file, given by filename,
using the MS-DOS path. A pointer to the complete
path-name string is returned as the function value.

The current directory of the current drive is checked
first. If the file is not found there, the PATH
environment variable is fetched, and each directory in
the path is searched in turn until the file is found or the
path is exhausted.

When the file is located, a string is returned containing
the full path name. This string can be used in a call to
open or exec ... to access the file.

The string returned is located in a static buffer and is
destroyed on each subsequent call to searchpath.

A pointer to a filename string is returned if the file is
successfully located; otherwise, searchpath returns
NULL.

Unique to MS-DOS.

exec ... , open, system

p = searchpath("TLINK.EXE");
printf("Search for TLINK.EXE : %s\n", pi;
p = searchpath("NOTEXIST.FIL");
printf("Search for NOTEXIST.FIL : %s\n", pi;

Program output

Search for TLINK.EXE : C:\BIN\TLINK.EXE
Search for NOTEXIST.FIL : (null)

214 Turbo C Reference Guide

segread

Name

Usage

Prototype in

Description

Return value

Portability

See also

setblock

segread - reads segment registers

#inc1ude <dos.h>
void segread(struct SREGS *segtbl);

dos.h

segread places the current values of the segment
registers (stored in SEGREGS) into the structure pointed
to by segtbl.

This call is intended for use with intdosx and int86x.

None

Unique to MS-DOS.

FP _OFF, intdos, int86

Name setblock - modifies the size of a previously allocated
DOS memory segment

Usage int setblock(int seg, int newsize);'

Prototype in dos.h

Description see allocmem

The Turbo C Library 215

setbuf

Name

Usage

Related

setbuf - assigns buffering to a stream

#include <stdio.h>
void setbuf(FILE *stream, char *buj);

functions usage int setvbuf(FILE *stream, char *but, int type,
unsigned size);

Prototype in stdio.h

Description setbuf and setvbuf cause the buffer but to be used for
I/O buffering instead of an automatically allocated
buffer. They are used after the given stream is opened.

216

In setbuf, if but is NULL, I/O will be unbuffered;
otherwise, it will be fully buffered. The buffer must be
BUFSIZ bytes long (specified in stdio.h). In setvbuf, if
but is NULL, a buffer will be allocated using malIoc; the
buffer will use size as the amount allocated. The size
parameter specifies the buffer size and must be greater
than zero.

stdin and stdout are unbuffered if they are not redirected;
otherwise, they are fully buffered. setbuf may be used to
change the buffering style being used.

Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered
means that the characters are accumulated and written
as a block.

In setvbuf, the type parameter is one of the following:

_IOFBF The file is fully buffered. When a buffer is
empty, the next input operation will
attempt to fill the entire buffer. On output
the buffer will be completely filled before
any data is written to the file.

Turbo C Reference Guide

Return value

Portability

See also

Example

#include <stdio.h>

main ()
{

_IOLBF The file is line buffered. When a buffer is
empty, the next input operation will still
attempt to fill the entire buffer. On output,
however, the buffer will be flushed
whenever a newline character is written to
the file.

_IONBF The file is unbuffered. The buf and size
parameters are ignored. Each input
operation will read directly from the file,
and each output operation will
immediately write the data to the file.

setbuf will produce unpredictable results if it is called
for a stream, except immediately after opening the stream
or any call to fseek. Calling setbuf after a stream has
been unbuffered is legal and will not cause problems.

A common cause for error is to allocate the buffer as an
automatic (local) variable and then fail to close the file
before returning from the function where the buffer was
declared.

setbuf returns nothing.

setvbuf returns 0 on success. It returns non-zero if an
invalid value is given for type or size, if buf is NULL, or if
there is not enough space to allocate a buffer.

setvbuf returns 0 on success.

Available on UNIX systems.

fop en, fclose, fseek, malloc, open

FILE *input, *output;
char bufr[512];

input = fopen("file.in", "r");
output = fopen("file.out", "w");

/* Set up the input stream for minimal disk access,
using our own character buffer */

The Turbo C Library 217

if (setvbuf(input, bufr, IOFBF, 512) != 0)
printf("failed to seE up buffer for input file\n");

else
printf("buffer set up for input file\n");

/* Set up the output stream for line buffering using space that
will be obtained through an indirect call to malloc */

if (setvbuf (output, NULL, IOLBF, 132) != 0)
printf("failed to set up buffer for output file\n");

else
printf("buffer set up for output file\n");

/* Perform file I/O here */

/* Close files */

fclose(input);
fclose(output);

setcbrk

Name

Usage

Prototype in

Description

setdate

Name

Usage

Prototype in

Description

218

setcbrk - gets control-break setting

int setcbrk(int value);

dos.h

see getcbrk

setdate - sets MS-DOS date

#include <dos.h>
void setdate(struct date *dateblk);

dos.h

see getdate

Turbo C Reference Guide

setdisk

Name

Usage

Prototype in

Description

setdta

Name

Usage

Prototype in

Description

setftime

setdisk - sets current disk drive

int setdisk(int drive);

dir.h

see getdisk

setdta - sets disk transfer address

void setdta(char far *dta);

dos.h

see getdta

Name setftime - gets file date and time

Usage #include <io.h>
int setftime(int handle, struct ftime *ftimep);

Prototype in io.h

Description see getftime

The Turbo C Library 219

setjmp

Name

Usage

Prototype in

Description

setmem

Name

Usage

Prototype in

Description

setmode

Name

Usage

Prototype in

Description

Return value

220

setjmp - nonlocal goto

#inc1ude <setjmp.h>
int setjmp(jmp_buf env);

setjmp.h

see longjmp

setmem - assigns a value to memory

void setmem(void *addr, int len, char value);

mem.h

seemovmem

setmode - sets mode of open file

int setmode(int handle, unsigned mode);

io.h

setmode sets the mode of the open file associated with
handle to either binary or text. The argument mode must
have a value of either O_BINARY or O_TEXT, never
both.

setmode returns 0 if successful; on error it returns -1
and sets errno to

Turbo C Reference Guide

Portability

See also

settime

Name

Usage

Prototype in

Description

setvbuf

EINV AL Invalid argument

setmode is available on UNIX systems.

fread, read, Jmode (variable),

settime - sets system time

#include <dos.h>
void settime(struct time *timep);

dos.h

see gettime

Name setvbuf - assigns buffering to a stream

Usage #include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type,

unsigned size);

Prototype in stdio.h

Description see setbuf

The Turbo C Library 221

setvect

Name

Usage

Prototype in

Description

setverify

Name

Usage

Prototype in

Description

•
SIn

Name

Usage

Prototype in

Description

222

setvect - sets interrupt vector entry

void setvect(int intr _num, void interrupt (*isr) (»;
dos.h

see getvect

setverify - sets verify state

void setverify(int value);

dos.h

see getverify

sin - trigonometric sine function

double sin(double x);

math.h

see trig

Turbo C Reference Guide

sinh

Name

Usage

Prototype in

Description

sleep

sinh - hyperbolic sine function

double sinh(double x);

math.h

see hyperb

Name sleep - suspends execution for interval

Usage unsigned sleep(unsigned seconds);

Prototype in dos.h

Description With a call to sleep, the current program is suspended
from execution for the number of seconds specified by
the argument seconds. The interval is only accurate to the
nearest hundredth of a second, or the accuracy of the
MS-DOS clock, whichever is less accurate.

Return value None

Portability Available on UNIX systems.

The Turbo C Library 223

sopen

Name

Usage

Prototype in

Description

spawn ...

Name

Usage

224

sopen - opens a shared file

#include <fcntl.h>
#include <sys \stat.h>
#include <share.h>
#include <io.h>
int sopen(char * pathname, int access, int shflag,

int permiss);

io.h

see open

spawn ... - creates and runs child processes

#include <process.h>
int spawnl(int mode, char *pathname, char *argO, argl,

... , argn, NULL);
int spawnle(int mode, char *pathname, char *argO, argl,

... , argn, NULL, char *envp[]);

int spawnlp(int mode, char *pathname, char *argO, argl,
... , argn, NULL);

int spawnlpe(int mode, char *pathname, char *argO, argl,
... , argn, NULL, char *envp[]);

int spawnv(int mode, char *pathname, char *argv[]);
int spawnve(int mode, char *pathname, char *argv[],

char *envp[]);

int spawnvp(int mode, char *pathname, char *argv[]);
int spawnvpe(int mode, char *pathname, char *argv[],

char *envp[]);

Turbo C Reference Guide

Prototype in

Description

The Turbo C Library

process.h

The functions in the spawn ... family create and run
(execute) other files, known as child processes. There must
be sufficient memory available for loading and
executing the child process.

The value of mode determines what action the calling
function (the parent process) will take after the spawn
call. The possible values of mode are:

P _WAIT Puts parent process "on hold" until
child process completes execution.

P _NOWAIT Continues to run parent process
while child process runs.

P _OVERLAY Overlays child process in memory
location formerly occupied by parent.
Same as an exec ... call.

Note: P _NOWAIT is currently not available; using it
will generate an error value.

pathname is the file name of the called child process. The
spawn.. . function calls search for pathname using the
standard MS-DOS search algorithm:

IJ No extension or no period: Search for exact file name;
if not successful, add .EXE and search again.

IJ Extension given: Search only for exact file name.

IJ Period given: Search only for file name with no
extension.

The suffixes I, v, p, and e added to the spawn ... "family
name" specify that the named function will operate with
certain capabilities.

p Specifies that the function will search for the child in
those directories specified by the DOS PATH
environment variable. Without the p suffix, the
function will only search the root and current
working directory.

1 Specifies that the argument pointers argO,
argl, ... , argn are passed as separate arguments.
Typically, the 1 suffix is used when you know in
advance the number of arguments to be passed.

225

226

v Specifies that the argument pointers argv[O}, ... , arg[n}
are passed as an array of pointers. Typically, the v
suffix is used when a variable number of arguments is
to be passed.

e Specifies that the argument envp may be passed to the
child process, allowing you to alter the environment
for the child process. Without the e suffix, child
processes inherit the environment of the parent
process.

Each function in the spawn ... family must have one of
the two argument-specifying suffixes (either 1 or v). The
path search and environment inheritance suffixes (p and e)
are optional.

For example:

• spawnl is a spawn... function that takes separate
arguments, searches only the root or current
directory for the child, and passes on the parent's
environment to the child.

a spawnvpe is a spawn ... function that takes an array
of argument pointers, incorporates PATH in its
search for the child process, and accepts the envp
argument for altering the child's environment.

The spawn ... functions must pass at least one argument
to the child process (argO or argv[O]): This argument is,
by convention, a copy of pathname. (Using a different
value for this zeroth argument won't produce an error.)

Under MS-DOS 3.0 and later, pathname is available for
the child process; under earlier versions, the child
process cannot use the passed value of the zeroth
argument (argO or argv[O}).

When the 1 suffix is used, argO usually points to
pathname, and argl, , argn point to character strings
that form the new list of arguments. A mandatory NULL
following argn marks the end of the list.

When the e suffix is used, you pass a list of new
environment settings through the argument envp. This
environment argument is an array of char*. Each

Turbo C Reference Guide

Return value

See also

Example

/*

element points to a null-terminated character string of
the form

envvar = value

where envvar is the name of an environment variable,
and value is the string value to which envvar is set. The
last element in envp[J is NULL. When envp[O] is NULL,
the child inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of
argv[O] + argv[1] + ... + argv[n]), including space char­
acters that separate the arguments, must be < 128 bytes.
Null-terminators are not counted.

When a spawn... function call is made, any open files
remain open in the child process.

On a successful execution, the return value is the child
process's exit status (0 for a normal termination). If the
child specifically calls exit with a non-zero argument, its
exit status can be set to a non-zero value.

On error, the spawn ... functions return -I, and errno is
set to one of the following:

E2BIG Arg list too long
EINV AL Invalid argument
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough core

abort, atexit, exit, exec ... , system

This program is SPAWNFAM.C

*/

To run this example, you must first compile CHILD.C to an EXE
file.

#include <stdio.h>
#include <process.h>

status (int val)
{

if (val == -1)
printf("failed to start child process\n");

The Turbo C Library 227

else
if (val> 0) printf("child terminated abnormally\n");

} 1* status *1

main()
{

1*

*1

** NOTE: These environment strings should be changed
to work on your machine. **

1* create an environment string *1
char *envp[) = {"PATH=C:\\",

"DUMMY=YES" ,
};

1* create a pathname *1
char *pathname = "C:\\CHILDREN\\CHILD.EXE";

1* create an argument string *1
char *args[) = {"CHILD.EXE",

"1st ",
"2nd",

NULL
};

printf("SPAWNL:\n");
status (spawnl (P_WAIT, pathname,args[O) , args(1), NULL));

printf ("\nSPAWNV: \n");
status(spawnv(P_WAIT, pathname, args));

printf ("\nSPAWNLE: \n");
status (spawnle(P_WAIT, pathname, args[O), args(1), NULL, envp));

printf("\nSPAWNVPE:\n");
status (spawnvpe(P_WAIT, pathname, args, envp));

}
1* main *1

1*
This is CHILD.C --- the child process for SPAWNFAM.C

*1

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[))
{

int i;
char *path, *dummy;

228 Turbo C Reference Guide

path = getenv("PATH");
dummy = getenv ("DUMMY") ;

for (i = 0; i < argc; itt)
printf("argv[%d] %s\n", i, argv[i]);

if (path)
printf("PATH = %s\n", path);

if (dummy)
printf("DUMMY = %s\n", dummy);

exit(O); /* return to parent with error code 0 */
/* main */

sprintf

Name

Usage

Prototype in

Description

sqrt

sprintf - sends formatted output to a string

int sprintf(char *string, char *formatL argument, ... J);

stdio.h

see printf

Name sqrt - calculates square root

Usage double sqrt(double x);

Prototype in math.h

Description see exp

The Turbo C Library 229

srand

Name

Usage

Prototype in

Description

sscanf

Name

Usage

Prototype in

Description

ssignal

Name

Usage

Related
functions usage

Prototype in

Description

230

srand - initializes random number generator

void srand(unsigned seed);

stdlib.h

see rand

sscanf - performs formatted input from a string

int sscanf(char *string, char *formatL argument, ...]);

stdio.h

see scanf

ssignal - implements software signals

int (*ssignal(int sig, int (*action)(»();

int gsignal(int sig);

signal.h

ssignal and gsignal implement a software-signalling
facility. Software signals are associated with integers in
the range from 1 to 15.

Turbo C Reference Guide

Return value

gsignal raises the signal given by sig and executes the
action routine.

ssignal is used to establish an action routine for
servicing a signal. The first argument to ssignal, sig, is a
number identifying the type of signal for which an
action is established.

The second argument, action, defines the action; it is
either the name of a user-defined action function or one
of the constants SIG_DFL (default) or SIG_IGN (ignore).
These constants are defined in signal.h.

If an action function has been established for sig, then
that action is reset to SIG_DFL, and the action function is
entered with argument sig.

ssignal returns the action previously established or, if
the signal number is illegal, returns SIG_DFL.

gsignal returns the value returned to it by the action
function. gsignal's return values for actions assigned to
sig are listed in the following:

Return

SIG_IGN 1
SIG_DFL 0

Illegal value or 0
no action specified

In all cases, gsignal takes no action other than returning
a value.

Portability Available on UNIX systems.

The Turbo C Library 231

stat

Name

Usage

Related

stat - gets information about open file

#include <sys \stat.h>
int stat(char *pathname, struct stat *butf>

functions usage int fstat(char *handle, struct stat *butf>

Prototype in sys \stat.h

Description stat and fstat store information about a given open file
(or directory) in the stat structure.

stat gets information about the open file or directory
given by pathname.

fstat gets information about the open file associated with
handle.

In both functions, buff points to the stat structure
(defined in sys \stat.h). That structure contains the
following fields:

st_mode bit mask giving information about the
open file's mode

st_dev drive number of disk containing the file, or
file handle if the file is on a device

st _rdev same as st _dev

st _nlink set to the integer constant 1

st _size size of the open file, in bytes

st_atime most recent time the open file
was modified

st _mtime same as st _a time

st_ctime same as st_atime

232 Turbo C Reference Guide

Return value

_status87

The stat structure contains three more fields not
mentioned here: they contain values that are not
meaningful under MS-DOS.

The bit mask that gives information about the mode of
the open file includes the following bits:

One of the following bits will be set:

S_IFCHR set if handle refers to a device (fstat)

set if an ordinary file is referred to by
handle (fstat), or specified by pathname
(stat)

S_IFDIR set if pathname specifies a directory (stat)

One or both of the following bits will be set:

S_IWRITE set if user has permission to write to file

S_IREAD set if user has permission to read to file

For stat, the bit mask also contains user-execute bits;
these are set according to the open file's extension.

The bit mask also includes the read/write bits; these are
set according to the file's permission mode.

Both functions return 0 if they success full y retrieved the
information about the open file. On error (failure to get
the information), each function returns -1 and sets errno.

On failure, stat sets errno to

ENOENT File or path not found

On failure, fstat sets errno to

EBADF Bad file handle

Name _status87 - gets floating-point status

Usage unsigned int _status870;

Prototype in float.h

The Turbo C Library 233

Description

Return value

See also

stime

Name

Usage

Prototype in

Description

stpcpy

Name

Usage

Prototype in

Description

234

_status87 gets the floating-point status word, which is a
combination of the 8087/80287 status word and other
conditions detected by the 8087/80287 exception
handler.

The bits in the return value give the floating-point
status. See float.h for a complete definition of the bits
returned by _status87.

_c1ear87, _control87, _fpreset

stime - sets time

int stime(long *tp);

time.h

see time

stpcpy - copies one string into another

char *stpcpy(char *destin, char *source);

string.h

see str ...

Turbo C Reference Guide

str ...

Name

Usage

The Turbo C Library

str ... - family of string manipulation functions

char * stpcpy(char *destin, char *source);
char * strcat(char *destin, char *source);

char * strchr(char *str, char c);
int strcmp(char *strl, char *str2);

char *
int

char *
int

int
unsigned

char *

strcpy(char *destin, char *source);
strcspn(char *strl, char *str2);

strdup(char *str);
stricmp(char *strl, char *str2);

strcmpi(char *strl, char *str2);
strlen(char *str);

strlwr(char *str);
char * strncat(char *destin, char *source, int maxlen);

int
char *

int

int

char *
char *
char *
char *

char *
int

char *
double

long
char *
char *

strncmp(char *strl, char *str2, int maxlen);
strncpy(char *destin, char *source, int maxlen);

strnicmp(char *strl, char *str2,
unsigned maxlen);

strncmpi(char *strl, char *str2,
unsigned maxlen);

strnset(char *str, char ch, unsigned n);
strpbrk(char *strl, char *str2);

strrchr(char *str, char c);
strrev(char * str);

strset(char *str, char ch);
strspn(char *strl, char *str2);

strstr(char *strl, char *str2);
strtod(char *str, char **endptr);

strtol{char *str, char **endptr, int base);
strtok(char *strl, char *str2);
strupr(char *str);

235

Prototype in

Description

236

string.h

Here is an alphabetical summary of the str ... functions.
Following this list are detailed explanations of these
string manipulation functions, organized by the types or
categories of tasks they perform. The category is listed in
parentheses after each entry.

strcat appends one string to another (binding)

strchr scans a string for the first occurrence of a
given character (searching)

strcmp compares one string to another (comparing)

strcpy copies one string into another (copying)

strcspn scans a string for the first segment not
containing any subset of a given set of
characters (searching)

strdup copies a string into a newly-created location
(copying)

stricmp compares one string to another, without case
sensitivity (comparing)

strcmpi compares one string to another, without case
sensitivity (comparing)

strlen calculates the length of a string (searching)

strlwr converts uppercase letters in a string to
lowercase (changing)

strncat appends a portion of one string to another
(binding)

strncmp compares a portion of one string to a portion
of another (comparing)

strncpy copies a given number of bytes from one
string into another, truncating or padding as
necessary (copying)

strncmpi compares a portion of one string to a portion
of another, without case sensitivity
(comparing)

Turbo C Reference Guide

The Turbo C Library

stmicmp compares a portion of one string to a portion
of another, without case sensitivity
(comparing)

stmset sets a specified number of characters in a
string to a given character (changing)

strpbrk scans a string for the first occurrence of any
character from a given set (searching)

strrchr scans a string for the last occurrence of a
given character (searching)

strrev reverses a string (changing)

strset sets all characters in a string to a given
character (changing)

strspn scans a string for the first segment that is a
subset of a given set of characters (searching)

strstr scans a string for the occurrence of a given
substring (searching)

strtod converts a string to a double value
(converting)

strtok searches one string for tokens, which are
separated by delimiters defined in\ a second
string (searching)

strtol converts a string to a long value (converting)

strupr converts lowercase letters in a string to
uppercase (changing)

These 27 str ... (string manipulation) functions perform a
variety of tasks. These can be broken down into six
general categories:

II binding
II changing
I! comparing
.. converting
II copying
II searching

237

238

Here is a more complete explanation of what each str ...
function does; these are organized by the type (or
category) of task the functions perform.

Binding (concatenation)

strcat appends a copy of source to the end of destin.

strncat

Changing

strlwr

strupr

strset

strnset

strrev

The length of the resulting string is
strlen(destin) + strlen(source).

copies at most maxlen characters of source to
the end of destin and then appends a null
character. The maximum length of the
resulting string is strlen(destin) + maxlen.

converts uppercase letters in string str to
lowercase. No other changes occur.

converts lowercase letters in string str to
uppercase. No other changes occur.

sets all characters in the string str to the
character ch.

sets up to the first n bytes of the string str to
the character ch. If n > strlen(str), then
strlen(str) replaces n.

reverses all characters in a string (except the
terminating null character).

Comparing

strcmp compares strl to str2.

stricmp compares strl to str2, without case sensitivity.

strcmpi compares strl to str2, without case sensitivity
(same as stricmp-implemented as a macro).

strncmp makes the same comparison as strcmp, but
looks at no more than maxlen characters.

strnicmp compares strl to str2, for a maximum length
of maxlen bytes, without case sensitivity.

Turbo C Reference Guide

The Turbo C Library

strncmpi compares strl to str2, for a maximum length
of maxlen bytes, without case sensitivity
(same as strnicmp-implemented as a
macro).

All these comparing functions return a value «0, 0 or
>0) based on the result of comparing strl (or part of it) to
str2 (or part of it).

The routines strcmpi and strncmpi are the same,
respectively, as stricmp and strnicmp. They (strcmpi
and strncmpi) are implemented via macros in string.h.
These macros translate calls from strcmpi to stricmp,
and calls from strncmpi to strnicmp. Therefore, in order
to use strcmpi or strncmpi, you must #: incl ude the
header file string.h for the macros to be available. These
macros are provided for compatibility with other C
compilers.

Converting

strtod converts a character string, str, to a double

value. str is a sequence of characters that can
be interpreted as a double value; they must
rna tch this generic format:

[ws] [sn] [ddd] [.] [ddd] [fmt[sn]ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or-)
[ddd] = optional digits
[fmt] = optional e or E
[.] optional decimal point

For example, here are some character strings
that strtod can convert to double:

+1231.1981 e-1
502.85E2
-2010.952

239

strtod

strtol

strtol

240

stops reading the string at the first character
that cannot be interpreted as an appropriate
part of a double value.

If endptr is not NULL, strtod sets endptr to
point to the character that stopped the scan
(*endptr = &stopper).

converts a character string, str, to a long
integer value. str is a sequence of characters
that can be interpreted as a long value; they
must match this generic format

[ws] [sn] [0] [x] [ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or-)
[0] = optional zero (0)
[x] = optional x or X
[ddd] = optional digits

stops reading the string at the first character
that it doesn't recognize.

If base is between 2 and 36, the long integer is
expressed in base base.

If base is 0, the first few characters of str
determine the base of the value being
converted.

First Second String
Character Character Inter12reted as

0 1-7 octal
0 xorX hexadecimal

1-9 decimal

If base is I, it is considered to be an invalid
value.

If base is < 0, it is considered to be an invalid
value.

If base is > 36, it is considered to be an invalid
value.

Turbo C Reference Guide

The Turbo C Library

Copying

Any invalid value for base causes the result to
be 0 and sets the next character pointer to the
starting string pointer.

If the value in str is meant to be interpreted as
octal, any character other than 0 to 7 would
be unrecognized.

If the value in str is meant to be interpreted as
decimal, any character other than 0 to 9
would be unrecognized.

If the value in str is meant to be interpreted as
a number in any other base, then only the
numerals and letters used to represent
numbers in that base would be recognized.
(For example, if base = 5, only 0 to 4 would be
recognized; if base = 20, only 0 to 9 and A to J
would be recognized.)

strcpy copies string source to destin, stopping after
the terminating null character has been
moved.

strncpy copies exactly maxlen characters from source
into destin, truncating or null-padding destin.
The target string, destin, might not be null­
terminated if the length of source is maxlen or
more.

stpcpy

strcpy

strdup

copies the bytes of source into destin and stops
after copying the terminating null character
of source. stpcpy (a, b) is the same as strcpy (a,
b) except that the return values differ.

(a, b) returns a, while stpcpy (a, b) returns a +
stden (b).

makes a duplicate of string str, obtaining
space with a call to malloc. The allocated
space is (stden (str) + 1) bytes long.

241

Searching

strchr scans a string in the forward direction,
looking for a specific character. strchr finds
the first occurrence of the character ch in the
string str.

The null-terminator is considered to be part
of the string, so that, for example

strchr(strs, 0)

returns a pointer to the terminating null
character of the string "strs".

strrchr scans a string in the reverse direction, looking
for a specific character. strrchr finds the last
occurrence of the character ch in the string str.
The null-terminator is considered to be part
of the string.

strpbrk scans a string, strl, for the first occurrence of
any character appearing in str2.

strspn returns the length of the initial segment of
string strl that consists entirely of characters
from string str2.

strcspn returns the length of the initial segment of
string strl that consists entirely of characters
not from string str2.

strstr scans strl for the first occurrence of the
substring str2.

strtok considers the string strl to consist of a
sequence of zero or more text tokens,
separated by spans of one or more characters
from the separator string str2.

The first call to strtok returns a pointer to the
first character of the first token in strl and
writes a null character into strl immediately
following the returned token. Subsequent
calls with NULL for the first argument will
work through the string strl in this way until
no tokens remain.

242 Turbo C Reference Guide

Return value

The Turbo C Library

The separator string, str2, may be different
from call to call.

When no tokens remain in strl, strlok returns
a NULL pointer.

These are the return values for the str ... functions,
arranged in alphabetical order by the function names.

stpcpy

strchr

returns destin + stden (source).

returns a pointer to the first occurrence of the
character ch in str; if ch does not occur in str,
strchr returns NULL.

strcmp, stricmp, strcmpi, strncmp, strnicmp and
strncmpi all these routines return an int value that is

strcpy

strdup

stden

strncpy

strpbrk

strrchr

strrev

strstr

< 0 if strl is less than str2
= 0 if strl is the same as str2
> 0 if strl is greater than str2

All six of these functions perform a signed
comparison.

returns destin.

returns a pointer to the storage location
containing the duplicated str, or returns
NULL if space could not be allocated.

returns the number of characters in str, not
counting the null-terminating character.

returns destin.

returns a pointer to the first occurrence of any
of the characters in str2; if none of the str2
characters occurs in strl, it returns NULL.

returns a pointer to the last occurrence of the
character ch. If ch does not occur in str, strrchr
returns NULL.

returns a pointer to the reversed string. There
is no error return.

returns a pointer to the element in strl that
contains str2 (points to str2 in strl). If str2
does not occur in strl, strstr returns NULL.

243

Portability

See also

Example

Available on UNIX systems. Kernighan and Ritchie
define strcat.

malloc, mem ... , movmem

1* strtok - This example demonstrates the use of strtok to parse dates. Note
that in order to parse dates of varying formats (e.g., 12/3/87;
Dec.12,1987; January 15, 1987 12~FEB-87, etc.), you must specify
the delimiter string to contain either a period, space, comma,
minus, or slash. Notice in the output that the delimiters are not
returned.

*1

#include <stdio.h>
#include <string.h>

main ()
{

char *ptr;

ptr = strtok ("FEB.14,1987", II ,-I");
printf ("ptr = %s\n", ptr);

ptr = strtok (NULL, ". ,-I");
printf ("ptr = %s\n", ptr);

Program output

ptr = FEB
ptr = 14

strerror

Name

Usage

Prototype in

strerror - returns pointer to error message string

char *strerror(char *str);

string.h

244 Turbo C Reference Guide

Description

Return value

Portability

See also

swab

strerror allows you to generate customized error
messages; it returns a pointer to a null-terminated string
containing an error message.

If str is NULL, the return value contains the most
recently generated system error message; this string is
null-terminated.

If str is not NULL, the return value contains str (your
customized error message), a colon, a space, the most
recently generated system error message, and a newline.

The length of str should be 94 characters or less.

strerror is different from perror in that it does not print
error messages.

For accurate error-handling, strerror should be called as
soon as a library routine generates an error return.

strerror returns a pointer to a constructed error string.
The error message string is constructed in a static buffer
that is over-written with each call to perror.

Available on UNIX systems.

perror

Name swab - swaps bytes

Usage void swab(char *from, char *to, int nbytes);

Prototype in stdlib.h

Description swab copies n bytes from the from string to the to string.
Adjacent even- and odd-byte positions are swapped.
This is useful for moving data from one machine to
another machine with a different byte order. nbytes
should be even.

Return value There is no return value.

Portability Available on UNIX systems.

The Turbo C Library 245

system

Name

Usage

Prototype in

Description

Return value

Portability

See also

tan

Name

Usage

Prototype in

Description

246

system - issues an MS-DOS command

int system(char *command);

stdlib.h

system invokes the MS-DOS COMMAND.COM file to
execute a command given in the string command, as if
the command had been typed at the DOS prompt.

The COMSPEC environment variable is used to find the
COMMAND.COM file, so the file does not need to be in
the current directory.

system returns the exit status of COMMAND.COM
when the given command is completed.

Available on UNIX systems. Defined in Kernighan and
Ritchie.

exec ... , searchpath, spawn ...

tan - trigonometric tangent function

double tan(double x);

math.h

see trig

Turbo C Reference Guide

tanh

Name

Usage

Prototype in

Description

tell

Name

Usage

Prototype in

Description

time

tanh - hyperbolic tangent function

double tanh(double x);

math.h

see hyperb

tell - gets current position of file pointer

long tell(int handle);

io.h

see fseek

Name time - gets time of day

Usage long time (long *tloe);

Prototype in time.h

Related
functions usage int stime(long *tp);

Description time gives the current time, in seconds, elapsed since
00:00:00 GMT, January 1, 1970, and stores that value in
the location pointed to by tiDe.

The Turbo C Library 247

Return value

Portability

toascii

stime sets the system time and date. tp points to the
value of the time as measured in seconds from 00:00:00
GMT, January 1, 1970

time returns the elapsed time, in seconds, as described.

stime returns a value of o.
Available on UNIX systems.

Name to ascii - translates characters to ASCII format

Usage int toascii(int c);

Related
functions usage int tolower(int c);

int toupper(int c);

int _tolower(int c);
int _toupper(int c);

Prototype in ctype.h

Description toascii is a function that converts the integer c to ASCII
by clearing all but the lower seven bits; this gives a
value in the range 0 to 127. It is intended for
compatibility with other systems.

248

tolower is a function that converts an integer c (in the
range EOF to 255) to its lowercase value (if it was
uppercase): all others are left unchanged.

toupper is a function that converts an integer c (in the
range EOF to 255) to its uppercase value (if it was
lowercase): all others are left unchanged.

_tolower is a macro that does the same conversion as
tolower, except that it should be used only when c is
known to be uppercase.

_toupper is a macro that does the same conversion as
toupper, except that it should be used only when c is
known to be lowercase.

Turbo C Reference Guide

Return value

Portability

_to lower

Name

Usage

Prototype in

Description

tolower

To use _tolower or _toupper, you must include ctype.h.

Each function and macro returns the converted value of
c, on success, and nothing on failure.

All functions are available on UNIX systems; toupper
and to lower are defined in Kernighan and Ritchie.

_to lower - translates characters to lowercase

#include <ctype.h>
int _tolower(int c);

ctype.h

see toascii

Name tolower - translates characters to lowercase

Usage int tolower(int c);

Prototype in ctype.h

Description see toascii

The Turbo C Library 249

_toupper

Name

Usage

Prototype in

Description

toupper

Name

Usage

Prototype in

Description

trig

Name

Usage

Prototype in

250

_toupper - translates characters to uppercase

#include <ctype.h>
int _toupper(int c);

ctype.h

see toascii

toupper - translates characters to uppercase

int toupper(int c);

ctype.h

see to ascii

trig - trigonometric functions

double acos(double x);
double asin(double x);

double atan(double x);
double atan2(double y, double x);

double cos(double x);
double sin(double x);
double tan(double x);

math.h

Turbo C Reference Guide

Description

Return value

Portability

See also

tzset

sin, cos, and tan return the corresponding trigonometric
functions. Angles are specified in radians.

asin, acos, and atan return the arc sine, arc cosine, and
arc tangent, respectively, of the input value. Arguments
to as in and acos must be in the range -1 to 1. Arguments
outside that range will cause asin or acos to return 0 and
set errno to:

EDOM Domain error

atan2 returns the arc tangent of y / x and will produce
correct results even when the resulting angle is near pi/2
or -pi/2 (x near 0).

sin and cos return a value in the range -1 to 1.
as in returns a value in the range -pi/2 to pi/2.

acos returns a value in the range 0 to pi.
at an returns a value in the range -pi/2 to pi/2.

atan2 returns a value in the range -pi to pi.

tan returns any value for valid angles. For angles close
to pi/2 or -pi/2, tan returns 0 and errno is set to:

ERANGE Result out of range

Error handling for these routines can be modified
through the function math err.

Available on UNIX systems.

_math err, matherr, perror

Name tzset - UNIX time compatibility

Usage void tzset(void);

Prototype in time.h

Description see dime

The Turbo C Library 251

ultoa

Name

Usage

Prototype in

Description

ungetc

Name

Usage

Prototype in

Description

ungetch

Name

Usage

Prototype in

Description

252

ultoa - converts an unsigned long to a string

char *ultoa(unsigned long value, char *string, int radix);

stdlib.h

see itoa

ungetc - pushes a character back into input stream

#include <stdio.h>
int ungetc(char c, FILE *stream);

stdio.h

see getc

ungetch - pushes a character back to the keyboard
buffer

int ungetch(int c);

conio.h

see getc

Turbo C Reference Guide

unixtodos

Name

Usage

Prototype in

Description

unlink

unixtodos - converts date and time to DOS format

#include <dos.h>
void unixtodos(long utime, struct date *dateptr,

struct time *timeptr);

dos.h

see dostounix

N arne unlink - deletes a file

Usage int unlink(char *filename);

Related
functions usage int remove(char *filename);

Prototype in dos.h

Description unlink deletes a file specified by filename. Any MS-DOS
drive, path, and file name may be used as a filename.
Wildcards are not allowed.

Return value

The Turbo C Library

Read-only files cannot be deleted by this call. To remove
read-only files, first use chmod or _chmod to change the
read-only attribute.

remove is a macro that simply translates the call to a call
to unlink.

On successful completion, a 0 is returned. On error, a-I
is returned, and errno is set to one of the following
values:

ENOENT
EACCES

Path or file name not found
Permission denied

253

Portability

See also

unlock

Name

Usage

Prototype in

Description

Name

Usage

Prototype in

Description

254

Available on UNIX systems.

chmod

unlock - releases file-sharing locks

int unlock(int handle, long offset, long length);

dos.h

see lock

va_o 0 0 - implements variable argument list

#include <stdarg.h>
void va_start(va_list param, lastfix);
type va_arg(va_list param, type);
void va_end(va_list param);

stdarg.h

Some C functions, such as vfprintf and vprintf, take
variable argument lists in addition to taking a number of
fixed (known) parameters. The va_o 0 0 macros provide a
portable way to access these argument lists. They are
used for stepping through a list of arguments when the
called function does not know the number and types of
the arguments being passed.

The header file stdarg.h declares one type (va_list), and
three macros (va_start, va_arg, and va_end).

Turbo C Reference Guide

This array holds information needed by va_arg and
va_end. When a called function takes a variable
argument list, it declares a variable param of type va_list.

va_start

This routine (implemented as a macro) sets param to
point to the first of the variable arguments being passed
to the function. va_start must be used before the first call
to va_arg or va_end.

va_start takes two parameters; param and lastfix. (param
is explained under va_list in the preceding paragraph;
lastfix is the name of the last fixed parameter being
passed to the called function.)

va_arg

This routine (also implemented as a macro) expands to
an expression that has the same type and value as the
next argument being passed (one of the variable
arguments). The variable param to va_arg should be the
same param that va_start initialized.

The first time va_arg is used, it returns the first
argument in the list. Each successive time va_arg is
used, it returns the next argument in the list. It does this
by first de-referencing param, and then incrementing
param to point to the following item. va_arg uses the type
to both perform the de-reference and to locate the
following item. Each successive time va_arg is invoked,
it modifies param to point to the next argument in the
list.

va_end

This macro helps the called function perform a normal
return. va_end might modify param in such a way that it
cannot be used unless va_start is re-called. va_end
should be called after va_arg has read all the arguments:
failure to do so might cause strange, undefined behavior
in your program.

Return value va_start and va_end return no values; va_arg returns the
current argument in the list (the one that param is
pointing to).

The Turbo C Library 255

Portability

See also

Example

#include <stdio.h>
#include <stdarg.h>

Available on UNIX systems .

.. . scanf, printf

/* calculate sum of a ° terminated list */

void sum(char *msg, ...)
{

int total = 0;
va_list ap;
int arg;

va start(ap, msg);
whIle ((arg = va arg(ap,int)) != 0) {

total += arg;
}
printf(msg, total);

main ()
{

sum("The total of 1+2+3+4 is %d\n", 1,2,3,4,0);

Program output

The total of 1+2+3+4 is 10

Another example

#include <stdio.h>
#include <stdarg.h>

void error(char *format, ...)
{

va_list argptr;

printf("error: ");
va start(argptr, format);
vprintf(format, argptr);
va_end(argptr);

main ()
{

int value = -1;

256 Turbo C Reference Guide

error("this is just an error message\n");
error("invalid value %d encountered\n", value);

Program output

error: this is just an error message
error: invalid value -1 encountered

Name

Usage

Prototype in

Description

va_arg - accesses variable argument list

#include <stdarg.h>
type va_arg(va_list param, type);

stdarg.h

see va_ ...

Name va_end - ends variable argument access

Usage #include <stdarg.h>
void va_end(va_list param);

Prototype in stdarg.h

Description see va_ ...

The Turbo C Library 257

Name

Usage

Prototype in

Description

vfprintf

Name

Usage

Prototype in

Description

vfscanf

Name

Usage

Prototype in

Description

258

va_start - begins variable argument access

#include <stdarg.h>
void va_start(va_list param, lastfix);

stdarg.h

see va_ ...

vfprintf - sends formatted output to a stream

#include <stdio.h>
#include <stdarg.h>
int vfprintf(FILE *stream, char *format, va_list param);

stdio.h
stdarg.h

see printf

vfseanf - performs formatted input from a stream

#include <stdio.h>
int vfscanf(FILE *stream, char *format, va_list param);

stdio.h

see ... scanf

Turbo C Reference Guide

vprintf

Name

Usage

Prototype in

Description

vscanf

Name

Usage

Prototype in

Description

vsprintf

vprintf - send formatted output to stdout

int vprintf(char *format, va_list param);

stdio.h

see printf

vscanf - performs formatted input from stdin

int vscanf{char *format, va_list param);

stdio.h

see ... scanf

Name vsprintf - sends formatted output to a string

Usage int vsprintf(char *string, char *format, va_list param);

Prototype in stdio.h

Description see printf

The Turbo C Library 259

vsscanf

Name

Usage

Prototype in

Description

_write

Name

Usage

Prototype in

Description

write

vsscanf - performs formatted input from a stream

int vsscanf(char *s, char *format, va_list param);

stdio.h

see ... scanf

_write - writes to a file

int _write(int handle, void *buf, int nbyte);

io.h

see write

Name write - writes to a file

Usage int write(int handle, void *buf, int nbyte);

Related
functions usage int _write(int handle, void *buf, int nbyte);

Prototype in io.h

Description Both write and _write are functions that write a buffer
of data to the file or device named by the given handle.
handle is a file handle obtained from a creat, open, dup,
dup2, or fcnt! calL

260 Turbo C Reference Guide

Return value

These functions attempt to write nbyte bytes from the
buffer pointed to by but to the file associated with handle.
Except when write is used to write to a text file, the
number of bytes written to the file will be no more than
the number requested.

On text files, when write sees a linefeed (LF) character, it
outputs a CR-LF pair. _write does no such translation,
since all of its files are binary files.

If the number of bytes actually written is less than that
requested, the condition should be considered an error
and probably indicates a full disk.

For disk or diskette files, writing always proceeds from
the current file pointer (see lseek). For devices, bytes are
directly sent to the device.

For files opened with the a_APPEND option, the file
pointer is positioned to EOF by write (but not by _write)
before writing the data.

The number of bytes written are returned by both
functions. A write to a text file does not count generated
carriage returns. In case of error, each function returns
-1 and sets the global variable errno to one of the
following:

EACCES
EBADF

Permission denied
Bad file number

Portability Write is available on UNIX systems.
_write is unique to MS-DOS.

See also creat, dup, lseek, open

The Turbo C Library 261

262 Turbo C Reference Guide

A p p E N D x

A

The Turbo C Interactive Editor

Introduction

Turbo C's built-in editor is specifically designed for creating program
source text. If you are familiar with the Turbo Pascal or SideKick editor, or
MicroPro's WordStar program, you already know how to use the Turbo C
editor, since its commands are almost identical to one of these editors. A
section at the end of this appendix summarizes the few differences between
Turbo C's editor commands and WordStar's commands.

The Turbo C editor, unlike WordStar, has a "restore" facility that lets you
take back changes if you haven't yet left the line. This command (Ctrl-Q L) is
described in "Miscellaneous Editing Commands."

Quick In, Quick Out

To invoke the editor, choose Edit from Turbo C's main menu. The Edit
window becomes the "active" window; the Edit window's title is
highlighted and the cursor is positioned in the Edit window.

To enter text, type as though you were using a typewriter. To end a line,
press the Enter key.

To invoke the main menu from within the editor, press F10 (the data in the
Edit window remains on screen).

The Turbo C Interactive Editor 263

The Edit Window Status Line

The status line in the top bar of the Edit window gives you information
about the file you are editing, where in the file the cursor is located, and
which editing modes are activated:

Line

Line

Col

Insert

Indent

Tab

X:FILENAME.TYP

264

Col Insert Indent Tab X:FILENAME.TYP

Shows which file line number contains the cursor.

Shows which file column number contains the cursor.

Tells you that the editor is in "Insert mode";
characters entered on the keyboard are inserted at the
cursor position, and text in front of the cursor moves
to the right.

Use the Ins key or etrl-v to toggle the editor between
Insert mode and Overwrite mode.

In Overwrite mode, text entered at the keyboard
overwrites characters under the cursor, instead of
inserting them before existing text.

Indicates the autoindent feature is on. You toggle it off
and on with the command etrl-O I.

Indicates whether or not you can insert tabs. Use etrl­
OTto toggle this on or off.

Indicates the drive (X:), name (FILENAME), and
extension (. TYP) of the file you are editing. If the file
name and extension is NONAME.C, then you have
not specified a file name yet. (NONAME.C is Turbo
C's default file name.)

Turbo C Reference Guide

Editor Commands

The editor uses approximately 50 commands to move the cursor around,
page through text, find and replace strings, and so on. These commands
can be grouped into four main categories:

c cursor movement commands (basic and extended)
EI insert and delete commands
1:1 block commands
1:1 miscellaneous commands

Table A.1 summarizes the commands. Each entry in the table consists of a
command definition, followed by the default keystrokes used to activate
the command. In the pages after Table A.1, we further explain the actions
of each editor command.

Table Al: Summary of Editor Commands

Basic Cursor Movement Commands

Character left
Character right
Word left
Word right
Line up
Line down
Scroll up
Scroll down
Page up
Page down

Quick Cursor Movement Commands

Beginning of line
Ena of line
Top of window
Bottom of window
Top of file
Ena of file
Beginning of block
Ena of block
Last cursor position

The Turbo C Interactive Editor

Ctr/-S or Left
Ctr/-D or Right

Ctrl-A
Ctrl-F

Ctr/-E or Up
Ctrl-X or Down

Ctrl-W
Ctr/-Z

Ctr/-R or PgUp
Ctr/-C or PgDn

Ctr/-Q S or Home
Ctrl-Q D or End

Ctrl-Q E
Ctr/-QX
Ctrl-Q R
Ctrl-Q C
Ctrl-Q B
Ctr/-Q K
Ctrl-Q P

265

Summary of Editor Commands (continued)

Insert and Delete Commands

Insert mode on/ off
Insert line
Delete line
Delete to end of line
Delete character left of cursor
Delete character under cursor
Delete word right of cursor

Block Commands

Mark block-begin
Mark block-ena
Mark single word
Copy block
Delete block
Hide/ display block
Move block
Read block from disk
Write block to disk

Miscellaneous Commands

Abort operation
Autoindent on/ off
Control character prefix
Find
Find and replace
Find place marker
InvoKe main menu
Load file
Quit edit, no save
Repeat last find
Restore line
Save and edit
Set place marker
Tab
Tab mode

266

Gtrl-V or Ins
Gtrl-N
Gtrl-Y

Gtrl-Q Y
Gtrl-H or Backspace

Gtrl-G or Del
Gtrl-T

Gtrl-K B
Gtrl-K K
Gtrl-K T
Gtrl-K G
Gtrl-K Y
Gtrl-K H
Gtrl-K V
Gtrl-K R
Gtrl-K W

Gtrl-U
Gtrl-O I

Gtrl-P
Gtrl-Q F
Gtrl-Q A
Gtrl-Q N

FtO
F3

Gtrl-K D or Gtrl-K Q
Gtrl-I

Gtrl-Q L
Gtrl-K S or F2

Gtrl-K N
Gtrl-Ior Tab

Gtrl-O T

Turbo C Reference Guide

Basic Cursor Movement Commands

The editor uses control-key commands to move the cursor up, down, back,
and forth on the screen. To control cursor movement in the part of your file
currently on-screen, use the following sequences:

When you press

Ctrl-A
Ctrl-S
Ctrl-D
Ctrl-F

Ctrl-E
Ctrl-R
Ctrl-X
Ctrl-C

Ctrl-W
Ctrl-Z
PgUp
PgDn

The cursor does this:

Moves to first letter in word to left of cursor
Moves to first position to left of cursor
Moves to first position to right of cursor
Moves to first letter in word to right of cursor

Moves up one line
Moves up one full screen
Moves down one line
Moves down one full screen

Scrolls screen down one line; cursor stays in line
Scrolls screen up one line; cursor stays in line
Scrolls screen and cursor up one screen
Scrolls screen and cursor down one screen

Quick Cursor Movement Commands

The editor also provides six commands to move the cursor quickly to the
extreme ends of lines, to the beginning and end of the file, and to the last
cursor position.

When you press The cursor does this:

Ctrl-Q S
or Home

Ctrl-Q 0
or End

Ctrl-Q E
Ctrl-Q X

Ctrl-Q R
Ctrl-Q C

Moves to column one of the current line

Moves to the end of the currep,t line

Moves to the top of the screen
Moves to the bottom of the screen

Moves to the first character in the file
Moves to the last character in the file

The Turbo C Interactive Editor 267

The Ctr!-Q prefix with a B, K, or P character allows you to jump to certain
special points in a document.

Ctrl-Q B Moves the cursor to the block-begin marker set with Ctrl-K B.
The command works even if the block is not displayed (see
"Hide/ display block" under "Block Commands") or if the
block-end marker is not set.

Ctrl-Q K Moves the cursor to the block-end marker set with Ctrl-K K.
The command works even if the block is not displayed (see
"Hide/ display block") or the block-begin marker is not set.

Ctrl-Q P Moves to the last position of the cursor before the last
command. This command is particularly useful after a Find or
Find/Replace operation has been executed and you'd like to
return to the last position before its execution.

Insert and Delete Commands

To write a program, you need to know more than just how to move the
cursor around. You also need to be able to insert and delete text. The
following commands insert and delete characters, words, and lines.

Insert mode on/off Ctr!-V or Ins
When entering text, you can choose between two basic entry modes:
Insert and Overwrite. You can switch between these modes with the
Insert mode toggle, Ctrl-V or Ins. The current mode is displayed in the
status line at the top of the screen.

Insert mode is the Turbo C editor's default; this lets you insert new
characters into old text. Text to the right of the cursor simply moves to
the right as you enter new text.

Use Overwrite mode to replace old text with new; any characters entered
replace existing characters under the cursor.

Delete character left of cursor Ctrl-H or Backspace
Moves one character to the left and deletes the character positioned
there. Any characters to the right of the cursor move one position to the
left. You can use this command to remove line breaks.

Delete character under cursor Ctr!-G or Del
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left. This command does not work
across line breaks.

268 Turbo C Reference Guide

Delete word right of cursor Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a
sequence of characters delimited by one of the following characters:

space <
[]

>
/\ * +

)

/ $

This command works across line breaks, and may be used to remove
them.

Insert line Ctrl-N
Inserts a line break at the cursor position.

Delete line Ctrl-Y
Deletes the line containing the cursor and moves any lines below one
line up. There's no way to restore a deleted line, so use this command
with care.

Delete to end of line Ctrl-Q Y
Deletes all text from the cursor position to the end of the line.

Block Commands

The block commands also require a control-character command sequence.
A block of text is any amount of text, from a single character to hundreds of
lines, that has been surrounded with special block-marker characters. There
can be only one block in a document at a time.

You mark a block by placing a block-begin marker before the first character
and a block-end marker after the last character of the desired portion of
text. Once marked, you can copy, move, or delete the block, or write it to a
file.

Mark block-begin Ctrl-K B
Marks the beginning of a block. The marker itself is not visible, and
the block itself only becomes visible when the block-end marker is set.
Marked text (a block) is displayed in a different intensity.

Mark block-end Ctrl-K K
Marks the end of a block. The marker itself is invisible, and the block
itself becomes visible only when the block-begin marker is also set.

The Turbo C Interactive Editor 269

Mark single word Cfrl-K T
Marks a single word as a block, replacing the block-begin/block-end
sequence. If the cursor is placed within a word, then the word will be
marked. If it is not within a word, then the word to the left of the
cursor will be marked.

Copy block Cfrl-K C
Copies a previously marked block to the current cursor position. The
original block is unchanged, and the markers are placed around the
new copy of the block. If no block is marked or the cursor is within
the marked block, nothing happens.

Delete block Cfrl-K Y
Deletes a previously marked block. There is no provision to restore a
deleted block, so be careful with this command.

Hide/display block Cfrl-K H
Causes the visual marking of a block to be alternately switched off and
on. The block manipulation commands (copy, move, delete, and write
to a file) work only when the block is displayed. Block-related cursor
movements (jump to beginning/ end of block) work whether the block
is hidden or displayed.

Move block Cfrl-K V
Moves a previously marked block from its original position to the
cursor position. The block disappears from its original position, and
the markers remain around the block at its new position. If no block is
marked, nothing happens.

Read block from disk Cfrl-K R
Reads a previously marked disk file into the current text at the cursor
position, exactly as if it were a block. The text read is then marked as a
block of different intensity.

When you issue this command, Turbo C's editor prompts you for the
name of the file to read. You can use DOS wildcards to select a file to
read; a directory appears in a small window on-screen. The file
specified may be any legal file name. If you specify no file type (.C,
.TXT, .BAK, etc.) the editor assumes you meant .C. To read a file that
lacks an extension, append a period to the file name.

Write block to disk Cfrl-K W

270

Writes a previously marked block to a file. The block is left unchanged
in the current file, and the markers remain in place. If no block is
marked, nothing happens.

Turbo C Reference Guide

When you issue this command, Turbo C's editor prompts you for the
name of the file to write to. To select a file to overwrite, use DOS
wildcards; a directory appears in a small window on-screen. If the file
specified already exists, the editor issues a warning and prompts for
verification before overwriting the existing file. You can give the file
any legal name (the default extension is .C). To write a file that lacks
an extension, append a period to the file name.

Miscellaneous Editing Commands

This section describes commands that do not fall into any of the categories
already covered. These commands are listed in alphabetical order.

Abort operation Ctrl-U
Lets you abort any command in process whenever it pauses for input,
such as when Find/Replace asks Replace YIN?, or when you are
entering a search string or a file name (Block read and write).

Autoindent on/off Ctrl-O /
Provides automatic indenting of successive lines. When autoindent is
active, the cursor does not return to column one when you press Enter;
instead, it returns to the starting column of the line you just
terminated.

When you want to change the indentation, use the space bar and Left
arrow key to select the new column. When autoindent is on, the
message Indent shows up in the status line; when off, the message
disappears. Autoindent is on by default. (When Tab is on, autoindent
is disabled.)

Control character prefix Ctrl-P
Allows you to enter control characters into the file by prefixing the
desired control character with a Ctr/-P; that is, first press Ctr/-P, then
press the desired control character. Control characters will appear as
low-intensity capital letters on the screen (or inverse, depending on
your screen setup).

Find Ctr/-Q F
Lets you search for a string of up to 30 characters. When you enter
this command, the status line is cleared, and the editor prompts you
for a search string. Enter the string you are looking for and then press
Enter.

The Turbo C Interactive Editor 271

The search string may contain any characters, including control
characters. You enter control characters into the search string with the
"'p prefix. For example, enter a Gtrl-T by holding down the Gtrl key as
you press P, and then press T. You may include a line break in a
search string by specifying Gtrl-M J (carriage return/line feed). Note
that Gtrl-A has special meaning: It matches any character and may be
used as a wildcard in search strings.

You may edit search strings with the character left, character right,
word left, and word right commands. Word right recalls the previous
search string, which you may then edit. To abort (quit) the search
operation, use the abort command (Gtrl-V).

When you specify the search string, Turbo C's editor asks for search
options. The following options are available:

B Searches backward from the current cursor position toward the
beginning of the text.

G Globally searches the entire text, irrespective of the current
cursor position. This stops only at the last occurrence of the
string.

N Finds the next occurrence of a search string, starting at the
current cursor position in your file. When using both the Nand
the G options at the same time, the G option overrides the N
option.

n Where n equals a number, finds the nth occurrence of the
search string, counted from the current cursor position.

U Ignores uppercase/lowercase distinctions.

W Searches for whole words only, skipping matching patterns
embedded in other words.

Examples of Find Options:

W Searches for whole words only. The search string term will
match term, for example, but not terminal.

BU Searches backward and ignores uppercase/lowercase
differences. Block matches both blockhead and BLOCKADE, and
soon.

125 Finds the 125th occurrence of the search string.

272 Turbo C Reference Guide

You can end the list of find options (if any) by pressing Enter; the
search starts. If the text contains a target matching the search string,
the editor positions the cursor on the target. The search operation may
be repeated by the Repeat last find command (Ctrl-L).

Find and replace Ctrl-Q A
This operation works identically to the Find command, except that
you can replace the "found" string with any other string of up to 30
characters. Note that Ctrl-A only functions as a wildcard in the Find
string; it has no special meaning in the Replace string.

When you specify the search string, the editor asks you to enter the
string that will replace the search string. Enter up to 30 characters;
control character entry and editing is performed as with the Find
command. If you just press Enter, the editor replaces the target with
nothing, effectively deleting it.

Your choice of options are the same as those in the Find command
with the addition of the following:

N Replaces without asking; does not ask for confirmation of each
occurrence of the search string.

n Replaces the next n cases of the search string. If the G option is
used, the search starts at the top of the file; otherwise it starts at
the current cursor position.

Examples of Find and Replace Options:

Nl0 Finds the next ten occurrences of the search string and replaces
each without asking.

GW Finds and replaces whole words in the entire text, ignoring
uppercase/lowercase. It prompts for a replacement string.

GNU Finds (throughout the file) uppercase and lowercase small,
antelope-like creatures and replaces them without asking.

Again, you can end the option list (if any) by pressing Enter; the
Find/Replace operation starts. When the editor finds the item (and if
the N option is not specified), it then positions the cursor at one end of
the item, and asks Replace (yiN)? in the prompt line at the top of
the screen. You may abort the Find/Replace operation at this point
with the Abort command (Ctrl-lJ). You can repeat the Find/Replace
operation with the Repeat last find command (Ctrl-L).

The Turbo C Interactive Editor 273

Find place marker Ctr/-Q N
Finds up to four place markers (0-3) in text. Move the cursor to any
previously set marker by pressing Ctr/-Q and the marker number, n.

Load file F3
Lets you edit an existing file or create a new file.

Quit edit, no save Ctr/-K 0 or Ctr/-K Q
Quits the editor and returns you to the main menu. You can save the
edited file on disk either explicitly with the main menu's Save option
under the Files command or manually while in the editor (Ctr/-K S or
F2).

Repeat last find Ctr/-L
Repeats the latest Find or Find/Replace operation as if all information
had been re-entered.

Restore line Ctr/-Q L
Lets you undo changes made to a line, as long as you have not left the
line. The line is restored to its original state regardless of any changes
you have made.

Save file Ctr/-K S or F2
Saves the file and remains in the editor.

Set place marker Ctr/-K N

Tab

You can mark up to four places in text; press Ctr/-K, followed by a
single digit n (0-3). After marking your location, you can work
elsewhere in the file and then easily return to the marked location by
using the Ctr/-Q N command.

Ctr/-/ or Tab
Tabs are fixed to eight columns apart in the Turbo C editor.

Tab mode Ctr/-O T
With Tab mode on, a tab is placed in the text using a fixed tab stop of
8. Toggle it off, and it spaces to the beginning of the first letter of each
word in the previous line.

The Turbo C Editor Vs. WordStar

A few of the Turbo C editor's commands are slightly different from
WordStar. Also, although the Turbo C editor contains only a subset of
WordStar's commands, several features not found in WordStar have been

274 Turbo C Reference Guide

added to enhance program source-code editing. These differences are
discussed here, in alphabetical order.

Autoindent:
The Turbo C editor's Ctr/-O / command toggles the autoindent feature
on and off.

Carriage returns:
In Turbo C, carriage returns cannot be entered at the end of a file in
Overwrite mode. (If you press Enter at the end of a line when Insert
mode is off, the editor will not insert a carriage return character or
move the cursor to the next line.) To enter carriage returns, you can
either switch to Insert mode or use Ctr/-N in Overwrite mode.

Cursor movement:
Turbo C's cursor movement controls-Ctr/-S, Ctr/-O, Ctr/-E, and Ctr/­
X-move freely around on the screen without jumping to column one
on empty lines. This does not mean that the screen is full of blanks, on
the contrary, all trailing blanks are automatically removed. This way
of moving the cursor is especially useful for program editing, for
example, when matching indented statements.

Delete to left:
The WordStar sequence Ctr/-Q Oe/, delete from cursor position to
beginning of line, is not supported.

Mark word as block:
Turbo C allows you to mark a single word as a block using Ctr/-K T.
This is more convenient than WordStar's two-step process of
separately marking the beginning and the end of the word.

Movement across line breaks:
Ctr/-S and Ctr/-O do not work across line breaks. To move from one line
to another you must use Ctr/-E, Ctr/-X, Ctr/-A, or Ctr/-F.

Quit edit:
Turbo C's Ctr/-K Q does not resemble WordStar's Ctr/-K Q (quit edit)
command. In Turbo C, the changed text is not abandoned-it is left in
memory, ready to be compiled and saved.

Undo:
Turbo C's Ctr/-Q L command restores a line to its pre-edit contents as
long as the cursor has not left the line.

Updating disk file:
Since editing in Turbo C is done entirely in memory, the Ctr/-K 0
command does not change the file on disk as it does in WordS tar. You

The Turbo C Interactive Editor 275

276

must explicitly update the disk file with the Save option within the
File menu or by using Ctrl-K S or F2 within the editor.

Turbo C Reference Guide

A p p E N D x

Compiler Error Messages

The Turbo C compiler diagnostic messages fall into three classes: Fatals,
Errors, and Warnings.

Fatal errors are rare and probably indicate an internal compiler error. When
a fatal error occurs, compilation immediately stops. You must take
appropriate action and then restart compilation.

Errors indicate program syntax errors, disk or memory access errors, and
command line errors. The compiler will complete the current phase of the
compilation and then stop. The compiler attempts to find as many real
errors in the source program as possible during each phase (preprocessing,
parsing, optimizing and code-generating).

Warnings do not prevent the compilation from finishing. They indicate
conditions which are suspicious, but which are legitimate as part of the
language. Also, the compiler will produce warnings if you use machine­
dependent constructs in your source files.

The compiler prints messages with the message class first, then the source
file name and line number where the compiler detected the condition, and
finally the text of the message itself.

In the following lists, messages are presented alphabetically within
message class. With each message, a probable cause and remedy are
provided.

You should be aware of one detail about line numbers in error messages:
the compiler only generates messages as they are detected. Because C does
not force any restrictions on placing statements on a line of text, the true

Compiler Error Messages 277

cause of the error may be one or more lines before the line number
mentioned. In the following message list, we have indicated those
messages which often appear (to the compiler) to be on lines after the real
cause.

Fatal Errors

Bad call of in-line function
You have used an in-line function taken from a macro definition, but
have called it incorrectly. An in-line function is one that begins and ends
with a double underbar (__).

Irreducible expression tree
This is a sign of some form of compiler error. Some expression on the
indicated line of the source file has caused the code generator to be
unable to generate code. Whatever the offending expression is, it should
be avoided. You should notify Borland International if the compiler ever
encounters this error.

Register allocation failure
This is a sign of some form of compiler error. Some expression on the
indicated line of the source file was so complicated that the code
generator could not generate code for it. You should simplify the
offending expression, and if this fails to solve the problem, the
expression should be avoided. Notify Borland International if the
compiler encounters this error.

278 Turbo C Reference Guide

Errors

#operator not followed by macro argument name
In a macro definition, the # may be used to indicate stringizing a macro
argument. The # must be followed by a macro argument name.

'XXXXXXXX' not an argument
Your source file declared the named identifier as a function argument
but the identifier was not in the function argument list.

Ambiguous symbol'XXXXXXXX'
The named structure field occurs in more than one structure with
different offsets, types, or both. The variable or expression used to refer
to the field is not a structure containing the field. Cast the structure to
the correct type, or correct the field name if it is wrong.

Argument # missing name
A parameter name has been left out in a function prototype used to
define a function. If the function is defined with a prototype, the
prototype must include the parameter names.

Argument list syntax error
Arguments to a function call must be separated by spaces and closed
with a right parenthesis. Your source file contained an argument
followed by a character other than comma or right parenthesis.

Array bounds missing]
Your source file declared an array in which the array bounds were not
terminated by a right bracket.

Array size too large
The declared array would be too large to fit in the available memory of
the processor.

Assembler statement too long
In-line assembly statements may not be longer than 480 bytes.

Bad configuration file
The TURBOC.CFG file contains uncommented text that is not a proper
command option. Configuration file command options must begin with
a dash (-).

Compiler Error Messages 279

Bad file name format in include directive
Include file names must be surrounded by quotes (lifilename.h") or angle
brackets (<filename.h». The file name was missing the opening quote or
angle bracket. If a macro was used, the resulting expansion text is
incorrect; that is, not surrounded by quote marks.

Bad ifdef directive syntax
An #ifdef directive must contain a single identifier (and nothing else)
as the body of the directive.

Bad ifndef directive syntax
An # i fnde f directive must contain a single identifier (and nothing else)
as the body of the directive.

Bad undef directive syntax
An #undef directive must contain a single identifier (and nothing else)
as the body of the directive.

Bit field size syntax
A bitfield must be defined by a constant expression between 1 and 16
bits in width. '

Call of non-function
The function being called is declared as a non-function. This is
commonly caused by incorrectly declaring the function or misspelling
the function name.

Cannot modify a const object
This indicates an illegal operation on an object declared to be const,
such as an assignment to the object.

Case outside of switch
The compiler encountered a case statement outside a switch statement.
This is often caused by mismatched curly braces.

Case statement missing:
A case statement must have a constant expression followed by a colon.
The expression in the case statement either was missing a colon or had
some extra symbol before the colon.

Cast syntax error
A cast contains some incorrect symbol.

Character constant too long
Character constants may only be one or two characters long.

Compound statement missing}
The compiler reached the end of the source file and found no closing
brace. This is most commonly caused by mismatched braces.

280 Turbo C Reference Guide

Conflicting type modifiers
This occurs when a declaration is given that includes, for example, both
near and far keywords on the same pointer. Only one addressing
modifier may be given for a single pointer, and only one language
modifier (cdecl, pascal, or interrupt) may be given on a function.

Constant expression required
Arrays must be declared with constant size. This error is commonly
caused by misspelling a #define constant.

Could not find file 'XXXXXXXX.XXX'
The compiler is unable to find the file supplied on the command line.

Declaration missing;
Your source file contained a struct or union field declaration that was
not followed by a semicolon.

Declaration needs type or storage class
A declaration must include at least a type or a storage class. This means
a statement like the following is not legal:

i, j;

Declaration syntax error
Your source file contained a declaration that was missing some symbol
or had some extra symbol added to it.

Default outside of switch
The compiler encountered a default statement outside a switch

statement. This is most commonly caused by mismatched curly braces.

Define directive needs an identifier
The first non-whitespace character after a #define must be an identifier.
The compiler found some other character.

Division by zero
Your source file contained a divide or remainder in a constant
expression with a zero divisor.

Do statement must have while
Your source file contained a do statement that was missing the closing
while keyword.

Do-while statement missing (
In a do statement, the compiler found no left parenthesis after the while

keyword.

Compiler Error Messages 281

Do-while statement missing)
In a do statement, the compiler found no right parenthesis after the test
expression.

Do-while statement missing;
In a do statement test expression, the compiler found no semicolon after
the right parenthesis.

Duplicate case
Each case of a switch statement must have a unique constant
expression value.

Enum syntax error
An enum declaration did not contain a properly formed list of identifiers.

Enumeration constant syntax error
The expression given for an enum value was not a constant.

Error Directive: XXXX
This message is issued when an #error directive is processed in the
source file. The text of the directive is displayed in the message.

Error writing output file
This error most often occurs when the work disk is full. It could also
indicate a faulty diskette. If the diskette is full, try deleting unneeded
files and restarting the compilation.

Expression syntax
This is a catch-all error message when the compiler parses an expression
and encounters some serious error. This is most commonly caused by
two consecutive operators, mismatched or missing parentheses, or a
missing semicolon on the previous statement.

Extra parameter in call
A call to a function, via a pointer defined with a prototype, had too
many arguments given.

Extra parameter in call to XXXXXXXX
A call to the named function (which was defined with a prototype) had
too many arguments given in the call.

File name too long
The file name given in an #include directive was too long for the
compiler to process. File names in DOS must be no more than 64
characters long.

For statement missing (
In a for statement, the compiler found no left parenthesis after the for

keyword.

282 Turbo C Reference Guide

For statement missing)
In a for statement, the compiler found no right parenthesis after the
control expressions.

For statement missing;
In a for statement, the compiler found no semicolon after one of the
expressions.

Function call missing)
The function call argument list had some sort of syntax error, such as a
missing or mismatched right parenthesis.

Function definition out of place
A function definition may not be placed inside another function. Any
declaration inside a function that looks like the beginning of a function
with an argument list is considered a function definition.

Function doesn't take a variable number of arguments
Your source file used the va_start macro inside a function that does not
accept a variable number of arguments.

Goto statement missing label
The goto keyword must be followed by an identifier.

If statement missing (
In an if statement, the compiler found no left parenthesis after the if

keyword.

If statement missing)
In an if statement, the compiler found no right parenthesis after the test
expression.

Illegal character Ie' (OxXX)
The compiler encountered some invalid character in the input file. The
hexadecimal value of the offending character is printed.

Illegal initialization
Initializations must be either constant expressions, or else the address of
a global extern or static variable plus or minus a constant.

Illegal octal digit
The compiler found an octal constant containing a non-octal digit (8 or
9).

Illegal pointer subtraction
This is caused by attempting to subtract a pointer from a non-pointer.

Compiler Error Messages 283

Illegal structure operation
Structures may only be used with dot (.), address-of (&) or assignment
(=) operators, or be passed to or from a function as parameters. The
compiler encountered a structure being used with some other operator.

Illegal use of floating point
Floating point operands are not allowed in shift, bitwise boolean,
conditional (? :), indirection (*), or certain other operators. The compiler
found a floating-point operand with one of these prohibited operators.

Illegal use of pointer
Pointers may only be used with addition, subtraction, assignment,
comparison, indirection (*) or arrow (- ». Your source file used a pointer
with some other operator.

Improper use of a typedef symbol
Your source file used a typedef symbol where a variable should appear
in an expression. Check for the declaration of the symbol and possible
misspellings.

In-line assembly not allowed
Your source file contains in-line assembly language statements and you
are compiling it from within the Integrated Environment. You must use
the TCC command to compile this source file.

Incompatible storage class
Your source file used the extern keyword on a function definition. Only
static (or no storage class at all) is allowed.

Incompatible type conversion
Your source file attempted to convert one type to another, but the two
types were not convertible. This includes converting a function to or
from a non-function, converting a structure or array to or from a scalar
type, or converting a floating point value to or from pointer type.

Incorrect command line argument: XXXXXXXX
The compiler did not recognize the command line parameter as legal.

Incorrect configuration file argument: XXXXXXXX
The compiler did not recognize the configuration file parameter as legal;
check for a preceding dash ("_If).

Incorrect number format
The compiler encountered a decimal point in a hexadecimal number.

Incorrect use of default
The compiler found no colon after the default keyword.

284 Turbo C Reference Guide

Initializer syntax error
An initializer has a missing or extra operator, mismatched parentheses,
or is otherwise malformed.

Invalid indirection
The indirection operator (*) requires a non-void pointer as the operand.

Invalid macro argument separator
In a macro definition, arguments must be separated by commas. The
compiler encountered some other character after an argument name.

Invalid pointer addition
Your source file attempted to add two pointers together.

Invalid use of arrow
An identifier must immediately follow an arrow operator (- ».

Invalid use of dot
An identifier must immediately follow a dot operator (.).

Lvalue required
The left hand side of an assignment operator must be an addressable
expression. These include numeric or pointer variables, structure field
references or indirection through a pointer, or a subscripted array
element.

Macro argument syntax error
An argument in a macro definition must be an identifier. The compiler
encountered some non-identifier character where an argument was
expected.

Macro expansion too long
A macro may not expand to more than 4096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

May compile only one file when an output file name is given
You have supplied an -0 command line option, which allows only one
output file name. The first file is compiled but the other files are ignored.

Mismatched number of parameters in definition
The parameters in a definition do not match the information supplied in
the function prototype.

Misplaced break
The compiler encountered a break statement outside a switch or
looping construct.

Compiler Error Messages 285

Misplaced continue
The compiler encountered a continue statement outside a looping
construct.

Misplaced decimal point
The compiler encountered a decimal point in a floating point constant as
part of the exponent.

Misplaced else
The compiler encountered an else statement without a matching if
statement. Beyond just being an extra else, this could also be caused by
an extra semicolon, missing curly braces, or some syntax error in a
previous if statement.

Misplaced elif directive
The compiler encountered an #elif directive without any matching #if,

#ifdef or #ifndef directive.

Misplaced else directive
The compiler encountered an #else directive without any matching #if,

#ifdef or #ifndef directive.

Misplaced endif directive
The compiler encountered an #endi f directive without any matching
#if, #ifdef or #ifndef directive.

Must be addressable
An ampersand (&) has been applied to an object that is not addressable,
such as a register variable.

Must take address of memory location
Your source file used the address-of operator (&) with an expression
which cannot be used that way, for example a register variable.

No file name ending
The file name in an #include statement was missing the correct closing
quote or angle bracket.

No file names given
The Turbo C compile command (TCC) contained no file names. A
compile has to have something to work on.

Non-portable pointer assignment
Your source file assigned a pointer to a non-pointer, or vice versa.
Assigning a constant zero to a pointer is allowed as a special case. You
should use a cast to suppress this error message if the comparison is
proper.

286 Turbo C Reference Guide

Non-portable pointer comparison
Your source file made a comparison between a pointer and a non-pointer
other than the constant zero. You should use a cast to suppress this error
message if the comparison is proper.

Non-portable return type conversion
The expression in a return statement was not the same type as the
function declaration. With one exception, this is only triggered if the
function or the return expression is a pointer. The exception to this is
that a function returning a pointer may return a constant zero. The zero
will be converted to an appropriate pointer value.

Not an allowed type
Your source file declared some sort of forbidden type, for example a
function returning a function or array.

Out of memory
The total working storage is exhausted. Try it on a machine with more
memory, or if you already have 640K, you may have to simplify the
source file.

Pointer required on left side of - >
Nothing but a pointer is allowed on the left side of the arrow (- ».

Redeclaration of 'XXXXXXXX'
The named identifier was previously declared.

Size of structure or array not known
Some expression (such as a sizeof or storage declaration) occurred with
an undefined structure or an array of empty length. Structures may be
referenced before they are defined as long as their size is not needed.
Arrays may be declared with empty length if the declaration does not
reserve storage or if the declaration is followed by an initializer giving
the length.

Statement missing;
The compiler encountered an expression statement without a semicolon
following it.

Structure or union syntax error
The compiler encountered the struct or union keyword without an
identifier or opening curly brace following it.

Structure size too large
Your source file declared a structure which reserved too much storage to
fit in the memory available.

Compiler Er~or Messages 287

Subscripting missing]
The compiler encountered a subscripting expression which was missing
its closing bracket. This could be caused by a missing or extra operator,
or mismatched parentheses.

Switch statement missing (
In a switch statement, the compiler found no left parenthesis after the
switch keyword.

Switch statement missing)
In a switch statement, the compiler found no right parenthesis after the
test expression.

Too few parameters in call
A call to a function with a prototype (via a function pointer) had too few
arguments. Prototypes require that all parameters be given.

Too few parameters in call to 'XXXXXXXX'
A call to the named function (declared using a prototype) had too few
arguments.

Too many cases
A switch statement is limited to 257 cases.

Too many decimal points
The compiler encountered a floating point constant with more than one
decimal point.

Too many default cases
The compiler encountered more than one default statement in a single
switch.

Too many exponents
The compiler encountered more than one exponent in a floating point
constant.

Too many initializers
The compiler encountered more initializers than were allowed by the
declaration being initialized.

Too many storage classes in declaration
A declaration may never have more than one storage class.

Too many types in declaration
A declaration may never have more than one of the basic types: char,
int, float, double, struct, union, enum or typedef-name.

288 Turbo C Reference Guide

Too much auto memory in function
The current function declared more automatic storage than there is room
for in the available memory.

Too much code defined in file
The combined size of the functions in the current source file exceeds 64K
bytes. You may have to remove unneeded code, or split up the source
file.

Too much global data defined in file
The sum of the global data declarations exceeds 64K bytes. Check the
declarations for any array that may be too large. Also consider
reorganizing the program if all the declarations are needed.

Two consecutive dots
Because an ellipsis contains three dots C ..), and a decimal point or
member selection operator uses one dot (.), there is no way two dots can
legally occur in a C program.

Type mismatch in parameter #
The function called, via a function pointer, was declared with a
prototype; the given parameter #N (counting left-to-right from 1) could
not be converted to the declared parameter type.

Type mismatch in parameter # in call to 'XXXXXXXX'
Your source file declared the named function with a prototype, and the
given parameter #N (counting left-to-right from 1) could not be
converted to the declared parameter type.

Type mismatch in parameter 'XXXXXXXX'
Your source file declared the function called via a function pointer with a
prototype, and the named parameter could not be converted to the
declared parameter type.

Type mismatch in parameter 'XXXXXXXX' in call to 'YYYYYYYY'
Your source file declared the named function with a prototype, and the
named parameter could not be converted to the declared. parameter
type.

Type mismatch in redec1aration of 'XXX'
Your source file redeclared a variable with a different type than was
originally declared for the variable. This can occur if a function is called
and subsequently declared to return something other than an integer. If
this has happened, you must insert an extern declaration of the function
before the first call to it.

Compiler Error Messages 289

Unable to create output file IXXXXXXXXX.XXX'
This error occurs if the work diskette is full or write protected. If the
diskette is full, try deleting unneeded files and restarting the
compilation. If the diskette is write protected, move the source files to a
writable diskette and restart the compilation.

Unable to create turboc.lnk
The compiler cannot create the temporary file TURBOC.$LN because it
cannot access the disk or the disk is full.

Unable to execute command IXXXXXXXX'
TLINK or MASM cannot be found, or possibly the disk is bad.

Unable to open include file IXXXXXXXXX.XXX'
The compiler could not find the named file. This could also be caused if
an #include file included itself, or if you do not have FILES set in
CONFIG.SYS on your root directory (try FILES=20). Check whether the
named file exists.

Unable to open input file IXXXXXXXXX.XXX'
This error occurs if the source file cannot be found. Check the spelling of
the name and whether the file is on the proper diskette or directory.

Undefined label/XXXXXXXX'
The named label has a goto in the function, but no label definition.

Undefined structure IXXXXXXXX'
Your source file used the named structure on some line before where the
error is indicated (probably on a pointer to a structure) but had no
definition for the structure. This is probably caused by a misspelled
structure name or a missing declaration.

Undefined symbol/XXXXXXXX'
The named identifier has no declaration. This could be caused by a
misspelling either at this point or at the declaration. This could also be
caused if there was an error in the declaration of the identifier.

Unexpected end of file in comment started on line #
The source file ended in the middle of a comment. This is normally
caused by a missing close of comment (* I).

Unexpected end of file in conditional started on line #
The source file ended before the compiler encountered #endif. The
#endif either was missing or misspelled.

290 Turbo C Reference Guide

Unknown preprocessor directive: lXXX'
The compiler encountered a # character at the beginning of a line, and
the directive name following was not one of these: define, undef, line,

if, ifdef, ifndef, include, else or endif.

Unterminated character constant
The compiler encountered an unmatched apostrophe.

Unterminated string
The compiler encountered an unmatched quote character.

Unterminated string or character constant
. The compiler found no terminating quote after the beginning of a string

or character constant.

User break
You typed a etr/-Break while compiling or linking in the Integrated
Environment.

While statement missing (
In a while statement, the compiler found no left parenthesis after the
while keyword.

While statement missing)
In a while statement, the compiler found no right parenthesis after the
test expression.

Wrong number of arguments in call of IXXXXXXXX'
Your source file called the named macro with an incorrect number of
arguments.

Compiler Error Messages 291

Warnings

'XXXXXXXX' declared but never used
Your source file declared the named variable as part of the block just
ending, but the variable was never used. The warning is indicated when
the the compiler encounters the closing curly brace of the compound
statement or function. The declaration of the variable occurs at the
beginning of the compound statement or function.

'XXXXXXXX' is assigned a value which is never used
The variable appears in an assignment, but is never used anywhere else
in the function just ending. The warning is indicated only when the
compiler encounters the closing curly brace.

'XXXXXXXX' not part of structure
The named field was not part of the structure on the left hand side of the
dot (.) or arrow (- », or else the left hand side was not a structure (for a
dot) or pointer to structure (for an arrow).

Ambiguous operators need parentheses
This warning is displayed whenever two shift, relational or bitwise­
boolean operators are used together without parentheses. Also, an
addition or subtraction operator that appears unparenthesized with a
shift operator will produce this warning. Programmers frequently
confuse the precedence of these operators, since the precedence assigned
to them is somewhat counter-intuitive.

Both return and return of a value used
This warning is issued when the compiler encounters a return
statement that disagrees with some previous return statement in the
function. It is almost certainly an error for a function to return a value in
only some of the return statements.

Call to function with no prototype
This message is given if the "Prototypes required" warning is enabled
and you call a function without first giving a prototype for that function.

Call to function 'XXXX' with no prototype
This message is given if the "Prototypes required" warning is enabled
and you call function XXXX without first giving a prototype for that
function.

292 Turbo C Reference Guide

Code has no effect
This warning is issued when the compiler encounters a statement with
some operators which have no effect. For example the statement:

a + b;

has no effect on either variable. The operation is unnecessary and
probably indicates a bug.

Constant is long
The compiler encountered either a decimal constant greater than 32767
or an octal (or hexadecimal) constant greater than 65535 without a letter 1
or L following it. The constant is treated as a long.

Constant out of range in comparison
Your source file includes a comparison involving a constant sub­
expression that was outside the range allowed by the other sub­
expression's type. For example, comparing an unsigned quantity to -1
makes no sense. To get an unsigned constant greater than 32767 (in
decimal), you should either cast the constant to unsigned (e.g.,
(unsigned)65535) or append a letter u or U to the constant (e.g., 65535u).

Conversion may lose significant digits
For an assignment operator or some other circumstance, your source file
requires a conversion from long or unsigned long to int or unsigned
int type. On some machines, since int typ~ and long type variables
have the same size, this kind of conversion may alter the behavior of a
program being ported.

Whenever this message is issued, the compiler will still generate code to
do the comparison. If this code ends up always giving the same result,
such as comparing a char expression to 4000, the code will still perform
the test. This also means that comparing an unsigned expression to -1
will do something useful, since an unsigned can have the same bit
pattern as a -1 on the 8086.

Function should return a value
Your source file declared the current function to return some type other
than int or void, but the compiler encountered a return with no value.
This is usually some sort of error. int functions are exempt, since in old
versions of C there was no void type to indicate functions which return
nothing.

Mixing pointers to signed and unsigned char
You converted a char pointer to an unsigned char pointer, or vice
versa, without using an explicit cast. (Strictly speaking, this is incorrect,
but on the 8086, it is often harmless.)

Compiler Error Messages 293

No declaration for function 'XXXXXXXX'
This message is given if the "Declaration required" warning is enabled
and you call a function without first declaring that function. The
declaration can be either classic or modern (prototype) style.

Non-portable pointer assignment
Your source file assigned a pointer to a non-pointer, or vice versa.
Assigning a constant zero to a pointer is allowed as a special case. You
should use a cast to suppress this warning if the comparison is proper.

Non-portable pointer comparison
Your source file compared a pointer to a non-pointer other than the
constant zero. You should use a cast to suppress this warning if the
comparison is proper.

Non-portable return type conversion
The expression in a return statement was not the same type as the
function declaration. With one exception, this is only triggered if the
function or the return expression is a pointer. The exception to this is
that a function returning a pointer may return a constant zero. The zero
will be converted to an appropriate pointer value.

Parameter 'XXXXXXXX' is never used
The named parameter, declared in the function, was never used in the
body of the function. This mayor may not be an error and is often
caused by misspelling the parameter. This warning can also occur if the
identifier is redeclared as an automatic (local) variable in the body of the
function. The parameter is masked by the automatic variable and
remains unused.

Possible use of 'XXXXXXXX' before definition
Your source file used the named variable in an expression before it was
assigned a value. The compiler uses a simple-minded scan of the
program to determine this condition. If the use of a variable occurs
physically before any assignment, this warning will be generated. Of
course, the actual flow of the program may assign the value before the
program uses it.

Possibly incorrect assignment
This warning is generated when the compiler encounters an assignment
operator as the main operator of a conditional expression (Le. part of an
if, while or do-while statement). More often than not, this is a
typographical error for the equality operator. If you wish to suppress
this warning, enclose the assignment in parentheses and compare the
whole thing to zero explicitly. Thus:

if (a = b) •••

294 Turbo C Reference Guide

should be rewritten as:

if ((a = b) != 0)

Redefinition of IXXXXXXXX' is not identical
Your source file redefined the named macro using text that was not
exactly the same as the first definition of the macro. The new text
replaces the old.

Restarting compile using assembly
The compiler encountered an asm with no accompanying - B command
line option or #pragma inline statement. The compile restarts using
assembly language capabilities.

Structure passed by value
If "Structure passed by value" warning is enabled, this warning is
generated anytime a structure is passed by value as an argument. It is a
frequent programming mistake to leave an address-of operator (&) off a
structure when passing it as an argument. Because structures can be
passed by value, this omission is acceptable. This warning provides a
way for the compiler to warn you of this mistake.

Superfluous & with function or array
An address-of operator (&) is not needed with an array name or function
name; any such operators are discarded.

Suspicious pointer conversion
The compiler encountered some conversion of a pointer which caused
the pointer to point to a different type. You should use a cast to suppress
this warning if the conversion is proper.

Undefined structure IXXXXXXXX'
The named structure was used in the source file, probably on a pointer
to a structure, but had no definition in the source file. This is probably
caused by a misspelled structure name or a missing declaration.

Unknown assembler instruction
The compiler encountered an in-line assembly statement with a
disallowed opcode. Check the spelling of the opcode. Also check the list
of allowed opcodes to see if the instruction is acceptable.

Unreachable Code
A break, continue, goto or return statement was not followed by a
label or the end of a loop or function. The compiler checks while, do and
for loops with a constant test condition, and attempts to recognize loops
which cannot fall through.

Compiler Error Messages 295

Void functions may not return a value
Your source file declared the current function as returning void, but the
compiler encountered a return statement with a value. The value of the
return statement will be ignored.

Zero length structure
Your source file declared a structure whose total size was zero. Any use
of this structure would be an error.

296 Turbo C Reference Guide

A p p E N D x

c

Command-Line Options

This appendix lists each of the Turbo C compile-time command-line
options in alphabetical order under option type, and describes what each
option does. The options are broken down into three general types:

c compiler options
c linker options
til environment options

Within the compiler options, there are several categories of options; these
specify

c memory model
c #defines (macro definitions)
c code generation options
c optimization options
c source code options
c error-reporting options
[] segment-naming control

To see an on-screen listing of all the TCC (command-line Turbo C) options,
type tee Enter at the DOS prompt (when you're in the TURBOC
directory). Most of the command-line options have counterparts in the
Turbo C Integrated Development Environment (TC) Options menus (and a
few other menus). See Table C.l for a correlation of the TC menu selections
and the TCC command-line options.

Command-Line Options 297

Table C.l: Correlation of Command-line Options and Menu Selections

Command-line switch
-A
-a
-a- **
-B
-C
-c
-Dname
-Dname=string
-d
-d- **
-efilename
-f **
-f-
-f87
-G
-g#
-Ipathname
-i#

=~
-K- **
-k
-Lpathname
-M
-me
-mh
-ml
-mm
-ms **
-mt
-N
-npathname
-0
-ofilename
-p
-p-
-r

**
**

-S
-Uname
-u **
-w
-w-
-wxxx

-w-xxx

=z
-zAname
-zBname
-zCname
-zDname
-zGname
-zPname
-zRname
-zSname
-zTname
-1
-1- **

0/ = Options

298

Menu Selection
O/C/Source/ ANSI keywords only ... On
O/C/Code generation! Alignment...Word
O/C/Code generation/Alignment.. .Byte
(Not available)
O/C/Source/Nested comments ... On
Compile/Compile to OBJ
O/C/Defines
O/C/Defines
O/C/Code generation/Merge duplicate strings ... On
O/C/Code generation/Merge duplicate strings ... Off
Project/Project name
O/C/Code generation/Floating point...Emulation
O/C/Code generation/Floating point...None
O/C/Code generation/Floating point...8087
O/C/Optimization/Optimize for ... Speed
O/C/Errors/Warnings: stop after ... #
OlE/Include directories
OlE/Identifier length ... #
O/C/Errors/Errors: stop after ... #
O/C/Code generation/Default char type ... Unsigned
O/C/Code generation/Default char type ... Signed
O/C/Code generation/Standard stack frame ... On
O/E/Libra9.' directory
o /L/Map ftIe
0/ C/Model. .. Compact
0/ C/Model. .. Huge
O/C/Model. .. Large
0/ C/Model. .. Medium
O/C/Model. . .5mall
O/C/Model ... Tiny
O/C/Code generation/Test stack overflow ... On
OlE/Output directory
O/C/Ophmization/Optimize for ... Size
(Not available)
O/C/Code generation/Calling convention ... Pascal
C/Code generation/Calling convention ... C
O/C/Optimization/Use register variables ... On
(Not available)
(Not available)
O/C/Code generation/Generate underbars ... On
O/C/Errors/Display warnings ... On
O/C/Errors/Display warnings ... Off
O/C/Errors/Portability warnings, ANSI violations, Common
errors, or Less common errors ... On
O/C/Errors/Portability warnings, ANSI violations, Common
errors, or Less common errors ... Off
O/C/Code generation/Line numbers ... On
O/C/Optimization/Register optimization ... On
O/C/Names/Code/Class
O/C/Names/Data/Class
O/C/Names/Code/Segment
O/C/Names/BSS/Segment
O/C/Names/Data/Group
O/C/Names/Code/Group
O/C/Names/Data/Segment
O/C/Names/BSS/Group
O/C/Names/BSS/Class
O/C/Code generation ... 80186/80286
O/C/Code generation ... 8088/8086

C/ = Compiler E/ = Environment ** = On by default

Turbo C Reference Guide

Turning Options On and Off

You select command-line options by entering a dash (-) immediately
followed by the option letter (like this, -D. To turn an option off, add
another dash after the option letter. For example, -A turns the ANSI
keywords option on and -A- turns the option off.

This feature is useful for disabling or enabling individual switches on the
command line, thereby overriding the corresponding settings in the
configuration file.

Syntax

You select Turbo C compiler options through a DOS command line, with
the following syntax:

tee [option option ... J filename filename ...

Turbo C compiles files according to the following set of rules:

filename.asm
filename.obj
filename.lib
filename
filename.c
filename.xyz

invoke MASM to assemble to .OB]
include as object at link time
include as library at link time
compile filename.c
compile filename.c
compile filename.xyz

For example, given the following command line

tee -a -f -c -0 -z -emyexe oldfilel.e oldfile2 nextfile.e

TCC will compile OLDFILE1.C, OLDFILE2.C, and NEXTFILE.C to .OB],
producing an executable program file named MYEXE.EXE with the word
alignment (-a), floating-point emulation (-f), nested comments (-c), jump
optimization (-0), and register optimization (-z) options selected.

TCC will invoke MASM if you give it an .ASM file on the command line or
if a .C file contains in-line assembly. The switches TCC gives to MASM are

/mx /D_mdl_

Command-Line Options 299

where mdl is one of: TINY, SMALL, MEDIUM, COMPACT, LARGE, or
HUGE. The /rnx switch tells MASM to assemble with case-sensitivity on.

Compiler Options

Turbo C's command-line compiler options can be broken down into eight
logical groups. These groups, and the ties that bind them, are as follows:

• Memory model options allow you to specify under which memory
model Turbo C will compile your program. (The models range from
Tiny to Huge.)

• #defines (macro definitions) allow you to define macros (also known as
manifest or symbolic constants) to the default (which is 1), to a numeric
value, or to a string; these options also allow you to undefine
previously-defined macros.

• Code generation options govern characteristics of the generated code to
be used at run-time, such as the floating-point mode, calling convention,
char type, or CPU instructions.

• Optimization options allow you to specify how the object code is to be
optimized; for size or speed, with or without the use of register
variables, and with or without redundant load operations.

• Source code options cause the compiler to recognize (or ignore) certain
features of the source code; implementation-specific (non-ANSI)
keywords, nested comments, and identifier lengths.

• Error-reporting options allow you to tailor which warning messages the
compiler will report, and the maximum number of warnings (and
errors) that can occur before the compilation stops.

• Segment-naming control allows you to rename segments and to reassign
their groups and classes.

• Compilation control options allow you to direct the compiler to

• compile to assembly code (rather than to an object module)
• compile a source file that contains in-line assembly
• compile without linking.

300 Turbo C Reference Guide

Memory Model

-me Compile using compact memory model.

-mh Compile using huge memory model.

-ml Compile using large memory model.

-mm Compile using medium memory model.

-ms Compile using small memory model (the default).

-mt Compile using tiny memory model. Generates almost the same
code as the small memory model, but uses COT.OB] in any link
performed to produce a tiny model program.

For details about the Turbo C memory models, refer to Chapter 9 in the
Turbo C User's Guide.

defines

-Dxxx Defines the named identifier xxx to the string consisting of
the single space character ().

-Dxxx=string Defines the named identifier xxx to the string string after
the equal sign. string cannot contain any spaces or tabs.

-Uxxx Undefines any previous definitions of the named identifier
xxx.

Code Generation Options

-1 Causes Turbo C to generate extended 80186 instructions. This option
is also used when generating 80286 programs running in the
unprotected mode, such as with the IBM PCI AT under MS-DOS 3.0.

-a Forces integer size items to be aligned on a machine-word boundary.
Extra bytes will be inserted in a structure to insure field alignment.
Automatic and global variables will be aligned properly. char and
unsigned char variables and fields may be placed at any address; all
others must be placed at an even numbered address.

-d Merges literal strings when one string matches another; this produces
smaller programs. (Off by default.)

Command-Une Options 301

-f87 Generates floating-point operations using in-line 8087 instructions
rather than using calls to 8087 emulation library routines. Specifies
that a floating-point processor will be available at run time, so
programs compiled with this option will not run on a machine that
does not have a floating-point chip.

-f Emulates 8087 calls at run time if the run-time system does not have
an 8087; if it does have one, calls the 8087 for floating-point
calculations (the default).

-f- Specifies that the program contains no floating-point calculations, so
no floating-point libraries will be linked at the link step.

-K Causes the compiler to treat all char declarations as if they were
unsigned char type. This allows for compatibility with other
compilers that treat char declarations as unsigned. By default, char
declarations are signed.

-k Generates a standard stack frame, which is useful when using a
debugger to trace back through the stack of called subroutines.

-N Generates stack overflow logic at the entry of each function: This will
cause a stack overflow message to appear when a stack overflow is
detected. This is costly in both program size and speed but is
provided as an option because stack overflows can be very difficult to
detect. If an overflow is detected, the message "Stack overflow!" is
printed and the program exits with an exit code of 1.

-p Forces the compiler to generate all subroutine calls and all functions
using the Pascal parameter-passing sequence. The resulting function
calls are smaller and faster. Functions must pass the correct number
and type of arguments, unlike normal C usage which permits a
variable number of function arguments. You can use the cdecl

statement to override this option and specifically declare functions to
be C-type.

-u With -u selected, when you declare an identifier, Turbo C
automatically sticks an underscore C) on the front before saving that
identifier in the object module.

302

Turbo C treats pascal-type identifiers (those modified by the pascal

keyword) differently-they are uppercased and are not prefixed with
an underscore.

Underscores for C identifiers are optional, but on by default. You can
turn them off with -u-. However, if you are using the standard Turbo
C libraries, you will then encounter problems unless you rebuild the

Turbo C Reference Guide

libraries. (To do this, you will need the Turbo C Run-Time Library
Source Code; contact Borland International for more infromation.)

See Chapter 9, "Advanced Programming in Turbo CIf in the Turbo C
User's Guide for details about underscores.

Note: Unless you are an expert, don't use -U-.

-y Includes line numbers in the object file for use by a symbolic
debugger. This increases the size of the object file but will not affect
size or speed of the executable program.

This option is only useful in concert with a symbolic debugger that
can use the information.

Optimization Options

-G Causes the compiler to bias its optimization in favor of speed over
size.

-0 Optimizes by eliminating redundant jumps, and reorganizing loops
and switch statements.

-r- Suppresses the use of register variables.

When you are using the -r- option, the compiler will not use register
variables, and it also will not preserve register variables (SI,DI) from
any caller. For that reason, you should not have code that uses
register variables call code which has been compiled with -r-.

On the other hand, if you are interfacing with existing assembly­
language code that does not preserve SI,DI, the -r- option will allow
you to call that code for Turbo C.

-r Enables the use of register variables (the default).

-z Suppresses redundant load operations by remembering the contents
of registers and reusing them as often as possible.

Note: You should exercise caution when- using this option, because
the compiler cannot detect if a register has been invalidated indirectly
by a pointer.

For example, if a variable A is loaded into register DX, it is retained. If
A is later assigned a value, the value of DX is reset to indicate that its
contents are no longer current. Unfortunately, if the value of A is
modified indirectly (by assigning through a pointer that points to A),

Command-Line Options 303

304

Turbo C will not catch this and will continue to remember that DX
contains the (now obsolete) value of A.

The - z optimization is designed to suppress register loads when the
value being loaded is already in a register. This can eliminate whole
instructions and also convert instructions from referring to memory
locations to using registers instead.

The following artificial sequence illustrates both the benefits and the
drawbacks of this optimization, and demonstrates why you need to
exercise caution when using -z.

func ()
{

C Code

int A, *P, Bi

A = 4i

B = Ai

P = &Ai

*p = B + 5;

printf("%d\n", Ali

Optimized Assembler

rnov A,4

rnov ax,A
rnov B,ax
lea bx,A
rnov P,bx
rnov dx,ax
add dx,5
rnov [bx],dx
push ax

Note first that on the statement *P = B + 5, the code generated uses
a move from ax to dx first. Without the -z optimization, the move
would be from B, generating a longer and slower instruction.

Second, the assignment into *P recognizes that P is already in bx, so a
move from P to bx after the add instruction has been eliminated.
These improvements are harmless and generally useful.

The call to printf, however, is not correct. Turbo C sees that ax

contains the value of A, and so pushes the contents of the register
rather than the contents of the memory location. The printf will then
display a value of 4 rather than the correct value of 9. The indirect
assignment through P has hidden the change to A.

Turbo C Reference Guide

If the statement *P = B + 5 had been written as A = B + 5, Turbo C
would recognize a change in value.

The contents of registers are forgotten whenever a function call is
made or when a point is reached where a jump could go (such as a
label, a case statement, or the beginning or end of a loop). Because of
this limit and the small number of registers in the 8086 family of
processors, most programs using this optimization will never behave
incorrectly.

Source Options

-A Creates ANSI-compatible code: Any of the Turbo C extension
keywords are ignored and may be used as normal identifiers. These
keywords include:

near
asm
es

far
pascal

ds

huge cdecl
interrupt

cs ss

and the register pseudo-variables, such as _AX, _BX, _SI, etc.

-C Allows nesting of comments~ Comments may not normally be nested.

-i# Causes the compiler to recognize only the first # characters of
identifiers. All identifiers, whether variables, preprocessor macro
names, or structure member names, are treated as distinct only if their
first # characters are distinct.

By default, Turbo C uses 32 characters per identifier. Other systems,
including UNIX, ignore characters beyond the first 8. If you are
porting to these other environments, you may wish to compile your
code with a smaller number of significant characters. Compiling in
this manner will help you see if there are any name conflicts in long
identifiers when they are truncated to a shorter significant length.

Errors Options

-g# Stops compiling after # messages (warning and error messages
combined).

-j# Stops compiling after # error messages.

Command-Line Options 305

-wxxx

306

Enables the warning message indicated by xxx. The option
-w-xxx suppresses the warning message indicated by xxx. The
possible values for -wxxx are as follows:

(ANSI Violations)

-wdup
-wret
-wstr
-wstu
-wsus
-wvoi
-wzst

Redefinition of 'XXXXXXXX' is not identical.
Both return and return of a value used.
'XXXXXXXX' not part of structure.
Undefined structure 'XXXXXXXX'.
Suspicious pointer conversion.
Void functions may not return a value.
Zero length structure.

(Common Errors)

-waus
-wdef
-weff
-wpar
-wpia
-wrch
-wrvl

'XXXXXXXX' is assigned a value that is never used.
Possible use of 'XXXXXXXX' before definition.
Code has no effect.
Parameter ':XXXXXXXX' is never used.
Possibly incorrect assignment.
Unreachable code.
Function should return a value.

(Less Common Errors)

-wamb
-wamp
-wnod
-wpro
-wstv
-wuse

Ambiguous operators need parentheses.
Superfluous & with function or array.
No declaration for function ':XXXXXXXX'.
Call to function with no prototype.
Structure passed by value.
':XXXXXXXX' declared but never used.

(Portability Warnings)

-wapt
-wcln
-wcpt
-wdgn
-wrpt
-wsig
-wucp

Non-portable pointer assignment.
Constant is long.
Non-portable pointer comparison.
Constant out of range in comparison.
Non-portable return type conversion.
Conversion may lose significant digits.
Mixing pointers to signed and unsigned char.

Turbo C Reference Guide

Segment-Naming Control

-zAname Changes the name of the code segment class to name. By
default, the code segment is assigned to class _CODE.

-zBname Changes the name of the uninitialized data segments class to
name. By default, the uninitialized data segments are assigned
to class _BSS.

-zCname Changes the name of the code segment to name. By default,
the code segment is named _TEXT, except for the medium,
large and huge models, where the name is filename_TEXT.
(filename here is the source file name).

-zDname Changes the name of the uninitialized data segment to name.
By default, the uninitialized data segment is named _BSS,
except in the huge model where no uninitialized data
segment is generated.

-zGname Changes the name of the uninitialized data segments group to
name. By default, the data group is named DGROUP, except
in the huge model where there is no data group. This switch
is ignored in the huge model.

-zPname Causes any output files to be generated with a code group for
the code segment named name. This option should not be
used with the tiny model.

-zRname Sets the name of the initialized data segment to name. By
default, the initialized data segment is named _DATA except
in the huge model where the segment is named
filename_DATA.

-zSname Changes the name of the initialized data segments group to
name. By default, the data group is named DGROUP, except
in the huge model, where there is no data group. This switch
is ignored in the huge model.

-zTname Sets the name of the initialized data segment class to name. By
default the initialized data class segment is named _DATA.

-zX* Uses the default name for X: for example, -zA * assigns the
default class name _CODE to the code segment.

Command-Line Options 307

Compilation Control Options

-B Compiles and calls the assembler to process in-line assembly
code.

Note that this option is not available in the Integrated Environment
(TC.EXE).

-c Compiles and assembles the named .C and .ASM files, but
does not execute a link command.

-ofilename Compiles the named file to the specified filename. OBI.

-5 Compiles the named source files and produces assembly
language output files (.ASM), but does not assemble.

Note that this option is not available in the Integrated Environment
(TC.EXE).

Linker Options

-efilename Derives the executable program's name from filename by
adding .EXE (the program' name will then be
FILENAME. EXE). filename must immediately follow the -e,

with no intervening whitespace. Without this option, the
linker derives the .EXE file's name from the name of the first
source or object file in the file name list.

-M Forces the linker to produce a full link map. The default is to
produce no link map.

Environment Options

-Idirectory Searches directory, the drive specifier or path name of a sub­
directory, for include files (in addition to searching the
standard places). A drive specifier is a single letter, either
uppercase or lowercase, followed by a colon (:). A directory is
any valid path name of a directory file. Multiple -I directory
options can be given.

-Ldirectory Forces the linker to get the COx.OBJ start-up object file and the
Turbo C library files (Cx.LIB, MATHx.LIB, EMU.LIB, and

308 Turbo C Reference Guide

-nxxx

FPB7.LIB) from the named directory. By default, the linker
looks for them in the current directory.

Places any .OBI or .ASM files created by the compiler in the
directory or drive named by the path xxx.

Command-Line Options 309

310 Turbo C Reference Guide

A p p E N o x

D

Turbo C Utilities

Your Turbo C package supplies much more than just two versions of the
fastest C compiler available. It also provides three powerful stand-alone
utilities. You can use these stand-alone utilities with your Turbo C files as
well as with your other modules.

These three highly useful adjuncts to Turbo Care CPP (the Turbo C
Preprocessor), MAKE, and TLINK (the Turbo Linker).

This appendix explains what each utility is and illustrates, with code and
command-line examples, how to use them. The Turbo C stand-alone
utilities are discussed in the following order:

CPP
MAKE
TLINK

CPP: The Turbo C Preprocessor Utility

The CPP utility is a utility that augments the Turbo C compiler. CPP is not
needed for normal compilations of C programs at all; its purpose is to
produce a listing file of a C source program in which include files and
define macros have been expanded.

Often, when the compiler reports an error inside a macro or an include file,
you can get more information about what the error is if you can see the
results of the macro expansions or the include files. In many multi-pass

Turbo C Utilities 311

compilers a separate pass is responsible for performing that work and the
results of that pass can be examined.

Since Turbo C uses an integrated single-pass compiler, CPP supplies the
first-pass functionality found in other compilers. In addition, you can use
CPP as a macro preprocessor.

You use CPP like you would use TCC, the stand-alone compiler. CPP reads
the same TURBOC.CFG file for default options, and accepts the same
command-line options as TCC.

The TCC options that don't pertain to CPP are simply ignored by CPP. To
see the list of arguments handled by CPP, type

cpp

at the DOS prompt.

With one exception, the file names listed on the CPP command line are
treated like they are in TCC, with wildcards allowed. The exception to this
is that all files are treated as C source files. There is no special treatment for
.OBJ, .LIB, or .ASM files.

For each file processed by CPP, the output is written to a file in the current
directory (or the output directory named by the -n option) with the same
name as the source name but with an extension of .i.

This output file is a text file containing each line of the source file and any
include files. Any preprocessing directive lines have been removed, along
with any conditional text lines excluded from the compile. Text lines are
prefixed with the file name and line number of the source or include file the
line came from. Within a text line, any macros are replaced with their
expansion text.

Subsequently, the resulting output of CPP cannot be compiled because of
the file name and line number prefix attached to each source line.

CPP as a Macro Preprocessor

The -P option to CPP tells it to prefix each line with the source file name
and line number. If -P- is given, however, CPP omits this line number
information. With this option turned off, CPP can be used as a macro
preprocessor; the resultant .I file can then be compiled with TC or TCC.

312 Turbo C Reference Guide

An Example

The following simple program illustrates how CPP preprocesses a file, first
with -P selected, then with -P-.

Source file: HELLOJOE.C

1* This is an example of the output of cpp *1
#define NAME "Joe Smith"
#define BEGIN {
#define END }

main ()
BEGIN

printf("%s\n", NAME};
END

Command Line Used to Invoke CPP as a Preprocessor:

cpp hellojoe. c

Output:

hellojoe.c 2:
hellojoe.c 3:
hellojoe.c 4:
hellojoe.c 6: main()
hellojoe. c 7: {
hellojoe.c 8: printf("%s\n","Joe Smith");
hello joe . c 9: }

Command Line Used to Invoke CPP as a Macro Preprocessor:

cpp -P- hellojoe.c

Output:
main()
{

printf("%s\n","Joe Smith");

Turbo C Utilities 313

The Stand-Alone MAKE Utility

Turbo C places a great deal of power and flexibility at your fingertips. You
can use it to manage large, complex programs that are built from numerous
header, source, and object files. Unfortunately, that same freedom requires
that you remember which files are required to produce other files. Why?
Because if you make a change in one file, you must then do all the
necessary recompilation and linking. One solution, of course, is simply to
recompile everything each time you make a change-but as your program
grows in size, that becomes more and more time consuming. So what do
you do?

The answer is simple: you use MAKE. Turbo C's MAKE is an intelligent
program manager that-given the proper instructions-does all the work
necessary to keep your program up-to-date. In fact, MAKE can do far more
than that. It can make backups, pull files out of different subdirectories, and
even automatically run your programs should the data files that they use
be modified. As you use MAKE more and more, you'll see new and
different ways it can help you to manage your program development.

MAKE is a stand-alone utility; it is different from Project-Make, which is
part of the Integrated Environment.

In this section we describe how to use stand-alone MAKE with TCC and
TLINK.

A Quick Example

Let's start off with an example to illustrate MAKE's usefulness. Suppose
you're writing some programs to help you display information about
nearby star systems. You have one program-GETSTAR5---that reads in a
text file listing star systems, does some processing on it, then produces a
binary data file with the resulting information in it.

GETSTARS uses certain definitions, stored in STARDEFS.H, and certain
routines, stored in STARLIB.C (and declared in STARLIB.H). In addition,
the program GETST ARS itself is broken up into three files:

• GSPARSE.C
• GSCOMP.C

314 Turbo C Reference Guide

II GETSTARS.C

The first two files, GSP ARSE and GSCOMP, have corresponding header
files (GSPARSE.H and GSCOMP.H). The third file, GETSTARS.C has the
main body of the program. Of the three files, only GSCOMP.C and
GETSTARS.C make use of the STARLIB routines.

Here are the custom header files (other than the Turbo C headers that
declare standard run-time library routines) needed by each .C file:

.C File

STARLIB.C
GSPARSE.C
GSCOMP.C
GETSTARS.C

Custom Header File(s)

none
STARDEFS.H
STARDEFS.H,STARLIB.H
STARDEFS.H,STARLIB.H,GSPARSE.H,GSCOMP.H

To produce GETSTARS.EXE (assuming a medium data model), you would
enter the following command lines:

tee -e -mm -f starlib
tee -e -mm -f gsparse
tee -e -mm -f gseornp
tee -e -mm -f getstars
tlink lib\eOrn starlib gsparse gseornp getstars,

getstars, getstars, lib\ernu lib\rnathrn lib\ern

Note: DOS requires that the TLINK command line all fit on one line: we
show it here as two lines simply because the page isn't wide enough to fit it
all in one line.

Looking at the preceding information, you can see some file dependencies.

II GSPARSE, GSCOMP, and GETSTARS all depend on STARDEFS.H; in
other words, if you make any changes to STARDEFS.H, then you'll have
to recompile all three.

• Likewise, any changes to STARLIB.H will require GSCOMP and
GETST ARS to be recompiled.

• Changes to GSP ARSE.H means GETSTARS will have to be recompiled;
the same is true of GSCOMP.H.

• Of course, any changes to any source code file (STARLIB.C,
GSP ARSE.C, etc.) means that file must be recompiled.

• Finally, if any recompiling is done, then the link has to be done again.

Quite a bit to keep track of, isn't it? What happens if you make a change to
STARLIB.H, recompile GETSTARS.C, but forget to recompile GSCOMP.C?

Turbo C Utilities 315

You could make a .BAT file to do the four compilations and the one linkage
given above, but you'd have to do them every time you made a change.
Let's see how MAKE can simplify things for you.

Creating a Makefile

A makefile is just a combination of the two lists just given: dependencies
and the commands needed to satisfy them.

For example, let's take the lists given, combine them, massage them a little,
and produce the following:

getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
tlink lib\eOm starlib gsparse gseomp getstars, getstars, \

getstars, lib\emu lib\mathm lib\em

getstars.obj: getstars.c stardefs.h starlib.h gseomp.h gsparse.h
tce -c -mm -f getstars.e

gscomp.obj: gscomp.e stardefs.h starlib.h
tee -e -mm -f gseomp.e

gsparse.obj: gsparse.c stardefs.h
tee -e -mm -f gsparse.c

starlib.obj: starlib.c
tee -e -mm -f starlib.c

This just restates what was said before, but with the order reversed
somewhat. Here's how MAKE interprets this file:

• The file GETSTARS.EXE depends on four files: GETSTARS.OBJ,
GSCOMP.OBJ, GSPARSE.OBJ, and STARLIB.OBJ. If any of those four
change, then GETSTARS.EXE must be recompiled. How? By using the
TLINK command given.

• The file GETSTARS.OBJ depends on five files: GETSTARS.C,
STARDEFS.H, STARLIB.H, GSCOMP.H, and GSPARSE.H. If any of
those files change, then GETST ARS.OBJ must be recompiled by using
the TCC command given.

• The file GSCOMP.OBJ depends on three files-GSCOMP.C,
ST ARDEFS.H, and STARLIB.H-and if any of those three change,
GSCOMP.OBJ must be recompiled using the TCC command given.

• The file GSP ARSE.OBJ depends on two files-GSP ARSE.OBJ and
STARDEFS.H-and, again, must be recompiled using the TCC
command given if either of those files change.

316 Turbo C Reference Guide

II The file STARLIB.OBJ depends on only one file-STARLIB.C-and must
be recompiled via TCe if STARLIB.C changes.

What do you do with this? Type it into a file, which (for now) we'll call
MAKEFILE. You're then ready to use MAKE.EXE.

Using a Makefile

Assuming you've created MAKE FILE as described above-and, of course,
assuming that the various source code and header files exist-then all you
have to do is type the command:

make

Simple, wasn't it? MAKE looks for MAKE FILE (you can call it something
else; we'll talk about that later) and reads in the first line, describing the
dependencies of GETST ARS.EXE. It checks to see if GETSTARS.EXE exists
and is up-to-date.

This requires that it check the same thing about each of the files upon
which GETSTARS.EXE depends: GETSTARS.OBJ, GSCOMP.OBJ,
GSPARSE.OBJ, and STARLIB.OBJ. Each of those files depends, in turn, on
other files, which must also be checked. The various calls to TCC are made
as needed to update the .OBJ files, ending with the execution of the TLINK
command (if necessary) to create an up-to-date version of GETSTARS.EXE.

What if GETST ARS.EXE and all the .OBJ files already exist? In that case,
MAKE compares the time and date of the last modification of each .OBJ file
with the time and date of its dependencies. If any of the dependency files
are more recent than the .OBJ file, MAKE knows that changes have been
made since the last time the .OBJ file was created and executes the TCC
command.

If MAKE does update any of the .OBJ files, then when it compares the time
and date of GETST ARS.EXE with them, it sees that it must execute the
TLINK command to make an updated version of GETSTARS.EXE.

Stepping Through

Here's a step-by-step example to help clarify the previous description.
Suppose that GETST ARS.EXE and all the .OBJ files exist, and that
GETST ARS.EXE is more recent than any of the .OBJ files, and, likewise,
each .OBJ file is more recent than any of its dependencies.

Turbo C Utilities 317

If you then enter the command

make

nothing happens, since there is no need to update anything.

Now, suppose that you modify STARLIB.C and STARLIB.H, changing, say,
the value of some constant. When you enter the command

make

MAKE sees that STARLIB.C is more recent than STARLIB.OBJ, so it issues
the command

tee -e -mm -f starlib.e

It then sees that STARLIB.H is more recent than GSCOMP.OBJ, so it issues
the command

tee -e -mm -f gseomp.e

STARLIB.H is also more recent than GETSTARS.OBJ, so the next command
is

tee -e -mm -f getstars.e

Finally, because of these three commands, the files STARLIB.OBJ,
GSCOMP.OBJ, and GETSTARS.OBJ are all more recent than
GETST ARS.EXE, so the final command issued by MAKE is

tlink lib\eOm starlib gsparse gseomp getstars, getstars,
getstars, lib\emu lib\mathm lib\em

which links everything together and creates a new version of
GETSTARS.EXE. (Note that this TLINK command line must actually be one
line.)

You have a good idea of the basics of MAKE: what it's for, how to create a
makefile, and how MAKE interprets that file. Let's now look at MAKE in
more detail.

318 Turbo C Reference Guide

Creating Makefiles

A makefile contains the definitions and relationships needed to help MAKE
keep your program(s) up-to-date. You can create as many make files as you
want and name them whatever you want; MAKE FILE is just the default
name that MAKE looks for if you don't specify a makefile when you run
MAKE.

You create a makefile with any ASCII text editor, such as Turbo C's built-in
interactive editor. All rules, definitions, and directives end with a newline;
if a line is too long (such as the TLINK command in the previous example),
you can continue it to the next line by placing a backslash (\) as the last
character on the line.

Whitespace-blanks and tabs-is used to separate adjacent identifiers (such
as dependencies) and to indent commands within a rule.

Components of a Makefile

Creating a makefile is almost like writing a program, with definitions,
commands, and directives. Here's a list of the constructs allowed in a
makefile:

13 comments
II explicit rules
II implicit rules
t1 macro definitions
IJ directives: file inclusion, conditional execution, error detection, macro

undefinition

Let's look at each of these in more detail.
Comments Comments begin with a sharp (#) character; the rest of the
line following the # is ignored by MAKE. Comments can be placed
anywhere and never have to start in a particular column.

A backslash (\) will not continue a comment onto the next line; instead,
you must use a # on each line. In fact, you cannot use a backslash as a
continuation character in a line that has a comment. If it precedes the #, it is
no longer the last character on the line; if it follows the #, then it is part of
the comment itself.

Turbo C Utilities 319

Here are some examples of comments in a makefile:

makefile for GETSTARS.EXE
does complete project maintenance
getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
can't put a comment at the end of the next line

tlink lib\cOm starlib gsparse gscomp getstars, getstars,\
getstars, lib\emu lib\mathm lib\cm

legal comment
can't put a comment between the next two lines
getstars.obj: getstars.c stardefs.h starlib.h gscomp.h gsparse.h

tcc -c -mm -f getstars.c # you can put a comment here

Explicit Rules

You are already familiar with explicit rule~, since those are what you used
in the makefile example given earlier. Explicit rules take the form

target [target ...]: [source source ...]
[command]
[command]

where target is the file to be updated, source is a file upon which target
depends, and command is any valid MS-DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more source files,
and an optional list of commands to be performed. Target and source file
names listed in explicit rules can contain normal MS-DOS drive and
directory specifications, but they cannot contain wildcards.

Syntax here is important. target must be at the start of a line (in column 1),
whereas each command must be indented, (must be preceded by at least one
blank or tab). As mentioned before, the backslash (\) can be used as a
continuation character if the list of source files or a given command is too
long for one line. Finally, both the source files and the commands are
optional; it is possible to have an explicit rule consisting only of target
[target ... J followed by a colon.

The idea behind an explicit rule is that the command or commands listed
will create or update target, usually using the source files. When MAKE
encounters an explicit rule, it first checks to see if any of the source files are
themselves target files elsewhere in the makefile. If so, then those rules are
evaluated first.

Once all the source files have been created or updated based on other
explicit (or implicit) rules, MAKE checks to see if target exists. If not, each

320 Turbo C Reference Guide

command is invoked in the order given. If target does exist, its time and date
of last modification are compared against the time and date for each source.
If any source has been modified more recently than target, the list of
commands is executed.

A given file name can occur on the left side of an explicit rule only once in a
given execution of MAKE.

Each command line in an explicit rule begins with whitespace. MAKE
considers all lines following an explicit rule to be part of the command list
for that rule, up to the next line that begins in column 1 (without any
preceding whitespace) or to the end of the file. Blank lines are ignored.

Special Considerations

An explicit rule with no command lines following it is treated a little
differently than an explicit rule with command lines.

1:1 If an explicit rule exists for a target with commands, the only files that
the target depends on are the ones listed in the explicit rule.

1:1 If an explicit rule has no commands, the targets depend on the files
given in the explicit rule, and they also depend on any file that matches
an implicit rule for the target(s).

See the following section for a discussion of implicit rules.

Examples

Here are some examples of explicit rules:

myprog.obj: myprog.e
tee -e myprog.e

prog2.obj : prog2.e inelude\stdio.h
tee -e -K prog2.e

prog.exe: myprog.e prog2.e inelude\stdio.h
tee -e myprog.e
tee -e -K prog2.e
tlink lib\eOs myprog prog2, prog, , lib\es

1:1 The first explicit rule states that MYPROG.OBJ depends upon
MYPROG.C, and that MYPROG.OBJ is created by executing the given
TCC command.

r::I Similarly, the second rule states that PROG2.0BJ depends upon
PROG2.C and STDIO.H (in the INCLUDE subdirectory) and is created
by the given TCC command.

Turbo C Utilities 321

• The last rule states that PROG.EXE depends on MYPROG.C, PROG2.C,
and STOIO.H, and that should any of the three change, PROG.EXE can
be rebuilt by the series of commands given. However, this may create
unnecessary work, because, even if only MYPROG.C changes, PROG2.C
will still be recompiled. This occurs because all of the commands under
a rule will be executed as soon as that rule's target is out of date.

• If you place the explicit rule

prog.exe: myprog.obj prog2.obj
tlink lib\eOs myprog prog2, prog, , lib\es

as the first rule in a makefile and follow it with the rules given (for
MYPROG.OBJ and PROG2.0BJ), only those files that need to be
recompiled will be.

Implicit Rules

MAKE allows you to define implicit rules as well. Implicit rules are
generalizations of explicit rules. What do we mean by that?

Here's an example that illustrates the relationship between the two types of
rules: consider this explicit rule from the previous sample program:

starlib.obj: starlib.e
tee -e -mm -f starlib.e

This rule is a common one, because it follows a general principle: an .OBJ
file is dependent on the .C file with the same file name and is created by
executing TCC. In fact, you might have a makefile where you have several
(or even several dozen) explicit rules following this same format.

By redefining the explicit rule as an implicit rule, you can eliminate all the
explicit rules of the same form. As an implicit rule, it would look like this:

.e.obj:
tee -e -mm -f $<

This rule means, "any file ending with .OBJ depends on the file with the
same name that ends in .C, and the .OBJ file is created using the command

tee -e -mm -f $<

where $<

represents the file's name with the source (.C) extension." (The symbol $< is
a special macro and is discussed in the next section.)

322 Turbo C Reference Guide

The syntax for an implicit rule is:

.source extension. target extension:
{command} -
{command}

where, as before, the commands are optional and must be indented.

The source_extension (which must begin in column 1) is the extension of the
source file; that is, it applies to any file having the format

[name. source extension

Likewise, the target_extension refers to the the file

[name. target_extension

where fname is the same for both files. In other words, this implicit rule
replaces all explicit rules having the format:

[name. target extension: [name.source extension
(command)
{command}

for any fname.

Implicit rules are used if no explicit rule for a given target can be found, or
if an explicit rule with no commands exists for the target.

The extension of the file name in question is used to determine which
implicit rule to use. The implicit rule is applied if a file is found with the
same name as the target, but with the mentioned source extension.

For example, suppose you had a makefile (named MAKEFILE) whose
contents were

.c.obj:
tce -c -ms -f $<

If you had a C program named RATIO.C that you wanted to compile to
RATIO.OB1, you could use the command

make ratio.obj

Turbo C Utilities 323

MAKE would take RATIO.OBJ to be the target. Since there is no explicit
rule for creating RA TIO.OBJ, MAKE applies the implicit rule and generates
the command

tee -e -ms -f ratio.e

which, of course, does the compile step necessary to create RATIO.OBJ.

Implicit rules are also used if an explicit rule is given with no commands.
Suppose, as mentioned before, you had the following implicit rule at the
start of your makefile:

.e.obj:
tee -e -mm -f $<

You could then rewrite the last several explicit rules as follows:

getstars.obj: stardefs.h starlib.h gseomp.h gsparse.h
gseomp.obj: stardefs.h starlib.h
gsparse.obj: stardefs.h

Since you don't have explicit information on how to create these .OBJ files,
MAKE applies the implicit rule defined earlier. And since STARLIB.OBJ
depends only on ST ARLIB.C, that rule was dropped altogether from this
list; MAKE automatically applies it.

Several implicit rules can be written with the same target extension, but
only one such rule can apply at a time. If more than one implicit rule exists
for a given target extension, each rule is checked in the order the rules
appear in the makefile, until all applicable rules are checked.

MAKE uses the first implicit rule that discovers a file with the source
extension. Even if the commands of that rule fail, no more implicit rules are
checked.

All lines following an implicit rule are considered to be part of the
command list for the rule, up to the next line that begins without
whitespace or to the end of the file. Blank lines are ignored. The syntax for
a command line is provided later in this chapter.

Special Considerations

Unlike explicit rules, MAKE does not know the full file name with an
implicit rule. For that reason, special macros are provided with MAKE that
allow you to include the name of the file being built by the rule. (See the
discussion of macro definitions in this section for details.)

324 Turbo C Reference Guide

Examples

Here are some examples of implicit rules:

.c.obj:
tcc -c $<

.asrn.obj:
rnasrn $* /rnx;

In the first implicit rule example, the target files are .OBI files and their
source files are .C files. This example has one command line in the
command list; command line syntax is covered later in this section.

The second example directs MAKE to assemble a given file from its .ASM
source file, using MASM with the /rnx option.

Command Lists

We've talked about both explicit and implicit rules, and how they can have
lists of commands. Let's talk about those commands and your options in
setting them up.

Commands in a command list must be indented-that is, preceded by at
least one blank or tab-and take the form

[prefix ... 1 command_body

Each command line in a command list consists of an (optional) list of
prefixes, followed by a single command body.

Prefix

The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at (@) symbol or a hyphen (-)
followed immediately by a number.

@ Forces MAKE to not display the command before executing it.
The display is hidden even if the -s option was not given on the
MAKE command line. This prefix applies only to the command
on which it appears.

Turbo C Utilities 325

-num Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE will abort processing only if the exit
status exceeds the number given. In this example, MAKE will
abort only if the exit status exceeds 4:

-4 myprog sample.x

If no -num prefix is given, MAKE checks the exit status for the
command. If the status is non-zero, MAKE will stop and delete
the current target file.

With a dash, but no number, MAKE will not check the exit
status at all. Regardless of what the exit status was, MAKE will
continue.

Command body

The command body is treated exactly as it would be if it were entered as a
line to COMMAND. COM, with the exception that redirection and pipes are
not supported.

MAKE executes the following built-in commands by invoking a copy of
COMMAND.COM to perform them:

break cd chdir c1s copy
ctty date del dir erase
md mkdir path prompt ren
rename set time type ver
verify vol

MAKE searches for any other command name using the MS-DOS search
algorithm:

• The current directory is searched first, followed by each directory in the
path.

II In each directory, first a file with the extension .COM is checked, then a
.EXE, and finally a .BAT .

• If a .BAT file is found, a copy of COMMAND.COM is invoked to
execute the batch file.

Obviously, if an extension is supplied in the command line, MAKE
searches only for that extension.

326 Turbo C Reference Guide

Examples

This command will cause COMMAND. COM to execute the command:

cd c:\include

This command will be searched for using the full search algorithm:

tlink lib\cOs x y,z,z,lib\cs

This command will be searched for using only the .COM extension:

myprog.com geo.xyz

This command will be executed using the explicit file name provided:

c:\myprogs\fil.exe -r

Macros

Often certain commands, file names, or options are used again and again in
your makefile. In the example at the start of this appendix, all of the TCC
commands used the switch -mm, which means to compile to the medium
memory model; likewise, the TLINK command used the files COM.OBJ,
MATHM.LIB, and CM.LIB. Suppose you wanted to switch to the large
memory model; what would you do? You could go through and change all
the -rrun options to -ml, and rename the appropriate files in the TLINK
command. Or, you could define a macro.

A macro is a name that represents some string of characters. A macro
definition gives a macro name and the expansion text; thereafter, when
MAKE encounters the macro name, it replaces the name with the
expansion text.

Turbo C Utilities 327

Suppose you defined the following macro at the start of your makefile:

MDL=m

You've defined the macro MOL, which is equivalent to the string rn. You
could now rewrite the makefile as follows:

MDL=m

getstars.exe: getstars.obj gseomp.obj gsparse.obj starlib.obj
tlink lib\eO$(MDL) starlib gsparse gseomp getstars, \

getstars, getstars, lib\emu lib\math$(MDL) lib\e$(MDL)

getstars.obj: getstars.e stardefs.h starlib.h gseomp.h gsparse.h
tee -e -m$(MDL) getstars.e

gseomp.obj: gseomp.e stardefs.h starlib.h
tee -e -m$(MDL) gseomp.e

gsparse.obj: gsparse.e stardefs.h
tee -e -m$(MDL) gsparse.e

starlib.obj: starlib.e
tee -e -m$(MDL) starlib.e

Everywhere a model is specified, you use the macro invocation $ (MOL) •

When you run MAKE, $ (MOL) is replaced with its expansion text, rn. The
result is the same set of commands you had before.

So, what have you gained? Flexibility. By changing the first line to

MDL=l

you've changed all the commands to use the large memory model. In fact,
if you leave out the first line altogether, you can specify which memory
model you want each time you run MAKE, using the -0 (Define)

option:

make -DMDL=l

This tells MAKE to treat MOL as a macro with the expansion text 1.

Defining Macros

Macro definitions take the form

macro_name=expansion text

328 Turbo C Reference Guide

where macro _name is the name of the macro: a string of letters and digits
with no whitespace in it, though you can have whitespace between
macro_name and the equals sign (=). The expansion text is any arbitrary string
containing letters, digits, whitespace, and punctuation; it is ended by
newline.

If macro _name has previously been defined, either by a macro definition in
the makefile or by the -D option on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macros names mdl, Mdl, and MDL

are all considered different.

Using Macros

Macros are invoked in your makefile with the format

$ (macro_name)

The parentheses are required for all invocations, even if the macro name is
just one character long, with the exception of three special predefined
macros that we'll talk about in just a minute. This
construct-$ (macro_name) -is known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the invocation
with the macro's expansion text. If the macro is not defined, MAKE
replaces it with the null string.

Special Considerations

Macros in macros: Macro cannot be invoked on the left (macro_name) side
of a macro definition. They can be used on the right (expansion text) side,
but they are not expanded until the macro being defined is invoked. In
other words, when a macro invocation is expanded, any macros embedded
in its expansion text are also expanded.

Macros in rules: Macro invocations are expanded immediately in rule
lines. .

Macros in directives: Macro invocations are expanded immediately in ! if

and ! elif directives. If the macro being invoked in an ! if or ! elif

directive is not currently defined, it is expanded to the value 0 (FALSE).

Macros in commands: Macro invocations in commands are expanded
when the command is executed.

Turbo C Utilities 329

Predefined Macros

MAKE comes with several special macros built in: $ d, $ *, $ <, $:, $., and
$ &. The first is a defined test macro, used in the conditional directives ! if

and ! elif; the others are file name macros, used in explicit and implicit
rules. In addition, the current SET environment strings are automatically
loaded as macros, and the macro _MAKE_ is defined to be 1 (one).

Defined Test Macro ($d) The defined test macro $d expands to 1 if the
given macro name is defined, or to 0 if it is not. The content of the macro's
expansion text does not matter. This special macro is allowed only in ! if

and ! eli f directives.

For example, suppose you wanted to modify your makefile so that it would
use the medium memory model if you didn't specify one, you could put
this at the start of your makefile:

! if ! $d (MOL)
MOL=m
!endif

if MOL is not defined
define it to m (MEDIUM)

If you invoke MAKE with the command line

make -OMDL=l

then MDL is defined as 1. If, however, you just invoke MAKE by itself:

make

then MDL is defined as m, your "default" memory model.

Various File Name Macros

The various file name macros work in similar ways, expanding to some
variation of the full path name of the file being built:

Base File name Macro ($*)

The base file name macro is allowed in the commands for an explicit or an
implicit rule. This macro ($ *) expands to the file name being built,
excluding any extension, like this:

330

File name is A: \P\ TESTFILE.C
$* expands to A: \P\ TESTFILE

Turbo C Reference Guide

For example, you could modify the explicit GETSTARS.EXE rule already
given to look like this:

getstars.exe: getstars.obj gseomp.obj gsparse.obj starlib.obj
tlink lib\eO$(MDL) starlib gsparse gseomp $*, $*, $*, \

lib\emu lib\math$(MDL) lib\e$(MDL)

When the command in this rule is executed, the macro $ * is replaced by the
target file name (sans extension), getstars. For implicit rules, this macro is
very useful.

For example, an implicit rule for Tee might look like this (assuming that
the macro MDL has been or will be defined, and that you are not using
floating point routines):

.e.obj:
tee -e $*

Full File name Macro ($<)

The full file name macro ($<) is also used in the commands for an explicit
or implicit rule. In an explicit rule, $< expands to the full target file name
(including extension), like this:

File name is A: \P\ TESTFILE.e
$< expands to A: \P\ TESTFILE.e

For example, the rule

starlib.obj: starlib.e
copy $< \oldobjs
tee -e $*

will copy STARLIB.OBJ to the directory \OLDOBJS before compiling
STARLIB.C.

In an implicit rule, $< takes on the file name plus the source extension. For
example, the previous implicit rule

.obj.e:
tee -e $*.e

can be rewritten as

.obj.e:
tee -e $<

Turbo C Utilities 331

File Name Path Macro ($:)

This macro expands to the path name (without the file name),like this:

File name is A: \P\ TESTFILE.C
$: expands to A: \P\

File Name and Extension Macro ($.)

This macro expands to the file name, with extension, like this:

File name is A: \P\ TESTFILE.C
$. expands to TESTFILE.C

File Name Only Macro ($&)

This macro expands to the file name only, without path or extension, like
this:

File name is A: \P\ TESTFILE.C
$& expands to TESTFILE

Directives

Turbo C's MAKE allows something that other versions of MAKE don't:
directives similiar to those allowed for C itself. You can use these directives
to include other makefiles, to make the rules and commands conditional, to
print out error messages, and to "undefine" macros.

Directives in a makefile begin with an exclamation point (!) as the first
character of the line, unlike C, which uses the sharp character (#). Here is
the complete list of MAKE directives:

!include
!if
!else
!elif
!endif
!error
!undef

File-Inclusion Directive

A file-inclusion directive (! incl ude) specifies a file to be included into the
makefile for interpretation at the point of the directive. It takes the
following form:

!include " filename"

332 Turbo C Reference Guide

These directives can be nested arbitrarily deep. If an include directive
attempts to include a file that has already been included in some outer level
of nesting (so that a nesting loop is about to start), the inner include
directive is rejected as an error.

How do you use this directive? Suppose you created the file MODEL.MAC
which contained the following:

! if ! $d (MDL)
MDL=m
!endif

You could then make use of this conditional macro definition in any
makefile by including the directive

!include "MODEL.MAC"

When MAKE encounters the! include directive, it opens the specified file
and reads the contents as if they were in the makefile itself.

Conditional Directives

Conditional directives (! if, ! elif, ! else, and! endif) give a programmer
a measure of flexibility in constructing makefiles. Rules and macros can be
conditionalized so that a command-line macro definition (using the -D

option) can enable or disable sections of the makefile.

The format of these directives parallels that of the C preprocessor:

!if expression
[lines 1

!endif

!if expression
[lines 1

!else
[lines

!endif

!if expression
[lines 1

!elif expression
[lines 1

!endif

Turbo C Utilities 333

Note: [lines] can be any of the following:

macro definition
explicit rule
implicit-rule
include directive
if group
error directive
undeCdirective

The conditional directives form a group, with at least an ! if directive
beginning the group and an ! endi f directive closing the group.

• One! else directive can appear in the group.

• ! elif directives can appear between the! if and any! else directives.

• Rules, macros, and other directives can appear between the various
conditional directives in any number. Note that complete rules, with
their commands, cannot be split across conditional directives.

• Conditional directive groups can be nested arbitrarily deep.

Any rules, commands, or directives must be complete within a single
source file.

Any! if directives must have matching! endif directives within the same
source file. Thus the following include file is illegal, regardless of what is
contained in any file that might include it, because it does not have a
matching ! endi f directive:

!if $(FILE COUNT) > 5
some rules

!else
other rules

<end-of-file>

Expressions Allowed in Conditional Directives

The expression allowed in an ! if or an ! elif directive uses a C-like
syntax. The expression is evaluated as a simple 32-bit signed integer
expression.

Numbers can be entered as decimal, octal, or hexadecimal constants. For
example, these are legal constants in an expression:

4536 # decimal constant
0677 # octal constant
Ox23aF # hexadecimal constant

334 Turbo C Reference Guide

An expression can use any of the following unary operators:

negation
bit complement
logical not

An expression can use any of the following binary operators:

+ addition
subtraction

* multiplication
/ division
% remainder
» right shift
« left shift
& bitwise and
I bitwise or

A bitwise exclusive or
&& logical and
II logical or
> greater than
< less than
>= greater than or equal
<= less than or equal
-- equality
!= inequality

An expression can contain the following ternary operator:

? : The operand before the? is treated as a test.

If the value of that operand is non-zero, then the second operand
(the part between the? and :) is the result. If the value of the first
operand is zero, the value of the result is the value of the third
operand (the part after the :).

Parentheses can be used to group operands in an expression. In the absence
of parentheses, binary operators are grouped according to the same
precedence given in the C language.

As in C, for operators of equal precedence, grouping is from left to right,
except for the ternary operator (? :), which is right to left.

Macros can be invoked within an expression, and the special macro $d () is
recognized. After all macros have been expanded, the expression must

Turbo C Utilities 335

have proper syntax. Any words in the expanded expression are treated as
errors.

Error Directive

The error directive (! error) causes MAKE to stop and print a fatal
diagnostic containing the text after! error. It takes the format

!error any_text

This directive is designed to be included in conditional directives to allow a
user-defined abortion condition. For example, you could insert the
following code in front of the first explicit rule:

! if ! $d (MOL)
if MOL is not defined
!error MOL not defined
!endif

If you reach this spot without having defined MDL, then MAKE will stop
with this error message:

Fatal makefile 5: Error directive: MOL not defined

Undef Directive

The undefine directive (! undef) causes any definition for the named macro
to be forgotten. If the macro is currently undefined, this directive has no
effect. The syntax is:

!undef macro name

Using MAKE

You now know a lot about how to write makefiles; now's the time to learn
how to use them with MAKE.

Command Line Syntax

The simplest way to use MAKE is to type the command

make

336 Turbo C Reference Guide

at the MS-DOS prompt. MAKE then looks for MAKE FILE; if it can't find it,
it looks for MAKEFILE.MAK; if it can't find that, it halts with an error
message.

What if you want to use a file with a name other than MAKE FILE or
MAKEFILE.MAK? You give MAKE the file (-f) option, like this:

make -fstars.mak

The general syntax for MAKE is

make option option ... target target

where option is a MAKE option (discussed later) and target is the name of a
target file to be handled by explicit rules.

Here are the syntax rules:

Il The word make is followed by a space, then a list of make options.

Il Each make option must be separated from its adjacent options by a
space. Options can be placed in any order, and any number of these
options can be entered (as long as there is room in the command line).

Il After the list of make options comes a space, then an optional list of
targets.

Il Each target must also be separated from its adjacent targets by a space.
MAKE evaluates the target files in the order listed, recompiling their
constituents as necessary.

If the command line does not include any target names, MAKE uses the
first target file mentioned in an explicit rule. If one or more targets are
mentioned on the command line, they will be built as necessary.

Here are some more examples of MAKE command lines:

make -n -fstars.mak
make -s
make -linclude -DMDL=c

A Note About Stopping MAKE

MAKE will stop if any command it has executed is aborted via a control­
break. Thus, a Ctr/-C will stop the currently executing command and MAKE
as well.

Turbo C Utilities 337

The BUlL TINS.MAK File

When using MAKE, you will often find that there are macros and rules
(usually implicit ones) that you use again and again. You've got three ways
of handling them. First, you can put them in each and every makefile you
create. Second, you can put them all in one file and use the ! include

directive in each makefile you create. Third, you can put them all in a file
named BUILTINS.MAK.

Each time you run MAKE, it looks for a file named BUlL TINS.MAK; if it
finds the file, MAKE reads in it before handling MAKE FILE (or whichever
makefile you want it to process).

The BUILTINS.MAK file is intended for any rules (usually implicit rules) or
macros that will be commonly used in files anywhere on your computer.

There is no requirement that any BUILTINS.MAK file exist. If MAKE finds
a BUILTINS.MAK file, it interprets that file first. If MAKE cannot find a
BUILTINS.MAK file, it proceeds directly to interpreting MAKEFILE (or
whatever makefile you specify).

How MAKE Searches for Makefiles

MAKE will search for BUILTINS.MAK in the current directory or any
directory in the path. You should place this file in the same directory as the
MAKE.EXE file.

MAKE always searches for the makefile in the current directory only. This
file contains the rules for the particular executable program file being built.
The two files have identical syntax rules.

MAKE also searches for any! include files in the current directory. If you
use the - I (Include) option, it will also search in the specified directory.

The TOUCH Utility

There are times when you want to force a particular target file to be
recompiled or rebuilt, even though no changes have been made to its
sources. One way to do this is to use the TOUCH utility included with
Turbo C. TOUCH changes the date and time of one or more files to the
current date and time, making it "newer" than the files that depend on it.

To force a target file to be rebuilt, touch one of the files that target depends
on. To touch a file (or files), enter

338 Turbo C Reference Guide

touch filename [filename ... 1

at the DOS prompt. TOUCH will then update the file's creation date(s).

Once you do this, you can invoke MAKE to rebuild the touched target
file(s). (You can use the DOS wildcards * and? with TOUCH.)

MAKE Command Line Options

We've alluded to several of MAKE's command line options; now we'll
present a complete list of them. Note that case (upper or lower) is
significant; the option -d is not a valid substitution for -D.

-Didentifier Defines the named identifier to the string consisting of
the single character 1.

-Diden=string Defines the named identifier iden to the string after the
equal sign. The string cannot contain any spaces or tabs.

-Idirectory MAKE will search for include files in the indicated
directory (as well as in the current directory).

-Uidentifier Undefines any previous definitions of the named
identifier.

-s Normally, MAKE prints each command as it is about to
be executed. With the -8 option, no commands are
printed before execution.

-n Causes MAKE to print the commands, but not actually
perform them. This is useful for debugging a makefile.

-ffilename Uses filename as the MAKE file. If filename does not
exist, and no extension is given, tries filename.mak.

-? or-h Print help message.

MAKE Error Messages

MAKE diagnostic messages fall into two classes: fatals and errors. When a
fatal error occurs, compilation immediately stops. You must take
appropriate action and then restart the compilation. Errors will indicate
some sort of syntax or semantic error in the source makefile. MAKE will
complete interpreting the makefile and then stop.

Turbo C Utilities 339

Fatals

Don't know how to make XXXXXXXX
This message is issued when MAKE encounters a nonexistent file name
in the build sequence, and no rule exists that would allow the file name
to be built.

Error directive: XXXX
This message is issued when MAKE processes an #error directive in the
source file. The text of the directive is displayed in the message.

Incorrect command line argument: XXX
This error occurs if MAKE is executed with incorrect command-line
arguments.

Not enough memory
This error occurs when the total working storage has been exhausted.
You should try this on a machine with more memory. If you already
have 640K in your machine, you may have to simplify the source file.

Unable to execute command
This message is issued after a command was to be executed. This could
be caused because the command file could not be found, or because it
was misspelled. A less likely possibility is that the command exists but is
somehow corrupted.

Unable to open makefile
This message is issued when the current directory does not contain a file
named MAKEFILE.

Errors

Bad file name format in include statement
Include file names must be surrounded by quotes or angle brackets. The
file name was missing the opening quote or angle bracket.

Bad undef statement syntax
An ! undef statement must contain a single identifier and nothing else as
the body of the statement.

Character constant too long
Character constants can be only one or two characters long.

Command arguments too long
The arguments to a command executed by MAKE were more than 127
characters-a limit imposed by MS-DOS.

340 Turbo C Reference Guide

Command syntax error
This message occurs if:

IJ The first rule line of the makefile contained any leading whitespace.

IJ An implicit rule did not consist of . ext. ext:.

IJ An explicit rule did not contain a name before the: character.

IJ A macro definition did not contain a name before the = character.

Division by zero
A divide or remainder in an ! if statement has a zero divisor.

Expression syntax error in ! if statement
The expression in an ! if statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a missing or
extra constant.

File name too long
The file name given in an ! include directive was too long for the
compiler to process. File names in MS-DOS must be no more than 64
characters long.

Illegal character in constant expression X
MAKE encountered some character not allowed in a constant
expression. If the character is a letter, this indicates a (probably)
misspelled identifier.

Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Macro expansion too long
A macro cannot expand to more than 4,096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

Misplaced elif statement
An ! elif directive was encountered without any matching ! if

directive.

Misplaced else statement
An ! else directive was encountered without any matching ! if

directive.

Misplaced endif statement
An ! endif directive was encountered without any matching ! if

directive.

Turbo C Utilities 341

No file name ending
The file name in an include statement was missing the correct closing
quote or angle bracket.

Redefinition of target XXXXXXXX
The named file occurs on the left-hand side of more than one explicit
rule.

Unable to open include file XXXXXXXXX.XXX
The named file could not be found. This could also be caused if an
include file included itself. Check whether the named file exists.

Unexpected end of file in conditional started on line #
The source file ended before MAKE encountered an ! endif. The! endif

was either missing or misspelled.

Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and the
statement name following was not error, undef, if, elif, include,

else, or endif.

342 Turbo C Reference Guide

Turbo Link

In the Turbo C Integrated Development Environment (TC) the linker is
built in. For the command-line version of Turbo C (TCC), the linker is
invoked as a separate program. This separate program, TLINK, can also be
used as a stand-alone linker.

TLINK is lean and mean; while it lacks some of the bells and whistles of
other linkers, it is extremely fast and compact.

By default, Turbo C calls TLINK when compilation is successful; TLINK
then combines object modules and library files to produce the executable
file.

In this appendix, we describe how to use TLINK as a stand-alone linker.

Invoking TLINK

You can invoke TLINK at the DOS command line by typing t 1 ink with or
without parameters.

When invoked without parameters, TLINK displays a summary of
parameters and options that looks like this:

Turbo Link Version 1.0 Copyright (c) 1987 Borland International
The syntax is: TLINK objfiles, exefile, mapfile, libfiles
@xxxx indicates use response file xxxx
Options: 1m = map file with publics

Ix = no map file at all
Ii = initialize all segments
11 = include source line numbers
Is = detailed map of segments
In = no default libraries
Id = warn if duplicate symbols in libraries
Ic = lower case significant in symbols

In TLINK's summary display, the line

The syntax is: TLINK objfiles, exefile, mapfile, libfiles

specifies that you supply file names in the given order, separating the file
types with commas.

Turbo C Utilities 343

For example, if you supply the command line

tlink Ie mainline wd In tx,fin,mfin,lib\eomm lib\support

TLINK will interpret it to mean that

• Case is significant during linking (j c).

• The .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ, LN.OBJ, and
TX.OBJ.

I!I The executable program name will be FIN .EXE.

EJ The map file is MFIN.MAP.

• The library files to be linked in are COMM.LIB and SUPPORT. LIB, both
of which are in subdirectory LIB.

TLINK appends extensions to file names that have none:

• .OBJ for object files
.. .EXE for executable files
• .MAP for map files
• . LIB for library files

Be aware that where no .EXE file name is specified, TLINK derives the
name of the executable file by appending .EXE to the first object file name
listed. If for example, you had not specified FIN as the .EXE file name in the
previous example, TLINK would have created MAINLINE.EXE as your
executable file.

TLINK always generates a map file, unless you explicitly direct it not to by
including the I x option on the command line.

• If you give the 1m option, the map file includes publics.

• If you give the I s option, the map file is a detailed segment map.

These are the rules TLINK follows when determining the name of the map
file.

II If no .MAP file is specified, TLINK derives the map file name by adding
a .MAP extension to the .EXE file name. (The .EXE file name can be
given on the command line or in the response file; if no .EXE name is
given, TLINK will derive it from the name of the first .OBJ file.)

• If a map file name is specified in the command line (or in the response
file), TLINK adds the .MAP extension to the given name.

Note that even if you specify a map file name, if the Ix option is specified
then no map file will be created at all.

344 Turbo C Reference Guide

Using Response Files

TLINK lets you supply the various parameters on the command line, in a
response file, or in any combination of the two.

A response file is just a text file that contains the options and/or file names
that you would usually type in after the name TLINK on your command
line.

Unlike the command line, however, a response file can be continued onto
several lines of text. You can break a long list of object or library files into
several lines by ending one line with a plus character and continuing the
list on the next line.

Also, you can start each of the four components on separate lines: object
files, executable file, map file, libraries. When you do this, you must leave
out the comma used to separate components.

To illustrate these features, suppose that you rewrote the previous
command-line example as a response file, FINRESP, like this:

Ie mainline wd+
In tx,fin+
mfin+
lib\eomm lib\support

You would then enter your TLINK command as:

tlink @finresp

Note that you must precede the file name with an "at" character (@) to
indicate that the next name is a response file.

Alternately, you may break your link command into multiple response
files. For example, you can break the previous command line into the
following two response files:

File Name

LISTOBJS

LISTLIBS

Contents

mainline+
wd+
In tx

lib\eomm+
lib \ support

You would then enter the TLINK command as:

tlink Ie @listobjs,fin,mfin,@listlibs

Turbo C Utilities 345

Using TLINK with Turbo C Modules

Turbo C supports six different memory models: tiny, small, compact,
medium, large, and huge. When you create an executable Turbo C file
using TLINK, you must include the initialization module and libraries for
the memory model being used.

The general format for linking Turbo C programs with TLINK is

tlink COx <myobjs>, <exe>, [map],<mylibs> [emulfp87 mathx] Cx

where these <filenames> represent the following:

<myobjs> = the .OBJ files you want linked
<exe> the name to be given the executable file
[map] = the name to be given the map file [optional]
<mylibs> = the library files you want included at link time

The other filenames on this general TLINK command line represent Turbo
C files, as follows:

COx
ernulfp87
rnathx
Cx

= initialization module for memory model x
= the floating-point libraries (choose one)
= math library for memory model x
= run-time library for memory model x

Initialization Modules

The initialization modules have the name COx.OBJ, where x is a single letter
corresponding to the model: t, s, c, m, I, h. Failure to link in the appropriate
initialization module usually results in a long list of error messages telling
you that certain identifiers are unresolved and/or that no stack has been
created.

The initialization module must also appear as the first object file in the list.
The initialization module arranges the order of the various segments of the
program. If it is not first, the program segments may not be placed in
memory properly, causing some frustrating program bugs.

Be sure that you give an explicit .EXE file name on the TLINK command
line. Otherwise, your program name will be COx.EXE-probably not what
you wanted!

346 Turbo C Reference Guide

Libraries

After your own libraries, the libraries of the corresponding memory model
must also be included in the link command. These libraries must appear in
a specific order; a floating-point library with the appropriate math library
(these are optional), and the corresponding run-time library. We discuss
those libraries in that order here.

If your Turbo C program uses any floating-point, you must include a
floating-point library (EMU.LIB or FP87.LIB) plus a math library
(MATHx.LIB) in the link command.

Turbo C's two floating-point libraries are independent of the program's
memory model.

IJ If you want to include floating-point emulation logic so that the
program will work both on machines with and without a math
coprocessor (8087 or 80287) chip, you must use EMU.LIB.

IJ If you know that the program will always be run on a machine with a
math coprocessor chip, the FP87.LIB library will produce a smaller and
somewhat faster executable program.

The math libraries have the name MATHx.LIB, where x is a single letter
corresponding to the model: t, s, c, m, I, h.

You can always include the emulator and math libraries in a link command
line. If your program does no floating-point work, nothing from those
libraries will be added to your executable program file. However, if you
know there is no floating-point work in your program, you can save time in
your links by excluding those libraries from the command line.

You must always include the C run-time library for the program's memory
model. The C run-time libraries have the name Cx.LIB, where x is a single
letter corresponding to the model, as before.

Note: if you are using floating-point operations, you must include the math
and emulator libraries before the C run-time library. Failure to do this will
likely result in a failed link.

Using TLINK with TCC

You can also use TCC, the stand-alone Turbo C compiler, as a "front end"
to TLINK that will invoke TLINK with the correct start-up file, libraries,
and executable-program name.

Turbo C Utilities 347

To do this, you give file names on the TCC command line with explicit .OBJ
and .LIB extensions. For example, given the following TCC command line

tee -mx mainfile.obj subl.obj mylib.lib

Tec will invoke TLINK with the files COx.OBJ, EMU.LIB, MATHx.LIB and
Cx.LIB (initialization module, default 8087 emulation library, math library
and run-time library for memory model x). TLINK will link these along
with your own modules MAINLINE.OB] and SUB1.0BJ, and your own
library MYLIB.LIB.

Note: When TCC invokes TLINK, it always uses the I e (case-sensitive link)
option.

TLINK Options

TLINK options can occur anywhere on the command line. The options
consist of a slash U) followed by the option-specifying letter (m, s, I, i, n, d,
x, or c).

If you have more than one option, spaces are not significant (jml e is the
same as 1m I e), and you can have them appear in different places on the
command line. The following sections describe each of the options.

The lx, 1m, Is Options

By default, TLINK always creates a map of the executable file. This default
map includes only the list of the segments in the program, the program
start address, and any warning or error messages produced during the link.

If you want to create a more complete map, the 1m option will add a list of
public symbols to the map file, sorted in increasing address order,. This
kind of map file is useful in debugging. Many debuggers, such as SYMDEB,
can use the list of public symbols to allow you to refer to symbolic
addresses when you are debugging.

348 Turbo C Reference Guide

The I s option creates a map file with segments, public symbols and the
program start address just like the 1m option did, but also adds a detailed
segment map. The following is an example of a detailed segment map:

[Detailed map of segments]

Address Length Class Segment Name Group Module Alignment/
(Bytes) Combining

0000:0000 OE5B C=CODE S=SYMB TEXT G=(none) M=SYMB.C ACBP=28
00E5:000B 2735 C=CODE S=QUAL-TEXT G=(none) M=QUAL.C ACBP=28
0359:0000 002B C=CODE S=SCOpy TEXT G=(none) M=SCOPY ACBP=28
035B:000B 003A C=CODE S=LRSH TEXT G=(none) M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PADA-TEXT G=(none) M=PADA ACBP=20
0367:0008 005B C=CODE S=PADD-TEXT G=(none) M=PADD ACBP=20
036D:0003 0025 C=CODE S=PSBP-TEXT G=(none) M=PSBP ACBP=20
036F:0008 05CE C=CODE S=BRK TEXT G=(none) M=BRK ACBP=28
03CC:0006 066F C=CODE S=FLOAT TEXT G=(none) M=FLOAT ACBP=20
0433:0006 OOOB C=DATA S= DATA- G=DGROUP M=SYMB.C ACBP=48
0433:0012 00D3 C=DATA S=-DATA G=DGROUP M=QUAL.C ACBP=48
0433:00E6 OOOE C=DATA S=-DATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S=-BSS G=DGROUP M=SYMB.C ACBP=48
0442:0008 0002 C=BSS S=-BSS G=DGROUP M=QUAL.C ACBP=48
0442:000A OOOE C=BSS S=-BSS G=DGROUP M=BRK ACBP=48

For each segment in each module, this map includes the address, length in
bytes, class, segment name, group, module, and ACBP information.

If the same segment appears in more than one module, each module will
appear as a separate line (for example, SYMB.C). Most of the information in
the detailed segment map is self-explanatory, except for the ACBP field.

The ACBP field encodes the A (alignment) anq C (combining) attributes into
a set of 4 bit fields, as defined by Intel. TLINK uses only two of the fields,
the A and C fields. The ACBP value in the map is printed in hexadecimal:
The following values of the fields must be OR' ed together to arrive at the
ACBP value printed.

Turbo C Utilities 349

Field Value Description

The A field 00 An Absolute segment.
(alignment) 20 A byte aligned segment.

40 A word aligned segment.
60 A paragraph aligned segment.
80 A page aligned segment.
AO An unnamed absolute portion of storage.

The C field 00 May not be combined.
(combination) 08 A public combining segment.

The II Option

The 11 option creates a section in the .MAP file for source code line
numbers. To use it, you must have created the .OBI files by compiling with
the -y (Line numbers ... On) option. If you tell TLINK to create no map at all
(using the Ix option), this option will have no effect.

The Ii Option

The I i option causes trailing segments to be output into the executable file
even if the segments do not contain data records. Note that this is not
normally necessary.

The In Option

The I n option causes the linker to ignore default libraries specified by some
compilers. This option is necessary if the default libraries are in another
directory, because TLINK does not support searching for libraries. You
may want to use this option when linking modules written in another
language.

The Ie Option

The I c option forces the case to be significant in publics and externals. For
example, by default, TLINK regards fred, Fred, and FRED as equal; the Ie
option makes them different.

350 Turbo C Reference Guide

The /d Option

Normally, TLINK will not warn you if a symbol appears in more than one
library file. If the symbol must be included in the program, TLINK will use
the copy of that symbol in the first file mentioned on the command line.
Since this is a commonly used feature, TLINK does not normally warn
about the duplicate symbols. The following hypothetical situation
illustrates how you might want to use this feature.

Suppose you have two libraries: one called SUPPORT. LIB, and a
supplemental one called DEBUGSUP.LIB. Suppose also that
DEBUGSUP.LIB contains duplicates of some of the routines in
SUPPORT. LIB (but the duplicate routines in DEBUGSUP.LIB include
slightly different functionality, such as debugging versions of the routines).
If you include DEBUGSUP.LIB first in the link command, you will get the
debugging routines and not the routines in SUPPORT.LIB.

If you are not using this feature or are not sure which routines are
duplicated, you may include the /d option. This will force TLINK to list all
symbols duplicated in libraries, even if those symbols are not going to be
used in the program.

The /d option also forces TLINK to warn about symbols that appear both in
an .OBJ and a .LIB file. In this case, since the symbol that appears in the first
(left-most) file listed on the command line is the one linked in, the symbol
in the .OBJ file is the one that will be used.

With Turbo C, the distributed libraries you would use in any given link
command do not contain any duplicated symbols. Thus while EMU.LIB
and FP87.LIB (or CS.LIB and CL.LIB) obviously have duplicate symbols,
they would never rightfully be used together in a single link. There are no
symbols duplicated between EMU. LIB, MATHS.LIB, and CS.LIB, for
example.

Restrictions

As we said earlier, TLINK is lean and mean; it does not have an excessive
supply of options. Following are the only serious restrictions to TLINK:

EJ Overlays are not supported.

EJ Microsoft CodeView Debugger is not supported (but SST and SYMDEB
work fine).

EJ Common variables are only partly supported: A public must be
supplied to resolve them.

Turbo C Utilities 351

• You can have a maximum of 8182 symbols and 4000 logical segments.

• Segments that are of the same name and class should either all be able to
be combined, or not. (Only assembler programmers might encounter
this as a problem.)

• Code compiled in Microsoft C or Microsoft Fortran cannot be linked
with TLINK. This is because Microsoft languages have undocumented
object record formats in their OBI files, which TLINK does not currently
support.

TLINK is designed to. be used with Turbo C (both the Integrated
Environment and command-line versions), as well as with MASM and
other compilers; however, it is not a general replacement for MS Link.

Error Messages

TLINK has three types of errors: warnings, non-fatal errors, and fatal
errors.

II Warnings are just that: warnings of conditions that you probably want
to fix. When warnings occur .EXE and .MAP files are still created.

• A non-fatal error does not delete .EXE or .MAP files, but you shouldn't
try to execute the .EXE file.

• A fatal error causes TLINK to stop immediately; the .EXE and .MAP
files are deleted.

The following generic names and values appear in the error messages listed
in this section. When you get an error message, the appropriate name or
value is substituted.

<sname>
<mname>
<fname>

XXXXh

symbol name
module name
file name
a 4-digit hexadecimal number, followed by 'h'

Warnings

TLINK has only three warnings. The first two deal with duplicate
definitions of symbols; the third, applicable to tiny model programs,
indicates that no stack has been defined. Here are the messages:

352 Turbo C Reference Guide

Warning: XXX is duplicated in module YYY
The named symbol is defined twice in the named module. This could
happen in Turbo C object files, for example, if two different pascal

names were spelled using different cases in a source file.

Warning: XXX defined in module YYY is duplicated in module ZZZ
The named symbol is defined in each of the named modules. This could
happen if a given object file is named twice in the command line, or if
one of the two copies of the symbol were misspelled.

Warning: no stack
This warning is issued if no stack segment is defined in any of the object
files or in any of the libraries included in the link. This is a normal
message for the tiny memory model in Turbo C, or for any application
program that will be converted to a .COM file. For other programs, this
indicates an error.

If a Turbo C program produces this message for any but the tiny
memory model, check the COx start-up object files to be sure they are
correct.

Non-Fatal Errors

TLINK has only two non-fatal errors. As mentioned, when a non-fatal error
occurs, the .EXE and .MAP files are not deleted. However, these same
errors are treated as fatal errors under the Integrated Environment. Here
are the error messages:

XXX is unresolved in module YYY
The named symbol is referenced in the given module but is not defined
anywhere in the set of object files and libraries included in the link.
Check the spelling of the symbol for correctness. You will usually see
this error from TLINK for Turbo C symbols if you did not properly
match a symbol's declarations of pascal and cdecl type in different
source files

Fixup overflow, frame = xxxxh, target = xxxxh, offset = xxxxh in module
XXXXXXX

This indicates an incorrect data or code reference in an object file that
TLINK must fix up at link time. In a fixup, the object file indicates the
name of a memory location being referenced and the name of a segment
that the memory location should be in. The frame value is the segment
where the memory location should be according to the object file. The
target value is the segment where the memory location actually is. The

Turbo C Utilities 353

offset field is the offset within the target segment where the memory
location is.

This message is most often caused by a mismatch of memory models. A
near call to a function in a different code segment is the most likely
cause. This error can also result if you generate a near call to a data
variable or a data reference to a function.

To diagnose the problem, generate a map with public symbols (1m). The
value of the target and offset fields in the error message should be the
address of the symbol being referenced. If the target and offset fields do
not match some symbol in the map, look for the symbol nearest to the
address given in the message. The reference is in the named module, so
look in the source file of that module for the offending reference.

If these techniques do not identify the cause of the failure, or if you are
programming in assembly language or some other high-level language
besides Turbo C, there may be other possible causes for this message.
Even in Turbo C, this message could be generated if you are using
different segment or group names than the default values for a given
memory model.

Fatal Errors

When fatal errors happen, TLINK stops and deletes the .EXE and .MAP
files.

XXXXXXXX.XXX: bad object file
An ill-formed object file was encountered. This is most commonly
caused by naming a source file or by naming an object file that was not
completely built. This can occur if the machine was rebooted during a
compile, or if a compiler did not delete its output object file when a etrl­
brk was struck.

XXXXXXXX.XXX: unable to open file
This occurs if the named file does not exist or is misspelled.

Bad character in parameters
One of the following characters was encountered in the command line
or in a response file: " * < = > ? [] I or any control character other
than horizontal tab, line feed, carriage return, or etr/-z.

msdos error, ax = XXXXh
This occurs if an MS-DOS call returned an unexpected error. The ax
value printed is the resulting error code. This could indicate a TLINK

354 Turbo C Reference Guide

internal error or an MS-DOS error. The only MS-DOS calls TLINK makes
where this error could occur are read, write, and close.

Not enough memory
There was not enough memory to complete the link process. Try
removing any terminate-and-stay-resident applications currently loaded,
or reduce the size of any RAM disk currently active. Then run TLINK
again.

Segment exceeds 64K
This message will occur if too much data was defined for a given data or
code segment, when segments of the same name in different source files
are combined. This message also occurs if a group exceeds 64K bytes
when the segments of the group are combined.

Symbol limit exceeded
You can define a maximum of 8,182 public symbols, segment names, and
group names in a single link. This message is issued if that limit is
exceeded.

Unexpected group definition
Group definitions in an object file must appear in a particular sequence.
This message will generally occur only if a compiler produced a flawed
object file. If this occurs in a file created by Turbo C, try recompiling the
file. If the problem persists, contact Borland International.

Unexpected segment definition
Segment definitions in an object file must appear in a particular
sequence. This message will generally occur only if a compiler produced
a flawed object file. If this occurs in a file created by Turbo C, try
recompiling the file. If the problem persists, contact Borland
Interna tional.

Unknown option
A slash character U) was encountered on the command line or in a
response file without being followed by one of the allowed options.

Write failed, disk full?
This occurs if TLINK could not write all of the data it attempted to write.
This is almost certainly caused by the disk being full.

Turbo C Utilities 355

356 Turbo C Reference Guide

A p p E N o x

E

Language Syntax Summary

This appendix uses a modified Backus-Naur Form to summarize the syntax
for Turbo C constructs. These constructs are arranged categorically, as
follows:

[J Lexical Grammar: tokens, keywords, identifiers, constants, string literals,
operators and punctuators

[J Phrase Structure Grammar: expressions, declarations, statements, external
definitions

IJ Preprocessing directives

Lexical Grammar

Tokens

token:
keyword
identifier
constant
string-literal
operator
punctuator

Language Syntax Summary 357

Keywords

keyword: one of the following

asm
auto
break
case
cdecl
char
const
continue
default

Identifiers

identifier:
nondigit

do
double
else
enum
extern
far
float
for

identifier nondigit
identifier digit

goto
huge
if
int
interrupt
long
near
pascal
register

nondigit: one of the following

return union
short unsigned
signed void
sizeof volatile
static while
struct cs
switch -ds
typedef es

ss -

abc d e f g h i j k 1 mn a p q r stu v w x y z_ $
ABC D E F G H I J K L MN 0 P Q R STU V W X Y Z

digit: one of the following
a 1 2 3 4 5 6 789

Constants

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:
fractional-constant exponent-part opt floating-suffixopt
digit-sequence exponent-part floatmg-su!fixopt

fractional-cons tan t:
digit-sequenceopt . digit-sequence
digit-sequence .

358 Turbo C Reference Guide

exponent-part:
e sign opt digit-sequence
E signopt digit-sequence

sign: one of the following
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of the following
f 1 F L

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-cons tan t:
o x hexadecimal-digit
o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of the following
1 2 3 4 5 6 789

octal-digit: one of the following
o 1 234 5 6 7

hexadecimal-digit: one of the following
o 1 2 3 4 5 6 789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of the following
uU

Language Syntax Summary 359

long-suffix: one of the following
I L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except
the single-quote ('), backslash (\), or newline () character

escape-sequence

escape-sequence: one of the following

\' \b \v \xhh
\ " \/ \0 \xhhh
\? \n \00 \Xh
\ \ \r \000 \Xhh
\a \t \xh \Xhhh

String Literals

string-literal:
1/ s-char-sequenceopt II

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except
the double-quote ("), backslash (\), or newline () character

escape-sequence

360 Turbo C Reference Guide

Operators

operator: one of the following

[] 0 -> ++

& * +
sizeof / % « » <

> <= >= =
A && II ? : =
*= /= %= += - = «=

»= &= A= 1= #

Punctuators

punctuator: one of the following
[] () {} *
= #

Phrase Structure Grammar

Expressions

primary-expression:
identifier
constant
pseudo-variable
string-literal
(expression)

Language Syntax Summary 361

pseudo-variable:
AX AL AH S1 ES
BX BL BH 01 SS
CX CL CH BP CS
OX OL OH SP OS

postfix -expression:
primary-expression
postfix-expression [expression 1
postfix-expression (argument-expression-listopt)

postfix-expression . identifier
postfix-expression - > identifier
postfix-expression ++
postfix~expression -

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of the following
& * + - !

cast -expression:
unary-expression
(type-name) cast-expression

mul tiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

362 Turbo C Reference Guide

shift-expression:
additive-expression
shift-expression < < additive-expression
shift-expression > > additive-expression

rela tional-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality expression - - relational-expression
equality expression ! = relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR -expression:
AND-expression
exclusive-OR-expression 1\ AND-expression

incl usive-O R -expression:
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

logical-AND-expression:
incl usive-O R -expression
logical-AND-expression && inclusive-OR-expression

logical-OR -expression:
logical-AND-expression
logical-OR-expression I I logical-AND-expression

condi tional-expression:
logical-OR -expression
logical-OR-expression ? expression conditional-expression

assi gnmen t -expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of the following

= *- /= %= += -=

Language Syntax Summary 363

«= »= &=

expression:
assignment-expression
expression I assignment-expression

constant-expression:
conditional-expression

Declarations

declaration:

1=

declaration-specifiers init-declarator-list opt

declaration-specifiers:
storage-class-specifier declaration-specifiers opt

type-specifier declaration-specifiers opt

init-declarator-list:
in it-declarator
init-declarator-list I init-declarator

init-declarator:
declarator
declarator = initializer

s tara ge-class-specifier:
typede£
extern
static
auto
register

364 Turbo C Reference Guide

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
const
volatile
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier:
struct-or-union identifier opt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
type-specifier-list struct-declarator-list;

type-specifier-list:
type-specifier
type-specifier-list type-specifier

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declarator opt : constant-expression

enum-specifier:
enum identifier opt { enumerator-list
enum identifier

Language Syntax Summary 365

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
en umera tion -cons tan t
enumeration-constant = constant-expression

declarator:
pointer opt direct-declarator
modifier-listopt

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression opt]

direct-declarator (parameter-type-list)
direct-declarator (identifier-list opt)

pointer:
* type-specifier-listopt
* type-specifier-listopt pointer

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarataor opt

366 Turbo C Reference Guide

identifier-list:
identifier
identifier-list , identifier

type-name:
type-specified-list abstract-declarator opt

abstract-declarator:
pointer
pointer opt direct-abs tract-declara tor opt

modifier-listopt

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator opt [constant-expressionopt]
direct-abstract-declarator opt (parameter-type-list opt)

typedef-name:
identifier

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
initializer
initializer-list , initializer

Language Syntax Summary 367

Statements

statement:
labeled -sta temen t
compound-statement
expression-statement
selection-statement
itera tion -s ta temen t
jump-statement
asm-statement

asm-statement
asrn tokens newline
asrn tokens;

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

compound-statement:
{ declaration-listopt statement-listopt

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
expression opt

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression);
for (express ion opt ; express ion opt ; expression opt) statement

368 Turbo C Reference Guide

ju mp-statement
goto identifier;
continue;
break;
return expressionopt;

External Definitions

file:
external-defin i tion
file external-definition

external-definition:
function-definition
declaration

asm-statement
asm tokens newline
asm tokens;

function-definition:
declaration-specifiersopt declarator declaration-listopt compound-statement

Preprocessing Directives

preprocessing-file:
group

group:
group-part
group group-part

group-part:
pp-tokensopt newline
if-section
control-line

if-section:
if-group elif-groupsopt else-group opt endif-line

Language Syntax Summary 369

if-group:
i f constant-expression newline group opt

#ifdef identifier newline groupopt
#ifndef identifier newline grouPopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
#elif constant-expression newline groupopt

else-group:
#else newline grouPopt

endif-line:
#endif newline

control-line:
#include pp-tokens newline
de fine identifier replacement-list newline
#de fine identifier lparen identifier-list opt) replacement-list newline
#undef identifier newline
#line pp-tokens newline
#error pp-tokensopt newline
#pragma pp-tokensopt newline
#pragma warn action abbreviation newline
#pragma inline newline
newline

action:
+

abbreviation:
amb dyn pia str
amp dup pro stu
apt eff rch stv
ans fun ret sus
cln ign rpt use
cpt mod rvl voi
def par sig zst

lparen:
the left-parenthesis character without preceding white space

370 Turbo C Reference Guide

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an # incl ude directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except
the newline greater than (>) character

newline:
the newline character

Language Syntax Summary 371

372 Turbo C Reference Guide

A p p E N o x

F

Customizing Turbo C

Turbo C comes ready to run, as soon as you make working copies of the
disk files. There is no installation, per se. But you do have the option of
changing many of Turbo C's default modes of operation by running this
customization program. This program, TCINST.COM, lets you do six
things:

• set up a path to your configuration and Help files
• customize your Editor commands
• modify your default edit modes
• set up your default screen mode
• change your screen colors
• change the size of Turbo C's windows

If you want to store your help (TCHELP.TCH) or configuration files
(TCCONFIG.TC) in a directory other than the one where you do your
work, you'll need to use the Turbo C directory option to set a path to those
files.

If you're either unfamiliar with Turbo C's editor or inexorably tied to
another editor, you can use the Editor commands option to reconfigure
(customize) the editor keystrokes to your liking.

You can also use the Default editor mode option to set several defaults for
the editor. You can choose to

• load and save a pick list

• work in insert or overwrite mode

• turn tabs on or off

Customizing Turbo C 373

• work with auto-indent on or off

You can set up the display mode that Turbo C will use when it is in
operation and specify whether you have a "snowy" video adapter.

You can customize the colors of almost every part of the Turbo C screen
output.

And finally, you can change the default sizes of the Edit and Message
windows.

Running TCINST

To get started, type TCINST at the DOS prompt. The first (main
installation) menu lets you select the Turbo C directory, Editor commands,
Default edit modes, Screen mode, Colors, Resize windows, or
Quit/save/abort. You can either press the highlighted capital letter of the
preferred option or use the Up and Down arrow keys to move to your
selection and then press Enter; for instance, press D to modify the Default
edit modes. In general, pressing Esc (more than once if necessary) will
return you from a submenu to the main installation menu.

/

374

InshllAtio. rtnu -

Imn-nm"'4'_
Ed it~r cO"lIdnds
Def au It ed i t lIodes
Screen .. ode
Co lors
Res i ze windows
Qu i tlsave/abort

Tu'" C I ... tal IAt io. Pro!Jr... 1.111A

Figure F.l : TCINST Installation Menu

Turbo C Reference Guide

The Turbo C Directory Option

You'll use the Turbo C directory option to specify a path to your standard
configuration and Help files, so that they are accessible from wherever you
call up Turbo C.

When you select the Turbo C directory option, you're prompted to enter
the full path to your Turbo directory. (This is where your standard
configuration and Help files are kept; see the Environment option in the
Options pull-down menu in Chapter 2 of the Turbo C User's Guide. For
example, if you want Turbo C to look for the standard configuration file in
a directory called TURBOC (if it's not found in your current directory),
then you might type for your path name

c: \TURBOC

After typing a path, press Enter to accept it, and the TCINST main
installation menu will redisplay. When you exit the program, you're
prompted whether you want to save the changes. Once you save the Turbo
C path, the location is written to disk. (Note that the Quick-Ref line tells
you which keystrokes to use when you're in this screen.)

The Editor Commands Option

This option allows you to change the default editing keys that you use
while you're in the Turbo C editor. To modify the Editor commands, press
E or move the selection bar to the option and press Enter. The help line at
the top of the screen shows you which keys to use to move around and
make changes. Most of these commands are simply movement commands;
the R option, however, is useful when you want to restore the keystrokes to
the factory defaults. You'll notice that you can modify only the secondary,
or highlighted, keystrokes.

Customizing Turbo C 375

------- r C I .. t.ll.tio. PPOt... Ca.and-
.-hackspace C-clear I-restore ... J-accept ed it <Scroll Lock> literal

Hew Line (Enter)
Cursor Left (CtrIS)
Cursor Right (CtrID)
Word Left (Ctr l~)
Word Right (CtrlF>
Cursor Up (CtrIE)
Cursor Down (Ctr DO
Scroll Up (CtrIW)
Scroll Down (CtrIZ)
rage Up (CtrIR)
Page Down (CtrIC)
Left of Line (CtrIQ)(CtrIS)
Right of Line (CtrIQ)(CtrID)
Top or Screen (CtrIQ)(CtrIE)
Bott~ of Screen (CtrIQ)(CtrIX)
Top or File (CtrIQ)(CtrIR)
Bott~ or Fi Ie (CtrIQ)(CtrIC)
MOlle to Block Begin (CtrIQ)(CtrIB)
MOlle to Block End (CtrIQ)(CtrIX)
MOlle to Previous Position (CtrIQ)(CtrIP)
MOlle to Markel' 8 (CtrIQ)8
MOlle to Marker 1 (CtrIQ>1

<I.te.>
<Ut>
<Itt>
<CbIUt>
<Cbll,t>
<Up>
<h>

<I •• >
<Cbllto.>
<Cbll .. >
<CbIP,u,>
<CbIP,h>

Figure F.2: Changing Default Editor Commands

Unce you press Enter to modify the keystroke(s), you'll see a selection bar
next to the command you want to redefine. If you take another look at the
top of the screen, you'll see that the help line now lists the available
commands:

<- backspace C clear R restore ~ accept edit <Scroll Lock> literal

backspace Use the Backspace key to backspace or delete something in
the keystroke box.

clear The C option clears, or erases, the whole box.

restore Use R to restore the original keystrokes before exiting from
the screen.

accept edit The .J stands for the Enter key; pressing Enter accepts the
keystroke modification you've made.

<Scroll Lock> This is a toggle that lets you alternate between command
and literal modes.

To understand the <Scroll Lock> option, take a look at the Enter key, which
is used to modify and accept the editing of a key command. If you wanted,
for example, to use Enter as part of Find String's keystrokes (Ctrl-Q F), you
would have to follow these steps:

1. Make sure <Scroll Lock> is toggled to command (check the upper
right-hand corner of your screen).

376 Turbo C Reference Guide

2. Press Enter at the Find String command line.

3. Press Backspace to delete the etr/-F part of the string.

4. Now toggle <Scroll Lock> to literal and press Enter-voila.
5. Again, toggle <Scroll Lock> to command and press Enter to accept.

After you've defined the new keystroke(s) for a command, press Enter to
accept them. If you've finished making changes, press Esc to exit. If you still
have more changes to make, use the arrow keys to scroll up and down the
list and select your next command.

At this point, if you've accidentally assigned a keystroke sequence that's
been used as a control character sequence in the primary command
column, the message

Command conflicts need to be corrected. Press <ESC>

will flash at the bottom of the screen. Any duplicated sequences will be
highlighted, which enables you to easily search for any disallowed items
and to reselect a sequence. If you change your mind, you can use the R
option to restore all of the factory defaults.

Also, if you assign a hot key to one of the commands, the message

<function key> is a built-in hot key. Press <ESC>

flashes at the bottom of the screen. Pressing Esc takes you back to the
command you were changing so that you can reselect a key assignment.

The Default Edit Modes Option

Press 0 to bring up the Default edit modes menu. There are four editor
modes you can install: Load/save pick list, Insert mode, Auto-indent
mode, and Tabs. These are all toggles.

Load/save pick list With this option on, Turbo C will automatically save
the current pick list when you exit Turbo C, and then
reload that file upon reentering the program. If you
have this option off when you exit Turbo C, your pick
list will not be saved.

Insert With Insert mode on, anything you enter at the
keyboard is inserted at the cursor position, pushing
any text to the right of the cursor further right.
Toggling Insert mode off allows you to overwrite text
at the cursor.

Customizing Turbo C 377

Auto-indent

Tab

With Auto-indent mode on, the cursor returns to the
starting column of the previous line when you press
Enter. When toggled off, the cursor always returns to
column one.

With Tab mode on, a tab is placed in the text using a
fixed tab stop of 8. Toggle it off, and it spaces to the·
beginning of the first letter of each word in the
previous line.

When you load Turbo C, the default value for Load/save pick list is off; the
default values for the other three modes are on. You can change the defaults
to suit your preferences and save them back to Turbo C. Of course, you'll
still be able to toggle these modes from inside Turbo C's editor.

Look at the Quick-Ref line for directions on how to select these options:
Either use the arrow keys to move the selection bar to the option and then
press Enter, or press the key that corresponds to the highlighted capital
letter of the option.

The Screen Mode Option

Normally, Turbo C will correctly detect your system's video mode so you
should only change the Screen mode option if

• you want to select a mode other than your current video mode

• you have a Color/Graphics Adapter that doesn't "snow"

• you think Turbo C is incorrectly detecting your hardware

Press S to select Screen mode from the installation menu. A pop-up menu
will appear; from this menu you can select the screen mode Turbo C will
use during operation. Your options include Default, Color, Black and
white, or Monochrome. These are fairly intuitive.

Default By default, Turbo C will always operate in the mode that
is active when you load it.

Color Turbo C will use color mode with 80 x 25 characters, no
matter what mode is active, and switches back to the
previously active mode when you exit.

Black and White Turbo C will use black and white mode with 80 x 25
characters, no matter what mode is active, and switches
back to the previously active mode when you exit.

378 Turbo C Reference Guide

Monochrome Turbo C will use monochrome mode, no matter what
mode is active, and switches back to the previously
active mode when you exit.

When you select one of the first three options, the program conducts a
video test on your screen; the Quick-Ref line tells you what to do. When
you press any key, a window comes up with the query Was there Snow

on the screen? You can choose

• Yes, the screen was "snowy;"
• No, always turn off snow checking;
• Maybe,always check the hardware; look to the Quick-Ref line for more

about Maybe.

Press Esc to return to the main installation menu.

The Color Customization Option

Pressing C from the main installation menu allows you to make extensive
changes to the Colors of your version of Turbo C. After pressing C, you will
see a menu with these options:

• Customize colors
• 1st color set
• 2nd color set
• 3rd color set

Because there are nearly 50 different screen items that can be given their
own customized colors, you will probably find it easier to choose a preset
set of colors to your liking. Three preset color sets are on disk. Press 1, 2, or
3 and scroll through the colors for the Turbo C screen items using the PgUp
and PgDn keys. If none of the preset color sets is to your liking, however,
you can still design your own.

To make custom colors, press C to Customize colors. Now you have a
choice of 12 types of items that can be color-customized in Turbo C; some
of these are text items, some are screen lines and boxes. Choose one of these
items by pressing a letter A through L.

Once you choose a screen item to color-customize, you will see a pop-up
menu and a view port: The first is an example of the screen item you chose;
the second displays the components of that selection, and also reflects the
change in colors as you scroll through the color palette. For example, if you
chose H to customize the colors of Turbo C's error boxes, you would see a
new menu with the four different parts of an error box: its Title, Border,
Normal text, and Inverse text.

Customizing Turbo C 379

You must now select one of the components from the pop-up menu. Type
the appropriate highlighted letter, and you're treated to a color palette for
the item you chose. Using the arrow keys, select a color to your liking.
Press Enter to record your selection.

Repeat this procedure for every screen item you want to change the color
of. When you are finished, press Esc until you are back at the main
installation menu.

Note: Turbo C maintains three internal color tables: one each for color,
black and white, and monochrome. TCINST only allows you to change one
set of colors at a time, based upon your current video mode. So, for
example, if you wanted to change to the black and white color table, you
would set your video mode to BW80 at the DOS prompt and then load
TCINST.

The Resize Windows Option

This option allows you to change the respective sizes of the Edit and
Message windows in Turbo C. Press R to choose Resize windows from the
main installation menu.

Using the Up and Down arrow keys, you can move the bar dividing the Edit
window from the Message window. Neither window can be smaller than
three lines. When you have resized the windows to your liking, press Enter.
You can discard your changes and return to the Installation menu by
pressing Esc.

Quitting the Program

Once you have finished making all desired changes, select Quit/save/edit
at the main installation menu. The message

Save changes to TC.EXE? (YiN)

will appear at the bottom of the screen .

• If you press Y (for Yes), all the changes you have made will be
permanently installed into Turbo C. (Of course, you can always run this
program again if you want to change them.)

• If you press N (for No), your changes will be ignored and you will be
returned to the operating system prompt.

380 Turbo C Reference Guide

If you decide you want to restore the original Turbo C factory defaults,
simply copy TC.EXE from your master disk onto your work disk. You can
also restore the Editor commands by selecting the E option at the main
menu, then press R (for Restore) and Esc.

Customizing Turbo C 381

382 Turbo C Reference Guide

A p p E N D x

G

MicroCalc

MicroCalc-written in Turbo C-is a spreadsheet program. Its source code
files and an object file are provided with your TURBO C system as an
example program. The spreadsheet program is an electronic piece of paper
on which you can enter text, numbers and formulas, and have MicroCalc
do calculations on them automatically.

About MicroCalc

Since MicroCalc is only a demonstration program, it has its limitations
(which you may have fun eliminating):

II You cannot copy formulas from one cell to others

.. You cannot copy text or values from one cell to others

• Cells that are summed must be in the same column or row

In spite of its limitations, MicroCalc does provide some interesting features.
Among these are the following:

• Writing directly to video memory for maximum display speed

.. Full set of mathematical functions

.. Built-in line editor for text and formula editing

• Ability to enter text across cells

MicroCa/c 383

In addition to these, MicroCalc offers many of the usual features of a
spreadsheet program; you can do all of the following:

• Load a spreadsheet from the disk

• Save a spreadsheet on the disk

• Automatically recalculate after each entry (may be disabled)

• Print the spreadsheet on the printer

• Clear the current spreadsheet.

• Delete columns and rows

• Set a column's width
• Insert blank columns and rows between existing ones

How to Compile and Run MicroCalc

Compiling MicroCalc is easy. All you need to do is copy all the MC*.* files
from your distribution disk to your TURBOC directory (where TC.EXE
and/ or TCC.EXE reside). You can compile and run MicroCalc with either
version of Turbo C. In both cases, compiling under a large data model
(COMPACT, LARGE, or HUGE) will give you much more memory for
your spreadsheets.

With TC.EXE

After you have set the INCLUDE and LIB directories in the
o /Environment menu, do the following:

1. Run TC.EXE
2. In the Project menu, specify the project name "MCALC.PRJ"
3. From the main menu select the Run option

With TCC.EXE

Compile from DOS with the following command line:

TCC mcalc mcparser mcdisply mcinput mcommand mcutil mcmvsmem.obj

384 Turbo C Reference Guide

Note: You must also specify the INCLUDE and LIB directories with the -I

and -L command-line options, respectively.

How to use MicroCalc

Once you have compiled MicroCalc, you can run it in one of two ways.

If you compiled with the Run command from TC, MicroCalc will come up
on your screen; when you exit, you will return to Turbo C.

If you want to run MCALC.EXE from the DOS command line, just type
MCALC. (If you already have a spreadsheet file, you can automatically
load it by typing

MCALC <your_file>

at the DOS prompt.)

This is an example of what you will see once MicroCalc is loaded:

A B C D E F G
1 22.00
2 1. 00
3 2.00
4 3.00
S 28.00

20
AS Formula
Al+A2+A3+A4

The MicroCalc screen is divided into cells. A cell is a space on the
spreadsheet designated by a column-row pair. By default, each column is
10 characters wide; you can change this to a maximum of 77 characters
(each).

The columns are named A-Z and AA-CV; the rows are numbered 1-100.
This gives a total of 10000 cells. You can change these limits by modifying
the constants MAX ROWS and MAXCOLS in MCALC.H.

MicroCa/c 385

A cell may contain a value, a formula or some text; these are known as cell
types. The type of the cell and its coordinates are shown in the bottom left
corner of the screen:

AS Formula Means that the current cell, AS, contains a formula.

Ai Text Cell A I contains text.

A2 Value Cell A2 contains a value and no cell references.

In this example the line AS Formula shows that the active cell is cell AS
and that it contains a formula. The last line, Ai+A2+A3+A4, says the active
cell contains the sum of Al through A4. These two lines mean that the
numbers in cells AI, A2, A3 and A4 should be added and the result placed
in cell AS.

The formula can be abbreviated to Ai: A4, meaning "add all cells from Al
to A4".

The following are examples of valid cell formulas:

Ai + (B2-C7) subtract cell C7 from B2 and add the result to cell Al

Ai:A23 the sum of cells: AI,A2,A3 .. A23

The formulas may be as complicated as you want; for example:

SIN(Ai)*COS(A2)/((1.2*A8)+LOG(ABS(A8)+8.9E-3))+(Ci:CS)

To enter data in any cell, move the cursor to that cell and enter the data.
MicroCalc automatically determines if the cell's type is value, formula, or
text.

386 Turbo C Reference Guide

+, -, *

ABS
ACOS
ASIN
ATAN
COS
COSH
EXP
LOG
LOG10
POW10
ROUND
SIN
SINH
SQR
SQRT
TAN
TANH
TRUNC

,

Standard MicroCalc Functions and Operators

addition, subtraction, multiplication, division
raises a number to a power (example: 2A 3 = 8)
returns the sum of a group of cells (ex: Al:A4 = Al+A2+A3+A4)
absolute value
arc cosine
arc sine
arc tangent
cosine
hyperbolic cosine
exponential function
logarithm
base 10 logarithm
raise argument to the 10th power
round to the nearest whole number
sine
hyperbolic sine
square
square root
tangent
hyperbolic tangent
return the whole part of a number

MicroCa/c 387

Standard MicroCalc Commands

brings up the main menu

/SL loads a spreadsheet
ISS saves the current spreadsheet
/SP prints the current spreadsheet
/SC clears the current spreadsheet

/F formats a group of cells
/0 deletes the current cell
/G moves the cursor to a selected cell

/CI inserts a column
/CD deletes the current column
/CW changes the width of the current column

/RI inserts a row
/RD deletes the current row

/E edits the current cell

fUR recalculates the formulas in the spreadsheet
/UF toggles the display of the text of formulas in cells instead of the value

of the formulas

/A toggles AutoCalc on/off
/Q quits from MicroCalc
DEL deletes the current cell
HOME moves to cell Al
END moves to the rightmost column and bottom row of the spreadsheet

PGUP
and
PGDN move up or down a full screen
F2 allows you to edit the data in the current cell.

388

While you're editing, the following commands work:

ESC
~,~

i,J-,.J

HOME
END
DEL
INS
Backspace

disregards changes made to the data.
The left and right arrow keys move to the left and right.
The up and down arrow keys, and the Enter key, enter the
input then return to the current cell.
moves to the start of the input.
moves to the end of the input.
deletes the character under the cursor.
changes between insert/overwrite mode.
deletes the character to the left of the cursor.

Turbo C Reference Guide

The MicroCalc Parser

This information is provided in case you want to modify the MicroCalc
parser (for instance, you might want to add a function that takes two
parameters). The state and goto information for the parser was created
using the UNIX YACC utility. The input to YACC was as follows:

%token CONST CELL FUNC
%%
e e' +' t

Ie' -' t
I t

t t' *' f
t 'I' f
f

f : x ,A, f
I x

x ' -' u
I u

u CELL' :'
I 0

0 CELL
, (' e ')'
CONST
FUNC '('

%%

MicroCa/c

CELL

e ')'

389

390 Turbo C Reference Guide

..... 1

- •

"11,rll'fll ® TilE IEBI1IP
lJ,j In' .. ~ : IIIIANIIEI
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts al/ these desktop
accessories at your fingertips-Instantly!

A full-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.8

From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." J P II BYTr: - erry ourne e, • ~

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borlillld International, Inc. dBASE is a registered trademark of
Ashton- Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp.
AT&T is a registered trademark of Americilll Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 19B7 Borland International BOR0060C

RAM-resident
Increased productivity for IBM®PCs Of compatibles

SuperKey's simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke

01 your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 1!
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with SuperKey's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your conlidentialliles-conlidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. SuperKey also implements the U.S.
government Data Encryption Standard (DES).

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character
even while running other programs keyboard "type-ahead" buffer to 128

~ PUll-down menus characters

~ Superfast file encryption ~ Real-time delay causes macro playback

~ Choice of two encryption schemes to pause for specified interval

~ On-line context-sensitive help ~ Transparent display macros allow

~ One-finger mode reduces key creation of menus on top of application

commands to single keystroke
programs

~ Screen OFF/ON blanks out and restores ~ Data entry and format control using

screen to protect against "burn in" "fixed" or "variable" fields
~ Command stack recalls last 256

~ Partial or complete reorganization of characters entered keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

Super Key is a registered trademark of Borland International, Inc. IBM, XT, AT, and PCjr are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
80,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Proofreader

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

You can teach Turbo
Lightning new words

You can teach your new Turbo
Lightning your name, business
associates' names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning is the
engine that powers
Borland's Turbo Lightning
Library®

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips-even while you're
running other programs. Turbo
Lightning will also "drive"
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this
first volume in the Turbo
Lightning Library.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DOS) 2.0 or greater.
256K RAM. Hard disk recommended.

BORLAND
INTERNATIONAL

Turbo Lightning and Turbo Lightning Library are registered trademarks of Borland International. Inc.
IBM. XT. AT. and PCjr are registered trademarks of International Business Machines Corp Random
House is a registered trademark of Random House, Inc. Copyright 1987 Borland International

BOR 0070B

Your Development Toolbox and Technical Reference Manual for Thrbo Lightning®

l I G H T N I N G

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine."
More than 20 fully documented Turbo Pascal procedures

reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House® Concise

Word List and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data­
base access systems that will incorporate
and engineer the Turbo Lightning Library®
of electronic reference works.

The ultimate collection 01 word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total) can
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it aiL" Don Roy, Computing Now!

Minimum system configuration: IBM PC, XT, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC·DOS (MS·DOS) 2.0
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95
(not copy protected)

Turbo Pascal. Turbo Lightning and Turbo Lighlning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International. Inc. Random
House is a registered trademark of Random House, Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Macrdnes Corp. MS-DOS is a
registered trademark of Mlcrosofi Corp. CopYright 1987 Borland International SOR0087B

1'££1 £I®THE DATABASE
£rl£J : IAIAIE.

The high-performance database manager
that's so advanced it's easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company's budgets-Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-3,4!l dBASE,4!l PFS: File,4!l
and other applications.

Reflex: The Critics' Choice

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today."
Jerry Pournelle, BYTE

"Everyone agrees that Reflex is the best-looking database they've ever seen."
Adam B. Green, InfoWorld

"The next generation of software has officially arrived." Peter Norton, PC Week

Reflex: don't use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, Al, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/Analytica Inc. Lotus 1·2·3 is a registered trademark of Lotus
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
registered trademark of Software Publishing Corporation. IBM, XT, AT, and IBM Color Graphics
Adapter are registered trademarks of International Business Machines Corporation. Hercules
Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0066C

BEILEI THE WIIRKSHIIP'·
Includes 22 "instant templates" covering a broad range of

business applications (listed below). Also shows you how to
customize databases, graphs, crosstabs, and reports. It's an invaluable

analytical tool and an important addition to another one of
our best sellers, Reflex: The Database Manager.

Fast-start tutorial examples:
Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration
• Scheduling Appointments
• Planning Conference Facilities
• Managing a Project
• Creating a Mailing System
• Managing Employment Applications

Sales and Marketing
• Researching Store Check Inventory
• Tracking Sales Leads
• Summarizing Sales Trends
• Analyzing Trends

Production and Operations
• Summarizing Repair Turnaround

• Tracking Manufacturing Quality Assurance
• Analyzing Product Costs

Accounting and Financial Planning
• Tracking Petty Cash
• Entering Purchase Orders
• Organizing Outgoing Purchase Orders
• Analyzing Accounts Receivable
• Maintaining Letters of Credit
• Reporting Business Expenses
• Managing Debits and Credits
• Examining Leased Inventory Trends
• Tracking Fixed Assets
• Planning Commercial Real Estate Investment

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex:
The Workshop will help you quickly become an expert database analyst.

Minimum system configuration: IBM PC, AT, and XT, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Rellex:
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/ Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International

BOR aaBBB

TURBO PASCAL ®

VERSION 4.0

Turbo Pascal 4.0 has all the features
'furbo Pascal 4.0 now provides an amazing compilation
speed of 27,000 lines per minute, * support for pro­
grams larger than 64K, a library of powerful standard
units, separate compilation, and much more.

The single-pass, native code compiler offers
improved code generation, smart linking to remove
unused code from your programs, built-in project
management, separate compilation using units, output
screen saved in a window, MAP files for use with
standard debuggers, a command-line version of the
compiler and MAKE utility, and built-in support for
8087/80287/80387 math coprocessors.

All these advanced features, pI us the integrated
programming environment, online help, and
Borland's famous pull-down menus, make 'furbo Pas­
cal 4.0 the high-speed, high-performance development
tool every programmer hopes for.

A conversion program and compatibility units help
you convert all your version 3.0 programs to 4.0.

Built-in editor
An improved, full-screen editor for editing, compiling,
and finding and correcting errors from inside the inte­
grated development environment. Supports 25, 43, and
50 lines per screen, tabs, colors, and new command
installation .

Interactive error detection
The compiler instantly locates errors, automatically
activates the editor, and shows you the location of the
error in the source code.

Pick list
Lets you pick a file from a list of the last eight files
loaded into the editor and opens it at the exact spot
where you last edited the file. It even remembers your
last search string and search options.

Free MicroCalc spreadsheet
A new and improved version of the full-fledged
spreadsheet included on your 'furbo Pascal disk. abso­
lutely free! You get the complete, revised source code.
ready to compile and run.

Other '/echnical Features:
o Several powerful standard units (System Dos, Crt,

and Graph)
o Device-independent graphics support for CGA,

MCGA, EGA, VGA, Hercules, AT&T 6300, and IBM
3270 PC

o Extended data types, including Longlnt
o Optional range- and stack-checking; short-circuit

Boolean expression eval uation
o Support for inline statements, in line macros. and

powerful assembly language interface
o Faster software-only floating pOint; toggle switch for

80x87 support including Single, Double,
Extended, and Comp IEEE reals (with numeric
coprocessor)

o Automatic execution of initialization and exit code for
each unit

o Nested include files up to 8 levels deep, including
main module and units

o Operating system calls and interrupts
o Interrupt procedure support for ISRs
o Variable and value typecasting
o Shell to DOS transfer

Suggested retail price $99.95
(not copy protected)

Minimum system requirements: For the IBM PS/T aoo the IBM- aoo Com­
paq. families of persooal computers aoo all 100% compatibles. Integrated
envirmment: 384K: commaoo line: 256K: one f1qJPY drive.
*Run 00 an 8MHz IBM AT

All Borland products are trademarks or registered trademarks of Borland International. Inc.
Other brand and product names are trademarks or registered trademarks of their respective
holders. Copyright C1987 Borland International. Inc BaR 0506A

TURBO PASCAI® TUTIIR
VERSION 4.0

Borland's Turbo Pascal Tutor is every­
thing you need to start programming in
Turbo Pascal. It takes you from the
bare basics to advanced techniques in
a simple, easy-to-understand fashion.

Now you can learn Pascal from the industry's
top authority: Borland International, maker of
Turbo Pascal. Borland's Turbo Pascal Tutor is the
comprehensive Pascal learning package you've
been waiting for. It consists of a manual that takes
you from the basics up to the most advanced tricks,
and a disk containing sample programs as well as
learning exercises.

Turbo Pascal Tutor comes with thousands of
lines of commented source code on disk, ready for
you to compile and run. Files include all the sam­
ple programs from the manual as well as several
advanced examples dealing with window manage­
ment, binary trees, and real-time animation.

The Turbo Pascal Tutor manual perfectly com­
plements the disk exercises: It is designed as both
a quick reference and a study guide to new topics.
The manual consists of three parts:

Part I: Turbo Pascal for the
Absolute Novice.
This qUick-start tutorial gives you a concise history
of computer programming languages, an explana­
tion of computer functions, and a summary of how
to write, compile, and run Turbo Pascal programs.

Part II: A Programmer's Guide to
Turbo Pascal
This section covers the specifics of Turbo Pascal:
program structure, data types, control structures,
procedures, functions, arrays, strings, records,
sets, pointers, dynamic allocation, files, and-last
but not least-units (an important addition to
Turbo Pascal 4.0). Bringing all these concepts
together, the section culminates in an explanation
of a working program: the Turbo TYPIST program
(which is also provided on disk).

Part III: Advanced Programming.
This high-powered section of the Tutor takes you
through such sophisticated topics as stacks, queues,
lists, binary trees, graphs, and linked structures.
Sorting and searching techniques follow, as do sec­
tions on typed constants, numbering systems, and
Boolean integer operations.

Technical Features
o Includes disk and 400-page manual
o Covers all aspects of Turbo Pascal programming
o Describes the advanced features of

Turbo Pascal 4.0
o Useful for both novice and experienced

programmers
o Thousands of lines of fully commented example

programs

Suggested retail price: $69.95
(not copy protected)

Minimum system requirements: For the IBM PS/2~ and the IBM" and
Compaq" families of personal computers and all 100% compatibles. pe­
DOS (MS-DOS") 2.0 or later. 256K memory. Turbo Pascal 4.0 or later.

All Borland products are trademarks or registered trademarks of Borland International, Inc. A
Borland Turbo Tutor" product. Other brand and product names are trademarks or registered
trademarks of their respective holders. Copyright C1987 Borland International, Inc

BOR 0525A

TURBO PASCAl®

DATABASE TOOLBOX
VERSION 4.0

With the Turbo Pascal Database
Toolbox you can build your own
powerful, professional-quality data­
base programs. And like all other
Borland Toolboxes, it's advanced
enough for professional programmers
yet easy enough for beginners.

Ready-to-use modules
The Toolbox enhances your programming with

two problem-solving modules: Turbo Access and
Turbo Sort.

Turbo Sort uses the Quicksort method to sort.
data on single items or on multiple keys. Features
virtual memory management for sorting large
data files. (Commented source code is included
on the disk.)

Turbo Pascal Access quickly locates, inserts, or
deletes records in a database using B+ trees-the
fastest method for finding and retrieving database
information. (Source code is included.)

Trainer is a demonstration program that graphi­
cally displays how B+ trees work. You can key in
sample records and see a visual index of B+ trees
being built.

The Toolbox also includes routines for importing
and exporting Reflex® database files to use with
your database programs.

Free sample database
Included is a free sample database with source
code. Just compile it, and it's ready to go to work
for you-you can use it as is or customize it. You
can search the database by keywords or numbers,
and update, add or delete records, as needed.

Saves you time and money
If you're a professional programmer writing

software for databases or other applications where
search-and-sort capabilities are important, we can
save you time and money. Instead of writing the
same tedious but essential routines over and over
again, you can simply include any of the Toolbox's
modules in your own compiled programs.

Technical Features
o Maximum data/index files open: 15 files
o Maximum file size: unlimited
o Maximum record size: 64K
o Maximum number of records: +2 billion
o Maximum key size: 256 bytes
o Maximum number of keys: +2 billion

Suggested retail price $99.95
(not copy protected)

Minimum system requirements: For the IBM PS/T and the IBMs and
CompaqS families of personal computers and all 100% compatibles run­
ning Turbo Pascal 4.0. PC-DOS (MS-DOS") 2.0 or later. Memory: 256K.

All Borland products are trademarks or registered trademarks of Borland International. Inc
Other brand and product names are trademarks or registered trademarks of their respective
holders. A Borland Turbo Toolbox

s product. Copyright Cl 1987 Borland International
BOR 0576

TURBO PABCAI®

IIRAPHII fOOIBOIl
VERSION 4.0

Even if you're new to Turbo Pascal pro­
gramming, the 'furbo Pascal Graphix
Thol box will get you started
immediately.

It's a collection of tools that will get you right
into the fascinating world of high-resolution busi­
ness graphics, including graphics window manage­
ment. You get immediate, satisfying results. And
you never have to pay royalties-even if you dis­
tribute your own compiled programs that include
all or part of the Thrbo Pascal Graphix Tholbox
procedures.

The Tholbox Includes
o Commented source code on disk.
o Thols for drawing simple graphics.
o Thols for drawing complex graphics, including

curves with optional smoothing.
o Routines that let you store and restore graphic

images to and from disk.
o Thols allowing you to send screen images to

Epson®-compatible printers.
o Full graphics window management
o Two different font styles for graphic labeling
o Choice of line-drawing styles

Suggested retail price $99.95
(not copy protected)

o Routines that will let you quickly plot functions
and model experimental data.

o Routines that are structured into Pascal units so
you don't have to recompile the toolbox code
everytime you use it.

If you ever plan to create Thrbo Pascal programs
that make use of business graphics or scientific
graphics, you need the Thrbo Pascal Graphix
Tholbox.

" While most people only talk about low­
cost personal computer software, Borland has
been doing something about it. And Borland
provides good technical support as part of the
price.

John Markov & Paul Freiberger,

syndicated columnists. "

Minimum system requirements: For the IBM PS/2~. and the IBM- and
Compaq- families of personal computers and all 100% compatibles. Thrbo
Pascal 4.0 or later. 256K RAM minimum. Two disk drives and an IBM
Color Graphics Adapter (CGA). IBM Enhanced Graphics Adapter (EGA).
IBM 3270 PC. ATI 6300. or Hercules Graphics Card or compatible.

All Borland products are trademarks or registered trademarks of Borland International. Inc.
A Borland Turbo Toolbox- product. Other brand and product names are trademarks or
egistered trademarks of their respective holders. Copyright C1987 Borland International,
Inc. BOA 0492

TURBO PASCAl®

EBITBR TBBIBBX
VERSION 4.0

Build your own text editor or word
processor with the 'furbo Pascal
Editor lbolbox routines

Turbo Pascal Editor Toolbox gives you three differ­
ent text editors. You get the code, the manual, and
the know-how. We provide all the editing routines.
You plug in the features you want. You can build a
WordStar®-like editor, with pull-down menus like
Microsoft Word®, and make it as fast as
WordPerfect®.

This is what you'll get
D MicroStar: A full-blown text editor with a

complete pull-down menu user interface.
D FirstEd: A complete editor equipped with block

commands, windows, and memory-mapped
screen routines

D Binary Editor: Written in assembly language, a
"black box" that you can easily incorporate into
your programs.

To demonstrate the tremendous power of Turbo
Pascal Editor Toolbox, we give you the source code
for MicroStar and FirstEd, optimized for Turbo
Pascal 4.0.

MicroStar gives you
D An easy-to-use pull-down menu user interface.
D A RAM-based editor that handles very large files

at lightning speed.
D Multiple text windows, up to 6 on screen at once.
D Colors you can install and customize, then save

your setup.
o Shell to DOS-execute system commands without

leaving the editor.
D Online context-sensitive help system.
D Spell-checking with Turbo Lightning macros­

use the standard set or create your own.

MicroStar gives you all the convenience and
standard features of any advanced word processor,
plus more.

D Easy installation and operation
D Adjustable/"smart" tab toggle
D Search, replace, and search/apply macro options
D Background printing
D Print formatting commands

" A 'write your own word processor'
program for intermediate-level programmers,
with lots of help in the form of prewritten
procedures covering everything from word
wrap to pull-down windows.

Peter Feldmann, PC Magazine "

Best of all, you get the source code!

Include Turbo Pascal Editor Toolbox
routines in your programs.
And pay no royalties.

Suggested retail price $99.95
(not copy protected)

Minimum system requirements: The Turbo Pascal Editor Toolbox requires
an IBM PC. XT. AT. Portable. 3270. PCjr. or Compaq or any true compati­
bles with a minimum of 256K. running PC-DOS (MS-DOS8) 2.0 or greater.
You must be using Turbo Pascal 4.0 for IBM. Compaq and compatibles.

~IIB~~I~~~diu~~~U;;~/~~X~~~~~~~so~~~~1~~~~~~~a~~:~~tSn~!~~I:~~t~~~~:~~~a~/~~9iS'
tered trademarks of their respective holders. Copyright e 1985, 1987 Borland International,
Inc.

BOR 0587

TURBO PASCAl®

CAMEWBRKS®
VERSION 4.0

Three computer games ready to pJay,
Jearn, or modify.
Explore the world of state-of-the-art computer
games with Turbo Pascal GameWorks. Using easy­
to-understand examples, Turbo Pascal GameWorks
teaches you techniques to quickly create your own
computer games. Or, for instant excitement, play
the games we've included on disk-compiled and
ready-to-run.

Turbo Chess
Test your chess-playing skills against your compu­
ter challenger. With Turbo Pascal GameWorks,
you're on your way to becoming a master chess
player. Explore the complete Turbo Pascal source
code and discover the secrets of Turbo Chess.

" What impressed me the most was the fact
that with this program you can become a com­
puter chess analyst. You can add new varia­
tions to the program at any time and make the
program play stronger and stronger chess.
There's no limit to the fun and enjoyment of
playing Turbo GameWorks' Chess, and most
important of all, with this chess program,
there's no limit to how it can help you
improve your game.

George Koltanowski, former President
of the United Chess Federation !J'

Turbo Bridge
Now play the world's most popular card game­
bridge. Play one-on-one with your computer or
play against up to three other opponents. With
Turbo Pascal source code, you can even program
your own bidding or scoring conventions.

" There has never been a bridge program
written which plays at the expert level, and
the ambitious user will enjoy tackling that
challenge, with the format already structured
in the program. And for the inexperienced
player, the bridge program provides an easy­
to-follow format that allows the user to start
right out playing. The user can 'play bridge'
against real competition without having to
gather three other people."

Kit Woolsey, twice champion of the
Blue Ribbon Pairs "

Turbo Go-Moku
Prepare for battle when you challenge your compu­
ter to a game of Go-Moku-the exciting strategy
game also known as "Pente"'". In this battle of
wits, you and the computer take turns placing X's
and O's on a grid of 19 X 19 squares until five
pieces are lined up in a row. Vary the game if you
like, using the source code available on your disk.

Suggested retail price $99.95
(not copy protected)

Minimum system requirements: IBM PS/2. PC, XT, AT, Portable, 3270,
PCjr, and Compaq and true compatibles with 192K system memory, run­
ning PC-DOS (MS-DOS") 2.0 or later. To edit and compile the Turbo Pas­
cal source code, you must be using Turbo Pascal 4.0.

All Borland products are trademarks or registered trademarks of Borland International. Inc.
Other brand and product names are trademarks or registered trademarks of their respective
holders. Copyright ~1987 Borland International, Inc. BOR 0574

TURBO PABCAI®

NUIERICAI IETHODS TOOLBOX
VERSION 4.0

New from Borland's Scientific &
Engineering Division, Turbo Pascal
Numerical Methods Toolbox imple­
ments the latest high-level mathe­
matical methods to solve common
scientific and engineering problems.
Fast.

Whenever you need to calculate an integral,
work with Fourier Transforms or incorporate any
of the classic numerical analysis tools into your
programs, you won't have to reinvent the wheel.
The Numerical Methods Toolbox is a complete col­
lection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools.

It also includes two graphics demo programs,
Least Squares Fit and Fast Fourier Transforms, to
give you the picture along with the numbers.

The Numerical Methods Toolbox is a must for
you if you're involved with any type of scientific or
engineering computing. Because it comes with
complete source code, you have total control of
your application.

What Numerical Methods Toolbox
can do for you:

o Find solutions to equations
o Interpolations
o Calculus: numerical derivatives and integrals
o Matrix operations: inversions, determinants,

and eigenvalues
o Differential equations
o Least squares approximations
o Fourier transforms

Five free ways to look at "Least
Squares Fit"!

As well as a free demo "Fast Fourier Trans­
forms," you also get "Least Squares Fit" in 5 dif­
ferent forms-which gives you 5 differerit methods
of fitting curves to a collection of data points.
The different forms are:

1. Power
2. Exponential
3. Logarithm
4. 5-term Fourier
5. 5-term Polynomial

They're all ready to compile and run "as is." To
modify or add graphics to your own programs. you
simply add Turbo Pascal Graphix Toolbox (version
4.0 or later) to your software library. Our Numeri­
cal Methods Toolbox is designed to work hand-in­
hand with our Graphix Toolbox to make profes­
sional graphics in your own programs an instant
part of the picture!

Suggested retail price $99.95
(not copy protected)

Minimum system configuration: For the IBM PS/2~. and the IBM- and
Compaq8 families of personal computers and all 100% compatibles. PC­
DOS (MS-DOS") 2.0 or later. 256K. Turbo Pascal 4.0 or later. The graph­
ics modules require a graphics monitor with an IBM CGA. IBM EGA.
IBM 3270 PC. ATT 6300. or Hercules compatible adapter card. and
require the Turbo Pascal Graphix Toolbox version 4.0 or later. An 8087
or 80287 numeric coprocessor is not required. but recommended for
optimal performance. Apple Macintosh version of this program is also
available.

All Borland products are trademarks or registered trademarks of Borland International, Inc. A
Borland Turbo Toolbox" product. Other brand and product names are trademarks. or regis·
tered trademarks of their respective holders. Copyright C1987 Borland International

BOR 0490A

the natural language of ArtiflCiallntelrl9ence
Turbo Prolog brings fifth-generation supercomputer

power to your IBM®PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica­
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.

Turbo Prolog is a declarative language
which uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog compiler that is a variation of the

Clocksin and Mellish Edinburgh standard Prolog.
o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

--..:::.
BORLAND

---::::- INTERNATIONAL

Turbo Prolog provides
a fully integrated pro­
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.

You get the complete
Turbo Prolog program­
ming system
You get the 200-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog six-pass

compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database
deSigned and developed around U.S.
geography. You can modify it or use
it "as is.")

Minimum system configuration: IBM PC, XT, AT,
Portable, 3270, PCjr, and true compatibles. PC-DDS
(MS-DOS) 2.0 or later. 384K RAM minimum.

Suggested Retail Price $99.95
(not copy protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of
Borland International. Inc. IBM AT, XT, and PCjr are registered trademarks of
International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp
Copyright 1987 Borland International BOR 00160

'U.BII '.lIlIlS™
1111111111

Enhances Turbo Prolog with more than 80 tools
and over 8,000 lines of source code

Turbo Prolog, the natural language of Artificial Intelligence, is the
most popular AI package in the world with more than 100,000 users.

Our new Turbo Prolog Toolbox extends its possibilities.

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th-generation computer programming
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80
tools and over 8,000 lines of source code that can be incorporated into your programs, Quite easily.

Turbo Prolog Toolbox features include:
@ Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
@ Complete communications package: supports XModem protocol
@ File transfers from Reflex,f!l dBASE 1I1,f!l Lotus 1-2-3,f!l Symphony@)
@ A unique parser generator: construct your own compiler or Query language
@ Sophisticated user -interface design tools
@ 40 example programs
@ Easy-to-use screen editor: design your screen layout and I/O
@ Calculated fields definition
@ Over 8,000 lines of source code you can incorporate into your own programs

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10
or higher. Dual-floppy disk drive or hard disk. 512K.

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland Internalional, Inc. Reflex
is a registered trademark of Borland/ Analytica, Inc. dBASE III is a registered trademark of
Ashton-Tale. Lotus 1-2-3 and Symphony are registered trademarks of Lotus Development
Corp. IBM, XT, and AT are registered trademarks of Inlernational Business Machines Corp.
MS-DOS is a registered trademark of Microsoft Corp. BOR 0240

ll1Rl1I IABIC®
The high-speed BASIC you've been wailing for!

You probably know us for our Turbo Pascal@> and Turbo Prolog.@> Well, we've done
it again! We've created Turbo Basic, because BASIC doesn't have to be slow.

/I BASIC taught you how to walk, Turbo Basic will teach you how to run!
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development envir-
0nment with an amazingly fast compiler, an interactive editor and a trace debugging system. And because
Turbo Basic is also compatible with BASICA, chances are that you already know how to use Turbo Basic.

Turbo Basic ends the basic confusion
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is right,
the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing Borland
family of programming languages we call the "Turbo Family." And hundreds of thousands of users are
already using Borland's languages. So, welcome to a whole new generation of smart PC users!

Free spreadsheet included with source code!
Yes, we've included MicroCalc,'· our sample spreadsheet, complete with source code. So you can get
started right away with a "real program." You can compile and run it "as is," or modify it.

A technical look at Turbo Basic
B Full recursion supported
B Standard IEEE floating-point format
B Floating-point support, with full 8087 copro­

cessor integration. Software emulation if no
8087 present

B Program size limited only by available
memory (no 64K limitation)

B EGA, CGA, MCGA and VGA support
B Full integration of the compiler, editor, and

executable program, with separate windows
for editing, messages, tracing, and execution

B Compile and run-time errors place you in
source code where error occurred

B Access to local, static and global variables
B New long integer (32-bit) data type
B Full 80-bit precision
B Pull-down menus
B Full window management

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configuration: IBM PC, AT, XT, PS/2 or true compatibles. 320K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later.

Turbo Basic, Turbo Prolog and Turbo Pascal are registered trademarks and MicroCalc is a trade­
mark of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.
Copyright 1987 Borland International BOR 0265B

1BRBII BABIC@
DATABASE TBBlBBI"

With the Turbo Basic Database Toolbox you can build your own
powerful, professional-quality database programs. And like al/ other

Borland Toolboxes, it's advanced enough for professional
programmers yet easy enough for beginners.

Three ready-to-use modules
The Toolbox enhances your program­

ming with three problem-solving
modules:
Turbo Access quickly locates, inserts,
or deletes records in a database using
B+ trees-the fastest method for finding
and retrieving database information.
(Source code is included.)
Turbo Sort uses the Quicksort
method to sort data on single items
or on multiple keys. Features virtual
memory management for sorting large
data files. (Commented source code
is on disk.)
TRAINER is a demonstration program
that graphically displays how B+ trees
work. You can key in sample records and
see a visual index of B+ trees being
built.

Free sample database
Included is a free sample database

with source code. Just compile it, and it's
ready to go to work for you-you can
use it as is or customize it. You can
search the database by keywords or
numbers, update records, or add and
delete them, as needed.

Saves you time and money
If you're a professional programmer

writing software for databases or other
applications where search-and-sort capa­
bilities are important, we can save you
time and money. Instead of writihg the
same tedious but essential routines over
and over again, you can simply include
any of the Toolbox's modules
in your own compiled programs.

Technical Features
@ Maximum number of files open: 15 files,

or 7 data sets
@ Maximum file size: 32 Mb
@ Maximum record size: 32K

@ Maximum number of records: +2 billion
@ Maximum field size: 32K
@ Maximum key size: 128 bytes
@ Maximum number of keys: +2 billion

Suggested Retail Price: $99.95 (not copy protected)

Minimum system requirements: For the IBM PS/2 and the IBMe and Compaqe families of personal computers and all 100% compatibles, running
Turbo Basic 1.0. PC-DOS (MS-Dose) 2.0 or later. Memory: 640K.

All Borland products are registered trademarks or trademarks of Borland
International. Inc. or Borland! Analytica, Inc. A Borland Turbo Toolbox pro­
duct. Other brand and product names are trademarks or registered trade­
marks of their respective holders. Copyright 1987 Borland International

BOR 0384A

TURBB BABIC®
EI11111 11111lllll"

With Turbo Basic we gave you the fastest BASIC around. Now the
Turbo Basic Editor Toolbox will help you build your own superfast

editor to incorporate into your Turbo Basic programs. We provide all
the editing routines. You plug in the features you want!

Two sample editors with source code
To demonstrate the tremendous power of the Toolbox, we've included two sample editors

with complete source code:
FirstEd. A complete editor with windows, block commands, and memory-mapped screen
routines, all ready to include in your programs.
MicroStat": A full-blown text editor with a pull-down menu user interface and all the standard
features you'd expect in any word processor. Plus features other word processors can't begin
to match:

g RAM-based editor for superfast editing g Multitasking to let you print in the
g View and edit up to eight windows at a "background"

time g Keyboard installation for customizing
g Support for line, stream, and column command keys

block mode g Custom designing of colors for text,
g Instant paging, scrolling, and text windows, menus, and status line

display g Support for DOS functions like Copy
g Up to eight hidden buffers at a time to file, Delete file, Change directory, and

edit, swap, and call text from Change logged drive

Build the word processor of your choice!
We give you easy-to-install modules. Use them to build yourself a full-screen editor with

pull-down menus, and make it work as fast as most word processors-without having to
spend hundreds of dollars!

Source code for everything in the Toolbox is provided. Use any of its features in your own
Turbo Basic programs or in programs you develop for others. You don't even have to pay
royalties!

Suggested Retail Price: $99.95 (not copy protected)

Minimum system requirements: For the IBM PS/2" and the IBM@ and Compaqe families of personal computers and all 100%
compatibles running Turbo Basic 1.0. PC-DOS (MS-DOS"') 2.0 or greater. Memory: 640K.

--= (~ @ BORLAND
"""=#' INTERNATIONAL

All Borland producls are trademarks or registered trademarks of Borland
International, Inc. or Borland/ Analytica. Inc. Other brand and product names
are trademarks or registered trademarks of Iheir respective holders. A Bor­
land Turbo Toolbox product. Copyright 1987 Borland International BOR 0383

E"'EIA: 'HE S'lVE'"
The solution to your most complex

equations-in seconds!
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without. having to learn numerical approximation
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka
is easy to learn and easy to use-as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead of eventually!
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka,
there's no guessing, no dancing in the dark-you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver
II's easy.
1. Enter your equation into the

full-screen editor
2. Select the "Solve" command
3. Look at the answer
4. You're done

. Some of Eureka's key features
You can key in:
s' A formula or formulas
s' A series of equations-and solve for

all variables
s' Constraints (like X has to be

< or = 2)
s' A function to plot
s' Unit conversions
s' Maximization and minimization problems
s' Interest Rate/Present Value calculations
s' Variables we call "What happens?," like

You can then tell Eureka to
• Evaluate your solution
• Plot a graph
• Generate a report, then send the output

to your printer, disk file or screen
• Or all of the above

Eureka: The Solver includes
s' A full-screen editor
s' Pull-down menus
s' Context-sensitive Help
s' On-screen calculator
s' Automatic 8087 math co-processor

chip support
s' Powerful financial functions
s' Built-in and user-defined math and

financial functions
s' Ability to generate reports complete with

plots and lists
"What happens if I change this variable to
21 and that variable to 27?"

s' Polynomial finder
s' Inequality solutions

Minimum system configuration: IBM PC, AT, XT, PS/2, Portable,
3270 and true comJ}atibles. PC-DOS (MS-DOS) 2.0 and
later. 384K.

Suggested Retail Price: $167.00
(not copy protected)

Eureka: The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered
trademarks of International Business Machines Corp. MS-DOS is a registered tradernark of
Microsoft Corp. Copyright 1987 Borland International BOR 0221 B

OUATTRO~
THE PROFESSIONAL SPREADSHEET

Borland's super graphic new genera­
tion spreadsheet: Twice the power at
half the price! Ten types of presen­
tation-quality graphs. Compatible with
1-2-3®, dBASE®, Parado~ and other
spreadsheets and databases.

Quattro, Borland's new generation professional
spreadsheet, proves there are better and faster
ways to get your work done-whether it's gra­
phics, recalculations, macros, or search and sort.

Presentation-quality graphics
Quattro has excellent built-in graphics capabili­

ties that help you create a wide variety of graphs.
Bar graphs, line graphs, pie charts, XY graphs,
area charts-you can create up to 10 types of
graphs, and print them directly from the spread­
sheet or store them for future use.

Smarter recalculation
When a formula needs to be recalculated,

Quattro uses "intelligent recalc" to recalculate
only those formulas whose elements have changed.
This makes Quattro smarter and faster than other
spreadsheets.

Greater macro capability
You can create macros instantly by recording

your actions and storing them in the spreadsheet.
The number of macros is limited only by memory.
A built-in macro debugging environment makes it
easy to find and correct problem areas. Quattro
also includes a set of over 40 macro commands
which make up a programming language.

Suggested retail price $199.95
(not copy protected)

Direct compatibility
Quattro can directly load and use data files

created with other spreadsheet and database pro­
grams like 1-2-3, dBASE, and Paradox. Quattro can
read and even write WKS, WK1, and WKE files. You
can also import ASCII and other text files into the
spreadsheet.

Easy installation
Quattro can detect most computers and screen

types, so it's always ready to load and run!
Plus, like all other Borland products, Quattro is

not copy protected!

Technical Features
o Understands your 1-2-3 macros
o 100 built-in financial and statistical functions
o Menu Builder add-in for customizing menus
o Supports 8087/80287 math coprocessors
o Supports EGA, CGA, and VGA graphics adapters
o Pop-up menus
o Shortcuts to menu commands
o Context-sensitive online help
o Three types of choice lists: @functions and syn­

tax, macro commands, and existing block names
o Pointing lets you specify a block of cells using

arrow keys
o Search (or Query) lets you find speCific records

or cells
o Lets you arrange/rearrange data in alphabetical,

numerical, or chronological order
o Supports Expanded Memory Specification to

create spreadsheets larger than 640K
o Supports PostScript" printers and typesetters

Minimum system requirements: For the IBM PS/2~ and the IBM- and
Compaq- families of personal computers and all 100% compatibles. PC­
DOS (MS-DOS-) 2.0 or later. Two floppies or a hard disk. 384K.

Quattro and Paradox are trademarks of Borland International. Inc. Lotus and 1-2-3 are regis­
tered trademarks of Lotus Development Corp. Other brand and product names are trade­
marks or registered trademarks of their respective holders. Copyright 01987 Borland Interna­
tional. Inc. BOR 0414A

.,nrll'fll® THE BEBKJIIP 1J'"'n' .. ~ : IIBIiAN/IEB Release 2.0
MacintoshT

•

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook'": The Outliner
and MacPlanT

": The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ PhoneLog
~ Analog clock
~ Alarm system
~ Calculator
~ Report generator
~ Telecommunications (new version now

supports XModem file transfer protocol)

• 1367'S S.lu ~

o 1594'E SaliosB

B 29.6115 To1.aIRf'vtnuE'S

!ll 0>

• 0" Expfflm

[J O.31~ Labor

[]I "'66'SIiI NatKia'l;

~ 6219i1 Ovtrht.d

o 1'.IB1!i Tol.IExpfOsK

El 0>
.,8.43'15 l'If'tProfll

MacPlan does both spreadsheets and business
graphs. Paste them into your Outlook files and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland
International, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 1987 Borland International BOR 00690

BEllEX® PlUB: :"£IAIABASE
Ma~iltBsh ™

All the Power & Flexibility of a Relational Database Made Easy!
Reflex Plus: The Database Manager is the first relatiqlJ~1 database that's

easy to learn, powerful, and aimed at your needi"Reflex Plus is
not a mere file organizer, nor is it a monstrously complicated behemoth

aimed solely at consultants. Reflex Plus is the only relational database
aimed at your needs and time constraints.

Reflex Plus accomplishes this qy taking full advantage of the
Macintosh's superior graphic ability while still giving users what
they want: unlimited flexibility in creating databases, accessing
data, and producing reports.

What puts the plus into Reflex Plus?
Borland listens to its customers and has added the most­

asked-for features and improvements to Reflex Plus.

High-powered leatures 01 Rellex PllJs:
~ Multiple entry forms for the same database.
~ Entry for more than one database in a single entry form.
~ Your choice of having an entry form that shows one record

at a time, or one that shows all the records at once.
~ Calculated fields in entry forms.
~ Display-only fields.
~ Default (but editable) fields.
~ New functions like GROUPBY, which lets you easily show

records grouped by values in common.
~ A selection of useful templates.
~ Larger record size. (You can now choose record sizes of

1000, 2000, or 4000 characters.)
Check out these Reflex Plus leatures:
~ Visual database design. •
~ A "what you see is what you get" design capability both

for entry forms and reports.
~ Compatible with all Macintoshes with at least 512K,

including the SE", and Macintosh II:"
The heart 01 Rellex Plus is in its special functions with

which you create formulas. With over 50 function words to
choose from, you are given all the power of programming with­
out struggling with complex syntax. Reflex Plus functions are
straightforward and can handle all types of data.

Armed with these functions, you create formulas that
sort, search, calculate, quantify, qualify-you name it. And if
you don't feel up to writing the formula yourself, Reflex Plus
will do it for you. Using the FormulaBuild dialog box, you can
master even the most complicated formula.

Display grouped data. Reflex Plus gives you unlimited
flexibility when you want to display your data grouped in mean­
ingful ways.

Flexible entry forms. Most databases have a data entry
form, and that's that. Reflex Plus lets you design your own (but
if you don't want to bother, Reflex Plus will make one for you).
Here are just some of the options available in your entry forms:
~ View all records at once.
~ View one record at a time.
~ Enter data into many databases at once.
~ Use calculated fields.
~ Default values in fields, display-only values, and lots more.
Convenience and Ease
~ Preset entry forms. Let Reflex Plus create an entry

form for you.
~ Preset reports. Let Reflex Plus create a table-style

report for you.
~ Paste Formula command. Let Reflex Plus guide you

through the steps of creating formulas for power searching
and data manipulation.

~ On-line help facility. Reflex Plus has an extensive on­
screen, context-sensitive help feature.

~ Paste Choice command. This command lets you paste
in fields that duplicate all the attributes of another field. A
great time saver. The·command als6 lets you build formu­
las by pointing and clicking.

~ Auto-save. You'll never lose data again with Reflex
Plus's auto-save feature.

Database specifications: Maximum single field length: 4072 bytes. Maximum fields per record: 254. Maximum record length: 4080 bytes.
Maximum records per file: limited only by disk capacity. Maximum number of linked database files: 200. Maximum number of open windows:
15. Maximum number of files that can be used by a report: no limit.

Suggested Retail Price: $279.00 (not copy protected)
Minimum system requirements: Runs on any Macintosh With at least 512K memory. Minimum setup is one BOOK (double-sided) disk drive or two 400K (single-sided)
drives. Works with the Hierarchical File System, Switcher, and most hard disks. Supports printing on the ImageWriter and the LaserWriter

Reflex is a registered trademark of Borland/Analyllca, Inc. Other brand and pro­
duct names are trademarks or registered trademarks of their respective
holders. Copyright 19B7 Borland International BOR 0149A

TURBO PASCAI®
MACINTOSHTM

Borland's Macintosh version of Turbo
Pascal is so incredibly fast that it can
compile 1,420 lines of source code in
the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes,
which is plenty of time for 'furbo Pascal to compile at
least 60,000 more lines of source code!

Turbo Pascal does both Windows and
Units

The separate compilation of routines offered by
'furbo Pascal creates modules called Units, which can
be linked to any'furbo Pascal program. This modular
pathway gives you pieces that can be integrated into
larger programs. You can use memory more efficiently
and reduce the time it takes to develop large
programs.

Turbo Pascal is so compatible with
MPW that they should be living
together

You can compile and ru'n routines from Macintosh
Programmer's Workshop Pascal and Inside Macintosh
with only the subtlest changes. 'furbo Pascal is also
compatible with the Hierarchical File System of the
Macintosh.

The 27-second Guide to Turbo Pascal
o Compilation speed of more than 12,000 lines

per minute
o Unit structure lets you create programs in

mod u lar form
o Multiple editing windows-up to 8 at a time
o Compilation options include compiling to disk or

memory, or compile and run
o No need to switch between programs to compile

or run a program
o Streamlined development and debugging
o Compatibility with Macintosh Programmer's Work­

shop Pascal (with minimal changes)
o Compatibility with Hierarchical File System of

your Macintosh
o Ability to define default volume and folder names

used in compiler directives
o Search and change features in the editor speed up

and simplify alteration of routines
o Ability to use all available Macintosh memory with­

out limit
o Units included to call all the routines provided by

Macintosh Toolbox

Suggested Retail Price: $99.95
(not copy protected)

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk
drive,

All Borland products are trademarks or registered trademarks of Borland International, Inc,
Other brand and product names are trademarks or registered trademarks of their respective
holders. Copyright © 1987 Borland International, Inc BaR 0167B

TURBII PABCAl®

1U1111
From the folks who created Turbo Pascal. Borland's new
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the MacintoshfM It takes

you from the bare basics to advanced programming in a
simple, easy-to-understand fashion.

No gimmicks. It's all here.

The manual, the Tutor application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here's how the manual is set
up:

Turbo Pascal for the Absolute Novice
delivers the basics-a concise history of Pascal,
key terminology, your first program.

A Programmer's Guide to Turbo Pascal
covers Pascal specifics-program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.

Advanced Programming
takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro­
grams, and more.

Using the Power of the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.

Programming the Macintosh in Turbo Pascal
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets
you run a procedure and view its source code
simultaneously. After running it, you can take a
test on the procedure. If you're stuck for an
answer, a Hint option steers you in the right
direction.

Macintosh topics included are
g memory management g menus
g resources and resource files g desk accessory support
g QuickDraw g dialogs
g events g File Manager
g windows g debugging
g controls

Suggested Retail Price: $69.95

=0 (i~lC BORLAND
$ INTERNATIONAL

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal.

Turbo Pascal and Turbo Tulor are regislered trademarks ot Borland Inlernallonal, Inc. OIher brand and product names are trade-
marks or registered trademarks ot their respective holders. Copyright!:) 1987 Borland tnternational BOR 0381

1111111 PASCAl TlllllllIlTM

NUMERICAlME1I"B
Turbo Pascal Numerical Methods Toolbox for the Macintosh

implements the latest high-level mathematical methods to solve
common scientific and engineering problems. Fast.

So every time you need to calculate an integral, work with Fourier transforms, or incorporate any of
the classical numerical analysis tools into your programs, you don't have to reinvent the wheel, because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs that use
least-square and Fast Fourier Transform routines to give you the picture along with the numbers.

The Turbo Pascal Numerical Methods Toolbox is a must if you're involved with any type of scientific or
engineering computing on the Macintosh. Because it comes with complete source code, you have total
control of your application at all times.

What Numerical Methods Toolbox will do for you:

• Find solutions to equations • Differential equations
• Interpolations • Least -squares approximations
• Calculus: numerical derivatives and integrals • Fourier transforms
II Matrix operations: inversions, determinants, and eigenvalues • Graphics

Five free ways to look at Least-Squares Fit!
As well as a free demo of Fast Fourier Transforms, you also get the Least-Squares Fit in

five different forms-which gives you five different methods of fitting curves to a collection
of data pOints. You instantly get the picture! The five different forms are

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Poynomial

They're all ready to compile and run as is.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system reqUirements: Macintosh 512K. Macintosh Plus, SE, or II, with one BOOK disk drive (or two 400K)

= j ~ 0 BORLAND
-W INTERNATIONAL

All Borland products are trademarks or registered trademarks of Borland International,
Inc. or Borland/ Analytica, Inc. Macintosh is a trarJemark licensed to Apple Computer,
Inc. Copyright 19B7 Borland InternationaL A BOlland Turbo Toolbox product

BOR 0419

EUREKA: THE SOLVE'"
If you're a sCientist, engineer, financial analyst, student, teacher, or any

other professional working with equations, Eureka: The Solver can do
your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimiza­
tion problems, plots functions, generates reports,
and saves an incredible amount of time. Even if
you're not a computer specialist, Eureka can help
you solve your real-world mathematical problems
fast, without having to learn numerical approximation
techniques. Eureka is easy to learn and easy to
use-as simple as a hand-held calculator.

x + exp(X) = 10 solved instantly instead
of eventually!

Imagine you have to solve for X, where X +
exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going
to take a lot of time guessing at X. With Eureka,
there's no guessing, no dancing in the dark-
you get the right answer, right now. (PS: X =
2.0705799, and Eureka solved that one in less than
5 seconds!)

Some of Eureka's key features
You can key in:
@' A formula or formulas
@' A series of equations-and solve for

all variables
@' Constraints (like X must be < or = 2)
@' Functions to plot
@' Unit conversions
@' Maximization and minimization problems
@' Interest Rate/Present Value calculations
@' Variables we call "What happens?," like

"What happens if I change this variable to
21 and that variable to 27?"

How to use Eureka: The Solver
It's easy.
1. Enter your equation into a problem

text window
2. Select the "Solve" command
3. Look at the answer
4. You're done

You can then tell Eureka to:
III Verify the solutions
1:1 Draw a graph
a Zoom in on interesting areas of the graph
III Generate a report and send the output to

your printer or disk file
III Or all of the above

Eureka: The Solver includes:
@' Calculator+ desk accessory
@' Powerful financial functions
@' Built-in and user -defined functions
@' Reports: generate and save them as

MacWrite'· files-complete with graphs
and lists-or as Text Only files

@' Polynomial root finder
@' Inequality constraints
@' Logging: keep an up-to-the-minute record

of your work
@' Macintosh'· text editor
@' On-screen Help system

Suggested Retail Price: $195.00 (not copy protected)

Minimum system configuration: Macintosh 512K, Macintosh Plus, SE, or II with one BOOK disk drive or two 400K disk drives.

=" ~O BORLAND i INTERNATIONAL

Eureka: The Solver is a trademark of Borland International. Inc. Macintosh is
a trademark of Mcintosh Laboratory. Inc. licensed to Apple Computer, Inc.
Copyright 1987 Borland International BOR 0415

Index

Index

-0,328-29
_8087,27
_doserrno, 21-22
_fmode,24
_mexcep, 162
_osmajor, 26-27
_osminor, 26-27
_psp,25
_read,198
_version, 26-27

A
abort, 30
abs, 30
Absolute value

abs function, 30-31
cabs function, 30-31
fabs function, 30-31
labs function, 30-31

absread, 32
abswrite, 33
ACBP values, 349
access, 33
access mode, 60
acos, 250
Alignment

field, 290, 349
word, 301

Allocation, See Memory allocation
ALLOC.H, 10
allocmem, 35
Alternate entry points, 178
Alternate forms, 185
Arc

cosine function, 250
sine function, 250
tangent function, 250

Argument lists, variable, 254
asctime, 36,71
asin, 250
assert, 37
ASSERT.H, 10, 13
Assertions, 37

Assignment suppression, scanf, 210
atan, 250
atan2, 250
atexit, 39
atof, 40
atoi, 41
atol, 41
Attributes

alignment, 349
combining, 349
word, MS-~OS, 69

B
bdos, 135
bdosptr, 136
Binary

mode, 24,69, 106, 171,220
search, 55-57

BIOS.H, 10
bios interrupt, 49-50, 52
bioscom, 44
biosdisk, 46
biosequip, 49
bioskey, 50
bios memory, 52
bios print, 52
biostime, 53
Bit mask, 232-233
Block commands, 269
Break value, 54
brk, 54
bsearch, 55-57
Buffer manipulation

mem ... , 164
MEM.H, 10,14
movedata, 167
movemem, 168
STRING.H, 11, 14

Buffering
assigned to stream, 216-18
file, 216-17

BUlL TINS.MAK, 338
Byte swapping, 245

Turbo C Reference Guide

c
cabs, 58
calloc, 157
Carriage-return/line-feed

translation, See Mode
Carry flag, 140-41, 143
Case-sensitive link, 350
ceil, 58
cgets, 129
Character

classification, 12, 147
conversion 12,248
conversion type, in printf, 180-182
conversion type, in scanf, 205-207
delete, 268
devices, 149
insert, 268
translation, 248

Characters conversion routines, 12
chdir, 59
_chmod, 60
chmod, 60
Classification routines, 12
_clear87, 62
clearerr, 62,94
_close, 63
close, 63
Co-routines, 154
Color screen, customizing, 379
COMMAND.COM, 246
Command interpreter, See

COMMAND.COM
Command lists in makefiles, 325
Command-line options, 298

CPP, 311
LINK, 343
MAKE,339
TCC, 297

Command-line syntax
MAKE, 336-337

Commands, DOS, 246
Commands, editor, 265
Comparison function

user-written, 56, 194
Complex numbers, 31

Index

CONIO.H, 10, 13
Console, ungetting characters,

116-117
Constants, 358
Control-break interrupt, 135
Conventions, notational, See

Typographic Conventions
Conversion

character, 12,248
input, See scanf
number to string, 79
routines, 12
specifications, 180
string, 12,40
time, 16, 71, 77
to integers & fractions, 101
to numbers, 40
to strings, 79, 149
type characters, in printf, 180-183

coreleft, 157
cos, 65,250
cosh, 65, 137
Cosine, 250
country, 66
CPP, 311-313
cprintf, 67, 177
cputs, 68, 193
_creat, 68
creat, 68
CR-LF translation, See Mode
cscanf, 71, 201
ctime, 71
ctrlbrk, 74
CTYPE.H, 10, 12
Cursor movement, 267-268
Customizing colors, 379-380
Customizing TC, 373-381

D
Data conversion, See also Conversion

atof, 40
atoi, 41
atol, 41
ecvt, 79
fcvt, 93

gcvt, 115
itoa, 149
ltoa, 157
strtod, 237
strtol, 237
ultoa, 149, 252

Date routines, See Time routines
daylight variable, 21
Deallocating memory, See Memory

allocation
Declarations, 364-367
Default translation mode, See Mode
Defined types

atexit_t, 39
_mexcep, 162
va_list, 254

Definitions, external, 369
Detailed segment map, 349
Device drivers, 146
Diagnostics

assert, 29
routines, 13,37-38

difftime, 75
DIRH, 10, 12
Directives

conditional, 333
error, 336
include, 333
MAKE,332
preprocessing, 369
undefine, 336

Directories
change cwd, 59
chdir, 59
cwd, 120
findfirst, 97
findnext, 97
getcurdir, 119
routines, 12,59,97, 119, 166
search, 97,213

disable, 75
Disk

DTA,124
get free space, 123
getdta, 124
I/O, 46
sectors, 32

write verification, 133
Disk transfer address, See DTA
DOS

function Ox31, 151
functions, 150
interrupt, 32, 142
interrupt Ox21, 142
interrupt Ox23, 74, 135
interrupt Ox24, 135
interrupt Ox25, 32
interrupt Ox26, 32
interrupt handler, 74, 135
system call Ox27, 196
system calls, 76, 118, 129,145, 173,
196, 198

DOS.H,10
_doserrno variable, 21-22
dosexterr, 76
dostounix, 77
DTA 124, 196
dup, 78
dup2, 79
Dynamic allocation, See Memory

E
E2BIG,22
EACCES,22
EBADF,22
ECONTR,22
ECURDIR 22
ecvt, 79
Edit window, 264
Editor

commands, 265-274
customizing, 373,375-377

EDOM,22
EINVACC,22
EINVAL,22
EINVDAT,22
EINVDRV,22
EINVENV,22
EINVFNC, 223
EINVMEM,23
Emfile, 23
End-of-file

Turbo C Reference Guide

eof, 80
feof, 94
indicator, 94

ENODEV,23
ENOENT,23
ENOEXEC,23
ENOFILE,23
ENOMEM,23
ENOPATH,23
ENOTSAM,23
environ variable, 25
Environment

inheriting, 82, 226
variable, 83, 125,227

eof, 80
ERANGE,23
ERRNO.H, 10, 11
errno variable, 21
Error

at link time, 346
detection on files, 94
errno, 21, 161
extended, 76
fatal, 278,340,354
handler, hardware, 134
in floating point, 159
in system call, 174
inside .H file, 311
inside macro, 311
locked file, 152
matherr, 161
MS-DOS error codes, 23
perror, 174
strerror, 174,244

Error messages
compiler, 277-292
MAKE, 339-342
non-fatal, 353
options, 305-306
routines, 174, 244
TCC, 277-292
TLINK, 352-254
user-supplied, 244

exception type, 142
EXDEV,23
exec ... , 81

Index

Executing programs from within
programs, 81,224

_exit, 84
exit, 85
exit

code, 30
function, 39, 85
status, 150

exp, 85
Explicit rules, make file, 319-321
Exponential functions

exp, 85
frexp, 85, 112
ldexp, 85, 151
log, 86, 153
log10, 86, 153
pow, 86,177
pow10, 86, 177
sqrt, 86, 229

Expressions, 361
External definitions, 369
EZERO,23

F
fabs, 30
Far memory allocation, See farmalloc
fatinfo structure, 126
FCB, 196
fclose, 92
fcloseall, 93
FCNTL.H, 10
fcvt, 79,93
fdopen, 93, 105
feof, 94
ferror, 94
fflush, 92, 95
fgetc, 95, 116
fgetchar, 96, 119
fgets, 96, 129
field width, output, 186
File

access routine, 33,60, 128
allocation, 126-127
attributes, 69, 130

changing mode, 60
crea ting, 68-70
date and time, 127
delete, 253-254
denying access, 170
dependencies, 315
handle, 63
information, 232
manipulation routines, 14
name, parsing, 180-182
naming, 101, 166
opening, lOS, 169
password, 128
path name construction, 102
path name splitting, 102
pointer, 113, 155
reading, 110, 169
rename, 200
searching for, 213
Segment map, 349
sharing, 152
translation, 24
writing, 110, 169

File handling
access, 33
chmod, 60
filelength, 96
fstat, 114
isatty, 149
mktemp, 166
rename, 200
stat, 232
unlink, 253

File permission mask, See Permission
mask

File pointer positioning, 155-156
File status information, 232
filelength, 96
fileno, 97
find first, 97
find next, 99
Flag characters in printf, 180, 184
Flags

carry flag, 140-141, 143
verify flag, 133

FLOAT.H,10
Floating point

_clear87, 62
_control87,64
errors, recovery from, 159-160
_fpreset, 108
reinitialization, 108
_status87, 233
status, 62,233-234

floor, 100
flushall, 100
Flushing buffers, 92
fmod, 101
_fmode variable, 170
fnmerge, 101
fnsplit, 104
fop en, 105
Format specification, 202,204-212
Format string, 178-180,202
FP_OFF, 107
FP_SEG, 108
_fpreset, 108
fprintf, 109, 177
fputc, 109, 191
fputs, 110, 193
fread, 110
free, 111
freemem, 111
freopen, 105, 112
frexp, 85, 112
fscanf, 112, 120
fseek, 113
fstat, 114
ftell, 115
ftime structure, 127
Function

DOS, 150
exit, 39,85
termination, 39,85

fwrite, 115

G
gcvt, 69, 115
geninterrrupt, 75, 116
getc, 116
getcbrk, 118
getch, 118

Turbo C Reference Guide

getchar, 119
getche, 119
getcurdir, 119
getcwd, 120
getdate, 121
getdisk, 123
getdfree, 123
getdta, 124
getenv, 125
getfat, 126
getftime, 127
getpass, 128
getpsp, 129
gets, 129
gettime, 131
getvect, 132
getverify, 133
getw, 133
Global variables

daylight, 21
_doserrno, 21
environ, 25
errno, 21
_fmode, 24
_osmajor, 26
_osminor, 26
_psp, 25
sys_errlist, 21
sys_nerr, 21
timezone, 21
_version, 26

gmtime, 71, 134
Goto, nonlocal, 153
Grammar

lexical, 357
phrase structure, 361

Greenwich mean time, 71
gsignal, 134,220

H
harderr, 134
hardresume, 137
hardretn, 137
Hardware error handler, 134
Heap, allocation of, 157

Index

HUGE_VAL, See matherr
Hyperbolic cosine, 137
Hyperbolic functions, 137
Hyperbolic sine, 137
Hyperbolic tangent, 137
hypot, 138
Hypotenuse, 138

I
I/O

cgets, 59, 129
cprintf, 67, 177
cputs, 68, 193
cscanf, 71,201
disk, 46
getch, 118
getche, 119
inport, 139
inportb, 139
kbhit, 150
outport, 139, 172
outportb, 139, 172
port, 44
putch, 192
routines, 11, 136, 168
ungetch, 116,252

I/O, low-level
dose, 63
creat, 68
dup, 78
dup2, 78
lseek, 155
open, 169
read, 198
tell, 247
write, 260

I/O, stream
dearerr, 62,94
fclose, 92
fdopen, 93
feof, 94
ferror, 94
fflush, 92, 95
fgetc, 95, 116
fgets, 96, 129

fileno, 97
fopen, 105
fputc, 109, 191
fputs, 110, 193
fread, 110
freopen, 105, 112
fseek, 113
ftell, 113, 115
fwrite, 115
getc, 116
getw, 116, 133
putc, 191
putw, 191,194
rewind, 113,200
setbuf, 216
setvbuf, 216,221
ungetc, 116,252
vfprintf, 258
vfscanf, 258

Identifiers, 358
Implicit rules, 310-316,319,322-325
Include files, 10-16

input/ output routines, 13
interface routines, 14
math routines, 15
memory allocation routines, 15
memory manipulation, 14
miscellaneous routines, 15
process control routines, 12
string manipulation, 14
time and date routines, 16

Inheriting environment 82, 226
Initialization modules, 346
inport, 139-40
inportb, 139-40
Input size modifier, 179
Input/Output, See I/O
int86, 140
int86x, 140
intdos, 142-43
intdosx, 144
Integer

conversion, 149
conversion to strings, See itoa
get from stream, 116

Interface

8086, 14
BIOS, 14
DOS, 14
routines, 14
software interrupt, 140

Interrupt
control-break, 135
disable, 75
enable, 75
function, 132
functions, DOS, 32, 135, 141, 142
generate, 75
handler, DOS, 74, 135
software, 140, 144
software trap, 76
vector, 74, 132

Interrupts, See MS-DOS interrupts
intr, 144
Invoking

CPP, 313
MAKE, 336-337
TCC, 299
TLINK,343
TOUCH,338

ioctl,145
10.H, 10
isalnum, 148
isalpha, 148
isascii, 148
isatty, 149
iscntrl, 148
isdigit, 148
isgraph, 148
islower, 148
isprint, 148
ispunct, 148
isspace, 148
isupper, 148
isxdigit, 148
itoa, 149

J
jmp_buf type, 11, 153
Jump optimization, 303

Turbo C Reference Guide

K
kbhit, 150
keep, 150
Keystroke, testing for, 150
keywords, 358

L
labs, 30-31, 151
ldexp, 85, 151
Lexical grammar, 357
Hind, 55, 151
Libraries, 308, 347
LIMITS.H, 10
Linear searches, 55
Link map option, 308
Linker stand-alone, 343
Load/Save pick list, 377
localtime, 71
lock, 152
log, 85,153
log10, 85, 153
Logarithmic functions

log, 85
log10, 85

longjmp, 74, 153
lsearch, 55, 155
lseek, 155
ltoa, 149, 157

M
Macros

character classification, 147-148
expansion, 311
fileno, 97
getc, 116
getchar, 116
inportb, 139, 140
is ... , 147
outportb, 139, 172
peek, 173
peekb, 173
poke, 175

Index

pokeb, 175
putc, 191
putchar, 191, 192
_tolower, 248,249
_toupper, 248, 249
va_end, 254, 256
va_start, 254,258

Major version number, 26
MAKE directives, 332
MAKE, 314-342
MAKE macros

$* Base file name, 330
$d Defined test, 330
$. File name and extension, 332
$& File name only, 332
$: File name path, 332
$< Full file name, 331
definitions, 327
expansion, 328
in makefiles, 328
invocation, 329

MAKEFILE, See makefile
makefile, 314-343
makefile rules, 320-325
Make file name, 166
malloc, 157
map, link, 308,348
Math errors, See matherr
Math routines

absolute value, 30
ceil, 58, 100
error handling, 31,85, 100, 138
exponential functions, 85-87
floor, 100
fmod, 101
hyperbolic functions, 137
hypotenuse, 138
in math.h, 15
matherr, 159, 161
modulo, 101
polynomial, 176
remainder, 101
rounding, 100
trig functions, 250

MATH.H, 10, 15
_matherr, 159
math err, 161

mem ... ,164
MEM.H, 10, 14
Memory

allocmem, 35
brk, 54
calloc, 58, 157
copying, 164, 167, 168
corel eft, 65, 157
data-segment, 54
dynamic, 157
examining, 173
farcalloc, 88, 89
farcoreleft, 88, 89
farfree, 88, 89
farmalloc, 89
farrealloc, 89,91
free, 111, 157
from far heap, 89
heap, 157
malloc, 157
manipulation routines, 14, 164
moving, 167, 168
realloc, 157
resetting, 164, 168
routines, 15, 164
sbrk, 54, 201

Minor version number, 26
MK_FP, 107, 165
mkdir, 166
mktemp, 166
Mode

autoindent, 264,378
binary, 24,69, 105, 170, 198, 220,
261
_chmod, 60
default edit, 377
file-access, 60
file-translation, 24,69, 105, 170, 198
_fmode, 24,69, 170
insert, 264,377
of open file, 232
overwrite, 264, 377
pick list, 377
screen, 378
setmode, 220
setting, 220
text, 24,69, 105, 170,220,261

translation, 69
modf, 101
Modifiers

argument-type, 204,211
input size, 204, 211

movedata, 167
movmem, 168
MS-DOS

attribute word, 69
call Ox44, 145
commands, 246
error codes, 23
error handling, 21
functions, 150, 152
interface routines, 14
interrupts, 35, 135, 142
system call Ox29, 173
system call Ox48, 35
system calls, 42, 74, 118, 129, 145,
172, 196
version number, 26
version number, detection of, 20

N
NDEBUG,37
NONAME.C, 264
Nonlocal goto, 15,74, 153
Notational conventions, See

Typographic conventions

o
a_BINARY, 24,69, 105, 170, 198,

220,261
a_TEXT, 24,69, 105, 170, 220, 261
_open, 169
open, 169
Open file information, 232-33
Operators, 361
Options

ANSI-compatible code (-A), 305
assembler (-B, -c, -0, -S), 308
calling convention, pascal (-p), 302
case-sensitive link (/ c), 350
code options, 301-303

Turbo C Reference Guide

command line, 297-309
comment nesting (-C), 305
compiler, 300-308
compilation control, 308
CPU options (-1), 301
debugging, 302, 303, 305
default char type (-K), 302
directory, 308
duplicate strings (-d), 301
enabling, 299
environment, 308
error detection, 305
error reporting, 305
file name, 307, 308
floating-point (-f), 302
floating-point emulation, 302
identifier length (-i), 305
ignore default libraries Un), 350
in-line assembly (-B), 308
line numbers (-y), 303,350
linker, 308,348
macro definition (-D), 301
macro preprocessor, 312
memory model (-m ...), 301
menu vs. command line, 298
merging strings (-d), 301
names (-z ...), 307
optimization, 303
preprocessor, 311
processor, See CPU options
register variables (-r), 303
segment names (-z), 307
signed char (-K -), 302
source, 305
stack overflow detection (-N), 302
standard stack frame (-k), 302
trailing segments Ui), 350
unsigned char (-K), 302
warn duplicate symbols Ud), 351
word alignment (-a), 301

_osmajor variable, 26
_osminor variable, 26
outport, 139, 172
outportb, 139, 172
Output, See also I/O

character to stream, 191
character to console, 191-192

Index

field width, 186
formatted, 179
precision, 187
printf, 177

OVERFLOW, 162
Overlapping moves, 165, 168
Overlay of parent process, 81,225

p

Parent process, 81, 225
overlay, 225
suspension, 225

parsfnm, 172-173
peek, 134, 173
peekb, 134, 173
Permission setting, 59,60,69, 170
perror, 22, 174
Phrase structure grammar, 361
Pick list, 377
Pointers, in scanf, 205,207,211-212
poke, 175
pokeb, 175-176
poly, 176
Port I/O, See I/O, console and port
Positioning file pointer, 113, 155
pow, 85,177
pow10, 85, 177
Precision

in printf, 187
output, 187
specifier, 180, 187

Preprocessing directives, 369
Preprocessor

CPP, 311
macro, 312

printf, 177
Printing, See printf
Process control

abort, 30
atexit, 39
exec ... , 81
_exit, 84
exit, 85
routines, 16
spawn ... , 224

system, 246
Process

child, 81, 225
parent, 81,225

PROCESS.H, 10
Program segment prefix, See PSP
Program building, See MAKE
Pseudo-random integers, 195
PSP, 25,129
_psp variable, 25, 129
Punctuators, 361
putc, 191
putch, 192
putchar, 192
putenv, 125, 192
puts, 193
putw, 194

Q
qsort, 194
Quick sort algorithm, 194

R
rand, 195
randbrd, 196-97
randbwr, 196-97
Random block read, 196
Random block write, 197
Random number

generator, 195
seed, 196

Read
from file, 198
random block, 196
segment register, 215

Read access, See Permission setting
Read operations, 202
_read, 198
read, 198
realloc, 157, 199
Reallocation, 157
Redirection, 326

Register, segment, See Segment
registers

REGP ACK structure, 144
Remainder function, See fmod
rename, 200
Response files, 345
rewind, 113,200
rmdir, 166,201
RS-232 communications, 44
Run-Time Library source code, 8
Routines by category, 12

s
sbrk, 54, 201
scanf, 201
Scanning, See Read operations
Search and replace (editor), 271
Search command (editor), 271
Search routines

binary, 55
bsearch, 55
lfind, 55, 151
linear, 55
lsearch, 55, 155
qsort, 194
searchpath, 213

Search set, See scanf
searchpath, 213
Seed, random number, 195
Segment

fixups,90
map, 349

segread, 215
setblock, 35, 215
setbuf, 216
setcbrk, 118,218
setdate, 121,218
setdisk, 123,219
setdta, 124, 219
setftiine, 127,219
setjmp, 153, 220
SETJMP.H, ·11
setmem, 168, 220

Turbo C Reference Guide

setmode, 220
settime, 121,221
setvbuf, 216,221
setvect, 132, 222
setverify, 133,222
SHARE.H, 11
SING, 162
Signal settings, child process, 224
SIGNAL.H, 11
sin, 222, 250
Sine, 250
sinh, 137,223
sleep, 223
Software

interrupt, 140, 144
signals, 230

Sort routine, 194
Sorting, See Searching and sorting
Source to Run-Time Library, 9
spawn ... , 224
Specifications, conversion, 179-180
Specifier,

precision, 187
width, 186,210-211

sprintf, 177, 229
sqrt, 86,229
Square-root function, 86
srand, 195,230
sscanf, 201,230
ssignal, 230
Stack

frame, standard, 302
overflow detection, 302-303

Stand-alone utilities
CPP, 311
MAKE,314
TCC, 297,314
TLINK,343
TOUCH, 338

stat, 232
STAT.H See SYS\STAT.H
Statements, 368
_status87, 233
Status line, Edit window, 264
Status, floating point, 62, 233
STOARG.H, 11
STOOEF.H, 11

Index

stderr,30
STOIO.H, 11
STOLIB.H, 11
stime, 234, 247
stpcopy, 234
str ... , 235
Stream I/O

See also I/O, console and port
clearerr, 62,94
fclose, 92
fcloseall, 92
fdopen, 93, 105
feof, 94
ferror, 94
fflush, 92, 95
fgetc, 95, 116
fgets, 96, 129
fileno, 97
flushall, 92, 100
fopen, 105
fprintf, 109, 177
fputc, 109, 191
fputs, 110, 193
fread, 110
freopen, 105, 112
fscanf, 112,201
fseek, 113
ftell, 113, 115
fwrite, 110, 115
getc, 116
getchar, 116, 119
gets, 129
getw, 116, 133
printf, 177
putc, 191
putchar, 192
puts, 193
putw, 194
rewind, 113,200
scanf, 201
setbuf, 216
setvbuf, 221
sprintf, 177,229
sscanf, 201,230
ungetc, 116,252
vfprintf, 177, 258
vprintf, 177

vsprintf, 177, 259
strerror, 244
String literals, 360
String manipulation routines,

235-244
STRING.H, 11
Strings

binding (concatenating), 238
changing, 238
comparing, 238
converting, 40,239
copying, 241
manipulating, 235
searching, 242

struct country, 66
Suppression, assignment, 210
swab, 245
Swapping bytes, 245
Syntax

command line, 299,312,336,343,
346
declaration, in lookups, 29
language, summary, 357

Syntax conventions, See Typographic
conventions

SYS\STAT.H, 11
sys_errlist variable, 21
sys_nerr variable, 21
system, 246
System calls, See MS-DOS system

calls
System time, See Time

T
tan, 246, 250
Tangent, 137,246
tanh, 137,247
Task state, 153
TCCONFIG.TC, 373
TCHELP.TCH,373
TCINST.COM, 373
tell, 155,247
template, 167

Termination function, 39
Text mode, 24,68, 106, 170, 198,220,

261
time, 247
Time

computing differences, 72
conversion, 72, 77
daylight savings, 21, 72
getting, 121
global variables, 21
routines, 16,72
setting, 121
zone, 21,72

TIME.H, 11,72
time_t type, 72
timezone variable, 21
TLINK, 343-54
TLOSS, 162
tm type, 71
toascii, 248
Tokens, finding in strings, See str ...
_tolower, 249
tolower, 249
_toupper, 250
toupper, 250
Translation mode, See Mode
Trigonometric functions

acos, 34, 250
asin, 36,250
atan, 38,250
atan2, 38,250
cos, 65,250
cosh, 65, 137
hypot, 138
sin, 222, 250
sinh, 137,223
tan, 246, 250
tanh, 137,247

Turbo Linker, 343-354
Type characters

printf, 180
scanf, 205

tzset, 71,251

Turbo C Reference Guide

u
ultoa, 149,252
UNDERFLOW, 162
ungetc, 116,252
ungetch, 116,252
unix to dos, 77,253
unlink, 253
unlock, 152,254
Utilities, 311-354

v
va_ ... , 254
va_arg, 257
va_end, 257
V ALUES.H, 11
Variable

argument list, 257
daylight, 21
_doserrno, 21
environ, 25
errno, 21
_fmode, 24
global, 15-20
_osmajor, 26
_ osminor, 26
_psp, 25
sys_errlist, 21
sys_nerr, 21

Index

timezone, 21
_version, 26

va_start, 254,258
Verify flag, 133
vfprintf, 177
vfscanf, 201,258
vprintf, 177
vscanf, 201,259
vsprintf, 179,259
vsscanf, 201,260

w
Warnings

Linker, 352
Compiler, 292,305

Width specification
printf, 186
scanf, 210

Windows
Edit, 263
resizing, 380

WordStar vs. Turbo C editor, 263,
274-76

Write
randbwr, 197
random block, 197
to a file, 260

_write, 260
write, 260

[l(lt7 ith Turbo C, you can expect what only Borland delivers:
! i I Quality, Speed, Power and P!ice. An~ with its compilation
u LJ speed 01 more than 7000* Imes a minute, Turbo C makes

everything else look like an exercise in slow motion.

Turho C: TIle C compiler for botll
amateurs and praiessionais

If you're just beginning and you've
"kinda wanted to learn G," now's your
chance to do it the easy way. Turbo
G's got everything to get you going.

If you're already programming in G,
switching to Turbo G will considerably_
increase your productivity and help
make your programs both smaller
and fas~te~r. ____ ---\

Includes tree
MicroCalc'· spreadsheet

with source code

Turbo C: a complato, interactive
development environment

Like Turbo Pascal~ and Turbo
Prolog,® Turbo G comes with an
interactive editor that will show you
syntax errors right in your source
code. Developing, debugging, and
running a Turbo C program is a snap!

Technical Specifications
5Y Compiler: One-pass compiler generating

native in-line code, linkable object
modules and assembler. The object
module format is compatible with the PC­
DOS linker. Supports tiny, sm2.!1, medium,
compact. large, and huge memory model
libraries. Can mix models with near and far
painters. Includes floating poir:t emulator
(utilizes 8087/80287 if installed).

5'1 Interactive Editor: The system includes a
powerful, interactive full-screen text editor.
If the compiler detects an error, the editor
automatically positions the cursor
appropriately in the source code.

GY Development Environment: A pc werful
"Make" is included so that ma: aging
Turbo C program development is easy.
BOlland's fast "Turbo Linket" is also
included. Also includes pull-down menus
and windows. Can run from the environ­
ment or generate an executable file.

5Y Links with relocatable object modules
created using Borland's Turbo Prolog
into c: single program.

5Y ANSI C compatible.
5Y Start-up routine source code included.
5.Y Both command line and integrated

environment versions included.

Sic~'{) bcnchmar!;

Tur!a C Microsofl8 C
Compile time 3.1S 22.41

Compile and link time 6.55 29.49

Execution time 6.59 10.11

Object code size 2·31 249

ExeculiOil size 5743 7136

Price SSHS $450.00

'Benchmark run on a 6 MHz IBM AT using Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and
the MS overlay linker version 3.51.

Minimum system requirements: IBM PC, XT, AT, PS/2 and true compatibles. PC-DOS (MS-DOS) 2.0
or later. One floppy drive. 384K.

Turbo C, Turbo Pascal and Turbo Prolog are registered trademarks and MicroCalc and Turbo Linker are trademarks 01
Borland International, Inc. Other brand and product names are trademarks or registered trademarks 01 their respective
holders. Copyright 1987 Borland International BOA 0332A

