
Borland· ,
TUrbo Debugger· GX
lor OS/2®

User's Guide

Borland®
Turbo Debugger® GX
for OS/2®
Version 1.5

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reseNed. All Borland product
names are trademarks or registered trademarks of Borland International, Inc. Other brand
and product names are trademarks or registered trademarks of their respective holders .

. Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1 Working with views 22
Hardware and software requirements 1 Local menus 22
Differences between Turbo Debugger GX and List views and Detail views 22
Turbo Debugger 2 The views 24
Files distributed with Turbo Debugger GX 3 The Breakpoint view 25

Program files 3 The Datapoint view 26
Online text files 3 The Exceptionpoint view 27

The README.TD file 3 The C++ exceptionpoint view 28
The MANUAL.TD file 4 The Messagepoint view 28
The UTILS.TD file 4 The Source view 30

Sample programs 4 The Disassembly view 31
TDDEMO 4 The Modules view 32
TDDEMOPM 4 The Evaluator view 33

Typefaces, icons, and conventions 5 The Inspector view 33
Using this manual 6 The Variable view 34

Chapter 1 Getting started 7
The Watch view 35
The Call Stack view 36

Installing Turbo Debugger GX 7
Entering and exiting Turbo Debugger GX 8

Using command-line options 8

The Heap view 36
The Memory view 36
The Numeric Processor view 38

Using the Help system 10
Accessing the Control Panel Help menu 11
Using a Help window 11

The Register view 38
The C++ exception stack view 39
The File view 39

Displaying the Contents panel 12
Displaying the Help index 12
Getting context-sensitive Help 12

The Log view 40

Chapter 3 A quick example 41
Printing Help information 13 The demo program 41

Chapter 2 The Turbo Debugger GX environment 15
What Turbo Debugger GX can do for you 15

What Turbo Debugger GX won't do 16
How Turbo Debugger GX does it 17

The Turbo Debugger GX environment 17
Using the Control Panel 17

Using TDDEMO 43
Setting breakpoints 44
Using watches '" 45
Examining simple C data objects 46
Examining compound data objects 47
Changing data values 47
Conclusion 48

The menu bar 19
The SpeedBar 19 Appendix A Turbo Debugger GX for experienced
The Threads pane 20 Turbo Debugger users 51
The status line 21

Using dialog boxes 21 Index 55

Tables

1.1 Turbo Debugger GX command-line options .9 2.2 SpeedBar buttons 20
1.2 The Help menu 11 A.1 Turbo Debugger GX task list 51
2.1 Menu bar choices 19

Figures

1.1 Control Panel view 8
2.1 Control Panel view 18
2.2 Properties dialog box 21
2.3 Source view local menu 22
2.4 Breakpoint detail view 23
2.5 Breakpoint List view 24
2.6 The Source view 30
2.7 The five panes of the Disassembly view 32
2.8 The Memory view 37

iii

3.1 Debugger views after loading TDDEMO ... 42
3.2 Program stops on return from

function showargs 44
3.3 A breakpoint set at line 45 45
3.4 A variable in the Watch view 46
3.5 An Inspector window 46
3.6 Inspecting a structure 47
3.7 The Change Value dialog box 48
3.8 The Evaluator view 48

iv

Introduction

Turbo Debugger GX is a state-of-the-art, source-level debugger with a
graphical user interface (GUI). It's designed for programmers using Borland
C/C++ and Turbo Assembler to produce programs that run under OS/2.
Multiple views with pop-up menus, a SpeedBar displaying buttons for
common actions, and integrated window management provide a fast,
interactive environment. An online context-sensitive Help system provides
you with help during all phases of operation.

Here are some of Turbo Debugger GX's features:

• Full Borland C, C++, and TASM expression evaluation

• Extensive set of views to support all levels of debugging

• Window management facility

• Comprehensive Online Help

• Control Panel with both menu and SpeedBar access to debugging
commands

• High-level and low-level code access

• Logging facility
• Powerful control point facility that supports breakpoints, datapoints,

messagepoints, and exceptionpoints

• Support for debugging multithreaded applications

• Special tools for debugging of Presentation Manager programs

• Support for hardware debugging registers

Hardware and software requirements

Introduction

Turbo Debugger GX runs on any IBM PC-compatible computer that has
OS/2 version 2.0 or higher installed. A mouse is recommended. To see the
amount of hard-disk space required for Turbo Debugger GX, run the
Borland C++ installation program.

.. Turbo Debugger GX doesn't require a numeric processor chip.

.. Turbo Debugger GX works with Borland C++ for OS/2 and Turbo
Assembler for OS/2. If you want to do source debugging, your application
file must be either an executable (.EXE file) or a dynamic-link library (DLL)
compiled with full debugging information turned on.

... When you run Turbo Debugger GX, you'll need your application's .EXE file
and original source files. Turbo Debugger GX searches for source files in
the following places in this order:

1. In the directories specified in the File I Properties dialog box

2. In the directory containing the .EXE file

3. In the current directory

You can override the File I Properties setting by starting Turbo Debugger
GX with the -5 option, which specifies the source directories. (See page 8
for more information on command-line options.)

Differences between Turbo Debugger GX and Turbo Debugger

See Appendix A for
detailed information
comparing various

tasks you can
perform with Turbo

Debugger and Turbo
Debugger GX.

2

Turbo Debugger GX works similarly to Turbo Debugger for DOS and
Turbo Debugger for Windows. You'll find that many of the views,
commands, and keystrokes you're accustomed to with the DOS or
Windows debugger work with the OS/2 debugger. You'll also find that
local menus are accessible from the views in much the same way (by right
clicking or pressing Ctrl+F10).

There are differences in functionality, some of which are due to the OS/2
environment. They include the following differences:

• A graphical user interface that includes a SpeedBar, a series of buttons
you can select to perform common functions, like running, stopping,
reloading, or stepping. Because the debugger is always in graphics mode,
you can see your application running in another window instead of
having to switch between the full-screen debugger and the application.

• Dialog boxes that aren't modal. A nonmodal dialog box is like any other
window: i~ stays around until you close or minimize it, and you can
switch to another window while the dialog box is displayed. You press
Enter in a nonmodal dialog box to get text entries to take effect. Radio
button and check-box selections take effect immediately.

• Windows that can move anywhere on the screen and resize to the full
screen size. Each view has its own window, and there's a separate
window called the Control Panel for the main menu and the SpeedBar.

• The ability to duplicate any view by choosing New View from the view's
local menu. For example, you can open multiple Source views and look
at more than one module or DLL at the same time, as long as the module
or DLL is used by the currently loaded process.

Turbo Debugger GX for OS/2 Users Guide

• Dual form views that show a list of items or the details on one item.
U sing the detail form of the view, you can set all the options for an item
from the list. The views that can switch between list form and detail form
are the Breakpoint view, the Datapoint view, the Messagepoint view, the
Exceptionpoint view, the Variable view, and the Watch view.

There are also many similarities in functionality. You'll find that many of
the shortcut keys are the same, and most of the views between Turbo
Debugger and Turbo Debugger CX will be familiar. The table in Appendix
A lists some typical tasks and shows how to do them with both products.

Files distributed with Turbo Debugger GX

Program files

Online text files

Introduction

The Turbo Debugger CX part of the Borland C++ package includes this
manual and a set of files on disk. The files include

• The files needed to run the program (TD.EXE, associated DLLs, and a
Help file)

III Online text files

• Utility program

• Sample program files

The installation program (described on page 7) copies these files into
various default directories on your hard drive. (You can specify different
directories during installation.) For a complete list of files associated with
Turbo Debugger CX, see the README.TD online text file.

For a list of the files on your distribution disks, see the FILELIST.DOC file
on the Installation disk.

The installation program copies the program files into the BIN subdirectory
of your main Borland C++ directory. The following files are included:

IITD.EXE
II TDDEBUC.DLL
.. TD-LANC.5TR
• TDHELP.HLP

By default, the installation program copies the Turbo Debugger CX online
text files into the DOC subdirectory of the main Borland C++ directory on
your hard drive. These files include README.TD, MANUAL.TD, and
UTILS.TD. In addition, there's an overall README file for the entire
Borland C++ package that resides in the main Borland C++ directory.

3

The README. TD file

The MANUAL. TD file

The UTILS. TD file

Sample programs

TDDEMO

TDDEMOPM

4

It's important that you take the time to look at the README.TD file before
you do anything else with Turbo Debugger ex. This file contains last
minute information that might not be in the manual or the Online Help.

Be sure to read the MANUAL.TD file for late-breaking changes and
additions to the manual. If there are no changes to report, this file won't be
on the disk.

Turbo Debugger ex comes with the TDUMP utility. By default, it's in the
BIN subdirectory of the main Borland C++ directory along with the Turbo
Debugger ex program files.

To get a listof the command-line options available for TDUMP, type the
program name on the OS/2 command line and press Enter.

TDUMP.EXE displays the contents of object modules and .EXE files in a
readable format.

A number of sample programs are distributed in the Borland C++ package.
The two programs associated with Turbo Debugger ex are TDDEMO.EXE
and TDDEMOPM.EXE.

This program is a simple OS/2 character-mode application that displays
text to, and reads text from, a single window. It's the sample program used
in Chapter 3, "A quick example." TDDEMO takes lines of text as input.
When the user presses Enter on an empty line, the program calculates the
number of letters, words, and lines, and how many times each letter
occurred, and categorizes words according to length. It then displays all
this information on the screen.

This program does the same work as TDDEMO, except that it accepts input
in one window and displays the output in two other windows after each
line is entered. It uses some standard Presentation Manager (PM) window
types to do its work.

The window on top, the one the user enters text in, is a multiline edit
window. It uses a standard PM multiline entry field control (WC_MLE) to
display text and process the entries the user makes.

The two windows below this one are used by TDDEMOPM to display
program output. They are standard PM list boxes that use the list box
control WC_LISTBOX.

Turbo Debugger GX for OS/2 Users Guide

Typefaces, icons, and conventions'

This section explains the meaning of the special typefaces and icons used in
this manual.

Monospaced type This typeface represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as TD to start up Turbo
Debugger GX).

ALL CAPS All capital letters are used for the names of files and C++ constants.

[] Square brackets [] in text, synta?C statements, or OS/2 command lines
enclose optional items. Text of this sort should not be typed verbatim.

Boldface Boldface type indicates

Italics

Keycaps

Key1+Key2

Choice 1 I
Choice2

Introduction

• C++ predefined types, functions, preprocessor directives, reserved words
and keywords

• Command-line switches (such as -5)

Italic type indicates C++ variable names, data members, user-defined types,
and classes. This typeface is also used to emphasize certain words, such as
new terms.

This typeface indicates a key on your keyboard. For example, "Press Esc to
exit a menu."

Key combinations produced by holding down one or more keys
simultaneously are represented as Key 1 +Key2. For example, you can reset
the program by holding down the Gtrl key and pressing F2. This key
combination is represented as Gtrl+F2.

This command sequence represents a choice from the menu bar followed
by a choice from the drop-down menu. For example, instead of saying
"Choose File, then choose Load Process from the File menu," we say
"Choose File I Load Process."

This icon indicates material you should take special notice of.

This icon indicates a reference to the Help system, where you can find
complete, up-to-date information on Turbo Debugger GX.

5

Using this manual

6

This manual covers the basics of using Turbo Debugger GX. It does not
cover all features or discuss debugging tasks in detail-you can find that
information in the Online Help system. This manual discusses general
aspects of the user interface, tells how to use Online Help, how to install,
start, and exit the debugger, and shows how to use some of the debugger's
features on a sample program. Once you have the debugger running, you
can use the extensive Online Help facility to get complete explanations of
features or debugging tasks.

If you're an experienced Turbo Debugger for DOS or Turbo Debugger for
Windows user, see Appendix A for a list of debugging tasks and how to
perform them with Turbo Debugger GX.

The manual contains the following chapters and appendixes:

Chapter 1: Getting started discusses how to install Turbo Debugger GX,
how to enter and exit the debugger, and how to use the Online Help
system.

Chapter 2: The Turbo Debugger GX environment discusses some aspects of
debugging and provides an overview of the Turbo Debugger GX
environment.

Chapter 3: A quick example shows how to use Turbo Debugger GX to
perform some debugging tasks on a sample program.

Appendix A: Turbo Debugger GX for experienced Turbo Debugger users
lists some typical debugging tasks and shows how to do them with both
DOS or Windows Turbo Debugger and Turbo Debugger GX.

Turbo Debugger GX for OS/2 Users Guide

c H A p T E R 1

Getting started

Your Borland C++ package contains a set of distribution disks and
manuals, including the Turbo Debugger GX for OS/2 User's Guide (this book).
The distribution disks contain all the programs, files, and utilities needed to
debug programs written using Borland C++ for OS/2 and Turbo
Assembler for OS/2. The online text files README, MANUAL.TD, and
UTILS.TD contain documentation on subjects not covered in this manual.

If you aren't familiar with Borland's no-nonsense license statement, now is
the time to read the agreement. Mail your filled-in product registration
card, so you'll be notified about updates and new products as they become
available.

Installing Turbo Debugger GX

Chapter 1, Getting started

When you installed Borland C++ on your system, INSTALL.EXE (the
installation program on your distribution disks) copied files from the
distribution disks to your hard disk. If you left the defaults on, the
installation program also created a Borland C++ folder on the desktop and
put the icons for Borland C++, Resource Workshop, and Turbo Debugger
GX into it.

If you chose not to install Turbo Debugger GX when you installed Borland
C++, you can install it now:

1. Insert the Installation disk in one of your floppy drives (for example,
drive A).

2. In an OS/2 window, type A: INSTALL. EXE and press Enter.

3. In the Installation dialog box, click the Installation Options button.

4. Specify Turbo Debugger GX as the only program to install, then click
OK.

S. In the Installation dialog box, click Install to start installation.

7

See page 3 for more
information on the

Turbo Debugger GX
files.

By default, the installation program copies the Turbo Debugger GX
program files and utilities to the BIN subdirectory of the main Borland C++
directory, online text files to the DOC subdirectory, and examples to the
EXAMPLES subdirectory.

Before installing the files, you can change default directories by clicking the
Directory Options button and entering new directories in the Borland C++
Directory Options dialog box.

Entering and exiting Turbo Debugger GX

Figure 1.1
Control Panel view

See page 17 for a
description of the

Control Panel view.

Using command·
line options

8

When you've installed Turbo Debugger GX and it appears as an icon in an
OS/2 folder, double-click the icon to start Turbo Debugger GX and display
the Debugger Control Panel.

From the Control Panel, you can choose File I Load Process to load an
application program so you can debug it.

When you're finished debugging that application, you can choose File I
Unload Process to unload the current process, and then load in another
application. You can also exit the program by choosing File I Exit, pressing
Alt+X, pressing Alt+4 in the Control Panel, choosing Close from the System
Menu, or double-clicking on the system menu icon (at the top left corner of
the Control Panel's title bar).

There are a number of command-line options you can use when starting
Turbo Debugger GX. You can enter these command-line options two
different ways:

Turbo Debugger GX for OS/2 Users Guide

Table 1.1
Turbo Debugger GX

command-line
options

Chapter 1, Getting started

• Start Turbo Debugger GX from the OS/2 command line (for example, td
-m).

• Right-click on the Turbo Debugger GX icon to display the icon's pop-up
menu, then

1. Choose the arrow to the right of Open to display the Settings
notebook.

2. On the Program page, enter any Turbo Debugger GX parameters in
the Parameters field.

3. Close the notebook when you're done.

The command-line format is as follows:

TD [option [optionarg] ... option[optionarg]] [progname [progargs]]

Brackets indicate that an argument is optional. All Turbo Debugger GX
command-line arguments are optional.

• option is one of the command-line options listed in Table 1.1. Options
must be preceded by either a dash (-) or a slash (I).

• optionarg is the argument to a switch, such as the path name that follows
the -5 option.

• progname is the file name or full path to the file name of the application
program you intend to debug.

• progargs are arguments to the application program.

The following table lists the Turbo Debugger GX command-line options.
For more information on these options, access the Turbo Debugger GX
Help system and use the Search button to find command-line option.

Option

-cfilename

Description

Indicates the path and filename of the configuration file to be used when
Turbo Debugger GX starts up.

By default, Turbo Debugger GX uses TD.INI as its configuration file. If you
specify a -c command-line option, Turbo Debugger GX reads and writes to
the configuration file specified.

-h or-? Opens a window displaying a panel of Help text describing these command
line options.

-m Enables monochrome screen colors for plasma screens and other
monochrome video adapters.

9

Table 1.1: Turbo Debugger GX command-line options (continued)

-r<expression> Run to expression on start up. You must also specify an application to be
debugged (a progname command-line argument). This switch causes Turbo
Debugger GX to run the startup code of the application and position the
program counter at expression after it loads the application. Note that main
is the default.

-sdirlist Indicates where to find the source files for your application. You can enter
one search path or multiple search paths separated by semicolons.

Using the Help system

10

This section provides a detailed overview of the Turbo Debugger GX
Online Help system. The Help system is the principal source of information
about Turbo Debugger GX. You can go there to get detailed procedural and
descriptive help on debugging tasks or to get context-sensitive Help on
elements of the user interface (like views, menu choices, dialog boxes, list
boxes, an~ entry fields).

Online Help is available from any view, menu, or dialog box, and provides
three kinds of information:

• Context-sensitive Help for all individual elements of the Turbo Debugger
GX environment: menu choices, views, entry fields, check boxes, and
radio buttons in views and dialog boxes. You can select any menu choice
or any element of a dialog box or view (entry field, check box, or radio
button), then press F1 to get Help for that item.

• Task-oriented information on debugging tasks, such as essential
information to get you started, how to set breakpoints, how to go on a
bug hunt, and debugging tips and techniques.

• Information on the Turbo Debugger GX environment, such as views,
menus, and keyboard shortcuts. (Most of this information is available as
context-sensitive Help, but you can also access it from within the Help
system.)

To access the Help system, do any of the following actions:

• Choose Help from the Control Panel's menu bar.

• Click the Help button on the Control Panel's SpeedBar.

• Press F1 anywhere in Turbo Debugger GX.

• Press Shift+F1 (to get the Help index).

• Press Ctrl+H in a view or dialog box, or choose Help from the local menu.

Turbo Debugger GX for OS/2 Users Guide

Accessing the
Control Panel
Help menu

Table 1.2
The Help menu

Using a Help
window

Chapter 1, Getting started

How you access the Help system depends on what kind of information you
want.

• If you need general help, you can access the Help menu or the Help
Contents panel and choose the topic you need.

• If you know what you're looking for but not where it is in the Help
system, you can display the Help index and search for the item.

• If you want help with an element of the user interface, you can set the
focus to that control and press F1 for context-sensitive Help.

• If you want task-oriented information, such as how to set breakpoints,
you can display the Contents panel and select Essentials or Tasks, or you
can use the Search button in the Help window to find the topic.

If you choose Help from the Control Panel menu bar, you see the Help
menu.

Menu choice

Contents

Index

Essentials

Tasks

Menus

Views

Glossary

Using Help

Product Information

Description

Table of contents for the Help system. Each topic preceded by a
G can be expanded into subtopics. A 0 means the subtopics
for that topic are already expanded. Double-clicking on a topic
brings up a Help panel for it.

Alphabetical list of topics for the Help system. Double-clicking
on a topic or subtopic brings up a Help panel for it.

Information to help you get started with the debugger. Also
available from Contents.

A list of debugging tasks, such as compiling your program for
debugging, executing your program under the debugger, and
setting and using control points. Also available from Contents.

A list of all the global and local menu choices available in the
debugger. Also available from Contents.

A list of all the views, including the Control Panel. Also available
from Contents.

A glossary of debugging terms. Also available from Contents.

Help on how to use the Help system.

A panel showing the Turbo Debugger GX name and version.

Picking any Help menu choice except Product Information displays a Help
window.

11

Displaying the
Contents panel

Displaying the
Help index

Getting context
sensitive Help

12

To get information on how to use Help, choose Help from the window's
menu bar. At the bottom of the window are some pushbuttons, which work
as follows:

Contents

Index

Print

Search

Previous

Forward

Display the Contents panel.

Display the Help index.

Print selected Help panels.

Search for a topic in the Help system.

Go to the previously viewed Help panel. If this is the
first panel you displayed, clicking this button exits you
from Help.

Display the next Help panel.

To display the Contents panel from the debugger, choose Help I Contents
from the Control Panel menu bar or click the Help button on the SpeedBar.

If you're already in a Help window, you can go to the Contents panel by
clicking the Contents button at the bottom of the Help window, pressing
etr/te, or choosing Options I Contents with your mouse or by pressing
A/ttOt T.

The Contents panel shows the same topics as those shown in Figure 1.1.

To display the Help index, choose Help I Index from the Control Panel, or
press Shift+F1 from anywhere within the debugger.

If you're in a Help window, you can click the Index button at the bottom of
the window, press etrlt/, choose Options I Index with your mouse, or press
A/ttO.

The Help index is an alphabetic list of topics in the debugger's Online Help.
You might want to display it if you know what you're looking for, but you
aren't sure where it is. You can scan down the list or search for a topic.
When you find the topic you want, double-click it or press Enter to display
the associated Help panel.

To get Help on a part of the user interface, such as a menu choice or a
dialog box entry field, select it, then press F1. A Help panel comes up
showing information on the area you clicked.

For example, if you press F1 while File I Load Process is selected, you get
information on that menu choice. If you press F1 when the Source view is
active, you get information on that view.

Turbo Debugger GX for OS/2 Users Guide

Printing Help
information

For Help on a menu in its entirety (rather than a single menu choice), go
into Help and find the menu name in the Contents or the Index about that
menu, then double-click the menu name to display a Help panel.

You can print Help information from a Help window as follows:

1. Select the panels you want to print by doing one of the following:

• If you want to print one panel, display a single Help panel.

• If you want to print more than one panel, display the Contents panel
and select the topics you want to print. Each topic represents a single
Help panel. (The Print facility calls each Help topic a section and calls
this process marking sections.) To select topics, press Gtrl and click each
topic you want to print. (To deselect topics, repeat this process.)

2. Select the Print button, press Gtrl-P, or Services I Print (with your mouse)
to display the Print dialog box.

3. Select the radio button for what you want to print, then click Print.

_ Choosing All Sections isn't recommended because it will print all the
panels in the Help system.

Chapter 1, Getting started 13

14 Turbo Debugger GX for OS/2 Users Guide

c H A p T

The Turbo Debugger GX
environment

E R 2

Debugging is the process of finding and correcting errors (bugs) in your
programs. It's not unusual to spend more time finding and fixing bugs in
your program than writing the program in the first place. Debugging is not
an exact science; the best debugging tool you have is your own feel for
where a program has gone wrong. Nonetheless, you can always profit from
a systematic method of debugging.

The debugging process can be broadly divided into four steps:

1. Realizing you have a bug

2. Finding where the bug is

3. Finding the cause of the bug

4. Fixing the bug

What Turbo Debugger GX can do for you

Turbo Debugger GX helps with the two hardest parts of the debugging
process: finding where the bug is and finding the cause of the bug. It does
this by controlling program execution so you can examine the state of the
program at any given spot. You can even test new values in variables to see
how they affect your program. With Turbo Debugger GX, you can perform
stepping, viewing, inspecting, changing, and watching.

Stepping into You can execute your program one line or one
instruction at a time, stepping into each function call.

Stepping over You can execute your program one line or one
instruction at a time, but step over any function calls. If
you're sure your procedures and functions are error
free, stepping over them speeds up debugging.

Chapter 2, The Turbo Debugger GX environment 15

,What Turbo
Debugger GX
won't do

16

Viewing

Inspecting

Changing

Watching

You can have Turbo Debugger GX open a special
window to show you the state of your program from
various perspectives: variables and their values,
breakpoints, datapoints, messagepoints,
exceptionpoints, the contents of the stack, an event log, a
data file, a source file, disassembled code, memory, the
heap, registers, numeric processor information, or
program output.

You can look at the contents of variables and
expressions, including complex data structures like
arrays and structures.

You can replace the current value of a global or local
variable with a value you specify.

You can isolate program variables and keep track of
their changing values as the program runs.

You can use these tools to dissect your program into discrete sections,
confirming that one section works before moving to the next. In this way,
you can work through any program, no matter how large or complicated,
until you find where a bug is hiding. You might find there's a function that
inadvertently reassigns a value to a variable, or gets stuck in an endless
loop. Whatever the problem, Turbo Debugger GX helps you find where it is
and what's at fault.

Turbo Debugger GX enables you to debug object-oriented C++ programs.
It's smart about classes, and it correctly handles late binding of member
functions so that it executes and displays the correct code.

Turbo Debugger GX also enables you to debug both Presentation Manager
and OS/2 line-mode programs.

With all these features, you might be thinking that Turbo Debugger GX has
it all. However, there are at least three things Turbo Debugger GX won't do
for you:

• Turbo Debugger GX doesn't have a built-in editor to change your source
code. You can use the Borland C++ editor or your favorite text editor for
this purpose.

• Turbo Debugger GX can't recompile your program for you. You need the
original program compiler to do that.

• Turbo Debugger GX can't come up with strategies for finding bugs. It's a
powerful tool, but is only that-a tool.

Turbo Debugger GX for OS/2 Users Guide

How Turbo
Debugger GX
does it

Here's the good news: Turbo Debugger GX gives you all this power and
sophistication, and at the same time it's easy to use.

Turbo Debugger GX accomplishes this blend of power and ease by offering
an environment featuring a graphical user interface. The next section
describes the advantages of the Turbo Debugger GX GUI environment.

The Turbo Debugger GX environment

Using the Control
Panel

Turbo Debugger GX has been designed for intuitive use. To this end, Turbo
Debugger GX provides you with the following features:

m A Control Panel view, from which you can control all aspects of a
debugging session.

fJ Global and local menus that make it easier to access menu commands.

m Online Help, available from any view, menu, or dialog box, that provides
context-sensitive and task-oriented information. (See page 10 for a
description of the Help system.)

I'l Dialog boxes you can use to change preferences, look at variables, set
control points, and load processes.

c Views that show you different aspects of your code and data, and tell
you what's going on in memory, with the processor, and with the
operating system.

The first thing you see when you start Turbo Debugger GX is the Control
Panel view.

Chapter 2, The Turbo Debugger GX environment 17

Figure 2.1
Control Panel view

See the Online Help
for complete

information on the
Control Panel and on

these tasks.

18

Menu bar SpeedBar

.t!elp

Local menu Threads pane Status line

You use the Control Panel to oversee, manage, and control the debugging
process. From the Control Panel, you can perform the following tasks:

II Load and unload applications

• Open views

IJ Run and step through applications

.. Set control points (breakpoints, messagepoints, datapoints, and
exceptionpoints) ,

II Manage all the views

II Monitor the status of threads

As you can see in Figure 2.1, the Control Panel view contains the following
elements:

a Menu bar

II SpeedBar

II Threads pane

II Status line

.. Local menu

T urba Debugger GX far OS/2 Users Guide

The menu bar

Table 2.1
Menu bar' choices·

The SpeedBar

There is one menu bar in the debugger, the one at the top of the Control
Panel. The menu bar has the following choices:

Choice Description

File Use the File menu to load or unload a process, set debugger properties, or exit the
debugger.

View Use the View menu to select any of the debugger views. With these menu choices,
you get access to views that show things like source code, disassembled code,
control points, program data, memory, and what's going on with the CPU. The views
are described later, starting on page 22.

Run Use the Run menu to run your application in different ways, such as stepping
through your program one source line at a time, running to a certain point, or simply
running the program. You can also stop or reset the program from this menu.

There are SpeedBar buttons that correspond to the following choices on this menu:
Run, Stop, Reset, Statement Into, Statement Over, Instruction Into, and Instruction
Over.

Set You can use this menu to set four kinds of control points (breakpoints, datapoints,
C++ exceptionpoints, and messagepoints) and to set a watch to monitor changes in
an expression.

Window

Help

Use this menu to control your debugger views. You can switch to the window of the
application (the userwindow), move from view to view, hide or show all the views
(except the Control Panel), save or restore the positions you've put the views in,
and choose from a list of open views.

Use this menu to access Online Help. (Note that you can also use the SpeedBar
button to access the Help.) See page 10 for more information on using Online Help.

See the Menus topic in Online Help for a complete description of these
menu choices.

Use context-sensitive Help for a complete description of each of these
buttons.

The SpeedBar gives you quick access to typical debugging tasks. If you run
the mouse across the SpeedBar, the function of each button appears on the
status line at the bottom of the Control Panel. The following table describes
what these buttons do:

Chapter 2, The Turbo Debugger GX environment 19

Table 2.2: SpeedBar buttons

Button

~
[1J
[:Q]
EJ
~

Start Program Running

Stop Program

Reset Program

Show Help

Raise Program Window

Hide Debugger Windows

Show Debugger Windows

[(.:;tJ Statement Step Into

I;~}'I Statement Step Over

I:~;';"I Instruction Step Into
010

1:"'1 Instruction Step Over
(n~

Description

Runs the currently loaded process. Same as RunlRun.

Stops the currently loaded process if possible and returns control to the debugger.
If the Stop button is disabled, it isn't possible to stop the process at this time. Same
as RunlStop.

Reloads the current process so you can run it again from the beginning. Any
watches and breakpoints you set in an earlier run remain set. Same as RunlReset.

Displays the Contents screen of Online Help. Same as HelplContents.

Switches to the application's active window. Same as WindowlUser Window.

Hides all open views. You typically do this before minimizing the Control Panel.
Same as WindowlHide Views.

Shows all the views hidden by the Hide Views command. Same as WindowlShow
Views.

Steps through the application one source statement at a time, and into any
functions that are called. Same as RunlStatement Into.

Steps through the application one source statement at a time, but steps over any
function calls (doesn't step into the function, but rather runs the function until it
returns). Same as RunlStatement Over.

Steps through the application one assembly instruction at a time, and steps into
any routines that are called. Same as Runllnstruction Into.

Steps through the application one assembly instruction at a time, but steps over
any routine calls (doesn't step into the routine, but rather runs it until it returns).
Same as Runllnstruction Over.

The Threads pane

20

The Threads pane shows information about the threads that make up your
application. It's most useful with multithreaded applications. Using this
pane, you can

.. Reset all views to show information about a particular thread you want
to debug

• Get information about the current thread and process, such as the
process ID (PID), the thread ID (TID), which function is currently active,
and the schedule and priority of the current thread

Turbo Debugger GX for OS/2 Users Guide

The status line

Using dialog
boxes

Figure 2.2
Properties dialog box

A typical use of this pane is to select a thread so you can get information
about it (such as register settings or variable values), and to change the
Source view to show where that thread stopped. To select a thread, click
the scroll buttons on the right side of the pane till you see the thread you
want. Then, double-click the thread. (All the views will then take on the
context of that thread.)

The status line at the bottom of the Control Panel displays error messages,
shows the status of the current process (suspended, running, no process),
and describes what each SpeedBar button does.

Because the status line displays error messages, keep this part of the
Control Panel visible at all times, even when working in other views.

A dialog box is a window you can enter information in for some task you
want to perform. A dialog box, unlike a view, just lets you enter or change
information. (A view shows updated information about your application
and might let you enter information as well.)

For example, if you choose File I Properties, you see the Properties dialog
box.

Check boxes Entry fields List box

o Use C Evaluator

@,JUseC++Evaluator

OUse TASM Evalua\or

Radio buttons Combo box

See the Online Help for more information on this dialog box.

This dialog box contains radio buttons, check boxes, a list box, and three
entry fields. Because the dialog box is just another window, there is no OK
or Cancel button. Depending on the kind of change you make, it either
takes effect immediately or takes effect when you press Enter.

Chapter 2, The Turbo Debugger GX environment 21

Working with
views

Local menus

Figure 2.3
Source view local

menu

List views and
Detail views

22

For example, if you type a source directory name in the Add Directory
entry field, you must press Enter for it to take effect. However, if you click
any of the radio buttons or check boxes, your selections take effect
immediately.

This behavior is common to all dialog boxes and views.

A view is a window that shows information about your application. Some
views also let you enter information. These views follow the same rules as
dialog boxes for entering information (see the previous section). There are
eighteen different views, all available from the Control Panel's View menu.

All views have local menus that you can pop up by right-clicking the
mouse or by pressing Ctrl+F10. For example, right-clicking in the Source
view displays the following local menu:

" ... , ... ",,-,, .. ,..,.,~,"'",,~.). ::~::.:.~::,::"""',:;",,«,'>"""'%"""~<,:'''''~'''.''<},'''''''''''''''''''''' (, ... ~"'".'«~ " ... ~
C> 11 1 irH::~:~? 0 '

~ nwords = 0;
~ totalcharacters = 0;
~ sho1va.rgs (argc, argv);

rrL"""~",~,,"~,.,,~,,~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,w~~ l~,ll.:,;;;·,: l;..:;;e"~,,.(~,; r;'Le-:.ada 1 i ne () ! '" 0) {
I Set.!;!reakpoint F2 ordcount = makeintowords(buffer);

: ,yords += wordcount; i
Itotalcharacters += analyzewords(buffe~

I fiunto here F4 rlines++; I
I ""~~~~~~~~r':_". __ ."""""~t~~~,,,,.ltistics(nlines, nwords, totalcharacte~

inspect value... Ctrl+1 i'nPress < En ter > when done,"); I
but); I

Add~atch,., Ctrl+Y/ I); i
,,,_~,,~~,~,~~~~:~~~,~~:: .. , .".,,,,,.,,.,,,,,,,.~.~.I~.D.J I

goto the pc Ctrl+G ~r into a lis! of l1ull-terrrtillated vrordjj

~::::: ;::r~~~~er... ~:;::~ 0~_Q""!l!-!"n~,,,,,~g!-!'=§h_9~tJ_~th''=t~_,,~E~~:?':'''''''-'''~~1'~J
,2earch... ' Ctrl+S

Search j!gain

Display fiptions

Yiews
.!::!ewview

CtrJ+O+

Ctrl+V+

Ctrl+N
Ctrl+H

The local menu choices have shortcut keys, indicated by an underlined
letter in the choice. For example, to search for a string in the Source view,
you can press Ctrl+S without having to display the local menu first.

Some of the views have two forms, a List view that shows all items that
have been set and a Detail view that shows information about each item.
The views that have these two forms all manage lists of items, such as
variables or control points. The following views have both forms:

Turbo Debugger GX for OS/2 Users Guide

Figure 2.4
Breakpoint detail view

• Breakpoint view
• Datapoint view
• Exceptionpoint view
• Messagepoint view
• Variable view
• Watch view

The view initially displays in a default form (if there are items to display,
the list form; if there are no items, the detail form). To switch to the other
form, either press Ctri+S or right-click in the view to display the local menu,
then choose the first menu choice. The wording of this menu choice
changes depending on which form of the view is displayed.

For example, when you first load your application, there are no breakpoints
set. Choosing View I Breakpoint in the Control Panel displays the
Breakpoint Detail view, which you can use to set a breakpoint.

Locati(mL ____________ ~

Filters: Expression True

Pass Count

Actions: Break

E vaiLJate Expression

Log Expression

Enter the name of a function (for example, main) in the Location entry field
and press Enter. (The Location entry field takes a program location, such as
function name that evaluates to a program location.) Next, right-click to
display the local menu, then choose Show Breakpoint List to display the
List view. You see the breakpoint you just set.

Chapter 2, The Turbo Debugger GX environment 23

Figure 2.5
Breakpoint List view

The views

Di$J:!$sembIY
Modyles

; gvaluator Ctrl+F4
Inspector
;Lariable
Y:{atch

"""""-'"''''''''''-'''''''''

Qa,IIStack
t!eap
MemQty
b!vmeric Processor
.8.egister
C+. !;;;xception Stack

""Bl;""'~"""""""""'"

bog

24

Filters: <None>
Actions: Break

If you close the Breakpoint view, then choose View I Breakpoint again,
notice that the Breakpoint view comes up in list form. That's because there's
a breakpoint to display. If you right-click in the Breakpoint view, you see
that the first local menu choice has changed to Show Breakpoint Details.

If you close the Breakpoint view again, then choose Set I Breakpoint from
the Control Panel, notice that the Breakpoint view comes up in detail form,
letting you set a breakpoint immediately.

The View menu is displayed when you choose View from the Control
Panel. The View menu is divided into five sections that reflect the
functionality of the views.

• The first section groups choices for all the control point views. (A control
point is a name referring to breakpoints, datapoints, exceptionpoints, and
messagepoints, all of which can be used to control program execution.)
Use these views to set various kinds of control points that, when
encountered, can log information about the control point or return
control to the debugger.

• The second section groups choices for views that show you information
about your application's code. For example, the Source view shows your
application's source code and where the program has executed to, and
the Modules view lists the source files contained in your executable
program.

• The third section groups choices for views that show you information
about your program's data. For example, the Variable view displays all
local or global variables.

• The fourth section groups choices for views that show you hardware
related information, such as the contents of memory or the CPU registers.

Turbo Debugger GX for OS/2 Users Guide

The Breakpoint view

Right-click or press
Ctr/+F10 to display

the local menu.

Press Ctr/+S to
change view forms.

rJ The fifth section contains choices for the Log view and the File view, both
used for auxiliary functions (logging information and looking at files that
do not contain debug information).

Choosing View I Breakpoint from the Control Panel displays the Breakpoint
view. You can also choose Set I Breakpoint to display this view in Detail
form.

Breakpoints stop the processing of your program and give control of it to
you. Use the breakpoint view to set, remove, modify, enable, and disable
breakpoints, and to see a list of the breakpoints that have been set in your
program.

When you set or change a breakpoint, you can also set filter conditions and
actions, which customize the conditions under which a breakpoint is
activated and specify the actions that take place when the breakpoint is
activated.

The local menu

With the Breakpoint view local menu, you can perform actions with
breakpoints, such as setting or removing them. You can also use the
shortcut keys you see on the menu directly from the Breakpoint view,
without displaying the menu.

The List and Detail views
This view has two forms, a Detail view form and a List view form. The
Detail view shows details about a particular breakpoint (if any exist); you
use this form to set a new breakpoint or change settings for an existing
breakpoint. The List view shows all breakpoints that have been set.

See page 23 for more information on displaying forms.

~ You can set a simple breakpoint without using the Breakpoint view. There
are two ways to do this:

fl Select a line of code in the Source view or the Disassembly view, then
press F2.

1::1 Double-click the mouse either inside a line of disassembled code or near
the diamond in the left margin of a line of source code (if you've
displayed the diamonds when using the Display Options I Show
Attributes submenu).

Chapter 2, The Turbo Debugger GX environment 25

The Datapoint view

Press Ctr/+S to
change view forms.

26

You can get the following additional information from the Help system:

• For other methods of setting breakpoints, see the Online Help topic
"Setting Breakpoints".

• For a complete discussion of breakpoints, see "Breakpoints" and its
subtopics in the Online Help under the "Setting and Using Control
Points" task.

• For information on the Breakpoint view itself, click in the view, then
press F1 or choose Help from the view's local menu.

• For information on a local menu choice, right-click to display the menu,
then select the menu choice and press F1.

Choosing View I Datapoint from the Control Panel displays the Datapoint
view. You can also choose Set I Datapoint to display this view in detail
form.

Use this view to set a datapoint or see all the datapoints you've set. A
datapoint (also known as a watchpoint) is a variable or expression whose
memory location the debugger watches during program execution. When
the value in that memory location matches a condition, such as being equal
to or less than a certain value, the debugger performs the action you've
indicated, such as breaking and returning control to the debugger.

A datapoint has characteristics similar to a breakpoint (see the Breakpoint
view description starting on page 25). For additional information about
datapoints, refer to the topic in the Online Help.

The local menu
You use the Datapoint view to perform the following actions on datapoints:

• Set new datapoints
• Adjust the filters and actions associated with those datapoints
• Enable or disable datapoints
• Remove existing datapoints
• Look at the datapoints that have been set

All these choices are available from the Datapoint view local menu (right
click or press Ctrl+F10 or Shift+F10 to display it). You can also use the shortcut
keys you see on the local menu directly from the Datapoint view, without
actually displaying the menu.

The List and Detail views
This view has two forms, a Detail view form and a List view form. The
Detail view shows details about a particular datapoint (if any exist); you

Turbo Debugger GX for OS/2 Users Guide

The Exceptionpoint
view

Press Ctri+S to
change view forms.

use this view to set a new datapoint or change settings for an existing
datapoint. The List view shows all datapoints that have been set.

For more information on the Datapoint view itself, click in the view, then
press Ft to display a Help screen or choose Help from the view's local
menu. For information on a menu choice, select it and press Ft. For more
information on working with datapoints, see "Datapoints" in the Online
Help under the "Setting and Using Control Points" task.

Choosing View I Exceptionpoint from the Control Panel displays the
Exceptionpoint view.

Use this view to change settings for an exceptionpoint or see all the
exceptionpoints. An exceptionpoint tells the debugger what to do when it
intercepts a particular exception or signal sent to your application. (An
exception is an asynchronous notification from OS/2 that an event has
occurred, such as a divide-by-zero exception or a guardpage exception.)

When the exception comes in, the debugger performs the action you've
indicated, such as breaking and returning control to the debugger, then
passing the exception to the application when you run the application
again.

An exceptionpoint has characteristics similar to a breakpoint (see the
Breakpoint view description starting on page 25). For further information
about exceptionpoints, refer to the topic in the Online Help.

The local menu
You can use the Exceptionpoint view to perform the following actions on
exceptionpoints:

EiI Indicate whether an exceptionpoint pauses program execution

II Adjust the filter conditions and actions associated with exceptionpoints

m Look at the list of exceptionpoints

All these choices are available from the Exceptionpoint view local menu
(right-click or press Ctr/+FtO to display it). You can also use the shortcut keys
you see on the local menu directly from the Exceptionpoint view, without
actually displaying the menu.

The List and Detail views
This view has two forms, a List view form and a Detail view form. The List
view shows all exceptionpoints. The Detail view shows details about a
particular exceptionpoint; you use this view to change settings for an
exceptionpoint.

Chapter 2, The Turbo Debugger GX environment 27

The C++
exceptionpoint view

Press Ctri+S to
change view forms.

The Messagepoint
view

28

For more information on the Exceptionpoint view itself, click in the view,
then press F1 to display a Help screen or choose Help from the view's local
menu. For information on a menu choice, select it and press F1.

Choosing View I C++ exceptionpoint from the Control Panel displays the
C++ exceptionpoint view.

Use this view to customize the action that the debugger should take when a
C++ exception is thrown. By default, the debugger stops on all C++
exception throws.

When a C++ exception is thrown by your program, the debugger performs
the actions you've indicated, such as breaking and returning control to the
debugger, then with the throw when you run the application again.

A C++ exceptionpoint has characteristics similar to a breakpoint (see the
Breakpoint view description starting on page 25). For further information
about C++ exceptionpoints, refer to the topic in the Online Help.

When the debugger stops on a C++ exception, it displays a dialog box that
displays the C++ exception's type and value. With this dialog box, you can
choose' to run to either the catch or stack-unwinding destructors associated
with this C++ exception.

The local menu
You can use the local menu of the C++ exceptionpoint view to enable,
disable, remove, and add C++ exceptionpoints.

The List and Detail views
This view has two forms, a List view form and a Detail view form. The List
view shows all C++ exceptionpoints. The Detail view shows details about a
particular C++ exceptionpoint; you use this view to change settings for a
C++ exceptionpoint.

For more information on the C++ exceptionpoint view itself, click in the
view, then press F1 to display a Help screen or choose Help from the view's
local menu. For information on a menu choice, select it and press F1.

All these choices are available from the Exceptionpoint view local menu
(right-click or press Ctri+F10 to display it). You can also use the shortcut keys
you see on the local menu directly from the Exceptionpoint view, without
actually displaying the menu.

Turbo Debugger GX for OS/2 Users Guide

I)

Press Ctrl+S to
change view forms.

Choosing View I Messagepoint from the Control Panel displays the
Messagepoint view. You can also choose Set I Messagepoint to display this
view in detail form.

Use this view to track PM messages sent to the window functions in your
application. You can also have your application break and return control to
the debugger or perform some other action when it encounters a message
for one of your window functions.

When you designate a window message to be tracked, you're setting a
messagepoint. A messagepoint has characteristics similar to a breakpoint (see
the previous section). For additional information about messagepoints, see
the topic in the Online Help.

The local menu
You can use the Messagepoint view to perform the following actions on
messagepoints:

• Set new messagepoints
.. Adjust the filter conditions and actions associated with those

messagepoints
• Enable or disable messagepoints
• Set messagepoints on your own custom messages
• Remove existing messagepoints
• Look at the messagepoints that have been set on window functions

Most of these choices are available from the Messagepoint view local menu
(right-click or press Ctr/+FtO or Shift+FtO to display it). You can also use the
shortcut keys you see on the local menu directly from the Messagepoint
view, without actually displaying the menu.

The List and Detail views
This view has two forms, a Detail view form and a List view form. The
Detail view shows details about a particular messagepoint (if any exist);
you use this view to set a new messagepoint or change settings for an
existing messagepoint. The List view shows all messagepoints that have
been set.

For more information on the Messagepoint view itself, click in the view,
then press Ft to display a Help screen or choose Help from the view's local
menu. For information on a local menu choice, select it and press Ft. For
more information on working with messagepoints, see "Messagepoints" in
the Online Help under the "Setting and Using Control Points" task.

Chapter 2, The Turbo Debugger GX environment 29

The Source view

30

Figure 2.6
The Source view

If you load an application that has debugging information and source code,
the debugger displays the source code for the current module in the Source
view. You can also display the Source view by choosing View I Source from
the Control Panel.

The following figure shows the Source view opened on TDDEMO, one of
the sample programs distributed with Turbo Debugger ex. For
demonstration purposes, a breakpoint has been set and the program has
been run to main.

Breakpoint glyph

nEnes ::: 0;
n tords '" 0;
totalcharacters = 0;
showargs(argc, argv);
,.hile (readaline() 1= 0) {

wordcottnt " rnakeintowords (bttff er) ;
mrords +'" wordcoun t ;
totalcharacters += an"dy:zew'or(is(buf
n1ines++;

Executable line of source code indicator

• The diamond at the left of a line of source code indicates that the line is
executable (not a declaration or comment) and has a valid address. It's a
location where you can set a breakpoint.

• If you set a breakpoint on a line of source code, a breakpoint glyph (a
blue B in a box) appears to the right of the diamond marking that line of
source code.

• The program counter glyph indicates the line of code that will execute
next when you run your program. The first line of that code is also
selected.

You're likely to spend much of your time in the Source view when you're
debugging an application.

The local menu
From this view, you can do the following things:

Turbo Debugger GX for OS/2 Users Guide

The Disassembly
view

• Set, delete, enable, and disable breakpoints
• Run or jump to the current insertion point position
.. Add datapoints and watches
.. Inspect variables and expressions
.. Move around in the source code by searching, moving to an address or

line number, or returning to the program counter

All these choices are available from the Source view local menu (right-click
or press Ctr/+F1O to display it). You can also use the shortcut keys you see on
the local menu directly from the Source vie,w, without actually displaying
the menu.

For more information on the Source view, click in the view, then press Ft to
display Help or choose Help from the view's local menu. For information
on a menu choice, select it and press Ft.

Choosing View I Disassembly from the Control Panel displays the
Disassembly view.

This view shows your disassembled source code. You use it to see the
assembly language instructions that correspond to your source code. You
must use this view if the program you're debugging wasn't compiled with
debugging information or doesn't have source code available .

.. If you set a breakpoint on a line of disassembled code, a breakpoint
glyph (a blue B in a box) appears to the left of the line of code.

m The program counter glyph indicates the instruction that will execute
next when you run your program. That line of code is also selected.

The local menu
In this view you can do things such as the following:

.. Set, delete, enable, and disable breakpoints

• Run or jump to the current insertion point position

II Move around in the code by moving to an address or jump target, or
returning to the program counter

All these choices are available from the Disassembly view local menu
(right-click or press Ctr/+F10 to display it). You can also use the shortcut keys
you see on the local menu directly from the Disassembly view, without
actually displaying the menu.

Displaying panes
The Disassembly view can represent five views as panes. By default, this
view has one pane, the Disassembly pane. Using the Display Options local

Chapter 2, The Turbo Debugger GX environment 31

menu choice (Ctri+O), you can add a Memory pane, a Stack pane, a Registers
pane, and a Flags pane.

Figure 2.7 Disassembly pane Register pane Flags pane
The five panes of the

Disassembly view

The Modules view

32

OOlC PUSH EEX
Ox0001001D PUSH EDI
Ox0001001E PUSH E51

tddemo.e#37 nlines ~ 0;
37 Ox0001001F XOR EDI,EDI
tddeJllo.e#3B nwords " 0;
38 OxOOOl0021 XOR ESI,E51
tddemo . c#3 9 totalehal.'e.c tel'
39 Ox00010023 XOR EBX.EBX
tddemo . c#4 0 shmrargs (arge.
4 .. Q .. _ .. Q.~QQQ1QQ?§.E"I§fIl)RQE~LP

............... _ _ ... : : _ ~ : J.,i,.
Ox00010000 8b 44 24 04 -a3 48 OOA
Ox00010008 00 58 68 34 - 00 02 Oa
Ox00010010 e9 17 le 00 - 00 00 00

EDI Ox00010018 ee 00 00 00 - 53 57 5G
OxOOOl 020 £f 31 £6 31 - db f£ 7~
OxOOOl 028 ff 75 08 e8 - d8 02 00
OxOOOl 030 eb 19 68 c8 - Oc 02 00

~---.-.... Q.~.Q.QJUJ:l~JL~!LQQQ!t.Q.Q_.~_Q.L ... 9§J~

I EAX OxO 000000
I EBX OxO 020034
I ECX OxO 020EDO

I EDX OxOO 020BAC
, E51 Ox16ADOOOO

I.

EDIOx00010018
ESP Ox0003BFAB
EBP Ox0003BFD4
EIP Ox00010018

'IESt:j:~~Q~~~~~:~~::~~-i'1"-d:-4:-:1-~--"'"11
Ox0003BFAC 00000001
Ox0003BFBO 00070008
Ox0003BFE4 00000000
Ox0003BFB8 00000000
Ox0003BFEC 00000000
Ox0003BFCO 00000000
Ox0003BFC4 00000000
Ox0003BFC8 00000000
Ox0003BFCC ffffffff
g~Qg.QJJ?:f12Q9.Q.QJJ·

Memory pane Stack pane

The local menu that comes up for all these panes is the Disassembly local
menu. If you want to perform a pane-specific task that is only available
from the corresponding view's local menu (such as clearing register ESP in
the Register pane), open the corresponding view and perform the task
there.

Note, however, that many pane-specific tasks can be performed directly in
the Disassembly view without using the local menu. For example, to
change a register value, you can double-click the register and enter the new
value in the dialog box that appears. You can perform this type of task in
the pane without opening the associated view.

For more information on the Disassembly view, click in the view, then
press Ft to display Help or choose Help from the view's' local menu. For
information on a menu choice, select it and press Ft.

Choosing View I Modules from the Control Panel displays the Modules
view.

Use this view to display source modules in addition to the one currently
displayed in the Source view. This view initially displays the name of your
application's .EXE file and any DLLs used by your .EXE.

Each DLL or .EXE has a G preceding it. Click this icon to see all the source
modules for the DLL or .EXE. If you double-click one of the modules, the

Turbo Debugger GX for OS/2 Users Guide

.~

.'

o

The Evaluator view

The Inspector view

debugger loads it into the Source view, where you can do things like set
control points, set watches on expressions, and so on.

If you want to see more than one module at a time, double-click on the
module you want to examine in the Module view, and a new Source view
will open with the desired source code.

For more information on the Modules view, click in the view, then press Ft
to display Help, or choose Help from the view's local menu. For
information on a menu choice, select it and press Ft.

Choosing View I Evaluator from the Control Panel displays the Evaluator
view.

Use this view to change the values of variables and expressions and to
evaluate expressions that cause side effects (like function calls). It's
especially useful for changing the values of complex variables (like letterinfo
from TDDEMO).

The local menu
In this view you can do the following things:

E:lI Enter a new expression to evaluate

tJ Inspect the value of an expression (open an Inspector view on the current
expression)

l'J Display the stack concurrently with the expression (a Display Option-
Ctr/+O)

These choices are available from the Evaluator view local menu (right-click
or press Ctr/+FtO to display it). You can also use the shortcut keys you see on
the local menu directly from the Evaluator view, without actually
displaying the menu.

For more information on the Evaluator view, click in the view, then press Ft
to display Help or choose Help from the view's local menu. For information
on a menu choice, select it and press Ft.

Choosing View I Inspector from the Control Panel menu bar displays the
Inspector view. You can also display this view by choosing Inspect Value
from the local menu of the Source view, the Variable view, or the Watch
view (or pressing Ctrl+/in any of these views). Note that in the Source view,
you must have the insertion point on the variable you want to inspect.

Use this view to display or change the current value of a selected variable
or expression. Double-clicking on a variable or expression in the Source
view automatically displays it in the Inspector view. The Inspector is useful

Chapter 2, The Turbo Debugger GX environment 33

The Variable view

34

for taking a quick look at a variable or expression or seeing the elements of
a complex variable or expression. You can also use the Inspector to change
the value of a simple variable (or a single element of a complex variable).

The local menu
In this view you can do the following things:

• Enter a new expression
• Change the value of an expression
• Show type information
• Change the form of the data display for an expression

All these choices are available from the Inspector view local menu (right
click or press Ctr/+FtO to display it). You can also use the shortcut keys you
see on the local menu directly from the Inspector view, without actually
displaying the menu.

For more information on the Inspector view, click in the view, then press Ft
to display Help or choose Help from the view's local menu. For information
on a menu choice, select it and press Ft.

Choosing View I Variable from the Control Panel displays the Variable
view.

Use this view to display a list of variables whose values you want to see.
(To change which variables display, press etr/+o or choose Display Options
from the local menu.)

The local menu
In this view you can do the following things:

• Change between list form and detail form
• Inspect a value
• Add a watch
• Add a datapoint

All these choices are available from the Variable view local menu (right
click or press Ctr/+FtO to display it). You can also use the shortcut keys you
see on the local menu directly from the Variable view, without actually
displaying the menu.

The List and Detail views
This view also has a Detail view. To see details on a variable, first select the
variable in the List view, then press Ctr/+S to display the Detail view.

Turbo Debugger GX for OS/2 Users Guide

The Watch view

Press Ctr/+S to
change view forms.

The Detail view shows the variable's address, its type, and its value. If the
variable is a complex type, such as an array or structure, you also see a list
showing each element and its value.

While in the Detail view, you can see details on other variables in the list by
clicking the drop-down button to the right of the variable name (in the
combo box at the top of the Detail view), then choosing a variable from the
list that appears.

For more information on the Variable view itself, click in the Variable view,
then press F1 to display Help. For information on viewing variables, see the
Help topic "Viewing Program Data in the Variable View" or choose Help
from the view's local menu. For information on a menu choice, select it and
press F1.

Choosing View I Watch from the Control Panel displays the Watch view.
You can also display this view by choosing Set I Add Watch from the menu
bar or choosing Add Watch from the local menu of the Source view or the
Variable view (or pressing Ctrl+Win either of these views). Note that in the
Source view, you must have the insertion point on a variable.

You use this view to track the values of variables and expressions as they
change, or to change their values yourself. Using this view, you can watch
more than one expression or variable at a time and get a quick picture of
what's going on in your application.

The local menu
In this view you can do the following things:

[J Change between list form and detail form
lJ Add, remove, or disable a vyatch
Il Change the value of a variable or expression
[J Inspect the value of a variable or expression

All these choices are available from the Watch view local menu (right-click
or press Ctrl+F10 to display it). You can also use the shortcut keys you see on
the menu directly from the Watch view, without displaying the menu.

The List and Detail views
This view has two forms, a List view form and a Detail view form. The List
view shows all variables and expressions you are watching. The Detail
view shows details about a particular variable or expression and allows
you to change its value in memory. Note: you can't change the value of a
constant expression.

Chapter 2, The Turbo Debugger GX environment 35

The Call Stack view

The Heap view

The Memory view

36

For more information on the Watch view, click in the view, then press Ft to
display Help or choose Help from the view's local menu. For information
on a menu choice, select it and press Ft.

Choosing View I Call Stack from the Control Panel displays the Call Stack
view.

This view shows the current state of the stack. If you haven't run your
application yet, no routines are listed. You can add this view to the
Disassembly view as a pane. You can also open a stack pane in several
other views, such as: Variable, Watch, Evaluator, Inspector, and Memory.

For more information on the Call Stack view, click in the view, then press
Ft to display Help or choose Help from the view's local menu. For
information on a menu choice, select it and press Ft.

Choosing View I Heap from the Control Panel displays the Heap view.

Use this view to look at your application's heap. The Heap view represents
each memory object in the heap as a line in the Heap view. For each object
there is an index (a line number), an address where the object starts, the
object's size in bytes, and an indication of whether the object is being used.

For more information on the Heap view, click in the view, then press Ft to
display Help, or choose Help from the view's local menu. For information
on looking at memory, see the Help topic "Viewing Memory". For
information on a menu choice, select it and press Ft.

Choosing View I Memory from the Control Panel displays the Memory
view.

Turbo Debugger GX for OS/2 Users Guide

Figure 2.8
The Memory view

EDI

Ox00010000 ~b 44 24 04 - a3 02 I
Ox00010008 00 58 68 34 - 00 00 50
Ox00010010 e9 17 1c 00 - 00 00 00 I ... ,
Ox00010018 cc 00 00 00- 53 57 56 31 , ... SYl'Vl
Ox00010020 ff 31 f6 31 - db ff 75 Oc I _,1,1. .u.
Ox00010028 ff 75 08e8 - d802 00 00 I . 'U. -
Ox00010030 eb 19 68 c8 - OC 02 00 e8 _ ,11 ,
Ox00010038 46 00 00 00 - 01 c6 68 c8 I F 11.
Ox00010040 Dc 02 00 eS - 8a 00 00 00 I .,...... 'Hi
Ox00010048 01 c3 47 e8 - 77 02 00 00 I . . G.w. . . !
Ox00010050 09 cO 75 de - 8b c7 8b d6 I .. 'U .•••.
Ox00010058 8b cb 51 52 - 50 e8 Oe 01 I .. QRP ...
Ox00010060 00 00 68 60 - 00 02 00 e8 II .. 11'.... '
Ox00010068 54 14 00 00 - 83 c4 04 68 T h ! :
Ox00010070 48 Od 02 00 - e8 37 08 00 H 7.. I I

Ox00010078 00 31 cO 5e - 5£ 5b 5d 02 I .1. ~ _[1 . ! 1
01o:00010080 08 00 c8 00 - 00 00 53 57 I 811 I'
Ox00010098 f9 Sa 07 08 - cO 74 01 43 I ... , .t.e !
Ox00010088 56 8b 7d 08 - 31 db 8b £7 I V.}.l... l
Ox00010090 eb 01 47 8a - 07 3c 20 74 .. G .. < t !I;
Ox000100AO eb 06 Sa 07 - 88 06 47 46 ... _ . ,GF ~

k"'+'~""O;:,;x,:,O;:;,,_O~~ 9J:.1t9.!~_§~ .. wQ2 __ .Q.~Q_~.L~~.§_.::~=:~~~ ... ~~\-~.J~~ 2J,~1
I

Register Addresses
name

Byte representation
of contents

I
ASCII

representation

Use this view to look at the contents of memory. When it first opens, you
see memory contents displayed as hexadecimal bytes and their ASCII
representation at the right side of the window. You can change the form of
the display (for example, to short) using the local menu Display Options
choice (press Ctr/+O).

You can also display this view as a pane in the Disassembly view. (See page
31 for a description.)

The local menu
In this view you can do the following things:

• Go directly to an address
• Search memory for an expression
• Clear an area of memory
• Move an area of memory to another location (nondestructive copy)
• Change the contents of an area of memory
• Read an area of memory into a file
• Write from a file into an area of memory
• Go to an area of memory indicated by the four bytes at the current text

selector location .

All these choices are available from the Memory view local menu (right
click or press Ctr/+F10 to display it). You can also use the shortcut keys you

Chapter 2, The Turbo Debugger GX environment 37

The Numeric
Processor view

The Register view

38

see on the local menu directly from the Memory view, without actually
displaying the menu.

For more information on the Memory view, click in the view, then press Ft
to display Help, or choose Help from the view's local menu. For
information on looking at memory, see the Help topic "Viewing Memory."
For information on a menu choice, select it and press Ft.

Choosing View I Numeric Processor from the Control Panel displays the
Numeric Processor view.

Use this view to look at or change the state of the numeric processor. You
must instruction-step through code that uses the numeric processor in
order to see anything meaningful in this view since the numeric stack is
usually left clean at the end of each high-level statement. This view
indicates

• Contents of the registers
• Control word and control flag settings
• Status word and status flag settings
• NPX Tag word
• Addresses pointed to by the instruction and data pointers
• Current instruction being executed

You can do the following in this view:

• Change control flag values (Ctr/tG or double-click)
• Change status flag values (Ctr/tS or double-click)
• Change register values (use the entry field)
• Change the value of the control or status word (use the entry field)
• Change the value of the NPX tag word (use the entry field)
• Choose hexadecimal or decimal as the display form (Ctr/tO)

For more information on the Numeric Processor view, click in the view,
then press Ft to display Help or choose Help from the view's local menu.
For information on a menu choice, select it and press Ft.

Choosing View I Register from the Control Panel displays the Register
view.

Use this view to look at the contents of the CPU registers and flags. You can
also display the different panes in this view in the Disassembly view. (See
page 31 for a description.)

The local menu
In this view you can do the following things:

Turbo Debugger GX for OS/2 Users Guide

The C++ exception
stack view

The File view

• Change a register value
• Clear, increment, or decrement a register
• Toggle the value of a flag

All these choices are available from the Register view local menu (right
click or press Ctr/+FtO to display it). You can also use the shortcut keys you
see on the local menu directly from the Register view, without actually
displaying the menu. In addition, you can double-click a register or a flag
to change its value.

For more information on the Register view, click in the view, then press Ft
to display Help, or choose Help from the view's local menu. For
information on a menu choice, select it and press Ft.

The C++ exception stack view displays the state of all pending C++
exceptions. This view displays the most recent C++ exception thrown as the
first entry in the list.

Use this view to control how events associated with C++ exceptions are
handled by the debugger. Events are C++ exception catches or destructor
invocations caused by stack unwinding. The check boxes for each entry in
this view controls whether or not the debugger stops for destructors or
catches for the C++ exception throw associated with the entry. By default,
the debugger stops on both of these events.

Choosing View I File from the Control Panel displays the File view.

Use this view to look at files that do not contain Debug information.
Typically, you'll use this view on files you can't load into the Source view,
such as header files or source files from programs other than the one you're
debugging. The default form is hexadecimal bytes with ASCII displayed on
the right side. You can change to ASCII form by pressing Ctr/+O and
choosing Show ASCII.

The local menu
In this view you can do the following things:

• Go to a location in the file by entering a C expression (such as a string in
quotation marks)

• Change display form (hexadecimal with ASCII on the side is the default)

These choices are available from the File view local menu (right-click or
press Ctr/+FtO to display it). You can also use the shortcut keys you see on
the local menu directly from the File view, without actually displaying the
menu.

Chapter 2, The Turbo Debugger GX environment 39

The Log view

40

'For more information on the File view, click in the view, then press F1 to
display Help, or choose Help in the view's local menu. For information on a
menu choice, select it and press F1.

Choosing View I Log from the Control Panel displays the Log view.

Use this view to examine the event log. The event log is a dynamic listing of
the control points that your program encounters during execution. To
indicate that a control point is to be logged, check the Log Expression check
box on a control point's Detail view.

For example, to log a breakpoint, choose Set I Breakpoint, enter the
breakpoint information, and then check the Log Expression check box at
the bottom of the Breakpoint detail view. (This check box is also on the
detail views for messagepoints, datapoints, and exceptionpoints.)
Whenever your program encounters this breakpoint, the debugger logs its
action to the event log.

The local menu
In this view you can perform the following actions:

• Erase the contents of the event log
• Open a log file to store the contents of the event log
• Disable and enable event logging

All these choices are available from the Log view local menu (right-click or
press Ctr/+F10 to display it). You can also use the shortcut keys you see on
the local menu directly from the Log view, without actually displaying the
menu.

For more information on the Log view, click in the view, then press F1 to
display Help, or choose Help from the view's local menu. For information
on a menu choice, select it and press F1.

Turbo Debugger GX for OS/2 Users Guide

c H A p T E R

A quick example

This chapter gives you enough information to debug your first program.
Once you've learned the basic concepts described here, the graphical
environment and context-sensitive Help system assist you in learning as
you'go along.

3

This chapter leads you through the basic features of Turbo Debugger ex.
After describing the demo program, it shows you how to do the following
procedures:

CI Run and stop program execution

iii Examine the contents of program variables

III Look at complex data objects, such as arrays and structures

Ii.I Change the value of variables

The demo program

This tutorial uses the TDDEMO.C demo program to introduce the two
main things you need to know to debug a program: how to stop and start
your program, and how to examine your program's variables and data
structures. The demo program itself isn't meant to be very useful-some of
its code and data structures exist solely to show you the capabilities of
Turbo Debugger ex.
The demo program prompts you for lines of text, then counts the number
of words and letters you entered. It finishes by displaying some statistics
about the nature of the text entered, including the average number of
words per line and the number of times each letter occurred.

-. Make sure your current directory contains the two files needed to debug
the demo: TDDEMO.C and TDDEMO.EXE.

Chapter 3, A quick example 41

Getting in To start the program, run the debugger, then:

1. Choose File I Load Process from the Control Panel.

2. If necessary, change to the directory containing TDDEMO.C and
TDDEMO.EXE. (The default directory is \ BORLANDC \ EXAMPLES \
TD.)

3. Enter TDDEMO.EXE as the file to open, then click OK.

Turbo Debugger ex loads the demo program, opens the Source view and
the application's Program Window, and positions the text selector in the
Source view at the start of the program.

Figure 3.1
Debugger views after

loading TDDEMO

42

<>
<>
<>
<>
{>

<>

nlines '" 0;
mwrds '" 0;
totalcharacters = 0;
showargs(argc. argv);
while (readaline() != 0) {

}

y,TOrdcoun t = makein tmmrds (buf fer) ;
nwords += wordcount;
totalcha,ra.cters +'" an.:~ly:zev;ror(is(bujE f
nlines++;

.. By default, the debugger doesn't run your program's startup code. You can
change this default setting in the Properties dialog box by specifying main
in Run To _ On Startup and checking that button to enable it, or by
running the debugger with the -r command-line switch (see Table 1.1 on
page 9).

The application's user screen appears with TDDEMO because TDDEMO is
a character-mode program that requires an OS/2 window, which OS/2
starts automatically before the program is run. If TDDEMO were a

Turbo Debugger GX for OS/2 Users Guide

Presentation Manager program (like TDDEMOPM), the user screen
wouldn't appear until you actually ran the program.

Getting out To exit from the tutorial and Turbo Debugger GX at any time, press Alt+X. If
at any point you want to reload the program and start at the beginning,
press Ctrl+F2 or click the Reset Program button on the SpeedBar.

Getting Help Press Fl whenever you need help with the current view, menu choice or
dialog box. You can learn a lot by working your way through the menu
system and pressing Fl at each menu choice to get a summary of what it
does. You can also learn a lot by reading the online User's Guide, which
consists of all the subtopics under the Tasks topic in the Help Contents
panel. You can read the User's Guide online, taking advantage of its
hyperlinks and modular design, or you can print individual topics or
sections for reading offline. See Chapter 1 for information about printing
Help topics.

Using the debugger The Control Panel's menu bar, SpeedBar, and status line, and the various
views and their local menus are the keys to using the debugger effectively.
For more information, see Chapter 2, "The Turbo Debugger GX
environment."

Using TDDEMO

f0l L51J

To position the text
selector on a line in

the Source view,
press Ctrl+L, type the

line number, and
press Enter.

If you haven't loaded TDDEMO yet, do so now. The text selector in the
Source view is on the first executable line of your program, the main
function. Since you haven't run your program yet, the program counter
doesn't show. Press the SpeedBar's Statement Step Into button (or F7) to
run the startup code for the program. The program counter now appears to
the left of main, indicating that the debugger has run the startup code and
is ready to start execution with this line.

Look at the left margin of the Source view. You see diamonds indicating
lines that generated executable code. To see line numbers, click the Source
view, press Ctrl+O, and choose Show Line Numbers. Now line numbers
appear in the left margin.

As you can see from the Run menu, there are a number of ways to control
the execution of your program. Let's say you want to run the program until
it reaches line 40.

First, position the text selector on line 40, then press F4 to run the program
up to (but not including) line 40. Now press F7, which executes one line of
source code at a time and enters into any functions called; in this case, it

Chapter 3, A quick example 43

Figure 3.2
Program stops on

return from
function showargs

Setting
breakpoints

[ill

44

executes line 40, a call to the function showargs. The cursor immediately
jumps to line 167, where the definition of showargs is found.

Continuing to press F7 would step through the function showargs and then
return to the line following the call-line 41. Instead, press Ctr/+F8, which
causes showargs to execute and then return, at which point the program
stops. This command, too, returns to line 41 and is very useful when you
want to run past the end of a function.

If you had pressed F8 (or used the Statement Step Over button on the
SpeedBar) instead of F7 on line 40, the program counter would have gone
directly to line 41 instead of into the function. F8 is similar to F7 in that it
executes a function or source line, but skips any function calls.

32 */
33 <> int n\ain(int argc, char **argv) {
34 unsigned int. nlines, llYrords, lmrdcount.;

~3§' A cm.s. i g. ned long totalcharacters; j.J
'v nlines = 0;

38 <> • nwords "'.0; I .

··~~!E:~~~~~~T.'r!~~H~~~~1
43 <> nwords += wordcount;. ~
44 <> totalcharacters +'" 8.nalyzewords(bu ...
45 <> nlines++; . I

4
47

6 <> } ••• l' d I
• <> prlntstatlstlcs(n lnes, nwor s, totalchara~

: 48 <> printf (",nPress <Enter> when done. "); II
: ... 4 .. ~ .. ::.~ "." ~,,_ S[~t~.t;:E9.tl;?1!.t2 .. ; ...• " """.M" " " ... ~ •• ,, ... "" "" _ _ '" .•• :'.::,

! J.,.J ~ .. ~ .. _._:.:..~_ ... _ .. _ .. ~;,~:_. ~,,"~j

To execute the program until a specific program location is reached, you
can directly name the function or line number, without moving the text
selector to that line in a source file and then running to that point. Press
Ctr/+F9 (or choose Run I Execute To from the Control Panel) to specify a label
to run to. A dialog box appears. Type readaline and press Enter. The pro
gram runs, then stops at the beginning of function readaline.

Another way to control where your program stops running is to set
breakpoints. The simplest way to set a breakpoint is with the F2 key. Move
the text selector to line 45 and press F2. Turbo Debugger GX puts a blue B
in a box to the left of the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking near the
diamond to the left of a line of source code.

Turbo Debugger GX for OS/2 Users Guide

Figure 3.3
A breakpoint set at

line 45

Using watches

37 '"
38 <>

39 '"
40 <>
41 <>

42 <>

43 <>

44 '"
[:4S::;1:[

46 <>gj
47 <>

48 <>
49 <>

50 <>
51 }
52

unsigned long totalch.9.racters;

nlines ,. 0;
lwords '" 0; I
totalcharacters ,. 0; I I

showargs(argc. argv); i
while (readaline() !,. 0) { r-11;1

wordcount = makeintowords(bl.lffer); i '
lwords += wordcoun t ; i I
totalcharacters. +,:an.9.1z:zewords(bu~ I

} ,~,' ,~ss:,\~, ~S3~2~: '" "'~"~'~""" ~ , ~ ",. ".~< ','< "n,~ ,,;.r: ~:~~1 I
pr~ntstatistics(nlines. nwords. totalcharaq !
prlntf ("'.nPress <Enter> when done. "); i !
gets(retbuf); I !
return(O); I I

f~1
~"'~''''''''',~,~'''~,~~,~''''''''''''''''''.'''''' "",,,,,,,,,-,,-,,,,,,,,,,,,,,,,,,,~,,,,,,,,~~,,,,,~,,~~,,,~~~~~,,,~,~~~~ """'''''''''''''''''''''''''''''''-'''''''''''''''--,'''1

Notice the small box containing horizontal lines to the left of line 46. This
stack glyph indicates the next line that will execute after a return from a
procedure call. It appears at the end of this while loop because you
previously ran the program to readaline, which is called by this while
statement.

Now press F9 to execute your program without interruption. The focus
switches to the program's display. The demo program is now running and
waiting for you to enter a line of text. Click the application window, and
type abc, a space, def, and then press Enter. The display returns to the Source
view with the arrow on line 45, where your breakpoint has stopped the
program.

Now press Ctrl+E to disable the breakpoint. You see the capital B change to a
lowercase b, indicating that the breakpoint is still set (preserving any filters,
conditions, and actions) but is disabled.

See page 25 for more information on breakpoints. The Online Help also
provides a complete description of setting and using breakpoints, under
"Tasks."

The Watch view shows the value of variables you specify. For example, to
watch the value of the variable nwords, move the text selector to the
variable name on line 43, choose Add Watch from the Source view local
menu (or press either Ctrl+F7 or Ctrl+W), then press Enterto accept that
expression.

Chapter 3, A quick example 45

Figure 3.4
A variable in the

Watch view

Examining simple
C data objects

Figure 3.5
An Inspector window

46

The symbol nwords now appears in the Watch view, along with its value.
As you execute the program, Turbo Debugger GX updates this value to
reflect the variable's current value.

If you pass out of the variable's scope (for example, if you continue
statement-stepping-into and step into the readaline function), the Watch
view shows the variable as undefined. As soon as the variable is back in
scope (for example, you statement-step through readaline, enter another
line of characters, and step back into the while loop containing nwords), you
can see its value again.

Once you have stopped your program, there are a number of ways of
looking at data using the Inspector view. This facility lets you examine data
structures in the same way you visualize them when you write a program.

With the Inspector view (available from all local menus and from the View
menu), you can examine any variable yo~ specify. Suppose you want to
look at the value of the variable nlines. Double-click nlines in the Source
view: an Inspector view pops up with nlines in it.

33 <>
34
35
36
37 <>
38 <>
39 <>

int mai;;'(i~;'t''';;g~:''~;;har

41<>
42
43 <>
44 <>
45
46 <>
47 <>
48 <>
49 <>

... !?Q ~

unsigned in t nlines, T,,'ordcount;
unsigned . low? tota.lchara.cters;

n1ineo$ ~ 0;
n~rords = 0;
totalchar.s.cters '"

while (readaline()

}

wordcoun t == ,~~~~~~:~ ~~words (bu f fer
nwords +~ we
totalcharacters += ahal yzeliTOrds (buf f er) ;
nlines++;

printstatistico$(nlines, nwords. totalcharacters);
printf("'.nPress <Enter> when done.");
gets(retbuf);

.. r!"'.t.ll:r::nLQ) .. ;

The address, type, and name of the variable are listed on the first line and
its value on the second. Because nlines has been optimized into a register
variable, its address is the EDI register.

To examine a data item that isn't conveniently displayed in the Source
view, choose View I Inspector. The Inspector view appears, asking you to
enter the expression to inspect. Type letterinfo and press Enter. The

Turbo Debugger GX for OS/2 Users Guide

Examining
compound data
objects

Figure 3.6
Inspecting a structure

Changing data
values

Inspector view lists the values of the letterinfo array elements. The first line
of the list shows the address, type, and name of the data you're inspecting.
Scroll through the 26 elements that make up the letterinfo array. The next
section shows you how to examine this compound data object.

A compound data object, such as an array or structure, contains multiple
components. Double-click the fourth element of the letterinfo array (the one
indicated by [3]). A new Inspector view appears, showing the contents of
that element in the array.

When you double-click one of the member names, it appears in yet another
Inspector view. If one of these members was in turn a compound data
object, you could double-click it and dig down further into the data
structure.

Now return to the Source view by clicking on it.

So far, you've learned how to look at data in the program. Now you'll see
how to change the value of data items.

Use the mouse to go to line 39 in the source file. Double-click the variable
totalcharacters to inspect its value. With the Inspector window open, right
click to bring up the Inspector's local menu, then choose the Change Value
option. (You could also have done this directly by pressing. Ctrl+G.) A dialog
box appears, asking for the new value.

Chapter 3, A quick example 47

Figure 3.7
The Change Value

dialog box

Figure 3.8
The Evaluator view

Conclusion

48

Expression: L-~~~~ __ ~ ____ __

At this point, you can enter any C expression that evaluates to a number.
Type total characters + 4 and press Enter. The value in the Inspector
window now shows the new value, 10.

You can also use the Inspector view to change the value of a structure or
array member. For example, if you double-click letterinjo, then double-click
the fourth element of the array (element [3]), you get an Inspector view for
count andfirstletter. If you double-click count, you get an Inspector view for
that single element. If you then press Ctrl-G, you can change the value of
that element.

To change a data item that isn't displayed in the Source view, choose
View I Evaluator (or press Ctrl+F4). A dialog box appears. In the Expression
entry field, enter the name of the variable to change. Type nlines, press
Enter, then press Tab to move to the New Value entry field. Type 123 and
press Enter. The Result field shows 123.

You can use the Evaluator view to change values of complex data types,
but you can change only one element at a time. For example, to change the
fourth element of letterinjo (letterinjo[3]), you must bring up the Evaluator
and change letterinjo[3].count first, then change letterinfo[3].firstletter.

That's a quick introduction to using the Turbo Debugger GX with a
character-mode program written using Borland C++ for OS/2. If you're
interested in Presentation Manager debugging, try using the demo
program TDDEMOPM and playing around both with the features
mentioned in this chapter and with the Messagepoint and Exceptionpoint
views.

Another view you might find useful for general debugging is the
Disassembly view, which shows disassembled code and can
simultaneously show you registers, flags, the stack, and memory contents.
You can also use this view on code you have no source or no debugging

Turbo Debugger GX for OS/2 Users Guide

information for. (Note that you have to select the local menu display
options to select these displays.) See page 31 for more information, or see
the Online Help topic "Disassembly View."

For more information on debugging tasks, see the Online Help topics
"Essentials" and "Tasks." For more information on the Turbo Debugger GX
environment, see Chapter 2, "The Turbo Debugger GX environment" or the
Online Help topics "Menus" and "Views."

Chapter 3, A quick example 49

50 Turbo Debugger GX for OS/2 Users Guide

A p p E N D x A

Turbo Debugger GX for
experienced Turbo Debugger users

The following table lists major tasks you can perform when you're
debugging, and shows you the commands or keystrokes to accomplish
each task in Turbo Debugger for DOS (or Windows) and in Turbo
Debugger GX.

Table A.1: Turbo Debugger GX task list

Task

Access the local menu of a
view

Add a breakpoint and change
characteristics

Animate

Back Trace

Change directories

Check the value that a
function is about to return

Close a file

Copy from current window
to Log window

Delete all breakpoints

Display Breakpoints view

Display CPU view

Display Dump view

TD for DOS or TDW

Right mouse click or
Ctrl+F10

BreakpointslAt (Alt+F2)
Viewl BreakpointslAdd

RunlAnimate

RunlBack Trace (Alt+F4)

FilelChange Dir

DatalFunction Return

FilelOpen

EditlCopy to Log
EditlDump Pane to Log

BreakpointslDelete All

ViewlBreakpoints

ViewlCPU

ViewlDump

Appendix A, Turbo Debugger GX for experienced Turbo Debugger users

Turbo Debugger GX

Right mouse click or
Ctr/+F10.

Setl Breakpoint.
Viewl Breakpoint.

RunlAnimate.

No equivalent.

FilelLoad Process.

No equivalent.

FilelUnload Process.

No equivalent.

Breakpoint view local menul
All BreakpointslRemove all
Breakpoints.

Viewl Breakpoint.

ViewlDisassembly.
ViewlCall Stack.
ViewlMemory.
Viewl Register.

ViewlMemory.

51

Table A.1: Turbo Debugger GX task list (continued)

Display Execution History ViewlExecution History
view

Display File view

Display Log view

Display Module (source) view

Display Numeric Processor
view

Display Registers view

Display Stack view

Display Variables view

Display Watches view

Display Windows Messages
view

Enable/Disable all
breakpoints

Enable/Disable breakpoint

Evaluate or modify data

Execute to a specified
location

Execute until current
routine returns

Exit program

Inspect a variable

Look at window messages
returned to application

Look at Windows local heap,
module list, or global heap

52

ViewlFile

ViewlLog

ViewlModule (F3)

ViewlNumeric Processor

Viewl Registers

ViewlStack

ViewlVariables

ViewlWatches

ViewlWindows Messages

No equivalent

Not available

Datal Evaluate/Modify
(Ctrf+F4)

RunlExecute to (AIt+F9)

RunlUntil Return (Aft+FB)

FilelExit (AIt+X)

Position cursor in Module
window, then press Ctrl+f
or choose local menullnspect
Or, choose Viewllnspect

Windows Messages window,
lower pane ViewlLog (if sent
to Log window)

ViewlLogl(local menu)IDisplay
Windows Info

No equivalent.

ViewlFile.

ViewlLog.

ViewlSource.

ViewlNumeric Processor.

Viewl Register.

ViewlCall Stack.

ViewlVariable.

ViewlWatch.

Viewl Messagepoi nt.

Breakpoint view local menul .
All BreakpointslEnablel
Disable All Breakpoints.

With cursor on breakpoint position
in Source or Disassembly view, choose
local menulEnable/Disable breakpoint.

ViewlEvaluator (Ctrf+F4).

RunlExecute To (Ctrf+F9).

RunlReturn from Function (Ctrf+FB).

FilelExit (Aft+X).

Position cursor in Source view,
then double-click, press Ctrf+f,
or choose local menullnspect Value.
Or, choose Viewllnspector.

In Messagepoint view
details pane, choose Log
Expression. Then ViewlLog to
see window messages.

No exact equivalent. ViewlHeap
and ViewlModule are similar to
Windows local heap and module list.
No equivalent for global heap.

Turbo Debugger GX for OS/2 Users Guide

Table A.1: Turbo Debugger GX task list (continued)

Open a file FilelOpen

Pick a module to view

Reload application program

Run application program

Run to current location

Set arguments before
running application

Set characteristics of
breakpoint

Set message breakpoint

Set watchpoint, tracepoint,
or hardware breakpoint

Step into routine by
instructions

Step into routine by
statements

Step over routine by
instructions

Step over routine by
statements

Toggle breakpoint on and
off at cursor in source
or assembly language view

Watch data

ViewlModule (F3)

RunlProgram Reset (Ctrl+F2)

RunlRun (F9)

RunlGo To Cursor (F4)

RunlArguments

BreakpointslAt (Ctrl+F2)
ViewlBreakpointslSet options

ViewlWindows Messages

BreakpointslChanged Mem. Glb.
BreakpointslExpn. True Global
BreakpointslHdw. Breakpoint

RunlTrace Into (F7)
in CPU window

RunlTrace Into (F7)
in Module window

RunlStep Over (FB)
in CPU window

RunlStep Over (FB)
in Module window

BreakpointslToggle (F2)

DatalAdd Watch (Ctrl+F7)
ViewlWatches Or, in Module
window, press Ctrl+Wor
choose Watch from local menu

Appendix A, Turbo Debugger GX for experienced Turbo Debugger users

FilelLoad Process.

ViewlModule (F3).

RunlReset (Ctrl+F2).
Press SpeedBar button.

RunlRun (F9).
Press SpeedBar button.

Source View local menul
Run to Here (F4).

RunlArguments.

SetlBreakpoint. Pick it
from list of breakpoints.

SetlMessagepoint.

SetlDatapoint.

Runllnstruction Into (Fll).
Press SpeedBar button.

RunlStatement Into (F7).
Press SpeedBar button.

Runllnstruction Over (FI2).
Press SpeedBar button.

RunlStatement Over (FB).
Press SpeedBar button.

F2 or double-click (if
on left line marker).
Local menulSetiRemove
Breakpoint.

SetlAdd Watch (Ctrl+F7).
ViewlWatch or, in Source view,
press Ctrl+Wor choose Add Watch
from local menu.

53

54 Turbo Debugger GX for OS/2 Users Guide

Index

-? command-line option 9

A
accessing

Help 11
local menus 51

actions
breakpoints 25
datapoints 26
exceptionpoints 27

addresses
functions 23
variables 34

altering
control flags 38
control word, numeric processor 38
flags 39
memory 37
NPX tag word 38
registers

CPU 38
numeric processor 38

status flags 38
status word, numeric processor 38
variable values 16

animate 51
application window, activating with SpeedBar 20
applications

arguments, setting 53
loading q2
reloading 53
running 53
unloading 51

arguments, setting, for application 53
arrays 47

changing elements 48
Evaluator view 33
inspecting, C tutorial 46
values, changing 33
Variable view 34

ASCII, memory representation 37

Index

assembly code

B

current location 31
program counter glyph 31
viewing 31

Borland
license agreement 7

Borland Assembler, versions compatible with Turbo
Debugger GX 1

Borland C, versions compatible with Turbo Debugger
GX 1

Breakpoint view 25
detail form (figure) 23
displaying 51
Help information 26
list and view forms 23
list form (figure) 24

breakpoints 25, See also control points
disabling 45, 52
Disassembly view glyph 31
enabling 52
hardware, setting 53
Help information 26
logging 40
running programs to 45
setting 53

characteristics 53
executable line glyph 30
simple 25
tutorial 44

Source view glyph 30
TDDEMO (figure) 45
toggling 53
window message, setting 53

buttons See also SpeedBar
context-sensitive Help 12

c
C++ exception stack view 39
C++ exceptionpoint view 28
C++ exceptions 28

55

-c command-line option 9
Call Stack view 36

displaying 51, 52
Help information 36

changing
array values 33
complex variables

Evaluator view 48
Inspector view 48

control flags 38
control word 38
data 48
directories 51
flags 39
memory 37
modules 53
NPX tag word 38
registers

CPU 38
numeric processor 38

status flags 38
status word 38
structure values 33
variable values 16

tutorial 47
check bO,xes, dialog boxes 21
clearing

log 40
memory 37
registers, CPU 39

closing
files 51

code
current location

assembly 31
source 30

files, viewing 39
source

executable line glyph 30
viewing 30

startup
debugger setting 42
running in tutorial 43

views 24
code pointer See program counter glyph
command-line options

table of 9

56

Turbo Debugger GX 8
utilities 4

comparing TD DOS and TD GX debuggers 2, 52
compatibility requirements 1
compiling programs 16
conditions, filter 25
configuring, debugger 21
contents

Help, displaying with SpeedBar 20
summary 6

Contents, Help panel 12
Contents choice, Help menu 11
context-sensitive Help 12
control flags, numeric processor 38
Control Panel 17

File menu 19
Help menu 11, 19
Menu-bar choices (table) 19
Properties dialog box (figure) 21
Run menu 19
Set menu 19
SpeedBar (figure) 19
SpeedBar buttons (tables) 20
status line 21
TDDEMO (figure) 42
Threads pane (figure) 20
view (figure) 18
View menu 19
Window menu 19

control points 24, See also breakpoints; datapoints;
exceptionpoints; messagepoints
defined 24
logging 40
reusing 20
saving 43

control word, numeric processor 38
conventions, typographic 5
coprocessor, numeric See numeric processor
CPU registers 38
CPU view, displaying 51
creating log file 40
Ctrl+E (disable breakpoint), Source view 45
Ctrl+F4 (evaluate/change) 48
Ctrl+FB (return from function) 44
Ctrl+F9 (run to expression) 44
Ctrl+F7 (watch) 45
Ctrl+H (Help key) 10

Turbo Debugger GX for OS/2 Users Guide

Ctrltl (change), Inspector view shortcut 47
Ctrltl (inspect), Source view shortcut 45, 46
Ctrltl key 12
CtrltO (display options), Source view 43
CtrltW (watch), Source view shortcut 45
current

D

instruction 31
location, running to 53
statement 30

data
changing 48, 52
types, compound 47
watching 53

Datapoint view 26
Help information 27

datapoints 26, See also control points
Help information 27
logging 40
Source view 31
Variable view 34

debugger
configuring 21
exiting 19
properties, setting 21
settings, startup code 42

debugging 15
comparison, TD GX and TD 51
compound variables 47
defined 15
features 1
files required 1
modules 32
source files and 1
steps 15
task list (table) 51
tasks 15
threads 20
tools 15
tutorial, Help 43

decrementing CPU registers 39
deleting

breakpoints
Disassembly view 31
Source view 31

datapoints 26

Index

log 40
messagepoints 29

demo programs 4, See also tutorial
Help 43
reloading 43
source files 41
starting 42
TDDEM041

demos, starting (figure) 42
detail form 22

Datapoint view 26
Exceptionpoint view 27, 28
list of views 23
Variable view 34
Watch view 35

dialog boxes 21
check boxes, using 21
context-sensitive Help 12
defined 21
entry fields, using 21
Properties 21
Properties (figure) 21
radio buttons, using 21

diamond, Source view glyph 30
directories

changing 51
source file search order 2

disabling
breakpoints 45, 52

Disassembly view 31
Source view 31

datapoints 26
logging 40
messagepoints 29

D~sassembly pane, Disassembly view (figure) 32
DIsassembly view 31

breakpoint glyph 31
displaying 51
Help information 32
panes 31
panes (figure) 32
program counter glyph 31
setting breakpoints 25

disks, distribution 3
display form

Memory view 37
Numeric Processor view 38

57

displaying
local menus 22, 51
views 51
window messages 52

distribution disks 3
.DLL files

reading with TDUMP 4
viewing 32

DLLs, viewing 39
Dump view, displaying 51
dumping files 4

E
editing text 16
elements, structure, changing 48
enabling

breakpoints 52
Disassembly view 31
Source view 31

datapoints 26
logging 40
messagepoints 29

entering Turbo Debugger GX 8
entry fields

context-sensitive Help 12
dialog boxes 21

erasing
log 40
registers, CPU 39

error messages, status line 21
Essentials choice, Help menu 11
evaluating, data 48
Evaluator view 33

changing values, complex variables 48
Help information 33

Exceptionpoint view 27
exceptionpoints 27, See also control points

Help information 27, 28
logging 40

.EXE files
reading with TDUMP 4
viewing 39

exiting debugger 8, 19,43,52
expressions See also variables

addresses 34
datapoints 26
entering in dialog boxes 48

,58

F

inspecting 33
lists 34
messagepoints 28
modifying 52
types 34
values, changing

Evaluator view 33
Inspector view 34
Watch view 35

views 24
watching 35

F1 (Help) 10
F9 (run application) 45
F4 (run to here) 43
F2 (set breakpoint) 44
F7 (statement step into) 43
F8 (statement step over) 44
FI help key 10
features

comparison with DOS Turbo Debugger 2
Turbo Debugger GX 1

File menu 19
File I Properties 21
File view 39

displaying 52
Help information 39,

FILELIST.DOC 3
, files

closing 51
debugging, required for 1
demo programs

source 41
TDDEM041

dumping 4
File view 39
FILELIST.DOC 3
INSTALL.EXE 7
log 40
MANUAL.TD 4
memory, reading into 37
memory, writing from 37
Online Help 6
online text 3
opening 52
program 3

Turbo Debugger GX for OS/2 Users Guide

reading, TDUMP 4
README.TD3
source, search order 1
TDDEMO.C 41
TDDEMO.EXE 4
TDDEMOPM.EXE 4
TDUMP.EXE4
UTILS.TD 4
viewing 39

filters
breakpoints 25
conditions 25
datapoints 26
exceptionpoints 27
messagepoints 28

flags, toggling 39
Flags pane, Disassembly view (figure) 32
forms

C++ exception point view
list form 28

Datapoint view
detail form 26
list form 26

display, Numeric Processor view 38
Exceptionpoint view

detail form 27, 28
list form 27

Inspector view, list form 33
list and detail 22
Memory view display 37
Messagepoint view

detail form 28
list form 29

Variable view
detail form 34
list form 34

views 22
breakpoint example 23
default 23

Watch view
detail form 35
list form 35

functions
return, running until 52
returning from 44
stepping into 15

SpeedBar 20

Index

G

stepping over 15
SpeedBar 20

window, tracking messages 28

Glossary choice, Help menu 11

H
-h command-line option 9
hardware

breakpoints, setting 53
Call Stack view 36
requirements

computer 1
numeric processors 1

views 24
header files, viewing 39
heap, viewing 52
Heap view 36

Help information 36
Help

breakpoints 26
Call Stack view 36
command-line options, Turbo Debugger GX utilities
4
datapoints 27
demo programs 43
Disassembly view 32
Evaluator view 33
exceptionpoints 27, 28
I:ile view 39
Heap view 36
Inspector view 34
local menu choices 26
Log view 40
Memory view 38
messagepoints 29
Mod ules view 33
Numeric Processor view 38
Register view 39
Source view 31
SpeedBar 20
Variable view 35
Watch view 35

Help menu 11, 19

59

Help panels
contents 12
printing 13

Help system 10
accessing 11
Contents panel 12
context-sensitive Help 12
Help window, using 11
icon in manual 5
index 12
printing 13
searching index 12
strategies for access 11
using 10

Help window, using 11
hiding views

SpeedBar 20
Window menu 19

hot keys See shortcut keys

icons in manual 5
Help 5
notes 5

incrementing CPU registers 39
index, Help system 12
Index choice, Help menu 11
Inspect command 46
inspecting

expressions 33
variables 33, 46-47,52

compound 47
Inspector view 33

changing values
complex variables 48
tutorial 47

Help information 34
scrolling 46
tutorial 46-47

inspectors
Evaluator view 33
Inspector view 34
Source view 31
Variable view 34
Watch view 35

INSTALL.EXE 7
installing Turbo Debugger GX 7

60

instructions
current 31
stepping by

K

into functions 20
over functions 20

keys

L

hot See shortcut keys
shortcut See shortcut keys

labels, running programs to, tutorial 44
license agreement, Borland 7
line numbers, displaying current 43
list form 22

C++ exceptionpoint view 28
Datapoint view 26
Exceptionpoint view 27
Inspector view 33
list of views 23
Messagepoint view 29
Variable view 34
Watch view 35

listing window messages 52
loading

modules 53
processes 52
TDDEMO (figure) 42

local menus 22
displaying 51
panes, Disassembly view 32
shortcut keys 22

locations
current, running to 53
program, specifying 23
specified, running to 52

Log view 40
displaying 52
Help information 40

logging
control points 40
datapoints 26
exceptionpoints 27, 28
messagepoints 29

Turbo Debugger GX for OS/2 Users Guide

M
-m command-line option 9
MANUAL.TD4
math coprocessor See numeric processor
memory 37

changing 37
clearing 37
heap 36
moving 37
searching 37
viewing 37
writing 37

Memory pane See also Memory view
Disassembly view (figure) 32

Memory view 36, 37, See also Memory pane
displaying 51
Help information 38

Menu-bar choices (table) 19
menus

context-sensitive Help 12
File 19
Help 11, 19
local 22

displaying 51
panes, Disassembly view 32
Run 19
Set 19
View 19
Window 19

Menus choice, Help menu 11
Messagepoint view 28

displaying 52
messagepoints 28, See also control points

Help information 29
logging 40
setting 53

messages
status line 21
window

displaying 52
listing 52
tracking 28

modifying
data 48
variable values, tutorial 47
variables 52

Index

Module view
displaying 52, 53
Help information 33

modules
changing 53
multiple, viewing 33
viewing 32, 52

Modules view 32
mouse, setting breakpoints 44
moving memory 37

N
NPX tag word, numeric processor 38

hardware requirements 1
Numeric Processor view 38

displaying 52
Help information 38

o
.OBI files, reading with TDUMP 4
online text files 3
opening

files 52
log file 40
TDDEMO (figure) 42

options, command-line
Turbo Debugger GX 8
Turbo Debugger GX utilities 4

OS/2, versions, compatible 1

p
panels, Help

contents 12
printing 13

panes
Disassembly view 31
Disassembly view (figure) 32
local menu 32
performing tasks in 32
Register, changing values 32

passing exceptions 27, 28
PID20
pointer, code See program counter
popping up, local menus 22
printing Help information 13

61

process
loading 19
resetting

Run menu 19
SpeedBar 20

stopping
Run menu 19
SpeedBar 20

unloading 19
process ID 20
processes

loading 52
unloading 51

Product Information choice, Help menu 11
program

arguments, setting 53
locations, specifying 23
resetting

Run menu 19
SpeedBar 20

running
Run menu 19
SpeedBar 20

stopping
Run menu 19
SpeedBar 20

program counter glyph
Disassembly view 31
Source view 30

program files 3
programs

compiling 16
current location 43
debugging 15
exceptions, receiving 27, 28
loading 52
recompiling 16
reloading 53
running 53

to breakpoints 45
to labels 44
to text selector 43

startup code 42
stepping through, tutorial 44
unloading 51

properties, setting 19, 21
Properties dialog box (figure) 21

62

Q
quitting, debugger 19, 52

R
-r command-line option 10
radio buttons, dialog boxes 21
reading

files 39
TDUMP4

memory 37
README.TD file 3
recompiling programs 16
register, numeric processor 38
Register pane

changing register values 32
Disassembly view (figure) 32

Register view 38
reloading programs 53

SpeedBar 20
removing

breakpoints
Disassembly view 31
Source view 31

datapoints 26
messagepoints 29

resetting, programs 53
Run menu 19
SpeedBar 20

reusing
control points 20
watches 20

Run menu 19
running

s

animate 51
to current location 53
until function return 52
programs 53

Run menu 19
setting arguments 53
SpeedBar 20
startup code 42

to specified location 52

-s command-line option 10
sample programs See demo programs; tutorial

Turbo Debugger GX for OS/2 Users Guide

saving
control points 20, 43
watches 20,43
window positions, Window menu 19

scope, Watch view 46
scrolling, Inspector view 46
search order, source files 2
searching

File view 39
Help system index 12
memory 37
Source view 31

Set menu 19
setting

breakpoints 53
Disassembly view 31
hardware 53
Help information 26
simple 25
Source view 31
tutorial 44
window message 53

control points, Set menu 19
datapoints 26, 27
exceptionpoints 27, 28
messagepoints 29, 53
tracepoints 53
watches 35,53
watchpoints 53

setting properties 21
Shift+Fl (Help key) 10
Shift+ Fl key 12
shortcut keys 22

Ctrl+F4 (evaluate/change) 48
Ctrl+FB (return from function) 44
Ctrl+F9 (run to expression) 44
Ctrl+F7 (watch) 45
Disassembly view 31
Evaluator view 33
F1 (Help) 10
F9 (run application) 45
F4 (run to here) 43
F2 (set breakpoint) 44
F7 (statement step into) 43
FB (statement step over) 44
File view 39
Inspector view 34

Index

Ctrl+G (change) 47
Log view 40
Memory view 37
Register view 39
Source view 31

Ctrl+E (disable breakpoint) 45
Ctrl+1 (inspect) 45,46
Ctrl+O (display options) 43
Ctrl+W (watch) 45

Variable view 34
Watch view 35

showing local menus 22
showing views

SpeedBar 20
Window menu 19

software requirements 1
source code

current location 30
executable line glyph 30
program counter glyph 30
viewing 30

source files, required for source debugging 1
source modules

multiple, viewing 33
viewing 32

Source view 30
breakpoint glyph 30
displaying 52
executable line glyph 30
Help information 31
modules, opening 32
program counter 43
program counter glyph 30
setting breakpoints 25
stepping, tutorial 43
TDDEMO (figure) 42

specifying properties 21
specifying variable values 16
SpeedBar

buttons (table) 20
(figure) 19
Statement Step Into button, tutorial 43

Stack pane, Disassembly view (figure) 32
starting programs 42

TDDEMO (figure) 42
starting Turbo Debugger GX 8

63

startup code, running
debugger setting 42
tutorial 43

statement, current 30
Statement Step Into button, tutorial 43
statements

stepping by
into functions 20
over functions 20
tutorial 43

status flags, numeric processor 38
status line

Control Panel 21
SpeedBar buttons 19

status word, numeric processor 38
stepping

into functions 15
by instruction 20
by statement 20

over functions 15
by instruction 20
by statement 20
return from function 44
tutorial 44

Run menu 19
by statement, tutorial 43

stopping program
Run menu 19
SpeedBar 20

stopping Turbo Debugger GX 8
structures

changing elements
Evaluator view 48
Inspector view 48

Evaluator view 33
values, changing 33
Variable view 34

summary of manual contents 6
switches, command-line

Turbo Debugger GX 8
Turbo Debugger GX utilities 4

switching, application window, SpeedBar 20

T
tag word, NPX 38
task list (table) 51
Tasks choice, Help menu 11

64

TDDEMO See also tutorial
starting (figure) 42

TDDEMO.C41
TDDEMO.EXE 4
TDDEMOPM.EXE 4
TDUMP.EXE4
terminating Turbo Debugger GX 8
text editors, compatibility with Turbo Debugger GX

16
text files, online 3
text selector, running programs to, tutorial 43
thread ID 20
threads, debugging 20
Threads pane (figure) 20
TID 20
toggling

breakpoints 53
flags 39

tracepoints, setting 53
Turbo Debugger for DOS, task comparison (table)

51
Turbo Debugger GX

comparison with DOS Turbo Debugger 2
features 1
files 3
task comparison (table) 51

tutorial 41
changing

nlines 48
totalcharacters 47

inspecting
letterinfo 46
nwords 45, 46
totalcharacters 47

labels, running programs to 44
return from function 44
stepping over functions 44

types, variables 34
typographic conventions 5

u
unloading a process 51
user window, activating with SpeedBar 20
Using Help choice, Help menu 11
utilities

disk-based documentation for 4
TDUMP4

Turbo Debugger GX for OS/2 Users Guide

UTILS.TD 4

V
val~es, changing

expressions
Evaluator view 33
Inspector view 34
Watch view 35

variables
Evaluator view 33
Inspector view 34
Watch view 35

Variable view 34
displaying 52
Help information 35

variables See also expressions
addresses 34
arrays 34

changing values 33
changing values 16
complex 34

changing values 33
compound, inspecting 47
datapoints 26
inspecting 33, 46-47, 52
lists 34
messagepoints 28
modifying 52
return values 47-48
scope, Watch view 46
structures 34

changing values 33
types 34
values, changing

Evaluator view 33
Inspector view 34
Watch view 35

views 24
watching 35, 45, 53

View menu 19
viewing window messages 52
views 22

Breakpoint 25

Index

detail form (figure) 23
displaying 51
list form (figure) 24

breakpoint, forms 23
C++ exception stack view 39
C++ exceptionpoint 28
Call Stack 36

displaying 51,52
code information 24
Control Panel 17
Control Panel (figure) 18
control point 24
CPU, displaying 51
Datapoint 26
defined 22
Disassembly 31

displaying 51
Dump, displaying 51
Evaluator 33

tutorial 48
Exceptionpoint 27
File 39

displaying 52
forms

breakpoint example 23
default 23
list and detail 22

hardware information 24
Heap 36
hiding

SpeedBar 20
Window menu 19

Inspector 33
list of, two display forms 23
Log 40

displaying 52
Memory 36

displaying 51
Memory (figure) 37
Messagepoint 28

displaying 52
Module 32

displaying 52, 53
Numeric Processor 38

displaying 52
Register 38
shortcut keys 22
showing

SpeedBar 20
Window menu 19

65

Source 30
displaying 52
modules, opening 32
TDDEMO (figure) 42

Source (figure) 30
Variable 34

displaying 52
variable information 24
Watch 35

displaying 52
VIEWs choice, Help menu 11

w
Watch view 35

displaying 52
Help information 35
using, tutorial 45

watches

66

Inspector view 34
reusing 20
saving 43
setting 53
Source view 31
Variable view 34

Watch view 35
watching

expressions 35
variables 35

watchpoint~

setting 53
tutorial 45

Window menu 19
windows

application, activating with SpeedBar 20
context-sensitive Help 12
Help, using 11
hiding

SpeedBar 20
Window menu 19

messages
breakpoints 53
displaying 52
listing 52
tracking 28

saving positions, Window menu 19
showing SpeedBar 20

writing memory 37

z
zeroing, registers, CPU 39

Turbo Debugger GX for OS/2 Users Guide

Borland'
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom· Part # BCP1415WW21774 • BOR 7004

