
Borland·
Resource WorkshoP'"
lor OSI2®

Resource Workshop®
User's Guide

Borland® C++
for OS/2®
Version 1.5

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland product
names are trademarks or registered trademarks of Borland International, Inc. Other brand
and product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1
Resource Workshop features 1
Hardware and software requirements 2
What's in the manual , 2

Online documentation 3
Conventions, symbols, and special fonts 3
Contacting Borland 4

Borland Assist plans 4

Chapter 1 Getting started 7
Installing Resource Workshop 7
Starting Resource Workshop 7

Using command-line options 8
Getting Help 9
Exiting from Resource Workshop 9

Chapter 2 Resource Workshop basics 11
Understanding Presentation Manager
resources 11

What are resources? 11
What resources can I edit? 12

Accelerator tables 12
Bitmaps 13
Dialog boxes 13
File-association tables 13
Help tables and subtables 13
Icons , , 14
Menus 14
Message tables 14
Pointers 15
String tables 15
User-defined and RCDATA resources 15

Types of resource files 15
Resource compiler files 16
Compiled resource files 16
Executable files 16
Dialog files 16
Bitmapped resource files 16

Configuration preferences 17
Undo Levels 17
Include Path 18
Multi-Save 18
Make Backups When Saving 18

Chapter 3 Working with projects, resources, and
identifiers 19

Managing a project-the Project window 19
Opening an existing project 20
Creating a new project 22
Using the Project window , 23

Embedded and linked resources 23
Sorting the Project window ... ~ 24
Previewing resources 24
Filtering information 24

Selecting a resource 24
Saving projects, resources, and files 25

File I Save Project 25
File I Save File As 25
File I Save All 26
File I Close All . 26
Resource I Save Resource As 26

Copying resources between projects 27
Working with binary files 28
A typical project 29

Working with resources , 31
Loading a resource 31
Choosing a resource editor 32

Using the internal Script editor 32
Adding resources 33

Embedding resources: New Resource dialog
box•............................ 33
Linking resources: Add File to Project dialog
box 34

Renaming a resource 36
Specifying memory options 36
Removing a resource 38

Using identifiers : 38
Identifier files 38

Creating identifier files 39
C header files 39

Using the Identifiers window 39
Assigning identifiers 40
Editing identifiers 41
Deleting identifiers 41
Listing identifiers 42
Starting a resource editor 42

Chapter 4 Using the Dialog editor 43
Understanding dialog resources 43

What a dialog resource does 43
Using the Dialog editor 44

Starting the Dialog editor 44
Editing an existing dialog box 45
Creating a new dialog box 45

Setting dialog box attributes 45
Setting dialog styles 46
Setting border styles 46
Setting frame controls 47
Setting window alignment 47
Setting memory flags 47

Moving the dialog box 47
Undoing changes 47
Testing your dialog box 47
Saving your work 48
Customizing the Dialog editor 48

Setting selection options 48
Setting units options· 48
Setting border options 48

Using a control grid 49
Displaying the grid 49
Snapping to the grid 49
Moving existing controls to a grid 49
Changing the grid 49

Setting presentation parameters 49
Using the Dialog editor tools 50

Overview of the tools 50
Using mode tools 50
Using action tools 51
Using control tools 51
Using the sidebar 51

Working with controls in general 52
Creating a control 52

Picking a control type 52
Placing the control 53

Selecting controls 53
Selecting multiple controls 54

Moving a control 54
Resizing a control 54
Aligning controls 55
Arranging controls 57
Setting control attributes 57

Setting basic attributes 57
Assigning control IDs 58
Setting DBCS support styles 58
Setting control-specific attributes 59

Setting tab stops 59
Changing tab order 59
Grouping controls 60

Working with particular controls 60
Static text controls 61

Bitmapped static controls 61
Rectangle and frame static controls 61
Group box controls 61

Entry field controls 61
Multiline entry field controls 62

Button controls 62
Radio button controls 63
Check Box controls 63

List box controls 63
Combo box controls 64
Scroll bar controls 64
Slider controls 64
Value set controls 65
Notebook controls 65
Container controls 66

Chapter 5 Using the Bitmap editor 67
Understanding bitmapped resources 67

Bitmapped resource concepts 68
Pels 68
Left-button and right-button colors 68
Images 69

Using the Bitmap editor : ... 69
Starting the Bitmap editor 69

Adding a bitmapped resource to a project . 69
Creating a standalone bitmapped resource
file 70
Loading an existing bitmapped resource .. 70

Bitmap editor screen 71
Using the window panes 71
Colors palette and Tools palette 72
Using the sidebar .. " 72
Reading the status line 73

Deleting bitmapped resources 73
Using the Bitmap editor tools 74

Working with blocks: Pick Rectangle tool 74
Selecting and deselecting blocks 74
Cutting and copying blocks 75
Pasting blocks 75
Deleting blocks 75
Moving blocks 75
Duplicating blocks 76

Zooming images: Zoom tool 76
Zooming the entire image 77

Zooming to a selected area 77 Help subtables 95
Moving zoomed images: Hand tool 77 Syntax 95

Painting freehand lines: Pen tool 78 Example 96
Erasing and painting: Eraser tool 78 Help subitems 96
Painting straight lines: Line tool 78 Syntax 97
Filling color areas: Paint Can tool 78 Example 97
Painting rectangles and ellipses 79 Menus 97

Working with images: the launch window 79 Syntax 98
Adding an image 79 Example 99
Deleting an image 80 Menu items 100
Creating custom images 80 Syntax 100

Image Type description 81 Example 102
Nominal Image Size 81 Message tables 102
Device Size 81 Syntax 102
Device Resolution 81 Example 103

Extra items for icons and pointers 81 Presentation parameters 103
Using transparent and inverted colors 81 Syntax 103
Setting the pointer's hot spot 82 String tables 104
Testing icons and pointers 82 Syntax 104

Chapter 6 Using the Script editor 85
Using the script editor 85

When to use the script editor 85

Example 104
Submenus 105

Syntax 105

How to use the script editor 86 Appendix A Technical notes 107
The default resource template 86 Compiler differences 107
Closing the script editor 86 Numbers with leading zeros 108

Writing resource scripts 86 #undef preprocessor directive 108
Resource definition statements 86 Token pasting 109
Resource compiler directives 87 Expressions in resource IDs and resource type
Comments 87 IDs 109

Resource script reference 88 Complex constant expressions 109
Accelerator tables 88 Floating operators in expressions 109

Syntax 89 Missing operators in expressions 110
Example 90 Macros in include directives 110

Custom resources 90
Syntax 90
Example 91

File-association tables 91
Syntax 91
Example 92

Fonts 93
Syntax 93
Example 93

Help tables 93
Syntax 94
Example 94

Help items 94
Syntax 95

Appendix B Borland PM Custom Controls 111
Using the Borland custom dialog class 111
Using Borland controls 112

Button and check box enchancements 113
Using the BPMCC style dialog boxes 114

Borland Button Style dialog box 114
Borland Radio Button Style dialog box ... 115
Borland Check Box Style dialog box 115
Borland Shade Style dialog box 116
Borland Static Text Style dialog box 116

Modifying existing applications for BPMCC .. 116
Using BPMCC in C and c++ programs ... 117

Tips on editing resources 117

Example 95 Index 119

iii

Tables

1.1 Resource Workshop command-line options .. 8 6.1 Recognized resource definition keywords .. 87
3.1 Project window filter commands 24 6.2 Supported resource compiler directives 87
3.2 Resource load and memory options 37 6.3 Accelerator option values 89
3.3 Resource code page options 37 6.4 File-association table extended attribute
4.1 Dialog editor mode tools 51 flag values 92
4.2 Dialog editor Tools palette action tools 51 6.5 menuitem_style options 101
4.3 Horizontal alignment options 56 6.6 menuitem_attr options 102
4.4 Vertical alignment options 56 B.1 Predefined BPMCC button controls 114
5.1 Zoom commands 77 B.2 Bitmap offsets 115

iv

Figures

2.1 Typical dialog box 11 3.11 Add File to Project dialog box 35
2.2 Paint Can tool bitmap 13 3.12 Rename Resource dialog box 36
2.3 The Resource Workshop icon 14 3.13 Resource Memory Options/ Code Page dialog
2.4 Paint can pointer in Bitmap editor 15 box 37
2.5 Preferences dialog box 17 3.14 Identifiers window 40
3.1 Typical Project window 20 4.1 A typical PM dialog box 43
3.2 Open Project dialog box 21 4.2 The Dialog editor with an empty dialog box .44
3.3 New Project dialog box 22 4.3 The control bitmaps on the Tools palette ... 53
3.4 Save File As dialog box 26 4.4 Align Controls dialog box 55
3.5 Paste Resource dialog box 28 4.5 Control order options 57
3.6 MYPROJ.RC, the central project file 29 5.1 Colors palette 68
3.7 MYPROJ.RC points to .H file 30 5.2 The bitmap editor screen 71
3.8 MYPROJ.RC points to .PTR, .BMP, and .H 5.3 Bitmap editor Tools palette 74

files 30 6.1 New Menu dialog box 97
3.9 MYPROJ.RC bound into executable file 31 B.1 Dialog box with Borland controls 112
3.10 New Resource dialog box 33

v

vi

Introduction

Resource Workshop is a sophisticated tool that integrates the entire process
of designing and compiling resources for applications running under OS/2,
Version 2.0 and later. This manual describes all the Resource Workshop
tools and how to use them, and also provides general information on
designing and using resources in OS/2 Presentation Manager (PM)
applications.

If you write applications that run under OS/2 PM, or if you want to modify
the visual interface of PM applications written by others, Resource
Workshop is the easiest and most powerful way to get your programs
looking the way you want.

Resource Workshop features

Introduction

Resource Workshop provides everything you need to create and modify
OS/2 resources, including graphics-oriented visual resource editors that
make it easy to design and modify resources and a script editor for
manipulating resource scripts

Among other things, Resource Workshop

• Makes it easy to manage hundreds of resources stored in dozens of files.

• Performs mundane tasks for you, such as automatically loading the
correct editor when you choose a resource, inserting references to
resource files as necessary in your .Re file, and adding #defines or
constants for your resource IDs to the appropriate files.

• Includes extensive, multilevel Undo and Redo features that let you step
back through changes you've made.

• Includes all the compilers you need and makes it easy to compile your
resources only when you need to.

• Decompiles binary resource files, so you can change a program's
resources even if you don't have access to the source code.

• Includes features that automatically check for errors, making it easy to
test resources for errors like incorrect syntax and duplicate resource IDs.

Resource Workshop is easy to use, so even those with limited programming
experience can design user interfaces for application programs.

Hardware and software requirements

The following are the minimum requirements for using Resource
Workshop:

• You must have a computer capable of running OS/2 2.0 (80386 processor
or higher). The computer must have at least 4MB of RAM and a graphics
display and adapter (Hercules, EGA, VGA, or better). A mouse or other
pointing device is also required.

• OS/2 2.0 or later must be installed on your computer.

• You must have at least 3.5MB of free disk space.

What's in the manual

2

This manual explains how to use Resource Workshop to develop PM
resources. It doesn't tell you how to write PM programs or how to write
code in your programs to access resources. The manual assumes that you
know the basics of PM programming.

The first part of this manual explains what PM resources are and how
Resource Workshop manages them in projects.

• Chapter 1, "Getting started," describes how to install, start, and exit
Resource Workshop and how to access the Help system.

• Chapter 2, "Resource Workshop basics," gives a brief introduction to the
different kinds of resources available under OS/2 PM, the kinds of
editors used in Resource Workshop to edit them, and the different kinds
of files you can store the resources in. It also introduces the notion of a
project, which includes all the resources for a given program.

• Chapter 3, "Working with projects, resources, and identifiers," covers
projects in more detail, describing how to set up and use projects, edit
and add resources, and coordinate the identifiers used in your resources
with those in your program.

The remaining chapters describe the different resource editors contained in
Resource Workshop.

• Chapter 4, "Using the Dialog editor," covers the Dialog editor, including
all aspects of creating and modifying dialog boxes and the controls they
contain. The Dialog editor lets you design, modify, and test your dialog
boxes outside your program.

Resource Workshop for OS/2 Users Guide

Online
documentation

• Chapter 5, "Using the Bitmap editor," provides the basics for working
with the Bitmap editor. Resource Workshop starts the Bitmap editor
when you choose a bitmapped resource-an icon, a cursor, or a bitmap.

• Chapter 6, "Using the Script editor," explains how to use any other kinds
of resources you might want to define. All the resources described in
earlier chapters are the standard ones defined and handled by OS/2. If
these resources don't meet your needs, you can use the resource
mechanism to create user-defined resources that store other kinds of
resource data for your programs.

• Appendix A, "Technical notes," provides technical notes on a number of
aspects of Resource Workshop, including compatibility with the IBM
Resource Compiler and use of dialog boxes as child windows.

• Appendix B, "Borland PM Custom Controls," describes the BPMCC
library and how to use to the library to create customized dialog controls
such as buttons, check boxes, shading, and the like.

The Resource Workshop disk set includes two files that contain information
that was not available when the manual went to press or that goes beyond
the scope of the manual. These files are copied onto your hard disk by the
installation program.

Online text file

BPMCCSTL.RW

BPMCCAPI.RW

MANUAL.RW

Description

This file presents style condiderations you can follow when designing
Borland Presentation Manager Custom Control (BPMCC) dialog boxes for
your OS/2 based software.

This file describes technical aspects of the Borland Presentation Manager
Custom Controls (BPMCC) and contains information that might be useful or
of interest to the advanced resource designer. However, you can successfully
create or modify application resources for BPMCC using the information
contained in the file MANUAL.RW.

This file, which is included only if needed, contains additions and corrections
to the manual. If MANUAL.RW is present, you should be familiar with its
contents before you use Resource Workshop.

Conventions, symbols, and special fonts

This manual uses the following conventions, symbols, and special fonts:

Monospaced type This typeface represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as DIALOG in a resource
script).

Introduction 3

ALL CAPS

[]

Boldface

Italics

Keycaps

Key1+Key2

Command11
Command2

All capital letters are used for the names of files and c++ constants.

Square brackets [] in text, syntax statements, or OS/2 command lines
enclose optional items. Text of this sort should not be typed verbatim.

Boldface type indicates

• Function names (such as printf), class, and structure names when they
appear in text (but not in program examples).

• Reserved words (such as char and switch)

• Command-line options (such as -30).

Italic type indicates variable names in C++, method types, or method names
that appear in text, or identifiers in syntax statements. This typeface is also
used to emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard. For example, "Press Esc to
exit a menu."

Key combinations produced by holding down one or more keys
· simultaneously are represented as Key1+Key2. For example, you can paste

something into one of the editors by holding down the Shift key and
pressing the Ins key. This key combination is represented as Shift+lns.

This command sequence represents a choice from the menu bar followed
by a choice from the menu displayed by the menu bar command. For
example, "Choose File I Open" means "Display the File menu and then
choose the Open command."

This arrow icon indicates material you should take special notice of.

Contacting Borland

Borland Assist
plans

4

The Borland Assist program offers a range of services to fit the different
needs of individuals, consultants, large corporations, and developers. To
receive help with your questions about our products, send in the
registration card. North American customers can register by phone 24
hours a day by calling 1-800-845-0147.

Borland Assist is made up of three levels of support:

• Standard Assist gives all registered users assistance ,with installation and
configuration, and offers automated and online services to answer other
product questions (see the following table).

• Enhanced Assist plans are designed for individuals who need unlimited
support on a toll-free number or priority hotline access.

Resource Workshop for OS/2 Users Guide

Service

Installation
hotline

Automated
support

TechFax

Online services

Borland
Download BBS

CompuServe

BIX

GEnie

Introduction

• Premium Assist plans are designed to support large corporations and
software developers.

Available at no charge, Standard Assist offers all registered users the
following services:

How to contact Cost Available Description

408-461-9133 The cost of 6:00am - 5:00pm PST Provides assistance on product
the phone call Monday - Friday installation and configuration.

Voice: Free 24 hours daily Provides answers to common questions.
1-800-524-8420 Requires a Touch·Tone phone or modem.
Modem: The cost of
408-431-5250 the phone call

1-800-822-4269 Free 24 hours daily Sends technical information to your fax
(voice) machine (up to 3 documents per call).

Requires a Touch-Tone phone. Document
#1 is the catalog of available catalogs.

408-431-5096 The cost of 24 hours daily Sends sample files, applications, and
the phone call technical information via your modem.

Requires a modem (up to 9600 baud).

Type GO BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Type JOIN BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Type BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
All. response time

For additional details on these and other Borland services, see the Borland
Assist Support and Services Guide included with your product.

5

6 Resource Workshop for OS/2 Users Guide

c H A p T E R 1

Getting started

This chapter describes how to install Resource Workshop and covers the
basics for starting and exiting the program and for getting Help.

Installing Resource Workshop

Resource Workshop is automatically installed as part of the Borland C++
for OS/2 installation process. If you later need to reinstall Resource
Workshop, run the INSTALL program on your Borland C++ for OS/2
installation disk. For more information about installation, see the README
file on the same disk.

Starting Resource Workshop

Chapter 1, Getting started

Once you've installed Resource Workshop and it appears as an icon on the
desktop or in an OS/2 icon view, double-click the icon to start Resource
Workshop and display the Resource Workshop Project window.

You can also start Resource Workshop in the following ways:

• Using the drag-and-drop technique, select a resource or project file icon
and use the right mouse button to drag it to the Resource Workshop icon.
When a square outline appears around the Resource Workshop icon,
release the right button to drop the resource or project into Resource
Workshop.

• From the OS/2 File Manager, you can double-click the icon for a project
file or resource file. The project or resource file type must be associated
with the Resource Workshop application.

• From the command line in an OS/2 window, enter WORKSHOP, optionally
followed by the name of the file you want to load. The next section
describes the available command-line options.

7

Using command·
line options

8

Table 1.1
Resource Workshop

command-line
options

When you start Resource Workshop from the OS/2 command line, there
are a number of options you can use. The command-line format is as
follows:

WORKSHOP [option [optionarg] ... option [optionarg]]

• An option is one of the command-line switches listed in Table 1.1. Options
must be preceded by a dash (-) or a slash (/).

• An optionarg is the argument to an option, such as the path name that .
follows the -i option.

• The command-line text can be entered in uppercase or lowercase letters
or any combination of the two (see the examples in Table 1.1).

Option

-x

Description

Clears the include path.

If you\te set an include path using the Preferences dialog box (see page 17), this
option erases your settings.

-i pathname Adds an additional path specification to the include path. For example:

WORKSHOP -i c:\mystuff\include

-fa filename Sets the .RES Multi-Save option to the specified file name (see the Preferences
dialog box on page 17).

With this option set, whenever Resource Workshop compiles the current project, it
also saves the resources in binary format to the indicated .RES file. For example:

WORKSHOP -FO C:\MYSTUFF\MYPROJ.RES C:\MYSTUFF\MYPROJ.RC

-fx filename Sets the Executable MUlti-Save option to the specified file name (see the
Preferences dialog box on page 17).

With this option set, whenever Resource Workshop compiles the current project, it
also binds the resources in binary format to the indicated .EXE file. For example:

workshop /fx c:\mystuff\myproj.exe c:\mystuff\myproj.rc

The following command line starts Resource Workshop and clears the
include path:

C:\WORKSHOP\WORKSHOP -x

Resource Workshop for OS/2 Users Guide

Getting Help

To get Help in Resource Workshop, you can do any of the following:

II To bring up the Help menu, press Alt+H or select the Help command on
the main menu .

• To display the Help index directly, without going through the Help
menu, press Ft.

III To get context-sensitive Help, press Ft after you select an icon or window
or after you hold down a mouse button over a menu command.

Help runs as a separate application under OS/2. You can leave Help
running and return to Resource Workshop, or you can terminate Help
altogether by pressing AIt+F4, double-clicking the Control-menu box, or
choosing File I Exit.

-. In addition to Help, you can use the status line at the bottom of the
Resource Workshop window for explanations of Resource Workshop
functions.

When you're in the menus in the Project window or a resource editor, the
status line provides a brief explanation of the highlighted menu command.
Other status line displays are described in the chapters on the specific
resource editors.

Exiting from Resource Workshop

Chapter 1, Getting started

To exit from Resource Workshop, switch to the Project window and either
choose File I Exit or double-click the Control-menu icon (the top left corner
of the Project window).

If you've made any changes you haven't saved, Resource Workshop asks if
you want to save the changes before quitting.

9

10 Resource Workshop for OS/2 Users Guide

c H A p T E R

Resource Workshop basics

This chapter provides an overview of Resource Workshop and OS/2
Presentation Manager (PM) resources, including the following topics:

• Understanding Presentation Manager resources
II The types of resource files
II Configuring Resource Workshop

2

Understanding Presentation Manager resources

What are
resources?

Figure 2.1
Typical dialog box

This section answers some basic questions about PM resources, specifically

II What are resources?
.. What resources can I edit?

The second section includes descriptions of all the PM resource types.

Resources are the visible portions of your PM program-the dialog boxes,
menus, bitmaps, string tables, pointers, and so on. For example, when you
open a dialog box and click a button, you're interacting with the
application's resources. In PM applications, resources provide a consistent
user interface that makes it easy for users to switch from one PM program
to another.

The following is an example of a resource-a dialog box that lets users
make certain choices:

o tions .

rShape--. -I
I 0: Square j

I· . . 1
I· O:Circle
! I
i 0: Triangle i
1,_~_w.~._~._, __ J

Chapter 2, Resource Workshop basics 11

What resources
can I edit?

Accelerator tables

Chapter 6 describes
how to create

accelerator tables.

12

The entire dialog box and all the controls in it are defined in the PM
program as resources.

Resources in a PM application can be created separately from the program
code, letting you make significant changes to the user interface without
opening the file that contains the program code.

For example, if you're writing a PM financial application, you would keep
the code for your financial algorithms in one set of files and your resources
in another. This allows you to compile the program code independently of
the resources, and you (or whoever is responsible for user interfaces) can
modify the resources without affecting the code that handles the financial
calculations. When you're ready to build your program, you use Resource
Workshop to bind the resources to the executable file.

Also, if your applications use the same set of resources, you can use the
dialog boxes, icons, and customized pointers in your resource files over and
over, or you can use your existing resource files as the starting point for
new resource files.

Resource Workshop supports the following PM resources:

• Accelerator tables
• Bitmaps
• Dialog boxes
• File-association tables
• Help tables
• Help subtables
• Icons

• Menus
• Message tables
• Pointers
• String tables
• User-defined and RCDATA

resources

Accelerators (sometimes called shortcuts or hot keys) are keyboard
combinations a user typically presses to execute a menu command, instead
of displaying the menu and clicking the command name. For example, a
PM program can use the accelerator Shift+lns for the Paste command, which
pastes text or images from the Clipboard. Accelerators typically appear in
the menu to the right of the commands to which they're linked. You can
also create accelerator resources that define new functions not available
from your program's menus.

Using Resource Workshop, you write a resource script to create an
accelerator table. The resource type name is ACCELTABLE.

Resource Workshop for OS/2 Users Guide

Bitmaps

Chapter 5 describes
how to create or
change bitmaps.

Figure 2.2
Paint Can tool bitmap

Dialog boxes

Chapter 4 describes
how to create dialog

boxes.

File-association
tables

Chapter 6 describes
how to create file­

association tables.

Help tables and
subtables

Chapter 6 describes
how to create help

tables and subtables.

A bitmap is a binary representation of a graphic image in a program.
Presentation Manager itself uses bitmaps for many of the images
representing controls on a typical window-for example, scroll bar arrows,
the title bar icon, and the Minimize or Hide button.

A single bitmap resource can contain multiple images targeted to specific
screen resolutions and color formats.

The following figure shows an example of a bitmap, the Paint Can tool
from the Bitmap editor Tools palette:

You create bitmaps using Resource Workshop's Bitmap editor. You also use
this editor to work with the other specialized bitmapped resources: icons
and pointers.

A dialog box is a window (usually a top-level window) that communicates
information to the user and lets the user select choices, such as files to open,
colors to display, text to search for, and so on. The resource type name is
DLGTEMPLATE.

A dialog box like the one in Figure 2.1 usually includes controls, such as
radio buttons, check boxes, and push buttons. Resource Workshop makes it
easy to put any combination of controls in a dialog box and lets you test·
your dialog box and debug its behavior before binding it to your executable
code.

Afile-association table links data files to the applications that can edit them.
When the user selects a data file from the File Manager, PM automatically
starts the associated application and loads the selected file.

Using Resource Workshop, you write a resource script to create a file­
association table. The resource type name is ASSOCT ABLE.

A help table contains entries that let the application gain access to requested
help data for application windows, dialog boxes, and message boxes. The
entries in the help table point to further entries in a help subtable, which in
turn point to the actual help text.

A help subtable contains entries for each item in the application window
(control, child window, or menu item) for which help is available.

Chapter 2, Resource Workshop basics 13

Icons

Chapter 5 describes
how to create or

change icons.

Menus

Figure 2.3
The Resource
Wlrkshop icon

Chapter 6 describes
how to create a menu

script.

Message tables

Chapter 6 describes
how to create

message' tables.

14

Using Resource Workshop, you write resource scripts to create help tables
and subtables. The resource type name is HELPT ABLE or '
HELPSUBTABLE.

Icons are small bitmaps-40x40 (supported on very high-resolution
devices), 32x32, or 16x32 pixels in size-that typically represent minimized
windows. You create icons using the Bitmap editor.

To see what icons look like, look at the OS/2 System, Master Help Index,
and Resource Workshop ic.ons on the OS/2 desktop. When you minimize a
window, it usually changes to its icon form-either at the bottom of the
desktop or inside the Minimized Window Viewer window-depending on
its current window settings.

A single icon resource can contain multiple images targeted to specific
screen resolutions and color formats.

In OS/2 Presentation Manager 2.0, unlike previous versions, icons and
pointers (described shortly) are functionally identical.

The default icon has anID of 1, and gets put in the extended attributes for
the file. The default icon is the one that shows up as the program icon in the
Workplace Shell.

PM programs usually include a menu bar that lists the names of individual
menus. A typical menu contains one or more menu items (commands). For
example, most PM programs have a File menu with commands for
creating, opening, saving, or printing files.

Using Resource Workshop, you create menus by writing a simple text
script.

A message table provides one means of storing string data-like status lines
and error messages-in your application. (You can also store string data in
a string table.)

Using Resource Workshop, you create message tables by writing a text
script. The resource type name is MESSAGET ABLE.

Resource Workshop for OS/2 Users Guide

Pointers

Chapter 5 describes
how to create or
change pointers.

Figure 2.4
Paint can pointer in

Bitmap editor

String tables

Chapter 6 describes
how to create string

tables.

User-defined and
RCDATA resources

Chapter 6 describes
how to create user­

defined and RCDATA
resources.

A pointer is a bitmapped image that represents the position of the mouse on
the screen. PM programs use customized pointers to indicate what type of
task the user is currently performing. You create pointers using the Bitmap
editor.

You can see an example of customized pointers in the Resource Workshop
Bitmap editor. Each time you choose a new painting tool and move the
pointer to the image you're working on, the pointer takes the shape of the
selected tool. For example, if you click the Paint Can in the Bitmap editor
Tools palette and move the pointer to the image, the pointer becomes a
paint can.

'~'

'+- '
A single pointer resource can contain multiple images targeted to specific
screen resolutions and color formats.

In OS/2 Presentation Manager 2.0, unlike previous versions, pointers and
icons (described previously) are functionally identical.

String tables contain text (like descriptions, prompts, and error messages)
that's displayed as part of a PM program. Because these text strings are PM
resources that are separate from the program (instead of strings embedded
in the program), you or others can edit and translate messages displayed by
a program without having to make any changes to the program's source
code.

User-defined resources and RCDATA resources (essentially the same in
Resource Workshop) consist of any data you want to add to your
executable file. For example, if you have a large block of initialized, read­
only data, such as a text file, you can add it to your executable file as a
user-defined resource.

Types of resource files

A file you create and edit with Resource Workshop can be in either binary
or text format. In addition, Resource Workshop can generate standard
OS/2 file formats, which means you can use Resource Workshop files with

Chapter 2, Resource Workshop basics 15

Resource
compiler files

See Help for
information on the
script commands.

Compiled
resource files

Executable files

You can't create a
new executable or

DLL file with
Resource Workshop.

Dialog files

16

programs that generate binary code from resource script files, like BRCC
and the IBM Resource Compiler.

Some Resource Workshop .RC files can be incompatible with the IBM
Resource Compiler. The incompatibilities between Resource Workshop and
the IBM Resource Compiler are described in Appendix A (pages 107-110).
Instead of using the IBM Resource Compiler, you can compile to .RES
format with Resource Workshop or use the BRCC command-line resource
compiler.

Note that, although Resource Workshop can read files in the OS/2
Presentation Manager Version 1.2 format, it saves files only in the Version
2.0 format.

A resource compiler (.RC) file is a text file containing definitions of one or
more resources. The file can contain resources defined in script form and
references to other files containing resources.

In general, you should base all your Resource Workshop projects on at least
one .RC file.

A compiled resource (.RES) file contains one or more compiled resources.

Typically, when creating a PM program, you compile all resources for an
application into a single .RES file, and then bind the .RES file to the
executable file as part of the linking process. However, you don't have to
produce a .RES file, because Resource Workshop can compile resource files
and bind them directly to an executable file. '

An executable (.EXE) or dynamic-link library (.DLL) file is the ultimate
destination for all resources you define with Resource Workshop. Usually,
you compile an .RC file into a .RES file, then use your compiler to bind the
.RES file to the executable or .DLL file. You can also use Resource
Workshop to bind the resources directly to the executable or .DLL file and
bypass the resource compiier altogether.

If you want to change the resources in a compiled binary file (an executable
file, a DLL file, or a .RES file), Resource Workshop will decompile the file
and let you make changes, and then save the resources back to the original
binary file.

A dialog (.DLG) file is a resource script (text) file that typically contains
descriptions of one or more dialog boxes. There is, however, no
requirement that a .DLG file contain dialog boxes; it can contain any of the
resources found in an .RC file.

Resource Workshop for OS/2 Users Guide

Bitmapped
resource files

Resource Workshop supports three kinds of bitmapped resource files:

• A bitmap (.BMP) file contains a bitmap resource in binary format.

• An5con (.lCO) file contains an icon in binary format.

• A pointer (.PTR) file contains a customized pointer in binary format.

Icons and pointers in OS/2 Presentation Manager 2.0 are functionally
identical.

Configuration preferences

Figure 2.5
Preferences dialog

box

Undo Levels

To configure Resource Workshop to your preferences, choose File I
Preferences. Resource Workshop displays the Preferences dialog box.

Preferences

The choices you can make in this dialog box are described in the following
sections.

Resource Workshop has a multilevel Undo and Redo feature that lets you
correct actions in any of the resource editors. Depending on the amount of
available memory in your computer, you can undo or redo up to 99 actions.
The default number of levels is 10.

For example, if you're working in the Bitmap editor and you fill an area
with a color, then select and move a portion of the image, only to find that
the fill doesn't look right, you can undo the move and then undo the fill. If
you want to see how the fill looks again, you can redo the fill and then redo
the move. (For each undo, press Alt+BkSp or choose Edit I Undo; for each
redo, press Shift+Alt+BkSp or choose Edit I Redo.) You can work your way

Chapter 2, Resource Workshop basics 17

Include Path

Multi-Save

Make Backups
When Saving

18

back and forth through your edit session this way through as many levels
as you have set in the Undo Levels entry field.

The number of undo levels can be limited by available system memory. A
memory-intensive resource-like a large bitmap with several flood fills­
can cause fewer undo levels to be available.

This is the path Resource Workshop will search for files containing
identifiers or resources. You can set this option only if you do not have a
project open. When you choose this option, Resource Workshop saves it in
WORKSHOP.INI as the default include path.

The .RES and .EXE preferences control how a project is to be saved when
you select File I Save Project. These preferences are enabled only when a
resource compiler (.RC or .DLG) project is open because they apply only to
a specific project. Regardless of the Multi-Save settings, the project always
gets saved in its original format as well. (For example, if the project is an
.RC file, the resources in the file are always saved as resource scripts in
addition to any Multi-Save options.)

If you choose .RES, Resource Workshop compiles the project's resources
and saves them in .RESformat (in binary format).

If you choose .EXE, Resource Workshop compiles the project's resources
and binds them to the executable file specified in this option (can be an
.EXE or .DLL file).

If you check the Backups option, Resource Workshop creates an additional
set of backup files each time you save a project. Backup files have a tilde (-)
as the first character in the file extension. For example, if you save a file
called NEWTOOL.BMP, the backup file is called NEWTOOL.-BM.

Resource Workshop for OS/2 Users Guide

c H A p T E R

Working with projects, resources,
and identifiers

Resource Workshop organizes resources into projects. In general terms, a
project consists of at least one of the following types of resource files:

• A resource script (.RC or .DLG) file
• A binary resource (.RES) file
• A binary pointer (.PTR or .CUR) file
• A binary icon (.lCO) file
• A binary bitmap (.BMP) file
• An executable (.EXE) file
• A dynamic-link library (DLL) file

3

For example, if you wanted to create a Resource Workshop project
consisting only of a pointer, you could create a Resource Workshop project
that contains a single .PTR file.

However, to take full advantage of Resource Workshop's project
management capability, you should build your projects around an .RC file.
For example, a single .RC file can contain or refer to several dialog boxes,
pointers, and icons, as well as scripts for menus and accelerator tables.

This chapter covers the three main aspects of Resource Workshop projects:

.. Managing a project
• Working with resources
• Working with identifiers

Managing a project-the Project window

When you open a project in Resource Workshop, the central focus is the
Project window. You can open many instances of the editors-Dialog
editor, Bitmap editor, and Script editor-within a single project, and the
single Project window serves as the axis around which all your work
revolves.

Chapter 3, Working with projects, resources, and identifiers 19

20

Figure 3.1
Typical Project

window

Many projects consist of a main .RC file that contains references to other
resources. The references in the main .RC file can include

• Other .RC files

• .DLG files
• Binary resource files, such as .BMP (bitmap), .rca (icon), and .PTR

(pointer) files

•. H (header) files containing #defines that assign meaningful names to
your resources

#include myproj,h
DLGTEMPlJl.TE: dl'LOpenFile (1)
MENU: menu_Main (100)
rcinclude str_help,rc

#include str_help.h
STRINGTABLE: str_AppMain (42)
HELPT ABLE: hlp_AppMain (13)

arrow,ptr
POINTER: ph_Selector (32)

logo,bmp
BITMAP: bmp_OurLogo (99)

This view of MYPROJ.RC is displayed when you choose View I By File. It
contains the following:

• A #include for the header file in which the project's identifiers are stored

• Two embedded resources, of type DLGTEMPLATE and MENU

• An rcinclude reference to STR_HELP.RC, which contains a reference to
, STR_HELP.H, as well as data for a string table and a message table

• Two linked bitmapped resource files:

• A pointer file called ARROW.PTR, which contains data for a pointer

• A bitmap file called LOGO.BMP, which contains data for a bitmap

In addition to providing you with an overview of all of the files and
resources contained in the project, Resource Workshop's Project window
also updates and recompiles resources as required. For example, if you
change a resource identifier, Resource Workshop automatically recompiles
all resources affected by the change.

Resource Workshop for OS/2 Users Guide

Opening an
existing project

Figure 3.2
Open Project dialog

box

An existing project can be one that you created with Resource Workshop or
an .RC file you created with other resource development software. If you
have access only to an executable file, Resource Workshop can decompile
the resources bound to that file so that you can make changes to them.

To open an existing project, do the following:

1. Choose File I Open Project. Resource Workshop displays the Open
Project dialog box.

Filename

To see all the types of files you can open, click the File Type list box
down-arrow button. In most cases you'll probably work with .RC files,
but you can open any of the listed file types.

If you type one of the standard extensions in the File Name field
(instead of picking a file type from the list and letting Resource
Workshop insert the extension for you), Resource Workshop assigns the
proper file type to the file. However, if you use a nonstandard extension
(such as .MNU for a file that contains a menu), be sure to choose the
correct file type from the File Type list before loading the file. (In the
case of the .MNU file, if the resource is a menu stored as a resource
script, the file type would be RC Resource Script.)

2. Specify the file containing the project you want to open by doing either
of the following:

E:I Type the file name and press Enter. If the file isn't in the current
directory, you must also specify a path. For example, you might type
C: \RW\MYPROJ . RC.

Chapter 3, Working with projects, resources, and identifiers 21

Creating a new
project

22

Figure 3.3
New Project dialog

box

• Choose a file from the Files list. For example, if you want to open C: \
RW\MYPROJ.RC, select *.RC under File Type, select the appropriate
folder icons under Directories until the RW directory is displayed,
and then double-click MYPRO}.RC in the Files list.

What Resource Workshop does next depends on whether the project is a
binary file or a file containing resource data .

• If the project is a binary file (an executable file, a .RES file, or a DLL file),
Resource Workshop decompiles the resources and shows you its progress
on the left side of the status line at the bottom of the display .

• If the project consists of an .RC file and other files containing resource
data (as is usually the case) or a single resource file containing resource
data, Resource Workshop reads the project file to determine all the files in
the project. Resource Workshop then works its way through all the files,
following references to any additional files, and compiles each resource,
showing you its progress in the Compile Status dialog box.

You can click the Cancel button to cancel the compilation.

If the compiler encounters an error, Resource Workshop displays the
Compiler Error dialog box, which shows you the error and highlights the
line where the error occurred.

Once the project is compiled or decompiled, Resource Workshop displays
the Project window with all the resources listed in it.

To create a new project, do the following:

1. Choose File I New Project. Resource Workshop displays the New Project
dialog box:

New project

Decide what type of file you want to base your project on. A typical
project is based on an .RC file, because this type of file lets you work
with all the available resource types. However, you can also choose one
of the following:

Resource Workshop for OS/2 Users Guide

Using the Project
window

Embedded and
linked resources

• .RES, to work with a binary resource file

• .PTR, to create a project containing a pointer or icon

• .BMP, to create a project containing a bitmap

2. Click the project file type you want, then click OK.

(If you have a project open, Resource Workshop closes it first. If there
are unsaved changes, before closing the project, Resource Workshop
asks if you want to save those changes.)

Resource Workshop displays your new, untitled project in the Project
window. You can name the project by using either of the File I Save
commands.

The Project window shows the resources in your project. This section
describes several ways you can customize the display, including the
following:

• Sorting the Project window
• Previewing resources
• Filtering information

A new project contains no resources yet, so the Project window either lists
the available resource types or the project's file name. If you haven't named
the project yet, the file name is given as UNTITLED.RC.

When you open an existing project, the Project window lists the resources
according to their type or according to their relationship (embedded or
linked) to the project file. In this view, the Project window also lists any
identifier files or other files included in the project.

The Project window acts as a file management tool, providing an overall
view of your project. By scrolling through the Project window, you can
quickly scan the resources in the project.

The resources in your project file can be embedded in the file or linked to it.

An embedded resource is stored in resource script form in the project file. It
exists only as part of the project in which it's stored, and it can't be used in
other projects. (You can, however, save an embedded resource to an
external file and then link it to another project.)

A linked resource is a separate file that is referenced in the project file.
Linked resources can be used in other projects. They can include

• Other projects (.RC or .DLG)

• Binary-format files for bitmaps, icons, and pointers

Chapter 3, Working with projects, resources, and identifiers 23

Sorting the Project
window

Previewing
resources

Filtering information

Table 3.1
Project window filter

commands

Selecting a
resource

24

The project window can show your resources sorted in two ways: by type
(the default) and by file. To choose a sorting order, choose either the By
Type or the By File command from the Project window's View menu. The
commands are mutually exclusive. Choosing one turns off the other.

Viewing By Type lists the contents of your project file by resource type.
Under each type, the names of any resources of that type are listed. The By
Type display doesn't tell you whether a resource is linked or embedded.

Viewing By File lists the contents of your project according to the files in
which they're located and in the order in which they appear in the source
files.

In a large project with many resources, it can be difficult to remember what
all the resources look like. Resource Workshop gives you an easy way to
visually browse through bitmapped and dialog resources. If you check the
View I Show Preview menu item, the project window divides into two
panes. The left pane shows the list of resources in the project and the right
pane shows a preview of the currently selected resource.

You can control what kinds of information the Project window includes by
checking or unchecking several items on the View menu. Table 3.1
summarizes the items and what they control.

View Menu Command Description

Show Identifiers Displays the identifiers (#defines) in the project.

Show Resources

Show Items

Show Unused Types

Lists the types and names of resources, like BITMAP: airplane. In most
cases you'll leave this option checked. Uncheck Show Resources if
you want to see file names only, without a list of resources contained in
those files or if you only want to look at identifiers.

Displays items within individual resources (for example, SUBMENUs
and MENUITEMs defined in a menu resource). This view shows an
"economy version" of the resource script-without control IDs or menu
IDs, control class names, coordinates, or size values.

Lists all the resource types, whether or not they are used in the project.

To select a resource, use the mouse or the arrow keys to highlight it in the
Project window.

1:1 If you've chosen View I By Type, look for the resource type first. The
resource is listed by name under the resource type.

Resource Workshop for OS/2 Users Guide

Saving projects,
resources, and
files

File/Save Project

File/Save File As

• If you've chosen View I By File, look for the resource under its file name,
if you know it. The resource name is preceded by the resource type and a
colon.

It's a good idea to save your work often. Resource Workshop provides you
with a variety of save commands so you can choose exactly what you want
to save and how to save it.

Choose File I Save Project to save everything in your current project. If
you're saving a new project that hasn't been named yet, Resource
Workshop displays the Save File As dialog box so you can specify a name
and directory.

Resource Workshop always saves the project file and any files it references.
If you have selected .RES or .EXE from the File I Preferences dialog box
(described on page 17), Resource Workshop also compiles and saves to a
.RES file or binds the resources to an executable file or DLL.

If your project is based on an .RC file, Resource Workshop also compiles the
project as part of the save process. This compiled version is stored in a file
with an .RWP extension. The next time you open this project, Resource
Workshop can save time by loading the already compiled .RWP file instead
of having to load and compile the .RC file.

Resource Workshop can do any compiling you might require for your
resources. See Figure 3.9 on page 31 for an example of how a project might
be compiled.

If you want to rename the current project or resource file, choose File I Save
File As. Resource Workshop displays the Save File As dialog box.

Chapter 3, Working with projects, resources, and identifiers 25

Figure 3.4
Save File As dialog

box

File/Save All

File/Close All

Resource/Save
Resource As

26

Save filelresource as

Hem selected Resource: DLGTEMPLATE: 1

File\.lJpe
I'Flc";~~';;~;ip";'-"-~-"-"'---""'"![l '-=-'-'0.::..:.:::'--_---:---""'"

Either enter a new file name or choose a file name from the Files list. (In the
latter case, Resource Workshop asks if you want to overwrite the existing
file.) If you want to put the file in another directory, you can either change
the path by using the Directories list or include the path when you type the
file name. When you're satisfied that the file name is correct, press Enter or
click OK to save the file.

Choose File I Save All to save everything associated with your project when
time is of the essence. Use this command when you are concerned about
possible loss of data if you don't move fast-imminent power failure, for
example.

When you choose File I Save All, Resource Workshop doesn't query you
about possible file overwrites and the like; it saves every thing fast.

Choose File I Close All to save everything in the current project and then
close the project. When it encounters edits to the project that haven't been
saved, Resource Workshop queries you about saving them. When
everything has been saved, the project is closed and you are presented with
an empty Project window.

To put a resource in a separate file for use with other projects,

1. Choose Resource I Save Resource As. Resource Workshop displays the
Save Resource As dialog box.

Resource Workshop for OS/2 Users Guide

Copying
resources
between projects

Don't use the Ctrl+lns
accelerator-it won't

copy the resource
properly.

This dialog box contains almost the same information as the File Save
As dialog box. The primary difference is that, on the third line, instead
of showing you the file it's about to save, it shows you the resource you'll
be saving.

2. Either enter a new file name or choose the correct file name from the
Files list. If you want to put the file in another directory, you can either
change the path by using the Directories list or include the path when
you type the file name. When you're satisfied that the file name is
correct, press Enter or click OK to save the file.

3. Resource Workshop asks if you want the reference in the project file to
refer to this external file from now on .

.. Clicking Yes causes the resource script or current file reference in the
Project file to be replaced by a reference to the new file. All future
changes to the resource will be saved to the external resource file and
not in the project file or in any previous resource file.

EI Clicking No creates the resource file without making any changes to
the Project file.

There are two ways you can copy a resource from the current project to
another project:

.. One way is to save the resource as a file, close the current project, open
the other project, and add the resource as a file to the new project. If there
are any identifiers in the resource, you have to be careful that they're
preserved when you add the resource to the new project.

II An easier way is to have two copies of Resource Workshop open, one for
each project, and to use the OS/2 Clipboard to copy the resource from
one project and paste it to the next. This method is not only faster than
the first method, but it also saves all the identifiers.

To copy a resource using the second method,

1. Open two copies of Resource Workshop, one with the project containing
the resource you want to copy (the source project) and another with the
project you want to copy the resource to (the target project).

2. Be sure the target project has a reference to an identifier file that will
receive any identifiers in the new resource. (If necessary, choose File I
Add to Project and add the appropriate type of identifier file.)

3. Select the source project, then select the resource you want to copy in
the Project window. Choose Edit I Copy to copy it to the OS/2
Clipboard.

Chapter 3, Working with projects, resources, and identifiers 27

Figure 3.5
Paste Resource

dialog box

Working with
binary files

All resource IDs in
binary files must be

integers.

28

4. Select the target project and then, with the Project window active,
choose Edit I Paste to paste the resource into the project. Resource
Workshop displays the Paste Resource dialog box.

Paste resource

5. The Place Resource In list box should contain the name of the target
project. Make sure the Place Identifiers In list box contains the name of
the identifier file that will receive any identifiers in the resource (if
necessary, scroll the drop-down list and choose the correct file name),
then press Enter or click OK to paste in the new resource.

Resource Workshop allows you to open executable files, .RES files, and
DLLs as projects so you can customize their user interfaces. For example,
you might want to translate your application interface into another
language.

When you load one of these files, Resource Workshop decompiles the
resources in the file and shows them to you as though they were part of a
regular .Re file. When you're finished with your changes, Resource
Workshop compiles the resources again into binary code and stores them in
the original file.

Because the resources in a decompiled binary file aren't stored in resource
script form, you can't assign identifiers to the resource IDs.

You can, however, save the project as an .Re file. The resources can then be
saved as resource scripts, and you can assign identifiers to them.

If you're customizing the user interface of a program and have access only
to the executable file or DLL, you might also want to save your changes in a
separate .Re file so you can apply the changes to the next version of the
program. The resources in your .Re file must have the same resource IDs as
their counterparts in the new version and must otherwise be compatible
with the new version.

Resource Workshop for OS/2 Users Guide

Be sure to preserve
the current integer

values of the
resource IDs.

A typical project

When you save the project as an .RC file, Resource Workshop doesn't
automatically save the resources back to the original file unless you've
entered the original file name as a Multi-Save option in the Preferences
dialog box.

To save a binary file as a project and add identifiers, do the following:

1. Choose File I Open Project and select the executable, .RES, or DLL file
from the Open Project dialog box.

2. Choose File I Save File As. In the Save File As dialog box, select RC
Resource Script from the File Type list box. Enter the name of the new
.RC file.

When you press Enter or click OK to save the file, Resource Workshop
automatically places you in the .RC file.

3. Choose File I Preferences and enter the name of the original binary file
as a Multi-Save option .

• If the original binary file was a .RES file, check .RES and enter the
name in that field.

fI If the original binary file was an executable or DLL file, check
Executable and enter the name in that field.

4. Choose File I Add to Project and specify an identifier file to hold the new
identifiers. If the file you specify doesn't exist, Resource Workshop
creates a new one for you.

5. Make your changes to the resources and specify identifiers where you
want them. For each new identifier, Resource Workshop asks if you
want to save it in the identifier file.

6. When you quit and save the file, Resource Workshop saves both the .RC
file and the binary file. If the binary file is an executable file or a DLL,
the changed resources are bound into it and are available immediately
when you run that program.

This section describes a simple, but typical, project.

The starting point is an .RC file you create called MYPROJ.RC. This file will
be the central file in your project. You can add as many different types of
resources as you want, but everything in your project will be referenced in
your .RC file.

Figure 3.6 I m"roi·" I MVPROJ.RC, the
central project file

The .Re file is the central
file in your Resource Workshop
project.

Chapter 3, Working with projects, resources, and identifiers 29

See page 38 for a
discussion of

identifiers.

Figure 3.7
MVPROJ.RC points

to.H file

Figure 3.8
MVPROJ.RC points

to .PTR, .BMP,
and .H files

30

You can use identifiers for all of your resources. When you add a header
(.H) file to the project, Resource Workshop puts a reference to the header
file in the .RC file and then knows to store any new identifiers in the header
file.

myproj.rc

myproj.h

The .h file contains #defines for your
resource identifiers.

Next, you create a pointer and a bitmap and store them in external files, the
pointer in a .PTR file and the bitmap in a .BMP file. Resource Workshop
puts references to the files in your .RC file. Because they're saved outside
the project, you can use these resources in other projects. If you edit the
.PTR or .BMP file with the Resource Workshop Paint editor, the changes
appear in all projects in which the resource is used.

The following figure shows a diagram of these file connections:

myproj.rc ~

myproj.h

myptr.ptr

mybitmap.bmp

The .Re file references
the binary data
contained in the .PTR
and .BMP files.

When you've completed the project file, you can compile it into a single
.RES file with Resource Workshop and then bind your resources to an
existing executable file with your Borland C++ compiler.

Resource Workshop for OS/2 Users Guide

Figure 3.9
MYPROJ.RC bound

into executable file

myproj.exe

myproj.rc

~
myptr.ptr

myproj.exe

Executable
file without
resources

myproj.res

mybitmap.bmp
Executable
file with
resources

myproj.h Compiled
resource
file

Most Resource Workshop projects are considerably larger and more
complex than this simple example, and there are other avenues you can
take. For example, you can skip the .RES file and compile directly from
your source data into an executable file.

However you approach the task, the project remains the central element in
creating a resource. The next section describes how Resource Workshop
helps you manage the pieces of your project.

Working with resources

Loading a
resource

This section discusses the following topics:

II Loading a resource
• Choosing a resource editor
• Adding a resource
• Renaming a resource
• Specifying resource memory options
• Removing a resource

To load a resource, you can do either of the following:

• Double-click the resource name in the Project window.

Resource Workshop automatically starts the appropriate graphics­
oriented resource editor, if one is available. If a resource editor is not
available, Resource Workshop starts the internal Script editor.

Chapter 3, Working with projects, resources, and identifiers 31

Choosing a
resource editor

Using the internal
Script editor

See Chapter 6 and
the Help index for a

description of the
resource script

language . ..

• Select the resource name in the Project window and then choose either
View I Edit Visually or View I Edit as Text.

Always use the resource's name when using the Project window as just
described. When the Project window shows resources by file, do not use the
file name for linked resources (doing so will have no effect).

When you load a resource, Resource Workshop opens an editor for the
resource.

• If you double-click a dialog box, Resource Workshop opens the Dialog
editor.

• If you double-click an icon, pointer, or bitmap, Resource Workshop opens
the Paint editor.

• If you double-click any other type of resource, Resource Workshop opens
the internal text editor.

To create menus, accelerators, string tables, user-defined resources, and
several other resource types, you must use the internal text editor. In
addition, you can edit any resource script by selecting the resource in the
Project window and choosing View I Edit As Text.

If the resource is in binary format (like a dialog box), Resource Workshop
decompiles it to let you work with the resource script.

The internal text editor is a simple ASCII text editor. It uses the Del, Home,
End, PgUp, PgDn, Tab, and BkSp keys to move the cursor and edit text. You
can toggle between insert mode and overwrite mode by pressing the Ins
key.

When you enter text, don't spend any time formatting it, because Resource
Workshop is likely to rearrange the text for you when it compiles the
resource.

When you're finished making changes, close the text editor. Resource
Workshop then asks if you want to compile. (You can also compile the
resource at any time by choosing Resource I Compile, which is available
only when you are in the text editor.)

.. You must click OK to save your changes. If you click No, Resource
Workshop discards any changes you've made.

32

If Resource Workshop finds any errors, it tells you what they are and puts
you back in the text editor so you can correct them.

If you want to edit the resource script directly without the assistance of
Resource Workshop, you can open the source file with an editor of your

Resource Workshop for OS/2 Users Guide

Adding resources

Embedding
resources: New
Resource dialog
box

Figure 3.10
New Resource dialog

box

Identifiers are
described in detail

beginning on
page 38.

choice and edit that file, but Resource Workshop will delete any comments
you add the next time you open the file.

When Resource Workshop loads a project, it recompiles the file and
reformats the resource script. If it encounters any comments in the script
when you open the resource for editing, it displays a dialog box warning
you that the comments will be deleted.

You can add a resource by embedding it in the project, or you can link it as
a file reference. To embed a resource, use the New Resource dialog box
(Figure 3.10); to link a file, use the Add File to Project dialog box
(Figure 3.11).

To embed a new resource in your project, open the project and display the
New Resource dialog box by choosing Resource I New.

If you're viewing the Project window by type, you can also display the
New Resource dialog box by double-clicking the name of the resource type
you want from the Project window's list of available resource types.

New resource

1. If the resource type you want isn't already in the Resource Type list box,
scroll the list and select it.

To create a new, user-defined resource type, click the New button to the
right of the Resource Type list box.

2. Resource Workshop automatically supplies a numerical Resource ID
value. A Resource ID is required, but you can change the value if, for
example, you want all your dialog boxes to be in a sequence starting
with number 400.

Chapter 3, Working with projects, resources, and identifiers 33

Linking resources:
Add File to Project
dialog box

34

To create an identifier, enter a name for your resource in the Resource
ID field. (The name is optional, but names like dlg_OpenFile makes it
much easier for you to identify your resources.)

3. By default, the resource will be added to the current project file, whose
name appears in the Place Resource In list box. To place the resource in
another project, choose its file name from the list box.

At this point, you can elect to place the new resource in an external file.
If you click the New RC File button, Resource Workshop displays the
Add File to Project dialog box. You can save the resource to a new .RC
or .DLG file that is automatically linked to the current project file.

4. If you've already created a header file for your identifiers, specify it in
the Place Identifiers In list box. Otherwise, click the New Ident File
button to display the Add File to Project dialog box, and create a new.H
file.

5. When you've completed the New Resource dialog box-resource type,
resource ID, the project file to store the resource in, and the header file
for the project's identifiers-click OK to exit the dialog box.

When you exit the New Resource dialog box, Resource Workshop starts the
appropriate resource editor: the Dialog editor, Paint editor, or internal text
editor.

To link a resource stored in an external file to the current project, use the
Add File to Project dialog box. You can use this dialog box to add an
existing resource file or to create a new file for a new resource.

Existing resource files
This section describes how you link an existing resource to your project.
For example, you might have a pointer stored in a .PTR file that you want
to use in the current project.

1. Open the project to which you want to link the resource.

2. Choose File I Add to Project. Resource Workshop displays the Add File
to Project dialog box.

Resource Workshop for OS/2 Users Guide

Figure 3.11
Add File to Project

dialog box
Filename

3. Type the name of the resource file in the File Name field, or double-click
the file name if it's listed in the Files list box.

If the file isn't in the current directory or is of a different type from the
current type, you can select it in either of these ways:

• You can type the file's full path and name into the File Name field. For
example, you might type D: \lCONS\LOGO. lCO .

• You can change drives arid directories using the Drive and Directories
list boxes. To restrict the files listed in the Files box, use wildcards in
the File Name field (for example, *.PTR for pointer files) or select the
type from the File Type list box. Then double-click the file name you
want in the Files list box.

4. Make sure the name of the file to which you want to link the resource
appears in the Place Reference In field. If you want to put the resource
in another file, scroll the list to find the name of the file you want.

5. Press Enter or click OK to add the file to the project. Resource Workshop
puts an entry that points to this file in the Project window.

If you choose View I By File, you'll see the file name listed and under it
the resource name. Any changes you make to this resource are saved to
the external resource file.

New resource files
To create a new resource and link it to a project,

1. Open the target project.

Chapter 3, Working with projects, resources, and identifiers 35

Renaming a
resource

Figure 3.12
Rename Resource

dialog box

Specifying
memory options

36

2. Choose File I Add to Project to display the Add File to Project dialog
box.

3. Enter the name of the file you want to create in the File Name field. If
you don't use one of the standard resource file extensions (like .PTR for
pointers), use the File Type list box to identify the type of resource
you're creating.

4. Make sure the name of the project to which you want to link the
resource appears in the Place Reference In field. If you want to put the
resource in another project, scroll the list to find the name of the file you
want.

5. Press Enter or click OK to exit the Add File to Project dialog box.

6. Resource Workshop tells you that the file you've named doesn't exist
and asks if you want to create it. Click OK.

Resource Workshop creates a file of the specified type (based on the file
extension or, if the extension isn't standard, the file type), inserts a reference
to the file in the Project window, and starts the appropriate editor.

To rename a resource, choose Resource I Rename. Resource Workshop
displays the Rename Resource dialog box.

Source Vafue

Source Vafue

In the New Name entry field, type the new resource name. If you want to
change the ID value, enter a new value in the field provided.

Resource Workshop lets you specify how each resource in your project is
loaded and managed in memory. You can also specify the code page, which
identifies the character set used in the resource.

To specify load and memory options, select the resource in the Project
window and then choose Resource I Memory Options to display the

Resource Workshop for OS/2 Users Guide

Resource scripts are
described in

Chapter 6.

Figure 3.13
Resource Memory

Options'Code
Page dialog box

Resource Memory Options/Code Page dialog box. If you're writing a
resource script, you specify load and memory options (where applicable) as
part of the script.

N <o' ~ :~;l!f f ~ '" "" ~ ~ 1 ~~ ~'A. ~ J i "'~h"'< ~ ~"j ,~~ :, h ~:<~ ~ ~ .
',' Resource'memory opbonslcoCle page ">' '; > ,''(

Memory Options -------,

l~lb9~~,'g:O::9~i!

Ii] Discardable

E!J Moveable

C~ Align on segment boundary

Uncheck any options you don't want. For some bitmapped resources, you
might want to uncheck the Discardable option. If this option is unchecked,
the application can modify the resource while it's in memory.

.. If you set memory options for a bitmapped resource, those options apply to
all the images in that resource.

Table 3.2
Resource load and

memory options

Table 3.3
Resource code page

options

Option

Load on Call

Discardable

Moveable

Align On Segment Boundary

Option

437
850
860
863
932

Chapter 3, Working with projects, resources, and identifiers

Description

Loads the resource into memory only when it's needed.
Choosing Load On Call can reduce the amount of time
required to load your program.
Lets OS/2 discard the resource segment from memory
when it's no longer needed. OS/2 can load the resource
into memory again when necessary.
Lets OS/2 move the resource segment in memory to make
room for other memory allocations.
Forces OS/2 to align the resource's memory on a segment
boundary.

Description

United States
Multilingual
Portuguese
Canadian French
Japanese

37

Removing a
resource

To delete a resource from a project, select the resource in the Project
window, then choose either Edit I Cut or Edit I Delete to remove it. (Edit I
Cut lets you paste the resource elsewhere.)

Using identifiers

Identifier files

38

OS/2 requires that every resource be associated with a unique integer
called a resource ID. By default, Resource Workshop assigns a number to
each new resource.

The default number isn't very descriptive, so Resource Workshop lets you
assign the resource an identifier (a C #define) that consists of two parts: a
text literal (the identifier name) and the integer value or constant
expression. For example, the following statement declares an identifier:

#define dlg_OpenFile 100

In this example, the identifier's name is dlg_OpenFile and its value is 100.
Resource Workshop lists the resource in the Project window as DIALOG:
dlg_OpenFile, which readily identifies it as the application's Open File
dialog box.

Identifiers must be unique within a resource type. Only the first 31
characters are significant; Resource Workshop ignores any characters past
the 31st character.

If you're working with a .RES file, an executable file, or a DLL, Resource
Workshop decompiles all resource IDs in the file into integer values. You
can't add identifiers to this type of file, but you can save the file as an .RC
file and then assign identifiers to its resources. See the section "Working
with binary files" on page 28.

When you open a new project, the first thing you should do is specify one
or more header (.H) files in which to store your identifi~rs. These header
files use #defines to assign values to the identifier names.

This manual refers to header files as identifier files.

You can use a text editor or word processor to create your identifier files,
but you can do it with Resource Workshop almost automatically, as
described in the next section and in the section beginning on page 40.

Resource Workshop for OS/2 Users Guide

Creating identifier
files

C header files

Using the
Identifiers window

After you open a new project (File I New Project) and give it a name (File I
Save Project), add the identifier file by taking these steps:

1. Choose File I Add to Project. Resource Workshop displays the Add File
to Project dialog box.

2. Click the File Type list box down-arrow button to display a list of file
types you can add to your project.

3. Choose the following line:

H C/Ctt include file

4. In the File Name field, type a name for the identifier file.

5. Click OK to exit the Add File to Project dialog box. Resource Workshop
creates the identifier file at this time.

As noted previously, the #defines in the header file assign integer values to
the identifier names.

The following is a sample from a typical header file:

1**
Selected #defines from RWCDEMOC.H

**1

#define bmp_StatusBar 101
#define cm_About_CUA 145
#define id_ClearWindow 229
#define dIg_About 104
#define dlg_FileNew 106
#define sth_Edit 15
#define men_Main 100
#define acc_Main 100
#define ico_RWCDemo 100
#define sth_EditClear 13
#define ScribbleWindow 100
#define FileWindow 101
#define GraphWindow 102

In addition to #defines, you can also store type and structure definitions,
program code, and comments in a header file. Resource Workshop ignores
all data in the header file except for the #defines and any preprocessor
directives.

You can use the Identifiers window to assign, edit, delete, or list identifiers
and to start a resource editor. To display the Identifiers window, choose
View I Identifiers Window from the Project window or from any editor
window.

Chapter 3, Working with projects, resources, and identifiers 39

Figure 3.14
Identifiers window

Assigning
identifiers

40

Resource Workshop -Identlfrers

The Identifiers window is a modeless dialog box, which means you can leave
it open as you work in an editor or perform other functions. If you want it
out of the way, you can close the window or minimize it.

The Identifiers window has the following components:

• The Name field shows the currently selected identifier.

• The Value field shows the ID value associated with the selected identifier.

• The list box below the Name and Value fields (we'll call it the Identifiers
list box) lists the identifiers in the file named in the list box immediately
below. You select identifiers in this list box.

• The Usage list box shows the type and name of the resource whose
identifier is highlighted in the Identifiers list box. If the highlighted
identifier is not associated with a resource, the Usage box says
"(unused)."

You'll typically assign identifiers to your resources at the time you create
them, but you can assign identifiers at any time, even before you create the
associated resources.

To assign an identifier to a resource as you create it, you use the New
Resource dialog box, as explained on page 33.

To assign an identifier before you create the resource,

1. Open the Identifiers window (View I Identifiers Window).

2. Use the File list box to specify the file in which the identifier is to be
stored.

Resource Workshop for OS/2 Users Guide

Editing identifiers

Deleting identifiers

3. Type the resource name in the Name field.

4. Type the ID value in the Value field.

5. Click New.

Note that the new resource name now appears in the Identifiers list box,
and that its Value is given as "(unused)."

When you create a resource and give it a name to which you've already
assigned an identifier, the resource is automatically associated with that
identifier.

For example, you might create an identifier named CHECK_DIAL with the
ID value 1200. If you create a new dialog box and use Resource I Rename to
give it the name CHECK_DIAL, the dialog box is automatically associated
with the ID value 1200. You can verify this by looking at the Identifiers
dialog box or by saving the project and then looking at the identifiers file.

To assign an identifier to an existing resource,

1. Select the resource in the Project window.

2. Choose Resource I Rename. Resource Workshop displays the Rename
Resource dialog box.

3. Type the identifier you want to assign in the New Name field. If this is a
new identifier, you must also type its value in the Value field.

To change an identifier's value, do the following:

1. Choose View I Identifiers Window to display the Identifiers dialog box.

2. Select the identifier whose value you want to change.

3. Click the Change button. Resource Workshop displays the Change
Identifier Value dialog box.

4. Type a new value in the New Value field and click OK.

The new identifier value will be written to your .H file the next time you
choose File I Save Project

If an identifier is not used in your project, you should delete it from the .H
file. Here are three reasons you might have an unused identifier:

• You assign an identifier to a resource and then delete the resource.

• You add an identifier to the project and then never use it

• You rename a resource that already has an integer identifier value.

Chapter 3, Working with projects, resources, and identifiers 41

You can delete an
identifier that is still in

use.

Listing identifiers

Starting a resource
editor

42

To delete an identifier,

1. Choose View I Identifiers Window to display the Identifiers dialog box.

2. Select the identifier you want to delete.

If the selected identifier is not associated with a resource (either because
the resource was deleted or the identifier was never used), the Usage
box says (unused).

If, however, the identifier is still associated with a resource, the Usage
box automatically highlights the type and name of the associated
resource.

3. Click the Delete button.

If the identifier is unused, it is deleted immediately. No warning dialog
box is displayed.

If the identifier is still in use, Resource Workshop displays a warning
dialog box that says "#define is used. Delete anyway?" To delete the
identifier, click the Yes button. If you don't want to delete the identifier,
click the No button.

4. The next time you choose File I Save Project, Resource Workshop
updates the identifier file, removing the deleted identifier.

To list the identifiers in your project, do the following:

1. Choose View I Identifiers Window to display the Identifiers dialog box.

2. Use the File combo box to select the identifier file whose identifiers you
want to see.

3. Scroll the Identifiers list box to the identifiers you want to see. When
you highlight an identifier in the list box, its name and integer value
appear in the Name and Value boxes above the list box.

You can use the Identifiers dialog box to start a resource editor with a
preselected resource already loaded.

To start a resource editor from the Identifiers dialog box,

1. Scroll the Identifiers list box until the resource you want is highlighted.

The resource's type and name appear in the Usage list box.

2. Double-click on the highlighted type and name in the Usage list box.

Resource Workshop starts the appropriate editor with that resource
already loaded.

Resource Workshop for OS/2 Users Guide

c H A p T E R 4

Using the Dialog editor

Using Resource Workshop's Dialog editor, you can create and modify the
templates for dialog boxes and PM windows. This chapter explains how to
use the Dialog editor and its tools. It covers the following topics:

III Understanding dialog resources
II Using the Dialog editor
III Using the Dialog editor tools
.. Working with controls in general
.. Working with specific controls

Understanding dialog resources

Figure 4.1
A typical PM dialog

box

Dialog resources provide templates for dialog boxes and windows in your
PM programs. That is, they describe the visual appearance of dialog boxes
without defining their actual functions. Dialog boxes generally contain
controls, such as push buttons, text boxes, and scroll bars. Controls enable
the user to specify information or choose among options, but they can also
display static text and graphics. Figure 4.1 shows a typical PM dialog box
with several controls.

Chapter 4, Using the Dialog editor 43

What a dialog
resource does

At its simplest, a dialog resource specifies the initial position, size, style,
and resource ID of a dialog box. The real power of dialog resources,
however, lies in the ability to specify the type and location of the controls in
a dialog box. Instead of writing code to create and position each control, the
dialog resource gives your program a complete description of the dialog
box and its controls.

Using the Dialog editor

Figure 4.2
The Dialog editor with

an empty dialog box

44

There are a number of capabilities in the Dialog editor that you need to
understand, regardless of the type of work you'll be doing in the editor.
This section explains the following tasks:

• Starting the Dialog editor
• Setting dialog box attributes
• Moving the dialog box
• Undoing changes
• Testing your dialog box
• Saving your work
• Customizing the Dialog editor
• Using a control grid
• Setting presentation parameters

Figure 4.2 shows a typical Dialog editor window with its parts labeled.

file _£~i! ___ ~!:~ ___ kIlyout __ ~..'I!J'!l~ __ QI~~~c !:!elp
i

~I
tool. 1

I p~]l1I1I1I1I1I1I1I1I1I1I1II
.::11
align I

I

Resource Workshop for OS/2 Users Guide

Starting the
Dialog editor

Editing an existing
dialog box

Creating a new
dialog box

Setting dialog box
attributes

The Dialog editor can either create a new dialog resource or edit an existing
one. In either case, you must have a project open. If you need information
on projects or the project window, see Chapter 2, "Resource Workshop
basics."

From the project window,locate the dialog box you want to edit and
double-click it to start the Dialog editor. You can also select the desired
dialog box with the mouse or the keyboard then choose either View I Edit
Visually or View I Edit As Text to start the Dialog editor or the Script editor,
respectively.

To start the Dialog editor and create a new dialog resource, you can do
either of two things from the project window:

• Double-click the word DLGTEMPLATE. The New Resource dialog box
appears with DLGTEMPLATE already selected in the Resource Type
combo box. Click OK. Resource Workshop assigns an automatic ID and
stores the resource in the main project file.

• Choose Resource I New. The New Resource dialog box appears. Choose
DLGTEMPLATE in the Resource Type combo box and click OK. You can
also assign an identifier and a different file for this resource if you want.

Before starting the Dialog editor, Resource Workshop shows you the New
Dialog dialog box, which lets you choose one of three starting templates for
your new dialog box:

• A standard dialog box with OK, Cancel, and Help buttons down its right
side

EiI A standard dialog box with OK, Cancel, and Help buttons along the
bottom

• A standard window

You can also add a caption to the title bar of the new dialog box in the
Caption field of the New Dialog dialog box.

When you click OK in the New Dialog dialog box, Resource Workshop
starts the Dialog editor with your chosen dialog box ready to edit, as shown
in Figure 4.2.

You can change most of the attributes of a dialog box through its Dialog
Style dialog box. To display the Dialog Style dialog box, you can either
double-click the dialog box's caption bar or select the dialog box and choose
Control I Style.

Chapter 4, Using the Dialog editor 45

Setting dialog styles

Setting border
styles

46

In the Dialog Style dialog box, you can set a number of different attributes
for your dialog resource, as described in the following sections.

Dialog boxes, like all PM windows, have style flags that control their
appearance and behavior. Within the Dialog style dialog box you'll find
check boxes for each of the available styles. The following table summarizes
the styles and their effects.

Dialog style

Visible

Disabled

Save Bits

Sync Paint

System Modal

No Byte Align

No Move With Owner

DBCS Status Line

Meaning

The dialog box is initially visible.

The dialog box is initially disabled.

Saves the area covered by the dialog box as a bitmap if sufficient
memory is available. Without this style, when the dialog box is
destroyed, the covered area is restored by invalidating the appropriate
areas in the windows being uncovered.

The window repaints synchronously, meaning the window gets a
WM_PAINT message whenever any region is invalidated. Without this
style, PM batches paint operations, delaying the WM_PAINT until all
non paint messages leave the thread's queue.

No other window or process is active while the dialog box is displayed.

Prevents PM from forcing the dialog box to align on a pel grid with its
origin on a byte boundary. Byte alignment can improve the speed of
background repainting.

The dialog box keeps its position when its owner window moves.

Adds a DBCS-compatible status line to the bottom of the dialog box.

You can select any of four border styles for your dialog box. The following
table summarizes the different borders.

. Border option

Dialog

Thin

Sizing

None

Description

Standard dialog box border

Narrower than the standard border

Similar to the standard border, but the user can drag the border to resize the
dialog box

No border at all

Resource Workshop for OS/2 Users Guide

Setting frame
controls

Setting window
alignment

Setting memory
flags

Moving the dialog
box

Undoing changes

Testing your
dialog box

The Dialog Style dialog box gives you the ability to choose a number of
controls for the frame of your dialog box. Checking an option includes the
specified control on the edge of the dialog box. The following table
summarizes the choices.

Control option

Title Bar

Minimize button

Maximize button

System Menu

Vertical Scroll Bar

Horizontal Scroll Bar

Meaning

Title bar across the top of the dialog box

Button to shrink the dialog box to an icon

Button to zoom the dialog box to full screen size

System menu box in top left corner of the dialog box

Scroll bar on right side of the dialog box

Scroll bar across bottom of the dialog box

The initial position of your dialog box can be set relative to any of three
items: the origin of its parent window, the origin of the screen, or the
position of the mouse. You can choose any of these options in the Dialog
Style dialog box.

You can set the memory options for the dialog resource by choosing
Dialog I Memory Options. This displays the Dialog Memory Options dialog
box, where you can set any or all of the Preload, Moveable, and Discardable
flags for the resource memory.

The position of the dialog box in the editor window reflects the position the
dialog box will assume when your application displays it. You can change
that initial position by clicking the title bar of the dialog box and dragging
it to the desired position. You can also set the size and position of the
dialog box directly by selecting the dialog box and choosing Layout I Size
And Position.

You can "undo" any editing you do in the Dialog editor, such as placing
controls, aligning them, deleting them, and so on, with the Undo tool or the
Edit I Undo menu command. Undo works on commands that affect groups
of controls as well as commands that change single controls.

To test your dialog box to see the effect of any changes you've made, select
the Test tool or choose Options I Test Dialog. This makes a "live" copy of
the dialog box you're editing.

Chapter 4, Using the Dialog editor 47

Saving your work

Customizing the
Dialog editor

Setting selection
options

Setting units
options

48

When testing, you can press Tab and the arrow keys to see how you can
move around your dialog box, or you can type text to see how text controls
handle scrolling. Check to see if your controls are in the order you want
them.

While testing a dialog box, the status line at the bottom of the Dialog editor
reads Test.

To leave test mode and return to edit mode, do any of the following:

• Click OK or Cartcel in the dialog box.
• Choose Options I Test Dialog again.
• Press Enter.
• Click the Selector bitmap in the Tools palette twice. (The first click

switches focus from your dialog box to the Dialog editor.)

It's a good idea to save your changes as you go along, rather than waiting
for Resource Workshop to prompt you when you close the project. To save
your dialog box, choose File I Update or File I Save All in the Dialog editor
or File I Save Project in the project window.

Resource Workshop holds a memory image of the project's resources while
you work. File I Update updates the memory image only, which enables
you to test interactions among resources, such as a dialog box that uses a
bitmap from another resource in the project. File I Save All saves the entire
project and updates all disk files.

You can set several options for the Dialog editor. Choose File I Preferences
to display the Dialog Editor Options dialog box.

The Selection Type group enables you to customize the selection of
multiple controls with the mouse. If you check Select Near Border,
Resource Workshop forces you to select controls by clicking inside their
boundaries, within four pels of the border. If you check Selection Rectangle
Surrounds, the selection rectangle must completely surround a control in
order to select the control.

Both options are unchecked by default.

The status line can display position and size information for controls in
either dialog units or screen units. By default, Status Line Units is set to
Dialog.

Resource Workshop for OS/2 Users Guide

Setting border
options

Using a control
grid

Displaying the grid

Snapping to the grid

Moving existing
controls to a grid

Changing the grid

Setting
presentation
parameters

You can set the selection border to either a thick line or a thin one. The
default setting is a thick selection border.

One way to make sure the controls in your dialog boxes line up correctly is
to use a grid. A grid is a set of horizontal and vertical lines you can use to
position your controls. The grid affects only the controls you add. Controls
you've already placed don't move if you change the grid.

By default, the Dialog editor's grid is hidden. To make it visible, choose
Layout I Grid Settings, and check the Draw Grid box.

You can force your controls to align themselves to the Dialog editor grid as
you add them by choosing the Layout I Snap To Grid menu command.
When you choose the Snap To Grid option, all controls you add
automatically move to the nearest point on the grid, even if the grid is not
visible.

To force controls already in the dialog box to align with the dialog box's
grid, select the controls you want to align and choose Layout I Force
Alignment. All selected controls will move to the nearest point on the grid.

To change the horizontal or vertical spacing of the control grid, choose
Layout I Grid Settings. You can type new values for the horizontal (X) and
vertical (Y) sizes of the grid.

All PM windows, including dialog boxes and their controls, have a set of
properties called presentation parameters, including font, color, color index,
and custom information. The most common use of presentation parameters
in dialog boxes is to change fonts.

PM windows inherit presentation parameters from their owners. Thus, if
you don't set specific presentation parameters for a control, it uses those of
the dialog box that owns it. You can therefore make changes that apply to
all controls in a dialog box by changing the presentation parameters of the
dialog box itself.

To set presentation parameters for a dialog box or control,

1. Select the item you want to change presentation parameters for.

2. Choose Control I Presentation Parameters, which displays the
Presentation Parameters dialog box.

Chapter 4, Using the Dialog editor 49

The Presentation Parameters dialog box shows any currently defined
presentation parameters for that item.

3. To change or delete an existing presentation parameter, select the
parameter in the Current Presentation Parameters list box and click
either Change or Delete.

To define a new presentation parameter, click the appropriate button in
the New group for the kind of presentation parameter you want to add.
Each displays an appropriate dialog box where you can enter a new
presentation parameter.

4. When you finish setting presentation parameters, click OK to close the
Presentation Parameters dialog box.

Using the Dialog editor tools

Overview of the
tools

Using mode tools

50

The Dialog editor has two floating palette windows that contain square
gray bitmapped images that represent tools. Clicking on one of the tools is a
shortcut for choosing a menu item and can greatly speed your editing.

The Dialog editor has three kinds of tools:

• Mode tools
• Action tools
• Control tools

The next sections describe each kind of tool and the Dialog editor's sidebar.

Mode tools set the Dialog editor's current operating mode. Depending on
the mode you select, the mouse pointer has different effects on the controls
in the dialog box. Each of the mode tools corresponds to one of the
commands on the Dialog menu. Table 4.1 shows the mode tools, their
equivalent menu commands, and the actions associated with them.

Resource Workshop for OS/2 Users Guide

Table 4.1
Dialog editor mode

tools

Using action tools -

Table 4.2
Dialog editor Tools
palette action tools

Using control tools

Using the sidebar

Tool Menu command Action

~
DialoglModify Controls Selects a control to modify.

DialoglSet Tab Stops Toggles tab stop at each control clicked.

DialoglSet Order Sets tab order of controls in the order you click them.

~ DialoglSet Groups Toggles clicked control as first control in a group.

Testl DialoglTest Toggles test mode.

Action tools perform a specific action when you click them. For example"all
the tools on the Align palette are action tools. When you click one, it
immediately aligns the selected controls in the dialog box. Each of the tools
on the Align palette corresponds to an option in the Align Controls dialog
box.

There ar'e also several action tools on the Tools palette. These tools and
their menu equivalents and use are summarized in Table 4.2.

Tool

Un

Menu command

Editl Duplicate
or AlignlArray

EditlUndo
or Editl Redo

Action

Copies the selected control or
creates an array of controls. If a single control is
selected, this tool copies it. If multiple controls are
selected, this tool aligns them as an array.

Restores the dialog box to its state
before the last action. When used with Shift, performs
Redo instead of Undo.

Control tools enable you to select a control to add to the dialog box.
Clicking a control tool is equivalent to choosing a control type from the
Control menu or choosing a control type from the New Control dialog box.

The Dialog editor window's sidebar contains an alignment indicator that
shows the most recently used alignment tool and a tool indicator that
shows the currently selected tool. You can drag the sidebar to either side of
the window.

Chapter 4, Using the Dialog editor 51

If you've closed either the Align palette or the Tools palette, you can reopen
them by clicking the sidebar's alignment indicator or tool indicator,
respectively.

Working with controls in general

Creating a control

Picking a control
type

52

Most of the work you do in the Dialog editor involves the creation,
placement, and modification of controls. Controls are the items appearing
inside the dialog box, including push buttons, list boxes, and entry field
controls. Most of the tasks you perform on controls are the same for each
type of control, so this section explains the common tasks such as creating,
moving, resizing, and modifying. The next section explains any specific
information for the individual control types.

No matter what kind of control you're working with, certain tasks work
exactly the same way. These tasks are

• Creating the control
II Moving the control
• Resizing the control
• Aligning controls
II Arranging controls
II Setting control attributes
• Setting tab stops
• Changing tab order
II Grouping controls

This section describes these common operations. The following sections tell
you specific information unique to each kind of control. Tasks that involve
multiple controls, such as aligning and grouping, are explained in the
section on using the Dialog editor tools, starting on page 50.

Creating a new control in a dialog box takes two steps:

• Picking a control type
• Placing the control in the dialog box

There are two ways to pick the type of control you want to create:

• Pick a control from the Tools palette
!II Use the Control I New menu command and the New Control dialog box

Picking controls from the Tools palette is generally easier than using the
menu and dialog box, but using the dialog box enables you to see samples
of the controls before inserting them.

Resource Workshop for OS/2 Users Guide

Figure 4.3
The control bitmaps
on the Tools palette

Placing the control

Selecting controls

To pick a control from the Tools palette, click the left mouse button on any
of the controls pictured in the palette. Figure 4.3 shows which control each
bitmap represents.

Static Text If Spin Button Check Box {8J

Bitmap Horizontal Value Set Scroll Bar

Icon Vertical Notebook
Scroll Bar

Group Box Slider Container

Filled Rectangle List Box

Rectangle Combo Box

Edit Push Button

Multiline Edit Radio Button

To pick a control using menus and dialog boxes, choose Cantrall New,
which displays the New Control dialog box. From the Control Type combo
box, pick the type of control you want to create. The Sample area shows an
example of the control you pick. When you've picked the control you want,
click OK.

Whichever method you use to pick the control type, the pointer assumes
the shape of the control, so you can tell what kind of control you're
creating. The pointer image is similar to the bitmap on the palette.

Once you've picked a control type, your mouse pointer assumes an image
that represents the control you're creating. You can then move the mouse
anywhere in the dialog box you're editing. When you click the left mouse
button, the control appears in the dialog box with its upper left corner at
the point where you clicked. If you have the Snap To Grid option turned
on, the control appears with its upper left corner at the grid point nearest
where you clicked.

You don't have to worry too much about where you first place the control,
as you can easily move or resize it later.

You can select a control to modify using either the mouse or the keyboard.
The selected control has a thick border around it.

• To select a control with the mouse, click the control with the left mouse
button.

Chapter 4, Using the Dialog editor 53

Selecting multiple
controls

Moving a control

Resizing a control

54

• To select a control with the keyboard, press Tab to cycle through the
controls until the control you want is selected. You can cycle in the
opposite order by using Shift+ Tab.

You can select multiple controls by holding down Shift while you click on
controls. The thick border indicating selection enlarges to surround all the
selected controls. Selecting with Shift+click enables you to select only
specific controls.

You can also select a group of adjacent controls by clicking the selection
tool on the dialog box, not touching any control, and then dragging the
pointer. As you drag, Resource Workshop draws a selection rectangle
(sometimes called a "rubber band") from the point where you originally
clicked to the point under the pointer's hot spot. When you release the
mouse button, the Dialog editor selects any controls inside the selection
rectangle.

You can customize the behavior of the selection rectangle. One of the
options in the Dialog editor preferences dialog box lets you choose whether
dragging selects only those controls entirely within the selection rectangle
or all the controls contained or touched by the selection rectangle. See
"Setting selection options" on page 48.

You can move a control using either the mouse or the keyboard.

• To move a control with the mouse, make sure you're using the Modify
tool. Click on the control you want to move and drag it to the desired
position.

• To move a control with the keyboard, select a control and press an arrow
key to start moving the control. The selection rectangle moves to indicate
the new position of the control. You can then press other arrow keys
until you get the control where you want it. Press Esc or Enter to stop
moving the control.

You can resize a control using either the mouse or the keyboard.

• To resize a control with the mouse, click the thick border around the
selected control and drag the border to the desired position. When you
release the mouse button, the control assumes the size of the thick border.

• To resize a control with the keyboard, hold down Ctr! and press an arrow
key to move the corresponding side of the control. For example, pressing
Ctrl+1 moves the top of the control up, Ctrl+~ moves the right side to the
right, and so on.

Resource Workshop for OS/2 Users Guide

Aligning controls

Figure 4.4
Align Controls dialog

box

Holding down Shift along with Gtrl resizes in the opposite direction, so for
example, GtritShiftt l' moves the bottom of a control up.

You can also set the exact size of a control by selecting it and choosing
Layout I Size And Position, which displays a dialog box in which you can
specify the height (CX) and width (CY) of the control.

Once you've added controls to your dialog box, Resource Workshop gives
you several ways to align them.

Before you can align, resize, or arrange multiple controls, you must select
the controls you want to adjust. See "Selecting controls" on page 53. You
can also align single controls.

Once you select the controls to align, you can use either the menu system or
the Alignment palette to align the controls. To use the menus, choose
Layout I Alignment, which displays the Align Controls dialog box shown in
Figure 4.4.

iIIH~~~~f~t-' '---'-
, r:? Right sides

I U Space equally

I. () Center in dialog
L:~ ____ ~

(!J No change

C) Top.s

o Center

o Botloms

o Space equally

o Center in dialog

All the options in the Align Controls dialog box have equivalents on the
Alignment palette. They also have keyboard accelerators. Table 4.3 shows
the horizontal alignment commands. Table 4.4 shows their vertical
counterparts:

Chapter 4, Using the Dialog editor 55

Table 4.3: Horizontal alignment options

Palette Keyboard

[§J Gtrl+L

§J Gtrl+H

§J
Gtrl+R

Gtrl+Stretch *

Gtrl+D

Dialog box

No Change

Left Sides

Centers

Right Sides

Space Equally

Center in Dialog

Description

There is no change in horizontal alignment.

The left sides of all controls move to the left side of the selection frame.

The horizontal centers of the controls move to the center of the selection
frame.

The right sides of the controls move to the right side of the selection
frame.

Moves the controls horizontally within the selection frame so the spaces
between them are equal.

Moves the selection frame horizontally so it's centered in the dialog box.
The relative positions of the individual controls within the selection frame
is unchanged.

* Ctrl+Stretch means to hold down Gtrl while dragging the selection frame around multiple controls
with the mouse.

Table 4.4: Vertical alignment options

56

Palette Keyboard

DlJ Gtrl+T

J1J Gtrl+V

]J Gtrl+B

Gtri+Stretch *

[iJ Gtrl+G

Dialog box

No Change

Tops

Centers

Bottoms

Space Equally

Center in Dialog

Description

There is no change in vertical alignment.

The tops of all controls move to the top of the selection frame.

The vertical centers of the controls move to the center of the selection
frame.

The bottoms of the controls move to the bottom of the selection frame.

Moves the controls vertically within the selection frame so the spaces
between them are equal.

Moves the selection frame vertically so its centered in the dialog box.
The relative positions of the individual controls within the selection frame
is unchanged.

* Ctrl+Stretch means to hold down Gtrl while dragging the selection frame around multiple controls
with the mouse.

Resource 'Norkshop for OS/2 Users Guide

Arranging
controls

Figure 4.5
Control order options

Setting control
attributes

Setting basic
attributes

Resource Workshop enables you to automatically arrange a group of
selected controls into an array of evenly spaced, equally sized rows and
columns, renumbering the controls in sequence.

To arrange controls into an array,

1. Select the controls you want to arrange.

2. Adjust the size and shape of the selection frame to enclose the area you
want to fit the array into. For example, if you make the selection frame
larger, the Array command will move the controls out to the new
boundaries set by the frame.

3. Choose Layout I Array or click the Duplicate tool. Y ou'll see the Form
Controls Into An Array dialog box.

4. Under Array Layout, specify the number of rows and columns you
want.

5. Under Order, specify your preference for the ordering of the rows and
columns. Figure 4.5 shows how the ordering options affect the same
group of nine controls.

To change the attributes of a control,

1. Select the control.

2. Either double-click the left mouse button or press Enter. A style dialog
box appears.

The style dialog box enables you to change all the attributes of the control.

Each control type has its own unique attributes you can adjust, but they all
have four attributes in common, called basic attributes. The following table
lists the four basic attributes and what they mean.

Chapter 4, Using the Dialog editor 57

Assigning control
IDs

Setting DSCS
support styles

Attribute

Visible

Disabled

Group

Tab Stop

Meaning if checked

The control is initially visible; otherwise, hidden.

The control is initially disabled; otherwise, enabled.

The control is the first in a logical group.

The user can press Tab to select the control.

You can also change the caption and control ID of a control within the style
dialog box. The Header File combo box specifies where Resource Workshop
looks for identifiers for the Control ID: predefined values, all header files,
or both.

Control IDs are the numbers used by your application to identify particular
controls in a dialog box. Resource Workshop supports assignment of IDs
either with numbers or symbolic constants called identifiers. The identifiers
used for control IDs are identical to those used as resource IDs, as
explained in Chapter 3, "Working with projects, resources, and identifiers."

Every control's style dialog box contains fields that enable you to assign
either numeric or symbolic IDs to the control. You can use identifiers
predefined by OS/2 or identifiers you've already assigned by choosing
them from the combo box in the Control ID field. You can also define new
identifiers by typing the new identifier name into the combo box and
typing a number or valid expression in the entry field control to the right of
the combo box. When you save the resource, Resource Workshop saves the
new identifier in your project's identifier file.

The controls that accept typed input from the user (entry field controls,
multiline entry field controls, and combo boxes) have a set of attributes
called DBCS Support Styles. These determine how the control supports
double-byte character sets. The following table summarizes the four
options.

Option Description

Any The control accepts characters from any character set.

Mixed The control accepts mixed single- and double-byte character sets.

SBCS Only The control accepts only single-byte characters.

DBCS Only The control accepts only double-byte characters.

58 Resource Workshop for OS/2 Users Guide

Setting contra/­
specific attributes

Setting tab stops

You can also change
tab stops in a

controls style dialog
box.

Changing tab
order

If you make a
mistake, you can

"reclick" a control to
restore its order. You

can backtrack by
clicking controls in

reverse order.

The style dialog box for each control type contains check boxes or radio
buttons that enable you to set all the options supported by that control. The
specifics of each dialog box are explained in the next section.

When using the keyboard, users typically press Tab to move from one
control (or group of controls) to another. Only controls with their Tab Stop
attribute set get the focus through Tab. Some types of controls are
automatically defined as tab stops when you add them to a dialog box.

To set or remove tab stops, use the Tab Set tool or the Set Tab Stops menu
command.

1. Click the Tab Set tool or choose Dialog I Set Tab Stops. The pointer
changes to the Tab Set symbol. The Dialog editor places a white
rectangle over each control, with a letter "T" in any box over a control
that is a tab stop.

2. To set a tab stop, click an empty white rectangle.

To remove a tab stop, click a rectangle containing a "T."

3. When you finish changing tab stops, click the Selector tool or choose
Dialog I Modify Controls.

Tab order is the order in which controls in a dialog box get the focus when
the user presses Tab. By default, tab order is the order in which you add the
controls to the dialog box. You can change the tab order of controls using
the Set Order tool or the Set Order menu command.

To change the order of the controls in your dialog box,

1. Select the controls whose order you want to change. If you don't select
any controls, you can change the order of all the controls.

2. Click the Set Order tool or choose Dialog I Set Order. The pointer
changes to the Set Order symbol, and a white box appears over each
control you selected. Each box contains a number indicating the order of
the controls.

3. Click the controls you want to assign new order numbers to in the order
you want them. When you click a control, its white rectangle turns gray.
The prompt at the bottom of the Dialog editor window shows the next
order number to be assigned.

4. When you finish assigning new order numbers, click the Selector tool or
choose Dialog I Modify Controls.

Chapter 4, Using the Dialog editor 59

Grouping controls

You can also change
Group attributes in a
controls style dialog

box.

You can define groups of related controls within your dialog boxes.
Grouping enables the user to move among the grouped controls using
arrow keys. Groups are usually used only with check boxes and radio
buttons. You can let users know that controls are grouped by putting them
in a group box.

A group is defined by setting the Group attribute in the first control you
want grouped. The dialog box treats all subsequent controls in tab order
(the order you added the controls) as part of that group, until it encounters
another control with the Group attribute.

Defining groups works exactly like setting tab stops. To define groups of
controls,

1. Click the Set Groups tool or choose Dialog I Set Groups. The pointer
changes to the Set Groups symbol, and white rectangles appear over all
controls. Controls with their Group attribute set have a letter "Gil in
their rectangle.

2. To define a new group, click the empty rectangle over the first control in
the group. Make sure the control after the last one in the group also has
a "Gil in its rectangle.

To remove a group, click the rectangle over the first control in the
group. Its "Gil disappears.

3. When you finish setting groups, click the Selector tool or choose
Dialog I Modify Controls.

Working with particular controls

60

In addition to changing the caption, control ID, and basic attributes
common to all controls, you can also use a control's style dialog box to set
attributes specific to the type of control.

The following sections describe the specific attributes you can set through
the style dialog box for each control. For each control, you'll find two kinds
of attributes you can change, styles and types.

Styles are generally individual attributes you can toggle on or off, much
like the basic attributes. Examples include the visible border of a push
button or word-wrapping in a multiline entry field control. Styles generally
correspond to the standard style constants defined in os2.h, and the labels
in the style dialog boxes reflect the names of those constants.

Resource Workshop for OS/2 Users Guide

Static text
controls

Bitmapped static
controls

Rectangle and
frame static
controls

Group box controls

Entry field
controls

Types are options that change something fundamental about the control.
For example, a static rectangle control can be one of three types:
foreground, background, or halftone. Scroll bars have two types: horizontal
and vertical. Like styles, types relate to OS/2 constants, but rather than the
simple presence or absence of a particular constant, a type represents a
choice among exclusive constants.

In addition to the basic attributes, static text controls have three styles and
two types you can set.

The three text styles are Halftone (graying), Word Break (showing only
complete words), and Mnemonic style (interpreting ~ as a mnemonic prefix
character).

The available type options determine the alignment of the text within the
control boundaries. You can align the caption text horizontally or vertically.

The next sections describe several variations on static controls.

Bitmaps and icons in dialog boxes are static controls with special attributes.
Although they have no styles other than the basic attributes, a pair of radio
buttons in the style dialog box allows you to toggle between bitmap and
icon controls.

Solid rectangles and frames (unfilled rectangles) are simplified static
controls with no caption. Their only special attribute determines the color
of the rectangle or frame: Foreground (dark gray), Background (light gray),
or Halftone (cyan).

Group boxes are static controls used to visually group related items,
especially check boxes and radio buttons. Group boxes can have visible
borders, and you can set text styles for Halftone and Mnemonic as you
would with a static text control.

In addition to the basic attributes, entry field controls have DBCS support
styles, as described on page 58. The following table describes the other
entry field control styles you can set.

Chapter 4, Using the Dialog editor 61

Multiline entry field
controls

Button controls

62

Style Description

Auto Tab Stop When a typed character fills the entry field, focus automatically moves to the
next field as if Tab had been pressed.

Unreadable The text in the entry field appears as asterisks.

Autoscroll The text scrolls right or left to keep the insertion point visible.

Read Only The entry field ignores characters typed in it.

Margin Gives the entry field a visible border.

You can also control the alignment of the text within the entry field control
by selecting the Justification type: Left, Right, or Center.

Multiline entry fields are not different types of entry field controls. Rather
they are a separate class of window, as described in the next section.

Multiline entry field controls are distinct from single-line entry field
controls, rather than merely being a different style of entry field control.
They are a different window class. Although they are similar in many
ways, multiline entry field control resources have their own, different
attributes.

In addition to the basic attributes and DBCS support styles, multiline entry
field controls have the same Read Only and Margin styles as regular entry
field controls. They also have two unique styles, described in the following
table.

Style

Ignore Tab

V\brd Wrap

Description

Causes the entry field to ignore the Tab key, allowing the dialog box to move the
focus to the next control when the user presses Tab.

The entry field control wraps text to a new line when a word overruns the right side
of the visible area.

You can also enable or disable either the horizontal or vertical scroll bars
present by default.

In addition to the basic attributes, push buttons have the following five
styles you can set:

Resource Workshop for OS/2 Users Guide

Radio button
controls

Check Box controls

List box controls

Style

Default

Help

SYSCOMMAND

No Pointer Focus

No Border

Description

Makes the button the default button, which has a wide border indicating it's
the default response if the user presses Enter.

Sends a WM_HELP message to the owner window when pressed.

Pressing the button generates WM_SYSCOMMAND messages instead of
WM_COMMAND messages.

Clicking the button notifies the owner window with a BN_CLlCKED
notification, but does not give the button the focus.

Removes the default border around the button, making the button look like
ordinary text, although it still works as a button.

In addition, you can choose among three button types, meaning the button
appears as Text (with the caption text displayed), Bitmap (a bitmap image
replaces the text), or Icon (an icon image replaces the text).

Radio buttons have only two styles in addition to the basic attributes. One
is the same No Pointer Focus style used by push buttons. The other is No
Cursor Select, which makes the button selectable only with the mouse.

You can also choose between two types of radio buttons, regular and auto.
Auto radio buttons automatically fill the dot to the left of the text when
pressed and clear the dots of other radio buttons in the same group. With
regular radio buttons, your program is responsible for updating the
appearance of all the buttons in the group when one is pressed.

Check boxes have only one style in addition to the basic attributes, and that
is the same No Pointer Focus style used by push buttons.

You can also choose among four Check Box Types: regular check box, auto
check box, 3-state check box, and auto 3-state check box. A regular check
box puts its caption text to the right of a square box, and puts a check mark
in the box when selected. A 3-state check box toggles among three states,
represented by an empty box, a checked box, and a gray, hatched box. Auto
check boxes and auto 3-state check boxes toggle automatically when
clicked, whereas regular and 3-state check boxes must be toggled by your
program.

List boxes have five styles in addition to the basic attributes:

Chapter 4, Using the Dialog editor 63

Combo box
controls

Scroll bar
controls

Slider controls

64

Style

No Adjust Position

Multiple Selection

Extended Selection

Horizontal Scroll

Owner Draw

Description

Disables the list box5 default behavior, which adjusts the size of the
displayed control to show only whole lines of text.

The user can select more than one item in the list by using Shift+click.

The user can select individual items or ranges of items.

Enables the user to scroll the list horizontally to read text that exceeds
the bounds of the control.

The application paints the items in the list box.

In addition to the basic attributes and DBCS support styles, combo boxes
have one additional style, the same Horizontal Scroll style used by list
boxes.

You can also select one of three Combo Box Types, as summarized in the
following table.

Combo box type Description

Simple The drop-down list is always expanded to display items in the list, and the
user can edit the items in the list (default).

Drop Down When the dialog box is first displayed, the combo box consists of a single line
of editable text. The user can click the down arrow to expand the list and edit
all items in the list.

Drop Down List Works just like a drop down, but the list is static. The user can select, but
can't change, any item in the list.

When sizing combo boxes, remember that the specified size is for the
combo box with its list displayed, even if the list is normally hidden.

Both horizontal and vertical scroll bars have only the basic attributes. In
addition, you can choose between two types: horizontal and vertical. If you
change the orientation of a scroll bar, make sure to also change its
boundaries. Although you can have, for example, a tall, narrow horizontal
scroll bar, it would not be useful to the user.

Although slider controls act much like scroll bars, they are separate classes
of windows with no attributes in common other than the basic attributes.

Slider controls work much like scroll bars, with an arm that the user can
slide along a shaft to set a value, with an optional button that moves the
arm incrementally in either direction. Like a scroll bar, a slider can be either

Resource Workshop for OS/2 Users Guide

Value set controls

of two types: horizontal or vertical. Although the default type is horizontal,
you can choose to make any slider vertical.

In addition to the basic attributes, slider controls have the unique styles
listed in the following table.

Style

Owner Draw

Read Only

Snap To Increment

Ribbon Strip

Description

The dialog box draws the slider control.

The user cannot manipulate the control.

If the user moves the slider arm to a position between legal values, the
control adjusts the position to the nearest legal value.

The control darkens the slider shaft to the left of (or below) the arm.

You can also specify the offset position of the slider shaft within its
bounding rectangle, the position of the incremental control button (if any),
and the home position of the slider thumb.

Sliders also have two scales associated with them, each specifying the
increment and spacing of something. You can choose which of the two
scales is the primary (default) scale. Since scales are implemented by the
programming API, you can't meaningfully test them within Resource
Workshop.

Most of the functions of value set controls are determined by your
program, but there are a few properties you can control through the dialog
box resource. Because the actual appearance and behavior of the control is
dependent on your application, you can't meaningfully test value set
controls within Resource Workshop.

The value set style dialog box enables you to set the default type for the
items and specify the number of rows and columns in the value set control.
The default type can be Bitmap, Text (default), Color Index, Icon, or RGB.

In addition to the basic attributes, value set controls have the additional
attributes described in the following table.

Style

Outside Border

Right To Left

Item Border

Scale Bitmaps

Description

Draws a border line around the entire control.

Orders the items from right to left instead of top to bottom.

Draws a border around each item in the value set.

Scales bitmapped images to fit in the item area. By default, only the portion of
the full-sized bitmap that fits in the item appears.

Chapter 4, Using the Dialog editor 65

Notebook
controls

Container
controls

66

Most of the functions of notebook controls are determined by your
program, but there are some basic properties you can control through the
dialog box resource. Because the actual appearance and behavior of the
control is dependent on your application, you can't meaningfully test
notebook controls within Resource Workshop.

The Notebook Style dialog box enables you to specify the basic attributes of
the notebook control, the side of the notebook page that has the major tabs,
the position of the back page relative to the entire control, the shape of the
tabs, and the alignment of the text on tabs and the status line.

Most of the functions of container controls are determined by your
program, but there are some basic properties you can control through the
dialog box resource. Because the actual appearance and behavior of the
control is dependent on your application, you can't meaningfully test
container controls within Resource Workshop.

In addition to the basic attributes, the Container Style dialog box lets you
set the following attributes:

Style

Auto Position

Mini Record

Verify Pointer

Read Only

Description

The container automatically rearranges its items when the window changes.

Forces the use of mini record core data structures.

Verifies that application pointers are in the container's list before using them.

The user cannot modify the container or its contents.

You can also specify the selection type of the container: Single, Extended, or
Multiple.

Resource Workshop for OS/2 Users Guide

c H A p T E R

Using the Bitmap editor

Using the Resource Workshop Bitmap editor, you can create or edit the
following bitmapped resources:

• Icons
• Pointers
• Bitmaps

5

See the README file on the distribution disks for information on where to
find sample bitmaps, pointers, and icons.

This chapter describes the following:

.. Understanding bitmapped resources
II Using the Bitmap editor
• Using the Bitmap editor tools
• Working with images
II Extra items for icons and pointers

Understanding bitmapped resources

In PM the three bitmapped resource types-bitmaps, pointers, and icons­
are virtually identical.

.. Bitmaps account for a variety of graphic images in your PM program. PM
itself uses bitmaps for scroll bar arrows, the Minimize and Maximize
buttons, and so on. The Resource Workshop Bitmap editor uses bitmaps
for the tools in the Tools palette.

• Pointers represent the mouse's current location on the screen. In addition
to the familiar arrow pointer, PM uses other pointers to represent
different program functions-for example, the Color Palette's paint roller
pointer.

You can create your own special pointers to represent different functions
of your application. Note, for example, that each of the Bitmap editor's
tools has a pointer that matches the tool's bitmap.

Chapter 5, Using the Bitmap editor 67

Bitmapped
resource
concepts

Pels

Left-button and
right-button colors

68

Figure 5.1
Colors palette

• Icons are small bitmapped images that are typically used to represent
minimized windows.

Pointers and icons are functionally identical. The only difference between
them and bitmaps is that pointers and icons can have transparent and
inverted color areas, and pointers and icons can have a hot spot. These
differences are described later in this chapter.

This section describes three concepts that are basic to using the Bitmap
editor:

• Pels
• Left-button and right-button colors
• Images

Bitmapped resources created with the Bitmap editor are painted on a grid
of roughly square "dots" called pels. You create the image by using Bitmap
editor tools to assign a color to each pel. The pels assemble like a mosaic to
.form the bitmapped image.

The colors you assign to the pels are painted with the left and right buttons
of the mouse. For that reason, they are referred to as left-button and right­
button colors.

You can use a variety of selected left-button or right-button colors for the
features of your image (lines, boxes, and so on). The ability to assign colors
to both mouse buttons means you can have two colors at your disposal at
anytime.

There is one important difference between the left-button and right-button
colors. When you delete or move a block of pels in your image (see page
75), the currently selected right-button color replaces the color in the pels
no longer occupied by the block.

To select a color, click the left or right mouse button on the color you want
in the Colors palette. If you click with the left button, the letters LB appear
on that color; if you click with the right button, the letters RB appear on the
color. If you click the same color with both buttons, the letters BB appear on
the color.

Resource Workshop for OS/2 Users Guide

Images

The Eraser operates in the opposite fashion from the other tools. The left
mouse button produces the color marked RB, and the right mouse button
produces the color marked LB.

Each bitmapped resource must contain a device-independent form of the
resource. In addition, the resource can contain multiple images, typically the
same bitmapped resource in several device-dependent resolutions or color
formats.

PM automatically picks an image format that matches the display
hardware, if one is available. If one isn't available, PM picks the device­
independent image and scales it to the current resolution and color
capability.

Depending on the target device, bitmapped resources can be created in
resolutions of 32x32, 32x16, or 40x40 pels in size. You can also create
custom image resolutions and color combinations.

Using the Bitmap editor

Starting the
Bitmap editor

Adding a bitmapped
resource to a
project

The New Resource
dialog box is
described on

page 33.

No matter which type of bitmapped resource you're editing, there are
certain tasks you'll always perform. This section describes

• Starting the Bitmap editor
• The Bitmap editor screen
• Deleting bitmapped resources

Use of the Bitmap editor's painting tools is in the next section, "Using the
Bitmap editor tools," starting on page 74.

Resource Workshop starts the Bitmap editor any time you

• Add a new bitmapped resource to a project
• Create a standalone bitmapped resource file
• Edit an existing bitmapped resource

To add a bitmapped resource to a project,

1. Open a new or existing project. (Chapter 3 describes how you open a
project.)

2. Choose Resource I New or double-click POINTER or BITMAP in the
project window. Resource Workshop displays the New Resource dialog
box.

Chapter 5, Using the Bitmap editor 69

Creating a
standalone

. bitmapped resource
file

Loading an existing
bitmapped resource

The launch window is
explained starting on

page 79.

70

3. Select the bitmapped resource type from the Resource Type list box.
This is done automatically if you double-clicked POINTER or BITMAP
in the project window.

4. Move to the Resource ID list box and enter a name for the resource.

5. The name of the current project file appears in the entry field under
Place Resource In. If you don't want to place the bitmapped resource in
the current project file, you can scroll down the list to pick another file
(if any is listed), or you can click New to create a new project file.

6. Select an identifier file from the Place Identifiers In list box. To create a
new identifier file, click the New button in this panel. Resource
Workshop displays the Add File to Project dialog box.

7. Click OK to exit the New Resource dialog box.

8. If you're creating a bitmap, Resource Workshop displays the New
Bitmap dialog box. You can either accept the default bitmap size or
specify a new size. Click OK to exit the New Bitmap dialog box.

9. Resource Workshop puts the new bitmapped resource name in the
Project window and starts the Bitmap editor.

Note that another window appears just before the Bitmap editor itself. This
is the launch window, which is described on page 79.

You can create a standalone bitmapped resource file by choosing File I New
Project and selecting .lCO, .PTR, or .BMP from the New Project dialog box.

Resource Workshop immediately starts the Bitmap editor for the selected
bitmapped resource type.

To link a standalone bitmapped resource file to a multiple-resource project
file, open the project file and then choose File I Add to Project. (See page 33.)

To load an existing bitmapped resource into the Bitmap editor,

1. Open an existing project. (Chapter 3 describes how to open a project.)
Resource Workshop displays the Project window.

2. In the Project window, double-click the name of the bitmapped resource
you want to edit, or select it and choose View I Edit Visually.

3. Resource Workshop displays the launch window, which lists all the
images in the selected resource. If the resource has only one image,
Resource Workshop automatically launches the Bitmap editor.

In the launch window, find the bitmapped resource image you want to
edit. Double-click it, or select it and choose either Icon/Pointer I Edit
Visually or Bitmap I Edit Visually, depending on the kind of resource

Resource Workshop for OS/2 Users Guide

Bitmap editor
screen

Figure 5.2
The bitmap editor

screen

Using the window
panes

you're editing. Resource Workshop starts the Bitmap editor with the
bitmapped resource loaded.

The Bitmap editor has four main components:

• Window panes
• Colors and Tools palettes
• Sidebar
• Status line

This section describes how to use each one.

The Bitmap editor window has the standard PM window components: title
bar, menu bar, System menu, Minimize and Maximize buttons. The title bar
contains the text that appears in the launch window-typically the pel
resolution of the image, color format, and target device.

The Bitmap editor window is initially divided vertically into two panes.
One shows the image in its actual size, and the other shows a close-up view
of the image. You can zoom in or out on the image in either pane, divide
the window horizontally, and change the relative size of the two panes,
including "closing" either pane.

In the Bitmap editor, you can look at two different views of the image
you're creating or editing. You can split the window vertically or
horizontally to show the two views side-by-side or one view above the
other. You can also choose how to zoom each view.

To split the window, choose View I Split Horizontally or View I Split
Vertically.

For example, if you split the window vertically, you could display the
entire image at its actual size in the right window pane and zoom in on a
small portion of the image in the left window pane.

Chapter 5, Using the Bitmap editor 71

Colors palette and
Tools palette

Using the sidebar

72

When the window is split, the pane in which you're working is the active
pane. To make a pane active, click the mouse inside it. The Bitmap editor
indicates the active pane by making it appear recessed, like a pushed
button or a selected tool.

To see more of one view than the other, move the pointer to the line that
splits the images (the separator bar) and, when the pointer becomes a
double arrow, drag the separator bar. For example, with the windows split
vertically, you can drag the separator bar to the right to see more of a
zoomed image.

To remove the split window entirely and return to a single view, drag the
separator bar all the way to the left or right (for a vertical split) or to the top
or bottom (for a horizontal split). To return to a two-pane view of the
image, choose View I Split Horizontally or View I Split Vertically.

Each open Bitmap editor window has its own Colors palette and Tools
palette.

• The Colors palette shows the colors you can use in your bitmapped
resource and the current button assignments.

• The Tools palette contains the tools with which you'll create your
bitmapped resource. You can use these tools to paint lines, filled areas,
and outlined shapes, and also to fill areas with color, erase parts of the
image, zoom in on the image, or select blocks of pels.

The palettes are windows: you can move, close, and open them.

• To move a palette, drag its title bar.

• To close a palette, double-click its title bar icon or choose Close from its
Control menu.

• To open a palette after you've closed it, click the appropriate indicator in
the sidebar.

The palettes are not bound by the main Bitmap editor window. If you drag
a palette outside the window and then maximize the window, the palette
will maintain its position relative to the main window and will be in effect,
"off the screen." To bring a palette back into view, click the appropriate
indicator in the sidebar, as described in the next section.

The Bitmap editor window's sidebar contains a color indicator that shows
the current left-button and right-button color and a tool indicator that
shows the currently selected tool. You can drag the sidebar to either side of
the window.

Resource Workshop for OS/2 Users Guide

Reading the status
line

Deleting
bitmapped
resources

If you've closed either the Colors palette or the Tools palette, you can
reopen them by clicking the sidebar's color indicator or tool indicator,
respectively.

The status line at the bottom of the Bitmap editor window provides
information about the pointer position and the editor's current mode. Here
is a partial list of the information provided by the status line:

• If the pointer is inside either pane-but not in the image area or on top of
a palette-the status line shows the x- and y-coordinates of the pointer's
hot spot relative to the lower left corner of the image area.

Each pane has its own set of coordinates, which are affected by the pane's
current zoom level. When you move from one pane to another, you also
move from one coordinate system to another.

• If the pointer is inside the image area, the status line shows the pointer's
coordinates and information about the color under the pointer.

If the pointer is over a color from the palette, the status line information
includes the color index and its RGB (Red, Green, Blue) values.

If the pointer is over a Transparent or Inverted color, the status line says
"Transparent" or "Inverted."

• If the pointer is over a palette, the status line remains frozen with the last
information displayed before the pointer went into the palette.

• If you're setting a hot spot, the status line gives the current hot spot
position, the instruction "Click to set new hotspot," and the pointer's
position.

• As you click a menu or use accelerator keys to select a menu command,
the status line displays more information about the selected command.

For example, if you display the View menu and press the left mouse
button over the Zoom In command, the status line reads Magnify by a
factor of two.

When you delete a bitmapped resource, you delete all the images in that
resource. To delete a bitmapped resource, select it in the Project window
and then do one of the following:

• Press the Del key or choose Edit I Delete to completely delete it.

• Choose Edit I Cut to cut the resource to the Clipboard so you can paste it
elsewhere.

You can also delete individual images within a resource. See page 80.

Chapter 5, Using the Bitmap editor 73

Using the Bitmap editor tools

If you see BB in the
Colors palette, the

same color is
selected as the left­

button and right­
button color.

Figure 5.3
Bitmap editor Tools

palette

Working with
blocks: Pick
Rectangle tool

1" ••••
I I ""'.

Selecting and
deselecting blocks

To select the entire
image, choose Editl

Select All.

74

To select a tool from the palette, click the tool you want. The selected tool
appears in reverse video. The following sections describe each tool.

The painting tools-Pen tool, Line tool, Paint Can, empty frames, filled
frames, and Eraser tool-can use either the current left-button or right­
button color.

• Use the left mouse button to paint using the current left-button color (LB
on the Colors palette).

• Use the right mouse button to paint using the current right-button color
(RB on the Colors palette).

Pick Rectangle Zoom

Pen Eraser

Line Paint Can

Rectangle

Rounded Rectangle lied Rounded
Rectangle

Ellipse Filled Ellipse

. The Pick Rectangle tool enables you to select a rectangular block of pels by
dragging the pointer. This section describes the following block tasks:

• Selecting and deselecting
• Cutting and copying
• Pasting
• Deleting
• Moving
• Duplicating

To select a block, put the tip of the pointer at one corner of the rectangle
and drag to the diagonally opposite corner. When the flashing outline
includes the area you want, release the mouse button.

To deselect a block, click the right mouse button inside the Bitmap editor
window. You can also deselect a block by clicking the left mouse button
anywhere in either pane or by pressing Enter.

The mouse buttons and Enter key deselect only; if you've moved or copied
the block, the pels remain in their new position.

Resource Workshop for OS/2 Users Guide

.. If you press Esc after moving or copying a block, and the block is still
selected, you both undo the move or copy and deselect the block.

Cutting and copying
blocks

Pasting blocks

Deleting blocks

Moving blocks

You can use the commands in the Edit menu to cut, copy, delete, duplicate,
or paste a block, and you can use the mouse to move or duplicate it.

The Cut and Copy commands both put the selected block in the Clipboard
so you can paste it to another bitmap, either in the same project or in
another project running in another copy of Resource Workshop. However,
the two commands have a different effect on the current image:

• Cut removes the selected block from the image and replaces it with the
currently selected right-button color .

• Copy leaves the selected block in the image.

The Paste command copies the contents of the Clipboard into the current
window in the following manner:

If the Clipboard image was created with the Bitmap editor, the Paste
command places it at the same pel position from which it came.

If, because of differences in image resolutions, the source position would
put the Clipboard image outside the target image area, or if the
Clipboard image didn't come from the Bitmap editor, the Paste command
puts the Clipboard image at the upper left corner of the Bitmap editor
image area.

If you select an area in the target and then choose Edit I Paste, the Bitmap
editor stretches or shrinks the contents of the Clipboard as necessary to
make it fit the selected area. .

The selected block remains on the Clipboard and you can continue
pasting it until you overwrite it by cutting or copying another block to
the Clipboard ..

The Delete command deletes the selected block and replaces it with the
right-button color. Pressing Del has the same effect.

Delete resembles Cut, but you can't paste a deleted block. You can only
Undo a Delete, restoring the block to its original place.

To move a block, put the pointer anywhere inside the selection rectangle
and drag to a new location. You can also move the block by pressing the
arrow keys.

Chapter 5, Using the Bitmap editor 75

Duplicating blocks

Zooming images:
Zoom tool

~

76

When you select and then move a block, you're in effect pulling it out of
the background. Any "open" pels that are left behind are filled with the
current right-button color.

You can continue to move the block without further effect on the
background. To set the moved block into the image, deselect it by pressing
the right mouse button.

Duplicating a block differs from copying in that it doesn't use the
Clipboard. For example, you can cut or copy something to the Clipboard,
mark another block and duplicate it, and still paste the first block from the
Clipboard.

Duplicating resembles copying, however, in that it leaves the original area
unchanged.

You can duplicate blocks with the Duplicate command or with the mouse.

• The Duplicate command places a copy of the selected block in the upper
left corner of the image frame.

• By holding down the Gtrl key as you drag with the mouse, you can
duplicate a block to a specific location, not just the upper left corner.

If you forget to press Gtrl, you can still duplicate the block:

1. Drag back to the initial position if necessary.

2. Release the mouse button.

3. Press and hold Gtrl.

4. Perform the drag again.

As long as the duplicated area is still selected, you can use the mouse or
arrow keys to move it anywhere in the image. Because the block is
temporarily "floating" on top of the image area, you can move it around
without affecting the background.

To set the duplicated block into the image, deselect it by clicking the right
mouse button outside the block, by clicking the left mouse button
anywhere, or by pressing Enter.

You can use the Zoom tool to zoom in or out on the image. This section
describes the following zoom tasks:

• Zooming the entire image
• Zooming to a selected area
• Moving zoomed images

Resource Workshop for OS/2 Users Guide

Zooming the entire
image

The Bitmap editor
uses the center of the
image as a reference

when zooming the
entire image.

Table 5.1
Zoom commands

Zooming to a
selected area

Moving zoomed
images: Hand tool
You can also use the

scroll bars to move
the image.

To zoom in or out on the entire image, you can use any of the following
techniques. In each case, Resource Workshop zooms by a factor of two.

• To zoom in, double-click the Zoom tool icon in the Tools palette. To
zoom out, press Shift as you double-click the Zoom tool icon.

• Choose View I Zoom In or View I Zoom Out.
• Press Ctr/fZ to zoom in; press Ctr/fO to zoom out.
• To display the image in its actual size, press Ctr/fA.

When you're working with two window panes (see page 71), zooming
affects only the active window.

When working with a close-up view of the image, use the scroll bars or
arrow keys to move the zoomed image around.

Table 5.1 lists all the ways you can zoom.

View command

Zoom in

Zoom out

Actual size

Accelerator key

Ctrl+Z

Ctr/+O

Ctrl+A

Mouse action on Zoom icon

Double-click

Shift+double-click

None

To zoom in on a selected area, drag a rectangle in the image with the Zoom
tool. When the flashing outline includes the area you want to see, release
the mouse button. Resource Workshop zooms the area to the largest zoom
percentage that will fit in the window pane (from 100% to 3200%).

The Bitmap editor's Hand tool is specifically designed for moving images
that are zoomed so much that they are partially cut off by the window
pane. You can use the Hand tool to bring other parts of the image into
view.

The Hand tool isn't included in the Tools palette, but you can temporarily
change any tool into a hand by holding down Ctr/. (The one exception is the
Pick Rectangle tool when there is a selected block and the pointer is inside
the block.) Using the hand, you can take hold of the image and drag it
inside the frame.

When you release Ctr/, the current tool returns.

Chapter 5, Using the Bitmap editor 77

Painting freehand
lines: Pen tool

Erasing and
painting: Eraser
tool

Painting straight
lines: Line tool

Filling color
areas: Paint Can
tool r:;,

78

The Pen tool paints freehand lines one pel wide. To sketch with the Pen
tool, press a mouse button and drag the pointer across your image. When
you've finished sketching, release the mouse button. (To paint absolutely
straight lines, use the Line tool instead of the Pen.)

The Eraser tool can be used to erase the entire image, or it can be used as a
painting tool. Note that, for the Eraser, the color assignments to the mouse
buttons are the reverse of the other tools' assignments.

• If you double-click the Eraser tool icon in the Tools palette, the entire
image is replaced with the current right-button color (RB on the Colors
palette).

• If you drag with the left mouse button, the Eraser paints a line one pel
wide using the current right-button color (RB on the Colors palette).

• If you drag with the right mouse button, the Eraser paints a line one pel
wide using the current left-button color (LB on the Colors palette).

The Line tool paints straight lines. Press the mouse button and drag the
Line tool across your image. When you've finished painting the line, release
the mouse button.

To constrain the lines to 45-degree increments (horizontal, vertical, or
diagonal), hold down Shift as you paint.

The Paint Can tool floods an area of your image with a color.

To use the Paint Can, place its cross hair in the portion of the image you
want to fill and then click the left or right mouse button, depending on the
color you want. The Paint Can replaces the color under the pointer with the
selected color and fills out around that point until it meets a different color
or the image frame.

If you hold down the Shift key when you use the Paint Can, you replace all
instances of the color you click, contiguous or not.

Resource Workshop for OS/2 Users Guide

Painting
rectangles and
ellipses

The bottom three rows of the Tools palette contain tools for painting
rectangles, rounded rectangles, and ellipses. The tools in the left column
paint an outline only, using the current left-button or right-button color.
The tools in the right column paint a solid shape that uses the current left­
button or right-button color.

To paint a true square, rounded square, or circle, hold down the Shift key as
you drag with the mouse.

To use the rectangle, rounded rectangle, or ellipse tool,

1. Select the tool you want.

2. Imagine a rectangular frame enclosing the shape you're going to paint.

3. Place the pointer crosshair at one corner of the imagined frame, and
drag to the opposite corner.

If you're painting an ellipse or circle, note that your starting point is not
on the shape itself. That's why it's a good idea to picture the rectangular
frame first.

4. Release the mouse button when the shape is the way you want.

Working with images: the launch window

Adding an image

In addition to starting the Bitmap editor with the launch window (see page
70), you can use the launch window to add or delete images and create
custom images.

As noted previously, each bitmapped resource must include a device­
independent image, but you can also create other images, typically the
same design at a number of device-dependent resolutions or color schemes.

For example, you might create an icon for EGA and VGA resolutions and
also for a very high-resolution device. In that case, you would have four
images of the icon (the device-independent image and the three device­
dependent images), all saved as part of the one resource. It's also common
to create half-size images of icons and pointers for use as the system-menu
icon on a window's title bar or when you choose the small icon display in
the PM desktop.

To add a new image to an existing bitmapped resource,

1. Bring the launch window to the top, either by clicking it directly or by
double-clicking it in the Window List.

Chapter 5, Using the Bitmap editor 79

Deleting an image

Creating custom
images

2. Choose Icon/Pointer I New Image or Bitmap I New Image or press the
Ins key. Resource Workshop displays the New Image dialog box.

3. Double-click one of the preset image size and color format
combinations, or select an image format and click OK.

Resource Workshop opens a new instance of the Bitmap editor. The new
image is a copy (scaled, if necessary) of the most recently saved device­
independent image from the launch window. If you've made changes to the
device-independent image, but haven't saved them, they will not appear in
the new image.

To remove an image from a bitmapped resource,

1. Bring the launch window to the top, either by clicking it directly or by
double-clicking it in the Window List.

2. Select the image you want to delete and then do either of the following:

• Press the Del key or choose Icon/Pointer I Delete Image or Bitmap I
Delete Image .

• Choose Edit I Cut to cut the image to the Clipboard so you can paste it
elsewhere.

You can create custom images with special resolutions and color
capabilities. To create a custom image,

1. Bring the launch window to the top, either by clicking it directly or by
double-clicking it in the Window List.

2. Choose Icon/Pointer I New Image or Bitmap I New Image. Resource
Workshop displays the New Image dialog box.

3. The New Image dialog box contains a list of all the image formats you
can edit on the current device that don't already have images. If your
custom image is similar to one of these, you can click that one to use as
a starting point before moving to the next step.

4. Click the Edit button to display the Edit Image Type dialog box.

5. Fill out the Edit Image Type dialog box, as described in the next
sections, clicking OK when you finish.

.. When you finish, if the contents of the Edit Image Type dialog box exactly
match an existing image type, Resource Workshop won't create a new type.
At least one of the fields described in the following sections must differ
from existing types.

80 Resource Workshop for OS/2 Users Guide

Image Type
description

Nominal Image Size

Device Size

Device Resolution

This field contains the text description of the image type. It appears in the
title bar of the Bitmap editor window for that image, in the launch window,
and in the Window List.

You can enter a new description in this field, or you can select a description
from the list box and edit it.

The Image Type Description for each image of a given bitmapped resource
must be unique.

The Nominal Image Size is the width and height of the image in pels. For
example, for VGA screens the default Nominal Image Size for bitmaps,
icons, and pointers is 32x32 pels; for the 8514 display device it is 40x40 pels.

You should specify a Nominal Image Size that is proportionally
appropriate to the target device. The Info button in the New Image dialog
box provides this information for the current device.

The Device Size is the actual pel size of the target device-for example,
640x480 for a VGA or 1024x768 for an 8514, or OxO for a device-independent
image.

The Device Resolution is the number of vertical and horizontal pels per
meter on the target device.

If you're not sure of this value, you can set it to zero.

Extra items for icons and pointers

Using transparent
and inverted
colors

Icons and pointers in PM are functionally identical. This section describes
three tasks that are unique to icons and pointers.

• Using transparent and inverted colors
• Setting the pointer's hot spot
• Testing icons and pointers

The idea of a transparent or inverted color is unique to icon and pointer
resources.

• A transparent color" drops out" at run time, allowing whatever is
underneath the icon or pointer to show through. This is especially useful

Chapter 5, Using the Bitmap editor 81

Setting the
pointer's hot spot

Testing icons and
pOinters

82

in pointers, where you will typically not use the entire image area for the
pointer itself .

• Inverted colors cause whatever is underneath the icon or pointer to
"reverse" at run time.

For example, you could create an icon made of a black outline around two
rectangles, one of the transparent color and the other of the inverted color.
If you test the icon by dragging it over the color black in the Colors palette,
you'll see black in the transparent color part of the icon and white (the
inverse of black) in the inverted color part. If you drag the icon over the
blue in the Colors palette, you'll see blue and yellow, respectively.

The transparent color is the current desktop color set in the OS/2 System
Setup's color palette.

To use the transparent or inverted color, click it with the mouse to
designate it the left-button or right-button color.

Whatever its design, a pointer always "touches" the application's work
surface with a single pel. For example, if you look at some of the Bitmap
editor's tool pointers, you'll see a paint can, pen, or filled rectangle, each
with a crosshair of intersecting horizontal and vertical lines. The pointer's
hot spot is the single pel where the two lines intersect.

To set the hot spot, do the following:

1. If necessary, zoom in on the image so you can set the hot spot
accurately.

2. Choose Image I Set Hot Spot. The pointer becomes a crosshair in a circle.

3. Place the crosshair where you want the hot spot, and click.

After you set the hot spot, you can test it by choosing Image I Test. If you
set the hot spot at the top edge of the pointer, the test pointer will change to
the Pick Rectangle tool pointer as soon as you touch the menu bar. If you
set the hot spot at the bottom edge of the pointer, you will be able to move
almost the entire test pointer up into the menu bar. To end the pointer test,
click anywhere inside the Bitmap editor's workspace (not in the menu bar,
palettes, sidebar, or scroll bars).

Icons and pointers always have a hot spot. The default position for the hot
spot, if you don't explicitly set one, is the center of the image.

To test your icon or pointer, choose Image I Test. The Bitmap editor pointer
changes to the icon or pointer you've designed. Among other things, you
can test for the following:

Resource Workshop for OS/2 Users Guide

• The icon or pointer's general appearance

• How the Transparent and Inverted areas look over the Bitmap editor
window

II The behavior of the icon or pointer when it moves into the window's
sidebar, menu bar, or border

• The behavior of the hot spot (if any)

To end the icon/pointer test, click anywhere inside the Bitmap editor's
workspace (not in the menu bar, palettes, sidebar, or scroll bars).

Chapter 5, Using the Bitmap editor 83

84 Resource Workshop for OS/2 Users Guide

c H A p T E R

Using the Script editor

Other than bitmapped images and dialog boxes, OS/2 PM resources are
created and changed by editing resource scripts. A resource script is a text
file that defines one or more resources.

This chapter describes

II Using the resource script editor

II The syntax of a resource script

• Using each kind of resource script statement

6

Resource Workshop always edits some kinds of resources as scripts. These
resources are referred to as scripted resources:

II Accelerators iii Menus
II Association tables II Message tables
II Fonts • String tables
• Help tables and subtables II User-defined (custom)

resources

You can also define bitmapped and dialog template resources with scripts,
but you'll normally find it easier to use the visual editors in Resource
Workshop, especially for creating those resources. You'll probably edit
bitmap or dialog template scripts only to make changes to existing
resources.

Using the script editor

When to use the
script editor

This section describes when and how to use the script editor.

You can use the script editor to edit any resource by selecting the resource
in the project window and choosing the Resource I Edit As Text menu
command. When you choose a scripted resource from the project window
or add a scripted resource to the project, Resource Workshop always starts
the script editor for you.

Chapter 6, Using the Script editor 85

How to use the
script editor

The default
resource template

Closing the script
editor

The script editor is a standard text editor, with the same kind of editing
capabilities found in the OS/2 system editor. In addition to the ability to
edit resource files, you can compile the resource being edited by choosing
the Resource I Compile menu command.

Each script editor handles only a single resource. When you choose a
particular resource, Resource Workshop loads just the script for that one
resource into the script editor, even if that resource is part of a larger script
that contains many resources. When you close the script editor, Resource
Workshop updates the larger script with your changes.

For more details on using the Script editor, see "Using the internal Script
editor" on page 32.

When you start the script editor for a new resource, the editor contains a
blank template for the resource, consisting of a resource keyword, a
resource ID, and an empty BEGIN and END. For example, the template for
a new message table with an ID of 42 would look like this:

MESSAGETABLE 42
BEGIN
END

When you finish editing a resource script, close the script editor window.
Resource Workshop automatically updates the project.

Writing resource scripts

Resource
definition
statements

86

A resource script is a text file that consists of three kinds of items:

• Resource definition statements
• Resource compiler directives
• Comments

The majority of a resource script is made up of resource definition
statements. Each resource in the resource script is defined by a definition
statement, which has the following general syntax:

keyword resource_id [options]
BEGIN
items

END

Resource Workshop for OS/2 Users Guide

Table 6.1
Recognized resource

definition keywords

Resource
compiler
directives

Table 6.2
Supported resource
compiler directives

Comments

In this syntax, keyword is one of the resource key words listed in Table 6.1,
resource_id is either a numeric constant or an identifier, and options is
optional information specific to the type of resource being defined. items is
one or more items within the resource, such as menu items in a menu
resource or strings in a string table.

Keyword Resource type Page

ACCELTABLE Accelerator table 88
ASSOCTABLE File-association table 91
FONT Font 93
HELPITEM Help item 94
HELPSUBITEM Help subitem 96
HELPSUBTABLE Help subtable 95
HELPTABLE Help table 93
MENU Menu 97
MENUITEM Menu item 100
MESSAGETABLE Message table 102
PRESPARAMS Presentation parameters 103
RCDATA Custom resource 90
STRINGTABLE String table 104
SUBMENU Submenu 105

For examples of each keyword, see the alphabetical lookup section at the
end of this chapter.

Your resource script can include compiler directives, much like C++
preprocessor directives. The most commonly used directives are #include
and #define, which work just like their C++ counterparts, and rcinclude,
which includes another resource script. Table 6.2 lists all the supported
directives.

#define
#elif
#else

#endif
#error
#if

#ifdef
#ifndef
#inciude

#line
#pragma
#undef

Any line in the file that begins with an asterisk (*) is ignored by Resource
Workshop. You can insert comments anywhere in a script file.

Chapter 6, Using the Script editor 87

Resource script reference

For additional
information on the

scripted resources,
including specific PM

function and
message names, see

the Resource
Workshop Help.

The description of each resource provides the following information:

• A description of the resource type
• Its resource script syntax
• Descriptions of the script options or parameters
• A brief example of the resource script

In the syntax descriptions in the following sections, optional items are
enclosed in square brackets n. Items in uppercase letters (like ACCELTABLE)
must be entered exactly as given, although you can use lowercase letters.
Items in lowercase letters (like acctbl_id) are variables for which you
substitute a value.

Several of the scripted resources have load options (load_opts) and memory
options (mem_opts) in their syntax. The load and memory options are
described in Table 3.2 on page 37. These options are themselves optional. If
you don't explicitly specify an option, Resource Workshop automatically
assigns the default value, which is identified in the sections on the
individual resources.

Each resource must have a resource ID, which must be unique within each
resource type. For example, an ACCELTABLE resource and a MENU
resource could both have ID values of I, but you can't create two
ACCELTABLE resources with an ID value of 1.

Accelerator tables ACCELTABLE

88

The ACCELTABLE resource is a table of accelerators for your application.
Accelerators are keyboard combinations that serve as shortcuts for menu
commands, so the user doesn't have to display the menu and click the
command name. You can also create accelerator resources that define new
functions not available from your program's menus.

By default, an accelerator sends a WM_COMMAND message to the
application. Exceptions to this default are noted in Table 6.3.

Resource Workshop for OS/2 Users Guide

acctblJd

command

Table 6.3
Accelerator option

values

Accelerator tables

Syntax

ACCELTABLE acctbl_id [mem_opts]
BEGIN
key_val, command[, ace_opts]

END

The default memory option for the ACCELTABLE resource is MOVEABLE.

The accelerator table identifier, an integer ranging from 0 through 65535 or
a simple expression that produces a value in that range. The script file can
contain multiple ACCELTABLE resources, each of which must have a
unique acctbl_id value.

The character, scan, or virtual-key code for the accelerator key. You must
enter a single character in double quotation marks or a decimal or
hexadecimal integer ranging from 0 through 255. The entry in this field is
tied to the entry in the acc_opts field.

By default, the accelerator is assumed to be of type CHAR. If you enter an
integer, you must explicitly state the CHAR, SCANCODE, or
VIRTUALKEYoptions.

The identifier of the command to which the accelerator is linked. This value
must be an integer ranging from 0 through 65535 or a simple expression
that produces a value in that range.

This field defines the accelerator's type. You can combine most of the values
listed in Table 6.3. VIRTUALKEY, SCANCODE, and CHAR are mutually
exclusive, however, as are SYSCOMMAND and HELP.

Option

VIRTUALKEY

SCANCODE

CHAR

SHIFT

CONTROL

ALT

LONEKEY

SYSCOMMAND

HELP

Description

Identifies key-val as a virtual key code-a function key, for example.

Identifies key-val as a keyboard scan code.

Identifies key-val as a character code.

The accelerator combines key-val with the Shift key.

The accelerator combines key-val with the Ctrl key.

The accelerator combines key-val with the Altkey.

The accelerator uses only the key identified by key-val.

The accelerator causes the application to send a WM_SYSCOMMAND
message.

The accelerator causes the application to send a WM_HELP message.

Chapter 6, Using the Script editor 89

Accelerator tables

Example

ACCELTABLE 1
BEGIN
"0", rnenul_0pen, CONTROL
"S", rnenul_Save, CONTROL
"P", 101, ALT,
"Q", 102, CONTROL, ALT
"H", rnenul_Help, ALT, HELP
END

This accelerator table has the following characteristics:

• It has an ID value of 1 and uses the default memory option, MOVEABLE.

• The first two accelerators in the table-Ctr/+O (Open command) and Ctrl+S
(Save command)-are tied to their respective commands by the
identifiers menul_Open and menul_Save.

• The next two accelerators-Alt+P (Print command) and Ctrl+Alt+Q (Quit
command)-are tied to their commands by command ID numbers.

• The first four accelerators send a WM_COMMAND message to the
application.

• The last accelerator-Alt+H (Help command)-uses the identifier
menul_Help and sends a WM_HELP message to the application.

Custom resources RCDATA

rcdataJd

90

The RCDATA resource defines an application's custom resources, whose
format is entirely up to the application.

Syntax

RCDATA rcdata_id
BEGIN
rcdata_def, rcdata_def,

END

The RCDATA resource identifier, an integer ranging from a through 65535
or a simple expression that produces a value in that range. The script file
can contain multiple RCDATA resources, each of which must have a
unique rcdata_id value.

Resource Workshop for OS/2 Users Guide

Custom resources

The application-specific custom resource data, which can be a simple
expression or a string.

Example

RCDATA 12
BEGIN

"Veronica Manganese", "Victoria Wren", Botticelli
END

This RCDATA resource has an 1D value of 12. What happens to the data in
this resource is entirely up to the application.

File-association tables ASSOCTABLE

assoctbUd

The ASSOCTABLE resource creates a file-association table, which links data
files to applications that can edit them. When the user double-clicks a data
file or performs a drag-and-drop, PM automatically starts the associated
application and loads the selected file.

A file-association table can also associate icons with data files. All data files
of a given type must have the same unique icon.

The file associations are attached to the application's executable file. To
view an application's file associations, look at the Association page of the
executable file's Settings notebook.

Syntax

ASSOCTABLE assoctbl_id [load_opts] [mem_opts]
BEGIN

END

The default load option for the ASSOCT ABLE resource is LOADONCALL;
the default memory option is MOVEABLE.

The association table identifier, an integer ranging from 0 through 65535 or
a simple expression that produces a value in that range. The script file can
contain multiple ASSOCTABLE resources, each of which must have a
unique assoctbl_id value.

Chapter 6, Using the Script editor 91

File-association tables

assoc_name

exCattrJlag

Table 6.4
File-association table

extended attribute
flag values

iconJilename

92

The name of the file type the application recognizes. Valid characters must
be in the range from 1 through 255 and must be enclosed in double
quotation marks. To use quotation marks as a literal value in this field, use
quotation marks twice (" ").

The file-matching string of the type of data file the application creates.
Entries in this field must be enclosed in double quotation marks and can
use only valid OS/2 file name and extension characters, plus the question
mark (?) and asterisk (*) wildcard characters.

The following table describes the ASSOCTABLE resource's extended­
attribute options, which can be used in combination.

Option

EAF _DEFAUL TOWNER

EAF _REUSEICON

EAF_UNCHANGEABLE

Description

The application containing the file-association table starts when
the user selects any file matching the file_match_string field from
the File Manager.

The icon defined in the previous entry of the file-association table
is used as the icon for the current data file type.

The entry cannot be edited.

The name of the file containing the icon that represents all data files that
match the file_match_string field. The icon file must be in the current
directory.

Example

ASSOCTABLE 1492
BEGIN

"Borland Super Spreadsheet", "*.bss", EAF_DEFAULTOWNER, bss.ico
"Leafy Green Vegetable", "*.lgv", EAF_DEFAULTOWNER I EAF_REUSEICON

END

This example file-association table has an ID of 1492, and associates two
kinds of files with the application.

The first kind of file has either the file type "Borland Super Spreadsheet" or
an extension of .BSS. Files of that type have the icon defined in the file
BSS.ICO.

The second kind of file has either the file type "Leafy Green Vegetable" or
an extension of .LGV. Files of this type use the same icon already defined,
in this case, BSS.ICO.

Choosing either of those kinds of files starts the application.

Resource Workshop for OS/2 Users Guide

Fonts

fontJd

filename

Help tables

Fonts

FONT

The FONT resource references a font file containing one or more bitmapped
"characters." The characters in the font file are typically created with the
OS/2 Presentation Manager Font Editor. They can be text chara~ters or
images that are used in the application's user interface-for example, the
bitmaps that appear in the application's tool bar.

Syntax

FONT font_id [load_opts] [mem_opts] filename

The default load option for the FONT resource is LOADONCALL; the
default memory options are MOVEABLE and DISCARDABLE.

The font resource identifier, an integer ranging from 0 through 65535 or a
simple expression that produces a value in that range. Each font_id value in
the script file must be unique.

The name of the file containing the font resource. If the file is not in the
current directory, you must provide a full path.

Example

FONT 5 toolbar.fon

This FONT resource has a font_id value of 5, and the resource data is
contained in the file TOOLBAR.FON.

HELPTABLE

The HELPTABLE resource defines a help table, whose entries let the
application access requested help data for application windows, dialog
boxes, and message boxes.

An application can have multiple associated help files. The application
generates one or more help tables from its help files. The entries in the help
table point to further entries in a help sub table, which in turn point to the
actual help text.

Chapter 6, Using the SCript editor 93

Help tables

helptbUd

Help items

94

Syntax

HELPTABLE helptbl_id
BEGIN

END

The help table identifier, an integer ranging from 0 through 65535 or a
simple expression that produces a value in that range. The script file can
contain multiple HELPT ABLE resources, each of which must have a unique
helptbl_id value.

The HELPITEM definition. See the definition of help items starting on
page 94.

Example

HELPTABLE 1
BEGIN

END

HELPITEM IDWIN_FILEMENU, IDSUB_FILEMENU, IDEXT_APPHLP
HELPITEM I DWIN_EDITMENU, IDSUB_EDITMENU, IDEXT_APPHLP

This help table's resource ID is I, and it contains two help items.

The first HELPITEM statement contains the identifier (IDWIN_FILEMENU)
of an application window for which help is available. The second entry is
the identifier (IDSUB_FILEMENU) of the help subtable for that application
window. The last entry is the identifier (IDEXT_APPHLP) of the extended
help panel for that application window.

The second HELP ITEM statement contains identifiers for another
application window and help subtable. Note, however, that both help items
share the same extended help panel.

HELPITEM

The HELPITEM statement, which is permitted only in a HELPT ABLE
resource, defines the help items in a help table.

A help table can contain multiple HELP ITEM statements. There should be a
HELPITEM statement for each application window with associated help
data.

Resource Workshop for OS/2 Users Guide

app_winjd

help_subtbljd

ext_ hpaneljd

Help subtables

helpsubtbljd

SUBITEMSIZE

Help items

Syntax

The resource ID of an application window with associated help data.

The resource ID of the help subtable for the application window identified
by app _ win_id. Help subtables are described starting on page 96.

The resource ID of the extended help panel for the application window
identified by app _ win_id.

Example

For examples of help items, see the example under Help Tables on page 94.

HELPSUBTABLE

The HELP SUB TABLE resource defines a help subtable, which contains
entries for each item in the application window (control, child window, or
menu item) for which help is available.

Each item in the help sub table is a child window of the application window
named in a HELPITEM statement in the HELPT ABLE resource.

Syntax

HELPSUBTABLE helpsubtbl_id
[SUBITEMSIZE size]
BEGIN
helpsubitem_def

END

The help sub table identifier, an integer ranging from a through 65535 or a
simple expression that produces a value in that range. The script file can
contain multiple HELPSUBTABLE resources, each of which must have a
unique helpsubtbl_id value.

As noted in the section on the HELPSUBITEM statement, the default (and
minimum) size for help subitems is two words. If you don't use the default,
you must specify the size in words of your help subitems.

Chapter 6, Using the Script editor 95

Help subtables

helpsubitem_def

Help subitems

96

The HELPSUBITEM definition. Help subitems are described beginning on
page 96.

Example

HELPSUBTABLE IDSUB_FILEMENU
BEGIN

END

HELPSUBITEM I DCLD_OPEN, IDPNL_OPEN
HELPSUBITEM IDCLD_SAVE, IDPNL_SAVE

HELPSUBTABLE IDSUB_EDITMENU
SUBITEMSIZE 3
BEGIN

HELPSUBITEM IDCLD_CUT, I DPNL_CUT, 5
HELPSUBITEM IDCLD_COPY, IDPNL_COPY, 6

END

This example illustrates what the two help subtables in the HELPT ABLE
example might look like.

The first help sub table has the ID value IDSUB_FILEMENU, which ties it to
the first HELP ITEM in the help table. The parent window is the File menu,
and the child windows are the Open and Save commands.

The second help subtable has the ID value IDSUB_EDITMENU, which ties
it to the second HELPITEM in the help table. The parent window is the Edit
menu, and the child windows are the Cut and Copy commands. This help
sub tab Ie doesn't use the default help subitem size, so the size of 3 words is
explicitly stated with the SUBITEMSIZE statement. The meaning of the
third word in each subitem (5 and 6 in this case) is defined by your
application.

HELPSUBITEM

The HELPSUBITEM statement, which is permitted only in a
HELPSUBTABLE resource, defines the help subitems in a help subtable.

A help subtable can contain multiple HELPSUBITEM statements. There
should be a HELPSUBITEM statement for each child window with
associated help data.

Resource Workshop for OS/2 Users Guide

chiLwinJd

helppanelJd

integer

Menus

Figure 6.1
New Menu dialog box

Help subitems

Syntax

HELPSUBITEM child_win_id, helppanel_id [, integer]

The resource ID of a child window with associated help data.

The resource ID of the help panel for the child window identified by
child_ win_id.

Optional, application-defined integers. If you use this value, you must also
use the SUBITEMSIZE statement to give the size, in words, of the help
subitems in this HELPSUBT ABLE resource.

Example

For examples of help subitems, see the example under Help Subtables on
page 96.

MENU

The MENU resource defines the contents of a menu, which lists the
application's commands. Choosing the MENU resource differs from the
other scripted resources because it doesn't immediately start the text editor.
Instead, Resource Workshop displays the New Menu dialog box.

Ffle ... E dit. .. Help

@$t~~~~r4m~~~,,~~f;
Item . .ltem . .ltem

o Popup menu
Popup"ltem

GI Simple menu

As Figure 6.1 shows, the New Menu dialog box contains radio buttons for
three options:

Chapter 6, Using the Script editor 97

Menus

menuJd

98

• Standard Menu Bar
• Popup Menu
• Simple Menu

Each option starts the text editor with a different menu resource script
template loaded.

• The Standard Menu Bar template contains a complete script for a menu
bar with standard File, Edit, and Help menus.

• The Popup Menu option contains the template for the script of a popup
menu, one that isn't tied to a menu bar. Popup menus can be displayed
inside a window, on the desktop, or from the title-bar icon of a window.
To display a popup menu, the user clicks the right mouse button.

The script for each popup menu must be saved as a separate resource in
-.. your project file.

• The Simple Menu option contains the template for the script of a menu
that is tied to the menu bar. It contains generic text strings for the menu
bar title and a single menu command. You can use this template as the
starting point for a menu resource or to paste into an existing script.

The remainder of this section describes the components of the MENU
resource.

Syntax

MENU menu_id [load_opts] [mem_opts]
BEGIN
menuitem_def

END

The default load option for a MENU resource is LOADONCALL; the
default memory options are MOVEABLE and DISCARDABLE.

The menu identifier, an integer ranging from 0 through 65535 or asimple
expression that produces a value in that range. The script file can contain
multiple MENU resources, each of which must have a unique menu_id
value.

The definition of the individual menu items, which can be SUBMENU,
MENUITEM, or PRESP ARAMS statements. These statements are described
in the next three sections.

Resource VVorkshop for OS/2 Users Guide

Example

MENU main_menu
BEGIN

END

SUBMENU "-File", appmen_File
BEGIN

END

MENUITEM "-New\tCtrltN", appmen_File_New
MENUITEM "-Open\tCtrltO", appmen_File_Open
MENUITEM SEPARATOR
MENUITEM "-Save\tCtrltS", appmen_File_Save
MENUITEM "Save -as\tCtrltA", appmen_File_Saveas
MENUITEM SEPARATOR
SUBMENU "Set -destination", appmen_File_Setdest
BEGIN

END

MENU ITEM "Set the destination", MIS_STATIC
MENUITEM "for all file activities", MIS_STATIC
MENU ITEM SEPARATOR
MENUITEM "-Local\tAlttL", setdest_local, MIA_CHECKED
MENU ITEM "-Network\tAlttN", setdest~net

MENUITEM SEPARATOR
MENUITEM "-Help\tFl", MIS_HELP

SUBMENU "-Edit", appmen_Edit
BEGIN

END

MENUITEM "Cu-t\tShifttDel", appmen_Edit_Cut
MENUITEM "-Copt\tCtrltIns", appmen_Edit_Copy
MENUITEM "-Paste\tShifttIns", appmen_Edit_Paste

Menus

This MENU resource script defines a main menu bar with two submenus,
File and Edit. Note the following about this MENU resource script:

Ell The identifier names for the MENU resource, SUBMENU statements, and
the individual MENUITEM statements.

El1 The tilde in each menu item (including the SUBMENU statements)
marking the mnemonic characters.

II The character (\ t) that tabs the accelerators to the right of the command
text.

iii The MENUITEM SEPARATOR statements that separate the File menu
into logical divisions.

Io\l The first two lines of the Set Destination submenu. Because they're
instructional and shouldn't be chosen, they have the MIS_STATIC style.

Chapter 6, Using the Script editor 99

Menus

Menu items

text

menuitemJd

100

The Local menu item has the attribute MIA_CHECKED. It will be
checked when the submenu is first displayed.

• The Help command menu item. It has the style MIS_HELP, which causes
it to send a WM_HELP message. All other menu items send a
WM_COMMAND message.

MENUITEM

The MENUITEM statement contains the command names and accelerators
(if any) that appear in menus, plus the menu item's identifier. The
MENUITEM statement can appear only within a MENU or SUBMENU
statement.

Unless otherwise specified (see the descriptions of the menuitem_style
options), a MENUITEM statement sends a WM_COMMAND message to
the menu's owner window.

Syntax

MENUITEM text, menuitem_id, menuitem_style, menuitem_attr

The MENUITEM text, which is typically the command text, must be
enclosed in double quotation marks. To use quotation marks as a literal
character, enter them twice (" ").

MENUITEM text uses the following special characters:

• A \ t character inserts a tab, forcing all trailing text to the right. All tabbed
text is left-aligned. The \ t character is commonly used to separate the
command text from its accelerator.

• A \a character right-aligns all trailing text.

• A tilde (---) causes the character immediately following to be underlined,
indicating that it is a mnemonic for the command in which it appears. To
display a menu, the user presses the Aft key in combination with the
mnemonic key. To choose a command, the user presses the mnemonic
key alone.

If the menuitem_style value is MIS_BITMAP (see Table 6.5), the text field
must contain a bitmap identifier that has been defined previously with a
BITMAP statement. The identifier must be preceded by a \ b character and
must be enclosed in double quotation marks.

The menu item identifier, an integer ranging from a through 65535 or a
simple expression that produces a value in that range. The script file can

Resource Workshop for OS/2 Users Guide

menuitem_style

Table 6.5
menuitem_style

options

Menu items

contain multiple MENUITEM statements, each of which must have a
unique menuitem_id value.

These options specify the style of the menu item. By default, a menu item is
of type MIS_TEXT.

Option

MIS_BREAKSEPARATOR

MIS_BUTTONSEPARATOR

MIS_HELP

MIS_OWNERDRAW

MIS_SEPARATOR

MIS_STATIC

MIS_SUBMENU

MIS_SYSCOMMAND

MIS_TEXT

Description

The text field contains a bitmap identifier. See the
description of the text field.

Causes a pull-down menu to have multiple columns of
items or a top-level menu to have multiple lines of menus.

Draws a vertical line between the columns of a pull-down
menu.

The user can choose menu items only with the mouse.
Menu item text is centered.

The menu item sends a WM_HELP message.

The menu item is drawn by the owner window.

The menu item is a menu separator. You must provide
something for the text and menuitemjd fields, although
the system ignores it. Instead of using this style, you can
use the MENUITEM SEPARATOR statement, which is
described after this table.

The menu item is static text. The user can't choose it.

The menu item is treated as if it were a SUBMENU
statement. The syntax for this item is the same as for a
SUBMENU statement, including BEGIN and END clauses
and optional PRESPARAMS after the BEGIN clause.

The menu item sends a WM_SYSCOMMAND message.

The text field contains a character string.

-.. Instead of using the MIS_SEP ARA TOR style, you can use the MENUITEM
SEP ARA TOR statem~nt. This statement inserts a horizontal dividing line
into the menu. The MENUITEM SEP ARA TOR statement has no associated
text or menuitem_id value.

You can assign any combination of the following attributes to your menu
items.

Chapter 6, Using the Script editor 101

Menu items

Table 6.6
menu item attr

options

Message tables

Option

MIA_CHECKED

MIA_DISABLED

MIA_FRAMED

MIA_HILITED

MIA_NODISMISS

Example

Description

A check mark appears next to the menu item text.

The menu item is initially disabled. The user can't choose the item until
the application enables it.

Draws a frame (a heavy border) around the menu item.

The menu item is highlighted (displayed in reverse colors) when first
displayed.

The menu item or submenu continues to be displayed after the user has
chosen an item.

For examples of menu items, see the example under Menus on page 99.

MESSAGETABLE

The MESSAGETABLE resource provides one means of storing string data
in your application. (The other, the string table, is more commonly used.)
String data can appear virtually anywhere in an application, but it is most
frequently used in status lines and error messages.

The message table data can be loaded with the DosGetResource or
DosGetResource2 function with the RT_MESSAGE resource type.

Syntax

stringJd

102

MESSAGETABLE [load_opts] [mem_opts]
BEGIN
string_id string_def

END

The default load option for the MESSAGET ABLE resource is
LOADONCALL; the default memory options are MOVEABLE and
DISCARDABLE.

The string identifier, an integer ranging from 0 through 65535 or a simple
expression that produces a value in that range. The string_id can be given
in decimal or hexadecimal form, and each value in the script file must be
unique.

Resource Workshop for OS/2 Users Guide

Message tables

The string_def contains the character string and must be enclosed in double
quotation marks. To use quotation marks as a literal character, enter them
twice (" "). You can make character strings continue over additional lines in
either of these ways:

• By terminating each line, except the last, with a backslash (\) .

• By terminating each line with double quotes and then beginning the next
line with double quotes.

Example

MESSAGETABLE
BEGIN

END

1 "Watch this space"
2 "You can lead a horse to water,\

but you can't make him dance."
"If something doesn't happen soon"
ore-boot your system."

Note the string_id values preceding the string text. The second and third
strings illustrate the two ways of creating multiline messages.

Presentation parameters PRESPARAMS

The PRESP ARAMS statement inserts presentation parameters that determine
how the menu item (or items) appear when displayed. The PRESPARAMS
statement should be entered immediately following the BEGIN statement
and remains in effect until it encounters the matching END statement.

Syntax

PRESPARAMS presparam, value, presparam, value, ...

The presparam field contains a presentation-field type, and the value field
contains a presentation-field value.

In the following example,

BEGIN

END

PRESPARAMS PP_FONTNAMESIZE, "10.Helv"
MENUITEM "Go", 100

Chapter 6, Using the Script editor 103

Presentation parameters

String tables

stringJd

104

the PRESPARAMS statement causes the menu item Go to be displayed in
la-point Helvetica type.

For a complete description of the PRESP ARAMS statement, see the
Resource Workshop Help.

STRINGTABLE

The STRING TABLE resource is, compared to the MESSAGET ABLE
resource, the more commonly used means of storing string data in your
application. String data can appear virtually anywhere in an application,
but it is perhaps most frequently used in status lines and error messages.

The string table data can be loaded with the WinLoadString function.

Syntax

STRINGTABLE [load_opts] [mem_opts]
BEGIN

END

The default load option for the STRINGT ABLE resource is LOADONCALL;
the default memory options are MOVEABLE and DISCARDABLE.

The string identifier, an integer ranging from a through 65535 or a simple
expression that produces a value in that range. The string_id can be given
in decimal or hexadecimal form, and each value in the script file must be
unique.

The string_def contains the character string and must be enclosed in double
quotation marks. To use quotation marks as a literal character, enter them
twice (" "). You can make character strings continue over additional lines in
either of these ways:

• By terminating each line, except the last, with a backslash (\) .

• By terminating each line with double quotes and then beginning the next
line with double quotes.

Example

#define str_watch 1
#define str_horse 2

Resource Workshop for OS/2 Users Guide

Submenus

text

submenuJd

menuitem_styl

#define str_crash 3

STRINGTABLE
BEGIN

END

str_watch "Watch this space"
str_horse "You can lead a horse to water, \

but you can't make him dance."
str_crash "If something doesn't happen soon"

"re-boot your system."

String tables

The #defines for this STRINGTABLE resource are kept in the project's
identifier file.

Note the string identifier names preceding the string text. The second and
third strings illustrate the two ways of creating multiline messages.

SUBMENU

The SUBMENU statement causes a menu name to appear in the menu bar
(a top-level menu) or a menu to be displayed from within a menu (a cascaded
menu).

Syntax

SUBMENU text, submenu_id, menuitem_style
BEGIN
menuitem_def

END

For a description of the menu items within a submenu (menuitem_def), see
the entry for menu items, starting on page 94.

The SUBMENU text, which is the name of the top-level or cascaded menu,
must be enclosed in double quotation marks. To use quotation marks as a
literal character, enter them twice (" "). You can also use a tilde to indicate
the mnemonic character. (See page 100.)

The submenu identifier, an integer ranging from a through 65535 or a
simple expression that produces a value in that range. The script file can
contain multiple SUBMENU statements, each of which must have a unique
submenu_id value.

The menuitem_style options are described in Table 6.5.

Chapter 6, Using the Script editor 105

106 Resource Workshop for OS/2 Users Guide

A p p E N D x

Technical notes

This appendix contains technical information on the differences between
Resource Workshop and the IBM Resource Compiler.

Compiler differences

A

The Resource Workshop resource compiler is almost completely IBM­
compatible and is significantly enhanced over the IBM Resource Compiler
in a number of ways.

The following features are improvements over the IBM compiler:

III The Resource Workshop compiler allows text descriptions of bitmapped
resources (icons, pointers, bitmaps, and fonts), while the IBM compiler
does not. The text descriptions are written using the resource script
language documented in Resource Workshop's online help system.

(iii The Resource Workshop compiler supports numeric constant expressions
for every numeric field, while the IBM compiler doesn't. For example, the
following statement is correctly interpreted in Resource Workshop, but
causes an error with the IBM compiler:

POINTER 20 + 20 - 20 foo.ptr

Resource Workshop interprets this line as defining a POINTER resource
with an ID of 20 contained in the file FOO.PTR. The IBM compiler would
attempt to parse this line as a resource type POINTER with ID 20
contained in the file +.

Ell Resource Workshop has added a new fundamental data type, the
hexstring. This data type consists of a variable number of hexadecimal
digits that describe data bytes, surrounded by single quotation marks.
You can also insert spaces for clarity; the compiler ignores them. This
new type makes it easier for users to enter hex data. For example, the
following hexstring represents a 5-byte hexadecimal number:

Appendix A, T echnica/ notes

, 010AOBOcOE'. You could also represent this number as follows:
'01 OA OB Oc OE'.

107

Numbers with
leading zeros

#undef
preprocessor
directive

108

• The Resource Workshop compiler supports references to files in
RCDATA resources as well as in user-defined resources. Support of file
references removes the only distinction between user-defined resources
and RCDATA resources. If you use the IBM resource compiler to compile
an RCDATA resource that contains a file reference, you'll get a syntax
error.

Note, however, that the IBM Resource Compiler and Resource Workshop
are incompatible in the following areas:

• Interpretation of numbers with leading zeros
• The #undef preprocessor directive
• Preprocessor token pasting
• Expressions in resources IDs and resource type IDs
• Complex constant expressions
• Floating opera tors in expressions
• Missing operators -in expressions
• Macros in include directives

Because of inconsistencies in the IBM Resource Compiler's treatment of
numbers with leading zeros, don't use them in preprocessor expressions or
identifiers. The Resource Workshop compiler is consistent in interpreting
any numeric constant preceded by a zero and used as part of an identifier
or a preprocessor expression as an octal number. However, the IBM
Resource Compiler interprets numbers with leading zeros in preprocessor
expressions as octal numbers, but interprets the same numbers in
identifiers as decimal numbers.

For example, the IBM Resource Compiler would interpret the expression
010+1 as a 9 in the following preprocessor expression, but as an 11 in the
string table identifier.

#if (9 == 010+1)
STRINGTABLE
BEGIN

010+1, "Bug"
END

#endif

Resource Workshop has limited support for the #undef preprocessor
directive. You can use it only with #defines that are not referenced by a
resource. If you use #undef with a #define that's a resource identifier, you
get a fatal compiler error when compiling the RC file under Resource
Workshop.

Resource Workshop for OS/2 Users Guide

Token pasting

Expressions in
resource IDs and
resource type IDs

Complex constant
expressions

Floating operators
in expressions

Resource Workshop does not support token pasting in preprocessor
statement~. See the Borland C++ Programmer's Guide for more information
on token pasting.

Resource Workshop supports expressions in resource IDs; the IBM
Resource Compiler does not. For example, the following statement
compiles correctly using Resource Workshop, but fails using the IBM
Resource Compiler:

BITMAP 101 + 1000 vga.bmp

The IBM Resource Compiler parses "101" as a resource ID, "+" as a file
name, and then fails. Resource Workshop correctly emits a bitmap resource
with an ID equal to 1101.

Resource Workshop supports full C-language constant expressions in place
of a simple number anywhere in a resource script where a number is
allowed. The IBM Resource Compiler supports only simple expressions.
For example, the following expression is correctly evaluated by Resource
Workshop, but fails using the IBM Resource Compiler:

3 * (1 + 2) - 1

The most common example of this incompatibility is often seen in ICON
statements in DIALOG templates. The following statement causes an error
in Resource Workshop, but not in the IBM Resource Compiler:

ICON 3 -1, 10, 10, 0, 0

Resource Workshop interprets "3 -1" as an expression that evaluates to 2.
The IBM Resource compiler interprets "3 -1" as two separate fields. If you
add a comma after the first number, both compilers interpret the statement
correctly:

ICON 3, -1, 10, 10, 0, 0

Resource Workshop's expression parser does not allow "floating" operators
in constant expressions; the IBM Resource Compiler does. For example, the
following expression is flagged as an error in Resource Workshop:

WS_SYSMENU I WS_CAPTION I

To correct the error, remove the last bitwise OR operator:

Appendix A, Technical notes 109

Missing operators
in expressions

Macros in include
directives

110

Resource Workshop's expression parser requires that all operators required
for an expression be present. The IBM Resource Compiler assumes that a
missing operator is a bitwise OR operator. For example, the following
expression is flagged as an error in Resource Workshop:

WS_SYSMENU WS_CAPTION

To correct the error, add the bitwise OR operator:

WS_SYSMENU I WS_CAPTION

Resource Workshop doesn't support macro expansion in include directives.
For example, the following fragment causes a compile error:

#define MYFILE "afile.h"
#include MYFILE

Resource VVorkshop for OS/2 Users Guide

A p p E N D x

Borland PM Custom Controls

The Borland PM Custom Controls (BPMCC) library contains a custom
dialog class and a set of custom dialog controls (buttons, check boxes,
group shading boxes, and the like). BPMCC adds to the visual impact of
your dialog boxes and optimizes their functionality.

Two of the online files included with Resource Workshop provide
additional information about BPMCC:

• BPMCCAPLRW provides technical information about the BPMCC
application program interface.

• BPMCCSTYL.RW provides some style suggestions for designing
Borland-style dialog boxes.

Using the Borland custom dialog class

B

The custom dialog class, BORDLG, works on both a visual and a functional

\

level:

• It improves the appearance of your dialog window by painting the
background with a brush that varies according to the target display

,) device. For screens of VGA and higher resolution, the background is a
fine grid of perpendicular white lines, giving the effect of "chiseled
steel." For EGA and monochrome screens, the background is white.

• It optimizes the drawing of dialog boxes by calling the custom control
drawing routines directly instead of waiting for PM to paint the controls.
This eliminates the typically sluggish drawing of dialog boxes.

To use the custom dialog class,

1. Open the dialog resource you want to convert.

2. Double-click the title bar of the dialog to display the Frame Style dialog
box.

3. Enter "bordlg" as the Class and click OK.

Appendix B, Borland PM Custom Controls 111

Using Borland controls

112

Borland controls add a three-dimensional effect to yopr dialog boxes and
give them more visual impact. To the end-user, they appear to function in
the same manner as the standard PM controls, although they include
several technical enhancements (described later).

The following figure shows a dialog box converted to BPMCC. It uses
several Borland controls.

Figure B.1 Borland Borland
check boxes Dialog box with radio buttons

Borland controls

,
.. "' ... -." '",-

"'-.

II

III

Background

----------,:---:-Group shade

I-----·-----·-------,-·ii-Horizontal dip

Borland
push buttons

The following list briefly describes each Borland control and shows its
corresponding tool icon. As with standard PM controls, you can insert
Borland controls in your dialogs by picking them from the Tools palette in
the Dialog editor.

The description of each control includes its class. To see the class and other
settings of any of these controls, display the Generic Control Style dialog
box by holding down the etrl key and double-clicking on the control.

Group shade A shaded rectangular box that groups other controls
visually. It can appear recessed into the dialog box or
raised above its surface. Its class is BorShade.

Horizontal dip A horizontal dividing line that gives the impression of
being etched into the surface of the dialog box. (You can
convert a dip to a bump that appears to be raised above the
surface of the dialog box.) Its class is BorShade.

Vertical dip Same as horizontal dip, except it's vertical. Its class is
BorShade.

Resource Workshop for OS/2 Users Guide

101

~I

Button and
check box
enchancements

Borland
push button

Borland
radio button

Borland
check box

A family of push buttons with symbols that have
high visual impact, plus an owner-draw option. The
Borland push buttons are larger than most standard PM
push buttons. Their class is BorBtn.

A raised, diamond-shaped radio button. When
the button is clicked, a black diamond appears in its center
and the button shading reverses, giving the impression
that the button has been pushed down. There is also an
owner-draw option. Its class is BorRadio.

A raised check box that displays a check mark
instead of an "X." There is also an owner-draw option. Its
class is BorCheck.

The Borland push buttons, radio buttons, and check boxes have the
following functional enhancements over standard PM controls:

• An additional level of parent window notification and control over
keyboard focus and tab movement. If you choose the Parent Notify
option in the control's style dialog box, the control sends the appropriate
messages from the following list at run time:

• BBN_SETFOCUS indicates to the parent window that the push button,
radio button, or check box has gained keyboard focus through an
action other than a mouse click.

• BBN_SETFOCUSMOUSE indicates to the parent window that the push
button, radio button, or check box has gained keyboard focus through
a mouse click.

• BBN_GOTATAB indicates to the parent window that the user has
pressed the Tab key while the push button, radio button, or check box
has keyboard focus. The parent can intervene in the processing of the
keystroke by returning a nonzero value.

• BBN_GOTABTAB indicates to the parent window that the user has
pressed Shift-Tab (back-tab) while the push button, radio button, or
check box has keyboard focus. The parent can intervene in the
processing of the keystroke by returning a nonzero value .

• An owner-draw option that allows the parent window to draw the push
button, radio button, or check box. Because your application handles
drawing the control, it won't necessarily look like a Borland control, but
it will have the standard behavior of that class of control.

Appendix B, Borland PM Custom Controls 113

Using the BPMCC
style dialog boxes

Borland Button
Style dialog box

Table B.1
Predefined BPMCC

button controls

114

Four dialog boxes set the style of the BPMCC controls:

• Borland Button Style
• Borland Radio Button Style
• Borland Check Box Style
• Borland Shade Style

To display one of the Style dialog boxes, double-click on the control whose
style you want to set.

Each has a control window for entering a caption and a control ID. The
button style, radio button style, and check box style dialog boxes have
Attributes options for Tab Stop, Disabled, Group, Visible, and Border, as
well as Parent Notify and Owner Draw (described earlier in this appendix).

The next four sections describe the features unique to each of the style
dialog boxes.

This dialog box lets you choose from the three button types: Pushbutton,
Defpushbutton, and Bitmap.

Pushbutton and Defpushbutton
By default, Pushbutton is the selected option. A Defpushbutton has a bold
border to identify it to the end-user as the default button, which is executed
when the user presses the Enter key.

When you first place a Borland button in your dialog box, it takes the next
available control ID~ To change the button to one of the standard Borland
buttons, change the control ID to one of the preset values in the following
table:

10 value Type Image

1 OK Green check mark
2 Cancel Red X
3 Abort Panic button
4 Retry Slot machine
5 Ignore 55 mph speed-limit sign
6 Yes Green check mark
7 No Red circle and slash
8 Enter Green check mark

998 Help Blue question mark

Resource Workshop for OS/2 Users Guide

The bitmap won't
display in the Dialog
editor until you close

the Bitmap Editor.

Table B.2
Bitmap offsets

Borland Radio
Button Style dialog
box

Borland Check Box
Style dialog box

Bitmap
If you choose the Bitmap option, you can insert a bitmap image (based on
its control ID) into the button. To read in a bitmap:

1. Switch to the Bitmap Editor and create a bitmap image. (See Chapter 5
for information about creating bitmaps.)

2. In the Bitmap Editor, choose Resource I Rename to display the Rename
Resource dialog box and then do either of the following:

II In the New Name text box, enter an integer value that equals the
control ID of the button plus the appropriate offset from Table B.2 .

• Rename the bitmap and then assign it an identifier whose value
equals the control ID of the button plus the appropriate offset from
Table B.2. (Creating identifiers is described in Chapter 3.)

3. Close the Bitmap Editor.

4. Return to the Dialog Editor. If the bitmap doesn't immediately appear in
the BPMCC button, resize the button. The bitmap should then appear.

Offset for Offset for
Button state VGAlhigher EGAImonochrome

Standard 1000 2000
Pressed 3000 4000
Keyboard focus 5000 6000

For example, to display the keyboard focus bitmap for a button whose
control ID is 276, enter 5276 for a VGA system or 6276 for an EGA system.

This dialog box lists two button styles:

II!! Radio button. Highlighting and deselection don't happen automatically.
The application must call the CheckRadioButton function to send a
BM_SETCHECK message to highlight the selected button and deselect
the other buttons.

1'1 Auto radio button. BPMCC and PM combine to handle highlighting the
selected button and deselecting the other buttons. This is the default
option.

This dialog box lists four check box styles:

II Check box. The box is not checked automatically. The application must
call the CheckDlgButton function to send a BM_SETCHECK message to
check the selected box.

Appendix B, Borland PM Custom Controls 115

Borland Shade Style
dialog box

• Auto check box. BPMCC and PM combine to handle checking the selected
box. This is the default option.

• 3-state. The box is not checked automatically. The application must call
the CheckDlgButton function to send a BM_SETCHECK message to
check the selected box.

The button's three states are on, off, and "indeterminate," which is
displayed as a checkerboard pattern. The application determines what is
meant by "indeterminate."

• Auto 3-state. BPMCC and PM combine to handle checking the selected
box.

This dialog box sets the style for controls you add with any of these three
tools: Group Shade, Horizontal Dip, and Vertical Dip. Using the Shade
Style radio buttons, you can make the following conversions:

• Group Shade to Raised Shade. Group shades and raised shades are used to
enclose controls with related functions-like radio buttons and check
boxes. Group shades appear recessed below the surface of the dialog box;
raised shades appear raised above the surface.

• Horizontal Dip to Horizontal Bump, Vertical Dip to Vertical Bump. Dips are
intended to act as separators in the dialog box background or in raised
shades; bumps are intended as separators in recessed gray shade boxes.

Borland Static Text Use this dialog box to enter the text and set attributes and control style for
Style dialog box \ Borland static text.

\'e' In addition to the standard attributes (Disabled, Group, and Visible), static
text has two additional attributes.

• When the Border option is checked, the static text is surrounded by a
standard PM border that uses the current color for the Window Frame
(see the Windows Control Panel).

• When the No Underline option is checked, an ampersand (&) appears as
a literal character, instead of underlining the next character.

Modifying existing applications for BPMCC

116

Resource Workshop lets you modify existing PM applications with
Borland-style custom controls (3D buttons, dialog boxes with the "chiseled
steel" look, and so on).

Resource Workshop for OS/2 Users Guide

Using SPMCC in C
and C++ programs

Tips on editing
resources

The easiest way to use BPMCC is to click on the BPMCC icon provided on
by the PM.

If you don't use the BWCC icon, you must do all of the following:

II Add a #include for BPMCC.H to your .C or .CPP file.

III Link the BPMCC.LIB to your C or C++ files and libraries.

This section discusses considerations to keep in mind when editing
resources of existing applications.

III Accelerators If you add an accelerator, make sure it returns the same ID
value as its corresponding menu command. If you don't, the accelerator
will either execute the wrong command or do nothing.

til Bitmaps, cursors, and icons You can modify existing bitmaps, cursors,
and icons. Don't delete bitmaps, cursors, or icons, and don't try to add
new ones. In most cases the application won't be able to use them .

.. Dialog boxes You can reposition items in a dialog box and convert
controls to their Borland custom control counterparts. As you edit, be
sure not to change the type of control associated with each control ID
value. For example, if control ID 100 is a check box, don't change it to a
radio button, because the application will still treat it as a check box.

In most cases you can remove controls that aren't directly tied to the
application's functionality. For example, you can usually remove a
caption, a static text item that has no effect on how the application works.
Don't remove an edit control; it does affect how the application works.
Don't add new controls; the application won't be able to use them.

EI Menus With most applications, you can safely move commands within a
menu. Don't, however, move commands from one menu to another. (For
example, don't move the Open command from the File menu to the Edit
menu.) If you do, the application might be unable to display context­
sensitive Help or to check or uncheck the menu commands. Never
change the order of the menus in the menu bar. For example, if File is the
first menu, don't make it the second .

.. String tables Use caution when editing existing string tables. Some
programs load the strings into buffers of fixed size, and adding text to an
existing string could cause the buffer to overflow. Don't add new strings;
the application won't be able to use them.

Appendix B, Borland PM Custom Controls 117

118 Resource Workshop for OS/2 Users Guide

Index

-, backup file symbol 18

A
accelerator tables 88-90

example 90
accelerators

tips and restrictions 117
accelerators, defined 12
ACCELTABLE statement 88-90
active window pane, Bitmap editor 71
Add File to Project dialog box 35
Add to Project command 34
adding identifiers 40-41
AI~gn On Segment Boundary memory option 37
AlIgn palette, Dialog editor 55-56
alignment indicator 51
applications

existing, modifying for BPMCC 116-117
Array command 57
arrays of controls 51
association tables See file-association tables
ASSOCTABLE statement 91-92
attributes

basic 57
controls 57-59

Auto 3-state check box (BPMCC) 116
Auto check box (BPMCC) 116
Auto radio button (BPMCC) 115

8
backup files 18
basic attributes 57
BB in Colors palette 68
BBN_GOTABTAB message 113
BBN_ GOTATAB message 113
BBN_SETFOCUS message 113
BBN_SETFOCUSMOUSE message 113
binding resources 16
Bitmap editor 67-83

active window pane 71
BB in Colors palette 68

Index

colors 81-82
selecting 68

command descriptions (status line) 73
copying/ cutting images 75
duplicating images 76
Ellipse tool 79
Eraser tool 78
Hand tool 77
LB in Colors palette 68
Line tool 78
multiple views 71
Paint Can tool 78
pasting images 75
Pen tool 78
Pick Rectangle tool 74
RB in Colors palette 68
Rectangle tool 79
resource types edited 67
Rounded Rectangle tool 79
selecting tools 74
shapes, painting 79
status line 73
tools 74-79
Tools palette 74-79
Zoom tool 76

bitmap offsets (BPMCC) 115
bitmapped images

colors 81-82
left-button 68
right-button 68

copying/ cutting 75
deleting 75
duplicating 76
erasing 78
filling with color 78
pasting 75
pels 68
selecting blocks 74
static controls and 61
viewing

multiple views 71
zoomed 77

zooming 76

119

Bitmapped resource window 70
bitmapped resources

compiler differences in 107
deleting 73
existing, loading 70
images

adding 79
defined 70

multiple images 70
adding 79

types 67
bitmapped static controls 61
bitmaps

adding to BPMCC buttons 115
. BMP file type 17
defined 13
tips and restrictions 117

BIX, JOIN BORLAND 5
BM_SETCHECK message (BPMCC) 115
. BMP files 17
border styles, dialog boxes 46
BORDLG class 111
Borland

contacting 4
Borland, contacting 4-5
Borland Button Style dialog box 114
Borland check box dialog control 113
Borland Check Box Style dialog box 115
Borland check box tool 113
Borland push button dialog control 113
Borland push button tool 113
Borland radio button dialog control 113
Borland Radio Button Style dialog box 115
Borland radio button tool 113
Borland Shade Style dialog box 116
Borland Static Text Style dialog box 116
BPMCC 111-117

Auto 3-state check box 116
Auto check box 116
Auto radio button 115
BBN_GOTABTAB message 113
BBN_ GOTATAB message 113
BBN_SETFOCUS message 113
BBN_SETFOCUSMOUSE message 113
bitmaps

120

adding to buttons 115
offsets 115

BORDLG class 111
Borland Button Style dialog box 114
Borland Check Box Style dialog box 115
Borland Radio Button Style dialog box 115
Borland Shade Style dialog box 116
button controls 114
controls 112

Borland check box 113
Borland push button 113
Borland radio button 113
bumps, converting 116
dips, converting 116
Group Shade 112, 116
Horizontal Dip 112
Vertical Dip 112

messages, buttons and check boxes 113
modifying existing applications 116-117
owner-draw option 113
3-state check box 116

BPMCCAPI.RW 3, 111
BPMCCSTL.RW 3
BPMCCSTYL.RW 111
bulletin board, Borland 5
bumps, vertical and horizontal (BPMCC) 116
button controls 62-63
button controls (BPMCC) 114
By File command 24
By Type command 24

c
C language

#defines 39
header files 39

check boxes 63
BPMCC 115

CheckDlgButton function (BPMCC) 115
CheckRadioButton function (BPMCC) 115
Clipboard

copying resources 27
Paste command (Bitmap editor) 75

color indicator 72
color options

Eraser tool 78
painting tools 74

colors
Bitmap editor 81-82

inverted 81

Resource Workshop for OS/2 Users Guide

left-button 68
right-button 68
transparent 81

selecting
Bitmap editor 68

combo box controls 64
command -line options 8

table of 8
commands

accelerators 12
Bitmap editor status line 73
keyboard access 12

comments, in resource scripts 33
Compile Now command 32
compiled resource files 16
compiler differences 107-110
complex constant expressions 109
CompuServe, GO BORLAND 5
configuration options 17-18, 29
container controls 66
context-sensitive Help 9
controlID

predefined BPMCC values, push buttons 114
control IDs 58
controls 52-66

aligning 55-56
arranging 57
attributes 57-59
BPMCC 112

Borland check box 113
Borland push button 113
Borland radio button 113
Group Shade 112, 116
Horizontal Dip 112
Vertical Dip 112

button 62-63
check boxes 63
choosing type 52
combo boxes 64
containers 66
creating 52-53
defined 13
duplicating 51
frame 61
group boxes 61
grouping 60
list boxes 63

Index

moving 54
notebooks 65
placing 53
push buttons 62
radio buttons 63
rectangles 61
resizing 54
scroll bars 64
selecting 53-54
sliders 64
snapping to grid 49
static 61
value sets 65
working with 52-60

conventions, typographic 3
Copy command 27
copying resources between projects 27
creating identifier files 39
cursors

tips and restrictions 117
custom classes 111
custom resources 90-91
customer assistance 4-5
Cut command (Project window) 38

D
data types, hexstring 107
DBCS support 58
decompiling resources 16
default push button (BPMCC) 114
#defines 39

viewing 24
Defpushbutton option (BPMCC) 114
Delete command (Project window) 38
deleting identifiers 41
dialog boxes 43-66

assigning custom classes 111
Borland Check Box Style 115
Borland Shade Style 116
Borland Static Text Style 116
creating 45
defined 13
.DLG file type 16
modeless 40
position 47
styles 46
testing 47

121

tips and restrictions 117
window alignment 47

dialog boxes (illustrated)
Add File to Project 35
Identifiers 40
New Project 22
New Resource 33
Open Project 21
Paste Resource 28
Preferences (File menu) 17
Rename Resource 36
Resource Memory Options 37
Save File As 26

Dialog editor 43-66
controls and 52-60
options 48-49
Parent Notify option 113
tools 50-52

dialog editor
starting 44

dips, vertical and horizontal (BPMCC) 116
directives 87
Directories list box (Open Project dialog box) 22
Discardable memory option 37
.DLG files 16
DLL files 16

editing resources 28
Duplicate command (Bitmap editor) 76

E
Edit as Text command 31, 32
Edit command 31
Edit Visually command 71
editing identifiers 41
editors See also resource editors

selecting 32-33
Ellipse tool 79
embedded resources 23
entry field controls 61-62

multiline 62
Eraser tool 78

color assignments 68
color options 78

examples
accelerator tables 90
custom resources 91
file-association tables 92

122

font resources 93
help items 94
help subitems 96
help subtables 96
help tables 94
menu items 99
menus 99
message tables 103
RCDATA resources 91
string tables 104
submenus 99

executable files 16
editing resources 28
identifiers 38
saving resources in

command-line option 8
File Preferences dialog box 18

Exit command 9
exiting Help 9
exiting Resource Workshop 9
expressions

constant, complex 109
floating operators 109
missing operators 110
numeric constant, compiler differences in 107
resource IDs and 109

extensions, file-name, nonstandard 21

F
file, viewing resources by 24
file-association tables 91-92

defined 13
file formats 15-31
file-name extensions, nonstandard 21
File Type option (Open Project dialog box) 21
file types 15-31

choosing 22
nonstandard 21

files
backing up 18
creating, by adding to project 35
header 39
identifier

adding to projects 39
C language 39

RCDATA resources, referencing in 107
renaming 25

Resource Workshop for OS/2 Users Guide

saving resources in 26
font resources 93
FONT statement 93
Force Alignment command 49
Form Controls Into An Array dialog box 57
format specifiers, hexadecimal 107
frame controls 61

dialog boxes 47
frames, painting 79

G
GEnie, BORLAND 5
grid, Dialog editor 49
Grid Settings command 49
group boxes 61
Group Shade dialog control 112
Group Shade tool 112

H
.H files 39
Hand tool 77
hardware requirements 2
header files 39
Help 9

exiting 9
resource scripts 32

Help command 9
help items 94-95
help subitems 96-97
help subtables 95-96

defined 13
help tables 93-94

defined 13
HELPITEM statement 94-95
HELPSUBITEM statement 96-97
HELPSUBTABLE statement 95-96
HELPTABLE statement 93-94
hexadecimal format specifiers 107
hexstring data type 107
Horizontal Dip dialog control 112
Horizontal Dip tool 112
hot spots, setting 82

IBM Resource Compiler 107
Resource Workshop, incompatibilities 107-110

Index

.lCO files 17
icon controls 61
icons 81-83

controls and 61
default 14
defined 14
.lCO file type 17
tips and restrictions 117

identifiers 38-42
adding 40-41
components 38
deleting 41
editing 41
executable files and compiled resources 38
files 38-39
include path option 18
listing 42
starting a resource editor 42
storing 38-39
unique characters required 38
viewing 24

Identifiers dialog box 39-42
adding identifiers 40

Identifiers Window command 39
IDs

controls 58
resources 38

include directives, macros 110
Include Path (File Preferences dialog box) 18
Include Path option, command-line switch 8
information

technical support 4
installing Resource Workshop 7
inverted colors

icons 81-82
pointers 81-82

L
launch window 79-81
LB in Colors palette 68
leading zeros 108
left-button colors 68
Line tool 78
lines

freehand 78
straight 78

linked resources 23

123

list box controls 63
Load on Call memory option 37
load options, scripted resources 88

M
macros in include directives 110
MANUAL.RW 3
memory

effect on undo levels 18
options 36

dialog boxes 47
scripted resources 88

Memory Options command 36, 47
menu bar, standard 98
menu items 100-102

separa tors 101
MENU statement 97-100
MENUITEM statement 100-102
menus 97-100

defined 14
popup 98
simple 98
standard menu bar 98
tips and restrictions 117

message tables 102-103
defined 14

MESSAGE TABLE statement 102-103
modeless dialog boxes 40
mouse, right button (Bitmap editor) 68
Moveable memory option 37
Multi-Save (File Preferences dialog box) 18, 29
Multi-Save options (command-line switch) 8
multiline entry field controls 62
MYPROJ.RC (sample project) 29

N
New button (Identifiers dialog box) 40
New command (Resource menu) 33
New Dialog dialog box 45
New Image command 79
New Project command 22
New Project dialog box 22
New Resource dialog box 33
notebook controls 65
numbers with leading zeros 108

124

numeric constant expressions, compiler differences in
107

o
online files

BPMCCAPI.RW 3, 111
BPMCCSTL.RW 3
BPMCCSTYL.RW 111
MANUAL.RW 3
README.RW 7

online Help, accessing 9
Open Project command 21
Open Project dialog box 21
opening projects 20-22
OS/2 Clipboard, copying resources 27
owner-draw option (BPMCC) 113

p
Paint Can tool 78
painting tools

color options 74
palettes, Tools (Bitmap editor) 74
Paste command (Bitmap editor) 75
Paste command (Project window) 27
Paste Resource dialog box 28
pels 68
Pen tool 78
Pick Rectangle tool 74
PM, Bitmapped resource 70
pointers 81-83

active area 82
defined 15
.PTR file type 17

pointers, PM programs 67
popup menus 98
preferences (File menu) 17-18

Multi-Save 29
Preferences command (File menu) 17
Preferences dialog box (File menu) 17
presentation parameters 49, 103-104
PRESP ARAMS statement 103-104
previewing resources 24
Project window 19-20, 23-31

contents 23
display options 24
resources, selecting 24

Resource Workshop for OS/2 Users Guide

projects 19-42
adding resources 33-36
compiling 31
copying resources between 27
creating 22
embedded resources, adding 33
file types, choosing 22
linked resources, adding 34
opening 20-22
renaming 25
saving 25-27
working with 19-20

.PTR files 1 7
push button controls 62
push buttons

BPMCC 114
predefined control IDs (BPMCC) 114

Q
quitting Help 9
quitting Resource Workshop 9

R
radio button controls 63
radio buttons

BPMCC 115
RB in Colors palette 68
.RC files 16
RCDATA resources 90-91

defined 15
references to files in 107

RCDATA statement 90-91
README.RW 7
rectangle controls 61
Rectangle tool 79
redo levels (File Preferences dialog box) 17
redoing 17
registration (product)

by phone 4
Rename command 36
Rename Resource dialog box 36
renaming

files 25
projects 25
resources 36

.RES files 16

Index

identifiers 38
saving resources in

command-line option 8
File Preferences dialog box 18

resource compiler files 16, 19, 20
resource editors

Bitmap editor 67-83
Dialog editor 43-66
Script editor 85-87
selecting 32-33
starting with Identifiers dialog box 42

resource file types 15-31
choosing 22

resource IDs 38
expressions 109
scripted resources 88

Resource Memory Options dialog box 37
resource script files 16
resource scripts 85-105

comments in 33
language 32
linking 107
storing bitmapped resources as 107

Resource Workshop
configuring 17-18
exiting 9
features 1
IBM Resource Compiler, incompatibilities
107-110
installing 7
preferences 17-18
starting 7-8

resources 11-15
adding to project 33-36
binding 16
bitmapped 67-83
code page options 37
compiling 16,31, 107
copying between projects 27
custom 90-91
cutting 38
decompiling 16
default names 38
defined 11
deleting 38
dialog 43-66
display options 24

125

editing in executable and DLL files 28
embedded 23
embedding in project 33
identifiers 38-42
linked 23
linking to project 34
load options 36, 37
loading 31
memory options 36, 37
previewing 24
RCDATA, references to files in 107
relationship to program code 12
removing from project 38
renaming 36
saving 18, 25-27

command-line options 8
File Preferences dialog 29

scripted 85-105
selecting 24
types 12-15

right-button colors 68
right mouse button, Bitmap editor 68
Rounded Rectangle tool 79
.RWP files 25

S
sample projects 19-31
Save File As command 25
Save File As dialog box 26
Save Project command 25
Save Resource As command 26
saving

projects 25-27, 48
resources 8, 18,25-27

Script editor 85-87
scripted resources 85-105

load options 88
memory options 88

scroll bars 64
Select All command

Bitmap editor 74
selecting an entire image 74
selection rectangle, Dialog editor 54
separators 101
Set Groups command 60
Set Order command 59
Set Tab Stops command 59

126

shapes, painting in Bitmap editor 79
Show Identifiers command 24
Show Items command 24
Show Preview command 24
Show Resources command 24
Show Unused Types command 24
sidebar

Bitmap editor 72
Dialog editor 51

Size And Position command 47
slider controls 64
Snap To Grid command 49
software requirements 2
Split Horizontally command 71, 72
Split Vertically command 71, 72
splitting, Bitmap editor window 71

undoing 72
starting Resource Workshop 7-8
static controls 61
status line 9

Bitmap editor 73
string tables 104-105

defined 15
tips and restrictions 117

STRINGTABLE statement 104-105
styles, dialog boxes 46
SUBMENU statement 105
submenus 105
support, technical 4-5
system requirements 2

T
tab order 59
tab stops 59
Technical Support

contacting 4
technical support 4-5
Test Dialog command 47
testing dialog boxes 47
text editor, internal

Compile Now command 32
selecting 32
using 32-33

3-state check box (BPMCC) 116
tilde (-), backup file symbol 18
token pasting 109

Resource Workshop for OS/2 Users Guide

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom· Part # BCP1415WW21775 • BaR 7005

