
lor OS/2®

User's Guide

Borland® C++
for OS/2®
Version 1.5

Redistributable files
You can redistribute the following files in accordance with the No Nonsense License
Statement:

• BIDS402.DLL • TCLASS2.DLL • C215.DLL
• BIDS402D2.DLL • C215MT.DLL • BPMCC.DLL

• LOCALE.BLL

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1
What's in Borland C++ 0000000000000000000; 0 001

Hardware and software requirements 0 0 0 0 0 0 0 0 0 0 2

The Borland C++ implementation 00000000000003

The Borland C++ package 0 3

The User's Guide 000000000000000000000000003

The Tools and Utilities Guide 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

The Programmer's Guide 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

The Library Reference 0 6

Typefaces and icons used in these books 0 0 0 0 0 0 0 0 6

Tools in your package 0000000000000000000000007

Contacting Borland 0 8

Borland Assist plans 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 8

Chapter 1 Installing Borland C++ 11
Using INSTALL 0 11

Running the IDE 0 13

Opening the README file 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

The HELPME!.DOC file 00000000000000000000013

Customizing the IDE 00000000000000000000000014

Sample programs 00000000000000000000000000014

Chapter 2 IDE basics 15

Starting the IDE 0 15

Startup options 000000 0 0 0 0 0 0 0 0 0 000000000000 17

The Ib option 0000000000000000000000000017

The 1m option 000000000000000000000000017

Exiting the IDE 0 17

IDE components 0 18

The menu bar and menus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

Mouse shortcuts 00000000000000000000000019

Using the SpeedBar 00000000000000000000019

Keyboard shortcuts 00000000000000000000021

Borland C++ windows 0000000000000000000023

Window management 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

The status line 000 026

Dialog boxes 0 26

Action buttons 000000000000000000000000026

Radio buttons and check boxes 0000000000027

Input and list boxes 0 27

Configuration and project files 00000000000000028

The configuration file 00000 0 0 0 0 0 0 0 0 0 0 0 0 000 028

Project files 0 28

The project directory 0 29

Desktop files 0 29

Default files 0 29

Changing project files 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 30

Syntax highlighting 0 30

Configuring element colors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30

Some basic tasks 0 31

Compiling and linking programs 0000000000031

Making an application 0000.0000000000000 31

Building an application 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

Compiling a file 0 31

Linking a file 0 32

Debugging an application 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Preparing your application . 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Debugging environment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

Viewing data objects 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 34

Controlling program execution 0 0 0 0 0 0 0 0 0 0 0 34

Chapter 3 Menus and options reference 37

File menu 0 37

New 00000000000000000000000000000000000037

Open 0000000000000000000000000000000000037

Using the File list box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

Save 00000000000000000000000000000000000038

Save As 00000000000000000000000000000000038

Save All 00000000000000000000000000000000038

Print 000000000000000000000000000000.0000039

Exit 000000000000000000000000000000000000039

Closed File Listing 0 39

Edit menu 0 39

Undo 0000000000000000000000000000000000041

Redo 0 0 000000000000000000000000000000000041

Cut 000000000000000000000000000000000000041

Copy 0000000000000000000000000000000000041

Paste 0000000000000000000000000000000000041

Clear 0000000000000000000000000000000000041

Search menu 0 41

Find 00000000000000000000000000000000000041

Replace 00000000000000000000000000000000043

Search Again 0 44

Go to Line Number 0 44

Run menu 00000000000000000000000000000000044

Run 00000000000000000000000000000000000044

Using the same source code 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

Using modified source code 0000000000000 44

Step Over 0 45

Trace Into 45
Run To Cursor 45
Reset 45
Run Arguments 45

Compile menu 46
Compile 46
Make 46
Link 46
Build All 46
Break 47

Debug menu 47
Breakpoints 48
Messagepoints 48
Datapoints 48
Exceptionpoints 48
Source 48
Disassembly 48
Variable 48
Call Stack 48
Watch 49
Evaluator 49
Inspector 49
Thread 49
Memory 49
Registers 49
Numeric Processor 49
Heap 49
Hide Windows 49
Show Windows 49

Tools menu 50
View Transcript 50
Previous Error 50
Next Error 50
Remove Messages 50
Transfer items 50

Project menu 51
Open Project 51
Close Project 51
View Project 51
View Settings 51
Add Item 51
Delete Item 52
Local Options 52
Include Files 52
Generate Makefile 52
Save 53

Window menu 53
Tile 53
Cascade 53

Arrange Icons 53
Close All 53
Open Windows Listing 53

Help menu 54
Contents 55
Index 55
Topic Search 56
Essentials 56
Language Reference 56
Error Messages 56
Tasks 56
Menus 56
Keyboard 56
Using Help 56
About Borland C++ 57

Chapter 4 Settings notebook 59
Using the Settings notebook 59

Getting around 59
Organization 60
Changing and saving settings 62

Compiler section 62
Code Generation Options 63
C++ Options 65
Optimizations 67
Source Options 68
Messages 69
Names 70

Make section 70
Target section 71
Linker section . 72

Link Settings . 72
Link Libraries . 74
Link Warnings 74

Librarian section 74
Debugger Options section 75

Debugger Options 75
Disassembly View Local Options ... : 77
Variables View Local Options 78
Call Stack View Local Options 79
Watch View Local Options 79
Evaluator View Local Options 80
Inspector View Local Options 80
Memory View Local Options 80
Register View Local Options 81
File And Numeric View Local Options 82

Directories section . 82
Environment section 83

Preferences 83

Desktop 85 Appendix A The optimizer 129
Editor 85 What is optimization? 129
Fonts 87 When should you use the optimizer? 129
Syntax Hilite 88 Optimization options 129

Transfer section 89 A closer look at the Borland C++ optimizer. 131

Chapter 5 Managing multi-file projects 93
Sampling the Project Manager 94
Error tracking 96

Stopping a make 97
Syntax errors in multiple source files 97
Saving or deleting messages 98
Autodependency checking 98

Using different file translators 99
Overriding libraries 101
More Project Manager features 101

Looking at files in a project 103

Global register allocation 131
Globaloptimizations 131
Common sub expression elimination 131
Loop invariant code motion 132
Copy propagation 132
Induction variable analysis and strength
reduction 133
Linear function test replacement 133
Loop compaction 134
Dead storage elimination 135
Pointer aliasing 135
Code size versus speed optimizations 136

Chapter 6 Command-line compiler 105 Intrinsic function inlining 136
Running BCC 105
Using the options 105

Option precedence rules 106

Register parameter passing 138
Parameter rules 138
Floating-point registers 138

Syntax and file names 109 Function naming 139
Response files 110
Configuration files 110

Option precedence rules 111
Compiler options 111

Appendix B Editor reference 141
Block commands 144
Other editing commands 145

Macro definitions 112 Appendix C Precompiled headers 147
Code-generation options 113 How they work 147

The -v and -vi options 115 Drawbacks 148
Optimization options 116 Using precompiled headers 148
Source code options 116 Setting file names 148
Error-reporting options 117 Establishing identity 148
Segment-naming control 119 Optimizing precompiled headers 149
Compilation control options 120
C++ virtual tables 121 Appendix 0 Using the Browser 151

C++ member pointers 122
Template generation options 123
Exception handling/RTTI 124

Linker options 124
Environment options 125

Include file and library directories 125

Browsing through your code 151
Browsing through objects 153

Filters 154
Viewing declarations of listed symbols . . . 155

Browsing through global symbols 155
Browsing symbols in your code 155

File-search algorithms 126 Index 157
An annotated example 127

iii

Tables

2.1 General hot keys 22 A.1 Optimization options summary 130
2.2 Menu hot keys 22 A.2 Parameter types and possible
2.3 Editing hot keys 23 registers used 138
2.4 Online Help hot keys 23 B.1 Editing commands 141
2.5 Debugging/Running hot keys 23 B.2 Block commands in depth 144
2.6 Manipulating windows 25 B.3 Borland-style block commands 145
3.1 Search-string wildcards 42 B.4 Other editor commands in depth 145
6.1 Command-line options summary 106 D.1 Letter symbols in the Browser 154

iv

Figures

D.l Buttons on the Browser SpeedBar 152 D.3 Viewing the details of an object 154
D.2 Viewing the object hierarchy of an

application 153

v

vi

Introduction

Borland C++ is a professional optimizing compiler for C++ and C develop­
ers. It's powerful, fast, and efficient. With Borland C++, you can create
practically any OS/2 or Presentation Manager application.

Because C++ is an object-oriented programming (OOP) language, it gives
you the advantages of advanced design methodology and labor-saving
features. It's the next step in the natural evolution of C. And because it's
portable, you can easily transfer application programs written in C++ from
one system to another. You can use C++ for almost any programming task
on any platform.

What's in Borland C++

Chapter 1 tells you
how to install Borland

C++. This
Introduction tells you

where you can find
out more about each

feature.

Introduction

Borland C++ includes the latest features programmers have asked for:

.. C and C++: Borland C++ offers you the full power of C and C++ pro-
gramming, with a complete implementation of the AT&T v. 3.0 ,
specification as well as a 100% ANSI C compiler. Borland C++ for OS/2
also provides a number of useful C++ class libraries, plus the a complete
implementation of templates and exception handling, which allow
efficient collection classes to be built using parameterized types.

• Global optimization: a full suite of state-of-the-art optimizations gives
you complete control over code generation, so you can program in the
style you find most convenient, yet still produce small, fast, highly
efficient code.

• Faster compilation speed: Precompiled headers significantly shorten
recompilation time. Optimizations are also performed at high speed, so
you don't have to wait for high quality code.

• Programmer's Platform: Borland C++ for OS/2 comes with an improved
version of the Programmer's Platform, Borland's open-architecture
integrated development environment (IDE) that gives you access to a full
range of programming tools and utilities, including

• A multi-file editor featuring an industry-standard Common User
Access (CUA) interface .

• Turbo Editor Macro Language (TEML) and the Turbo Editor Macro
Compiler (TEMC), which provide the ability to create and use a
customized editor interface.

• Multiple overlapping windows with full mouse support.

• Integrated resource compiling and linking.

• Fully integrated debugger with support for multi-thread debugging.

• Support for inline assembly code.

• Complete undo and redo capability with a large buffer.

• Built-in Browser that lets you visually explore your class hierarchies,
functions and variables, locate inherited function and data members,
and instantly browse the source code of any element you select.

• Visual SpeedBar for instant point-and-click access to frequently used
menu selections.

• Help: Online context-sensitive hypertext help, with copy-and-paste pro­
gram examples for almost every function. You can reach the help func­
tions from anywhere in the IDE by simply pressing Ft.

• Streams: Full support for C++ iostreams, plus special Borland extensions
to the streams library that let you position text, set screen attributes, and
perform other manipulations to streams within the OS/2 environment.

• Container classes: Advanced container class libraries giving you sets,
bags, lists, arrays, B-trees, and other reusable data structures. The
containers are implemented as templates.

• OS/2 API: The complete OS/2 API documentation in online Help.

Other features:

• Over 200 extended library functions for maximum flexibility and compa-
tibility.

• Complex and binary-coded decimal (BCD) math.

• Response files for the command-line compiler.

• NMAKE compatibility for easy transition from Microsoft C or C++.

Hardware and software requirements

2

Borland C++ runs on the IBM PS/2- and PC-compatible family of
computers running the OS/2 operating system. Borland C++ requires OS/2
2.1 or higher, 28M of hard disk space, a floppy drive, and at least 6M of
memory; it runs on any OS/2-compatible monitor.

Borland C++ includes floating-point routines that let your programs make
use of an 80x87 math coprocessor chip. It emulates the chip if it is not
available. Though it is not required to run Borland C++, the 80x87 chip can

Borland C++ for OS/2 Users Guide

significantly enhance the performance of your programs that use floating­
point math operations.

The Borland C++ implementation

Borland C++ is a full implementation of the AT&T C++ version 3.0 with
exception handling. It also supports the American National Standards
Institute (ANSI) C standard. In addition, Borland C++ includes certain
extensions for mixed-language programming that let you exploit your PC's
capabilities. See Chapters 1-5 in the Programmer's Guide for a complete
formal description of Borland C++.

The Borland C++ package

The Users Guide tells
you how to use this

product; the
Programmers Guide

and the Library
. Reference focus on

programming in C
and C++. The Tools

and Utilities Guide
explains the

specialized Borland
programming tools.

The User's Guide

Introduction

Your Borland C++ package consists of a set of disks and eight manuals.

The disks contain all the programs, files, and libraries you need to create,
compile, link, and run your Borland C++ programs; they also contain
sample programs, many standalone utilities, a contextual help file, an inte­
grated debugger, and C and C++ documentation in online text files.

These are the eight manuals:

• Borland c++ User's Guide
• Borland C++ Tools and Utilities Guide
• Borland C++ Library Reference
II Borland C++ Programmer's Guide

• Resource Workshop User's Guide
.. Turbo Debugger User's Guide
.. Turbo Assembler User's Guide
.. Turbo Assembler Quick Reference

The User's Guide introduces you to Borland C++ and shows you how to
create and run both C and C++ programs. It consists of information you'll
need to get up and running quickly, and provides reference chapters on the
features of Borland C++: the Programmer's Platform-including the editor
and Project Manager-and the command-line compiler. These are the
chapters in this manual:

Introduction introduces you to Borland C++ and tells you where to look for
more information about each feature and option.

3

The Tools and
Utilities Guide

4

Chapter 1: Installing Borland C++ tells you how to install Borland C++ on
your system; it also tells you how to configure your installation, defaults,
and many other aspects of Borland C++.

Chapter 2: IDE basics introduces the features of the Programmer's
Platform, giving information and examples of how to use the IDE to full
advantage. It includes information on how to start up and exit from the
IDE, descriptions of the IDE's local menus (which provide a large part of
the IDE's functionality), and describes basic programming and debugging
techniques within the IDE.

Chapter 3: Menus and options reference provides a complete reference to
the menus and options in the Programmer's Platform.

Chapter 4: Settings notebook explains the use of the Settings notebook for
setting the various compilation, linking, and environment settings available
in the IDE.

Chapter 5: Managing multi-file projects introduces you to Borland C++S
built-in project manager and shows you how to build and update large
projects from within the IDE.

Chapter 6: Command-line compiler explains the use of the command-line
compiler. It also explains how to use compiler configuration files.

Appendix A: The optimizer introduces the concepts of compiler optimiza­
tion, and describes the specific optimization strategies and techniques
available in Borland C++.

Appendix B: Editor reference provides a convenient command reference to
using the editor with the CVA command interface.

Appendix C: Precompiled headers tells you how to use Borland C++'s
precompiled headers feature to save substantial time when recompiling
large projects.

Appendix D: Using the Browser tells you how to use the IDE Browser to
explore objects hierarchies, functions, and variables in your program.

The Tools and Utilities Guide introduces you to the many programming tools
and utility programs provided with Borland C++. It contains information
you'll need to make full use of the Borland C++ programming
environment, including the Make utility, the Turbo Librarian and Linker,
and special utilities for PM programming.

Chapter 1: TUNK: The Turbo linker is a complete reference to the features
and functions of the Turbo Linker (TLINK).

Borland C++ for OS/2 Users Guide

The Programmers
Guide

Introduction

Chapter 2: Make: The program manager introduces the Borland C++
MAKE utility, describes its features and syntax, and presents some
examples of usage.

Chapter 3: TUB: The Turbo librarian tells you how to use the Borland C++
Turbo Librarian to combine object files into integrated library (.LIB) files.

Chapter 4: Import library tools tells you how to use the IMPDEF and
IMPLIB utilities to define and specify import libraries.

Chapter 5: Resource tools tells you how to use the Resource Compiler to
compile .RC scripts into .RES resource files for your PM programs.

Appendix A: Error messages lists and explains run-time, compile-time,
linker, and librarian errors and warnings, with suggested solutions.

The Programmer's Guide provides useful material for the experienced C user:
a complete language reference for C and C++, writing PM applications,
C++ streams, Borland C++ class libraries, OS/2 memory management, and
floating-point issues.

Chapters 1-5: Lexical elements, Language structure, C++ specifics,
Exception handling, and The preprocessor describe the Borland C++
language.

Chapter 6: Using C++ streams tells you how to use the C++ iostreams
library, as well as special Borland C++ extensions for PM.

Chapter 7: Using Borland class libraries tells you how to use the Borland
C++ container class library in your programs. .

Chapter 8: Dynamic-link libraries discusses how to build and use
dynamic-link libraries under OS/2.

Chapter 9: Building OS/2 applications introduces you to the concepts and
te~hniques of writing applications for PM using Borland C++.

Chapter 10: Mathematical operations covers floating-point, BCD, and
complex math.

Chapter 11: OS/2 memory management describes the OS/2 memory­
management scheme and system calls.

Chapter 12: Inline assembly tells how to write inline assembly language
functions within your Borland C++ program.

Appendix A: ANSI implementation-specific standards describes those
aspects of the ANSI C standard that have been left loosely defined or
undefined by ANSI, and how Borland has chosen to implement them.

5

The Library
Reference

The Library Reference contains a detailed list and explanation of Borland
C++'s extensive library functions and global variables.

Chapter 1: The main function describes the main function.

Chapter 2: Run-time functions is an alphabetically arranged reference to all
Borland C++ library functions.

Chapter 3: Global variables defines and discusses Borland C++'s global
variables.

Chapter 4: The C++ iostreams provides a reference to the C++ iostreams
library, including the Borland extensions to the library.

Chapter 5: Persistent stream classes and macros describes the persistent
streams classes and macros.

Chapter 6: The C++ container classes provides a reference to the Borland
implementation of the container class library.

Chapter 7: The C++ mathematical classes describes the Borland
implementation of the C++ math class libraries.

Chapter 8: Class diagnostic macros describes the classes and macros that
support object diagnostics.

Chapter 9: Run-time support describes functions and classes that let you
control the way your program executes at run time in case the program
runs out of memory or encounters some exception.

Chapter 10: C++ utility classes describes the C++ date, string, and time
classes.

Appendix A: Run-time library cross-reference provides a complete indexed
locator reference to all Borland C++ library functions.

Typefaces and icons used in these books

All typefaces and icons used in this manual were produced by Borland's
Sprint: The Professional Word Processor, on a PostScript laser printer.

Monospaced type This typeface represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as Be to start up the
Borland C++ IDE).

ALL CAPS The names of constants and files (except for header files) are spelled with
all capital letters.

6 Borland C++ for OS/2 Users Guide

[]

<>

Boldface

Italics

Keycaps

Initial Caps

Square brackets [] in text or OS/2 command lines enclose optional items
that depend on your system. Text of this sort should not be typed verbatim.

Angle brackets in the function reference section enclose the names of
include files.

This typeface is used in text for Borland C++ reserved words (such as char,
switch, void, and __ cdecl), for format specifiers and escape sequences (%d,
\t), and for command-line options (lb).

Borland C++ function names (such as printj), class, and structure names are
shown in italics when they appear in text (but not in program examples).
Italics also indicate variable names (identifiers) that appear in text. They can
represent terms that you can use as is, or that you can think up new names
for (your choice, usually). Italic type is also used to emphasize certain
words, such as new terms.

This typeface indicates a key on your keyboard. For example, "Press Esc to
exit a menu."

Menu choices and items in dialog boxes are indicated by capitalizing the
first letter of each word.

This icon indicates keyboard actions.

This icon indicates mouse actions.

This icon indicates language items that are specific to C++. It is used
primarily in the Programmer's Guide.

Tools in your package

Introduction

This product contains many tools to help you:

• The manuals provide information on every aspect of the program. Use
them as your main information source.

• While using the IDE, you can press F1 for general help, Ctrl+F1 for help
about the currently selected item, or Shift+F1 for an index of topics in the
Help system.

• If you are using the command-line compiler, use the OS/2 utility VIEW
for online help. For information on VIEW, see your OS/2 documentation.

• Many common questions are answered in the DOC files listed in the
README file located in the installation directory of your Borland
compiler.

7

Contacting Borland

Borland Assist
plans

Service

Installation
hotline

Automated
support

TechFax

Online services

Borland
Download BBS

CompuServe

BIX

8

The Borland Assist program offers a range of services to fit the different
needs of individuals, consultants, large corporations, and developers. To
receive help with your questions about our products, send in the
registration card. North American customers can register by phone 24
hours a day by calling 1-800-845-0147.

Borland Assist is made up of three levels of support:

• Standard Assist gives all registered users assistance with installation and
configuration, and offers automated and online services to answer other
product questions (see the following table).

• Enhanced Assist plans are designed for individuals who need unlimited
support on a toll-free number or priority hotline access.

• Premium Assist plans are designed to support large corporations and
software developers.

Available at no charge, Standard Assist offers all registered users the
following services:

How to contact Cost Available Description

408-461-9133 The cost of 6:00am - 5:00pm PST Provides assistance on product
the phone call Monday - Friday installation and configuration.

Voice: Free 24 hours daily Provides answers to common questions
1-800-524-8420 Requires a Touch-Tone phone or modem.
Modem: The cost of
408-431-5250 the phone call

1-800-822-4269 Free 24 hours daily Sends technical information to your fax
(voice) machine (up to 3 documents per call).

Requires a Touch-Tone phone. Document
#1 is the catalog of available catalogs.

408-431-5096 The cost of 24 hours daily Sends sample files, applications, and
the phone call technical information via your modem.

Requires a modem (up to 9600 baud).

Type GO BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Type JOIN BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Borland e++ for OS/2 Users Guide

GEnie

Introduction

Type BORLAND. Your online
Address messages to charges
All.

24 hours daily;
1-working-day
response time

Sends answers to technical questions via
your modem. Messages are public.

For additional details on these and other Borland services, see the Borland
Assist Support and Services Guide included with your product.

9

10 Borland C++ for OS/2 Users Guide

Your Borland C++
package includes two

different versions of
Borland C++: the IDE

(Programmer's
Platform) and the

OS/2 command-line
version.

If you don't already
know how to use
OS/2 commands,
refer to your OS/2
reference manual
before setting up

Borland C++ on your
system.

Using INSTALL

c H A p T E R 1

Installing Borland C++

Borland C++ comes with an automatic installation program called
INSTALL. Because we used file-compression techniques, you must use this
program; you can't just copy the Borland C++ files onto your hard disk.
INSTALL automatically copies and decompresses the Borland C++ files.
FILELIST.DOC on the installation disk includes a list of the distribution
files, with a brief description of what each one contains.

We assume you're already familiar with OS/2 commands. For example,
you'll need the DISKCOPY command to make backup copies of your
distribution disks. Make a complete working copy of your distribution
disks when you receive them, then store the original disks away in a safe
place.

This chapter contains the following information:

• How to use INSTALL.

II How to access the README file .

• How to access the HELPME! file.

II Pointers to more information on Borland's sample programs.

iii Information about customizing Borland C++ (setting or changing
defaults, colors, and so on).

INSTALL detects what hardware you are using and configures Borland
C++ appropriately. It also creates directories as needed and transfers files
from your distribution disks (the disks you bought) to your hard disk.

To install Borland C++, follow these steps:

1. Insert the installation disk (disk 1) into drive A:.

2. Click the icon for drive A:.

3. Click the Install icon.

Chapter 1, Installing Borland C++ 11

By default, INSTALL
modifies your

CONFIG.SYS file for
you, unless you

turned this option off.

12

4. The Borland C++ For OS/2 Installation dialog box opens up. It has eight
controls:

• Installation Options lets you specify which parts of the Borland C++
package you want to install, whether the installation program should
create a PM program group for the compiler, and whether the instal­
lation program should modify your CONFIG.5YS file to support the
Borland C++ compiler.

• Directory Options lets you specify the directories where you want
each part of the compiler installed. By default, these are
subdirectories below the directory specified in the Base Directory
input box.

• Base Directory lets you specify the name of the directory in which you
want the compiler installed.

• Install From lets you specify where the Borland C++ installation files
are located.

• Install starts the installation procedure based on the options you
define through the· other controls in this dialog box.

• Exit exits the installation procedure without installing the compiler.

• Reset resets all options to their default state (the state they were in
when you first ran the installation program).

• Help gives you help in installing the Borland C++ package.

Use these controls to configure your Borland C++ installation to your
satisfaction, then click Install to begin installing the compiler.

5. If you did not tell INSTALL to modify your CONFIG.SYS file in the
Installation Options dialog box, you must make the following changes
to your CONFIG.5YS file for the compiler to function correctly:

• Modify the PATH line in your CONFIG.SYS file to contain the
directory where your compiler is installed:

PATH=C:\OS2iC:\OS2\SYSTEMi ... iC:\BORLANDC\BIN

where BORLANDC is the name of the directory where you installed
Borland C++.

• Modify the LIBP ATH line in your CONFIG.SYS file to contain the
directory where your compiler is installed:

LIBPATH=C:\OS2iC:\OS2\SYSTEMi ... iC:\BORLANDC\BIN

where BORLANDC is the name of the directory where you installed
Borland C++.

LIBP ATH points to the directory containing all the DLLs for the
compiler, linker, and debugger. If PATH is set correctly, but LIBP ATH
is not, the Borland C++ tools will not work.

Borland C++ for OS/2 Users Guide

6. Reboot your machine so the changes in the PATH and LIBP ATH
variables take effect.

Important! When the installation process is complete, INSTALL opens the README
file for you to read. The README file contains important, last-minute
information about Borland C++.

Note

Running the IDE

After you exit the README file, INSTALL creates a Borland C++ program
group and installs it on your desktop if you chose the Create Borland C++
Program Group option in the Borland C++ For OS/2 Installation dialog
box. The program group contains icons for the following Borland C++
programs and utilities:

• Borland C++

• Turbo Debugger

• Resource Workshop

• Import Librarian

If you reinstall your compiler in the future, OS/2 replaces the existing icons
with new ones.

If you're anxious to get up and running once you've installed Borland C++,
start by opening the Borland C++ folder and clicking on the Borland C++
icon. This starts up the Borland C++ Programmer's Platform, or IDE. For
help in the IDE, press Ft.

Opening the README file

Borland C++ automatically places you in the README file when you run
the INSTALL program. To access the README file at a later time, open the
README file using any regular OS/2 text editor. The file is located in the
root directory of your compiler installation.

The HELPME!.DOC file

Your installation disk contains a file called HELPME!.DOC, which contains
answers to problems that users commonly run into. Consult it if you find
yourself having difficulties. To access the HELPME!.DOC file, open the file
using any regular OS/2 text editor. The file is located in the DOC directory
of your compiler installation.

Chapter 1, Installing Borland C++ 13

Customizing the IDE

Borland C++ lets you completely customize your tools from within the IDE
itself, using the various settings that appear in the Settings notebook. These
settings let you specify editing modes, default directories, compiler
settings, linker options, and much more.

For information on accessing menus and options in the Borland C++ IDE,
see Chapter 2, "IDE basics." For specific information about each menu item,
see Chapter 3, "Menus and options reference." For information about the
Settings notebook, see Chapter 4, "Settings notebook."

Sample programs

14

Your Borland C++ package includes the source code for a large number of
C and C++ sample programs for OS/2. These programs are located in the
EXAMPLES directory (and subdirectories) created by INSTALL. Before you
compile any of these sample programs, you should read the printed or
online documentation for them.

Many of these examples are ported from the IBM OS/2 2.0 Toolkit ex­
amples. Comparing the examples provided with Borland C++ with those
from the IBM Toolkit can give you some idea of how easy it is to port your
programs designed to be compiled with the IBM C Set/2 tools.

Borland C++ for OS/2 Users Guide

c H A p T E R 2

IDE basics

Borland's Programmer's Platform, also known as the integrated develop­
ment environment, or IDE, has everything you need to write, edit, compile,
link, and debug OS/2 or Presentation Manager programs. It provides

iii Multiple, movable, resizable windows.

II Language syntax highlighting with customizable colors .

• Cut, paste, and copy commands that use the Clipboard.

II Full editor undo and redo.

Ell Online Help.

II Examples to copy and paste from the online Help system.

III Inline assembler .

.. Quick spawning of other programs.

II Editor macro language.

II Background compilation that lets you perform other tasks during pro­
gram builds.

II Full built-in debugging capability, including multi-thread support.

This chapter explains how to start up and exit the Borland C++ IDE,
discusses its components, describes the options available for both the IDE
and the command-line compiler, and explains how configuration and
project files work.

Starting the IDE

Chapter 2, IDE basics

To start the IDE, you can either double-click the Borland C++ icon or type
BC on the OS/2 command line. You can also specify an optional parameter
by either typing the parameter on the command line or by configuring the
Borland C++ icon with the OS/2 Settings notebook. To open the OS/2 Set­
tings notebook, right-click the BC icon. Click the arrow next to the Open
menu choice. When the submenu opens, click Settings. When the Settings
notebook opens, click in the Parameters box and type the desired
parameter.

15

16

Valid parameters for the Borland C++ for OS/2 IDE are Ib and 1m, along
with one or more file or project names. You can also specify one or more
file or project names without a Ib or 1m parameter.

If you specify a name without an extension, Borland C++ assumes it is a
source file with the default extension .CPP and opens the file, even if it does
not exist. If you specify the name of a project file, Borland C++ opens that
project.

If you do not specify a project name, and if there is a single project file with
a .PRJ extension in the current directory, Borland C++ automatically opens
the project. If there is more than one file with a .PRJ extension in the current
directory, Borland C++ doesn't open any of the projects.

You can set up multiple project icons so that you can load, build, or make
various projects by simply clicking on an icon.

To create a new icon for a project, follow these steps:

1. Open the OS/2 Templates folder by double-clicking on it.

2. Right-click the Program icon. Hold the button down.

3. Drag the icon onto the desktop or into a folder and let go of the mouse
button.

4. The Settings notebook for the icon automatically opens. Click in the box
labeled Path and file name. Type in the path and name of BC.EXE,
including the extension.

5. Click in the box labeled Parameters. Type Ib or 1m if you want to do a
build or a make, respectively. Type in the path to the file or files you
want to use. If a file is a project file, you must specify the .PRJ extension.
If you do not specify Ib or 1m, BC loads the files or projects you specify.

6. Click the tab labeled General. In the box labeled Title, type in a name for
your project. This name helps you distinguish between separate
projects, but has no other significance. .

7. Double-click the system menu button in the upper left corner to close
the Settings notebook. The new icon appears on the desktop with the
name you gave it.

You can also work in other OS/2 applications while the IDE is running,
even while it is performing a task such as a build or a compile. You can do
this in one of several ways:

Borland C++ for OS/2 Users Guide

Startup options

The Ib option

The 1m option

Exiting the IDE

Chapter 2, IDE basics

.. Click in another window on the OS/2 desktop.

II Click the Minimize icon in the upper right-hand corner of the IDE desk­
top window.

II Press AIt+F9.

The valid startup options for Borland C++'s IDE are Ib and 1m, which use
this syntax:

BC [option] [sourcename I projectname [sourcellame]]

where option can be either Ib or 1m, sourcellame is any ASCII file (default
extension assumed), and projectname is your project file (it must have the
.PRJ extension).

The Ib (build) option causes Borland C++ to open the IDE, recompile and
link all the files in your project, print out all compiler messages, and then
close the IDE.

To specify a project file, enter the Be command followed by Ib and the
project file name. For example,

BC Ib myprog

If there is no MYPROG.PRJ file, the following command loads the file
MYPROG.CPP in the editor and then compiles and links it:

BC Ib myprog

The 1m option lets you do a make rather than a build. That is, only outdated
source files in your project are recompiled and linked. Follow the
instructions for the Ib option, but use 1m instead.

There are three ways to leave the IDE completely:

II Choose File I Exit.

II Double-click the system menu button, located in the upper-left corner of
the IDE window.

EI Press A It+F4.

You'll be prompted to save your files before exiting, if you haven't already
done so.

17

IDE components

The menu bar and
menus

To cancel an action,
press Esc.

18

There are three visible components to the IDE desktop: the menu bar at the
top, the window area in the middle, and the status line at the bottom. Many
menu items also offer dialog boxes.

The menu bar is your primary access to all the menu commands. The menu
bar is always visible.

You can choose commands with a mouse in one of two ways:

• Click the desired menu title to display the menu and click the desired
command .

• Drag straight from the menu title down to the menu command. Release
the mouse button on the command you want (if you change your mind,
just drag off the menu; no command is chosen).

If a menu command is followed by an ellipsis (...), choosing the command
displays a dialog box. If the command is not followed by an ellipsis, an
action occurs as soon as you choose the command.

You can also use the mouse to access local menus throughout the IDE. Click
the right mouse button anywhere on the IDE desktop and select a
command from the menu that appears. See page 19 for more information
on local menus.

Here is how you choose menu commands using the keyboard:

1. Press Aft or F10. This makes the menu bar active; the next thing you type
relates to the items on the menu bar.

2. Use the arrow keys to select the menu you want to display, then press
Enter.

As a shortcut for this step, you can just press the underlined letter of the
menu title. For example, when the menu bar is active, press E to move
to and display the Edit menu. At any time, press Aft and the underlined
letter (such as Att+E) to display the menu you want.

3. Use the arrow keys to select a command from the menu you've opened,
or press the underlined letter in the command name. Then press Enter.

At this point, Borland C++ either carries out the command or displays a
dialog box.

Borland C++ for OS/2 Users Guide

Mouse shortcuts

Using the SpeedBar

Chapter 2, IDE basics

The IDE makes some menu commands unavailable when it would make no
sense to choose them. However, you can always get online Help about
currently unavailable commands.

You can also access local menus using the keyboard. Press Shift+F10, use the
arrow keys to select a command from the menu that appears, and press
Enter. See the following section for more information on local menus.

Borland C++ offers a number of quick ways to choose menu commands.
The click-drag method of selecting a menu item is an example. You can also
use the right mouse button as a shortcut for performing a number of tasks.
Just right-click anywhere on the IDE desktop or press Shift+F10. A local
menu appears. Choose a command from the menu by clicking it with the
mouse or by using the arrow keys to select a command and pressing Enter.
The command then executes.

The particular· local menu that appears depends on which window is
active. There are different local menus for each of four different window
types: Edit, Transcript, Project, and desktop. To familiarize yourself with
the local menus and the capabilities they provide, try opening a local menu
in each new kind of window you encounter.

Menu choices from local menus are referenced by the same notation that is
used for menu choices, except with the window type specified before Local.
For example, Edit Local I Toggle Breakpoint means you should open a local
menu in an edit window and choose the Toggle Breakpoint command.

Borland C++ has a SpeedBar you can use as a quick way to choose menu
commands and other actions with the mouse. The first time you start the
IDE, the SpeedBar is a horizontal grouping of buttons just under the menu
bar. You can use it as it is, change it to be a vertical bar that appears on the
left side of the Borland C++ desktop window, or change it to be a floating
palette you can move anywhere on the IDE desktop. You can also turn it
off. To configure the SpeedBar, turn to the Environment I Desktop subsec­
tion of the Settings notebook and select the setting you want.

The buttons on the SpeedBar represent menu commands. They are
shortcuts for your mouse, just as certain key combinations are shortcuts
when you use your keyboard. To choose a command, click a button with
your mouse. If you click the File I Open button, for example, Borland C++
responds just as if you chose the Open command on the File menu.

The SpeedBar is context sensitive. The buttons that appear on it vary,
depending on which window is active.

19

20

These are the buttons that appear on the SpeedBar, accompanied by their
descriptions that appear on the desktop status bar:

Remove the selected text and put it
in the Clipboard

Place a copy of the selected text in
the Clipboard

Insert text from the Clipboard at
the cursor position

Undo the previous editor action

Locate and open a file

Save the file in the active Edit
window

View the include files for project
item

Repeat last Find or Replace
operation

~
~

Compile the selected file

Bring target up-to-date

Make and run the current program

M
L1!J
Trace into statement

Step over statement

Trace into instruction

Step over instruction

Access online help

Open the Project Manager window

Modify project wide settings and
options

Borland C++ for OS/2 Users Guide

Keyboard shortcuts

Input boxes are
described on

page 27.

Chapter 2, IDE basics

Open the Transcript window Edit selected file

Add an item to the project View selected file

Delete an item from the project

Some of the buttons on the SpeedBar are occasionally dimmed, just as some
menu commands occasionally are. This means that, in the current context,
the command the button represents is not available to you. For example,
the Compile The Selected File button is dimmed if the selected file is not
compilable (for example, if the selected file is a .DEF file).

From the keyboard, you can use a number of keyboard shortcuts (also
known as hot keys) to access the menu bar, choose commands, or work
within dialog boxes. You need to hold down Aft while pressing the high­
lighted letter when moving from an input box to a group of buttons or
boxes. Here's a list of the keyboard shortcuts available:

To accomplish this:

Display the menu, carry
out the command, or select
the button or menu choice

Open the System menu

Open the menu of the
active window

Carry out the command

Do this:

Press Aft plus the underlined letter of the command (in a
dialog box, just press the underlined letter). For the File
menu,you can press A/tby itself or F10.

Press Alt+Spacebar.

Press A/t+- (the Aft key and the - key).

Type the keystrokes next to a menu command.

For example, to cut selected text, press Alt+E T (for Edit I Cut) or you can just
press Shift+Del, the shortcut.

There are also hot keys that perform functions without accessing any
menus by means of a single keystroke. The following tables list the most­
used Borland C++ hot keys.

21

Table 2.1: General hot keys

Hot key Menu item

F1 Help

F10 none

Alt+F4 FilelExit

Alt+FS none

AIt+F7 none

AIt+FB none

AIt+F9 none

AIt+F10 none

Alt+F11 none

Alt+- none

AIt+Spacebar none

Ctrl+F4 WindowlClose

Ctrl+F6 WindowlNext

Table 2.2: Menu hot keys

Hot key Menu item

Alt+C Compile menu

Alt+D Debug menu

AIt+E Edit menu

Alt+F File menu

AIt+H Help menu

AIt+P Project menu

Alt+R Run menu

Alt+S Search menu

Alt+T Tools menu

Alt+W Window menu

22

Function

Displays contextual help screen.

Activates the menu bar.

Exits Borland C++ ..

Restores the desktop to its default size when minimized or maximized.

Lets you move the desktop.

Lets you size the desktop.

Minimizes desktop.

Maximizes desktop.

Hides the desktop.

Opens the active windows system menu.

Opens the desktops system menu.

Closes the active window.

Switches the active window.

Function

Takes you to the Compile menu.

Takes you to the Debug menu.

Takes you to the Edit menu.

Takes you to the File menu.

Takes you to the Help menu.

Takes you to the Project menu.

Takes you to the Run menu.

Takes you to the Search menu.

Takes you to the Tools menu.

Takes you to the Window menu.

Borland C++ for OS/2 Users Guide

Table 2.3: Editing hot keys

Hot key Menu item

Ctrl+lns EditlCopy

Shift+Del EditlCut

Shift+lns EditlPaste

Ctrl+Del EditlClear

Alt+Bksp EditlUndo

AIt+Shift+Bksp EditlRedo

F3 SearchlSearch Again

Table 2.4: Online Help hot keys

Hot key

F1

F1 F1

Shift+F1

Ctrl+F1

Menu item

HelplContents

none

Helpllndex

HelplTopic Search

Table 2.5: Debugging/Running hot keys

Hot key Menu item

F2 Edit LocallToggle
Breakpoint

Ctrl+F9 RunlRun

F4 RunlGo To Cursor

F7 RunlTrace Into

FB RunlStep Over

F9 CompilelMake

Function

Copies selected text to Clipboard.

Places selected text in the Clipboard, deletes selection.

Pastes text from the Clipboard into the active window.

Removes selected text from the window but doesn't put it in the Clipboard.

Restores the text in the active window to a previous state.

"Undoes" the previous Undo.

Repeats last Find or Replace command.

Function

Opens a contextual help screen.

Brings up Help on Help Uust press F1 when you're already in the help
system).

Brings up Help index.

Calls up language-specific help (in the active edit window).

Function

Sets or clears conditional breakpoint.

Runs program.

Runs program to cursor position.

Executes one line, tracing into functions.

Executes one line, skipping function calls.

Makes (compiles'links) program.

Borland C++
windows

Most of what you see and do in the IDE happens in a window. A window is
a screen area that you can open, close, move, resize, minimize, maximize,
tile, and overlap.

Chapter 2, IDE basics 23

If you exit Borland
C++ with a file open
in a window, you are

returned to your
desktop, open file
and all, when you
next use Borland

C++.

24

You can have many windows open in the IDE, but only one window can be
active at any time. Any command you choose or text you type generally
applies only to the active window. (If you have the same file open in
several windows, the action applies to the file everywhere that it's open).

You can spot the active window easily: It's the one with the colored bar at
the top of it. If your windows are overlapping, the active window is usually
the one on top of all the others (the foremost one). The only time the active
window is not on top of all other open windows is when you have a
window open that is not contained on the IDE desktop, such as the Settings
notebook. The Settings notebook is always on top, even when it is not the
active window.

There are several types of windows, but most of them have these things in
common:

• A title bar
• A system menu button

• Scroll bars
• Window sizing buttons

The status line at the bottom of the desktop window also displays the
current line and column numbers of the active edit window. If you've
modified the file in the active window, the word "Modified" appears on the
status line.

The system menu button of a window is the small box in the upper left
comer. Double-click the system menu button to quickly close the window.
You can also press Ctrl+F4, which closes the active window. The Inspector
and Help windows are considered temporary; you can close them by
pressing Esc.

The title bar, the topmost horizontal bar of a window, contains the name of
the window. If the window contains a text file, the window name is the
same as that of the open file. Otherwise, the window name indicates the
function of the window. Click the title bar and move the mouse to drag the
window to a new location. You can also double-click anywhere on the title
bar to maximize the window, or, if it's already maximized, you can double­
click anywhere on the title bar to restore the window to its normal size.

Window sizing buttons appear in the upper right corner of each window. The
sizing buttons consist of a Minimize button, a Maximize button, and a
Restore button. There are at most two of these buttons for each window,
although there can be just one in some cases.

Borland C++ for OS/2 Users Guide

The Maximize and
Restore buttons are
never present at the

same time.

Scroll bars also show
you where you are in

your file.

Window
management

Table 2.6
Manipulating

windows

Chapter 2, IDE basics

Pressing the Minimize button closes the window, and places an icon for it
on the IDE desktop. You can then double-click the icon to restore it to its
previous size.

Pressing the Maximize button opens the window to the full size of the
Borland C++ desktop window. The Maximize button is then replaced by
the Restore button. Pressing the Restore button returns the window to the
same size as when you pressed the Maximize button. The Restore button is
then replaced by the Maximize button.

Scroll bars are horizontal or vertical bars located on the bottom or right side
of a window, respectively. You use these bars to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time. Keep the
mouse button pressed to scroll continuously. You can click the shaded area
to either side of the scroll box to scroll a page at a time. Finally, you can
drag the scroll box to any spot on the bar to quickly move to a spot in the
window relative to the position of the scroll box.

You can drag any corner nr side of a window to make the window larger or
smaller. Dragging a side lets you size the window in only one direction. For
example, if you drag the bottom of the window, you can only make the
window taller or shorter. But if you drag from the corner of a window, you
can make it taller or shorter and wider or thinner.

Table 2.6 gives you a quick rundown of how to handle windows in Borland
C++. Note that you don't need to use the mouse to perform these actions­
a keyboard works just fine.

To accomplish this:

Open an edit window

Open other windows

Close a window

Activate a window

Move the active window

Resize the active window

Do this:

Choose FilelOpen to open a file and display it in a window.

Click its desktop icon, or choose from the list in Window
menu.

Double-click the window's system menu button, choose Close
from the window's menu, or press CtrltF4.

Click anywhere in the window, or choose the window from the
list in the Window menu.

Drag its title bar, or choose Move from the window's system
menu and use the arrow keys to adjust the window position.
Press Enterwhen done.

Drag any corner or side of the window when the mouse
pointer is a double-headed arrow, or choose Size from the
windows system menu and use the arrow keys to adjust the
window size. Press Enterwhen done.

25

The status line

Dialog boxes

Action buttons

26

Table 2.6: Manipulating windows (continued)

Maximize the active window Click the Maximize box in the upper right corner of the
window, or double-click the window's title bar.

The status line appears at the bottom of the IDE desktop. It

• Tells you what the program is doing (for example, when an edit file is
being saved, the status line displays Savingfilename ...).

• Offers one-line hints on any selected menu command and dialog box
items.

• Indicates whether the file has been modified since the last time you saved
it.

• Displays the current line and column position of the cursor when an edit
window is active.

The status line changes as you switch windows or activities. When you've
selected a menu title or command, the status line changes to display a one­
line summary of the function of the selected item.

A menu command with an ellipsis (...) after it leads to a dialog box. Dialog
boxes offer a convenient way to view and change multiple settings. When
you're making settings in dialog boxes, you work with five basic types of
onscreen controls:

• Action buttons

• Radio buttons

• Check boxes

• Input boxes

• List boxes

Many dialog boxes have three standard buttons: OK, Cancel, and Help. If
you choose OK, the choices in the dialog box are accepted; if you choose
Cancel, nothing changes, no action takes place, and the dialog box is closed.
Choosing Help opens a Help window containing information about your
dialog box. Esc is always a keyboard shortcut for Cancel (even if no Cancel
button appears).

To choose an item, click the dialog box button you want. If you want to use
the keyboard, press Aft and the underlined letter of an item to activate it.
For example, if the K in OK is underlined, Alt+K selects the OK button. Press
Tab or Shift+ Tab to move forward or backward from one item to another in a
dialog box. Each element is highlighted when it becomes active.

Borland C++ for OS/2 Users Guide

You can select
another button with
Tab; press Enterto
choose that button.

Radio buttons and
check boxes

Input and list boxes

You can control
whether history lists

are saved to
the desktop; see the

Environmentl Desktop
subsection of the Set­

tings notebook.

Chapter 2, IDE basics

Most dialog boxes also have a default button that you can choose by simply
pressing Enter. You can always tell which button is the default button
because it's highlighted when the dialog box is first opened.

Radio buttons are like car radio buttons. They come in groups, and only
one radio button in the group can be on at anyone time. To choose a radio
button, click it or its text. From the keyboard, select Aft and the highlighted
letter, or press Tab until the group is highlighted and then use the arrow
keys to choose a particular radio button. Press Tab or Shift+Tab again to leave
the group with the new radio button chosen.

Check boxes differ from radio buttons in that you can have any number of
check boxes checked at the same time. When you select a check box, a check
mark appears in it to show you it's on. An empty box indicates it's off. To
change the status of a check box, either click it or its text, press Tab until the
check box is highlighted and then press Spacebar, or select Alt and the
highlighted letter.

If several check boxes apply to a particular topic, they appear as a group. In
that case, tabbing moves to the group. Once the group is selected, use the
arrow keys to select the item you want, and then press Spacebar to check or
uncheck it.

Input boxes let you type in text. Most basic text-editing keys work in the
text box (for example, arrow keys, Home, End, and Ins). If you continue to
type once you reach the end of the box, the contents automatically scroll
right or left as necessary.

If an input box has a down-arrow icon (t) to its right, you can display that
box's history list or choice list. A history list is a list of the text you previously
typed into this box. The Find box, for example, keeps track of and lists the
text you searched for previously. Click the t to display the list. To choose
an item from the list, select it, then press Enter. You can also edit an entry in
the history list, once it's in the input box. Press Esc to exit from the list
without making a selection.

Many dialog boxes also contain a list box, which lets you scroll through and
select from variable-length lists (often file names) without leaving a dialog
box. If a blinking cursor appears in the list box and you know what you're
looking for, you can type the word (or the first few letters of the word) and
Borland C++ searches the list for it.

To make a list box active, click it or choose the highlighted letter of the list
title (or press Tab until it's highlighted). Once a list box is displayed, you

27

can use the scroll box to move through the list or press t or J, from the
keyboard.

Configuration and project files

The configuration
file

Project files

28

IDE configuration files contain information about how you have the IDE
environment configured. Project files contain all the information necessary
to build a project, but don't affect how you use the IDE.

The IDE configuration file, TCCONFIG.TC, contains only environmental
(or global) information, including

• Editor mode setting (such as autoindent, use tabs, and so on).

• Auto-save flags.

The configuration file is not required to build programs defined by a
project. The project (.PRJ) file handles those details.

When you start a programming session, Borland C++ looks for
TCCONFIG.TC first in the current directory and then in the directory that
contains BC.EXE. If you delete TCCONFIG.TC, you can replace it with a
default configuration file. The next time you start the IDE, choose the
Project I Save menu command. Make sure the Environment box is checked
and press OK.

The IDE places all information needed to build a program into a binary
project file, a file with a .PRJ extension. Project files contain the settings for

• Compiler, linker, make, and librarian settings.

• Directory paths.
• The list of all files that make up the project.

• Special translators (such as Turbo Assembler).

In addition, the project file contains other general information on the
project, such as compilation statistics (shown in the project window), and
cached autodependency information .

. PRJ project files correspond to the .CFG configuration files that you supply
to the command-line compiler (the default command-line compiler
configuration file is TURBOC.CFG).

You can load project files in any of the following ways:

• When starting Borland C++ from the OS/2 command line, give the
project name after the BC command; for example,

Borland C++ for OS/2 Users Guide

The project
directory

Desktop files

You can set some of
these settings on or
off using controls in

the Environmentl
Desktop subsection
of the Settings note­

book.

Default files

Chapter 2, IDE basics

Be myproj [. PRJ]

• Specify a project file for a BC icon through the OS/2 Settings notebook.
See page 16 for a description of how to set up project icons.

• If there is only one .PRJ file in the working directory when you start up
the IDE, the IDE assumes that this directory is dedicated to this project
and automatically loads the project file.

• To load a project from within the IDE, select Project I Open Project.

When a project file is loaded from a directory other than the current
directory, the current directory is set to where the project is loaded from.
This allows project items to be located relative to the current directory
instead of by absolute paths, which allows projects to move from one drive
to another or from one directory branch to another.

Each project file can have an associated desktop file (prjname.DSK) that
contains state information about the associated project. While none of its
information is needed to build the project, all of the information is directly
related to the project. The desktop file includes

• The context information for each window of the desktop (for example,
.. your positions in the files or bookmarks).

• The history lists for various input boxes (for example, search strings or
file masks).

• The layout of the windows on the desktop.

• The contents of the Clipboard.

• Watch expressions.

• Breakpoints.

You don't need to have the desktop file to use a project file. If you delete a
desktop file, you can replace it by choosing the Project I Save menu
command. Make sure the Desktop box is checked and press OK.

When no project file is loaded, two default files serve as global placeholders
for project- and state-related information: TCDEF.DPR and TCDEF.DSK
files, collectively referred to as the default project.

These files are usually stored in the same directory as BC.EXE, and are
created if they are not found. When you run the IDE from a directory
without loading a project file, you get the desktop and settings from these
files. These files are updated when you change any project-related settings
(for example, compiler settings) or when your desktop changes (for
example, the window layout).

29

Changing project
files

Syntax
highlighting

Configuring element
colors

30

When you start a new project, the settings from your previous project are in
effect.

Because each project file has its own desktop file, changing to an existing
project file causes the newly loaded project's desktop to be used, which can
change your entire window layout. When you create a new project (by
using Project I Open Project and typing in a new .PRJ file name), the new
project's desktop inherits the previous desktop. When you select Project I
Close Project, the default project is loaded and you get the default desktop
and project settings.

Syntax highlighting helps you easily distinguish various parts of your code.
Different syntax elements are highlighted in different colors for easy
identification. For example, C and C++ keywords are highlighted a
different color from identifiers. So when you look at your file in the editor,
you can quickly pick out keywords from your variables and function
names. Syntax items that are distinguished by syntax highlighting include
the following:

• Breakpoint

• Character
• Comment

• CPU position

• Float
• Hex

• Identifier

• Illegal char

• Integer
.Odal

• Preprocessor

• Reserved word

• String
• Symbol

• Whitespace

Click the Syntax Highlighting check box in the Environment I Editor sub­
section of the Settings notebook to turn syntax highlighting on and off. To
choose the colors, select the Environment I Syntax Hilite subsection of the
Settings notebook.

To change the color of an element, follow these steps:

1. Select the element you want to change in the Element list box, or click a
sample of that element in the code sample.

2. Select the colors you want in the Color dialog box .

• To select a foreground color with your mouse, click the color in the
FG box. To select the color with your keyboard, press Tab until the FG
box is active. Use the arrow keys to move around the box.

'Borland C++ for OS/2 Users Guide

II To select a background color with your mouse, click the color in the
BG box. To select the color with your keyboard, press Tab until the BG
box is active. Use the arrow keys to move around the box.

As you select colors, you'll see the results reflected in the sample code.

3. Close the Settings notebook.

Some basic tasks

Compiling and
linking programs

Making an
application

Building an
application

Chapter 2, IDE basics

This section contains descriptions of some basic tasks you can perform in
the IDE, including compiling, linking, and debugging a program.

You can use the Borland C++ IDE to compile and link both single-file
programs or multiple-file projects. There are a number of ways· you can
compile and/or link your application.

Making an application consists of the following steps:

1. Compile any source files that have been modified since they were last
compiled, that include header files that have been modified, or that'
have not previously been compiled. This includes C and C++ files,
assembly files (.ASM), resource script files (.RC), and any other text files
that are processed into object or binary files.

2. Link the application if any of the link files (that is, object files, libraries,
resource files, module-definition files (.DEF files), and so on) are newer
than the existing executable file, or if there is no existing executable.

If you have a project file open, the project is built, regardless of what the
current active window is. If you are compiling a single-file application
without a project file, the source-file edit window must be the active
window.

To make an application, do one of the following:

III Press F9.

II Choose the Compile I Make menu command.

iii Press the Bring Target Up-to-date SpeedBar button.

Building an application is similar to making an application, except that all
source files are compiled, regardless of whether they've been modified, and
the application is linked. To build an application, choose the Compile I
Build All menu choice.

31

Compiling a file

Linking a file

Debugging an
application

Preparing your
application

32

You can choose to compile a single file as opposed to an entire application.
This compiles the file in the active edit window or, if the Project window is
the active window, compiles the file currently selected in the Project
window. The Project Manager automatically uses the appropriate tool to
compile a file. For example, the IDE uses the C++ compiler to compile a
C++ file and the Resource Compiler to compile a resource script file (.RC
file).

You cannot choose to compile if there are no windows open or if the
Transcript window is the active window.

To compile a file, do one of the following:

• Choose the Compile I Compile menu command .

• Press the Compile The Selected File SpeedBar button.

You can link your object files into an execu~able without processing any
source files, even if the source files have been modified since they were last
compiled. To link an application, choose the Compile I Link menu
command.

Once you have written and compiled your program, you might notice that
it doesn't produce the results you expected. This means you have a bug in
your program. Borland C++ provides integrated debugging to let you track
down program bugs, modify erroneous code, and rebuild your application,
all without leaving the IDE. You can also use the standalone Turbo
Debugger in much the same way as the IDE debugger. The IDE debugger is
actually a functional subset of the standalone debugger. For more
information on debugging, consult the Turbo Debugger User's Guide and the
Turbo Debugger online help.

Before you can debug your application, it needs to contain debugging
information. There are a number of settings that affect what debugging
information is included in your application.

B There are four settings that pertain to debugging information located in
the Compiler I Code Generation Options subsection of the Settings note­
book:

• Line Numbers Debug

• Debug Info In OBJs

• Browser Info In OBJs

• Test Stack Overflow

Borland C++ for OS/2 Users Guide

Debugging
environment

Chapter 2, IDE basics

These settings are described on page 64.

II The Out-of-line Inline Functions setting is located in the Compiler I C++
Options subsection of the Settings notebook. You should usually set this
off unless you think there might be a problem specifically with inlining a
function. This setting is described on page 66.

&I The Include Debug Info settings is located in the Linker I Link Settings
subsection of the Settings notebook. This controls whether debugging
information is linked into the .EXE file. This setting is described on
page 72.

You should set these settings to their appropriate values and rebuild your
application. At a minimum, set the Debug Info In OBJs and Include Debug
Info settings on. These let you debug your program from the source view
or edit window.

After debugging you should set all debugging information settings off. This
decreases the size of your object files and executables.

There are also settings you can use to customize how the integrated
debugger acts during a debugging session.

tJ The Debugger Options section of the Settings notebook contains settings
tha t affect:

• What views the debugger opens in the event of a program exception.

• What actions the debugger takes wh~n displaying a message.

• What syntax the debugger uses when evaluating user-input
expressions.

• How individual types of views behave.

The Debugger Options section settings are described on page 75.

IJ The Debug Source input box in the Directories section of the Settings
notebook lets you specify the directory or directories where the debugger
looks for the source code for libraries that do not belong to the open
project (for example, container class libraries). The Debug Source input
box is described on page 83.

m The SpeedBar options in the Environment I Desktop section let you
specify how you want the SpeedBar displayed on the desktop. Among
other things, the SpeedBar contains buttons that you can use for
debugging. The SpeedBar options are described on page 85.

e The Environment I Syntax Highlighting subsection of the Settings note­
book lets you configure the color of various syntax elements in IDE edit
windows, including the CPU position and breakpoints. You can use this

33

Viewing data
objects

Controlling program
execution

34

to make the currently executing line and any breakpoints stand out for
easy identification. Syntax highlighting is fully explained on page 30.

There are a number of ways you can observe data members from the IDE.

• You can inspect any data member accessible from the current scope using
the Inspector view. To open the Inspector view, choose the Debug I
Inspector menu command or the Edit Local I Inspect command. The
Inspector view displays the variable name and its value. The Inspector
view updates the variable value dynamically as it changes in the
program.

• You can evaluate an expression using data members accessible from the
current scope along with constants. The expression can contain a func­
tion call as long as the function used contains debugging information. To
evaluate an expression, choose the Debug I Evaluator menu command or
the Edit Local I Evaluate command. The Inspector view updates the vari­
able value dynamically as it changes in the program. The Evaluator view
updates the result of the expression dynamically as the variables in the
expression change in the program.

• You can also display more than one data member or expression at a time
using the Watch view. To open the Watch view, choose the Debug I
Watch menu command or the Edit Local I Add Watch command. The
Watch view displays each variable name and its value. The Watch view
updates the variable values dynamically as they change in the program.

To find out where a particular bug is located, you need to be able to stop
the execution of your application and test the values of program variables.
There are a number of ways to stop program execution.

• Set a breakpoint. A breakpoint stops program execution at a specific
point in the program code. To set a breakpoint, position the cursor on the
line where you want execution to break. Press F2 or select Edit Local I
Toggle Breakpoint. When you run the application, the debugger hciJts
execution at the line you set the breakpoint on. You can then inspect the
values of variables, register contents, and so on.

• Set a messagepoint. Messagepoints force the debugger to perform an
action (usually stopping program execution) when the application
receives a, certain message or class of message from the Presentation
Manager.

• Set a datapoint. Datapoints force the debugger to perform an action
(usually stopping program execution) when a certain operation is
performed on a data item or when the data item reaches a certain value.

Borland C++ for OS/2 Users Guide

[B.

c : .. ; .•.••.•.....•
:{}

Chapter 2, IDE basics

• Set an exceptionpoint. Exceptionpoints force the debugger to perform an
action (usually stopping program execution) when the application
prod uces an exception.

To be able to stop program execution, you also need to be able to make
your program execute. There are a number of ways you can execute your
program .

.. The simplest way to execute your program is simply to run it. This
causes execution to begin at the current program counter (or at the
beginning of the program if it hasn't yet been run) and go until it either
encounters an exception, meets the conditions for a breakpoint,
datapoint, exceptionpoint, or messagepoint, or reaches the end of the
program. To run your program do one of the following: .

• Press Ctrl+F9.
• Choose the Run I Run menu command.

• Press the Make And Run The Current Program SpeedBar button.

rI You can also start your program running and have it automatically stop
at the current cursor position. To run your program to the current cursor
position, do one of the following:

• Press F4.
• Choose the Run I Run To Cursor menu command or the Edit Local I

Run To Cursor command.

II You can execute your program incrementally, that is, step by step~
Stepping over a statement executes the next line in your program. If that
line is a function call, the function is executed as if it were a single
statement. Execution stops at the line after the function call. To step over
a statement, do one of the following:

• Press FB.
• Choose the Run I Step Over command or the Edit Local I Step Over

command.

• Press the Step Over Statement SpeedBar button .

II Like stepping over a statement, tracing into a statement executes the next
line in your program. But if that line is a function call, execution stops at
the first line of the called function, letting you examine local variables
and step through the function line by line. To trace into a statement, do
one of the following:

• Press F7.
• Choose the Run I Trace Into command or the Edit Local I Trace Into

command.

35

36

;'~ .. ,,,,
o·

• Press the Trace Into Statement SpeedBar button .

• There are also tracing and stepping equivalents for executing machine
statements:

• Press the Step Over Instruction SpeedBar button to execute the next
assembly statement. If the next statement is a call statement, the call is
executed as if it were a single statement. Execution stops at the line
after the call statement.

• Press the Trace Into Instruction SpeedBar button to execute the next
assembly statement. But if the next statement is a call statement, execu-
tion stops at the first line of the called routine. .

Borland C++ for OS/2 Users Guide

c H A p T E R 3

Menus and options reference

This chapter provides a reference to each menu option in the IDE. It is
arranged in the order that the menus appear on the screen. For information
on starting and exiting the IDE, using the IDE command-line options, and
general information on how the IDE works, see Chapter 2.

Alt+F4 Next to some of the menu option descriptions in this reference you'll see
keyboard shortcuts, or hot keys. For example, when you see Alt+F4 beside a
description, it means that is a hot key for that option.

File menu

AIt+F

New

Open

The File menu lets you open and create program files in edit windows. The
menu also lets you save your changes, perform other file functions, and
quit the IDE.

The File I New command lets you open a new edit window with the default
name NONAMExx.CPP (the xx stands for a number from 00 to 63). These
NONAME files are used as a temporary edit buffer; the IDE prompts you
to name a NONAME file when you save it.

The File I Open command displays a file-selection dialog box for you to
select a program file to open in an edit window: The dialog box contains an
input box, a drive selection box, a file type selection box, a file list, a
directory list, and buttons labeled OK, Cancel, and Help. You can do any of
these things:

• Type a full file name in the input box and press the Open button. Open
loads the file into a new edit window.

II Type a file name with wildcards in the input box, which filters the file list
to match your specifications .

.. Press J, while the cursor is in the input box to choose a file specification
from a history list of file specifications you've entered earlier.

Chapter 3, Menus and options reference 37

FilelOpen

Using the File list
box

Save

Save As

38

• View the contents of different directories on your current drive by
selecting a directory name from the directory list.

• View the contents of different drives by selecting a different drive name
in the drive selection box.

• Close the dialog box by pressing the Cancel button or Esc.

• Get help regarding opening a file by pressing the Help button.

The input box lets you enter a file name explicitly or with standard OS/2
wildcards (* and ?)to filter the names appearing in the file list box. If you
enter the entire name and press Enter, Borland C++ opens it. (If you enter a
file name that Borland C++ can't find, it automatically creates and opens a
new file with that name.)

If you press Alt+J, when the cursor is blinking in the input box, a history list
drops down below the box. This list displays the last 15 file' names or file
name masks you've entered. Choose a name from the list by double­
clicking it or selecting it with the arrow keys and pressing Enter.

Once you've typed in or selected the file you want, choose the Open button
(choose Cancel if you change your mind). You can also just press Enter after
the file is selected, or you can double-click the file name in the file list.

In the file list and directory list, you can type any letter to search for a file or
directory name that begins with that letter.

The file list box displays all file names in'the current directory that match
the specifications in the input box. Click in the file list box or press Tab until
the first name in the file list box is highlighted. You can now press J, or i
to select a file name, and then press Enter to open it. You can also double­
click any file name in the box to open it. You might have to scroll the box to
see all the names.

The File I Save command saves the file in the active edit window to disk
(this menu item is disabled if there's no active edit window). If the file has a
default name (NONAMEOO.CPP, or the like), the IDE opens the Save File
As dialog box to let you rename and save it in a different directory or on a
different drive. This dialog box is identical to the one opened for the Save
As command, described next.

The File I Save As command lets you save the file in the active edit window
under a different name, in a different directory, or on a different drive.
Enter the new name, optionally with drive and directory, and click or
choose OK. If the file is open in more than one window, then Borland C++
updates each of those windows with the new name.

Borland C++ for OS/2 Users Guide

Save All

Print

Exit

Closed File
Listing

FilelSave All

The File I Save All command works just like the Save command except that
it saves the contents of all modified files, not just the file in the active edit
window. This command is disabled if no edit windows are open.

The File I Print command lets you print the contents of the active edit
window or the Transcript window. This command is disabled if the active
window can't be printed.

You can also print the contents of the Transcript window.

The File I Exit command exits the IDE and removes it from memory. If you
Alt+F4 have made any changes that you haven't saved, the IDE asks you if you

want to save them before exiting.

If you have opened files and then closed them, you'll see the last five files
listed at the bottom of the File menu. If you select the file name on the
menu, Borland C++ opens the file. To reduce the clutter on the IDE desktop
when you work with many files, you can close some, then open them again
quickly using the list.

Edit menu

Alt+E The Edit menu lets you cut, copy, and paste text in edit windows. If you
make mistakes, you can undo changes and even reverse the changes you've
just undone. You can also copy text from the Transcript window or the
Help examples.

Before you can use most of the commands on this menu, you need to know
about selecting text (because most editor actions apply to selected text).
Selecting text means highlighting it. You can select text either with
keyboard commands or with a mouse; the principle is the same even
though the actions are different.

From the keyboard:

• Press Shift while pressing any key that moves the cursor.

See page 144 in Appendix B for additional text selection commands.

Chapter 3, Menus and options reference 39

Edit

Undo

AIt+Backspace

Undo can undo
groups of commands.

Redo

AIt+Shift+Backspace

40

With a mouse:

• To select text with a mouse, drag the mouse pointer over the desired text.
If you need to continue the selection past a window's edge, just drag off
the side and the window automatically scrolls.

• To select a single word, double-click it.

• To extend or reduce the selection, Shift-click anywhere in the document
(that is, hold Shift and click).

Once you have selected text, the Cut, Copy, and Clear commands in the
Edit menu become available.

The IDE uses the OS/2 Clipboard to hold text that you have cut or copied,
so you can paste it elsewhere. The Clipboard works in close concert with
the commands in the Edit menu.

Here's an explanation of each command in the Edit menu.

The Edit I Undo command restores the file in the current window to the
way it was before the most-recent edit or cursor movement. If you continue
to choose Undo, the editor continues to reverse actions until your file
returns to the state it was in when you began your current editing session.

Undo inserts any characters you deleted, deletes any characters you
inserted, replaces any characters you overwrote, and moves your cursor
back to a prior position. If you undo a block operation, your file appears as
it did before you executed the block operation. However, Undo does not
change the contents of the OS/2 Clipboard. If you cut a section of text, then
restore it by using Undo, the text still remains in the Clipboard.

Undo doesn't change a setting that affects more than one window. For
example, if you use the Ins key to change from Insert to Overwrite mode,
then choose Undo, the editor won't change back to Insert mode.

The Group Undo setting in the Environment I Editor subsection of the Set­
tings notebook affects Undo and Redo. See page 86 for information on
Group Undo.

The Edit I Redo command reverses the effect of the most recent Undo
command. The Redo command only has an effect immediately after an
Undo command or after another Redo command. A series of Redo
commands reverses the effects of a series of Undo commands.

Borland C++ for OS/2 Users Guide

Cut

Copy

Paste

Clear

Shift+Del

Ctrl+lns

Shift+lns

EditlCut

The Edit I Cut command removes the selected text from your document and
places the text in the Clipboard. You can then paste that text into any other
document (or somewhere else in the same document) by choosing Edit I
Paste, or by pressing Shift+lns. The text remains in the Clipboard so that you
can paste the same text many times.

The PM Help system supports copying help text to the Clipboard. The
procedure is described on page 54.

The Edit I Copy command leaves the selected text intact but places a copy of
it in the Clipboard. You can then paste the text into any other document by
choosing Paste.

If the Transcript window is the active window when you select Edit I Copy,
the entire contents of the window buffer (including any nonvisible portion)
is copied to the Clipboard.

The Edit I Paste command inserts text from the Clipboard into the current
edit window at the cursor position.

The Edit I Clear command removes the selected text but does not put it into
the Clipboard. This means you cannot paste the text as you could if you

Ctrl+Del had chosen Cut or Copy. The cleared text is not retrievable unless you use
the Edit I Undo command. Clear is useful if you want to delete text, but you
don't want to overwrite text being held in the Clipboard.

Search menu

Find

Alt+S The Search menu lets you search for text within an IDE desktop window.

The Search I Find command displays the Find Text dialog box, which lets
you type in the text you want to search for and set options that affect the
search. There is also a SpeedBar icon for Search.

Check the Case Sensitive box if you :want the IDE to differentiate uppercase
from lowercase.

Check the Whole Words Only box if you want the IDE to search for words
only (that is, the string must have punctuation or space characters on both
sides).

Chapter 3, Menus and options reference 41

SearchlFind

42

Table 3.1
Search-string

wildcards

Check the Regular Expression box if you want the IDE to recognize GREP­
like wildcards in the search string. The wildcards are'" $,., *, +, [], \, {x}, \i
(0 <= i <= 9), (x), \<, \>, I, x?, \ t, \xhh, \dddd, and \c. Here's what they
mean:

Wildcards Description

A circumflex at the start of the string matches the start of a line.

$ A dollar sign at the end of the expression matches the end of a line.

A period matches any character.

A character followed by an asterisk matches any number of occurrences (including
zero) of that character. For example, bo* matches b, bo, boo, booo, and so on.

+ A character followed by a plus sign matches any number of occurrences (but not zero)
of that character. For example, bot matches bo, boo, booo, and so on, but not b.

[] Characters in brackets match anyone character that appears in the brackets but no
others. For example [bot] matches b, 0, or t. -

["] A circumflex at the start of the string in brackets means not. Hence, [Abot] matches any
characters except b, 0, or t.

[-] A hyphen within the brackets signifies a range of characters. For example, [b-o]
matches any character from b through 0.

A backslash before a wildcard character tells Borland C++ to treat that character
literally, not as a wildcard. For example, I" matches A and does not look for the start of a
line.

{x} Enclosing an expression in curly braces "tokenizes" it, which lets you use a string that
matches the expression in your replacement string. Tokens are named from left to right,
starting at O. For example, suppose you want to search for the expression in{*}de and
change the first two letters to pre. You would search for the expression in{*}de, and
replace it with the expression pre lOde. Thus the word include would become preclude.
Because the * inside the curly braces matches with the string clu in include, 10
represents clu.

(x) You can use parentheses to group together regular expressions, much like you do in a
language statement. See the explanation of the I symbol for an example using (x).

\< k means that the expression must be located at the beginning of a word. For example, I
<keep matches keeper, but not bookkeeper.

\> I> means that the expression must be located at the end of a word. For example, I
>keep matches barkeep, but not keeper.

You can use k and I> to force a word search. For example, kk*pl> matches keep, but
not keeper or barkeep.

You can use this to match one of a number of sequences in an expression. For
example, the expression (bjkjs)een would match the words been, keen, and seen.

Borland C++ for OS/2 Users Guide

Replace

SearchlFind

Table 3.1: Search-string wildcards (continued)

c? This tells Borland C++ to search for one or no appearances of c (which can be any
character). For example, the string I?ama matches both ama and lama.

\t This matches a tab character.

\xhh This matches a character with the ASCII value of hexadecimal hh.

\dddd This matches a character with the ASCII value of decimal ddd. For example, /d64
matches the character '@.'

\c Specifying this anywhere in a regular expression tells the editor to place the cursor in
the string when Ic is placed. For example, if you search for the string alcbc, the editor
would place the cursor after the a.

Enter the string in the input box and choose OK to begin the search, or
choose Cancel to forget it. If you want to enter a string that you searched
for previously, press Alt+J, to show a history list to choose from.

You can also pick up the word that your cursor is currently on in the edit
window and use it in the Find Text box by simply invoking Find from the
Search menu.

Choose from the Direction radio buttons to decide which direction you
want the IDE to search-starting from the origin (which you can set with
the Origin radio buttons).

Choose from the Scope buttons to determine how much of the file to search
in. You can search the entire file (Global) or only the text you've selected.

Choose from the Origin buttons to determine where the search begins.
When Entire Scope is chosen, the Direction radio buttons determine
whether the search starts at the beginning or the end of the scope. You
choose the range of scope you want with the Scope radio buttons.

The Search I Replace command displays the Replace Text dialog box that
lets you type in text you want to search for and text you want to replace it
with. The Replace Text dialog box contains several radio buttons and check
boxes-many of which are identical to the Find Text dialog box, discussed
previously. An additional checkbox, Prompt on Replace, controls whether
you're prompted for each change.

Enter the search string and the replacement string in the input boxes and
choose OK or Change All to begin the search, Cancel to forget it, or Help to
open online Help for the Replace box. If you want to enter a string you
used previously, press AIt+J, to show a history list to choose from.

If the IDE finds the specified text and Prompt on Replace is on, it asks you
if you want to make the replacement. If you choose OK, it finds and

Chapter 3, Menus and options reference 43

SearchlSearch Again

Search Again

Go to Line
Number

Run menu

F3

Alt+R

Run

Ctrl+F9

If you want to have all
Borland C++S de­
bugging features

available, turn the
debugging

settings on.

Using the same
source code

Using modified
source code

44

replaces only the first instance of the search item. If you choose Change All,
it replaces all occurrences found, as defined by Direction, Scope, and
Origin.

The Search I Search Again command repeats the last Find or Replace
command. All settings you made in the last dialog box used (Find or
Replace) remain in effect when you choose Search Again. There is also a
SpeedBar icon for Search Again.

The Search I Go to Line Number command prompts you for the line
number you want to find.

The Run menu's commands run your program and let you specify optional
command-line arguments for your program.

The Run I Run command runs your program, using any arguments you
pass to it with the Run I Arguments command. If the source code has been
modified since the last compilation, it also invokes the Project Manager to
recompile and link your program. The Project Manager is a program­
building tool incorporated into the IDE; see Chapter 5, "Managing multi­
file projects," for more on this feature.

If you don't want to debug your program in Borland C++, you can compile
and link it with the debugging settings turned off (which makes your
program link faster) in the Code Generation Options subsection of the
Compiler section in the Settings notebook. If you compile your program
with the debugging settings on, the resulting executable code contains
debugging information that affects the behavior of the Run I Run command
in the following ways.

If you have not modified your source code since the last compilation, the
Run I Run command causes your program to run to the next breakpoint, or
to the end if no breakpoints have been set.

If you have modified your source code since the last compilation, and
you're already stepping through your program using the integrated
debugger, Run I Run prompts you to ask whether you want to rebuild your
program.

Borland C++ for OS/2 Users Guide

Step Over

FB

Trace Into

F7

Run To Cursor

F4

Reset

Run Arguments

RunlRun

• If you answer yes, the Project Manager recompiles and links your pro­
gram, and sets it to run from the beginning .

• If you answer no, your program runs to the next breakpoint or to the end
if no breakpoints are set.

Alternatively, if you have modified your source code since the last
compilation but you're not in an active debugging session, the Project
Manager recompiles your program and sets it to run from the beginning.

The Run I Step Over command causes Borland C++ to execute the next line
in your program. If that line is a function call, the function is executed as if
it were a single statement. Execution stops at the line after the function call.

The Run I Trace Into command causes Borland C++ to execute the next line
in your program. If that line is a function call, execution stops at the first
line of the called function, letting you examine local variables and step
through the function line by line.

The Run I Run To Cursor command begins program execution from the
current program counter and runs it until it encounters the line at which
the cursor is positioned. The debugger halts execution, letting you test the
state of your program.

The Run I Reset command resets the program counter to the beginning of
your program, clearing all allocated memory. After resetting your program,
it is in essentially the same state it was in before you began running it.

The Run I Run Arguments command lets you give your running programs
command-line arguments exactly as if you had typed them on the OS/2
command line or specified them in program's Setting notebook. OS/2 redi­
rection commands such as < or > are ignored.

When you choose this command, a dialog box appears with a single input
box. You only need to enter the arguments here, not the program name.
Arguments take effect when your program starts.

If you are already debugging and want to change the arguments, select
Run I Reset and Run I Run to start the program with the new arguments.

Chapter 3, Menus and options reference 45

Compile

Compile menu

AIt+C

Compile

Make

F9

Link

Build All

46

Use the commands on the Compile menu to compile the program in the
active window or to make or build your project. To use the Compile, Make,
Build, and Link commands, you must have a file open in an active edit
window or a project defined.

The Compile I Compile command compiles the file in the active edit
window. If the Project or Transcript window is active, Compile I Compile
compiles the highlighted file.

When the compiler is compiling, the Transcript window opens up to
display the compilation progress and results. If any errors or warnings
occurred, they are displayed in the Transcript window.

The Compile I Make command invokes the Project Manager to compile and
link your source code to the target executable or library.

Compile I Make rebuilds only the files that aren't current.

The target file name listed is derived from one of two names in the
following order:

• Project file (.PRJ) specified with the Project I Open Project command .

• Name of the file in the active edit window. If no project is defined, you'll
get the default project defined by the file TCDEF.DPR.

The extension given to the output file depends on what type of application
the file is.

The Compile I Link command takes the files defined in the current project
file or the defaults and links them.

This command is similar to Compile I Make except that it rebuilds all the
files in the project whether or not they are current. It performs the
following steps:

1. Deletes the appropriate precompiled header (.CSM) file, if it exists.

2. Deletes any cached auto dependency information in the project.

3. Sets the date and time of all the project's .OBJ files to zero.

4. Does a make.

Borland C++ for OS/2 Users Guide

Break

Ctrl+Break

Compilel Break

If you abort a Build All command by choosing the Compile I Break menu
command, pressing Ctrl+Break, or getting errors that stop the build, you can
pick up where it left off by choosing Compile I Make.

Choosing the Break command while building a program terminates the
build process.

Debug menu

A/t+D The commands on the Debug menu control all the features of the inte­
grated debugger. You can access these features through windows known as
views. Each Debug menu command opens a view that lets you perform
such tasks as setting breakpoints, viewing the disassembled program code,
and evaluating expressions.

Each view provides a special local menu for debugging; this feature is not
available directly through the IDE menus. You can access the local menu
for a view by right-clicking anywhere in the view, or by pressing Shift+F10.
For an explanation of the features of an individual view, press Ctrl+F1 or
choose the Help I Topic Search menu command while the view is active. For
more information on local menus, see page 19.

Debugging can be affected by the settings in the following sections of the
Settings notebook:

EI The settings in the Compiler I Code Generation Options subsection affect
what types of debugging information the compiler includes in generated
object code modules.

EI The Include Debug Info setting in the Linker I Link Settings subsection
affects whether debugging information is linked into your executable
module.

III The Debugger section affects how the Borland C++ integrated debugger
performs in the IDE environment.

m The Debug Source box in the Directories section specifies the directories
where the Borland C++ integrated debugger looks for the source code for
libraries that do not belong to the open project (for example, container
class libraries).

II The Environment I Syntax Highlighting subsection of the Settings note­
book lets you configure the color of various syntax elements in IDE edit
windows, including the CPU position and breakpoints. This lets you
make the currently executing line and any breakpoints stand out for easy
identifica tion.

Chapter 3, Menus and options reference 47

OebuglBreakpoints

Breakpoints

Messagepoints

Datapoints

Exceptionpoints

Source

Disassembly

Variable

Call Stack

48

The Breakpoints command opens the Breakpoint view. You can use the
Breakpoint view to set, modify, and delete program breakpoints.
Breakpoints are places in your program where the debugger performs a
prescribed action (such as breaking execution or evaluating an expression),
letting you inspect the state of program variables and objects.

You can also set and clear a breakpoint at the current cursor position by
pressing F2 or by choosing the Edit Local I Toggle Breakpoint command. If
there is already a breakpoint on the current line, either action removes the
breakpoint. If there is not a breakpoint, either action sets a breakpoint on
the current line.

The Messagepoints command opens the Messagepoint view. Y-ou can use
the Messagepoint view to set, modify, and delete messagepoints. Message­
points force the debugger to perform an action when the application
receives a certain message or class of messages from the Presentation
Manager, letting you inspect the state of your application.

The Datapoints command opens the Datapoint view. You can use the Data­
point view to set, modify, and delete datapoints. Datapoints force the
debugger to perform an action when a certain operation is performed on a
data item or when the data item reaches a certain value.

The Exceptionpoints command opens the Exceptionpoint view. You can
use the Exceptionpoint view to set, modify, and delete exceptionpoints.
Exceptionpoints force the debugger to perform an action when the applica­
tion produces an exception.

The Source command opens a Source view. A Source view in the IDE is the
same as an editor window.

The Disassembly command opens a Disassembly view. This displays the
disassembled program code for your application.

The Variable command opens a Variable view. This displays the names and
values of all variables local to the current function.

The Call Stack command opens a Call Stack view. This displays the current
state of the program call stack.

Borland C++ for OS/2 Users Guide

Watch

Evaluator

Inspector

Thread

Memory

Registers

Numeric
Processor

Heap

Hide Windows

Show Windows

DebuglWatch

The Watch command opens a Watch view. You can use the Watch view to
monitor the values of multiple variables.

The Evaluator command opens a Evaluator view. The Evaluator view lets
you evaluate an expression.

The Inspector command opens a Inspector view. You can use the Inspector
view to display the contents of a variable, follow pointers, change the value
of a variable, and so on.

The Thread command opens a Thread view. The Thread view displays the
current function, process ID, thread ID, and status of each of your
application's threads.

The Memory command opens a Memory view. You can use the Memory
view to display the contents of a certain area of memory, change the
contents, search for a string in memory, and so on.

The Registers command opens a Register view. The Register view lets you
view the contents of the CPU registers. You can also modify the contents of
the registers.

The Numeric Processor command opens a Numeric Processor view. The
Numeric Processor view lets you see the contents of the numeric processor
registers. You can also modify the contents of the numeric processor
registers.

The Heap command opens the Heap view. The Heap view lets you display
and modify the program heap.

The Hide Windows command hides all debugger views that are currently
open.

The Show Windows command opens all debugger views that have been
hidden using the Hide Windows command.

Chapter 3, Menus and options reference 49

DebuglShow Windows

Tools menu

Alt+T

View Transcript

Previous Error

Next Error

Remove
Messages

Transfer items

50

The Tools menu contains a number of customizable commands that you
can use to perform functions that the IDE does not provide itself. The Tools
menu also provides facilities to track error messages displayed in the
Transcript window.

The Tools I View Transcript command brings the Transcript window to the
front of the desktop. If the Transcript window was previously closed it is
reopened, then brought to the front.

The Tools I Previous Error command moves the cursor to the location of the
previous error or warning message. This command is available only if there
are messages in the Transcript window that have associated line numbers.

The Tools I Next Error command moves the cursor to the location of the
next error or warning message. This command is available only if there are
messages in the Transcript window that have associated line numbers.

The Compile I Remove Messages command removes all messages from the
Transcript window.

At the bottom of the Tools menu are the names of various programs you
can execute from the IDE. You can use the Transfer section of the Settings
notebook to customize the programs listed here.

A program that appears here on the Tools menu can be run directly from
the IDE. You can install or delete programs here through the Transfer
section of the Settings notebook. To run one of these programs, choose its
name from the Tools menu.

If you have more than one program installed with the same shortcut letter
on this menu, the first program listed with that shortcut is selected. You can
select the second item by clicking it or by using the arrow keys to move to it
and then pressing Enter.

To provide error tracking for tools you place on the Tools menu, you can
write a transfer filter that directs the output from the tool to the IDE
Transcript window. Borland provides transfer filters for a number of tools
that are contained on the default Tools menu: GREP2MSG.EXE for GREP,
IMPL2MSG.EXE for IMPLIB, BRCC2MSG.EXE for the Resource Compiler,
RC2MSG.EXE for the Resource Binder, and TASM2MSG.EXE for Turbo
Assembler (TASM). We've included the source code for these filters so you

Borland C++ for OS/2 Users Guide

Project

can write your own filters for other transfer programs you install. This is
explained in more detail in the online file UTIL.DOC.

Project menu

Open Project

Close Project

View Project

View Settings

Add Item

AIt+P The Project menu contains all the project management commands to

• Create a project.

II Add or delete files from your project.

• View included files for a specific file in the project.

II Set local options for a single file within a project.

The Open Project command displays the Open Project File dialog box,
which lets you select and load a project or create a new project by typing in
a name.

This dialog box lets you select a file name similar to the File I Open dialog
box, discussed on page 37. The IDE uses the file you select as a project file,
which is a file that contains all the information needed to build your
project's executable. Borland C++ uses the project name when it creates the
.EXE, .DLL, or .LIB file and .MAP file. A typical project file has the
extension .PRJ.

Choose Project I Close Project when you want to remove your project and
return to the default project.

The Project I View Project command brings the Project window to the front
of the desktop. If the Project window was previously closed it is reopened,
then brought to the front.

The Project I View Settings command opens the Settings notebook for the
current project. You can use the Settings notebook to view and modify
various settings for your projects. See Chapter 4, "Settings notebook" for
more information about the Settings notebook.

Choose Project I Add Item when you want to add a file to the project's file
list. This brings up the Add to Project List dialog box.

This dialog box is set up much like the Open a File dialog box (File I Open).
Choosing the Add button puts the currently highlighted file in the Files list
into the Project window. The chosen file is added to the Project window

Chapter 3, Menus and options reference 51

ProjectlAdd Item

Delete Item

Local Options

Include Files

Generate Makefile

52

File list immediately after the highlight bar in the Project window. The
highlight bar is advanced each time a file is added (when the Project
Window is active, you can press Ins to add a file).

Choose Project I Delete Item when you want to delete the highlighted file in
the Project window. When the Project window is active, you can press Del
to delete a file.

The following command-line options are not supported: c, Efilename, e,
Ipathname, L, lx, M, Q, y.

The Local Options command opens the Override Options dialog box. This
dialog box lets you include command-line override options for a particular
project-file module. It also lets you give a specific path and name for the
object file and lets you choose a translator for the module.

Any program you installed in the Modify /New Transfer Item dialog box
with the Translator box checked appears in the list of Project File
Translators (see page 90 for information on the Modify/New Transfer Item
dialog box).

Check the Exclude Debug Information setting to prevent debug informa­
tion included in the module you've selected from going into the .EXE.

Use this switch on already debugged modules of large programs. You can
change which modules have debug information simply by checking this
box and then re-linking (no compiling is required).

Check the Exclude from Link option if you don't want this module linked
in.

Choose Project I Include Files to display the Include Files dialog box or, if
you're in the Project window, press the Spacebar. If you haven't built your
project yet, the Project I Include Files command is disabled.

The Include Files dialog box displays a list of all the include files included
by the selected project item, including files included by other include files.
You can scroll through the list of files displayed. Select the file you want to
view and press Enter. Borland C++ then opens the file in an edit window.

The Generate Makefile command produces a makefile that you can use
with the Borland Make utility to generate your application from the OS/2
command line. The makefile is given the name PRJ_NAME.MAK.

Borland C++ for OS/2 Users Guide

Save

Window menu

Alt+W

Tile

Cascade

Arrange Icons

Close All

Open Windows
Listing

Project/Save

The Project I Save opens the Save Options dialog box, which lets you save
the environment, desktop, project, or any combination of these three. To set
anyone of these on or off, click the corresponding radio button. To save the
desired attributes, press OK. To close the Save Options dialog box without
saving anything, press Cancel. These are saved only if they've been
changed since the last time they were saved.

The Window menu contains window management commands. Most of the
windows you open from this menu have all the standard window elements
like scroll bars, a system menu button, and a Minimize and Maximize
button. Refer to page 23 for information on these elements and how to use
them.

Choose Window I Tile to tile all open windows on the IDE desktop, includ­
ing your edit windows, the Project window, and the Transcript window.

Choose Window I Cascade to stack all open windows on the IDE desktop,
including your edit windows, the Project window, and the Transcript
window.

Choosing Window I Arrange Icons rearranges any icons on the IDE desktop
so they are evenly spaced, beginning at the lower left corner of the desktop
window.

Close All closes all open windows on the Borland C++ desktop.

At the bottom of the Window menu is a list of windows open on the
Borland C++ desktop. If there are more than ten open windows, the last
choice on the menu is More. Choosing this replaces the list of windows
currently on the menu with other open windows. You can use this to page
through all the open windows on your desktop. Choosing a window makes
that window the active one.

Chapter 3, Menus and options reference 53

Help

Help menu

54

The Help menu gives you access to online Help in a special window. There
is help information on virtually all aspects of the IDE and Borland C++.
(Also, one-line menu and dialog box hints appear on the status line
whenever you select a command.)

To open the Help window in Borland C++, do one of these actions:

F1 • Press F1 at any time (including from any dialog box or when any menu
command is selected). Every item in a dialog box has its own context­
sensitive help.

• When an edit window is active and the cursor is positioned on a word,
press Ctrl+F1 to get language help on that word.

• Click Help whenever it appears in a dialog box.

II While in the IDE desktop, press Alt+H to go to the Help menu.

To close the Help window, press Esc, double-click the system menu button,
or press Ctrl+F4. You can keep the Help window onscreen while you work in
another window unless you opened the Help window from a dialog box or
pressed F1 when a menu command was selected.

Help screens often contain links (highlighted text) that you can choose to
get more information. Press Tab to move to any link; press Enter to get more
detailed help about the highlighted link. As an alternative, use the arrow
keys to move the cursor to the highlighted link and press Enter. With a
mouse, you can double-click any link to open the help text for that item.

You can also move the cursor to any open window on the Borland C++
desktop (other than a Help window) and press Ctrl+F1 on any word to get
help. If the word is not found, the Help system performs an incremental
search through all its files and the closest match displayed.

When the Help window is active, you can copy from the window and paste
that text into an edit window. You do this just the same as you would in an
edit window: Select the text first, choose Edit I Copy, move to an edit
window, then choose Edit I Paste.

You can copy example code from Help topics and compile it or use it in the
program you are writing. There are two ways to do this:

• To copy the contents of a Help window to the OS/2 Clipboard,

1. Make the Help window from which you want to copy text active by
clicking anywhere in the window.

Borland C++ for OS/2 Users Guide

Contents

F1

Index

Shift+F1

Help

2. Select Copy from the Services menu of the Help window, or press
Ctrl+lns. The contents of the Help window are now stored in the OS/2
Clipboard.

3. You can paste the selected text into an editor window by pressing
Shift+lns while the window is active.

II To copy the contents of a Help window to a file,

1. Make the Help window you want to copy from active by clicking
anywhere in the window.

2. Select Copy To File from the Services menu of the Help window, or
press Ctrl+F. The contents of the Help window are now stored in a file
named TEXT.TMP in the current directory. You can edit this file using
any text editor.

TEXT.TMP is overwritten every time you use the Copy To File com­
mand, so you should probably rename the file before you continue.

If you want to copy more than one topic into a file, follow the same
procedure, but use the Append To File command instead of Copy To
File.

For both of these methods, you can copy the contents of an entire window
only. You might need to edit the copied text to remove any additional text
that was copied along with the example code.

Borland C++ for OS/2 uses the OS/2 Help system. If you know how to use
Help in other OS/2 applications, you'll know how to get help in Borland
C++.

The Help I Contents command opens the Help window with the main table
of contents displayed. From this window, you can branch to any other part
of the help system.

You can get help on Help by pressing F1 when the Help window is active.
You can also reach this screen by clicking on the status line.

The Help I Index command displays an index of the Borland C++ Help
system, letting you quickly locate any subject for which you need help.

You can scroll or search the list by pressing letters from the keyboard.
When you type a letter, the cursor jumps to the first index heading that
starts with that letter. Press it again, and the cursor goes on to the first
subheading that starts with that letter. If there is no subheading that starts
with that letter, the cursor goes to the first heading that starts with that
letter.

Chapter 3, Menus and options reference 55

HelplTopic Search

Topic Search

Ctrl+F1

Essentials

Language
Reference

Error Messages

Tasks

Menus

Keyboard

Using Help

F1+F1

56

When you find an index entry that interests you, choose it by placing the
cursor on it and pressing Enter (you can also double-click it).

The Help I Topic Search command displays language help on the currently
selected item.

To get language help, position the cursor on an item in an edit window and
choose Topic Search. You can get help on things like function names (printf,
for example), header files, reserved words, and so on. If an item is not in
the help system, the help index displays the No Help Available window.

The Help I Essentials command contains a description of the differences
between the Borland C++ IDE for DOS and Windows and the IDE for
OS/2. It also contains a list of online files. If you have used Borland C++
under one of these other operating systems, you can use this facility to help
find your way around easily.

The Help I Language Reference command provides an alphabetical
reference to the Borland C++ standard run-time library, including the
Borland C++ class libraries.

The Help I Error Messages command provides a complete description of
compile- and run-time error messages, with some suggestions for fixing the
error condition.

The Help I Tasks command contains descriptions of how to perform a num­
ber of common tasks using the Borland C++ IDE, including compiling and
linking files.

The Help I Menus command provides an online summary of all IDE menu
choices.

The Help I Keyboard command provides an online summary of all IDE
keyboard shortcuts.

The Help I Using Help command opens up a text screen that explains how
to use the Borland C++ help system. If you're already in help, you can
bring up this screen by pressing Ft.

Borland C++ for OS/2 Users Guide

About Borland
C++

HelplAbout Borland C++

When you choose this command, a dialog box appears that shows you
copyright and version information for Borland C++ for OS/2. Click OK or
press Enter to close the box. .

Chapter 3, Menus and options reference ,57

58 Borland C++ for OS/2 Users Guide

c H A p T E R 4

Settings notebook

The Settings notebook lets you view and change various settings in Borland
C++ by paging through a graphic notebook containing several sections and
subsections. Each section and subsection contains groups of related
settings. You can use these settings to customize the behavior of the IDE
editor, compiler, linker, and so on.

Using the Settings notebook

Getting around

To open the Settings notebook, choose Project I View Settings from the
menu bar.

Unlike other windows in Borland C++ for OS/2, you cannot minimize the
Settings notebook. You can move the notebook so that you can see the IDE
desktop as you change settings in the notebook.

You can close the Settings notebook in four ways:

.. Double-click the system menu button.

II Click the system menu button and choose Close.

II Press Alt+Spacebar and choose Close.

II Press AIt+F4.

Sections in the Settings notebook are graphically represented by divider
tabs on the right edge of the notebook. Subsections are denoted by divider
tabs on the bottom edge of the notebook. The subsection tabs change
according to which section you're currently viewing. Because some sections
don't have any subsections, there are no tabs along the bottom of the
notebook in these sections.

Chapter 4, Settings notebook 59

You can move from
one section or

subsection to another
by clicking on

the divider tabs on
the right and bottom

edges of the note­
book.

Organization

60

You can go to any section or subsection in the notebook by simply clicking
on the proper tab. The current section (and subsection, if applicable) is
highlighted and raised to the top of the notebook.

You can move from page to page by clicking on the arrows in the lower­
right corner of the notebook page. These move you back one page if you
click the left arrow, or forward one page if you click the right arrow. If you
run out of pages in your current section or subsection, you go to the next
one. Some sections also have double arrows below the notebook; these let
you move through the subsection tabs.

The notebook is made up of the following sections:

• Compiler contains settings that affect the behavior of the IDE compiler.
These settings are organized into the following subsections:

• Code Generation Options contains settings that directly affect how the
compiler generates code.

• C++ Options contains settings that specify how the compiler should
handle C++ code.

• Optimizations contains settings that let you set certain optimizations
on and off.

• Source Options contains settings that let you specify what standard
your code complies with, Borland C++, ANSI C, or Kernighan &
Ritchie.

• Messages lets you control the messages output by the IDE compiler.

• Names lets you specify the names of code segments.

• Make contains settings that affect the functioning of the IDE make
process.

• Target contains settings that specify the type of executable the IDE
produces.

• Linker contains settings that specify how an application should be
linked, including which link libraries to use and whether to include
debugging information. These settings are organized into three
subsections:

• Link Settings lets you specify how the linker links your project.

• Link Libraries lets you specify which libraries you want to link with
your application.

• Link Warnings lets you control the warnings output by the IDE linker.

Borland C++ for OS/2 Users Guide

• Librarian contains settings that affect the behavior of the built-in
librarian.

• Debugger Options contains settings that affect the behavior of the inte­
grated debugger. These settings are organized into the following
subsections:

• Debugger Options contains settings that let you specify how the
Borland C++ integrated debugger performs in the IDE environment.

• Disassembly View Local Options contains settings that let you
customize the appearance of the integrated debugger disassembly
view.

• Variables View Local Options contains settings that let you customize
the appearance of the integrated debugger variables view.

• Call Stack View Local Options contains settings that let you customize
the appearance of the integrated debugger call stack view.

• Watch View Local Options contains settings that let you customize the
appearance of the integrated debugger watch view.

• Evaluator View Local Options contains settings that let you customize
the appearance of the integrated debugger evaluator view.

• Inspector View Local Options contains settings that let you customize
the appearance of the integrated debugger inspector view.

• Memory View Local Options contains settings that let you customize
the appearance of the integrated debugger memory view.

• Register View Local Options contains settings that let you customize
the appearance of the integrated debugger register view.

• File And Numeric View Local Options contains settings that let you
customize the appearance of the integrated debugger file and numeric
processor views.

• Directories contains settings that specify paths the IDE uses to locate
header files, library files, source code, and so on.

• Environment contains settings that let you modify the "look and feel" of
the IDE. These settings are organized into the following subsections:

Chapter 4, Settings notebook

• Preferences contains settings that let you specify the general behavior
of the IDE environment.

• Desktop lets you specify what portions of the desktop you want saved
and where on the desktop you want to position the SpeedBar.

• Editor contains settings that let you tailor the behavior of the IDE
editor.

• Fonts lets you specify the font size and style Borland C++ uses in its
windows.

61

Changing and
saving settings

• Syntax Hilite lets you customize the colors and styles used to denote
syntax elements when syntax highlighting is on.

• Transfer contains a list of programs that are included on the transfer item
section of the Tools menu.

When you first view the Settings notebook, certain settings are already
selected. These are the default settings, which Borland C++ uses if you do
not make any changes.

You can change the default settings by making the desired changes and
selecting the Project I Save menu command. When the Save Options dialog
box opens, make sure the Project box is checked, and press OK.

You can also set Borland C++ to automatically save your settings at the end
of each programming session. Open the Settings notebook, go to the
Environment section, and tum to the Preferences subsection. Turn on the
Project box in the Autosave section. Now any changes you make to the set­
tings are automatically saved when you exit from Borland C++ or when
you exit from a project.

Specific sections and subsections in the Settings notebook are referenced
here by the same notation that is used for menu choices. For example, Com­
piler I Code Generation Options refers to the Code Generation Options sub­
section of the Compiler section. Within this chapter, we do not specify that
these choices are in the Settings notebook. But we do specify when a choice
is a selection from a menu bar.

Unlike the DOS and Windows versions of Borland C++, where changes in
IDE settings do not take effect until you leave the Option menus, changes
made in the Settings notebook take effect as soon as you make them.

With the exception of the Transfer section, each page in the notebook has
an Undo button and a Default button. Pressing the Undo button on a page
restores that page to the state it was in when you opened the Settings note­
book. Pressing the Default button on a page restores that page to the
Borland-supplied default state.

Compiler section

The Compiler section lets you modify settings that affect

• Compiler code generation.

• How C++ files are compiled.

• Which optimizations to use.

62 Borland C++ for OS/2 Users Guide

Code Generation
Options

Options

See Appendix C for
more on precompiled

headers.

Compiler

• How to recognize keywords for source compatibility .

• How compiler warning and error messages are handled.

• How object code sections are named.

The Code Generation Options subsection (labeled Code Gen on the subsec­
tion tab) contains settings that let you specify how the compiler generates
code, with settings for including debugging information in object files,
function calling conventions, and miscellaneous code settings.

The Options settings box contains a number of settings that you can use to
tailor object-code generation.

• Treat Enums As Ints forces the compiler to always allocate a four-byte int
for variables of type enum. When this setting is off, the compiler allocates
an unsigned or signed byte if the minimum and maximum values of the
enumeration are both within the range of 0 to 255 or -128 to 127,
respectively, or an unsigned or signed short if the minimum and
maximum values of the enumeration are both within the range of 0 to
65,535 or -32,768 to 32,767, respectively. Treat Enums As Ints is off by
default.

• Word Alignment tells Borland C++ to align noncharacter data (within
structs and unions only) at 32-bit word (4-byte) boundaries. When this
setting is off, Borland C++ uses byte-aligning, where data (again, within
structs and unions only) can be aligned at either odd or even addresses,
depending on the next available address.

Word Alignment increases the speed at which 80x86 processors fetch and
store data.

• Unsigned Characters tells Borland C++ to treat all char declarations as if
they were type unsigned char. When unchecked, chars are treated as
signed chars, unless the unsigned keyword is specified in the source
code.

• Merge Duplicate Strings tells Borland C++ to merge two strings when
one matches another. This produces smaller programs, but can introduce
bugs if you modify one string.

• Precompiled Headers tells the IDE to generate and use precompiled
headers. Precompiled headers can dramatically increase compilation
speeds, though they require a considerable amount of disk space. When
this setting is off (the default), the IDE neither generates nor uses
precompiled headers. Precompiled headers are saved in the file PRJ_
NAME.CSM.

Chapter 4, Settings notebook 63

CompilerlCode Generation Options

Debugging Options

64

• Generate Assembler Source tells the IDE to produce an .ASM assembly
language source file as its output, rather than an .OBJ object module.

Because the compiler does not produce an .OBJ file when this setting is
on, you should use the Compile I Compile menu choice so that the IDE
does not try to invoke the linker. The linker gives an error if no object file
for your program is present in the current directory.

• Compile Via Assembler tells the compiler to produce assembly language
output, then invoke TASM to assemble the output. The output is not
contained in an .ASM file. To generate an .ASM file when using this
setting, also tum on the Generate Assembler Source setting.

• Standard Stack Frame generates standard function entry and exit code.
This simplifies the process of tracing back through the stack of called
subroutines while debugging.

If you compile a source file with Standard Stack Frame off, any function
that does not use local variables and has no parameters is compiled with
abbreviated entry and return code. This makes the code shorter and
faster, but prevents the debugger from "seeing" the function in the call
stack. Thus, you should always tum Standard Stack Frame on when you
compile a source file for debugging.

This setting is automatically turned off when you tum optimizations on
with the Smallest Code or Fastest Code buttons in the Compiler I
Optimizations subsection. A check box for this setting is also located in
the Compiler I Optimizations subsection. These two settings are always
the same; that is, if the box in the Optimizations subsection is turned on,
so is the one in the Code Generation subsection.

• Generate Underbars automatically adds an underbar, or underscore,
character (_) in front of every global identifier (such as function names
and global variables). If you are linking with the standard Borland
libraries, this setting must be turned on.

The Debugging Options box contains settings that specify what type of
debugging information the compiler should include in object files.

While including debugging information in your program doesn't affect
execution speed, it does affect compilation time. Including debugging
information requires longer compilation times. It also results in larger
object files.

• Line Numbers Debug includes line numbers in the object and object map
files for use by a symbolic debugger.

• Debug Info In OBJs controls whether debugging information is included
in object (.OBJ) files. This setting is on by default. You need debugging

Borland C++ for OS/2 Users Guide

Defines

Calling conventions

c++ Options

C++ Member
Pointers

CompilerlCode Generation Options

information in object files in order to use either the integrated debugger
or the standalone Turbo Debugger .

• Test Stack Overflow generates code to check for a stack overflow at run
time. This costs space and time in a program, but helps prevent elusive
stack overflow bugs.

Use the Defines input box to enter macro definitions for the preprocessor.
Separate multiple defines with semicolons (;) and assign values with an
equal sign (=); for example,

TESTCODEiPROGCONST=5

Leading and trailing spaces are stripped, but embedded spaces are left
intact. To include a semicolon in a macro, place a backslash (\) in front of it.

If you press Alt+J. when the cursor is in the Defines box, or click the arrow
on the right side of the Defines box, a history list drops below the box. This
list displays the last seven definitions you've entered. Choose a definition
from the list by double-clicking it or selecting it with the arrow keys and
pressing Enter.

The Calling Convention settings let you specify the default conventions
used to pass arguments and call functions. You can specify using the C
L_cdecl), Pascal L_pascal), Register L~Jastcall), or Standard L_stdcall)
calling sequence. The default is Standard. The differences between these
calling conventions are in the way each handles stack cleanup, order of
parameters, case, and prefix (underbar) of global identifiers.

For more information about the __ fastcall calling convention, see Appen­
dix A, "The optimizer." For information about all of the calling
conventions, see Chapter 2, "Language structure," in the Programmer's
Guide.

The C++ Options subsection contains settings that tell the Borland C++
compiler how to prepare object code when compiling C++ code, including
how to handle inline functions and pointers, and how to generate C++
virtual tables and templates.

Borland C++ supports three different kinds of member pointer types. You
can control what pointer types the compiler accepts with the C++ Member
Pointers radio buttons:

• Support All Cases places no restrictions on which members can be
pointed to. Member pointers use the most general (but not always the
most efficient) representation.

Chapter 4, Settings notebook 65

CompilerIC++ Options

Use CH Compiler

Out-of-line Inline
Functions

C++ Virtual Tables

Template
Generation

66

• Support Multiple Inheritance lets member pointers point to members of
multiple inheritance classes, with the exception of members of virtual
base classes.

• Smallest For Class specifies that member pointers use the smallest
possible representation that lets member pointers point to all members of
their particular class.

• Support Single Inheritance lets member pointers point to members of
base classes that use single inheritance only.

The Use C++ Compiler radio buttons tell Borland C++ whether to always
compile your programs as C++ code, or to always compile your code as C
code except when the file extension is .CPP.

Turn on Out-of-line Inline Functions when you want to step through or set
breakpoints inside inline functions declared with the inline keyword. When
Out-of-line Inline Functions is turned off, functions are expanded inline as
you would expect. But when this setting is turned on, inline functions are
called just like normal functions.

The C++ Virtual Tables radio buttons let you control C++ virtual tables and
the expansion of inline functions when debugging.

• The Smart setting generates common C++ virtual tables and out-of-line
inline functions across modules within your application. As a result, only
one instance of a given virtual table or out-of-line inline function is
included in the program. This produces the smallest and most efficient
executables.

• The Local setting generates local virtual tables and out-of-line inline
functions. As a result, each module gets its own private copy of each
virtual table or out-of-line inline function it uses; this setting produces
larger executables than the Smart setting.

• The External setting generates external references to virtual tables; one or
more of the modules that make up the program must be compiled with
public virtual tables to supply the definitions for the virtual tables.

• The Public setting generates public definitions for virtual tables.

The Template Generation settings let you specify how Borland C++
generates template instances in C++. For more information about tem­
plates, see Chapter 3, "C++ specifics," in the Programmer's Guide.

• Smart generates public (global) definitions for all template instances. If
more than one module generates the same template instance, the linker

Borland C++ for OS/2 Users Guide

Optimizations

Optimization

CompilerIC++ Options

automatically merges duplicates to produce a single definition. This
setting is on by default, and is normally the most convenient way of
generating template instances. The Smart setting is equivalent to the -Jg
command-line option.

II Global, like Smart, generates public definitions for all template instances.
However, it does not merge duplicates, so if the same template instance is
generated more than once, the linker reports public symbol redefinition
errors. The Global setting is equivalent to the -Jgd command-line option.

II External generates external references to all template instances. If you use
this setting, you must make certain that the instances are publicly
defined elsewhere in your code. The External setting is equivalent to the
-Jgx command-line option.

The Optimizations subsection lets you specify which optimizations (if any)
you want performed on your program. For more information on
optimization, see Appendix A, "The optimizer."

Using the Optimizations box you can choose which specific optimizations
you want enabled or disabled:

II Dead Storage Elimination eliminates stores into dead variables. This
setting corresponds to the -Ob command-line option.

II Local Common Expressions enables common expression elimination
within basic blocks only. This setting corresponds to the -Oc command­
line option.

II Global Optimizations enables common subexpression elimination within
an entire function. This setting corresponds to the -Oz command-line
option.

II Global Register Allocation enables global register allocation and variable
live-range analysis. This setting corresponds to the -Oe command-line
option.

II Assume No Pointer Aliasing instructs the compiler to assume that
pointer expressions are not aliased in common subexpression evaluation.
This setting corresponds to the -Oa command -line option .

.. Intrinsic Expansion enables inlining of intrinsic functions such as
memcpy, strlen, and so on. The functions that can be inlined in this
manner are listed on page 137. This setting corresponds to the -Oi
command-line option.

II Standard Stack Frame is automatically turned off when you tum
optimizations on with the Smallest Code or Fastest Code buttons. A
check box for this setting is also located in the Compiler I Code

Chapter 4, Settings notebook 67

CompilerlOptimizations

Optimize For

Minimal Opts

Smallest Code

Fastest Code

Source Options

Keywords

68

Generation subsection. These two settings are always the same; that is, if
the box in the Optimizations subsection is turned on, so is the one in the
Code Generation subsection. This setting does not have a command-line
equivalent.

The Optimize For buttons let you change Borland C++'s code-generation
strategy. Normally the compiler optimizes for size, choosing the smallest
code sequence possible. You can also have the compiler optimize for speed,
so that it chooses the fastest sequence for a given task. For creating PM
applications, you'll probably want to optimize for speed.

The Minimal Opts button turns off as many optimizations as possible. In
effect, all optimizations are turned off, and Standard Stack Frame is turned
on.

The Smallest Code button turns on a set of optimizations that is designed to
produce the smallest possible code size. The optimizations that are turned
on are dead storage elimination and local common expressions.

The Fastest Code button turns on a set of optimizations that is designed to
produce the fastest possible executable code. The optimizations that are
turned on are dead storage elimination, local common expressions, global
optimizations, global register allocation, and intrinsic expansion.

The settings in the Source Options subsection tell the compiler to expect
certain types of source code.

The Keywords radio buttons tell the compiler how to recognize keywords
in your programs:

• Choosing Borland C++ tells the compiler to recognize the Borland C++
extension keywords, including __ asm, __ cdecl, __ export, __ far16,
__ pascal, __ fastcall, and the register pseudovariables CAX, _BX, and so
on). For a complete list, refer to Chapter I, "Lexical elements," in the
Programmer's Guide.

• Choosing ANSI tells the compiler to recognize only ANSI keywords and
treat any Borland C++ extension keywords as normal identifiers.

• Choosing UNIX V tells the compiler to recognize only UNIX V keywords
and treat any Borland C++ extension keywords as normal identifiers.

Borland C++ for OS/2 Users Guide

Nested Comments

Identifier Length

Messages

Display Warnings

CompilerlSource Options

• Choosing Kernighan And Ritchie tells the compiler to recognize only the
K&R extension keywords and treat any Borland C++ extension keywords
as normal identifiers.

The Nested Comments setting lets you nest comments in Borland C++
source files. Standard C implementations do not permit nested comments,
which are not portable.

Use the Identifier Length input box to specify the number n of significant
characters in an identifier. All identifiers are treated as distinct only if their
first n characters are distinct. This includes variables, preprocessor macro
names, and structure member names. n can be from 1 to 249. Specifying n
to be 0 or 250 forces the compiler to allow identifiers of unlimited length.
The default is O.

The Messages subsection lets you customize the behavior of compiler error
and warning messages in the IDE, including what constitutes a fatal
number of warnings and errors and which warning messages are
displayed.

Pages 2 through 9 in the Messages subsection in the Settings notebook are
warning checklist pages. Each page contains a list of warning messages that
you can turn on and off. If a warning is turned off, it is not displayed when
the compiler encounters it.

To turn a warning on, check the box next to the warning description. To
turn a warning off, uncheck the box next to the warning description.

Next to each warning is a three-letter code. You can use this code with the
-wxxx command-line option to tum warnings on and off on the command
line. For information on the -wxxx option, see page 117.

The Display Warnings box lets you specify how you want error messages
to be handled:

• The Display Warnings settings let you choose whether the compiler
displays all warnings, only the warnings selected in the Messages
submenu setting, or no warnings.

• Errors: Stop After causes compilation to stop after the specified number
of errors has been detected. The default is 25, but you can enter any
number from 0 to 255. Entering 0 causes compilation to continue until the
end of the file or until the warning limit entered below has been reached,
whichever comes first.

Chapter 4, Settings notebook 69

Compilerl Messages

Portability

ANSI Violations

c++ Warnings

General

Names

Segment Names

Make section

70

• Warnings: Stop After causes compilation to stop after the specified
number of warnings has been detected. The default is lOa, but you can
enter any number from a to 255. Entering a causes compilation to
continue until the end of the file or until the error limit entered above has
been reached, whichever comes first.

The Portability box on page 2 of the Messages subsection in the Settings
notebook lets you specify which types of portability problems you want to
be warned about.

The ANSI Violations boxes on pages 3 and 4 of the Messages subsection in
the Settings notebook let you specify which violations of the ANSI
specification you want to be warned about.

The c++ Warnings boxes on pages 5 and 6 of the Messages subsection in
the Settings notebook let you specify which C++ warnings you want to be
warned about.

The General boxes on pages 7, 8, and 9 of the Messages subsection in the
Settings notebook let you specify which miscellaneous warnings you want
to be warned about.

The Names subsection lets you change the default segment, group, and
class names for code, data, BSS, and far data sections. You can also specify a
name for the virtual table segment and class for C++ programs. Do not
change the settings in this subsection unless you are an expert and have read
Chapter 11, "OS/2 memory management," in the Programmer's Guide.

To name a segment something besides the default name, click in the box
corresponding to the segment you want to name and type in the desired
name.

If you press Alt+J, when the cursor is blinking in a name box, a history list
drops down below the box. This list displays the last seven names you've
entered. To choose a name from the list, double-click it with the mouse, or
select it with the arrow keys and press Enter.

The Make section lets you specify how the IDE makes your current project
or module.

Borland C++ for OS/2 Users Guide

Break Make On

Check Auto­
dependencies

See the $DEPO
transfer macro in the

file UTIL.DOC.

Target section

Program Target

Make

Use the Break Make On radio buttons to set the condition that stops the
making of a project. The default is to stop after compiling a file with errors.
However, you can make the IDE stop making a project after warnings by
turning on the Warnings setting. You can also force the IDE to continue the
make process (as long as it encounters no fatal errors) by turning on the
Force Errors setting. Lastly, you can stop the make process after compiling
all sources, but before linking by turning on the All Sources Processed
setting.

When the Check Auto-dependencies setting is checked, the Project
Manager automatically checks dependencies for every .OBI file on disk that
has a corresponding .CPP or .C source file in the project list.

The Project Manager opens the .OBJ file and looks for information about
files included in the source code. This information is always placed in the
.OBJ file by the Borland C++ IDE, as well as the command-line version of
Borland C++ when the source module is compiled. Then every file that was
used to build the .OBJ file is checked for time and date against the time and
date information in the .OBJ file. The source file is recompiled if the dates
are different. This is called an autodependency check. If this setting is turned
off, no file checking is performed.

After a source file is successfully compiled, the project file contains valid
dependency information for that file. Once that information is in the project
file, the Project Manager uses it to do its autodependency check. This is
much faster than reading each .OBI file.

This section of the Settings notebook lets you specify the type of application
you want to produce, how you want to handle import and export
functions, and whether you want to link to single- or multi-thread libraries.

The Program Target box has five buttons:

• PM Exe specifies that the program should be compiled and linked for
execution in the PM environment.

• OS2 Exe specifies that the program should be compiled and linked as an
OS/2 application. You can run this type of application in a full-screen
OS/2 shell or in a windowed OS/2 shell under PM.

Chapter 4, Settings notebook 71

Target

Thread Options

Generate Import
Library

Linker section

Link Settings

Options

72

• OS2 DLL specifies that the program should be compiled and linked as an
OS/2 DLL.

• OS2 Lib specifies that the file should be compiled and linked as an OS/2
library file.

• Text Mode App specifies that the file should be compiled and linked as a
full-screen text mode application. Programs compiled with this setting
cannot be run in a windowed OS/2 shell under PM.

The Thread Options buttons cause the compiler to generate code for either
a single-thread executable or a multi-thread executable. This also dictates
which libraries your program is linked with. For a discussion of multi­
thread programming, see Chapter 9, "Building OS/2 applications," in the
Programmer's Guide. .

The Generate Import Library buttons control when and how IMPLIB is
executed during the MAKE process. The Use DLL setting generates an
import library that consists of the exports in the DLL. The Use DEF setting
generates an import library of exports in the DEF file. If either of these
settings is checked, MAKE invokes IMPLIB after the linker has created the
DLL. This setting controls how the transfer macro $IMPLIB gets expanded.

The Linker section lets you configure various settings to be passed to the
linker, such as whether to include debugging information, case sensitivity,
and which libraries to link with. The Linker section contains two
subsections, Link Settings and Link Libraries.

The Link Settings subsection (labeled Linker on the subsection tab) contains
a number of settings that specify how Borland C++ should link your
application.

The Options box contains a number of settings specifying how your
program should be linked:

• Include Debug Info controls whether debugging information is linked
into the .EXE file. Tum this setting on to use the symbolic debugging
capabilities of either the integrated debugger or the standalone Turbo
Debugger.

Turning this setting off results in smaller, more compact executable files.
Once you have finished debugging your program you should relink it

Borland C++ for OS/2 Users Guide

Map File

LinkerlLink Settings

without debugging information so that your final executable is as small as
possible.

• The Image Is Based setting specifies whether an application has an image
base address. If this setting is turned on, internal fixups are removed
from the image and the requested load address of the first object in the
application is set to the number specified in the Base Address input box.
This can greatly reduce the size of your final application module. It is not
recommended for use when producing a DLL.

• Case-Sensitive Link affects whether the linker is case-sensitive. Normally,
this setting should be checked, because C and C++ are both case-sensitive
languages.

• Case-Sensitive Exports affects whether the linker is case-sensitive in
regard to the names in the IMPORTS and EXPORTS sections of the
module definition file. By default, the linker ignores the case of these
names. This setting is probably useful only when you are trying to export
non-callback functions from DLLs-such as exported c++ member
functions.

• The Base Address setting specifies the load address to be used for your
application. This address is disregarded unless the Image Is Based setting
is turned on. Note that the address is specified in multiples of 64K
(Ox10000). Thus, to load an image at 64K you would set the Base Address
setting to 1.

Because OS/2 loads all.EXE images at 64K, we advise you to link all
.EXEs with the Base Address setting set to 1.

• The File Alignment setting specifies page alignment for code and data
within the executable file. The value is interpreted as a decimal power of
2. For example, if you set the File Alignment to 12, the pages of code and
data will be stored on 4096-byte boundaries. OS/2 seeks pages for
loading based on this alignment value.

Use the Map File radio buttons to choose the type of map file Borland C++
produces:

• Off instructs Borland C++ not to produce a map file. This is equivalent to
the TLINK Ix option.

• Segments instructs Borland C++ to list only the segments in the program,
the program start address, and any warning or error messages produced
during the link. This is equivalent to the default map produced by
TLINK.

• Publics instructs Borland C++ to create a map file with program
segments, the program start address, error and warning messages, and
add a list of public symbols. This is equivalent to the TLINK 1m option.

Chapter 4, Settings notebook 73

LinkerlLink Settings

Link Libraries

Standard Run-time
Libraries

Container Class
Libraries

Link Warnings

• Detailed instructs Borland C++ to create a map file like that created with
the Publics button, but with the addition of a detailed segment map. This
is equivalent to the TLINK /s option.

For settings other than Off, the map file is placed in the output directory
defined in the Directories section.

The Link Libraries subsection contains a number of settings that specify
which libraries Borland C++ should link with your application.

The Borland C++ standard run-time libraries are available in both Static
(.LIB) and Dynamic (.DLL) form. Choosing the dynamic form can help
reduce the size of your executable file, and can also reduce the overhead of
loading libraries more than once if they are called by more than one
application running simultaneously.

Choosing None forces the linker to link only the file you are currently
working on, or files listed in the project file if you are working on a project.
If you choose None, you must provide all the functions required by the
program, including entry / exit code.

The container class libraries are available in both Static (.LIB) and Dynamic
(.DLL) form. Choosing the dynamic form can help to reduce the size of
your executable file, and can also reduce the overhead of loading these
libraries more than once if they are called by more than one application
running simultaneously.

Choose None if you are not using the container class libraries. If you choose
Static or Dynamic, and you are not using container class libraries, there's no
harm caused, but linking is appreciably slower.

The Link Warnings subsection lets you specify which linker error and
warning messages are displayed in the IDE.

Librarian section

74

The Librarian section lets you make several settings affecting the use of the
Librarian. The Librarian combines the .OB] files in your project into a .LIB
file.

Borland C++ for OS/2 Users Guide

Options

Library Page Size

The Options box contains a number of settings that tell the librarian
program how to build your library:

Librarian

.. Generate List File determines whether the Librarian automatically
produces a list file (.LST) listing the contents of your library when it is
created.

II Case-Sensitive Library tells the Librarian to treat case as significant in all
symbols in the library (this means that CASE, Case, and case, for
example, would all be treated as different symbols).

II Purge Comment Records tells the Librarian to remove all comment
records from modules added to the library.

1/1 Create Extended Dictionary determines whether the Librarian includes,
in compact form, additional information that helps the linker process
library files faster.

The Library Page Size setting lets you set the number of bytes in each
library "page" (dictionary entry). The page size determines the maximum
size of the library: it cannot exceed 65,536 pages. The default page size, 16,
permits a library of about 1 MB in size. To create a larger library, change the
page size to the next higher value (32). The page size must be a power of 2
(2 = 21,4 = 22, 8 = 23, and so on).

Debugger Options section

Debugger Options

PM Debugging
Mode

The Debugger Options section contains settings you can use to configure
the behavior of the IDE integrated debugger.

The Debugger Options subsection contains settings that let you specify how
the Borland C++ integrated debugger performs in the IDE environment.

The PM Debugging Mode settings let you set which mode the integrated
debugger operates in. Hard Mode sets the debugger to operate in hard
mode; Soft Mode sets the debugger to operate in soft mode.

The difference between hard mode and soft mode is that in hard mode the
debugger traps all PM messages. In effect, this turns PM into a single­
tasking system controlled by the debugger. In soft mode, other processes
receive messages normally, with the debugger intercepting only its own
messages and messages to the process being debugged.

Chapter 4, Settings notebook 75

Debugger Options

Use Evaluator

Popup On
Exception

Action On
Messages

76

The Use Evaluator setting affects how expressions are evaluated in IDE
debugger input boxes. This lets you enter expressions using the most
convenient syntax. This setting does not affect the source language of your
code, and does not need to be the same language as your source code. You
can control what syntax is used with the Use Evaluator radio buttons:

• C Evaluator

• C++ Evaluator

• TASM Evaluator

The Popup On Exception box lets you specify which pop-up windows
(known as views) you want opened when the IDE encounters an exception
in your code. These views are identical to those used in Borland's Turbo
Debugger. There are four views that you can specify:

• Call Stack View displays a view of the program call stack.

• Source View displays a view of the program source code with the line
where the exception occurred highlighted. This view is separate from
source display in the IDE editor.

• Disassembly View displays a view of the disassembled program code
with the instruction where the exception occurred highlighted.

• Local Variable View displays a view of all variables within the scope of
the current function along with their values at the time the exception oc­
curred. Variables with a greater scope (such as class members and global
variables) are not displayed.

The Action On Messages radio buttons let you specify the action the IDE
should take when presenting a message. There are four action settings:

• The Use Smart Messages button specifies that the IDE use smart
messages. With smart messages, the IDE opens a window for some
messages and beeps for others. The message is also displayed on the IDE
status line.

• The Beep And Show Message setting tells the IDE to beep and display
the message in a pop-up window.

• The Show Message setting tells the IDE to display the message in a pop­
up window.

• The Beep setting tells the IDE to beep only. The message is not displayed.

Borland C++ for OS/2 Users Guide

Disassembly View
Local Options

Disassembly View

Include Views

Debugger OptionslDisassembly View Local Options

The Disassembly View Local Options subsection contains settings that
affect how the disassembly view behaves.

The Disassembly View settings box contains settings that affect how your
disassembled code is displayed .

.. When the Follow PC setting is checked, the debugger updates the open
views as necessary to show the source and disassembly code associated
with the program counter (the "PC") as you step or run through your
application.

• The Show Symbolic setting, when checked, shows identifiers (symbols)
as addresses in the disassembly pane. For example, when shown as
symbolic disassembly, the instruction CALL WndProc, where WndProc is a
valid symbolic name, appears as CALL 00010663 .

.. When the Show Source setting is checked, the debugger displays the line
of source code associated with each set of disassembled instructions.

The Include Views settings box lets you specify which panes you want to
appear in the disassembly view:

• The Memory setting displays the memory pane in the disassembly view.

The memory pane shows a raw display of an area of memory. Each line
in this pane displays the following information:

• On the left: The address of the data.

• In the middle: The raw display of one or more data items. The format
of this area depends on the display format you choose with Display
Memory As settings.

• On the right: The display characters that correspond to the data bytes
displayed, unless you choose Display Memory As Stack setting. The
debugger displays all printable byte values as their display
equivalents; any nonprintable characters appear as dots (.). When you
first open this view, the memory pane displays memory as byte values.
The ASCII representation of the bytes appears to the right of the byte
values.

• The Stack setting displays the Stack pane in the disassembly view.

II The Registers setting displays the registers pane in the disassembly view.
The registers pane displays the contents of each of the 16 CPU registers.

To edit the value of a CPU register's contents, double-click the register (or
select the register and press Enter). The Change Register NNN (where
NNN is the name of the register you're modifying) dialog box opens up.

Chapter 4, Settings notebook 77

Debugger OptionslDisassembly View Local Options

Display Memory As

Variables View
Local Options

Variables View Will
Display

Variable Information

78

• The Flags setting displays the flags pane in the disassembly view. The
flags pane shows the state of the eight CPU flags. Each flag is indicated
by a single letter:

• C (Carry)

• P (Parity)

• A (BCD carry)

• Z (Zero)

• S (Sign)
• I (Interrupt)

• D (Direction)

• 0 (Overflow)

The flags show the result of the last logical or arithmetic operation that
the CPU performed. To change the state of a CPU flag, double-click the
flag (or select the flag and press Enter).

The Display Memory As Bytes settings box lets you specify how you want
the data in the memory pane of the disassembly view displayed. There are
a number of formats you can use:

a Byte _ Long Double

a Double a Short

a Float

aLong

a Stack

The Variables View Local Options subsection contains a number of settings
that let you configure how information appears in the variable view.

You can configure the Variable view to display a list of one of three types of
variable:

a Global variables

a Local variables

• Function entries

The Variable Information buttons let you modify the type of information
displayed in the Variable view:

a The Stack button opens a second pane in the Variable view that displays
the current call stack.

Borland C++ for OS/2 Users Guide

Display Selected
/temAs

Call Stack View
Local Options

Call Stack Will
Show

Watch View Local
Options

Watch Will Show

Debugger OptionslVariables View Local Options

• The Argument Names In Stack button displays the names of the
arguments to each function listed in the call stack pane. This has an effect
only if the Stack button is set on.

• The Argument Values In Stack button displays the value of the argu­
ments to each function listed in the call stack pane. This has an effect only
if the Stack button is set on.

• The Show Address And Type button displays the memory address and
variable type of each variable displayed in the Variable view.

The Display Selected Item As list box lets you specify the format in which
you want the selected variable.

The Call Stack View Local Options subsection contains a number of settings
that let you configure how information appears in the call stack view.

The Call Stack Will Show buttons let you configure the display in the Call
Stack view.

• The Argument Names button displays the names of the arguments to
each function listed in the Call Stack view.

• The Argument Values button displays the value of the arguments to each
function listed in the Call Stack view.

• The Show Address And Type buttons displays the memory address and
variable type of each variable displayed in the Variable view.

• The Frame Registers button displays the location and frame address for
each stack frame.

• The Local Variables button opens a pane in the Call Stack view that
displays all the variables local to the current function.

• The Address And Type In Locals button displays the memory address
and variable type of each local variable displayed in the variable pane.
This has an effect only if the Local Variables button is set on.

The Watch View Local Options subsection contains a number of settings
that let you configure how information appears in the watch view.

The Watch Will Show settings box contains check boxes that you can use to
configure what information appears in the watch view.

• The Type Information button displays the value and variable type of
each variable displayed in the watch view.

• The Stack button opens a second pane in the watch view that displays
. the current call stack.

Chapter 4, Settings notebook 79

Debugger OptionslWatch View Local Options

Format Of Selected
Item

Evaluator View
Local Options

Evaluator Show

Format Of Selected
Item

Inspector View
Local Options

Memory View
Local Options

80

• The Argument Names In Stack button displays the names of the
arguments to each function listed in the call stack pane. This has an effect
only if the Stack button is set on.

• The Argument Values In Stack button displays the value of the argu­
ments to each function listed in the call stack pane. This has an effect only
if the Stack button is set on.

The Format Of Selected Item list box lets you specify the format in which
you want the selected variable.

The Evaluator View Local Options subsection contains a number of settings
that let you configure how information appears in the evaluator view.

The Evaluator Show settings box contains check boxes that you can use to
configure what information appears in the evaluator view.

• The Type Information button displays the value and variable type of
each variable displayed in the evaluator view.

• The Stack button opens a second pane in the evaluator view that displays
the current call stack.

• The Argument Names In Stack button displays the names of the
arguments to each function listed in the call stack pane. This has an effect
only if the Stack button is set on.

• The Argument Values In Stack button displays the value of the argu­
ments to each function listed in the call stack pane. This has an effect only
if the Stack button is set on.

The Format Of Selected Item list box lets you specify the format in which
you want the selected variable.

The Inspector View Local Options subsection contains settings that let you
configure how information appears in the inspector view.

The Show Type Information button displays the value and variable type of
each variable displayed in the inspector view.

The Format Of Selected Item list box lets you specify the format in which
you want the selected variable.

The Memory View Local Options subsection contains settings that let you
configure how information appears in the memory view.

Borland C++ for OS/2 Users Guide

Memory Will Show

Memory View
Follows Stack

Memory Displays
As

Register View
Local Options

Register View Will
Show

Register Layout

Debugger OptionslMemory View Local Options

The Memory Will Show settings box contains check boxes that you can use
to configure what information appears in the memory view.

• The Stack button opens a second pane in the memory view that displays
the current call stack.

• The Argument Names In Stack button displays the names of the
arguments to each function listed in the call stack pane. This has an effect
only if the Stack button is set on.

• The Argument Values In Stack button displays the value of the argu­
ments to each function listed in the call stack pane. This has an effect only
if the Stack button is set on.

• The Frame Registers button displays the location and frame address for
each stack frame.

When the Memory View Follows Stack setting is set on, the contents of the
memory view are updated to reflect the current position of the stack
pointer and the contents of the stack.

The Display Memory As Bytes settings box lets you specify how you want
the data in the memory view displayed. There are a number of formats you
can use:

• Byte

• Double

• Float

aLong

• Long Double

• Short

• Stack

The Register View Local Options subsection contains settings that let you
configure how information appears in the register view.

You can display two different panes in the register view: the register pane,
which displays the contents of the CPU registers, and the flags pane, which
displays the contents of the CPU flags register. You can set each of these
panes on or off with the Registers and Flags settings.

You can have the register view display the registers and flags panes in one
of two formats, Horizontal or Vertical, by pressing the appropriate button.
When the Register Layout is Horizontal, the flags pane is placed to the right
of the register pane. When the Register Layout is Vertical, the flags pane is
placed beneath the register pane. This setting only has an effect when both
the Register and Flags settings are set on.

Chapter 4, Settings notebook 81

Debugger OptionslRegister View Local Options

Register Contents
Display As

File And Numeric
View Local
Options

File View Will
Display As

Display ASCI/In File
View

Numeric View
Display As

You can display the contents of the registers in one of three formats:
Decimal, Hexadecimal, or Octal, by pressing the appropriate button.

The File And Numeric View Local Options subsection contains settings that
let you configure how information appears in the file and numeric
processor views.

The File View Will Display As settings box lets you specify how you want
the data in the file view displayed. There are a number of formats you can
use:

• Byte • Long Double
• Double • Short
• Float • Stack
• Long

Setting the Display ASCII In File View setting on tells the file view to
display the corresponding ASCII character along with the data displayed in
the numeric format specified by the File View Will Display As setting.

You display the contents of the numeric processor view in one of two
formats, Decimal or Hexadecimal, by pressing the appropriate button.

Directories section

82

The Directories section tells Borland C++ where to find files, including the
files it needs to compile, link, and debug, and where to put output files
produced by the Borland C++ tools. This section contains four input boxes:

• The Include box specifies which directories contain include files.
Standard include files are those given in angle brackets «»in an
#include statement (for example, #include <myfile.h». The Include
directories are also searched for files in quoted #include statements (such
as #include "myfile.h") which are not found in the current directory.
Multiple directory names are permitted, separated by semicolons .

• The Library box specifies the directories that contain your Borland C++
start-up object files (COx.OBJ) and run-time library files (.LIB files) and
any other libraries your project uses. Multiple directory names are
permitted, separated by semicolons.

Borland C++ for OS/2 Users Guide

Directories

• The Output box specifies the directory that stores your .OBJ, .EXE, and
.MAP files. Borland C++ looks for and writes files to that directory when
doing a make or run, and checks dates and times of .OBJs and .EXEs. If
the entry is blank, the files are stored in the current directory. Multiple
directory names are not permitted.

II The Debug Source box· specifies the directories where the Borland C++
integrated debugger looks for the source code for modules that do not
belong to the open project (for example, container class libraries).
Multiple directories can be entered, separated by semicolons. If the entry
is blank, the current directory is searched.

Use the following guidelines when entering directories in these input
boxes:

• Separate multiple directory path names with a semicolon (;).

• You can use up to a maximum of 256 characters (including whitespace).

• You can place whitespace before and after the semicolon, but this is not
required.

• Relative and absolute path names are permitted, including path names
relative to the logged position in drives other than the current one. Here's
an example:

C:\iC\LIBiC:\C\MYLIBSiA:\BORLANDC\MATHLIBSiA: .. \VIDLIBS

Environment section

Preferences

Editor Key Bindings

The Environment section lets you tailor the Borland C++ IDE to perform
the way you want it to perform. This section contains four subsections that
let you modify the characteristics, or "look and feel," of the editor, desktop,
and IDE traits.

The Preferences subsection contains settings that let you specify the general
behavior of the IDE, such as autosave settings, editor key bindings, and
some others.

The Editor Key Bindings list box lets you change the configuration of the.
keyboard shortcuts in the IDE editor by compiling a Turbo Editor Macro
Language (TEML) file using the Turbo Editor Macro Compiler (TEMC).
TEMC and TEML files are fully described in the online document
UTIL.DOC.

When the cursor is in the list box you can press letters to go to the next
TEML file that begins with that letter. If you press AIt+.!. when the cursor is

Chapter 4, Settings notebook 83

EnvironmentlPreferences

AutoSave

CodePage

Source File

84

in the Editor Key Bindings box, or click the arrow on the right side of the
box, a list drops below the box. This list displays the available TEML files.
Choose a file name from the list by double-clicking it or by selecting it with
the arrow keys and pressing Enter.

Only files with the extension .TEC that are located in the BIN directory of
your Borland C++ installation are displayed in the Editor Key Bindings list
box.

If you're used to the command set from previous versions of Borland C++
or Turbo C++, you can load ALT.TEC. This file provides editor key
bindings that are compatible with the Alternate command set used in many
other Borland products.

The AutoSave box lets you specify which parts of your current project you
want the IDE to automatically save. Each part is saved under different
conditions, but is always saved (if its setting is set on in the AutoSave box)
when you exit Borland C++.

• The Environment setting specifies that all the settings you made in this
session are saved automatically when you exit Borland C++.

• The Editor Files setting specifies that any source file in your current
project that has been modified since the last time you saved it is saved
whenever you run your program.

• The Desktop setting specifies that the desktop configuration is saved
when you close a project or exit Borland C++. The desktop is restored
when you reopen the project or return to Borland C++.

• The Breakpoints setting specifies that the current breakpoint settings are
saved when you close a project or exit the IDE. These breakpoints are
restored when you reopen the project or return to Borland C++.

• The Project setting specifies that all your project, auto dependency, and
module settings are saved when you close your project or exit. They are
restored when you reopen the project or return to Borland C++.

The Code Page setting lets you specify which video code page you want to
use. The default is 437, the standard U.S. code page.

The Source File radio buttons let you specify which copy of your current
source files you want to use for compilation if the source in the edit buffer
has changed since the current project build.

• Use Source File On Disk specifies that Borland C++ should use the file
saved to disk instead of the file contained in the edit buffer.

Borland C++ for OS/2 Users Guide

Source Tracking

Save Old Messages

Desktop

Save

SpeedBar

Editor

Editor Options

Environmenti Preferences

• Use Source File In Buffer specifies that Borland C++ should use the file
contained in the edit buffer instead of the file saved to disk.

• Prompt For File To Use specifies that Borland C++ should ask you which
version of the file you want to use.

The New Window setting specifies that the IDE opens a new window if it
encounters a source file that is not open in an editor window while
stepping through source or viewing the source from the Transcript
window. Selecting Current Window causes the IDE to replace the contents
of the active Edit window with the new file instead of opening a new Edit
window.

When Save Old Messages is set on, Borland C++ saves the error messages
currently in the Transcript window, appending any messages from further
compiles to the window. Messages are not saved from one session to the
next. By default, Borland C++ automatically clears messages before a com­
pile, a make, or a transfer that uses the Transcript window.

The desktop includes the configuration of open files, icons, windows, and
their arrangement in the Borland C++ IDE desktop. The Desktop sub­
section lets you specify what portions of the desktop you want saved and
where you want to position the SpeedBar.

The Save box lets you set whether history lists, the contents of the
Clipboard, and the locations and contents of open and closed windows are
saved across sessions.

The buttons in the SpeedBar box let you configure where you want the
SpeedBar to be located, or if you even want it active at all. Pressing Off
means that the SpeedBar is not present in the IDE at all. Pressi~g Popup
makes the SpeedBar a floating palette. Pressing Horizontal Bar places the
SpeedBar at the top of the desktop window, running from left to right.
Pressing Vertical Bar places the SpeedBar on the left side of the desktop
window, running from top to bottom.

The Editor subsection contains settings that let you tailor the behavior of
the IDE editor .

. The Editor Options box lets you customize the following editor attributes:

Chapter 4, Settings notebook 85

Environmentl Editor

86

• When Create Backup Files is checked (the default), Borland C++ auto­
matically creates a backup of the source file in the Edit window when
you choose File I Save and gives the backup file the extension .BAK.

• When Syntax Highlighting is checked, you can control the colors in an
Edit window of various elements in your C or C++ code. You can set
these colors in the Environment I Syntax Hilite subsection.

• When Autoindent Mode is turned on, pressing Enter in an Edit window
positions the cursor under the first nonblank character in the preceding
nonblank line. This can be a great aid in typing readable program code.

• When Use Tab Character is checked, Borland C++ inserts a true tab char­
acter (ASCII 9) when you press Tab. When this setting is not checked,
Borland C++ uses spaces instead. The size of a tab character is deter­
mined by the Tab Size setting.

• When you turn on Optimal Fill, Borland C++ begins every autoindented
line with the minimum number of characters possible, using tabs and
spaces as necessary. This produces lines with fewer characters than when
Optimal Fill is set off.

• When Backspace Unindents is set on (which is the default) and the cursor
is on a blank line or the first non-blank character of a line, the Backspace
key aligns (outdents) the line to the previous indentation level. This
setting is effective only when Cursor Through Tabs is also set on .

• When you set Cursor Through Tabs on, the arrow keys move the cursor
'space by space through tabs; otherwise the cursor jumps over tabs.

• When Group Undo is set off, choosing Edit I Undo reverses the effect of a
single editor command or keystroke. For example, if you type ABC, it takes
three Undo commands to delete C, then B, thenA.

If Group Undo is checked, Undo reverses the effects of the previous
command and all immediately preceding commands of the same type.
The types of commands that are grouped are insertions, deletions,
overwrites, and cursor movements. For example, if you type ABC, one
Undo command deletes ABC.

For the purpose of grouping, inserting a carriage return is considered
part of the same command as typing text. For example, if you press Enter,
then type ABC, choosing Undo deletes ABC and the carriage return and
moves the cursor back to the original line. (See page 41 for more
information about Undo.)

• When Persistent Blocks is set on, marked blocks behave as they always
have in Borland's C and C++ products; that is, they remain marked until
deleted or unmarked (or until another block is marked). With this setting
off, moving the cursor after a block is selected deselects the entire block
of text.

Borland C++ for OS/2 Users Guide

Tab Size

Default Extension

Fonts

Name

Size

EnvironmentlEditor

• When Overwrite Blocks is set on and Persistent Blocks is set off, marked
blocks behave differently in these instances:

1. Pressing the Del key or the Backspace key clears the entire selected text.

2. Inserting text (pressing a character or pasting from the Clipboard)
replaces the entire selected text with the inserted text.

If you check Use Tab Character in the Editor Options box and press Tab,
Borland C++ inserts a tab character in the file and the cursor moves to the
next tab stop. The Tab Size input box lets you dictate how many characters
to move for each tab stop. Legal values are 2 through 16; the default is 8.

To change the way tabs are displayed in a file, just change the Tab Size
value to the size you prefer. Borland C++ redisplays all tabs in that file in
the size you chose. You can save this new tab size in your configuration file
by selecting Save on the Project menu. When the Save Options dialog box is
open, make sure the Project box is checked, and press OK.

The Default Extension input box lets you tell Borland C++ which extension
to use as the default when compiling and loading your source code.
Changing this extension doesn't affect the history lists in the current desk­
top.

The Fonts subsection lets you change the attributes and style of the font
used in the IDE's edit windows. These font changes do not affect the other
IDE windows.

The Name box lets you enter the name of the font you want to use in your
edit windows.

If you press Alt+J, when the cursor is in the Name box, or click the arrow on
the right side of the Name box, a choice list drops below the box. This list
displays all the fonts that are available to the IDE. Choose a definition from
the list by double-clicking it or selecting it with the arrow keys and
pressing Enter.

The Size box lets you enter the size of the font you want to use in your edit
windows.

If you press Alt+J, when the cursor is in the Size box, or click the arrow on
the right side of the Size box, a choice list drops below the box. This list
displays all the sizes you can use with the current font. Choose a definition

Chapter 4, Settings notebook 87

EnvironmentlFonts

Style

Syntax Hilite

Element

DefaultFG

Default BG

88

from the list by double-clicking it or selecting it with the arrow keys and
pressing Enter.

The Style buttons let you specify what style the chosen font appears in an
edit window. You can choose either Bold, Italic, both, or neither.

The Syntax Hilite subsection contains controls that let you customize the
colors the editor uses to represent language elements in your code.

The Element list box lists the elements of C and C++ code that are
represented by different colors. You can use the Element box to select the
current syntax element, and then customize the color and attributes used to
display that element.

When the cursor is in the list box you can press letters to go to the next
language element that begins with that letter. If you press Alt+J.. when the
cursor is in the Element box, or click the arrow on the right side of the box,
a list drops below the box. This list displays the language elements for
which you can select colors. Choose a definition from the list by double­
clicking it or selecting it with the arrow keys and pressing Enter.

The Elements list box contains the following syntax elements:

• Breakpoint • Integer

• Character • Octal
• Comment • Preprocessor

• CPU position • Reserved word

• Float • String
• Hex • Symbol

• Identifier • Whitespace
• Illegal char

When the Default FG setting is on, the IDE displays the current syntax
element in the default foreground color (usually black), regardless of the
color chosen in the FG box.

When the Default BG setting is on, the IDE displays the current syntax
element in the default background color (usually white), regardless of the
color chosen in the BG box.

Borland C++ for OS/2 Users Guide

FG

BG

Bold

Italic

Underline

Code Sample

Extension

EnvironmentlSyntax Hilite

Use the FG box to select a foreground color for the current syntax element.
Simply click on the desired color.

Use the BG box to select a foreground color for the current syntax element.
Simply click on the desired color.

Click the Bold check box to make the current syntax element appear bold.

Click the Italic check box to make the current syntax element appear
italicized.

Click the Underline check box to make the current syntax element appear
underlined.

In the middle of the Syntax Hilite page there is a small code sample that
contains an example of each different code element, and displays with the
current colors and attributes assigned to that element. You can change the
current syntax element by clicking it. The name in the Element box also
changes to reflect the new current syntax element. Note that the code
example does not contain all the code elements that are contained in the
Element list box.

The extension box lets you specify which file types syntax highlighting is
applied to. You can use standard OS/2 wildcards to specify file types. You
can also specify more than one file type by stringing together a number of
file specifications separated by semicolons. For example, if you want to use
highlighting only on C and C++ files, your extension specification would
look like this:

.Ci.CPP

Transfer section

The Transfer section lets you customize which programs show up in the
Transfer Items section of the Tools menu. You can also configure how
parameters are passed to the programs in the Transfer Items list.

Chapter 4, Settings notebook 89

Transfer

Program Titles

Edit

For a full description
of these powerful
macros, see the

"Transfer macros"
section in UTIL.DOC.

This step is optional.

90

The Program Titles box lists all the transfer programs available on the Tools
menu. If a title contains a tilde (-), the letter immediately after the tilde is
used as the menu shortcut.

The Edit button opens the Modify /New Transfer Item dialog box. This
dialog box lets you edit the characteristics of a transfer item. If an existing
transfer item is highlighted when you select Edit, the input boxes in the
Modify /New dialog box are automatically filled in; otherwise they're
blank.

Using the Modify/New dialog box, take these steps to add a new file to the
Transfer dialog box:

1. Type a short description of the program you're adding on the Program
Title input box.

Note that if you want your program to have a keyboard shortcut (like
the S in the Save choice on the File menu or the t in the Cut choice on
the Edit menu), you should include a tilde (-) in the name. Whatever
character follows the tilde appears underlined on the Tools menu,
indicating that you can press that key to choose the program from the
menu.

2. Tab to Program Path and enter the program name and optionally
include the full path to the program. (If you don't enter an explicit path,
only programs in the current directory or programs in your regular
OS/2 path are found.)

3. Tab to Command Line and type any parameters or macro commands
you want passed to the program. Macro commands always start with a
dollar sign ($) and are entered in uppercase. For example, if you enter
$CAP EDIT, all output from the program is redirected to a special Edit
window in Borland C++.

4. If you want to assign a hot key, tab to the Hot Key settings and assign a
shortcut to this program. Transfer shortcuts must be Shift plus a function
key. Keystrokes already assigned appear in the list but are unavailable.

5. Now click or choose the New button to add this program to the list.

To modify an existing transfer program, highlight it in the Program Titles
list of the Transfer dialog box, then choose Edit. After making the changes
in the Modify/New Transfer dialog box, choose the Modify button.

The Translator check box in the Modify /New Transfer Item dialog box lets
you put the Transfer program into the Project File Translators list (the list

Borland c++ for OS/2 Users Guide

Delete

Caution!

Transfer

you see when you choose Project I Local Options). Check this setting when
you add a transfer program that is used to build part of your project.

The Delete button removes the currently selected program from the list and
the Tools menu.

Be careful with the Delete button! When you delete a transfer item, you
cannot undo the delete!

Chapter 4, Settings notebook 91

92 Borland C++ for OS/2 Users Guide

c H A p T E R

Managing multi-file projects

Because most programs consist of more than one file, having a way to
automatically identify those that need to be recompiled and linked would
be ideal. Borland C++'s built-in Project Manager does just that and more.

The Project Manager lets you to specify the files belonging to the project.
Whenever you rebuild your project, the Project Manager automatically
updates the information kept in the project file. This project file includes

.. All the files in the project.

.. Where to find the files on the disk.

.. The header files for each source module .

.. Which compilers and command-line options need to be used when
creating each part of the program .

.. Where to put the resulting program .

• Code size, data size, and number of lines from the last compile.

Using the Project Manager is easy. To build a project,

1. Pick a name for the project file (from Project I Open Project).

2. Add source files using the Project I Add Item dialog box.

3. Tell Borland C++ to Compile I Make or press the Make button on the
SpeedBar.

Then, with the project-management commands available on the Project
menu, you can

.. add or delete files from your project

.. set options for a file in the project

• view included files for a specific file in the project

All the files in this Let's look at an example of how the Project Manager works.
chapter are in the

Examples directory.

5

Chapter 5, Managing multi-file projects 93

Sampling the Project Manager

These names can be
the same (except for
the extensions), but

they don't have to be.
The name of your

executable file (and
any map file

produced by the
linker) is based on

the project files
name.

94

Suppose you have a program that consists of a main source file,
MYMAIN.CPP, a support file, MYFUNCS.CPP, that contains functions and
data referenced from the main file, and myfuncs.h. MYMAIN.CPP looks
like this:

#include <iostream.h>
#include "myfuncs.h"

int main(int argc, char *argv[])
{

char *s;

if (argc > 1)
s=argv[l];

else
s="the universe";

cout « GetString() « s « "\n";
return 0;

MYFUNCS.CPP looks like this:

char ss[] = "The restaurant at the end of ";

char *GetString(void)
{

return ss;

And myfuncs.h looks like this:

extern char *GetString(void);

These files make up the program that we'll now describe to the Project
Manager.

The first step is to tell Borland C++ the name of the project file that you're
going to use: Call it MYPROG.PRJ. Notice that the name of the project file is
not the same as the name of the main file (MYMAIN.CPP). And in this case,
the executable file will be MYPROG.EXE (and if you choose to generate it,
the map file will be MYPROG.MAP).

Go to the Project'menu and choose Open Project. This brings up the Open
Project File dialog box, which contains a list of all the files in the current
directory with the extension .PRJ. Because you're starting a new file, type in
the name MYPROG in the Open Project File input box.

Notice that once a project is opened, the Add Item, Delete Item, Local
Options, and Include Files options are enabled on the Project menu.

Borland C++ for OS/2 Users Guide

If the project file you
load is in not in the

current directory, the
current directory is
set to the directory

that contains the
project file.

You can change the
file-name specifi­

cation to whatever
you want with the
Name input box;

*.CPP is the default.

If you copy the wrong
file to the Project

window, press Esc to
return to the Project
window, then press

Del or the Delete Item
button on the

SpeedBar to remove
the currently selected

file.

Note that the Add
button commits your

change; pressing Esc
when you're in the

dialog box just puts
the dialog box away.

You can keep your project file in any directory; to put it somewhere other
than the current directory, just specify the path as part of the file name.
(You must also specify the path for source files if they're in different
directories.) Note that all files and corresponding paths are relative to the
directory where the project file is loaded from. After you enter the project
file name, you'll see a Project window.

The Project window contains the current project file name (MYPROG).
Once you indicate which files make up your project, you'll see the name of
each file and its path. When the project file is compiled, the Project window
also shows the number of lines in the file and the amount of code and data
in bytes generated by the compiler.

The SpeedBar shows which actions can be performed at this point: you can
get help, add a file to the project, delete a file from the project, view include
files required by a file in the Project, open an editor window for the
currently selected file, compile a selected file in the project or build the
entire project. Press the Add Item to Project button now to add a file to the
project list.

The Add to Project List dialog box appears; this dialog box lets you select
and add source files to your project. The Files list box shows all files with
the .CPP extension in the current directory. (MYMAIN.CPP and
MYFUNCS.CPP both appear in this list.) Three action buttons are available:
Add, Done, and Help.

Because the Add button is the default, you can place a file in the Project
window by typing its name in the Name input box and pressing Enter or by
choosing it in the Files list box and choosing OK. You can also search for a
file in the Files list box by typing the first few letters of the one you want. In
this case, typing my should take you right to MYFUNCS.CPP. Press Enter.
You'll'see that MYFUNCS gets added to the Project window and then
you're returned to the Add Item dialog box to add another file. Go ahead
and add MYMAIN.CPP. Borland C++ will compile files in the exact order
they appear in the project.

Close the dialog box and return to the Project window. Notice that the
Lines, Code, and Data fields in the Project window show nl a. This means
the information is not available until the modules are actually compiled.

After all compiler options and directories have been set, Borland C++
knows everything it needs about how to build the program called
MYPROG.EXE using the source code in MYMAIN.CPP, MYFUNCS.CPP,
and myfuncs.h. Now you'll actually build the project.

Chapter 5, Managing multi-file projects 95

For more information
on .PRJ and .DSK

files, refer to the
section,

"Configuration and
project files," in

Chapter 2.

You can specify a
project to load on the

DOS command line
like this: Be

myprog . prj.

Error tracking

Changing these files
makes them out of

date with their object
files, so doing a make

will recompile them.

96

Choose Compile I Make or press the Make button on the SpeedBar to make
your project. The output from the compile and link processes, such as error
and warning messages, is displayed in the Transcript window. You can
also open the Transcript window by choosing Tools I View Transcript.

Choose Run I Run to run your application. When you are done viewing the
program output, close the application window.

When you leave the IDE, the project file you've been working on is
automatically saved on disk; you can disable this by unchecking Project in
the Environment I Preferences subsection of the Settings notebook.

The saved project consists of two files: the project file (.PRJ) and the
desktop file (.DSK). The project file contains the information required to
build the project's related executable. The build information consists of
compiler options, INCLUDE/LIB/OUTPUT paths, linker options, make
options, and transfer items. The desktop file contains the state of all
windows at the last time you were using the project.

The next time you use Borland C++, you can go right into your project by
reloading the project file. Borland C++ automatically loads a project file if it
is the only .PRJ file in the current directory; otherwise the default project
and desktop (TCDEF.*) are loaded. Because your program files and their
corresponding paths are relative to the project file's directory, you can work
on any project by moving to the project file's directory and bringing up
Borland C++. The IDE loads the correct files automatically. If no project file
is found in the current directory, the default project file is loaded.

Syntax errors that generate compiler warning and error messages in
programs can be selected and viewed from the Transcript window.

To see this,let's introduce some syntax errors into the two files,
MYMAIN.CPP and MYFUNCS.CPP. From MYMAIN.CPP, remove the first
angle bracket in the first line and remove the c in char from the fifth line.
These changes will generate five errors and two warnings in MYMAIN.

In MYFUNCS.CPP, remove the first r from return in the fifth line. This
change will produce two errors and one warning.

Because you want to see the effect of tracking in multiple files, you need to
modify the criterion Borland C++ uses to decide when to stop the make
process. This is done by setting a radio button in the Make section of the
Settings notebook.

Borland C++ for OS/2 Users Guide

Stopping a make

Syntax errors in
multiple source
files

You can choose the type of message you want the make to stop on by
setting one of the Break Make On options in the Make section of the
Settings notebook. The default is Errors, which is normally the setting
you'd want to use. However, you can have a make stop after compiling a
file with warnings, with errors, or with fatal errors, or have it stop after all
out-of-date source modules have been compiled.

The usefulness of each of these modes is really determined by the way you
like to fix errors and warnings. If you like to fix errors and warnings as
soon as you see them, you should set Break Make On to Wamings or
maybe to Errors. If you prefer to get an entire list of errors in all the source
files before fixing them, you should set the radio button to Fatal Errors or to
Link. To demonstrate errors in multiple files, choose Fatal Errors in the
Make section of the Settings notebook.

Because you've already introduced syntax errors into MYMAIN.CPP and
MYFUNCS.CPP, go ahead and choose Compile I Make to umake the
project." The Transcript window shows the files being compiled and the
number of errors and warnings in each file and the total for the make.
Choose OK when compiling stops.

Your cursor is now positioned on the first error or warning in the
Transcript window. If the file that the message refers to is in the editor, the
highlight bar in the edit window shows you where the compiler detected a
problem. You can scroll up and down in the Transcript window to view the
different messages.

Note that there is a "Compiling" message for each source file that was
compiled. These messages serve as file boundaries, separating the various
messages generated by each module and its include files. When you scroll
to a message generated in a different source file, the edit window will only
track in files that are currently loaded.

Thus, moving to a message that refers to an unloaded file causes the edit
window's highlight bar to turn off. Press Spacebar to load that file and
continue tracking; the highlight bar will reappear. If you choose one of
these messages (that is, press Enter when positioned on it), Borland C++
loads the file it references into an edit window and places the cursor on the
error. If you then return to the Transcript window, tracking resumes in that
file.

The Source Tracking settings in the Environment I Preferences subsection of
the Settings notebook help you determine which window a file is loaded

Chapter 5, Managing multi-file projects 97

Saving or deleting
messages

Autodependency
checking

98

into. You can use these settings when you're message tracking and debug
stepping.

Note that Previous message and Next message are affected by the Source
Tracking setting. These commands will always find the next or previous
error and will load the file using the method specified by the Source
Tracking setting.

Normally, whenever you start to make a project, the Transcript window is
cleared to make room for new messages. Sometimes, however, it is
desirable to keep messages between makes.

Consider the following example: You have a project that has many source
files and your program is set to stop on Errors. In this case, after compiling
many files with warnings, one error in one file stops the make. You fix that
error and want to find out if the fix works. But if you do a make or compile
again, you lose your earlier warning messages. To avoid this, check Save
Old Messages in the Environment I Preferences subsection of the Settings
notebook. This way the only messages removed are the ones that result
from the files you recompile. Thus, the old messages for a given file are
replaced with any new messages that the compiler generates.

You can always get rid 6f all your messages by choosing Tools I Remove
Messages, which deletes all the current messages. Unchecking Save Old
Messages and running another make also gets rid of any old messages.

When you made your previous project, you dealt with the most basic
situation: a list of C++ source file names. The Project Manager provides you
with a lot of power to go beyond this simple situation.

The Project Manager collects autodependency information at compile time
and caches these so that only files compiled outside the IDE need to be
processed. The Project Manager can automatically check dependencies
between source files in the project list (including files they themselves
include) and their corresponding object files. This is useful when a partic­
ular C++ source file depends on other files. It is common for a C++ source
to include several header files (.h files) that define the interface to external
routines. If the interface to those routines changes, you'll want the file that
uses those routines to be recompiled.

If you've checked the Auto-Dependencies option in the Make section of the
Settings notebook, Make obtains time-date stamps for all .CPP files and the
files included by these. Then Make compares the date/time information of
all these files with their date/time at last compile. If any date or time is
different, the source file is recompiled.

Borland C++ for OS/2 Users Guide

If the Auto-Dependencies option is unchecked, the .CPP files are checked
against .OB] files. If earlier .CPP files exist, the source file is recompiled.

When a file is compiled, the IDE's compiler and the command-line compiler
put dependency information into the .OB] files. The Project Manager uses
this to verify that every file that was used to build the .OB] file is checked
for time and date against the time and date information in the .OB] file. The
.CPP source file is recompiled if the dates are different.

That's all there is to dependencies. You get the power of more traditional
makes while avoiding long dependency lists.

Using different file translators

So far you've built projects that use Borland C++ as the only language
translator. Many projects consist of both C++ code and assembler code, and
possibly code written in other languages. It would be nice to have some
way to tell Borland C++ how to build such modules using the same
dependency checks that we've just described. With the Project Manager,
you don't need to worry about forgetting to rebuild those files when you
change some of the source code, or about whether you've put them in the
right directory, and so on.

For every source file that you have included in the list in the Project
window, you can specify

.. Which program (Borland C++, TASM, and so on) to use as its target file .

.. Which command-line options to give that program .

.. What to call the resulting module and where it will be placed (this
information is used by the Project Manager to locate files needed for
linking) .

.. Whether the module contains debug information .

.. Whether the module gets included in the link.

By default, the IDE's compiler is chosen as the translator for each module,
using no command-line local options, using the output directory for
output, and assuming that debug information is not to be excluded.

Let's look at a simple example. Go to the Project window and move to the
file MYFUNCS.CPP. Now press Ctri+O to bring up the Local Options dialog
box for this file.

Except for Borland C++, each of the names in the Project File Translators
list box is a reference to a program defined in the Transfer section of the
Settings notebook.

Chapter 5, Managing multi-file projects 99

100

Press Esc, then F10 to return to the main menu, then open the Settings
notebook and turn to the Transfer section. The Transfer section contains a
list of all the transfer programs currently defined. Use the arrow keys to
select Turbo Assembler and press Enter. (Because the Edit button is the
default, pressing Enterbrings up the Modify/New Transfer Item dialog
box.) Here you see that Turbo Assembler is defined as the program TASM
in the current path. Notice that the Translator check box is marked with an
X; this translator item is then displayed in the local Options dialog box.
Press Esc to return to the Transfer section.

Suppose you want to compile the MYFUNCS module using the Borland
C++ command-line compiler instead of the IDE's compiler. To do so, you
would perform the following steps:

1. Define BCC as one of the Project File Translators in the Transfer dialog
box. Move the cursor past the last entry in the Program Titles list, then
press Enter to bring up the Modify/New Transfer Item dialog box. In the
Program Title input box, type Borland e++ command-line compiler; in the
Program Path input box, type Bee; and in the command line, type
$EDNAME.

2. Check Translator by pressing Spacebar and press Enter (New is the
default action button). Back at the Transfer dialog box, you see that
Borland e++ command-line compiler is now in the Program Titles list box
(the last part doesn't show). Choose OK and press Enter.

3. Back in the Project window, press Ctr/+O to go to the Local Options
dialog box again. Notice that Borland C++ command-line compiler is now a
choice on the Project File Translators list for MYFUNCS.CPP (as well as
for all of your other files).

4. Tab to the Project File Translators list box and highlight Borland C++
command-line compiler (at this point, pressing Enter or tabbing to another
group will choose this entry). Use the Command-line Options input box
to add any command-line options you want to give BCe when
compiling MYFUNCS.

MYFUNCS.CPP now compiles using BCC.EXE, while all of your other
source modules compile with BC.EXE. The Project Manager applies the
same criteria to MYFUNCS.CPP when deciding whether to recompile the
module during a make as it does to all the modules that are compiled with
BC.EXE.

Borland C++ for OS/2 Users Guide

Overriding libraries

In some cases, it's necessary to override the standard startup files or
libraries. You override the startup file by placing a file called COx.OBJ as the
first name in your project file, where x stands for any name (for example,
COMINE.OBJ). It's critical that the name start with CO and that it is the first
file in your project.

To override the standard library, open the Settings notebook and turn to
the Linker I Settings subsection and, in the Standard Run-time Libraries
box, select None for the Standard Run-time Library. Then add the library
you want your project to use to the project file just as you would any other
item.

More Project Manager features

Let's take a look at some of the other features the Project Manager has to
offer. When you're working on a project that involves many source files,
you want to be able to easily view portions of those files. You'll also want
to be able to quickly access files that are included by others.

For example, expand MYMAIN.CPP to include a call to a function named
GetMyTime:

#include <iostream.h>
#include "myfuncs.h"
#include "mytime.h"

main(int argc, char *argv[])
char *s;

if (argc > 1)
s=argv[lj;

else
s="the universe";

cout « GetString() « s « "\n";

This code adds one new include file to MYMAIN: mytime.h. Together
myfuncs.h and mytime.h contain the prototypes that define the GetString
and GetMyTime functions, which are called from MYMAIN. The mytime.h
file contains

#define HOUR 1
#define MINUTE 2
#define SECOND 3
extern int GetMyTime(int);

Chapter 5, Managing multi-file projects 101

102

Go ahead and put the actual code for GetMyTime into a new source file
called MYTIME.CPP:

#include <time.h>
#include "mytime.h"

int GetMyTime(int which)
{

struct tm *timeptr;
time_t secsnow;

time (&secsnow) ;
timeptr = localtime(&secsnow);
switch (which) {

case HOUR:
return (timeptr -> tm_hour);

case MINUTE:
return (timeptr -> tm_min);

case SECOND:
return (timeptr -> tm_sec);

MYTIME includes the standard header file time.h, which contains the
prototype of the time and localtime functions, and the definition of tm and
time_t, among other things. It also includes mytime.h in order to define
HOUR, MINUTE, and SECOND.

Create these new files, then use Project I Open Project to open
MYPROG.PRJ. The files MYMAIN.CPP and MYFUNCS.CPP are still in the
Project window. Now to build your expanded project, add the file name
MYTIME.CPP to the Project window. Press Ins (or choose Project I Add
Item) to bring up the Add Item dialog box. Use the dialog box to specify the
name of the file you are adding and choose Done.

Now choose Compile I Make to make the project. MYMAIN.CPP will be
recompiled because you've made changes to it since you last compiled it.
MYFUNCS.CPP won't be recompiled, because you haven't made any
changes to it since the make in the earlier example. MYTIME.CPP is
compiled for the first time.

In the MYPROG project window, move to MYMAIN.CPP and press
Spacebar (or Project I Include Files) to display the Include Files dialog box.
This dialog box contains the name of the selected file, several buttons, and a
list of include files and locations (paths). The first file in the Include Files
list box is highlighted; the list box lists all the files that were included by the
file MYMAIN.CPP. If any of the include files is located outside of the
current directory, the path to the file is shown in the Location field of the
list box.

Borland C++ for OS/2 Users Guide

Looking at files in
a project

As each source file is compiled, the information about which include files
are included by which source files is stored in the source file's .OBJ file. If
you access the Include Files dialog box before you perform a make, it might
contain no files or it might have files left over from a previous compile
(which may be out of date). To load one of the include files into an edit
window, highlight the file you want and press Enter or click the View
button.

Let's take a look at MYMAIN.CPP, one of the files in the Project. Simply
choose the file using the arrow keys or the mouse, then press· Enter. This
brings up an edit window with MYMAIN.CPP loaded. Now you can make
changes to the file, scroll through it, search for text, or whatever else you
need to do. When you are finished with the file, save your changes if any,
then close the edit window.

Suppose that after browsing around in MYMAIN.CPP, you realize that
what you really wanted to do was look at mytime.h, one of the files that
MYMAIN.CPP includes. Highlight MYMAIN.CPP in the Project window,
then press Spacebar to bring up the Include Files dialog box for MYMAIN.
(Alternatively, while MYMAIN.CPP is the active edit window, choose
Project I Include Items. Now choose mytime.h in the Include Files box and
press the View button. This brings up an edit window with mytime.h
loaded. When you're done, close the mytime.h edit window.

Chapter 5, Managing multi-file projects 103

104 Borland C++ for OS/2 Users Guide

The command-line
compiler lets you

invoke all
the functions of the

IDE compiler from the
OS/2 command line.

Running Bee

You can also use a
configuration file. See

page 110 for details.

Using the options

Compiler options are
further divided into 11

groups.

c H A p T E R 6

Command·line compiler

As an alternative to using the IDE, you can compile and run your programs
with the command-line compiler (BCC.EXE). Almost anything you can do
within the IDE can also be done using the command-line compiler. You can
tum specific warnings on or off, invoke TASM (or another assembler) to
assemble .ASM source files, invoke the linker to generate executable files,
and so on.

This chapter is organized into two parts:

• The first part describes how to use the command-line compiler and
provides a table of command-line compiler options along with a page­
number cross-reference to where you can find detailed information about
each option (see Table 6.1 starting on page 106).

a The second part, starting on page 111, presents the options organized
functionally (with groups of related options).

To invoke Borland C++ from the command line, type BCC at the OS/2 shell
prompt and follow it with a set of command-line arguments. Command­
line arguments include compiler and linker options and file names. The
generic command-line format is

BCC [option [option ...]] filename [filename ...]

Each command-line option must be preceded by either a hyphen (-) or
slash (I), whichever you prefer. Each option must be separated by at least
one space from the BCC command, other options, and file names that
follow.

The options are divided into three general types:

• Compiler options, described starting on page 111.

a Linker options, described starting on page 124.

• Environment options, described starting on page 125.

To see an onscreen list of the options, type BCC (without any options or file
names) at the OS/2 prompt, then press Enter.

Chapter 6, Command-line compiler 105

Use this feature to
override settings in
configuration files.

Option precedence
rules

To select command-line options, enter a hyphen (-) or slash (I) imme­
diately followed by the option letter (for example, -lor II). To set an option
off, add a second hyphen after the option letter. This is true for all toggle
options (those that set an option on or off): A trailing hyphen (-) sets the
option off, and a trailing plus sign (+) or nothing sets it on. So, for example,
-C and -C+ both set nested comments on, while -C- sets nested comments
off.

The option precedence rules are simple; command-line options are
evaluated from left to right, and the following rules apply:

• For any option that is not an -lor -L option, a duplication on the right
overrides the same option on the left. (Thus an off option on the right
cancels an on option to the left.)

• The -I and -L options on the left, however, take precedence over those on
the right.

Table 6.1: Command-line options summary

Option Page Description

@filename 110 Read compiler options from the response file filename.
+ filename 110 Use the alternate configuration file filename.

-A 116 Use only ANSI keywords with strict compliance checking.
-A- 116 Use Borland C++ keywords (default).
-AT 116 Use Borland C++ keywords (default).
-AK 117 Use only Kernighan and Ritchie keywords.
-AU 117 Use only UNIX keywords.
-an 113 Align to n: 1 = Byte, 2 = VVord, 4 = Double Word boundaries.
-a- 113 Align byte (default).

-B 120 Compile and call the assembler to process inline assembly code.
-b 113 Make enums always int-sized (default).
-b- 113 Make enums byte-sized or word-sized when possible.

-C 117 Nested comments on.
-C- 117 Nested comments off (default).
-c 120 Compile to .OBJ but do not link.

-Dname 112 Define name to the null string.
-D name=string 112 Define name to string.
-d 113 Merge duplicate strings on.
-d- 113 Merge duplicate strings off (default).

-Efilename 120 Use filename as the assembler to use.
-efilename 124 Link to produce filename.EXE.

-ff 113 Fast floating point (default).
-ff- 113 Strict ANSI floating point.

106 Borland C++ for OS/2 Users Guide

Table 6.1: Command-line options summary (continued)

-G 136 Select code for speed.
-G- 136 Select code for size (default).
-gn 117 Warnings: stop after n messages.

-H 120 Causes the compiler to generate and use precompiled headers.
-H- 120 Turns off generation and use of precompiled headers (default).
-Hc 120 Cache precompiled headers. Must be used with -H or -Hxxx.
-Hu 120 Tells the compiler to use but not generate precompiled headers.
-H"xxx" 121 Stop compiling precompiled headers at file "xxx". This must be used with -H, -Hu, or

-H=filename.
-H=filename 120 Sets the name of the file for precompiled headers.

-Ipath 125 Directories for include files.
-in 117 Make significant identifier length to be n.

-Jg 123 Generate definitions for all template instances and merge duplicates (default).
-Jgd
-Jgx

123
123

Generate public definitions for all template instances; duplicates result in redefinition errors.
Generate external references for all template instances.

-jn 117

-K 113
-K- 113
-K2 114

-k 114
-k- 114

-Lpath 125
-Ix 124
-I-x 124

-M 125

-N 115
-npath 125

-02 130
-01 130
-Oa 130
-Ob 130
-Oc 130

-Od 130

-Oe 130
-Oz 130

-Oi 130
-Os 130

Errors: stop after n messages.

Default character type unsigned.
Default character type signed (default).
Allow only two character types (unsigned and signed); char is treated as signed char.
Allows compatibility with Borland C++ 1.0.
Standard stack frame on (default).
Standard stack frame off.

Directories for libraries.
Pass option xto the linker (can use more than one x).
Suppress option x for the linker.

InstruCt the linker to create a map. file.

Check for stack overflow.
Set the output directory.

Optimize for speed.
Optimize for size.
Assume that pointer expressions are not aliased in common subexpression evaluation.
Eliminate stores into dead variables.
Enable local optimizations performed on blocks of code with single entry and single exit. The
optimizations performed are common subexpression elimination, code reordering, branch
optimizations, copy propagation, constant folding and code compaction.
Disable all optimizations, except jump distance optimization, which the compiler performs
automatically.
Enable global register allocation and data flow analysis.
Enable all optimizations that perform transformations within an entire function, including global
common subexpression elimination, loop invariant code motion, induction variable elimination,
linear function test replacement, loop compaction and copy propagation.
Enable inlining of intrinsic functions such as memcpy, str/en, and so on.
Attempts to minimize code size.

Chapter 6, Command-line compiler 107

Table 6.1: Command-line options summary (continued)

-at
-Ox
-0 filename

-P
-Pext
-P-
-P-ext
-p
-p-
-pc
-pr

-r
-r-
-R
-RT

-S
-sDfilename
-sd
-sm

-Tstring
-Tr

-Uname
-u
-u-

-v
-va
-V1
-Vmd
-Vmm
-Vmp
-Vms
-Vmv
-Vs
-v
-v-
-vi
-vi-

-w
-wxxx
-w-xxx

-X
-x
-xd

108

130
130
121

121
121
121
121
115
115
115
115

130
130
116
124

121
125
125
125

121
121

112
115
115

121
122
122
122
122
122
122
122
122
115
115
116
116

117
117
117

115
124
124

Attempts to maximize application execution speed.
Enables most speed optimizations (provided for Microsoft compatibility).
Compile source file to filename.obj.

Perform a Ctt compile regardless of source file extension.
Perform a Ctt compile and set the default extension to ext.
Perform a Ctt or C compile depending on source file extension (default).
Perform a Ctt or C compile depending on extension; set default extension to ext.
Use Pascal L -pascal) calling convention.
Use standard L _stdcall) calling convention (default).
Use C L _cdecl) calling convention.
Use register L Jastcall) calling convention for passing parameters in registers.

Enable register variables (default).
Suppress the use of register variables.
Include browser information in generated .OBJ files.
Enable run-time type information.

Produce .ASM output file.
Specify the name for the linker to use as the module definition file.
Link as a DLL.
Link with the multiple-thread libraries (*MT.LlB).

Pass string as an option to TASM or assembler specified with -E.
Remove all previous assembler options.

Undefine any previous definitions of name.
Generate underscores (default).
Disables underscores.

Smart Ctt virtual tables.
External Ctt virtual tables.
Public Ctt virtual tables.
Use the smallest representation for member pointers.
Member pointers support multiple inheritance.
Honor the declared precision for all member pointer types.
Member pointers support single inheritance.
Member pointers have no restrictions (most general representation).
Local Ctt virtual tables.
Source debugging on.
Source debugging off.
Turns expansion of inline functions on.
Turns expansion of inline functions off.

Display warnings on.
Enable warning message xxx.
Disable warning message xxx.

Disable compiler autodependency output.
Enable exception handling.
Enable destructor cleanup.

Borland C++ for OS/2 Users Guide

Table 6.1: Command-line options summary (continued)

-xf 124 Expand function exception handling initialization inline.
-xp 124 Enable exception location information.

-y 115 Line numbers on.

-zAname
-zBname
-zCname
-zDname
-zEname
-zFname
-zGname
-zHname
-zPname
-zRname
-zSname
-zTname
-zVname
-zWname
-zX'

Syntax and file
names

119
119
119
119
119
119
119
119
119
120
120
120
120
120
120

Code class.
BSS class.
Code segment.
BSS segment.
_ jar16 segment.
_ jar16 class.
BSS group.
_ jar16 group.
Code group.
Data segment.
Data group.
Data class.
Far virtual table segment.
Far virtual table.
Use default name for X (default).

c++ files have the extension .CPP; see page 121 for information on
changing the default extension.

Borland C++ compiles files according to the following set of rules:

• FILENAME.ASM Invoke TASM to assemble to .OBJ.

• FILENAME.OBJ

• FILENAME. LIB
• FILENAME

II FILENAME.CPP

• FILENAME.C

• FILENAME.XYZ

Include as object at link time.

Include as library at link time.

Compile FILENAME.CPP .

Compile FILENAME.CPP.

Compile FILENAME.C.

Compile FILENAME.XYZ.

For example, suppose you have the following command line:

BCC -a -ff- -c -emyexe oldfilel oldfile2 nextfile

Borland C++ compiles OLDFILEl.CPP, OLDFILE2.CPP, and
NEXTFILE.CPP to an .OBJ, linking them to produce an executable program
file named MYEXE.EXE with word alignment (-a), strict ANSI fioating­
point (-ff-), and nested comments (-C).

Chapter 6, Command-line compiler 109

Response files

Configuration
files

110

Borland C++ invokes T ASM if you give it an .ASM file on the command
line or if a .C or .CPP file contains inline assembly. Here are the options that
the command-line compiler gives to TASM:

/D __ LANG __ /ml

LANG is CDECL, PASCAL, or STDCALL. The Iml option tells T ASM to
assemble with case sensitivity on.

Response files allow you to have longer command strings than OS/2
normally allows.

If you need to specify many options or files on the command line, you can
place them in an ASCII text file, called a response file (you can, of course,
name it anything you like). You can then tell the command-line compiler to
read its command line from this file by including the appropriate file name
prefixed with @. You can specify any number of such files, and you can mix
them freely with other options and file names.

For example, suppose the file MOON.RSP contains STARS.C and RAIN.C.
This command

BCC SUN.C @MOON.RSP ANYONE.C

causes Borland C++ to compile the files SUN.C, STARS.C, RAIN.C, and
ANYONE.C. It expands to

BCC SUN.C STARS.C RAIN.C ANYONE.C

Any options included in a response file are evaluated just as if they had
been typed in on the command line. See page 106 for a description of the
rules for evaluating command-line options.

If you find you use a certain set of options over and over again, you can list
them in a configuration file, called TURBOC.CFG by default. When you run
BCC, it automatically looks for TURBOC.CFG in the current directory. If it
doesn't find it there, Borland C++ then looks in the startup directory
(where BCC.EXE resides).

Remember that TURBOC.CFG is not the same as TCCONFIG.TC, which is
the default IDE version of a configuration file.

You can create more than one configuration file; each must have a uniqu~
name. To specify the alternate configuration file name, include its file name,
prefixed with +, anywhere on the BCC command line. For example, to read
the option settings from the file C:\ALT.CFG, you could use the following
command line:

BCC +C:\ALT.CFG

Borland C++ for OS/2 Users Guide

Option precedence
rules

Your configuration file can be used in addition to or instead of options
entered on the command line. If you don't want to use certain options that
are listed in your configuration file, you can override them with options on
the command line.

You can create the TURBOC.CFG file (or any alternate configuration file)
using any standard ASCII editor or word processor, such as Borland C++'s
integrated editor. You can list options (separated by spaces) on the same
line or list them on separate lines.

In general, you should remember that command-line options override con­
figuration file options. If, for example, your configuration file contains
several options, including the -a option (which you want to set ofj), you can
still use the configuration file but override the -a option by listing -a- on
the command line. However, the rules are a little more detailed than that.
The option precedence rules detailed on page 106 apply, with these addi­
tional rules:

• When the options from the configuration file are combined with the
command-line options, any -I and -L options in the configuration file are
appended to the right of the command-line options. This means that the
include and library directories specified in the command line are the first
ones that Borland C++ searches (thereby giving the command-line -I and
-L directories priority over those in the configuration file).

• The remaining configuration file options are inserted immediately after
the BCC command (to the left of any command-line options). This gives
the command-line options priority over the configuration file options.

Compiler options

See page 112.

See page 113.

See Appendix A,
"The optimizer."

Borland C++'s command-line compiler options fall into 11 groups; the page
references to the left of each group tell where you can find a discussion of
each kind of option:

• Macro definitions let you define and undefine macros on the command
line.

• Code-generation options govern characteristics of the generated code.
Examples are the floating-point option, calling convention, character
type, and CPU instructions.

• Optimization options let you specify how the object code is to be
optimized.

Chapter 6, Command-line compiler 111

See page 116.

See page 117.

See page 119.

See page 120.

See page 121.

See page 122.

See page 123.

See page 124.

Macro definitions

112

• Source code options cause the compiler to recognize (or ignore) certain
features of the source code: implementation-specific (non-ANSI, non­
Kernighan and Ritchie, and non-UNIX) keywords, nested comments, and
identifier lengths.

• Error-reporting options let you tailor which warning messages the
compiler reports, and the maximum number of warnings and errors that
can occur before the compilation stops.

• Segment-naming control options let you rename segments and reassign
their groups and classes.

• Compilation control options let you direct the compiler to

• Compile to assembly code (rather than to an object module).

• Compile a source file that contains inline assembly.

• Compile without linking.

• Compile for PM applications.

• Use precompiled headers or not.

• C++ virtual table options let you control how virtual tables are handled.

• C++ member pointer options let you control how member pointers are
used.

• Template generation options let you control how the compiler generates
definitions or external declarations for template instances.

• Exception handling options let you selectively enable exception handling
and generate runtime type identification.

Macro definitions let you define and undefine macros (also called manifest
or symbolic constants) on the command line. The default definition is the
null string. Macros defined on the command line override those in your
source file.

-Dname Defines the named identifier name to the null string.

-Dname:string Defines the named identifier name to the string string
after the equal sign. string cannot contain any spaces or
tabs.

-Uname Undefines any previous definitions of the named identi­
fier name.

Borland C++ lets you make multiple #define entries on the command line
in any of the following ways:

Borland C++ for OS/2 Users Guide

Code-generation
options

• You can include multiple entries after a single -0 option, separating
entries with a semicolon (this is known as "ganging" options):

BCC -Dxxxiyyy=lizzz=NO MYFILE.C

.. You can place more than one -0 option on the command line:

BCC -Dxxx -Dyyy=l -Dzzz=NO MYFILE.C

.. You can mix ganged and multiple -0 listings:

BCC -Dxxx -Dyyy=lizzz=NO MYFILE.C

Code-generation options govern characteristics of the generated code.
Examples are the floating-point option, calling convention, character type,
and CPU instructions.

-a Forces integer-size and larger items to be aligned on a machine­
word boundary. Extra bytes are inserted in a structure to ensure
member alignment. Automatic and global variables are aligned
properly. char and unsigned char variables and fields can be
placed at any address; all others are placed at an even-numbered
address. This option is off by default (-a-), allowing bytewise
alignment.

-b Tells the compiler to always allocate a four-byte int for
enumeration types. This option is on by default.

-b- Tells the compiler to allocate the smallest integer that can hold the
enumeration values. Thus, the compiler allocates an unsigned or
signed char if the minimum and maximum values of the
enumeration are both within the range of 0 to 255 or -128 to 127,
respectively, or an unsigned or signed short if the minimum and
maximum values of the enumeration are both within the range of
o to 65,535 or -32,768 to 32,767, respectively. Otherwise the
compiler uses a four-byte int to represent the enumeration values.

-d Tells the compiler to merge literal strings when one string
matches another, thereby producing smaller programs. This can
also cause errors if one string is modified while the other remains
unmodified. This option is off by default (-d-). Setting on the -d
option results in slightly lo~ger compilation times.

-ff Tells the compiler to optimize floating-point operations without
regard to explicit or implicit type conversions. Answers can be
faster than under ANSI operating mode. See Chapter 10 in the
Programmer's Guide for details.

-ff- Sets off the fast floating-point option. The compiler follows strict
ANSI rules regarding floating-point conversions.

Chapter 6, Command-line compiler 113

-K Tells the compiler to treat all char declarations as if they were
unsigned char type. This allows for compatibility with other
compilers that treat char declarations as unsigned. By default,
char declarations are signed (-K-).

-k Generates a standard stack frame, which is useful whenusing a
debugger to trace back through the stack of called subroutines.
This option is on by default. You can set it off by using option
-k-.

-K2 Do not treat char as a distinct type. Treats char as signed char.

-N

-p

Allows compatibility with Borland C++ 1.0. See the section on
character constants in the Programmer's Guide, Chapter 1.

Generates stack overflow logic at the entry of each function. It
causes a stack overflow message to appear when a stack overflow
is detected. This is costly in terms of both program size and speed
but is provided as an option because stack overflows can be very
difficult to detect. If an overflow is detected, the message "Stack
overflow!" is printed and the program exits with an exit code of 1.

Forces the compiler to generate all subroutine calls and all
functions using the Pascal calling convention. This is equivalent to
declaring all subroutine and functions with the __ pascal
keyword. The resulting function calls are usually smaller and
faster than the -pc option. Functions must pass the correct num­
ber and type of arguments; this is unlike normal C use, which per­
mits a variable number of function arguments. You can use the
__ cdecl, __ stdcall, or __ fastcall keyword to specifically declare
a function or subroutine using another calling convention.

The various calling -p­
conventions are

discussed in Chapter

Forces the compiler to generate all subroutine calls and all
functions using the Standard calling convention. This is
equivalent to declaring all subroutine and functions with the 2, Language

structure," in the
Programmers Guide.

114

-pc

__ stdcall keyword. Functions must pass the correct number and
type of arguments; this is unlike normal C use, which permits a
variable number of function arguments. You can use the __ cdecl,
__ pascal, or __ fastcall keyword to specifically declare a function
or subroutine using another calling convention.

Forces the compiler to generate all subroutine calls and all
functions using the C calling convention. This is equivalent to
declaring all subroutine and functions with the __ cdecl keyword.
Functions must pass the correct number and type of arguments;
this is unlike normal C use, which permits a variable number of
function arguments. You can use the __ stdcall, __ pascal, or

Borland C++ for OS/2 Users Guide

Unless you are an
expert, don't use

-u-. See Chapter 12,
"Inline assembly," in

the Programmers
Guide for details

__ fastcall keyword to specifically declare a function or
subroutine using another calling convention.

-pr Forces the compiler to generate all subroutine calls and all
functions using the Register calling convention. This is equivalent
to declaring all subroutine and functions with the __ fastcall
keyword. The -pr often results in smaller and faster function calls.
Functions must pass the correct number and type of arguments;
this is unlike normal C use, which permits a variable number of
function arguments. You can use the __ stdcall, __ pascal, or

-u

__ cdecl keyword to specifically declare a function or subroutine
using another calling convention.

For more information about __ fastcall, see Appendix A, "The
optimizer. "

With -u selected, when you declare an identifier, Borland C++
automatically puts an underscore (_) in front of the identifier
before saving the identifier in the object module.

Borland C++ treats Pascal identifiers (those modified by the
__ pascal keyword) differently-they are uppercase and are not
prefixed with an underscore.

Underscores for C and C++ identifiers are optional, but are on by
default. You can set them off with -u-. But note that setting the
underscores off causes link errors when linking with the standard
Borland C++ libraries.

about underscores. -X Disables generation of auto dependency information in the output
file. Modules compiled with this option enabled are not able to
use the auto dependency feature of MAKE or of the IDE. Normally
this option is used only for files that are to be put into .LIB files (to
save disk space).

The -v and -vi
options

-y Includes line numbers in the object file for use by a symbolic
debugger, such as Turbo Debugger. This increases the size of the
object file but doesn't affect size or speed of the executable
program. This option is useful only in concert with a symbolic
debugger that can use the information. In general, -v is more
useful than -y with Turbo Debugger.

-v Tells the compiler to include debugging information in the .OBJ
file so that the file(s) being compiled can be debugged with either
Borland C ++'s integrated debugger or the standalone Turbo

Chapter 6, Command-line compiler 115

Turbo Debugger is
both a source-level

(symbolic) and
assembly-level

debugger.

Optimization
options

Source code
options

116

-vi

Debugger. The compiler also passes this option on to the linker so
it can include the debugging information in the .EXE file.

To facilitate debugging, this option also causes C++ inline
functions to be treated as normal functions. To avoid that, use -vi.

Expands C++ inline functions inline.

In order to control the expansion of inline functions, the operation of the -v
option is slightly different for C++. When inline function expansion is not
enabled, the function is generated and called like any other function.
Debugging in the presence of inline expansion can be extremely difficult, so
Borland C++ provides the following options:

-v Turns debugging on and inline expansion off.

-v- Turns debugging off and inline expansion on.

-vi Turns inline expansion on.

-vi- Turns inline expansion off.

So, for example, if you want to turn both debugging and inline expansion
on, you must use -v -vi.

-R Includes browser information when the compiler generates .OBJ
files; this lets you inspect the application while using the IDE's
integrated Browser. When this option is off, you can link larger
.OBJ files. This option doesn't affect execution speed, but it does
affect compile time.

Borland C++ is a professional optimizing compiler, featuring a number of
options that let you specify how the object code is to be optimized; for size
or speed, and using (or not) a wide range of specific optimization
techniques. Appendix A, "The optimizer," discusses these options in detail.

Source code options cause the compiler to recognize (or ignore) certain
features of the source code; implementation-specific (non-ANSI, non­
Kernighan and Ritchie, and non-UNIX) keywords, nested comments, and
identifier lengths. These options are most significant if you plan to port
your code to other systems.

-A Compiles ANSI-compatible code: Any of the Borland C++
extension keywords that are not prefixed with double underscores
are ignored and can be used as normal identifiers. Note that C and
C++ programs can use different keywords. The Programmer's Guide,
Chapter 1, contains a complete discussion of keywords and register
pseudovariables.

Borland C++ for OS/2 Users Guide

Error-reporting
options

For more information
on these warnings,

see Appendix A,
"Error messages," in

the Tools and Utilities
Guide.

-A- Tells the compiler to use Borland C++ keywords. -AT is an
alternate version of this option.

-AK Tells the compiler to use only Kernighan and Ritchie keywords.

-AT Tells the compiler to use Borland C++ keywords. -A- is an
alternate version of this option.

-AU Tells the compiler to use only UNIX keywords.

-C Lets you nest comments. Comments normally cannot be nested
(-C-).

-in Causes the compiler to recognize only the first n characters ofiden­
tifier names. All identifiers, whether variables, preprocessor
macros, or structure members, are treated as distinct only if their
first n characters are distinct. Specifying n to be 0 or greater than
249, or not specifying the -in option at all, forces the compiler to
allow identifiers of unlimited length.

By default, Borland C++ uses 32 characters per identifier. Other
systems, including some UNIX compilers, ignore characters
beyond the first eight. If you are porting to these other environ­
ments, you might want to compile your code with a smaller num­
ber of significant characters. Compiling in this manner helps you
see if there are any name conflicts in long identifiers when they are
truncated to a shorter significant length.

Error-reporting options let you tailor which warning messages the compiler
reports, and the maximum number of warnings and errors that can occur
before the compilation stops.

-gn Tells Borland C++ to stop compiling after n warning messages.

-jn Tells the compiler to stop compiling after n error messages.

-w Causes the compiler to display warning messages. You can set

-wxxx

this off with -W-. You can enable or disable specific warning
messages with -wxxx, described in the following paragraphs.

Enables the specific warning message indicated by xxx. The
option -w-xxx suppresses the warning message indicated by
xxx. The possible options for -wxxx are divided into four
categories: ANSI violations, frequent errors, portability
warnings, and C++ warnings. Each category is discussed in the
following sections. You can also use the pragma warn in your
source code to control these options. See Chapter 5, "The
preprocessor," in the Programmer's Guide.

Chapter 6, Command-line compiler 117

The asterisk (*)
indicates that the

option is on by
default. All others are

off by default.

118

ANSI violations
-wbbf Bit fields must be signed or unsigned int.
-wbig* Hexadecimal value contains more than three digits.
-wdpu* Declare type prior to use in prototype.
-wdup* Redefinition of macro is not identical.
-weas Type assigned to enumeration.
-wext*
-wpin

Identifier is declared as both external and static.
Initialization is only partially bracketed.

-wret*
-wstu*

Both return and return with a value are used.
Undefined structure structure.

-wsus*
-wvoi*
-wzdi*

Suspicious pointer conversion.
Void functions cannot return a value.
Division by zero.

Frequent errors
-wamb Ambiguous operators need parentheses.
-wamp Superfluous & with function or array.
-wasm Unknown assembler instruction.
-waus* Identifier is assigned a value that is never used.
-\"/CCC* Condition is always true/ false.
-wdef Possible use of identifier before definition.
-weff* Code has no effect.
-will * Ill-formed pragma.
-wnod No declaration for function function.
-wpar* Parameter parameter is never used.
-wpia* Possibly incorrect assignment.
-wpro* Call to function with no prototype.
-wrch* Unreachable code.
-wrvl*
-wstv
-wuse

Function should return a value.
Structure passed by value.
Identifier is declared but never used.

Portability warnings
-wcpt* Nonportable pointer comparison.
-wrng* Constant out of range in comparison.
-wrpt* Nonportable pointer conversion.
-wsig Conversion might lose significant digits.
-wucp Mixing pointers to signed and unsigned char.

c++ warnings
-wbei* Initializing enumeration with type.
-wdsz* Array size for I delete' ignored.
-whid* Functionl hides virtual function function2.

Borland C++ for OS/2 Users Guide

Segment-naming
control

Don't use these
options unless you

have a good
understanding of seg­

mentation on the
80386/80486 proces­

sor. Under normal
circumstances, you

do not need to
specify

segment names.

-wibc*
-winl*
-wlin*
-wlvc*
-wmpc*
-wmpd*
-wncf*
-wnci*
-wnst*
-wnvf*
-wobi*
-wofp*
-wovl*
-wpre

Base class basel is inaccessible because also in base2.
Functions containing identifier are not expanded inline.
Temporary used to initialize identifier.
Temporary used for parameter in call to identifier.
Conversion to type fails for members of virtual base class base.
Maximum precision used for member pointer type type.
Non-const function function called const object.
Constant member identifier is not initialized.
Use qualified name to access nested type type.
Non-volatile function function called for volatile object.
Base initialization without a class name is now obsolete.
Style of function definition is now obsolete.
Overload is now unnecessary and obsolete.
Overloaded prefix operator ++ / - used as a postfix operator.

Segment-naming control options let you rename segments and reassign
their groups and classes. See also the discussion of the preprocessor direc­
tive codeseg in the Programmer's Guide, Chapter 5.

-zAname

-zBname

-zCname

-zDname

-zEname

-zFname

-zGname

-zHname

Changes the name of the code segment class to name. By
default, the code segment is assigned to class CODE.

Changes the name of the uninitialized data segment class to
name. By default, the uninitialized data segments are assigned
to class BSS.

Changes the name of the code segment to name. By default,
the code segment is named _TEXT.

Changes the name of the uninitialized data segment to name.
By default, the uninitialized data segment is named _BSS.

Changes the name of the segment where _ _ far16 objects are
put to name. By default, the segment name is the name of the
source file followed by _DATA. A name beginning with an
asterisk (*) indicates that the default string should be used.

Changes the name of the class for _ _ far16 objects to name. By
default, the name is DATA16. A name beginning with an
asterisk (*) indicates that the default string should be used.

Changes the name of the uninitialized data segment group to
name. By default, the data group is named DGROUP.

Causes _ _ far16 objects to be put into group name. By default,
_ _ far16 objects are not put into a group. A name beginning

Chapter 6, Command-line compiler 119

Compilation
control options

with an asterisk (*) indicates that the default string should be
used.

-zPname Causes any output files to be generated with a code group for
the code segment named name.

-zRname Sets the name of the initialized data segment to name. By
default, the initialized data segment is named _DATA.

-zSname Changes the name of the initialized data segment group to
name. By default, the data group is named DGROUP.

-zT name Sets the name of the initialized data segment class to name. By
default, the initialized data segment class is named DATA.

-zVname Sets the name of the far virtual table segment to name. By
default, far virtual tables are generated in the code segment.

-zW name Sets the name of the far virtual table class segment to name. By
default, far virtual table classes are generated in the CODE
segment.

-zx* Uses the default name for X. For example, -zA* assigns the
default class name CODE to the code segment.

Compilation control options let you control compilation of source files,
such as whether your code is compiled as C or C++, whether to use
precompiled headers, and what kind of PM executable file is created. For
more detailed information on how to create a PM application, see
Chapter 9, "Building OS/2 applications" in the Programmer's Guide.

-8

-c

-Efilename

Compiles and calls the assembler to process inline
assembly code.

Compiles and assembles the named .C, .CPP, and .ASM
files, but does not execute a link command.

Uses name as the name of the assembler to use. By default,
TASM is used.

See Appendix C for -H Causes the compiler to generate and use precompiled
headers, using the default filename BCDEF.CSM. more on precompiled

headers.

120

-H-

-Hc

Sets generation and use of precompiled headers off (this is
the default). Precompiled headers can dramatically
increase compile speed, although they require considerable
disk space.

Cache precompiled headers. This option requires the use of
-H or-Hxxx.

Borland C++ for OS/2 Users Guide

c++ virtual tables

-Hu Tells the compiler to use but not generate precompiled
headers.

-H"xxx' Stop compiling precompiled headers at file "xxx". This
option requires the use of -H, -Hu, or -H=fiIename.

-H=filename Sets the name of the file for precompiled headers, if you
want to save this information in a file other than
BCDEF.CSM. This option also sets on generation and use
of precompiled headers; that is, it also has the effect of -H.

-0 filename Compiles the named file to the specifiedjilename.obj.

-P Causes the compiler to compile your code as C++ always,
regardless of extension. The compiler assumes that all files
have .CPP extensions unless a different extension is
specified with the code.

-Pext Causes the compiler to compile all files as C++; it changes
the default extension to whatever you specify with ext. This
option is available because some programmers use .C or
another extension as their default extension for C++ code.

-P- Tells the compiler to compile a file as either C or C++,
based on its extension. The default extension is .CPP. This
option is the default.

-P-ext Tells the compiler to compile code based on the extension
(.CPP as C++ code, all other file-name extensions as C
code). It further specifies what the default extension is to
be.

-5 Compiles the named source files and produces assembly
language output files (.ASM), but does not assemble. When
you use this option, Borland C++ includes the C or C++
source lines as comments in the produced .ASM file.

- Tstring Passes string as an option to T ASM (or as an option to the
assembler defined with -E).

- T - Removes all previously defined assembler options.

The -V option controls the C++ virtual tables. It has four variations:

-V Use this option when you want to generate common C++ virtual
tables and out-of-line inline functions across modules within
your application. As a result, only one instance of a given virtual
table or out-of-line inline function is included in the program.
This produces the smallest and most efficient executables.

Chapter 6, Command-line compiler 121

c++ member
pointers

122

-Vs Use this option when you want to generate local virtual tables
and out-of-line inline functions. As a result, each module gets its
own private copy of each virtual table or out-of-line inline
function it uses; this setting produces larger executables than the
Smart setting.

-VO, -V1 These options work together to create global virtual tables. If
you don't want to use the Smart or Local options (-V or -Vs),
you can use -vo and -V1 to produce and reference global virtual
tables. -vo generates external references to virtual tables; -V1
produces public definitions for virtual tables.

When using these two options, at least one of the modules in the
program must be compiled with the -V1 option to supply the
definitions for the virtual tables. All other modules should be
compiled with the -VO option to refer to that Public copy of the
virtual tables.

The Borland C++ compiler supports several different kinds of member
pointer types, with varying degrees of complexity and generality. By
default, the compiler uses the most general (but in some contexts also the
least efficient) kind for all member pointer types; this default behavior can
be changed via the -Vm family of switches.

-Vmv

-Vmm

-Vms

-Vmd

-Vmp

Member pointers declared while this option is in effect have no
restriction on what members they can point to; they use the most
general representation.

Member pointers declared while this option is in effect are
allowed to point to members of multiple inheritance classes,
except that members of virtual base classes cannot be pointed to.

Member pointers declared while this option is in effect are not
allowed to point to members of classes that are base classes of
classes with multiple inheritance (in general, they can be used
with single inheritance classes only).

Member pointers declared while this option is in effect use the
smallest possible representation that allows member pointers to
point to all members of their class. If the class is not fully defined
at the point where the member pointer type is declared, the most
general representation has to be chosen by the compiler (and a
warning is issued about this).

Whenever a member pointer is dereferenced or called, the
compiler treats the member pointer as if it were of the least
general case needed for that particular pointer type. For

Borland C++ for OS/2 Users Guide

Template
generation
options

example, a call through a pointer to a member of a class that is
declared without any base classes treats the member pointer as
having the simplest representation, regardless of how it's been
declared. This works correctly (and produces the most efficient
code) in all cases except for one: when a pointer to a derived
class is explicitly cast as a pointer-to-member of a 'simpler' base
class, when the pointer is actually pointing to a derived class
member. This is a non-portable (and dubious) construct, but if
you need to compile code that uses it, use the -Vmp option. This
forces the compiler to honor the declared precision for all
member pointer types.

The -Jg option controls the generation of template instances in C++. It has
three variations:

-Jg Public definitions of all template instances encountered when
this switch value is in effect are generated, and if more than one
module generates the same template instance, the linker merges
them to produce a single copy of the instance. This option (the
default) is the most convenient approach to generating template
instances. In order to generate the instances, however, the
compiler must have available the function body (in the case of a
template function) or the bodies of member functions and
definitions for static data members (in the case of a template
class).

This option is equivalent to the Template Generation I Smart
setting in the Settings notebook under Compiler I C++ Options.

-Jgd Tells the compiler to generate public definitions for all template
instances encountered. Unlike the -Jg option, however,
duplicate instances are not merged, causing the linker to report
public symbol redefinition errors if more than one module
defines the same template instance.

This option is equivalent to the Template Generation I Global
setting in the Settings notebook under Compiler I C++ Options.

For more information -Jgx
about templates, see

Instructs the compiler to generate external references to template
instances. If you use this option you must make sure that the
instances are publicly defined in some other module (using the
-Jgd option), so that external references are properly resolved.

Chapter 3, uC++
specifics," in the

Programmers Guide.

Chapter 6, Command-line compiler

This option is equivalent to the Template Generation I External
setting in the Settings notebook under Compiler I C++ Options.

123

Exception
handl ing/RTTI

Linker options

-x

-xp

-xd

-xf

-RT

-RT-

Enables C++ exception handling. If you use C++ exception
handling constructs in your code and compile with this option
disabled (by unchecking the option in the IDE or using the -x­
command-line option), you'll get an error. See also the Library
Reference, Chapter 9, for a description of set_new_handler
function.

Enables exception location information that makes available
run-time identification of exceptions by providing the line
numbers in the source code where the exception occurred. This
lets the program query the file and line number from where a
C++ exception occurred.

Enables destructor cleanup so that destructors are called for all
automatically declared objects between the scope of the catch
and throw statements when an exception is thrown. Note that
destructors aren't automatically called for dynamic objects and
dynamic objects aren't automatically freed.

Normally, the prolog of a function with any exception handling
constructs will contain a call to a run-time library function to
initialize exception handling for the function. The -xf option
expands this code inline in the prolog of each function providing
slightly faster code execution, but at the expense of code size.
This option can be used selectively for only the most time-critical
functions.

Enables runtime type identification (RTTI). This is on by default.

Turns the default RTTI option off.

See the section on -efilename
TLiNK in the Tools

Derives the executable program's name from filename by
adding the file extension .EXE (the program name is then
filename.EXE). filename must immediately follow the -e, with
no intervening whitespace. Without this option, the linker
derives the .EXE file's name from the name of the first source
or object file in the file name list. The default extension is
.DLL when you are using -sd.

and Utilities Guide for
a list of linker options.

124

-Ix Passes option x to the linker. More than one option can
appear after the -I (which is a lowercase 1), with each option
separated by a semicolon.

Borland C++ for OS/2 Users Guide

-I-x

-M

Suppresses linker option x. More than one option can appear
after the -1- (lowercase 1 followed by a dash), with each
option separated by a semicolon.

Forces the linker to produce a full link map. The default is to
produce no link map.

-sDfilename Forces the linker to use filename as the module definition file.

-sd Produces a DLL file.

-sm Links with the OS/2 multi-thread libraries. This also defines
the macro __ MT __ .

Environment options

Include file and
library directories

When working with environment options, bear in mind that Borland C++
recognizes two types of library files: implicit and user-specified (also known
as explicit library files). These are defined and discussed on page 126.

-Ipath

-Lpath

-npath

Causes the compiler to search path (the drive specifier or
path name of a subdirectory) for include files (in addition
to searching the standard places). A drive specifier is a
single letter, either uppercase or lowercase, followed by a
colon (:). A directory is any valid directory or directory
path. You can use more than one -I (which is an uppercase
I) directory option.

Forces the linker to get the COx.OBJ start-up object file and
the Borland C++ library files (Cx.LIB, CxMT.LIB, and
OS2.LIB) from the named directory. By default, the linker
looks for them in the current directory.

Places any .OBJ or .ASM files created by the compiler in the
directory or drive named by path.

Borland C++ can search multiple directories for include and library files.
This means that the syntax for the library directories (-L) and include
directories (-I) command-line options, like that of the #define option (-0),
allows multiple listings of a given option.

Here is the syntax for these options:

Library directories: -Ldirname[;dirname; ...]
Include directories: -Idirname[;dirname; ...]

Chapter 6, Command-line compiler 125

File-search
algorithms :

Note

Your code written
under any version of

Turbo C or Turbo
C++ should work

without problems in
Borland C++.

126

The parameter dirname used with -L and -I can be any directory or
directory path.

You can enter these multiple directories on the command line in the
following ways:

• You can" gang" multiple entries with a single -L or -I option, separating
ganged entries with a semicolon, like this:

Bee -Ldirnamel;dirname2;dirname3 -linel;ine2;ine3 myfile.e

• You can place more than one of each option on the command line, like
this:

Bee -Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line3 myfile.c

• You can mix ganged and multiple listings, like this:

BCC -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 myfile.e

If you list multiple -L or -I options on the command line, the result is
cumulative: The compiler searches all the directories listed, in order from
left to right.

The IDE also supports multiple library directories through the" ganged
entry" syntax.

The Borland C++ include-file search algorithms search for the header files
listed in your source code in the following way:

• If you put an #include <somefile.h> statement in your source code,
Borland C++ searches for somefile.h only in the specified include
directories.

• If, on the other hand, you put an #include "somefile.h" statement in your
code, Borland C++ searches for somefile.h first in the current directory; if
it does not find the header file there, it then searches in the include
directories specified in the command line.

The library file search algorithms are similar to those for include files:

• Implicit libraries: Borland C++ searches for implicit libraries only in the
specified library directories; this is similar to the search algorithm for
#include <somefile.h>. Implicit library files are the ones Borland C++
automatically links in, such as Cx.LIB, OS2.LIB, and the start-up object
file (COx.OBJ).

• Explicit libraries: Where Borland C++ searches for explicit (user­
specified) libraries depends in part on how you list the library file name.
Explicit library files are ones you list on the command line or in a project
file; these are file names with a .LIB extension.

Borland C++ for OS/2 Users Guide

An annotated
example

• If you list an explicit library file name with no drive or directory (like
this: my lib . lib), Borland C++ searches for that library in the current
directory first. Then (if the first search was unsuccessful), it looks in the
specified library directories. This is similar to the search algorithm for
#include "somefile.h" .

• If you list a user-specified library with drive and/or directory
information (like this: c :mystuff\mylib1.lib), Borland C++ searches only
in the location you explicitly listed as part of the library path name and
not in the specified library directories.

Here is an example of how to compose a Borland C++ command line for an
application that uses special header and library files.

1. Your current drive is C:, and your current directory is C: \ BCOS2,
where your source code resides. Your A drive's current directory is
A: \ ASTRa LIB.

2. Your include files (.h or "header" files) are located in
C: \ BCOS2\INCLUDE.

3. Your startup files (C02.0BJ, C02D.OBJ, and so forth) are in
C: \BCOS2\LIB.

4. Your standard Borland C++ library files (C2.LIB, C2MT.LIB, ... ,
OS2.LIB, and so forth) are in C:\BCOS2\LIB.

5. Your custom library files for star systems (which you created and
manage with TLIB) are in C:\BCOS2\STARLIB. One of these libraries is
PARX.LIB.

6. Your third-party-generated library files for quasars are in the A drive in
\ASTROLIB. One of these libraries is WARP.LIB.

Under this configuration, you enter the following command:

BCC -Llib;starlib -linclude orion.c urnaj.c parx.lib a:\astrolib\warp.lib

Borland C++ compiles ORION.C andUMAJ.C to .OBJ files, searching
C:\BCOS2\INCLUDE for any header files in your source code. It then links
ORION.OBJ and UMAJ.OBJ with the start-up code (C02.0BD, the standard
libraries (C2.LIB and OS2.LIB), and the user-specified libraries (PARX.LIB
and WARP.LIB), producing an executable file named ORION.EXE.

It searches for the startup code in C:\BCOS2\LIB (then stops because it's
there); it searches for the standard libraries in C:\BCOS2\LIB (and stops
because they're there).

When it searches for the user-specified library P ARX.LIB, the compiler first
looks in the current directory, C:\BCOS2. Not finding the library there, the

Chapter 6, Command-line compiler 127

128

compiler then searches the library directories in order: first C: \ BCOS2 \ LIB,
then C:\BCOS2\STARLIB (where it locates PARX.LIB).

Because an explicit path is given for the library WARP.LIB
(A: \ ASTROLIB \ WARP. LIB), the compiler only looks there.

Borland C++ for OS/2 Users Guide

A p p E N o x

The optimizer

This appendix details the use of the Borland C++ optimization options,
including command-line options and IDE settings.

A

What is optimization?

When should you
use the optimizer?

Borland C++ is a professional optimizing compiler that gives you complete
control over what kinds of optimization you want the compiler to perform.

An optimizer is a tool for improving your application's speed or reducing
its size. Borland's optimizer provides extensive state-of-the-art optimization
technology, providing a boost in speed or a reduction in size without
affecting the style in which you like to program.

You can use the optimizer from the earliest stage of development to the
final stages without having to worry about slow compilation times.
Although most compilers take two to three times longer to compile when
performing full optimizations, the Borland C++ compiler takes only 60%
longer. In addition, the Borland C++ debugger understands optimized
code, so debugging your optimized application is easy.

Optimization options

The command-line compiler controls most optimizations through the-O
command-line option. The -0 option can be followed by one or more of the
suboption letters given in the list below. For example, -Oaxt turns on all
speed optimizations and the Assume No Pointer Aliasing optimization.
You can turn off optimizations on the command line by placing a minus
before the optimization letter. For example, -02-z turns on all speed
optimizations except the global transformation optimizations. In addition,
some optimizations are controlled by means other than -0. For example,
the -r option enables the use of register variables.

Appendix A, The optimizer 129

The optimizations options follow the same rules for precedence as all other
Borland C++ options. For example, -Od appearing on the command line
after a -02 disables all optimizations.

The settings shown for each optimization in table A.1 are located in the Set­
tings notebook. To access the Settings notebook, choose the View Settings
option from the Project menu. For information on the Settings notebook,
see Chapter 4, "Settings notebook."

Table A.1: Optimization options summary

Command·line

-02

-01

-Oa

-Ob

-Oc

-Od

-Oe

-Oi

-Os

-Ot

-Ox

-Oz

130

IDE Setting and Optimization Function

CompilerlOptimizationslFastest Code
Generates the fastest code possible. This is the same as using the following command-line
options: -0 -Ob -Oe -Oz -Oi -Ot -Oc.

CompilerlOptimizationslSmallest 'Code
Generates the smallest code possible. This is the same as using the following command-line
options: -0 -Ob -Os -Oc -Oe.

CompilerlOptimizationslAssume No Pointer Aliasing
Assume that pointer expressions are not aliased in common subexpression evaluation.

CompilerlOptimizationsl Dead Storage Elimination
Eliminates dead variables.

CompilerlOptimizationslLocal Common Expressions
Enables local optimizations that are performed on blocks of code that have single entry and single
exit. The optimizations performed are common subexpression elimination, code reordering,
branch optimizations, copy propagation, constant folding and code compaction.

CompilerlOptimizationslMinimal Opts
Disables all optimizations, except jump distance optimization, which the compiler performs
automatically.

CompilerlOptimizationslGlobal Register Allocation
Enables global register allocation and data flow analysis.

CompilerlOptimizationsllntrinsic Expansion
Enables inlining of intrinsic functions such as memcpy, sfr/en, and so on.

CompilerlOptimizationslOptimize ForlSize
Attempts to minimize code size.

CompilerlOptimizationslOptimize ForlSpeed
Attempts to maximize application execution speed.

None
Enables most speed optimizations. This is provided for compatibility with Microsoft compilers.

CompilerlOptimizationslGlobal Optimizations
Enables all optimizations that perform transformations within an entire function. They are: global
common subexpression elimination, loop invariant code motion, induction variable elimination,
linear function test replacement, loop compaction and copy propagation.

Bor/and c++ for OS/2 Users Guide

Table A.1: Optimization options summary (continued)

-r None

-r-

A closer look at
the Borland C++
optimizer

Global register
allocation

Global
optimizations

Common
subexpression
elimination

This option enables the use of register variables. It is on by default.

None
This option suppresses the use of register variables. When you are using this option, the compiler
won't use register variables, and it won't preserve and respect register variables (ESI, EDI, and
EBX) from any caller. For that reason, you should not have code that uses register variables call
code which has been compiled with -r-.

On the other hand, if you are interfacing with existing assembly-language code that does not
preserve ESI, EDI, and EBX, the -r- option allows you to call that code from Borland C++.

The Borland C++ optimizer performs a number of optimizations, including
sophisticated register coloring, invariant code motion, induction variable
elimination, and many others. Each of these optimizations has been fine­
tuned to the complex instruction set of the Intel 80x86. In addition, the
compiler performs architecture-specific optimizations for the target
processor. The following sections describe these optimizations.

Because memory references are so expensive on the 80x86 processors, it is
extremely important to minimize those references through the intelligent
use of registers. Global register allocation both increases the speed and
decreases the size of your application. You should always use global
register allocation when compiling your application with optimizations on.

The Borland C++ compiler is designed to provide the most efficient code
possible with the minimum increase in compilation speed. Thus, a number
of optimizations are grouped together and performed in a single step.
These optimizations are global common subexpression elimination, invar­
iant code motion, induction variable elimination, copy propagation, loop
compaction and linear function test replacement. Because all these
optimizations are performed in a single step, you can't set any of them on
or off individually. You can set them all on with the -Oz option, or set them
all off with the -Oz- option.

Common sub expression elimination is the process of finding duplicate
expressions within the target scope and eliminating the duplicate expres­
sion by using the value of the previous expression it had computed. This
avoids having to recalculate the expression. When you use this
optimization in conjunction with global register allocation, the gains are
both in size reduction and speed increase; otherwise, the gain is mainly a
speed increase. Common sub expression elimination lets you program in a

Appendix A, The optimizer 131

Loop invariant code
motion

Copy propagation

132

more readable style, without the need to create unnecessary temporary
locations for expressions that are used more than once. For example, the
following code uses a temporary variable to avoid using expensive pointer
referencing:

temp = t->n.o.lefti
if(temp->op == a_ICON I I temp->op == O_FCON)

With common sub expression elimination, you can use direct referencing,
which is more readable and easier to understand, and let the optimizer
decide whether it is more efficient to create the temporary variable.

if(t->n.o.left->op == a_ICON I I t->n.o.left->op == O_FCON)

Moving invariant code out of loops is a speed optimization. The optimizer
uses the information about all the expressions in the function gathered
during data flow analysis to find expressions whose values do not change
inside a loop. To prevent the calculation from being performed many times
inside the loop, the optimizer moves the code outside the loop so that it is
calculated only once. The optimizer then reuses the calculated value inside
the loop. For example, in the code below, x * y * z is evaluated in every
iteration of the loop.

intv[10li

void f (void)
int i, x, y, Zi

for (i = Oi i < 10i itt)
v[il = v[il * x * y * Zi

The optimizer rewrites the code for the loop so that it looks like this:

intv[10li

void f (void)
int i, x, y, z, t1i
tl = x * y * Zi

for (i = Oi i < 10i itt)
v[il = v[il * tli

Copy propagation is primarily a speed optimization. Like loop invariant
code motion, copy propagation relies on the data flow analysis. The
optimizer remembers the values assigned to expressions and uses those
values instead of loading the value of the assigned expressions. Copies of

Borland C++ for OS/2 Users Guide

Induction variable
analysis and
strength reduction

Linear function test
replacement

constants, expressions, and variables may be propagated. For example, in
the following code the constant value 5 can be used for the second
assignment instead of the expression on the right side, so that:

PtrParIn->IntCornp = 5j
(*(PtrParIn->PtrCornp)) . IntCornp = PtrParIn->IntCornpj

is optimized to look like:

(*(PtrParIn->PtrCornp)) . IntCornp = PtrParIn->IntCornp = 5j

Induction variable analysis and strength reduction are speed optimizations
performed on loops. The optimizer uses a mathematical technique called
induction to create new variables out of expressions used inside a loop.
These variables are called induction variables. The optimizer assures that
the operations performed on these new variables are computationally less
expensive (reduced in strength) than those used by the original variables.

Opportunities for these optimizations are common if you use array index­
ing or structure references inside loops, where these references vary with
the loop iterations. For example, the optimizer creates an induction variable
out of the operation v[i] in the code below, because the vIi] operation varies
with the iterative nature of the loop.

int v[10] j

void f (void)
int i, x, y, Zj

for (i = OJ i < 10j itt)
v[i] = x * y * Zj

The optimizer changes this code to the following:

int v[10] j

void f (void)
int i, x, y, Z, *pj

P = Vj

for (i = OJ i < 10j itt)
*p = x * y * Zj

pHj

Linear function test replacement is an optimization that occurs when
induction variable elimination has taken place. Induction variable
elimination generates expressions that vary linearly with the loop
iterations. The compiler can replace the test condition of the loop with an
induction variable expression and scale the test operands accordingly. This

Appendix A, The optimizer 133

Loop compaction

134

optimization is done when the loop iterator varies linearly and is not used
directly within the loop and if its value is not required outside the loop. For
example, the loop iterator i is used only to count the for loop, and is not
used outside the for loop.

int v[10];

void f(void)
int i, x, y, Z, *p;
P = v;
for (i = 0; i < 10; itt)

*p = x * y * Z;
pH;

After being optimized, the code looks like this:

int v[10];

void f(void)
int i, x, y, z, *p;
for (p = v; p < &v[10]; ptt)

*p = x * y * Z;

This eliminates the need for the loop iterator i.

Loop compaction takes advantage of the string move instructions on the
80x86 processorsby replacing the code for a loop with such an instruction.

int v[100];

void t(void)
int i;
for (i = 0; i < 100; itt)

v[i] = 0;

The optimizer reduces this to the machine instructions:

mov ecx,100
mov edi,offset _v[O]
xor eax, eax
rep stosd

Depending on the complexity of the operands, the compacted loop code
might also be smaller than the corresponding non-compacted loop. You
might want to experiment with this optimization if you are compiling for
size and have loops of this nature.

Borland C++ for OS/2 Users Guide

Dead storage
elimination

Pointer aliasing

The optimizer can identify variables that are no longer needed or that are
unnecessary. In the following example, the optimizer performs induction
variable elimination and linear function test replacement to reveal a dead
loop iterator j. Using -Ob removes the code to store any result into
variable j.

int goo(void) , a[10] i

int f (void) {
int i, j i
i = goo () i
for(j = 0; j < 10; j++)

a [j] = goo () i
return ii

After the dead storage elimination optimization is performed on this code,
it looks like this:

int goo (void) , a[10] i

int f (void) {
int ii
i = goo(); II The 'j 'has been removed.
for(int *p = &a[O]i P < &a[10]i P++)

*p = goo () ;
return i;

Pointer aliasing is not an optimization in itself, but it does affect optimizer
performance. Since C and C++ allow pointers to point to any type, the
compiler normally gathers pointer information to generate clean, correct
code. When a pointer has global scope, the compiler is not able to
determine what it points to,\and takes the conservative view that it could
point to every variable that is in global scope. This might be too
conservative for your program. Pointer aliasing provides a mechanism by
which you can inform the compiler that such cases do not exist and that
two pointers do not point to the same location, thus allowing the compiler
to be more aggressive and generate better code. Pointer aliasing might
create bugs, which are hard to spot, so it is only applied when you use -Oa.

-Oa controls how the optimizer treats expressions with pointers in them.
When compiling with global or local common sub expressions and -Oa
enabled, the optimizer recognizes

*p * x

Appendix A, The optimizer 135

Code size versus
speed optimizations

136

as a common sub expression in functionfoo in the following code:

int g, y;

int foo(int *p)
int x=5;
y = *p * x;
g = 3;
return (*p * x);
}

void goo (void)
g=2;
foo(&g) ; 1* This is incorrect, because the

assignment g = 3 invalidates the
expression *p * x. *1

-Oa also controls how the optimizer treats expressions involving variables
whose address has been taken. When compiling with -Oa, the compiler
assumes that assignments via pointers affect only those expressions
involving variables whose addresses have been taken and which are of the
same type as the left-hand side of the assignment in question. To illustrate,
consider the following function:

int y, Z;

int f (void)
int X;
char *p = (char *)&x;
y = X * Z;

*p = 'a';
return (x * z);

When compiled with -Oa, the assignment *p = la' does not prevent the
optimizer from treating x * z as a common sub expression, because the
destination of the assignment, *p, is a char, whereas the addressed variable
is an int. When compiled without -Oa, the assignment to *p prevents the
optimizer from creating a common sub expression out of x * z.

You can control the selection and compaction of instructions with the -G
and -G- options. -G tells the compiler to compile your source code for the
fastest execution time. This is equivalent to pressing the Fastest Code
button in the Compiler I Optimizations subsection of the S~ttings notebook.

Borland C++ for OS/2 Users Guide

Intrinsic function
inlining

There are times when you might want to use one of the common string or
memory functions, such as strcpy or memcmp, but you don't want to incur
the overhead of a function call. If you use -Oi, the compiler generates the
code for these functions within your function's scope, eliminating the need
for a function call. The resulting code executes faster than a call to the same
function, but it is also larger.

The following is a list of those functions that are inlined when -Oi is
enabled.

alloca rnernset strcrnp
fabs jotl strcpy
lrotl rotr strlen - -
lrotr rrotl strncat - -

rnernchr - rrotr strncrnp
rnerncrnp stpcpy strncpy
rnerncpy strcat strnset

You can control the inlining of each of these functions with the #pragma
intrinsic. For example,

#pragrna intrinsic strcpy

causes the compiler to generate code for strcpy in your function.

#pragrna intrinsic -strcpy

prevents the compiler from inlining strcpy. By using these pragmas in a file,
you can override the command-line switches or IDE options used to
compile that file.

When inlining any intrinsic function, you must include a prototype for that
function before you use it. This is because, when inlining, the compiler
actually creates a macro that renames the inlined function to a function that
the compiler internally recognizes. In the above example, the compiler
creates this macro:

#define strcpy __ strcpy __

The compiler recognizes calls to functions with two leading and two
trailing underscores and tries to match the prototype of that function
against its own internally stored prototype. If you did not supply a
prototype, or the prototype you supplied does not match the compiler's
internal prototype, the compiler rejects the attempt to inline that function
and generates an error. Prototypes are provided in the standard header files
(that is, string.h, stdlib.h, and so on).

Appendix A, The optimizer 137

Register parameter
passing

Parameter rules

Table A.2
Parameter types and

possible
registers used

Floating-point
registers

138

The command-line compiler included in the Borland C++ product
introduces a new calling convention, named __ fastcall. Functions declared
using this modifier expect parameters to be passed in registers.

The compiler treats this calling convention as a new language specifier,
along the lines of __ cdecl and __ pascal. Functions declared with either of
these two language modifiers cannot have the __ fastcall modifier because
both __ cdecl and __ pascal functions also use the stack to pass parameters.
Likewise, the __ fastcall modifier cannot be used together with __ export.
The compiler generates a warning if you try to mix functions of these types
or if you use the __ fastcall modifier in a situation that might cause an error.

The compiler uses the rules given in Table A.2 when deciding which
parameters the program is to pass in registers. A maximum of three
parameters can be passed in registers to anyone function. You should not
assume that the assignment of registers reflects the ordering of the
parameters to a function.

Parameter type

char (signed and unsigned)

short (signed and unsigned)

int and long (signed and unsigned)

pointer

Registers

AL,DL,BL

AX,DX,BX
EAX,EDX,EBX

EAX,EDX,EBX

Union, structure, and floating-point (float, double, and long double)
parameters are pushed on the stack.

When your application calls a function using the __ fastcall calling con­
vention, the called function automatically saves the RO, Rl, and R2
floating-point registers (or the equivalent if you're using the floating-point
emulator) when called. It also restores them when the function returns.
This lets the compiler allocate variables to these registers for the life of the
function.

A function uses the __ fastcall calling convention when it is declared with
the __ fastcall keyword or compiled with the -pr option or Compiler I Code
Generation Options I Register setting turned on.

Borland C++ for OS/2 Users Guide

Function naming
Functions declared with the __ fastcall modifier have different names than
their non-__ fastcall counterparts. The compiler prefixes the __ fastcall
function name with an @. This prefix applies to both unmangled C function
names and to mangled C++ function names.

Appendix A, The optimizer 139

140 Borland C++ for OS/2 Users Guide

Table B.1
Editing commands

A word is defined as
a sequence of char­

acters, with the
sequence delimited

by one of the
following:

space < > , ;
.()[]II'*+_/

$#=I-?!
"% &': @ \,

and all control and
graphic characters.

A p p E N o x B

Editor reference

The tables in this appendix list all available command keystrokes. Most of
these commands need no explanation. Those that do are described in the
text following Table B.l.

Command Keys

Cursor movement commands
Character left f-

Character right --7

Word left Ctrl+ f-
Word right Ctrl+ --7

Line up i
Line down J-
Scroll up one line Ctrl+W
Scroll down one line Ctrl+Z
Page up PgUp
Page down PgDn
Beginning of line Home

Ctrl+QS
End of line End

Ctrl+Q D
Top of window Ctrl+Q E

Ctrl+E
Bottom of window Ctrl+Q X

Ctrl+X
Top of file Ctrl+Q R

Ctrl+Home
Bottom of file Ctrl+Q C

Ctrl+End
Move to previous position Ctrl+Q P
Move current line to top of Ctrl+Q T
window
Move current line to bottom Ctrl+Q U
of window

Insert and delete commands
Delete character Del

Appendix 8, Editor reference 141

Table B.1: Editing commands (continued)

Delete character to left Backspace
Shift+Tab

Delete word to left Ctrl+Backspace
Smart tab Ctrl+Tab

Ctrl+1
Delete line Ctrl+Y
Delete to end of line Ctrl+Q Y

Shift+Ctrl+ Y
Delete word Ctrl+T
Insert newline Enter
Insert tab Tab
Insert line Ctrl+N

Ctrl+O 0
Insert mode onbff Ins

Block commands
Move to beginning of block Ctrl+Q B
Move to end of block Ctrl+Q K
Set inclusive block Ctrl+K A
Set beginning of block Ctrl+K B
Set end of block Ctrl+KK
Set line block Ctrl+K X
Set column block Ctrl+K G
Set regular block Ctrl+KM
Hide/Show block Ctrl+K H
Mark line Ctrl+K L
Print selected block Ctrl+K P
Mark word Ctrl+K T
Delete block Ctrl+K Y
Copy block Ctrl+KC
Move block Ctrl+K V
Convert word to lowercase Ctrl+K E
Convert word to uppercase Ctrl+K F
Convert block to lowercase Ctrl+KO
Convert block to uppercase Ctrl+K N
Toggle case of block Ctrl+QO
Copy to Clipboard Ctrl+lns
Cut to Clipboard Shift+Del
Delete block Ctrl+Del
Indent block Ctrl+K I

Shift+Ctrl+1
Paste from Clipboard Shift+lns
Read block from disk Ctrl+K R
Unindent block Ctrl+K U

Shift+Ctrl+U
Write block to disk Ctrl+KW

142 Borland C++ for OS/2 Users Guide

Table B.1: Editing commands (continued)

Extending selected blocks
Left one character
Right one character
End of line
Beginning of line
Same column on next line
Same column on previous line
One page down
One page up
Left one word
Right one word
End of file
Beginning of file

Other editing commands
Autoindent mode onoff
Cursor through tabs onoff
Exit the IDE
Find place marker

Help
Help index
Insert control character
Optimal fill mode onoff
Pair matching

Playback keyboard macro
Redo
Save file
Search
Search again
Search and replace
Search incrementally
Set marker

Tab mode onoff
Topic search help
Turn on syntax highlighting
Turn off syntax highlighting
Toggle keyboard macro
recording on and off
Undo
Unindent mode onoff

• n represents a number from 0 to 9.

Shift+ f­

Shift+~
Shift+End
Shift+Home
Shift+ J,
Shift+ t
Shift+PgDn
Shift+PgUp
Shift+Ctr/+ f­

Shift+Ctr/+ ~
Shift+Ctr/+End
Shift+Ctr/+Home

Ctr/+O /
Ctr/+O R
A/t+F4
Ctr/+O n·
Ctr/ n·
F1
Shift+F1
Ctr/+P**
Ctr/+O F
Ctr/+O [, Ctr/+O],
AIt+[, AIt+]
Ctr/+Shift+P
A/t+Shift+Backspace
Ctr/+K S
Ctr/+O F
F3
Ctr/+OA
Ctr/+S
Ctr/+K n·
Shift+Ctr/ n •
Ctr/+O T
Ctr/+F1
Ctr/+O C
Ctr/+O N
Ctr/+Shift+R

AIt+Backspace
Ctr/+O U

** Enter control characters by first pressing Ctr/+P, then pressing the desired control character.

Appendix B, Editor reference 143

Block commands
A block of text is any amount of text, from a single character to hundreds of
lines, that is selected on your screen. There can be only one block in a
window at a time. You can select a block several ways:

• Drag with your mouse while holding the left button.

• Hold down Shift while moving your cursor with the arrow keys.

• Double-click a word.

• Press Ctrl+K B at the beginning of the block and Ctrl+K K at the end of the
block.

Once selected, the block can be copied, moved, deleted, or written to a file.
You can use the Edit menu commands to perform these operations or you
can use the keyboard commands listed in the following table.

When you choose Edit I Copy or press Ctr/+/ns, the selected block is copied to
the Clipboard. When you choose Edit I Paste or Shift+lns, the block held in
the Clipboard is pasted at the current cursor position. The selected text
remains unchanged and is no longer selected.

If you choose Edit I Cut or press Shift+De/, the selected block is moved from
its original position to the Clipboard. It is pasted at the current cursor
position when you choose the Paste command.

Table B.2: Block commands in depth

Command Keys

Copy block Ctrl+lns
Shift+lns

Copy text Ctrl+lns

Cut text Shift+Del

Delete block Ctrl+Del

Move block Shift+Del
Shift+lns

Paste from Shift+lns
Clipboard

Read block Ctrl+K R
from disk

144

Function

Copies a previously selected block to the Clipboard and, after you move
your cursor to where you want the text to appear, pastes it to the new cursor position.
The original block is unchanged. If no block is selected, nothing happens.

Copies selected text to the Clipboard.

Cuts selected text to the Clipboard.

Deletes a selected block. You can "undelete" a block with Undo.

Moves a previously selected block from its original position to the
Clipboard and, after you move your cursor to where you want the text to appear, pastes
it to the new cursor position. The block disappears from its original position. If no block
is marked, nothing happens.

Pastes the contents of the Clipboard.

Reads a disk file into the current text at the cursor position exactly as
if it were a block. The text read is then selected as a block. When this command is
issued, you are prompted for the name of the file to read. You can use wildcards to
select a file to read; a directory is displayed. The file specified can be any legal file
name.

Borland C++ for OS/2 Users Guide

Table B.2: Block commands in depth (continued)

Write block Ctrl+K W Writes a selected block to a file. When you give this command, you are
to disk prompted for the name of the file to write to. The file can be given any legal name (the

default extension is CPP). If you prefer to use a file name without an extension, append
a period to the end of its name.

If you have used Borland editors in the past, you might prefer to use the
block commands listed in the following table.

Table B.3: Borland-style block commands

Command

Set beginning of block'
Set end of block'
Hide/show selected
text'
Inclusive block

Turn on columnar blocks

Turn on regular blocks

Turn on line blocks

Copy selected text
to the cursor'
Move selected text
to the cursor'

Keys

Ctr/+K B
Ctrl+K K
Ctr/+K H

Ctr/+K A

Ctrl+K G

Ctr/+K M

Ctr/+K X

Ctr/+KC

Ctrl+K V

Function

Begins selection of text.
Ends selection of text.
Alternately displays and hides selected text.

With inclusive blocks on, the cursor position is included as part of
the block. To turn off inclusive blocks, turn on columnar, line, or regular blocks.
Turns on column blocking. To turn off columnar blocks, turn on inclusive, regular,
or line blocks.
Turns on regular blocking. To turn off regular blocks, turn on inclusive or columnar
blocks.
Turns on line blocking. To turn off line blocks, turn on inclusive, columnar, or
regular blocks.
Copies the selected text to the position of the cursor. Useful only
with the Persistent Block option.
Moves the selected text to the position of the cursor. Useful only
with the Persistent Block option .

• Selected text is highlighted only if both the beginning and end have been set and the beginning comes before the end.

Other editing
commands

The next table describes other editing commands in more detail. The table
is arranged alphabetically by command name.

Table B.4: Other editor commands in depth

Command Keys

Autoindent Ctr/+O /

Cursor through tabs Ctr/+O R

Appendix B, Editor reference

Function

Toggles the automatic indenting of successive lines. You can also use the
Autoindent Mode setting in the EnvironmentlEditor subsection in the Settings
notebook.

The arrow keys move the cursor to the middle of tabs when this option is on;
otherwise the cursor jumps several columns over multiple tabs. Ctrl+O R is a
toggle.

145

Table B.4: Other editor commands in depth (continued)

Find place marker Ctrl+n* Finds up to 10 place markers (n can be any number in the range
Ctrl+O n* 0 to 9) in text. Move the cursor to any previously set marker by pressing Ctrl+O

Optimal fill

Play back keyboard
macro

Record keyboard
macro

Search incrementally

Set place

Show previous
error

Show next error

Tab mode

Toggle block case

Unindent

Ctrl+O F

Ctrl+Shift+P

Ctrl+Shift+R

Ctrl+S

Shift+Ctrl n*
Ctrl+K n*

AIt+F7

Alt+FB

Ctrl+O T

Ctrl+OO

Ctrl+O U

* n represents a number from 0 to 9.

146

and the marker number.

Toggles optimal fill. Optimal fill begins every line with the minimum number of
characters possible, using tabs and spaces as necessary. This produces lines
with fewer characters.

Plays back previously recorded keyboard macro.

Begin recording keyboard macro. After pressing Ctrl+Shift+R,
the editor remembers all keystrokes you press. To turn off record mode and
return to regular editing, press Ctrl+Shift+R again. Plays back the macro you just
recorded by pressing Ctrl+Shift+P.

Searches for a string as you input it. As you type, the selections in the list
change to match the characters you have typed. For example, if you are search­
ing for the word search, as you type s, the cursor goes to the next word that be­
gins with s. When you press e, if the current word does not begin with se, the
cursor moves to the next word that does, and so on.

Mark up to 10 places in text. After marking your location, you can
work elsewhere in the file and then easily return to your marked location by
using the Find Place Marker command (being sure to use the same marker
number). You can have 10 places marked in each window.

Moves the cursor to the location of the previous error or
warning message. This command is available only if there are messages in the
Transcript window that have associated line numbers.

Moves the cursor to the location of the next error or warning message. This
command is available only if there are messages in the Transcript window that
have associated line numbers.

Toggles Tab mode. You can specify the use of true tab characters in the IDE
with the Use Tab Character setting in the EnvironmentlEditor subsection in the
Settings notebook.

Switches all uppercase letters in the block to lowercase and all from lowercase
letters to uppercase. For example, HellO becomes hEllo.

Toggles Unindent. You can also use the Backspace Unindents setting in the
EnvironmentlEditor subsection in the Settings notebook option.

Borland C++ for OS/2 Users Guide

How they work

The requirements for
using precompiled

headers are on
page 148.

A p p E N D x c

Precompiled headers

Borland C++ can generate and subsequently use precompiled headers for
your projects. Precompiled headers can greatly speed up compilation times.

When compiling large C and C++ programs, the compiler can spend up to
half its time parsing header files. When the compiler parses a header file, it
enters declarations and definitions into its symbol table. If 10 of your source
files include the same header file, this header file is parsed 10 times,
producing the same symbol table every time.

Precompiled header files cut this process short. During one compilation,
the compiler stores an image of the symbol table on disk in a file called
BCDEF.CSM by default. (BCDEF.CSM is stored in the same directory as the
compiler.) Later, when the same source file (or another source file that
includes the same header files) is compiled again, the compiler reloads
BCDEF.CSM from disk instead of parsing all the header files again. Directly
loading the symbol table from disk is over 10 times faster than parsing the
text of the header files.

Borland C++ uses precompiled headers only if the second compilation uses
one or more of the same header files as the first one, and if several other
things, like compiler options, defined macros, and so on, are also identical.

If, while compiling a source file, Borland C++ discov:ers that the first
#include statements are identical to those of a previous compilation (of the
same source or a different source), it loads the binary image for those
#include statements, and parses the remaining statements.

Use of precompiled headers for a given module is an all or nothing deal:
the precompiled header file is not updated for that module if compilation
of any included header file fails.

Appendix C, Precompiled headers 147

Drawbacks
When Borland C++ uses precompiled headers, BCDEF.CSM can become
very large, because it contains symbol table images for all sets of includes
encountered in your sources. You can reduce the size of this file; see
"Optimizing precompiled headers" on page 149 ..

If a header contains any code, then it can't be precompiled. For example,
although C++ class definitions can appear in header files, you should take
care that only member functions that are inline are defined in the header;
heed warnings such as "Functions containing for are not expanded inline".

Using precompiled headers

Setting file names

Caution!

Establishing
identity

148

You can control the use of precompiled headers in any of the following
ways:

• From within the IDE, using the Compiler I Code Generation subsection of
the Settings notebook (see page 63). The IDE bases the name of the
precompiled header file on the project name, creating PRJ_NAME.CSM.

• From the command line using the -H, -H=filename, and-Hu options (see
page 120).

• From within your code using the pragmas hdrfile and hdrstop (see
Chapter 5 in the Programmer's Guide).

The compiler uses just one file to store all precompiled headers. The default
file name is BCDEF.CSM. You can explicitly set the name with the
-H=filename command-line option or the #pragma hdrfile directive.

You might notice that your .CSM file is smaller than it should be. If this
happens, the compiler might have run out of disk space when writing to
the .CSM file. When this happens, the compiler deletes the .CSM in order to
make room for the .OB} file, then starts creating a new (and therefore
shorter) .CSM file. If this happens, just free up some disk space before
compiling.

The following conditions need to be identical for a previously generated
precompiled header to be loaded for a subsequent compilation. The second
or later source file must

• Have the same set of include files in the same order.

• Have the same macros defined to identical values.

• Use the same language (C or C++).

Borland C++ for OS/2 Users Guide

Optimizing
precompiled
headers .

ASOURCE.C:

• Use header files with identical time stamps; these header files can be
included either directly or indirectly.

In addition, the subsequent source file must be compiled with the same
settings for the following options:

• Underscores on externs (-u)

• Maximum identifier length (-in)

• Target OS/2 or PM (-War -Wx)

• Word alignment (-a)

• Default calling convention (-p)

• Treatment of enums as ints (-b)

• Default unsigned char (-K)

• Virtual table control (-Vx)

• C++ member pointer control (-Vmx)

• Debug information (-v)

• Inline function expansion (-vi)

• Keyword control (-A)

For Borland C++ to most efficiently compile using precompiled headers,
follow these rules:

• Arrange the header files in the same sequence in all source files.
• Put the largest header files first.
• Prime BCDEF.CSM with often-used initial sequences of header files.
• Use #pragma hdrstop to terminate the list of header files at well-chosen

places. This lets you make the list of header files in different sources look
similar to the compiler. Chapter 5 in the Programmer's Guide describes
#pragma hdrstop in more detail.

For example, if you had two source files, ASOURCE.C and BSOURCE.C,
which both included pm.h and myhdr.h:

#inc1ude <pm.h>
#include "myhdr.h"
#include "xxx.h"
< ... >

BSQURCE.C: #inc1ude "zz.h"
#include <string.h>
#inc1ude "myhdr .h"
#include <PM.h>
< ... >

Appendix C, Precompiled headers 149

150

Revised
BSOURCE.C:

PREFIX.C

Rearrange the beginning of BSOURCE.C to:

#include <PM.h>
#include "rnyhdr.h"
#include "zz.h"
#include <string.h>
< ... >

Note that windows.h and myhdr.h are in the same order in BSOURCE.C as
they are in ASOURCE.C. You could also make a new source called
PREFIX.C containing only the header files,like this:

#include <PM.h>
#include "rnyhdr.h"

If you compile PREFIX.C first (or insert a #pragma hdrstop in both
ASOURCE.C and BSOURCE.C after the #include "myhdr.h" statement) the
net effect is that after the initial compilation of PREFIX.C, both
ASOURCE.C and BSOURCE.C are able to load the symbol table produced
by PREFIX.C. The compiler then needs only to parse xxx.h for ASOURCE.C
and zz.h and string.h for BSOURCE.C.

Borland C++ for OS/2 Users Guide

A p p E N D x D

Using the Browser

Browsing through your code

The PM IDE has a useful programming tool, the Browser. It lets you explore
the objects in your programs and much more. Even if the applications you
develop don't use object-oriented programming, you'll still find the
Browser an extremely valuable tool. Taking full advantage of the PM
graphical environment, the Browser lets you browse through object
hierarchies, functions, variables, and so on. With the Browser, you can:

.. Graphically view the object hierarchies in your application, then select
the object of your choice and view the functions and other symbols it
contains.

II List the global symbols your program uses, then select one and view its
declaration, list all references to it in your program, or go to where it is
declared in your source code.

II Select a symbol in your source code, then view its details at the click of
the right mouse button.

.. Before you use the Browser, be sure to check these options in the
Compiler I Code Generation subsection of the Settings notebook:

II Debug info in OBJs
II Browser info in OBJs

.. You need to also check these options in the Linker I Options subsection of
the Settings notebook:

II Include debug info

To activate the Browser, choose Classes or Globals on the Search menu. You
can also place your cursor on a symbol in your code and choose Search I
Symbol At Cursor to bring up the Browser. If the program in the current
window or the primary file hasn't been compiled yet, the IDE will display
an error message Error: .EXE file not found.

-. If your program compiles, makes, or builds successfully once, you make
some changes to your code, and your next compilation fails, you can still

Appendix 0, Using the Browser 151

You can also choose
SearchlSymbol At
Cursor to quickly

browse the symbol
the cursor is resting

on in your code.

Figure D.1
Buttons on the

Browser SpeedBar

Exactly which buttons
appear on the

SpeedBar depends
on which Browser

window you are
working with.

152

browse through your application as it existed at the last successful
compilation.

The Browser has a SpeedBar at the top of the Browser window. Choose any
SpeedBar button by clicking it with your mouse or using a hot key. By
choosing a button or an associated hot key, you tell the Browser to perform
some action. These are the buttons you will see, their keyboard equivalents,
and the action they perform:

[1J F1 Help

~ Ctr/+Shift+G Go to the source code for the selected item

~ Ctr/+Shift+B Browse (view the details of) the selected item

Ctr/+V View the previous browser window

~ Ctr/+C Display an overview of the object hierarchy
Ctr/+Shift+O

Ctr/+R List all references of a symbol
Ctr/+Shift+R

Ctrl+W Toggles browser between single and multiple window mode

The last two buttons shown are actually two different views of the same
button. The first time you use the Browser, you'll see the Single Window
button. Click it and it is replaced with the Multiple Window button.

Borland e++ for OS/2 Users Guide

Browsing through
objects

Figure D.2
Viewing the object

hierarchy of an
application

When you choose the Single Window button and begin browsing, a new
browser window replaces the previous window each time you perform a
new browsing action. When you choose the Multiple Window button,
Browser windows remain onscreen until you close them.

You can quickly reverse the action of the Window buttons; hold down Shift
as you select your next browse action. For example, if the Multiple Window
button is displayed, when you hold down Shift, the next browser window
you open replaces the current one.

The Browser lets you see the "big picture," the object hierarchies in your
application, as well as the small details. To activate the Browser and see
your objects displayed graphically, choose Search I Classes. The Browser
draws your objects and shows their ancestor-descendant relationships in a
horizontal tree. The red lines in the hierarchy help you see the immediate
ancestor-descendant relationships of the currently selected object more
clearly.

l·~
n TSubString I
IjTRegeXp I
II TStandardAUocator I

To see more detail about a particular object, double-click it. If you aren't
using a mouse, select the object by using your arrow cursor keys and press
Enter. The Browser lists the symbols (the functions, variables, and so on)
used in the object.

Appendix 0, Using the Browser 153

Figure 0.3 ~~~;: ;9~~; ,f(l\!iff!mfllli.nJ" ,m, ~'.~. m:,L~\t[!:!I,i!I~I::l141~~lt~l:t~"'=~lt~~~tt!1ttLmt.~~~~5';m~L~i~<'ii!~~til!~~mtll~ttl~Ili!(!_~Jg
Viewing the details of

an object

Table 0.1
Letter symbols in the

Browser

Filters

You can change
several filter settings

at once. Drag your
mouse over the cells
you want to select in

the Filters matrix.

154

Browsing: TStringRef

U D void TReference::AddReference(J
U D unsigned short TReference::Refere ,"'
U D unslnned short TReference::RemoveR~~~;
1;2 D unsigned short TReference::Refs t.~.·.~. .. r.a char *array I:;~'•......•..•. ············1

r.a unsigned int nchars ~!~~
1;2 unsigned int capacit!.l li;;~

~~~~~~JV ..• 

One or more letters appear to the left of each symbol in the object. The 
letters describe what kind of symbol it is. 

Letter Symbol 

F Function 
T Type 
V Variable 
I Inherited from an ancestor 
v Virtual method 

The same letters that identify the kind of symbol appear in a Filters matrix 
at the bottom of the Browser window. You can use filters to select the type 
of symbols you want to see listed. 

The Filters matrix has a column for each letter; the letter can appear in the 
top or bottom row of this column. 

To view all instances of a particular type of symbol, click the top cell of the 
letter's column. For example, to view all the variables in the currently 
selected object, click the top cell in the V column. All the variables used in 
the object appear. 

To hide all instances of a particular type of symbol, click the bottom cell of 
the letter's column. For example, to view only the functions in an object, 
you need to hide all the variables. Click the bottom cell in the V column, 
and click the top cell in the F column. 

In some cases more than one letter appears next to a symbol. The second 
letter appears just after the letter identifying the type of symbol and further 
describes the symbol: 

Borland C++ for OS/2 Users Guide 



Viewing 
declarations of 
listed symbols 

Browsing through 
global symbols 

Browsing 
symbols in your 
code 

• I indicates an inherited symbol 
• vindicates a virtual symbol 

Use one of these methods to see the declaration of a particular listed 
symbol: 

• Double-click the symbol. 
II Select the symbol and click the Browse button or press Ctrl+Shift+B. 
• Select the symbol and press Enter. 

If you are browsing in single-window mode (the Window button displays 
only one window on the SpeedBar), and you want to return to a higher 
level, click the Previous Browser Window button or press Ctrl+ V. 

Although it's very easy to use the SpeedBar to choose between single- and 
multiple-window mode, you can do the same thing using Ctrl+W. 

Choose Search I Globals to open a window that lists every global symbol in 
your application in alphabetical order. 

Click the symbol you want more information about or use your cursor keys 
to select it. A Search input box at the bottom of the window lets you 
quickly search through the list of global symbols by typing the first few 
letters of the symbol's name. As you type, the highlight bar in the list box 
moves to a symbol that matches the typed characters. 

Once you select the global symbol you are interested in, you can 

II Choose the Browse button to see the declaration of the symbol. 

II Choose the Go To Source Code button to see how the symbol is declared 
in the source code. 

II Choose the Reference button to see a list of references to the symbol. To 
go to the actual reference in the code, double-click the reference in the 
reference list, or select it and press Enter. 

You can also browse any symbol in your code without viewing object 
hierarchies or lists of symbols first. Just place the cursor on the symbol you 
wish to browse (either by clicking it or using the arrow keys to move the 
cursor) and choose the Search I Symbol At Cursor menu command. 

If the symbol you select to browse is a structured type, the Browser shows 
you all the symbols in the scope of that type. You can then choose to 
inspect any of these further. For example, if you choose an object type, 
you'll see all the symbols listed that are within the scope of the object. 

Appendix 0, Using the Browser 155 



156 Borland C++ for OS/2 Users Guide 



Index 

<> (angle brackets) 
in #include directive 82 

; (semicolons) in directory path names 83 
~ (tilde) in transfer program names 90 
/b IDE option 17 
/ m IDE option 17 
#pragma 

hdrstop 149 

A 
-a BCC option (align integers) 113 
-A BCC option (ANSI keywords) 116 
About Borland C++ command 57 
Action On Messages settings 76 
activating 

the PM Browser 151 
activating, menu bar 18 
active window See windows, active 
Add button 51 
Add Item command 51, 94 
Address And Type In Locals setting 79 
aligning words and integers 63, 113 
American National Standards Institute See ANSI 
angle brackets «» 

in #include directive 82 
ANSI 

C standard 3 
compatible code 116 
floating point conversion rules 113 
keywords 

using only 68 
violations 118 

keywords (Borland C++, implementation-specific) 
option 116 

ANSI violations 
settings 70 
warnings 70 

Argument Names In Stack setting 78, 79, 80, 81 
Argument Names setting 79 
Argument Values In Stack setting 79, 80, 81 
Argument Values setting 79 
arguments variable list 115 

Index 

Arrange Icons command 53 
arrows in dialog boxes 26 
.ASM files See assembly language 
assembler 

compile via 64 
default name 120 
source file setting 63 

assembly language 
assembling from the command line 105 
compiling 120 
directory 125 
inline routines 120 
options 

passing 121 
removing 121 

output files 121 
projects and 99 

assembly level debugger See Turbo Debugger 
Assume'No Pointer Aliasing setting 67 
-AT BCC option (Borland C++ keywords) 116 
-AU BCC option (UNIX keywords) 117 
autoindent mode 143, 145 
autoindent mode setting 86 
automatic dependencies 71 

checking 98 
information, disabling 115 

AutoSave settings 84 

B 
-b BCC option (allocate whole word for enums) 

113 
-B BCC ~ption (process inline assembler code) 120 
Backspace Unindents setting 86 
backward searching 43 
.BAK files 85 
bar, title 24 
Base Address setting 73 
BBS segment See segments 
BCDEF.CSM 121, 147, 148, See also .CSM files 
BG setting 89 
BIX, JOIN BORLAND 8 

157 



block 
column 142, 145 
convert to lowercase 142 
convert to uppercase 142 
copy 142, 144 

Borland-style 145 
current line 142 
cut 144 
defined 144 
delete 142, 144 
extending 143 
hide and show 142 

Borland-style 145 
inclusive 145 
indent 142 
line 145 
move 142, 144 

Borland-style 145 
move to beginning/end of 142 
print 142 
read from disk 142, 144 
regular 145 
set beginning/ end of 142 

Borland-style 145 
set column 142, 145 
set inclusive 142 
set line 145 
set regular 142, 145 
toggle case 142, 146 
unindent 142 
write to disk 142, 144 

block operations (editor) See editing, block 
operations 

blocks, text See editing, block operations 
Bold setting 89 
boldface text 3D, 88 
Borland 

contacting 8 
Borland, contacting 8-9 
Borland C++ 

installing 11-13 
Break command 47 
Break Make On 

Make dialog box 97 
Break Make On setting 70 
breaking program execution 47 

158 

breakpoints See also debugging; watch expressions 
clearing 48 
saving 84 
setting 48 

Breakpoints command 48 
Breakpoints setting 84 
Browser 

buttons on the SpeedBar 152 
hot keys 152 
in the PM IDE 151-155 

activating 151 
filters 154 

SpeedBar 152 
browser 

storing information 32 
Browser info in OBJs 151 
Browser Info In OBJs setting 32 
browsing 

in the PM IDE 151-155 
objects 153 
structured types 155 
symbols in code 155 
through global symbols 155 

build 
IDE option (/b) 17 

Build All command 46 
bulletin board, Borland 8 
buttons 

c 

Browser 152 
Change All 43 
choosing 26 
in dialog boxes 26 
radio 27 

C++ 
exception handling 124 
External Virtual Tables 

IDE setting 66 
Local Virtual Tables 

IDE setting 66 
member functions 73 
member pointers 65 
options 65 
Public Virtual Tables 

IDE setting 66 

Borland C++ for OS/2 Users Guide 



settings 
Member Pointers 65 
Options 65 
Virtual Tables 66 
Warnings 70 

Smart Virtual Tables 
IDE setting 66 

virtual tables 66 
warnings 70 

-c BCC option (compile but don't link) 120 
-C BCe option (nested comments) 117 
C calling conventions 65, 114 
Call Stack command 48 
Call Stack View Local Options settings 79 
Call Stack View setting 76 
Call Stack Will Show setting 79 
calling convention 

__ fastcall 115 
Register 115 

calling conventions 
__ cdecl65, 138 
__ fastcall 65, 138, 139 
__ pascal 65, 138 
__ stdcall 65 
__ cdecl 114 
__ pascal 114 
__ stdcall 114 
C 65,114 
Pascal 65, 114 
Register 65 
Standard 65, 114 

Calling Conventions settings 65 
Cancel button 26 
$CAP EDIT macro 90 
Cascade command 53 
Case-Sensitive Exports setting 73 
Case-Sensitive Library setting 75 
Case-Sensitive Link setting 73 
case sensitivity 

exports setting 73 
librarian setting 75 
linking with 73 
module definition file and 73 
searches in 41 

__ cdecl calling convention 65, 138 
__ cdecl 

command-line option 114 

Index 

__ cdecl calling convention 114 
__ cdecl statement 115 
.CFG files See configuration files 
Change All button 43 
changing and saving settings 62 
characters 

char data type See data types, char 
delete 141 
tab printing 39 

Check Auto-dependencies setting 71 
check boxes 27 
classes See also structures 

browsing 32 
container class libraries 74 
inheritance 65 
inspecting 32 

Clear command 41, 144 
hot key 23 

Clipboard 40, 144 
copy to 142 
cutto 142 
paste from 142, 144 
saving across sessions 85 

Close All command 53 
Close command 

hot key 22 
Close Project command 51 
closing the Settings notebook 59 
code generation 

command-line compiler options 113 
debugging information 32 
IDE settings 32, 47, 63 

Code Generation Options settings 32,47,63 
code page 84 
Code Page setting 84 
Code Sample setting 89 
code segment 

group 120 
naming and renaming 119 

colors 
background 30 
changing IDE text 30 
changing text 30, 88 
foreground 30 

columns 
numbers 24 

159 



command-line compiler 
options 

warnings ( -wxxx) 117-119 
commands See also command-line compiler, 

options; individual command names 
choosing 18, 22 

with the SpeedBar 19 
editor 

block operations 142,144-145 
insert and delete 141 

comments, nested 69, 117 
compatibility 107 
compilation 112 

assembler source output 63 
breaking 47 
command line See command-line compiler 
command-line compiler options 120 
configuration files See configuration files 
DLLs125 
of a multiple-thread program 125 
optimizations 68 
rules governing 109 
speeding up 63 
stopping after errors and warnings 69 
to .EXE file 46 
to .OBJ file 46 

Compile 
command 46 
menu 46 

Compile Via Assembler setting 64 
compiling See compilation 

C and C++ programs 66 
CompuServe, GO BORLAND 8 
configuration files 28 

command-line compiler 28, 106, 110 
creating 111 
overriding 105, 111 
priority rules 111 

contents of 28 
IDE 28-30 

TCCONFIG.TC 28 
TURBOC.CFG 28, 110 

configuring element colors 30 
constants 

hexadecimal, too large 118 
manifest See macros 
octal, too large 118 

160 

container class libraries 74 
Container Class Libraries settings 74 
Contents command 55 

hot key 23 
control characters 

inserting 143 
conventions 

calling 65, 114 
typographic 6 

conversions 
floating point, ANSI rules 113 
pointers, suspicious 118 

coprocessors See numeric coprocessors 
Copy 

command 41 
hot key 23 

copy 
block (Borland-style) 145 
to Clipboard 142 

copyright information 57 
Cpp (preprocessor) See The online document 

UTIL.DOC 
.CPP files See C++ 
Create Backup Files setting 85 
Create Extended Dictionary setting 75 
.CSM files 147, 148 

default names 148 
disk space and 148 
smaller than expected 148 

Ctrl+Break key 44 
Current Window setting 85 
Cursor Through Tabs setting 86, 143, 144, 145 
customer assistance 8-9 
Cut 

command 
hot key 23 

Cut command 41, 142 

D 
-D BCC option (macro definitions) 112 
-d BCC option (merge literal strings) 113 
data, aligning 63 
data segments 

group 119, 120 
naming and renaming 119, 120 

data types 
char 63, 113 

Borland C++ for OS/2 Users Guide 



default 
changing 63, 113 

floating point See floating point 
integers See integers 

Datapoints command 48 
Dead Storage Elimination setting 67 
Debug info in OBJs 151 
Debug Info In OBJ s setting 32, 64 
Debug menu 47 
Debug Source directory, input box 33, 47, 83 
Debug Source setting 33, 47, 83 
Debugger Options settings 75 
Debugger settings 33, 47 
debugging See also integrated debugger 

breakpoints See breakpoints 
Browser Info In OBJs 32 
Debug Info In OBJs 32, 64 
Debugger Options settings 75 
Debugger settings 33, 47 
exceptions 76 
hot keys 23 
information 44 

command-line compiler option 115 
excluding 52 
in .EXE or .OBJ files 116 
including 33, 47, 64, 72 
linking 33, 47, 72 
storing 32, 64 

inspecting a variable 34 
line numbers information 32,64 
mode 

hard 75 
soft 75 

popups on exceptions 76 
reset program 45 
running to cursor 45 
saving breakpoints 84 
setting a breakpoint 34 
setting a datapoint 34 
setting a messagepoint 34 
setting an exceptionpoint 34 
settings 

Index 

Call Stack View 76 
Disassembly View 76 
Local Variable View 76 
PM debugging mode 75 
Popup On Exception 76 

Source View 76 
Use Evaluator 75 

source directory 33,47,83 
stack overflow 32, 65 
starting a session 44 
stepping 

into functions 45 
over functions 45 

subroutines 64, 67 
watch expressions See watch expressions 
watching variables 34 

debugging an application 32 
Debugging Options settings 64 
.DEF files, import libraries and 72 
default assembler 120 
Default BC setting 88 
default buttons 26 
default extension 87 
Default Extension setting 87 
Default FC setting 88 
#define directive 

command-line compiler options 112 
ganging 113 

Defines setting 65 
Delete Item command 52, 94 
Delete setting 90 
deleting 

blocks 142 
text (redoing/undoing) 41 

$DEPO macro 71 
dependencies 71 
desktop 

saving settings in 85 
system menu 21,22 
window, arranging icons in 53 

Desktop setting 84 
Desktop settings 85 
dialog boxes See also buttons; check boxes; list 

boxes; radio buttons 
arrows in 26 
defined 26 
entering text 27 
Modify /New Transfer Item 90 
Preferences 145 

directories 
.ASM and .OBJ command-line options 125 
debug source 33, 47, 83 

161 



defining 82 
include files 106, 125 

example 127 
libraries 126 

command-line option 106, 125 
example 127 

output 82 
project files 29 
projects 96 
semicolons in paths 83 

Directories settings 82 
Disassembly command. 48 
Disassembly View Local Options settings 77 
Disassembly View setting 76, 77 
disk space, running out of 148 
Display ASCII In File View setting 82 
Display Memory As setting 78 
Display Selected Item As setting 79 
Display Warnings settings 69 
distribution disks 

backing up 11 
defined 11 

DLLs See also import libraries 
compiling 125 
import libraries and 72 
linking 72, 125 
MAKE and 72 

.DSK files 
default 29 
projects and 29 

Duplicate Strings Merged setting 63 
dynamic link libraries See DLLs 

E 
-E Bee option (assembler to use) 120 
-e Bee option (EXE program name) 124 
Edit See also IDE, editor 

menu 39 
windows 

loading files into 97 
setting settings 85 

Edit setting 90 
editing 

block operations 142, 144-145 
deleting 144 , 
deleting text 86 
marking 86 

162 

overwrite 86 
reading and writing 144 
selecting blocks 39, 86 

copy and paste 
hot key 23 

cut and paste 40, 41 
hot keys 23 
pair matching See pair matching 
redoing undone text edits 41 
selecting text 39, 144 
undelete 41 
undoing text edits 41 
windows 

cursor, moving 141 
editor See IDE, editor 
Editor Files 

setting, Auto Save 84 
Editor Files setting 84 
Editor Key Bindings setting 83 
Editor Options settings 85 
Editor settings 85 
Element setting 88 
ellipsis ( ... ) 18, 26 
enumerations See enum (keyword) 
enumerations (enum) 

assigning integers to 118 
treating as integers 63, 113 

Environment 
setting, Auto Save 84 

environment See IDE 
Environment setting 84 
Error Messages command 56 
errors See also warnings 

ANSI 118 
frequent 118 
messages 5 

compile time 96, 97 
removing 98 
saving 98 
searching 50 

reporting command-line compiler options 117 
show next/previous 146 
stopping on n 69 
syntax, project files 96, 97 
tracking, project files 96, 97 

Errors, Stop After setting 69 
Esc shortcut 26 

Borland C++ for OS/2 Users Guide 



Essentials command 56 
evaluation order 

command-line compiler options 111 
in response files 110 

Evaluator command 49 
Evaluator Show setting 80 
Evaluator View Local Options settings 80 
examples 

library and include directories 127 
Exception Handling compiler options 124 
Exceptionpoints command 48 
.EXE files 

creating 23, 46 
directories 82 
linking 46 
naming 46 
user-selected name for 124 

executable files See .EXE files 
Exit command 39 
exiting 

IDE 143 
exiting Borland C++ 22 
exiting the IDE 17 
explicit library files 125 
__ export (keyword) 138 
exported member functions 73 
exports, case sensitive 73 
extended dictionary setting 

librarian 75 
extension keywords, ANSI and 116 
Extension setting 89 
External Virtual Tables 

command-line option 122 

F 
far virtual table segment 

naming and renaming 120 
__ fastcall calling convention 65, 138, 139 
__ fastcall 

command-line option 115 
__ fastcall calling convention 115 
Fastest Code setting 68 
-f£ BCC option (fast floating point) 113 
FG setting 88 
File Alignment setting 73 
File And Numeric View Local Options settings 82 

Index 

file lists 
wildcards and 38 

File menu 37 
File View Will Display As setting 82 
FILELIST.DOC 11 
files See also individual file-name extensions 

browser information i'n OBJs 32 
C++ See C++ 
closed, reopening 53 
compiling 121 
configuration 28 
debugging information in OBJs 32,64 
dependencies in OBJ s 71 
desktop (.DSK) 

default 29 
projects and 29 

directories 
.EXE 82 
.MAP82 
.OBJ 82 
source 33, 47, 83 

editing .see editing 
Editor 

setting, Auto Save 84 
FILELIST.DOC 11 
header See header files 
HELPME!.DOC 13 
include See include files 
information in dependency checks 98 
library (.LIB) See libraries 
loading into editor 97 
make See MAKE (program manager) 
map 73, See map files 
modifying 14 
module definition 125 
module definition files 

IMPORTS section, case-sensitive 73 
new 37 
NONAME37 
opening 37 
out of date, recompiled 98 
printing 39 
project 28 
README 13 
response See response files 
saving 38, 143 

all 38 

163 



automatically 84 
with new name or path 38 

source, .ASM, command-line compiler and 105 
filling lines with tabs and spaces 86 
filters 

transfer See transfer filters 
filters, PM Browser 154 
Find command 41, See also searching 
Flags setting 77, 81 
floating point 

ANSI conversion rules 113 
fast 113 

Follow PC setting 77 
Fonts settings 87 
Format Of Selected Item setting 80 
Frame Registers setting 79, 81 
full link map 125 
Function Entries settings 78 
functions See also member functions 

G 

browsing through PM 155 
calling conventions 65, 114, 115 
defined in source, going to 155 
exported 73, 138 
help 56 
inline, precompiled headers and c++ 148 
naming 139 
view details of 155 
void, returning a value 118 

ganging 
command-line compiler options 

#define 113 
macro definition 113 

defined 113, 126 
IDE 126 
library and include files 126 

General settings 70 
Generate Assembler Source setting 63 
Generate Import Library settings 72 
Generate List File setting 75 
Generate Makefile 

command 52 
Generate Underbars setting 64 
GEnie, BORLAND 9 
Global Optimizations setting 67 
Global Register Allocation setting 67 

164 

global variables, word-aligning 113 
Global Variables settings 78 
-gn BCC option (stop on n warnings) 117 
Go to Cursor command 

hot key 23 
Go to Line Number command 44 
GREP (file searcher) See The online document 

UTIL.DOC 
wildcards in the IDE 42 

Group Undo setting 86 
Undo and Redo commands and 41 

H 
-H BCC option (precompiled headers) 120 
hardware requirements to run Borland C++ 2 
hdrfile pragma 148 
hdrstop pragma 148, 149, 150 
header files See also include files 

help 56 
precompiled See precompiled headers 
searching for 126 

Heap command 49 
Help 

hot keys 22 
help 143 

accessing 22, 54 
button 26 
C and C++ 56 
HELPME!.DOC file 13 
hot keys 22, 23 
index 55, 143 
language 56 
links 54 
menu 54 
status line 26 
table of contents 55 
topic search 143 
using 56 
Using Help command 56 
windows 

closing 54 
links in 54 
opening 54 
selecting text in 55 

hexadecimal numbers See numbers, hexadecimal 
Hide Windows command 49 
hierarchies See classes 

Borland C++ for OS/2 Users Guide 



hierarchy 
viewing an object 152 

history lists 27 
closing 53 
saving across sessions 85 

Horizontal setting 81 
hot keys 37 

debugging 23 
editing 23 
help 22,23 
menus 21, 22 
using 21 

-i BCC option (identifier length) 117 
-:-1 BCe option (include files directory) 106, 125 
Icons, arranging 53 
IDE 15 

command-line arguments in the 45 
commands 

cursor movement 141 
insert and delete 141 

customizing 14 
editor 

cursor movement 141 
fonts 87 
miscellaneous commands 145-146 
options 85 
setting defaults 85 
tabs in 86 

ganging multiple directories 126 
options 15 
starting up 15 
syntax highlighting 30, 88 

BC and BCe See Borland C++; command-line 
compiler; IDE 

Identifier Length 69 
Identifier Length settings 69 
identifiers 

Borland c++ keywords as 68, 116 
length 69 
Pascal 115 
significant length of 113, 117 
undefining 112 
underscore for 115 

image base address 73 
Image Is Based setting 73 

Index 

IMP LIB (import librarian) See import libraries 
$IMPLIB See import libraries 
$IMPLIB macro 72 
implicit library files 125 
import libraries See also DLLs 

DLLsand 72 
generating 72 

include debug info 33, 47, 72 
Include Debug info in OBJs 151 
#include directive See also include files 

angle brackets «» and 126 
directories 82 
quotes and 126 

Include Directories 
input box 82 

include files See also header files 
command-line compiler options 126 
directories 1 06, 125 

multiple 127 
help 56 
projects 94, 95 
searching for 126 
user-specified 106, 125 

Include Files command 52, 94 
Include setting 82 
Include Views setting 77 
incremental search 27 
indent 

automatic 86 
block 142 

Index command 
Help menu 55 
hot key 23 

information 
technical support 8 

initialization See specific type of initialization 
~nline code See assembly language, inline routines 
mput boxes 27 
insert 

control characters 143 
lines 142 
mode 142 
hewline 142 
tab 142 

Inspector command 34, 49 
Inspector View Local Options settings 80 
installation 11-13 

165 



integers 113, See also floating point; numbers 
aligned on word boundary 113 
assigning to enumeration 118 

integrated development environment See IDE 
debugging See debugging; integrated debugger 
menus See menus 

integrated environment 
makes 98 

intrinsic pragma 137 
Italic setting 89 
italicize text 3D, 88 

J 
-Jg BCC options (template generation options) 123 
-Jg options (template generation options) 66 
-jn BCC option (stop on n errors) 117 

K 
-k BCC option (standard stack frame) 114 
-K BCC option (unsigned characters) 113 
K&R See Kernighan and Ritchie 
Keep Messages command 

toggle 98 
Kernighan And Ritchie 

keywords 68 
Kernighan and Ritchie 

keywords 117 
keyboard 

choosing commands with 18, 26 
selecting text with 39 

Keyboard command 56 
keyboard macros 

playing back 143, 146 
recording 143, 146 

keywords 68 

L 

ANSI command 116 
Borland C++ 68, 116 
Kernighan and Ritchie, using 117 
Keywords settings 68 
settings 68 
UNIX, using 117 

-1 BeC option (linker options) 124 
-L BCC option (object code and library directory) 

106, 125 

166 

language help 56 
Language Reference command 56 
.LIB files See libraries 
librarian 

case sensitive setting 75 
extended dictionary setting 75 
list file setting 75 
purge comments setting 75 

libraries 
command-line compiler options 126 
container class 74 
directories 82, 125 

command-line option 106, 125 
multiple 127 

dynamic link See DLLs 
explicit and implicit 125 
files 82, 106, 125 
import See import libraries 
linking 46 
multi-thread 72 
multiple thread (C2MT.LIB) 125 
overriding in projects 101 
rebuilding 115 
searching for 126 
single thread 72 
standard run-time 74 
user-specified 125 

Library Directories input box 82 
library page size 75 
Library Page Size setting 75 
Library setting 82 
line numbers See lines, numbering 
Line Numbers Debug setting 32, 64 
lines 

deleting 142 
filling with tabs and spaces 86 
inserting 142 
marking 142 
moving cursor to 44 
numbering 24 

in object files 115 
information for debugging 32,64 

restoring (in editor) 41 
Link command 46 
Link Libraries settings 74 
link map I full 125 
Link Settings settings 47, 72 

Borland C++ for OS/2 Users Guide 



Link Warnings settings 74 
linking 

breaking 47 
case sensitive 73 
command-line compiler options 124 
DLLs·72, 125 
link map, creating 125 
module definition files 125 
multiple-thread libraries 125 
options 72 
options, from command-line compiler 124 

links 
help 56 
Help windows 54 

list all line references 152 
list boxes 27 

file names 38 
list file setting, librarian 75 
Local Common Expressions setting 67 
local menus 

using 19,34 
Local Options 

command 94 
Local Options command 52 
Local Variable View setting 76 
Local Variables setting 79 
Local Variables settings 78 
Local Virtual Tables 

command-line option 121 

M 
-M BCC option (link map) 125 
macros 

$CAPEDIT 90 
$DEPO 71 
$IMPLIB 72 
command-line compiler 112 
ganging 113 
__ MT __ 125 
transfer 90, See transfer macros 
Turbo editor 83, See also The online document 
UTIL.DOC 

MAKE (program manager) 
DLLsand 72 
IDE option (/ m) 17 
integrated environment makes and 98 

Index 

stopping makes 97 
Make command 46 

hot key 23 
manifest constants See macros 
map file 73 
Map File settings 73 
map files 125 

directory 82 
marker 

find 143, 146 
set 143, 146 

math coprocessors See numeric coprocessors 
Maximize box 24 
member functions 

exported 73 
inline 148 

member pointers, controlling 122 
Memory command 49 
Memory Displays As setting 81 
Memory setting 77 
Memory View Follows Stack setting 81 
Memory View Local Options settings 80 
Memory Will Show setting 80 
menu bar See also menus 
menu commands 

choosing 
with the SpeedBar 19 

choosing with the keyboard 18 
choosing with the mouse 18 

menus See also individual menu names 
hot keys 21, 22 
IDE 18,22 
local 19,34 
reference 37 
Tools 89 
with anellipsis ( ... ) 26 

Menus command 56 
Message Tracking toggle 97 
Messagepoints command 48 
messages 

appending 85 
removing 50 

Minimal Opts setting 68 
Modify /New Transfer Item dialog box 90 
module definition files 125 

EXPORTS section, case-sensitive 73 
monitors See also screens 

167 



mouse 
buttons 

right and left 18 
choosing commands with 18, 26 
selecting text with 40 

moving text See editing 
__ MT __ macro 125 
multi-thread 

Multi-thread setting 72 
programs 72 

multiple listings 
command-line compiler options 

#define 113 . 
include and library 126 
macro definition 113 

Multiple Window button 152 

N 
-n BCC option (.OBJ and .ASM directory) 125 
-N BCC option (stack overflow logic) 114 
N arne setting 87 
names See identifiers 
Names settings 70 
nested comments 69, 117 
Nested Comments settings 69 
New command 37 
New Window setting 85 
Next command 

hot key 22 
next error, show 146 
Next Error command 50 
NONAME file name 37 
notebook 

Settings 51 
undoing changes 62 

numbers See also floating point; integers 
hexadecimal 

constants, too large 118 
octal constants 

too large 118 
real See floating point 

numeric coprocessors 
generating code for 113 

Numeric Processor command 49 
Numeric View Display As setting 82 

168 

o 
-0 BCC option (object files) 121 
.OBJ files 

browser information 32 
compiling 121 
creating 46 
debugging information 32, 64 
dependencies 71 
directories 82, 125 
line numbers in 115 

object 
hierarchy 

viewing an 152, 153 
view details of 153 

objects 
browsing 

in the PM IDE 153 
OBJs 

Browser info 151 
Debug info 151 
link info 151 

OBJXREF See The online document UTIL.DOC 
OK button 26 
online Help See help 
Open command 37 
Open Project command 51 
opening a file 37 
opening the Settings notebook 51, 59 
Optimal Fill setting 86, 143, 146 
optimizations 67, 129 

command-line compiler options 116 
for speed or size 68 
Optimization settings 67 
PM applications and 68 
precompiled headers 149 
registers, usage 130 
settings 67 

Optimize For settings 68 
options See also specific entries (such as 

command-line compiler, options) 
C++ template generation 

command-line option 123 
IDE 15 
linking 72 
Options settings 

code generation 63 
librarian 74 

Borland C++ for OS/2 Users Guide 



linker 72 
OS/2 

API documentation 2 
Clipboard 40 
commands 11 
Help system 55 
path 90 
Settings notebook 15 
version 2 
wildcards 38, 89 

Out-of-line Inline Functions setting 33, 66 
Output 

Directory, input box 82 
Output setting 82 
Overwrite Blocks setting 86 

p 
-p- BCC option C _stdcall conventions) 114 
-P BCC option (C++ and C compilation) 121 
-p BCC option (Pascal calling conventions) 114 
-pr BCC option C _fastcall calling convention) 115 
pair matching 143 
parameter types, register usage and 138 
Pascal 

identifiers 115 
__ pascal calling convention 65, 138 
__ pascal 

command-line option 114 
__ pascal calling convention 114 
Pascal calling conventions 65, 114 
Paste command 41 

hot key 23 
paste from Clipboard 142, 144 
pasting See editing 
path names in Directories dialog box 83 
-pc BCC option (C conventions) 114 
Persistent Blocks setting 86 
place marker 

find 143, 146 
set 143, 146 

playing back keyboard macros 143, 146 
PM Debugging Mode setting 75 
pointers 

suspicious conversion 118 
Popup On Exception settings 76 
portability 

Portability settings 70 

Index 

warnings 70, 118 
#pragma 

hdrfile 148 
hdrstop 148 
intrinsic 137 
warn 117 

#pragma hdrstop 150 
precedence 

command-line compiler options 106, 111 
response files and 110 

precompiled headers 147-150 
command-line options 120 
controlling 148 
drawbacks 148 
inline member functions and 148 
optimizing use of 149 
Precompiled Headers setting 63 
rules for 148 
using, IDE 63 

Preferences dialog box 145 
Preferences settings 83 
previous browser window 152 
previous error, show 146 
Previous Error command 50 
Print command 39 
.PRJ files See projects 
procedures See functions 
Program Target settings 71 
program titles 89 
Program Titles setting 89 
Programmer's Platform See IDE 
programs 

ending 44 
multi-source See projects 
multi-thread 72 
rebuilding 44, 46 
running 44 

arguments for 45 
single thread 72 
transfer, list 99 

Project 
menu 51 

project files 28 
contents of 28 

Project Manager 44 
closing projects 51 
Include files and 52 

169 



Project Name setting 90 
Project setting 84 
projects See also Project Manager 

autodependency checking 71 
speeding up 71 

automatic dependency checking and 98 
building 93 
changing 30 
closing 51 
default 29 
desktop files and 29, 28-30 
directories 96 
directory 29 
error tracking 96, 97 
.EXE file names and 46 
files 

adding 95 
command-line options and 52 
deleting 95 
include 95 
information 99 
list 95 
options 95 
out of date 98 
viewing 103 

IDE configuration files and 28 
include files 94 
information in 93 
libraries and 

overriding 101 
loading and opening 28 
makes and 98 
making hot key for 97 
meaning of 51 
naming 94 
new 94 
saving 53, 96 
translator setting 52 
translators See also Transfer 

default 99 
example 100 
multiple 99 
specifying 99 

pseudovariables, register 
using as identifiers 116 

pull-down menus See menus 
Purge Comment Records setting 75 

170 

purge comments setting 
librarian 75 

Q 
Quit 

command (IDE) 17 

R 
-r BCC option (register variables) 130 
radio buttons 27 
read block 142 
README 13 
rebuilding libraries 115 
recording keyboard macros 143, 146 
redo 143 
Redo command 41 

Group Undo and 41, 86 
hot key 23 

Register calling conventions 65, 115 
Register Contents Display As setting 81 
Register Layout setting 81 
Register View Local Options settings 81 
Register View Will Show setting 81 
registers 

pseudovariables, using as identifiers 116 
usage and parameter types 138 
variables 

suppressed 130, 131 
toggle 130, 131 

Registers command 49 
Registers setting 77, 81 
registration (product) 

by phone 8 
Remove Messages command 50, 98 
Replace command 43 
replacing a file 37 
requirements to run Borland C++ 

hardware 2 
software 2 

Reset command 45 
resetting program 45 
resize corner 24 
response files 

defined 110 
option precedence 110 

Borland C++ for OS/2 Users Guide 



Run 
command 44 

hot key 23 
menu 44 

Run Arguments command 45 
Run To Cursor command 45 

S 
-5 BCC option (produce .ASM but don't assemble) 

121 
Save All command 38 
Save As command 38 
Save command (File menu) 38 
Save command (Project command) 53 
save file 143 
Save Old Messages settings 85 
Save settings 85 
saving breakpoints 84 
scope See variables 
scroll bar 24 
scroll bars 25 
-sd BCC option (compiling DLLs) 125 
-sD BCC option (module definition file name) 125 
Search Again command 44 

hot key 23 
Search menu 41 
searching 

direction 43 
error and warning messages 50 
for include files 126 
for libraries 126 
for text 143 
in list boxes 55 
incrementally 143, 146 
origin 43 
regular expressions 42 
repeating 44 
replace and 43 
scope of 43 
search and replace 43 

Segment Names settings 70 
segment-naming control 

command-line compiler options 119 
segments 

and pragma codeseg 119 
BS570 
code 70 

Index 

controlling 119 
data 70 
far data 70 
naming 70 

selecting a font 87 
selecting text 144 
semicolons (;) in directory path names 83 
settings 

Action On Messages 76 
Address And Type In Locals 79 
ANSI Violations 70 
Argument Names 79 
Argument Names In Stack 78, 79,80,81 
Argument Values 79 
Argument Values In Stack 79, 80, 81 
Assume No Pointer Aliasing 67 
autoindent mode 86 
AutoSave 84 
Backspace Unindents 86 
Base Address 73 
BG89 
Bold 89 
Break Make On 70 
Breakpoints 84 
Browser Info In OBJs 32 
C++ Member Pointers 65 
C++ Options 65 
C++ Virtual Tables 66 
C++ Warnings 70 
Call Stack View 76 
Call Stack View Local Options 79 
Call Stack Will Show 79 
Calling Conventions 

C 65 
Pascal 65 
Register 65 
Standard 65 

Case-Sensitive Exports 73 
Case-Sensitive Library 75 
Case-Sensitive Link 73 
changing 62 
Check Auto-dependencies 71 
Code Generation Options 32, 47,63 
Code Page 84 
Code Sample 89 
Compile Via Assembler 64 
Container Class Libraries 74 

171 



Create Backup Files 85 
Create Extended Dictionary 75 
Current Window 85 
Cursor Through Tabs 86 
Dead Storage Elimination 67 
Debug Info In OBJs 32, 64 
Debug Source 33, 47, 83 
Debugger 33, 47 
Debugger Options 75 
Debugging Options 64 
Default BG 88 
Default Extension 87 
Default FG 88 
Defines 65 
Delete 90 
Desktop 84, 85 
Directories 82 
Disassembly View 76, 77 
Disassembly View Local Options 77-
Display ASCII In File View 82 
Display Memory As 78 
Display Selected Item As 79 
Display Warnings 69 
Duplicate Strings Merged 63 
Edit 90 
Editor 85 
Editor Files 84 
Editor Key Bindings 83 
Editor Options 85 
Element 88 
Environment 84 
Errors, Stop After 69 
Evaluator Show 80 
Evaluator View Local Options 80 
Extension 89 
Fastest Code 68 
FG88 
File Alignment 73 
File And Numeric View Local Options 82 
File View Will Display As 82 
Flags 77,81 
Follow PC 77 
Fonts 87 
Format Of Selected Item 80 
Frame Registers 79, 81 
Function Entries 78 
General 70 

172 

Generate Assembler Source 63 
Generate Import Library 72 
Generate List File 75 
Generate Underbars 64 
Global Optimizations 67 
Global Register Allocation 67 
Global Variables 78 
Group Undo 86 
Horizontal 81 
Identifier Length 69 
Image Is Based 73 
Include 82 
Include Views 77 
Inspector View Local Options 80 
Italic 89 
Keywords 68 
Library 82 
Library Page Size 75 
Line Numbers Debug 32, 64 
Link Libraries 74 
Link Settings 47, 72 
Link Warnings 74 
Local Common Expressions 67 
Local Variable View 76 
Local Variables 78, 79 
Map File 73 
Memory 77 
Memory Displays As 81 
Memory View Follows Stack 81 
Memory View Local Options 80 
Memory Will Show 80 
Minimal Opts 68 
Name 87 
Names 70 
Nested Comments 69 
New Window 85 
Numeric View Display As 82 
Optimal Fill 86, 143, 146 
Optimization 67 
Optimizations 67 
Optimize For 68 
Options 63, 72 
Options (librarian) 74 
Out-of-line Inline Functions 33, 66 
Output 82 
Overwrite Blocks 86 
Persistent Blocks 86 

Borland C++ for OS/2 Users Guide 



PM Debugging Mode 75 
Popup On Exception 76 
Portability 70 
Precompiled Headers 63 
Preferences 83 
Program Target 71 
Program Titles 89 
Project 84 
Project Name 90 
Purge Comment Records 75 
Register Contents Display As 81 
Register Layout 81 
Register View Local Options 81 
Register View Will Show 81 
Registers 77, 81 
Save 85 
Save Old Messages 85 
saving 62 
Segment Names 70 
Show Address And Type 79 
Show Source 77 
Show Symbolic 77 
Show Type Information 80 
Size 87 
Smallest Code 68 
Source File 84 
Source Tracking 85 
Source View 76 
SpeedBar 33, 85 
Stack 77, 78, 79, 80, 81 
Standard Run-time Libraries 74 
Standard Stack Frame 64, 67 
Style 88 
Syntax Highlighting 30, 86 
Syntax Hilite 88 
Tab Size 87 
Template Generation 66 
Test Stack Overflow 32, 65 
Thread Options 72 
Translator 90 
Treat Enums As Ints 63 
Type Information 79, 80 
Underline 89 
Unsigned Characters 63 
Use C++ Compiler 66 
Use Evaluator 75 
Use Tab Character 86 

Index 

Variable Information 78 
Variables View Local Options 78 
Variables View Will Display 78 
Vertical 81 
Warnings, Stop After 69 
Watch View Local Options 79 
Watch Will Show 79 
Word Alignment 63, 113 

Settings notebook 51 
closing 59 
Compiler section 62 
Debugger Options section 75 
Debugger section 33, 47 
Directories section 82 
Environment section 83 
Librarian section 74 
Linker section 72 
Make section 70 
opening 59 
pages 60 
sections 60 
subsections 60 
Target section 71 
Transfer section 89 
undoing changes 62 
using 59 

shortcuts See hot keys 
Show Address And Type setting 79 
Show Source setting 77 
Show Symbolic setting 77 
Show Type Information setting 80 
Show Windows command 49 
single thread 

programs 72 
Single Thread setting 72 

Single Window button 152 
Size setting 87 
-sm BCC option (link with multiple-thread 

libraries) 125 
Smallest Code setting 68 
Smart Virtual Tables 

command-line option 121 
software requirements to run Borland C++ 2 
source code, go to 155 
Source command 48 
source debugging settings 44 
Source File setting 84 

173 



source files 
.ASM, command-line compiler and 105 
directories 33, 47, 83 

source-level debugger See Turbo Debugger 
Source Options settings 68 
source tracking 85 
Source Tracking settings 85, 97 
Source View setting 76 
spaces vs. tabs 86 
speed, optimization 116 
SpeedBar 19, 33, 85 

Browser 152 
configuring the 19 
settings 33, 85 

stack 
overflow 32, 65, 114 
standard frame, generating 114 

Stack setting 77, 78, 79,80,81 
standalone librarian 

case sensitive 75 
extended dictionary 75 
list file 75 
purge comments 75 

Standard calling conventions 65, 114 
standard library files See libraries 
standard run-time libraries 74 
Standard Run-time Libraries settings 74 
Standard Stack Frame 

generating 114 
setting 64, 67 

start-up and exit 
IDE 15 

status line 26 
__ stdcall calling convention 65 
__ stdcall 

command-line option 114 
__ stdcall calling convention 114 
Step Over command 45 

hot key 23 
stepping 

into functions 45 
over functions 45 

strings 
duplicate, merging 63 
literal, merging 113 

structures 
ANSI violations 118 

174 

undefined 118 
zero length 118 

Style setting 88 
support, technical 8-9 
switches See command-line compiler, options; IDE 
symbolic constants See macros 
symbolic debugger See Turbo Debugger 
symbols 

browsing in source code 155 
viewing declarations of 155 

syntax 
errors, project files 96, 97 
IDE options 15 

syntax highlighting 30, 86 
configuring element colors 30 

. IDE 30 
setting 30, 86 
settings 88 
turning on and off 143 

Syntax Hilite settings 88 
system menu button 16, 17, 24 
system requirements 2 

T 
-T- BCC option (remove assembler options) 121 
Tab mode 143, 146 
Tab Size setting 87 
tabs 

characters, printing 39 
size of 87 
spaces vs. 86 
using in the editor 86 

Tasks command 56 
TCCONFIG.TC See configuration files, IDE 
TCDEF.DPR files 29 
TCDEF.DSK files 29 
Technical Support 

contacting 8 
technical support 8-9 
TEML See The online document UTIL.DOC 
Template Generation settings 66 

External 67 
Global 67 
Smart 66 

templates, generation 123 
terminate and stay resident See TSR programs 
Test Stack Overflow setting 32, 65 

Borland C++ for OS/2 Users Guide 



citing 
iiting, block operations 
te 41 

~.itor) 41 

'T 55 
49 
tings 72 
')rogram names 90 

)mmand 

50 

:ld56 

143 
_45 

;41 
es 50 

3ee also The online document 

Transfer Item dialog box 90 
cg 52, 90 
)rojects, translators 

.3 Ints setting 63 
:e The online document UTIL.DOC 

Jption (pass string to assembler) 121 

Turbo Assembler 
Borland C++ command-line compiler and 109 
command -line compiler and 105 
default 120 
invoking 109 

Turbo Debugger, described 115 
Turbo Editor Macro Compiler 83, See also The 

online document UTIL.DOC 
Turbo Editor Macro Language 83, See also The 

online document UTIL.DOC 
Type Information setting 79,80 
typefaces used in these books 6 
types 

browsing structured 155 
typographic conventions 6 

u 
-U BCC option (undefine) 112 
-u BCC option (underscores) 115 
Underline setting 89 
underline text 30, 88 
underscores 115 

generating automatically 64, 115 
undo 143 
Undo command 41 

Group Undo and 41, 86 
hot key 23 

unindent 
block 142 
mode 143, 146 

UNIX 
keywords 68 

using 117 
porting Borland C++ files to 11 7 

Unsigned Characters setting 63 
Use C++ Compiler settings 66 
Use Evaluator setting 75 
Use Tab Character setting 86 
user-specified library files 125 
utilities See also The online document UTIL.DOC 

v 
-v and -Vn BCC options (C++ virtual tables) 121 
-v BCC option (debugging information) 115 
variable argument list 115 
Variable command 48 

175 



Variable Information setting 78 
variables 

automatic word-aligning 113 
register 130, 131 

Variables View Local Options settings 78 
Variables View Will Display setting 78 
version number 57 
Vertical setting 81 
-vi BCC option (C++ inline functions) 116 
video code page 84 
View Project command 51 
View Settings command 51, 59 
View Transcript command 50 
viewing 

declarations of symbols 155 
details of an object 153 
details of functions 155 
object hierarchy 153 
the Project window 51 
the Transcript window 50 

virtual tables 66 
command-line option 121, 122 
controlling 121 

-Vm BCC options (C++ member pointers) 122 

w 
-wxxx BCC options (warnings) 117 
warn pragma 117 
warnings See also errors 

ANSI violations 70 
C++ 70, 118 
command-line options 117-119 
enabling and disabling 117 
frequent errors 118 
messages 5 
options 117-119 
portability 70, 118 
settings 69 

Warnings, Stop After setting 69 
Watch command 34, 49 
Watch View Local Options settings 79 
Watch Will Show setting 79 
whole-word searching 41 
wildcards 42 

GREP42 
OS/238 

Window menu 53 

176 

window sizing buttons 
Maximize 24 
Minimize 24 
Restore 24 

windows 
active 22, 23, 24, 25, 53, 85 
cascading 53 
closed 53 

listing 53 
closing 53 
Edit See Edit, windows 
Help See Help, windows 
menu 53 
open 53 

listing 53 
Project 51 
saving across sessions 85 
source tracking 85 
system menu 22 
tiling 53 
Transcript 50 
using IDE 23, 24, 25 

word 
convert to lowercase 142 
convert to uppercase 142 
delete 142 
mark 142 

Word Alignment setting 63, 113 
write block 142 
-wxxx BCC options (warning me· 

117-120 
-wxxx BCC options (warnings) 1 

x 
-x BCC option (disable autodepe_ 

information) 115 
-x BCC option (handle exceptions. 

y 
-y BCC option (line numbers) 115 

z 
-zV BCC options (far virtual table seg 
-zX BCC options (code and data segm 

119-120 

Borland c++ for OS/2 l 



-----------------------,----------- .. ------- .. -~~~~~-



Borland 
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada, 
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, 
Spain, Sweden, Taiwan, and United Kingdom· Part # BCP1415WW21770 • BaR 7000 


